stdlib: Move insertion sort out qsort
[glibc.git] / stdlib / qsort.c
blob5691249a9bd72e0f2f74357360d3a0a9da1667c9
1 /* Copyright (C) 1991-2023 Free Software Foundation, Inc.
2 This file is part of the GNU C Library.
4 The GNU C Library is free software; you can redistribute it and/or
5 modify it under the terms of the GNU Lesser General Public
6 License as published by the Free Software Foundation; either
7 version 2.1 of the License, or (at your option) any later version.
9 The GNU C Library is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 Lesser General Public License for more details.
14 You should have received a copy of the GNU Lesser General Public
15 License along with the GNU C Library; if not, see
16 <https://www.gnu.org/licenses/>. */
18 /* If you consider tuning this algorithm, you should consult first:
19 Engineering a sort function; Jon Bentley and M. Douglas McIlroy;
20 Software - Practice and Experience; Vol. 23 (11), 1249-1265, 1993. */
22 #include <alloca.h>
23 #include <limits.h>
24 #include <memswap.h>
25 #include <stdlib.h>
26 #include <string.h>
27 #include <stdbool.h>
29 /* Swap SIZE bytes between addresses A and B. These helpers are provided
30 along the generic one as an optimization. */
32 enum swap_type_t
34 SWAP_WORDS_64,
35 SWAP_WORDS_32,
36 SWAP_BYTES
39 /* If this function returns true, elements can be safely copied using word
40 loads and stores. Otherwise, it might not be safe. BASE (as an integer)
41 must be a multiple of the word alignment. SIZE must be a multiple of
42 WORDSIZE. Since WORDSIZE must be a multiple of the word alignment, and
43 WORDSIZE is a power of two on all supported platforms, this function for
44 speed merely checks that BASE and SIZE are both multiples of the word
45 size. */
46 static inline bool
47 is_aligned (const void *base, size_t size, size_t wordsize)
49 return (((uintptr_t) base | size) & (wordsize - 1)) == 0;
52 static inline void
53 swap_words_64 (void * restrict a, void * restrict b, size_t n)
55 typedef uint64_t __attribute__ ((__may_alias__)) u64_alias_t;
58 n -= 8;
59 u64_alias_t t = *(u64_alias_t *)(a + n);
60 *(u64_alias_t *)(a + n) = *(u64_alias_t *)(b + n);
61 *(u64_alias_t *)(b + n) = t;
62 } while (n);
65 static inline void
66 swap_words_32 (void * restrict a, void * restrict b, size_t n)
68 typedef uint32_t __attribute__ ((__may_alias__)) u32_alias_t;
71 n -= 4;
72 u32_alias_t t = *(u32_alias_t *)(a + n);
73 *(u32_alias_t *)(a + n) = *(u32_alias_t *)(b + n);
74 *(u32_alias_t *)(b + n) = t;
75 } while (n);
78 /* Replace the indirect call with a serie of if statements. It should help
79 the branch predictor. */
80 static void
81 do_swap (void * restrict a, void * restrict b, size_t size,
82 enum swap_type_t swap_type)
84 if (swap_type == SWAP_WORDS_64)
85 swap_words_64 (a, b, size);
86 else if (swap_type == SWAP_WORDS_32)
87 swap_words_32 (a, b, size);
88 else
89 __memswap (a, b, size);
92 /* Discontinue quicksort algorithm when partition gets below this size.
93 This particular magic number was chosen to work best on a Sun 4/260. */
94 #define MAX_THRESH 4
96 /* Stack node declarations used to store unfulfilled partition obligations. */
97 typedef struct
99 char *lo;
100 char *hi;
101 } stack_node;
103 /* The next 4 #defines implement a very fast in-line stack abstraction. */
104 /* The stack needs log (total_elements) entries (we could even subtract
105 log(MAX_THRESH)). Since total_elements has type size_t, we get as
106 upper bound for log (total_elements):
107 bits per byte (CHAR_BIT) * sizeof(size_t). */
108 #define STACK_SIZE (CHAR_BIT * sizeof (size_t))
109 #define PUSH(low, high) ((void) ((top->lo = (low)), (top->hi = (high)), ++top))
110 #define POP(low, high) ((void) (--top, (low = top->lo), (high = top->hi)))
111 #define STACK_NOT_EMPTY (stack < top)
114 static inline void
115 insertion_sort_qsort_partitions (void *const pbase, size_t total_elems,
116 size_t size, enum swap_type_t swap_type,
117 __compar_d_fn_t cmp, void *arg)
119 char *base_ptr = (char *) pbase;
120 char *const end_ptr = &base_ptr[size * (total_elems - 1)];
121 char *tmp_ptr = base_ptr;
122 #define min(x, y) ((x) < (y) ? (x) : (y))
123 const size_t max_thresh = MAX_THRESH * size;
124 char *thresh = min(end_ptr, base_ptr + max_thresh);
125 char *run_ptr;
127 /* Find smallest element in first threshold and place it at the
128 array's beginning. This is the smallest array element,
129 and the operation speeds up insertion sort's inner loop. */
131 for (run_ptr = tmp_ptr + size; run_ptr <= thresh; run_ptr += size)
132 if (cmp (run_ptr, tmp_ptr, arg) < 0)
133 tmp_ptr = run_ptr;
135 if (tmp_ptr != base_ptr)
136 do_swap (tmp_ptr, base_ptr, size, swap_type);
138 /* Insertion sort, running from left-hand-side up to right-hand-side. */
140 run_ptr = base_ptr + size;
141 while ((run_ptr += size) <= end_ptr)
143 tmp_ptr = run_ptr - size;
144 while (cmp (run_ptr, tmp_ptr, arg) < 0)
145 tmp_ptr -= size;
147 tmp_ptr += size;
148 if (tmp_ptr != run_ptr)
150 char *trav;
152 trav = run_ptr + size;
153 while (--trav >= run_ptr)
155 char c = *trav;
156 char *hi, *lo;
158 for (hi = lo = trav; (lo -= size) >= tmp_ptr; hi = lo)
159 *hi = *lo;
160 *hi = c;
166 /* Order size using quicksort. This implementation incorporates
167 four optimizations discussed in Sedgewick:
169 1. Non-recursive, using an explicit stack of pointer that store the
170 next array partition to sort. To save time, this maximum amount
171 of space required to store an array of SIZE_MAX is allocated on the
172 stack. Assuming a 32-bit (64 bit) integer for size_t, this needs
173 only 32 * sizeof(stack_node) == 256 bytes (for 64 bit: 1024 bytes).
174 Pretty cheap, actually.
176 2. Chose the pivot element using a median-of-three decision tree.
177 This reduces the probability of selecting a bad pivot value and
178 eliminates certain extraneous comparisons.
180 3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving
181 insertion sort to order the MAX_THRESH items within each partition.
182 This is a big win, since insertion sort is faster for small, mostly
183 sorted array segments.
185 4. The larger of the two sub-partitions is always pushed onto the
186 stack first, with the algorithm then concentrating on the
187 smaller partition. This *guarantees* no more than log (total_elems)
188 stack size is needed (actually O(1) in this case)! */
190 void
191 _quicksort (void *const pbase, size_t total_elems, size_t size,
192 __compar_d_fn_t cmp, void *arg)
194 char *base_ptr = (char *) pbase;
196 const size_t max_thresh = MAX_THRESH * size;
198 if (total_elems == 0)
199 /* Avoid lossage with unsigned arithmetic below. */
200 return;
202 enum swap_type_t swap_type;
203 if (is_aligned (pbase, size, 8))
204 swap_type = SWAP_WORDS_64;
205 else if (is_aligned (pbase, size, 4))
206 swap_type = SWAP_WORDS_32;
207 else
208 swap_type = SWAP_BYTES;
210 if (total_elems > MAX_THRESH)
212 char *lo = base_ptr;
213 char *hi = &lo[size * (total_elems - 1)];
214 stack_node stack[STACK_SIZE];
215 stack_node *top = stack;
217 PUSH (NULL, NULL);
219 while (STACK_NOT_EMPTY)
221 char *left_ptr;
222 char *right_ptr;
224 /* Select median value from among LO, MID, and HI. Rearrange
225 LO and HI so the three values are sorted. This lowers the
226 probability of picking a pathological pivot value and
227 skips a comparison for both the LEFT_PTR and RIGHT_PTR in
228 the while loops. */
230 char *mid = lo + size * ((hi - lo) / size >> 1);
232 if ((*cmp) ((void *) mid, (void *) lo, arg) < 0)
233 do_swap (mid, lo, size, swap_type);
234 if ((*cmp) ((void *) hi, (void *) mid, arg) < 0)
235 do_swap (mid, hi, size, swap_type);
236 else
237 goto jump_over;
238 if ((*cmp) ((void *) mid, (void *) lo, arg) < 0)
239 do_swap (mid, lo, size, swap_type);
240 jump_over:;
242 left_ptr = lo + size;
243 right_ptr = hi - size;
245 /* Here's the famous ``collapse the walls'' section of quicksort.
246 Gotta like those tight inner loops! They are the main reason
247 that this algorithm runs much faster than others. */
250 while ((*cmp) ((void *) left_ptr, (void *) mid, arg) < 0)
251 left_ptr += size;
253 while ((*cmp) ((void *) mid, (void *) right_ptr, arg) < 0)
254 right_ptr -= size;
256 if (left_ptr < right_ptr)
258 do_swap (left_ptr, right_ptr, size, swap_type);
259 if (mid == left_ptr)
260 mid = right_ptr;
261 else if (mid == right_ptr)
262 mid = left_ptr;
263 left_ptr += size;
264 right_ptr -= size;
266 else if (left_ptr == right_ptr)
268 left_ptr += size;
269 right_ptr -= size;
270 break;
273 while (left_ptr <= right_ptr);
275 /* Set up pointers for next iteration. First determine whether
276 left and right partitions are below the threshold size. If so,
277 ignore one or both. Otherwise, push the larger partition's
278 bounds on the stack and continue sorting the smaller one. */
280 if ((size_t) (right_ptr - lo) <= max_thresh)
282 if ((size_t) (hi - left_ptr) <= max_thresh)
283 /* Ignore both small partitions. */
284 POP (lo, hi);
285 else
286 /* Ignore small left partition. */
287 lo = left_ptr;
289 else if ((size_t) (hi - left_ptr) <= max_thresh)
290 /* Ignore small right partition. */
291 hi = right_ptr;
292 else if ((right_ptr - lo) > (hi - left_ptr))
294 /* Push larger left partition indices. */
295 PUSH (lo, right_ptr);
296 lo = left_ptr;
298 else
300 /* Push larger right partition indices. */
301 PUSH (left_ptr, hi);
302 hi = right_ptr;
307 /* Once the BASE_PTR array is partially sorted by quicksort the rest
308 is completely sorted using insertion sort, since this is efficient
309 for partitions below MAX_THRESH size. BASE_PTR points to the beginning
310 of the array to sort, and END_PTR points at the very last element in
311 the array (*not* one beyond it!). */
312 insertion_sort_qsort_partitions (pbase, total_elems, size, swap_type, cmp,
313 arg);