One more sanity check in free.
[glibc.git] / malloc / malloc.c
blob558e8bab0ab3808ec9f5b569ca62863ef4651b27
1 /* Malloc implementation for multiple threads without lock contention.
2 Copyright (C) 1996-2009, 2010 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Wolfram Gloger <wg@malloc.de>
5 and Doug Lea <dl@cs.oswego.edu>, 2001.
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public License as
9 published by the Free Software Foundation; either version 2.1 of the
10 License, or (at your option) any later version.
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Lesser General Public License for more details.
17 You should have received a copy of the GNU Lesser General Public
18 License along with the GNU C Library; see the file COPYING.LIB. If not,
19 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 This is a version (aka ptmalloc2) of malloc/free/realloc written by
24 Doug Lea and adapted to multiple threads/arenas by Wolfram Gloger.
26 There have been substantial changesmade after the integration into
27 glibc in all parts of the code. Do not look for much commonality
28 with the ptmalloc2 version.
30 * Version ptmalloc2-20011215
31 based on:
32 VERSION 2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee)
34 * Quickstart
36 In order to compile this implementation, a Makefile is provided with
37 the ptmalloc2 distribution, which has pre-defined targets for some
38 popular systems (e.g. "make posix" for Posix threads). All that is
39 typically required with regard to compiler flags is the selection of
40 the thread package via defining one out of USE_PTHREADS, USE_THR or
41 USE_SPROC. Check the thread-m.h file for what effects this has.
42 Many/most systems will additionally require USE_TSD_DATA_HACK to be
43 defined, so this is the default for "make posix".
45 * Why use this malloc?
47 This is not the fastest, most space-conserving, most portable, or
48 most tunable malloc ever written. However it is among the fastest
49 while also being among the most space-conserving, portable and tunable.
50 Consistent balance across these factors results in a good general-purpose
51 allocator for malloc-intensive programs.
53 The main properties of the algorithms are:
54 * For large (>= 512 bytes) requests, it is a pure best-fit allocator,
55 with ties normally decided via FIFO (i.e. least recently used).
56 * For small (<= 64 bytes by default) requests, it is a caching
57 allocator, that maintains pools of quickly recycled chunks.
58 * In between, and for combinations of large and small requests, it does
59 the best it can trying to meet both goals at once.
60 * For very large requests (>= 128KB by default), it relies on system
61 memory mapping facilities, if supported.
63 For a longer but slightly out of date high-level description, see
64 http://gee.cs.oswego.edu/dl/html/malloc.html
66 You may already by default be using a C library containing a malloc
67 that is based on some version of this malloc (for example in
68 linux). You might still want to use the one in this file in order to
69 customize settings or to avoid overheads associated with library
70 versions.
72 * Contents, described in more detail in "description of public routines" below.
74 Standard (ANSI/SVID/...) functions:
75 malloc(size_t n);
76 calloc(size_t n_elements, size_t element_size);
77 free(Void_t* p);
78 realloc(Void_t* p, size_t n);
79 memalign(size_t alignment, size_t n);
80 valloc(size_t n);
81 mallinfo()
82 mallopt(int parameter_number, int parameter_value)
84 Additional functions:
85 independent_calloc(size_t n_elements, size_t size, Void_t* chunks[]);
86 independent_comalloc(size_t n_elements, size_t sizes[], Void_t* chunks[]);
87 pvalloc(size_t n);
88 cfree(Void_t* p);
89 malloc_trim(size_t pad);
90 malloc_usable_size(Void_t* p);
91 malloc_stats();
93 * Vital statistics:
95 Supported pointer representation: 4 or 8 bytes
96 Supported size_t representation: 4 or 8 bytes
97 Note that size_t is allowed to be 4 bytes even if pointers are 8.
98 You can adjust this by defining INTERNAL_SIZE_T
100 Alignment: 2 * sizeof(size_t) (default)
101 (i.e., 8 byte alignment with 4byte size_t). This suffices for
102 nearly all current machines and C compilers. However, you can
103 define MALLOC_ALIGNMENT to be wider than this if necessary.
105 Minimum overhead per allocated chunk: 4 or 8 bytes
106 Each malloced chunk has a hidden word of overhead holding size
107 and status information.
109 Minimum allocated size: 4-byte ptrs: 16 bytes (including 4 overhead)
110 8-byte ptrs: 24/32 bytes (including, 4/8 overhead)
112 When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
113 ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
114 needed; 4 (8) for a trailing size field and 8 (16) bytes for
115 free list pointers. Thus, the minimum allocatable size is
116 16/24/32 bytes.
118 Even a request for zero bytes (i.e., malloc(0)) returns a
119 pointer to something of the minimum allocatable size.
121 The maximum overhead wastage (i.e., number of extra bytes
122 allocated than were requested in malloc) is less than or equal
123 to the minimum size, except for requests >= mmap_threshold that
124 are serviced via mmap(), where the worst case wastage is 2 *
125 sizeof(size_t) bytes plus the remainder from a system page (the
126 minimal mmap unit); typically 4096 or 8192 bytes.
128 Maximum allocated size: 4-byte size_t: 2^32 minus about two pages
129 8-byte size_t: 2^64 minus about two pages
131 It is assumed that (possibly signed) size_t values suffice to
132 represent chunk sizes. `Possibly signed' is due to the fact
133 that `size_t' may be defined on a system as either a signed or
134 an unsigned type. The ISO C standard says that it must be
135 unsigned, but a few systems are known not to adhere to this.
136 Additionally, even when size_t is unsigned, sbrk (which is by
137 default used to obtain memory from system) accepts signed
138 arguments, and may not be able to handle size_t-wide arguments
139 with negative sign bit. Generally, values that would
140 appear as negative after accounting for overhead and alignment
141 are supported only via mmap(), which does not have this
142 limitation.
144 Requests for sizes outside the allowed range will perform an optional
145 failure action and then return null. (Requests may also
146 also fail because a system is out of memory.)
148 Thread-safety: thread-safe unless NO_THREADS is defined
150 Compliance: I believe it is compliant with the 1997 Single Unix Specification
151 Also SVID/XPG, ANSI C, and probably others as well.
153 * Synopsis of compile-time options:
155 People have reported using previous versions of this malloc on all
156 versions of Unix, sometimes by tweaking some of the defines
157 below. It has been tested most extensively on Solaris and
158 Linux. It is also reported to work on WIN32 platforms.
159 People also report using it in stand-alone embedded systems.
161 The implementation is in straight, hand-tuned ANSI C. It is not
162 at all modular. (Sorry!) It uses a lot of macros. To be at all
163 usable, this code should be compiled using an optimizing compiler
164 (for example gcc -O3) that can simplify expressions and control
165 paths. (FAQ: some macros import variables as arguments rather than
166 declare locals because people reported that some debuggers
167 otherwise get confused.)
169 OPTION DEFAULT VALUE
171 Compilation Environment options:
173 __STD_C derived from C compiler defines
174 WIN32 NOT defined
175 HAVE_MEMCPY defined
176 USE_MEMCPY 1 if HAVE_MEMCPY is defined
177 HAVE_MMAP defined as 1
178 MMAP_CLEARS 1
179 HAVE_MREMAP 0 unless linux defined
180 USE_ARENAS the same as HAVE_MMAP
181 malloc_getpagesize derived from system #includes, or 4096 if not
182 HAVE_USR_INCLUDE_MALLOC_H NOT defined
183 LACKS_UNISTD_H NOT defined unless WIN32
184 LACKS_SYS_PARAM_H NOT defined unless WIN32
185 LACKS_SYS_MMAN_H NOT defined unless WIN32
187 Changing default word sizes:
189 INTERNAL_SIZE_T size_t
190 MALLOC_ALIGNMENT MAX (2 * sizeof(INTERNAL_SIZE_T),
191 __alignof__ (long double))
193 Configuration and functionality options:
195 USE_DL_PREFIX NOT defined
196 USE_PUBLIC_MALLOC_WRAPPERS NOT defined
197 USE_MALLOC_LOCK NOT defined
198 MALLOC_DEBUG NOT defined
199 REALLOC_ZERO_BYTES_FREES 1
200 MALLOC_FAILURE_ACTION errno = ENOMEM, if __STD_C defined, else no-op
201 TRIM_FASTBINS 0
203 Options for customizing MORECORE:
205 MORECORE sbrk
206 MORECORE_FAILURE -1
207 MORECORE_CONTIGUOUS 1
208 MORECORE_CANNOT_TRIM NOT defined
209 MORECORE_CLEARS 1
210 MMAP_AS_MORECORE_SIZE (1024 * 1024)
212 Tuning options that are also dynamically changeable via mallopt:
214 DEFAULT_MXFAST 64 (for 32bit), 128 (for 64bit)
215 DEFAULT_TRIM_THRESHOLD 128 * 1024
216 DEFAULT_TOP_PAD 0
217 DEFAULT_MMAP_THRESHOLD 128 * 1024
218 DEFAULT_MMAP_MAX 65536
220 There are several other #defined constants and macros that you
221 probably don't want to touch unless you are extending or adapting malloc. */
224 __STD_C should be nonzero if using ANSI-standard C compiler, a C++
225 compiler, or a C compiler sufficiently close to ANSI to get away
226 with it.
229 #ifndef __STD_C
230 #if defined(__STDC__) || defined(__cplusplus)
231 #define __STD_C 1
232 #else
233 #define __STD_C 0
234 #endif
235 #endif /*__STD_C*/
239 Void_t* is the pointer type that malloc should say it returns
242 #ifndef Void_t
243 #if (__STD_C || defined(WIN32))
244 #define Void_t void
245 #else
246 #define Void_t char
247 #endif
248 #endif /*Void_t*/
250 #if __STD_C
251 #include <stddef.h> /* for size_t */
252 #include <stdlib.h> /* for getenv(), abort() */
253 #else
254 #include <sys/types.h>
255 #endif
257 #include <malloc-machine.h>
259 #ifdef _LIBC
260 #ifdef ATOMIC_FASTBINS
261 #include <atomic.h>
262 #endif
263 #include <stdio-common/_itoa.h>
264 #include <bits/wordsize.h>
265 #include <sys/sysinfo.h>
266 #endif
268 #ifdef __cplusplus
269 extern "C" {
270 #endif
272 /* define LACKS_UNISTD_H if your system does not have a <unistd.h>. */
274 /* #define LACKS_UNISTD_H */
276 #ifndef LACKS_UNISTD_H
277 #include <unistd.h>
278 #endif
280 /* define LACKS_SYS_PARAM_H if your system does not have a <sys/param.h>. */
282 /* #define LACKS_SYS_PARAM_H */
285 #include <stdio.h> /* needed for malloc_stats */
286 #include <errno.h> /* needed for optional MALLOC_FAILURE_ACTION */
288 /* For uintptr_t. */
289 #include <stdint.h>
291 /* For va_arg, va_start, va_end. */
292 #include <stdarg.h>
294 /* For writev and struct iovec. */
295 #include <sys/uio.h>
296 /* For syslog. */
297 #include <sys/syslog.h>
299 /* For various dynamic linking things. */
300 #include <dlfcn.h>
304 Debugging:
306 Because freed chunks may be overwritten with bookkeeping fields, this
307 malloc will often die when freed memory is overwritten by user
308 programs. This can be very effective (albeit in an annoying way)
309 in helping track down dangling pointers.
311 If you compile with -DMALLOC_DEBUG, a number of assertion checks are
312 enabled that will catch more memory errors. You probably won't be
313 able to make much sense of the actual assertion errors, but they
314 should help you locate incorrectly overwritten memory. The checking
315 is fairly extensive, and will slow down execution
316 noticeably. Calling malloc_stats or mallinfo with MALLOC_DEBUG set
317 will attempt to check every non-mmapped allocated and free chunk in
318 the course of computing the summmaries. (By nature, mmapped regions
319 cannot be checked very much automatically.)
321 Setting MALLOC_DEBUG may also be helpful if you are trying to modify
322 this code. The assertions in the check routines spell out in more
323 detail the assumptions and invariants underlying the algorithms.
325 Setting MALLOC_DEBUG does NOT provide an automated mechanism for
326 checking that all accesses to malloced memory stay within their
327 bounds. However, there are several add-ons and adaptations of this
328 or other mallocs available that do this.
331 #ifdef NDEBUG
332 # define assert(expr) ((void) 0)
333 #else
334 # define assert(expr) \
335 ((expr) \
336 ? ((void) 0) \
337 : __malloc_assert (__STRING (expr), __FILE__, __LINE__, __func__))
339 extern const char *__progname;
341 static void
342 __malloc_assert (const char *assertion, const char *file, unsigned int line,
343 const char *function)
345 (void) __fxprintf (NULL, "%s%s%s:%u: %s%sAssertion `%s' failed.\n",
346 __progname, __progname[0] ? ": " : "",
347 file, line,
348 function ? function : "", function ? ": " : "",
349 assertion);
350 fflush (stderr);
351 abort ();
353 #endif
357 INTERNAL_SIZE_T is the word-size used for internal bookkeeping
358 of chunk sizes.
360 The default version is the same as size_t.
362 While not strictly necessary, it is best to define this as an
363 unsigned type, even if size_t is a signed type. This may avoid some
364 artificial size limitations on some systems.
366 On a 64-bit machine, you may be able to reduce malloc overhead by
367 defining INTERNAL_SIZE_T to be a 32 bit `unsigned int' at the
368 expense of not being able to handle more than 2^32 of malloced
369 space. If this limitation is acceptable, you are encouraged to set
370 this unless you are on a platform requiring 16byte alignments. In
371 this case the alignment requirements turn out to negate any
372 potential advantages of decreasing size_t word size.
374 Implementors: Beware of the possible combinations of:
375 - INTERNAL_SIZE_T might be signed or unsigned, might be 32 or 64 bits,
376 and might be the same width as int or as long
377 - size_t might have different width and signedness as INTERNAL_SIZE_T
378 - int and long might be 32 or 64 bits, and might be the same width
379 To deal with this, most comparisons and difference computations
380 among INTERNAL_SIZE_Ts should cast them to unsigned long, being
381 aware of the fact that casting an unsigned int to a wider long does
382 not sign-extend. (This also makes checking for negative numbers
383 awkward.) Some of these casts result in harmless compiler warnings
384 on some systems.
387 #ifndef INTERNAL_SIZE_T
388 #define INTERNAL_SIZE_T size_t
389 #endif
391 /* The corresponding word size */
392 #define SIZE_SZ (sizeof(INTERNAL_SIZE_T))
396 MALLOC_ALIGNMENT is the minimum alignment for malloc'ed chunks.
397 It must be a power of two at least 2 * SIZE_SZ, even on machines
398 for which smaller alignments would suffice. It may be defined as
399 larger than this though. Note however that code and data structures
400 are optimized for the case of 8-byte alignment.
404 #ifndef MALLOC_ALIGNMENT
405 /* XXX This is the correct definition. It differs from 2*SIZE_SZ only on
406 powerpc32. For the time being, changing this is causing more
407 compatibility problems due to malloc_get_state/malloc_set_state than
408 will returning blocks not adequately aligned for long double objects
409 under -mlong-double-128.
411 #define MALLOC_ALIGNMENT (2 * SIZE_SZ < __alignof__ (long double) \
412 ? __alignof__ (long double) : 2 * SIZE_SZ)
414 #define MALLOC_ALIGNMENT (2 * SIZE_SZ)
415 #endif
417 /* The corresponding bit mask value */
418 #define MALLOC_ALIGN_MASK (MALLOC_ALIGNMENT - 1)
423 REALLOC_ZERO_BYTES_FREES should be set if a call to
424 realloc with zero bytes should be the same as a call to free.
425 This is required by the C standard. Otherwise, since this malloc
426 returns a unique pointer for malloc(0), so does realloc(p, 0).
429 #ifndef REALLOC_ZERO_BYTES_FREES
430 #define REALLOC_ZERO_BYTES_FREES 1
431 #endif
434 TRIM_FASTBINS controls whether free() of a very small chunk can
435 immediately lead to trimming. Setting to true (1) can reduce memory
436 footprint, but will almost always slow down programs that use a lot
437 of small chunks.
439 Define this only if you are willing to give up some speed to more
440 aggressively reduce system-level memory footprint when releasing
441 memory in programs that use many small chunks. You can get
442 essentially the same effect by setting MXFAST to 0, but this can
443 lead to even greater slowdowns in programs using many small chunks.
444 TRIM_FASTBINS is an in-between compile-time option, that disables
445 only those chunks bordering topmost memory from being placed in
446 fastbins.
449 #ifndef TRIM_FASTBINS
450 #define TRIM_FASTBINS 0
451 #endif
455 USE_DL_PREFIX will prefix all public routines with the string 'dl'.
456 This is necessary when you only want to use this malloc in one part
457 of a program, using your regular system malloc elsewhere.
460 /* #define USE_DL_PREFIX */
464 Two-phase name translation.
465 All of the actual routines are given mangled names.
466 When wrappers are used, they become the public callable versions.
467 When DL_PREFIX is used, the callable names are prefixed.
470 #ifdef USE_DL_PREFIX
471 #define public_cALLOc dlcalloc
472 #define public_fREe dlfree
473 #define public_cFREe dlcfree
474 #define public_mALLOc dlmalloc
475 #define public_mEMALIGn dlmemalign
476 #define public_rEALLOc dlrealloc
477 #define public_vALLOc dlvalloc
478 #define public_pVALLOc dlpvalloc
479 #define public_mALLINFo dlmallinfo
480 #define public_mALLOPt dlmallopt
481 #define public_mTRIm dlmalloc_trim
482 #define public_mSTATs dlmalloc_stats
483 #define public_mUSABLe dlmalloc_usable_size
484 #define public_iCALLOc dlindependent_calloc
485 #define public_iCOMALLOc dlindependent_comalloc
486 #define public_gET_STATe dlget_state
487 #define public_sET_STATe dlset_state
488 #else /* USE_DL_PREFIX */
489 #ifdef _LIBC
491 /* Special defines for the GNU C library. */
492 #define public_cALLOc __libc_calloc
493 #define public_fREe __libc_free
494 #define public_cFREe __libc_cfree
495 #define public_mALLOc __libc_malloc
496 #define public_mEMALIGn __libc_memalign
497 #define public_rEALLOc __libc_realloc
498 #define public_vALLOc __libc_valloc
499 #define public_pVALLOc __libc_pvalloc
500 #define public_mALLINFo __libc_mallinfo
501 #define public_mALLOPt __libc_mallopt
502 #define public_mTRIm __malloc_trim
503 #define public_mSTATs __malloc_stats
504 #define public_mUSABLe __malloc_usable_size
505 #define public_iCALLOc __libc_independent_calloc
506 #define public_iCOMALLOc __libc_independent_comalloc
507 #define public_gET_STATe __malloc_get_state
508 #define public_sET_STATe __malloc_set_state
509 #define malloc_getpagesize __getpagesize()
510 #define open __open
511 #define mmap __mmap
512 #define munmap __munmap
513 #define mremap __mremap
514 #define mprotect __mprotect
515 #define MORECORE (*__morecore)
516 #define MORECORE_FAILURE 0
518 Void_t * __default_morecore (ptrdiff_t);
519 Void_t *(*__morecore)(ptrdiff_t) = __default_morecore;
521 #else /* !_LIBC */
522 #define public_cALLOc calloc
523 #define public_fREe free
524 #define public_cFREe cfree
525 #define public_mALLOc malloc
526 #define public_mEMALIGn memalign
527 #define public_rEALLOc realloc
528 #define public_vALLOc valloc
529 #define public_pVALLOc pvalloc
530 #define public_mALLINFo mallinfo
531 #define public_mALLOPt mallopt
532 #define public_mTRIm malloc_trim
533 #define public_mSTATs malloc_stats
534 #define public_mUSABLe malloc_usable_size
535 #define public_iCALLOc independent_calloc
536 #define public_iCOMALLOc independent_comalloc
537 #define public_gET_STATe malloc_get_state
538 #define public_sET_STATe malloc_set_state
539 #endif /* _LIBC */
540 #endif /* USE_DL_PREFIX */
542 #ifndef _LIBC
543 #define __builtin_expect(expr, val) (expr)
545 #define fwrite(buf, size, count, fp) _IO_fwrite (buf, size, count, fp)
546 #endif
549 HAVE_MEMCPY should be defined if you are not otherwise using
550 ANSI STD C, but still have memcpy and memset in your C library
551 and want to use them in calloc and realloc. Otherwise simple
552 macro versions are defined below.
554 USE_MEMCPY should be defined as 1 if you actually want to
555 have memset and memcpy called. People report that the macro
556 versions are faster than libc versions on some systems.
558 Even if USE_MEMCPY is set to 1, loops to copy/clear small chunks
559 (of <= 36 bytes) are manually unrolled in realloc and calloc.
562 #define HAVE_MEMCPY
564 #ifndef USE_MEMCPY
565 #ifdef HAVE_MEMCPY
566 #define USE_MEMCPY 1
567 #else
568 #define USE_MEMCPY 0
569 #endif
570 #endif
573 #if (__STD_C || defined(HAVE_MEMCPY))
575 #ifdef _LIBC
576 # include <string.h>
577 #else
578 #ifdef WIN32
579 /* On Win32 memset and memcpy are already declared in windows.h */
580 #else
581 #if __STD_C
582 void* memset(void*, int, size_t);
583 void* memcpy(void*, const void*, size_t);
584 #else
585 Void_t* memset();
586 Void_t* memcpy();
587 #endif
588 #endif
589 #endif
590 #endif
593 /* Force a value to be in a register and stop the compiler referring
594 to the source (mostly memory location) again. */
595 #define force_reg(val) \
596 ({ __typeof (val) _v; asm ("" : "=r" (_v) : "0" (val)); _v; })
600 MALLOC_FAILURE_ACTION is the action to take before "return 0" when
601 malloc fails to be able to return memory, either because memory is
602 exhausted or because of illegal arguments.
604 By default, sets errno if running on STD_C platform, else does nothing.
607 #ifndef MALLOC_FAILURE_ACTION
608 #if __STD_C
609 #define MALLOC_FAILURE_ACTION \
610 errno = ENOMEM;
612 #else
613 #define MALLOC_FAILURE_ACTION
614 #endif
615 #endif
618 MORECORE-related declarations. By default, rely on sbrk
622 #ifdef LACKS_UNISTD_H
623 #if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__)
624 #if __STD_C
625 extern Void_t* sbrk(ptrdiff_t);
626 #else
627 extern Void_t* sbrk();
628 #endif
629 #endif
630 #endif
633 MORECORE is the name of the routine to call to obtain more memory
634 from the system. See below for general guidance on writing
635 alternative MORECORE functions, as well as a version for WIN32 and a
636 sample version for pre-OSX macos.
639 #ifndef MORECORE
640 #define MORECORE sbrk
641 #endif
644 MORECORE_FAILURE is the value returned upon failure of MORECORE
645 as well as mmap. Since it cannot be an otherwise valid memory address,
646 and must reflect values of standard sys calls, you probably ought not
647 try to redefine it.
650 #ifndef MORECORE_FAILURE
651 #define MORECORE_FAILURE (-1)
652 #endif
655 If MORECORE_CONTIGUOUS is true, take advantage of fact that
656 consecutive calls to MORECORE with positive arguments always return
657 contiguous increasing addresses. This is true of unix sbrk. Even
658 if not defined, when regions happen to be contiguous, malloc will
659 permit allocations spanning regions obtained from different
660 calls. But defining this when applicable enables some stronger
661 consistency checks and space efficiencies.
664 #ifndef MORECORE_CONTIGUOUS
665 #define MORECORE_CONTIGUOUS 1
666 #endif
669 Define MORECORE_CANNOT_TRIM if your version of MORECORE
670 cannot release space back to the system when given negative
671 arguments. This is generally necessary only if you are using
672 a hand-crafted MORECORE function that cannot handle negative arguments.
675 /* #define MORECORE_CANNOT_TRIM */
677 /* MORECORE_CLEARS (default 1)
678 The degree to which the routine mapped to MORECORE zeroes out
679 memory: never (0), only for newly allocated space (1) or always
680 (2). The distinction between (1) and (2) is necessary because on
681 some systems, if the application first decrements and then
682 increments the break value, the contents of the reallocated space
683 are unspecified.
686 #ifndef MORECORE_CLEARS
687 #define MORECORE_CLEARS 1
688 #endif
692 Define HAVE_MMAP as true to optionally make malloc() use mmap() to
693 allocate very large blocks. These will be returned to the
694 operating system immediately after a free(). Also, if mmap
695 is available, it is used as a backup strategy in cases where
696 MORECORE fails to provide space from system.
698 This malloc is best tuned to work with mmap for large requests.
699 If you do not have mmap, operations involving very large chunks (1MB
700 or so) may be slower than you'd like.
703 #ifndef HAVE_MMAP
704 #define HAVE_MMAP 1
707 Standard unix mmap using /dev/zero clears memory so calloc doesn't
708 need to.
711 #ifndef MMAP_CLEARS
712 #define MMAP_CLEARS 1
713 #endif
715 #else /* no mmap */
716 #ifndef MMAP_CLEARS
717 #define MMAP_CLEARS 0
718 #endif
719 #endif
723 MMAP_AS_MORECORE_SIZE is the minimum mmap size argument to use if
724 sbrk fails, and mmap is used as a backup (which is done only if
725 HAVE_MMAP). The value must be a multiple of page size. This
726 backup strategy generally applies only when systems have "holes" in
727 address space, so sbrk cannot perform contiguous expansion, but
728 there is still space available on system. On systems for which
729 this is known to be useful (i.e. most linux kernels), this occurs
730 only when programs allocate huge amounts of memory. Between this,
731 and the fact that mmap regions tend to be limited, the size should
732 be large, to avoid too many mmap calls and thus avoid running out
733 of kernel resources.
736 #ifndef MMAP_AS_MORECORE_SIZE
737 #define MMAP_AS_MORECORE_SIZE (1024 * 1024)
738 #endif
741 Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
742 large blocks. This is currently only possible on Linux with
743 kernel versions newer than 1.3.77.
746 #ifndef HAVE_MREMAP
747 #ifdef linux
748 #define HAVE_MREMAP 1
749 #else
750 #define HAVE_MREMAP 0
751 #endif
753 #endif /* HAVE_MMAP */
755 /* Define USE_ARENAS to enable support for multiple `arenas'. These
756 are allocated using mmap(), are necessary for threads and
757 occasionally useful to overcome address space limitations affecting
758 sbrk(). */
760 #ifndef USE_ARENAS
761 #define USE_ARENAS HAVE_MMAP
762 #endif
766 The system page size. To the extent possible, this malloc manages
767 memory from the system in page-size units. Note that this value is
768 cached during initialization into a field of malloc_state. So even
769 if malloc_getpagesize is a function, it is only called once.
771 The following mechanics for getpagesize were adapted from bsd/gnu
772 getpagesize.h. If none of the system-probes here apply, a value of
773 4096 is used, which should be OK: If they don't apply, then using
774 the actual value probably doesn't impact performance.
778 #ifndef malloc_getpagesize
780 #ifndef LACKS_UNISTD_H
781 # include <unistd.h>
782 #endif
784 # ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */
785 # ifndef _SC_PAGE_SIZE
786 # define _SC_PAGE_SIZE _SC_PAGESIZE
787 # endif
788 # endif
790 # ifdef _SC_PAGE_SIZE
791 # define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
792 # else
793 # if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
794 extern size_t getpagesize();
795 # define malloc_getpagesize getpagesize()
796 # else
797 # ifdef WIN32 /* use supplied emulation of getpagesize */
798 # define malloc_getpagesize getpagesize()
799 # else
800 # ifndef LACKS_SYS_PARAM_H
801 # include <sys/param.h>
802 # endif
803 # ifdef EXEC_PAGESIZE
804 # define malloc_getpagesize EXEC_PAGESIZE
805 # else
806 # ifdef NBPG
807 # ifndef CLSIZE
808 # define malloc_getpagesize NBPG
809 # else
810 # define malloc_getpagesize (NBPG * CLSIZE)
811 # endif
812 # else
813 # ifdef NBPC
814 # define malloc_getpagesize NBPC
815 # else
816 # ifdef PAGESIZE
817 # define malloc_getpagesize PAGESIZE
818 # else /* just guess */
819 # define malloc_getpagesize (4096)
820 # endif
821 # endif
822 # endif
823 # endif
824 # endif
825 # endif
826 # endif
827 #endif
830 This version of malloc supports the standard SVID/XPG mallinfo
831 routine that returns a struct containing usage properties and
832 statistics. It should work on any SVID/XPG compliant system that has
833 a /usr/include/malloc.h defining struct mallinfo. (If you'd like to
834 install such a thing yourself, cut out the preliminary declarations
835 as described above and below and save them in a malloc.h file. But
836 there's no compelling reason to bother to do this.)
838 The main declaration needed is the mallinfo struct that is returned
839 (by-copy) by mallinfo(). The SVID/XPG malloinfo struct contains a
840 bunch of fields that are not even meaningful in this version of
841 malloc. These fields are are instead filled by mallinfo() with
842 other numbers that might be of interest.
844 HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
845 /usr/include/malloc.h file that includes a declaration of struct
846 mallinfo. If so, it is included; else an SVID2/XPG2 compliant
847 version is declared below. These must be precisely the same for
848 mallinfo() to work. The original SVID version of this struct,
849 defined on most systems with mallinfo, declares all fields as
850 ints. But some others define as unsigned long. If your system
851 defines the fields using a type of different width than listed here,
852 you must #include your system version and #define
853 HAVE_USR_INCLUDE_MALLOC_H.
856 /* #define HAVE_USR_INCLUDE_MALLOC_H */
858 #ifdef HAVE_USR_INCLUDE_MALLOC_H
859 #include "/usr/include/malloc.h"
860 #endif
863 /* ---------- description of public routines ------------ */
866 malloc(size_t n)
867 Returns a pointer to a newly allocated chunk of at least n bytes, or null
868 if no space is available. Additionally, on failure, errno is
869 set to ENOMEM on ANSI C systems.
871 If n is zero, malloc returns a minumum-sized chunk. (The minimum
872 size is 16 bytes on most 32bit systems, and 24 or 32 bytes on 64bit
873 systems.) On most systems, size_t is an unsigned type, so calls
874 with negative arguments are interpreted as requests for huge amounts
875 of space, which will often fail. The maximum supported value of n
876 differs across systems, but is in all cases less than the maximum
877 representable value of a size_t.
879 #if __STD_C
880 Void_t* public_mALLOc(size_t);
881 #else
882 Void_t* public_mALLOc();
883 #endif
884 #ifdef libc_hidden_proto
885 libc_hidden_proto (public_mALLOc)
886 #endif
889 free(Void_t* p)
890 Releases the chunk of memory pointed to by p, that had been previously
891 allocated using malloc or a related routine such as realloc.
892 It has no effect if p is null. It can have arbitrary (i.e., bad!)
893 effects if p has already been freed.
895 Unless disabled (using mallopt), freeing very large spaces will
896 when possible, automatically trigger operations that give
897 back unused memory to the system, thus reducing program footprint.
899 #if __STD_C
900 void public_fREe(Void_t*);
901 #else
902 void public_fREe();
903 #endif
904 #ifdef libc_hidden_proto
905 libc_hidden_proto (public_fREe)
906 #endif
909 calloc(size_t n_elements, size_t element_size);
910 Returns a pointer to n_elements * element_size bytes, with all locations
911 set to zero.
913 #if __STD_C
914 Void_t* public_cALLOc(size_t, size_t);
915 #else
916 Void_t* public_cALLOc();
917 #endif
920 realloc(Void_t* p, size_t n)
921 Returns a pointer to a chunk of size n that contains the same data
922 as does chunk p up to the minimum of (n, p's size) bytes, or null
923 if no space is available.
925 The returned pointer may or may not be the same as p. The algorithm
926 prefers extending p when possible, otherwise it employs the
927 equivalent of a malloc-copy-free sequence.
929 If p is null, realloc is equivalent to malloc.
931 If space is not available, realloc returns null, errno is set (if on
932 ANSI) and p is NOT freed.
934 if n is for fewer bytes than already held by p, the newly unused
935 space is lopped off and freed if possible. Unless the #define
936 REALLOC_ZERO_BYTES_FREES is set, realloc with a size argument of
937 zero (re)allocates a minimum-sized chunk.
939 Large chunks that were internally obtained via mmap will always
940 be reallocated using malloc-copy-free sequences unless
941 the system supports MREMAP (currently only linux).
943 The old unix realloc convention of allowing the last-free'd chunk
944 to be used as an argument to realloc is not supported.
946 #if __STD_C
947 Void_t* public_rEALLOc(Void_t*, size_t);
948 #else
949 Void_t* public_rEALLOc();
950 #endif
951 #ifdef libc_hidden_proto
952 libc_hidden_proto (public_rEALLOc)
953 #endif
956 memalign(size_t alignment, size_t n);
957 Returns a pointer to a newly allocated chunk of n bytes, aligned
958 in accord with the alignment argument.
960 The alignment argument should be a power of two. If the argument is
961 not a power of two, the nearest greater power is used.
962 8-byte alignment is guaranteed by normal malloc calls, so don't
963 bother calling memalign with an argument of 8 or less.
965 Overreliance on memalign is a sure way to fragment space.
967 #if __STD_C
968 Void_t* public_mEMALIGn(size_t, size_t);
969 #else
970 Void_t* public_mEMALIGn();
971 #endif
972 #ifdef libc_hidden_proto
973 libc_hidden_proto (public_mEMALIGn)
974 #endif
977 valloc(size_t n);
978 Equivalent to memalign(pagesize, n), where pagesize is the page
979 size of the system. If the pagesize is unknown, 4096 is used.
981 #if __STD_C
982 Void_t* public_vALLOc(size_t);
983 #else
984 Void_t* public_vALLOc();
985 #endif
990 mallopt(int parameter_number, int parameter_value)
991 Sets tunable parameters The format is to provide a
992 (parameter-number, parameter-value) pair. mallopt then sets the
993 corresponding parameter to the argument value if it can (i.e., so
994 long as the value is meaningful), and returns 1 if successful else
995 0. SVID/XPG/ANSI defines four standard param numbers for mallopt,
996 normally defined in malloc.h. Only one of these (M_MXFAST) is used
997 in this malloc. The others (M_NLBLKS, M_GRAIN, M_KEEP) don't apply,
998 so setting them has no effect. But this malloc also supports four
999 other options in mallopt. See below for details. Briefly, supported
1000 parameters are as follows (listed defaults are for "typical"
1001 configurations).
1003 Symbol param # default allowed param values
1004 M_MXFAST 1 64 0-80 (0 disables fastbins)
1005 M_TRIM_THRESHOLD -1 128*1024 any (-1U disables trimming)
1006 M_TOP_PAD -2 0 any
1007 M_MMAP_THRESHOLD -3 128*1024 any (or 0 if no MMAP support)
1008 M_MMAP_MAX -4 65536 any (0 disables use of mmap)
1010 #if __STD_C
1011 int public_mALLOPt(int, int);
1012 #else
1013 int public_mALLOPt();
1014 #endif
1018 mallinfo()
1019 Returns (by copy) a struct containing various summary statistics:
1021 arena: current total non-mmapped bytes allocated from system
1022 ordblks: the number of free chunks
1023 smblks: the number of fastbin blocks (i.e., small chunks that
1024 have been freed but not use resused or consolidated)
1025 hblks: current number of mmapped regions
1026 hblkhd: total bytes held in mmapped regions
1027 usmblks: the maximum total allocated space. This will be greater
1028 than current total if trimming has occurred.
1029 fsmblks: total bytes held in fastbin blocks
1030 uordblks: current total allocated space (normal or mmapped)
1031 fordblks: total free space
1032 keepcost: the maximum number of bytes that could ideally be released
1033 back to system via malloc_trim. ("ideally" means that
1034 it ignores page restrictions etc.)
1036 Because these fields are ints, but internal bookkeeping may
1037 be kept as longs, the reported values may wrap around zero and
1038 thus be inaccurate.
1040 #if __STD_C
1041 struct mallinfo public_mALLINFo(void);
1042 #else
1043 struct mallinfo public_mALLINFo();
1044 #endif
1046 #ifndef _LIBC
1048 independent_calloc(size_t n_elements, size_t element_size, Void_t* chunks[]);
1050 independent_calloc is similar to calloc, but instead of returning a
1051 single cleared space, it returns an array of pointers to n_elements
1052 independent elements that can hold contents of size elem_size, each
1053 of which starts out cleared, and can be independently freed,
1054 realloc'ed etc. The elements are guaranteed to be adjacently
1055 allocated (this is not guaranteed to occur with multiple callocs or
1056 mallocs), which may also improve cache locality in some
1057 applications.
1059 The "chunks" argument is optional (i.e., may be null, which is
1060 probably the most typical usage). If it is null, the returned array
1061 is itself dynamically allocated and should also be freed when it is
1062 no longer needed. Otherwise, the chunks array must be of at least
1063 n_elements in length. It is filled in with the pointers to the
1064 chunks.
1066 In either case, independent_calloc returns this pointer array, or
1067 null if the allocation failed. If n_elements is zero and "chunks"
1068 is null, it returns a chunk representing an array with zero elements
1069 (which should be freed if not wanted).
1071 Each element must be individually freed when it is no longer
1072 needed. If you'd like to instead be able to free all at once, you
1073 should instead use regular calloc and assign pointers into this
1074 space to represent elements. (In this case though, you cannot
1075 independently free elements.)
1077 independent_calloc simplifies and speeds up implementations of many
1078 kinds of pools. It may also be useful when constructing large data
1079 structures that initially have a fixed number of fixed-sized nodes,
1080 but the number is not known at compile time, and some of the nodes
1081 may later need to be freed. For example:
1083 struct Node { int item; struct Node* next; };
1085 struct Node* build_list() {
1086 struct Node** pool;
1087 int n = read_number_of_nodes_needed();
1088 if (n <= 0) return 0;
1089 pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0);
1090 if (pool == 0) die();
1091 // organize into a linked list...
1092 struct Node* first = pool[0];
1093 for (i = 0; i < n-1; ++i)
1094 pool[i]->next = pool[i+1];
1095 free(pool); // Can now free the array (or not, if it is needed later)
1096 return first;
1099 #if __STD_C
1100 Void_t** public_iCALLOc(size_t, size_t, Void_t**);
1101 #else
1102 Void_t** public_iCALLOc();
1103 #endif
1106 independent_comalloc(size_t n_elements, size_t sizes[], Void_t* chunks[]);
1108 independent_comalloc allocates, all at once, a set of n_elements
1109 chunks with sizes indicated in the "sizes" array. It returns
1110 an array of pointers to these elements, each of which can be
1111 independently freed, realloc'ed etc. The elements are guaranteed to
1112 be adjacently allocated (this is not guaranteed to occur with
1113 multiple callocs or mallocs), which may also improve cache locality
1114 in some applications.
1116 The "chunks" argument is optional (i.e., may be null). If it is null
1117 the returned array is itself dynamically allocated and should also
1118 be freed when it is no longer needed. Otherwise, the chunks array
1119 must be of at least n_elements in length. It is filled in with the
1120 pointers to the chunks.
1122 In either case, independent_comalloc returns this pointer array, or
1123 null if the allocation failed. If n_elements is zero and chunks is
1124 null, it returns a chunk representing an array with zero elements
1125 (which should be freed if not wanted).
1127 Each element must be individually freed when it is no longer
1128 needed. If you'd like to instead be able to free all at once, you
1129 should instead use a single regular malloc, and assign pointers at
1130 particular offsets in the aggregate space. (In this case though, you
1131 cannot independently free elements.)
1133 independent_comallac differs from independent_calloc in that each
1134 element may have a different size, and also that it does not
1135 automatically clear elements.
1137 independent_comalloc can be used to speed up allocation in cases
1138 where several structs or objects must always be allocated at the
1139 same time. For example:
1141 struct Head { ... }
1142 struct Foot { ... }
1144 void send_message(char* msg) {
1145 int msglen = strlen(msg);
1146 size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) };
1147 void* chunks[3];
1148 if (independent_comalloc(3, sizes, chunks) == 0)
1149 die();
1150 struct Head* head = (struct Head*)(chunks[0]);
1151 char* body = (char*)(chunks[1]);
1152 struct Foot* foot = (struct Foot*)(chunks[2]);
1153 // ...
1156 In general though, independent_comalloc is worth using only for
1157 larger values of n_elements. For small values, you probably won't
1158 detect enough difference from series of malloc calls to bother.
1160 Overuse of independent_comalloc can increase overall memory usage,
1161 since it cannot reuse existing noncontiguous small chunks that
1162 might be available for some of the elements.
1164 #if __STD_C
1165 Void_t** public_iCOMALLOc(size_t, size_t*, Void_t**);
1166 #else
1167 Void_t** public_iCOMALLOc();
1168 #endif
1170 #endif /* _LIBC */
1174 pvalloc(size_t n);
1175 Equivalent to valloc(minimum-page-that-holds(n)), that is,
1176 round up n to nearest pagesize.
1178 #if __STD_C
1179 Void_t* public_pVALLOc(size_t);
1180 #else
1181 Void_t* public_pVALLOc();
1182 #endif
1185 cfree(Void_t* p);
1186 Equivalent to free(p).
1188 cfree is needed/defined on some systems that pair it with calloc,
1189 for odd historical reasons (such as: cfree is used in example
1190 code in the first edition of K&R).
1192 #if __STD_C
1193 void public_cFREe(Void_t*);
1194 #else
1195 void public_cFREe();
1196 #endif
1199 malloc_trim(size_t pad);
1201 If possible, gives memory back to the system (via negative
1202 arguments to sbrk) if there is unused memory at the `high' end of
1203 the malloc pool. You can call this after freeing large blocks of
1204 memory to potentially reduce the system-level memory requirements
1205 of a program. However, it cannot guarantee to reduce memory. Under
1206 some allocation patterns, some large free blocks of memory will be
1207 locked between two used chunks, so they cannot be given back to
1208 the system.
1210 The `pad' argument to malloc_trim represents the amount of free
1211 trailing space to leave untrimmed. If this argument is zero,
1212 only the minimum amount of memory to maintain internal data
1213 structures will be left (one page or less). Non-zero arguments
1214 can be supplied to maintain enough trailing space to service
1215 future expected allocations without having to re-obtain memory
1216 from the system.
1218 Malloc_trim returns 1 if it actually released any memory, else 0.
1219 On systems that do not support "negative sbrks", it will always
1220 return 0.
1222 #if __STD_C
1223 int public_mTRIm(size_t);
1224 #else
1225 int public_mTRIm();
1226 #endif
1229 malloc_usable_size(Void_t* p);
1231 Returns the number of bytes you can actually use in
1232 an allocated chunk, which may be more than you requested (although
1233 often not) due to alignment and minimum size constraints.
1234 You can use this many bytes without worrying about
1235 overwriting other allocated objects. This is not a particularly great
1236 programming practice. malloc_usable_size can be more useful in
1237 debugging and assertions, for example:
1239 p = malloc(n);
1240 assert(malloc_usable_size(p) >= 256);
1243 #if __STD_C
1244 size_t public_mUSABLe(Void_t*);
1245 #else
1246 size_t public_mUSABLe();
1247 #endif
1250 malloc_stats();
1251 Prints on stderr the amount of space obtained from the system (both
1252 via sbrk and mmap), the maximum amount (which may be more than
1253 current if malloc_trim and/or munmap got called), and the current
1254 number of bytes allocated via malloc (or realloc, etc) but not yet
1255 freed. Note that this is the number of bytes allocated, not the
1256 number requested. It will be larger than the number requested
1257 because of alignment and bookkeeping overhead. Because it includes
1258 alignment wastage as being in use, this figure may be greater than
1259 zero even when no user-level chunks are allocated.
1261 The reported current and maximum system memory can be inaccurate if
1262 a program makes other calls to system memory allocation functions
1263 (normally sbrk) outside of malloc.
1265 malloc_stats prints only the most commonly interesting statistics.
1266 More information can be obtained by calling mallinfo.
1269 #if __STD_C
1270 void public_mSTATs(void);
1271 #else
1272 void public_mSTATs();
1273 #endif
1276 malloc_get_state(void);
1278 Returns the state of all malloc variables in an opaque data
1279 structure.
1281 #if __STD_C
1282 Void_t* public_gET_STATe(void);
1283 #else
1284 Void_t* public_gET_STATe();
1285 #endif
1288 malloc_set_state(Void_t* state);
1290 Restore the state of all malloc variables from data obtained with
1291 malloc_get_state().
1293 #if __STD_C
1294 int public_sET_STATe(Void_t*);
1295 #else
1296 int public_sET_STATe();
1297 #endif
1299 #ifdef _LIBC
1301 posix_memalign(void **memptr, size_t alignment, size_t size);
1303 POSIX wrapper like memalign(), checking for validity of size.
1305 int __posix_memalign(void **, size_t, size_t);
1306 #endif
1308 /* mallopt tuning options */
1311 M_MXFAST is the maximum request size used for "fastbins", special bins
1312 that hold returned chunks without consolidating their spaces. This
1313 enables future requests for chunks of the same size to be handled
1314 very quickly, but can increase fragmentation, and thus increase the
1315 overall memory footprint of a program.
1317 This malloc manages fastbins very conservatively yet still
1318 efficiently, so fragmentation is rarely a problem for values less
1319 than or equal to the default. The maximum supported value of MXFAST
1320 is 80. You wouldn't want it any higher than this anyway. Fastbins
1321 are designed especially for use with many small structs, objects or
1322 strings -- the default handles structs/objects/arrays with sizes up
1323 to 8 4byte fields, or small strings representing words, tokens,
1324 etc. Using fastbins for larger objects normally worsens
1325 fragmentation without improving speed.
1327 M_MXFAST is set in REQUEST size units. It is internally used in
1328 chunksize units, which adds padding and alignment. You can reduce
1329 M_MXFAST to 0 to disable all use of fastbins. This causes the malloc
1330 algorithm to be a closer approximation of fifo-best-fit in all cases,
1331 not just for larger requests, but will generally cause it to be
1332 slower.
1336 /* M_MXFAST is a standard SVID/XPG tuning option, usually listed in malloc.h */
1337 #ifndef M_MXFAST
1338 #define M_MXFAST 1
1339 #endif
1341 #ifndef DEFAULT_MXFAST
1342 #define DEFAULT_MXFAST (64 * SIZE_SZ / 4)
1343 #endif
1347 M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
1348 to keep before releasing via malloc_trim in free().
1350 Automatic trimming is mainly useful in long-lived programs.
1351 Because trimming via sbrk can be slow on some systems, and can
1352 sometimes be wasteful (in cases where programs immediately
1353 afterward allocate more large chunks) the value should be high
1354 enough so that your overall system performance would improve by
1355 releasing this much memory.
1357 The trim threshold and the mmap control parameters (see below)
1358 can be traded off with one another. Trimming and mmapping are
1359 two different ways of releasing unused memory back to the
1360 system. Between these two, it is often possible to keep
1361 system-level demands of a long-lived program down to a bare
1362 minimum. For example, in one test suite of sessions measuring
1363 the XF86 X server on Linux, using a trim threshold of 128K and a
1364 mmap threshold of 192K led to near-minimal long term resource
1365 consumption.
1367 If you are using this malloc in a long-lived program, it should
1368 pay to experiment with these values. As a rough guide, you
1369 might set to a value close to the average size of a process
1370 (program) running on your system. Releasing this much memory
1371 would allow such a process to run in memory. Generally, it's
1372 worth it to tune for trimming rather tham memory mapping when a
1373 program undergoes phases where several large chunks are
1374 allocated and released in ways that can reuse each other's
1375 storage, perhaps mixed with phases where there are no such
1376 chunks at all. And in well-behaved long-lived programs,
1377 controlling release of large blocks via trimming versus mapping
1378 is usually faster.
1380 However, in most programs, these parameters serve mainly as
1381 protection against the system-level effects of carrying around
1382 massive amounts of unneeded memory. Since frequent calls to
1383 sbrk, mmap, and munmap otherwise degrade performance, the default
1384 parameters are set to relatively high values that serve only as
1385 safeguards.
1387 The trim value It must be greater than page size to have any useful
1388 effect. To disable trimming completely, you can set to
1389 (unsigned long)(-1)
1391 Trim settings interact with fastbin (MXFAST) settings: Unless
1392 TRIM_FASTBINS is defined, automatic trimming never takes place upon
1393 freeing a chunk with size less than or equal to MXFAST. Trimming is
1394 instead delayed until subsequent freeing of larger chunks. However,
1395 you can still force an attempted trim by calling malloc_trim.
1397 Also, trimming is not generally possible in cases where
1398 the main arena is obtained via mmap.
1400 Note that the trick some people use of mallocing a huge space and
1401 then freeing it at program startup, in an attempt to reserve system
1402 memory, doesn't have the intended effect under automatic trimming,
1403 since that memory will immediately be returned to the system.
1406 #define M_TRIM_THRESHOLD -1
1408 #ifndef DEFAULT_TRIM_THRESHOLD
1409 #define DEFAULT_TRIM_THRESHOLD (128 * 1024)
1410 #endif
1413 M_TOP_PAD is the amount of extra `padding' space to allocate or
1414 retain whenever sbrk is called. It is used in two ways internally:
1416 * When sbrk is called to extend the top of the arena to satisfy
1417 a new malloc request, this much padding is added to the sbrk
1418 request.
1420 * When malloc_trim is called automatically from free(),
1421 it is used as the `pad' argument.
1423 In both cases, the actual amount of padding is rounded
1424 so that the end of the arena is always a system page boundary.
1426 The main reason for using padding is to avoid calling sbrk so
1427 often. Having even a small pad greatly reduces the likelihood
1428 that nearly every malloc request during program start-up (or
1429 after trimming) will invoke sbrk, which needlessly wastes
1430 time.
1432 Automatic rounding-up to page-size units is normally sufficient
1433 to avoid measurable overhead, so the default is 0. However, in
1434 systems where sbrk is relatively slow, it can pay to increase
1435 this value, at the expense of carrying around more memory than
1436 the program needs.
1439 #define M_TOP_PAD -2
1441 #ifndef DEFAULT_TOP_PAD
1442 #define DEFAULT_TOP_PAD (0)
1443 #endif
1446 MMAP_THRESHOLD_MAX and _MIN are the bounds on the dynamically
1447 adjusted MMAP_THRESHOLD.
1450 #ifndef DEFAULT_MMAP_THRESHOLD_MIN
1451 #define DEFAULT_MMAP_THRESHOLD_MIN (128 * 1024)
1452 #endif
1454 #ifndef DEFAULT_MMAP_THRESHOLD_MAX
1455 /* For 32-bit platforms we cannot increase the maximum mmap
1456 threshold much because it is also the minimum value for the
1457 maximum heap size and its alignment. Going above 512k (i.e., 1M
1458 for new heaps) wastes too much address space. */
1459 # if __WORDSIZE == 32
1460 # define DEFAULT_MMAP_THRESHOLD_MAX (512 * 1024)
1461 # else
1462 # define DEFAULT_MMAP_THRESHOLD_MAX (4 * 1024 * 1024 * sizeof(long))
1463 # endif
1464 #endif
1467 M_MMAP_THRESHOLD is the request size threshold for using mmap()
1468 to service a request. Requests of at least this size that cannot
1469 be allocated using already-existing space will be serviced via mmap.
1470 (If enough normal freed space already exists it is used instead.)
1472 Using mmap segregates relatively large chunks of memory so that
1473 they can be individually obtained and released from the host
1474 system. A request serviced through mmap is never reused by any
1475 other request (at least not directly; the system may just so
1476 happen to remap successive requests to the same locations).
1478 Segregating space in this way has the benefits that:
1480 1. Mmapped space can ALWAYS be individually released back
1481 to the system, which helps keep the system level memory
1482 demands of a long-lived program low.
1483 2. Mapped memory can never become `locked' between
1484 other chunks, as can happen with normally allocated chunks, which
1485 means that even trimming via malloc_trim would not release them.
1486 3. On some systems with "holes" in address spaces, mmap can obtain
1487 memory that sbrk cannot.
1489 However, it has the disadvantages that:
1491 1. The space cannot be reclaimed, consolidated, and then
1492 used to service later requests, as happens with normal chunks.
1493 2. It can lead to more wastage because of mmap page alignment
1494 requirements
1495 3. It causes malloc performance to be more dependent on host
1496 system memory management support routines which may vary in
1497 implementation quality and may impose arbitrary
1498 limitations. Generally, servicing a request via normal
1499 malloc steps is faster than going through a system's mmap.
1501 The advantages of mmap nearly always outweigh disadvantages for
1502 "large" chunks, but the value of "large" varies across systems. The
1503 default is an empirically derived value that works well in most
1504 systems.
1507 Update in 2006:
1508 The above was written in 2001. Since then the world has changed a lot.
1509 Memory got bigger. Applications got bigger. The virtual address space
1510 layout in 32 bit linux changed.
1512 In the new situation, brk() and mmap space is shared and there are no
1513 artificial limits on brk size imposed by the kernel. What is more,
1514 applications have started using transient allocations larger than the
1515 128Kb as was imagined in 2001.
1517 The price for mmap is also high now; each time glibc mmaps from the
1518 kernel, the kernel is forced to zero out the memory it gives to the
1519 application. Zeroing memory is expensive and eats a lot of cache and
1520 memory bandwidth. This has nothing to do with the efficiency of the
1521 virtual memory system, by doing mmap the kernel just has no choice but
1522 to zero.
1524 In 2001, the kernel had a maximum size for brk() which was about 800
1525 megabytes on 32 bit x86, at that point brk() would hit the first
1526 mmaped shared libaries and couldn't expand anymore. With current 2.6
1527 kernels, the VA space layout is different and brk() and mmap
1528 both can span the entire heap at will.
1530 Rather than using a static threshold for the brk/mmap tradeoff,
1531 we are now using a simple dynamic one. The goal is still to avoid
1532 fragmentation. The old goals we kept are
1533 1) try to get the long lived large allocations to use mmap()
1534 2) really large allocations should always use mmap()
1535 and we're adding now:
1536 3) transient allocations should use brk() to avoid forcing the kernel
1537 having to zero memory over and over again
1539 The implementation works with a sliding threshold, which is by default
1540 limited to go between 128Kb and 32Mb (64Mb for 64 bitmachines) and starts
1541 out at 128Kb as per the 2001 default.
1543 This allows us to satisfy requirement 1) under the assumption that long
1544 lived allocations are made early in the process' lifespan, before it has
1545 started doing dynamic allocations of the same size (which will
1546 increase the threshold).
1548 The upperbound on the threshold satisfies requirement 2)
1550 The threshold goes up in value when the application frees memory that was
1551 allocated with the mmap allocator. The idea is that once the application
1552 starts freeing memory of a certain size, it's highly probable that this is
1553 a size the application uses for transient allocations. This estimator
1554 is there to satisfy the new third requirement.
1558 #define M_MMAP_THRESHOLD -3
1560 #ifndef DEFAULT_MMAP_THRESHOLD
1561 #define DEFAULT_MMAP_THRESHOLD DEFAULT_MMAP_THRESHOLD_MIN
1562 #endif
1565 M_MMAP_MAX is the maximum number of requests to simultaneously
1566 service using mmap. This parameter exists because
1567 some systems have a limited number of internal tables for
1568 use by mmap, and using more than a few of them may degrade
1569 performance.
1571 The default is set to a value that serves only as a safeguard.
1572 Setting to 0 disables use of mmap for servicing large requests. If
1573 HAVE_MMAP is not set, the default value is 0, and attempts to set it
1574 to non-zero values in mallopt will fail.
1577 #define M_MMAP_MAX -4
1579 #ifndef DEFAULT_MMAP_MAX
1580 #if HAVE_MMAP
1581 #define DEFAULT_MMAP_MAX (65536)
1582 #else
1583 #define DEFAULT_MMAP_MAX (0)
1584 #endif
1585 #endif
1587 #ifdef __cplusplus
1588 } /* end of extern "C" */
1589 #endif
1591 #include <malloc.h>
1593 #ifndef BOUNDED_N
1594 #define BOUNDED_N(ptr, sz) (ptr)
1595 #endif
1596 #ifndef RETURN_ADDRESS
1597 #define RETURN_ADDRESS(X_) (NULL)
1598 #endif
1600 /* On some platforms we can compile internal, not exported functions better.
1601 Let the environment provide a macro and define it to be empty if it
1602 is not available. */
1603 #ifndef internal_function
1604 # define internal_function
1605 #endif
1607 /* Forward declarations. */
1608 struct malloc_chunk;
1609 typedef struct malloc_chunk* mchunkptr;
1611 /* Internal routines. */
1613 #if __STD_C
1615 static Void_t* _int_malloc(mstate, size_t);
1616 #ifdef ATOMIC_FASTBINS
1617 static void _int_free(mstate, mchunkptr, int);
1618 #else
1619 static void _int_free(mstate, mchunkptr);
1620 #endif
1621 static Void_t* _int_realloc(mstate, mchunkptr, INTERNAL_SIZE_T,
1622 INTERNAL_SIZE_T);
1623 static Void_t* _int_memalign(mstate, size_t, size_t);
1624 static Void_t* _int_valloc(mstate, size_t);
1625 static Void_t* _int_pvalloc(mstate, size_t);
1626 /*static Void_t* cALLOc(size_t, size_t);*/
1627 #ifndef _LIBC
1628 static Void_t** _int_icalloc(mstate, size_t, size_t, Void_t**);
1629 static Void_t** _int_icomalloc(mstate, size_t, size_t*, Void_t**);
1630 #endif
1631 static int mTRIm(mstate, size_t);
1632 static size_t mUSABLe(Void_t*);
1633 static void mSTATs(void);
1634 static int mALLOPt(int, int);
1635 static struct mallinfo mALLINFo(mstate);
1636 static void malloc_printerr(int action, const char *str, void *ptr);
1638 static Void_t* internal_function mem2mem_check(Void_t *p, size_t sz);
1639 static int internal_function top_check(void);
1640 static void internal_function munmap_chunk(mchunkptr p);
1641 #if HAVE_MREMAP
1642 static mchunkptr internal_function mremap_chunk(mchunkptr p, size_t new_size);
1643 #endif
1645 static Void_t* malloc_check(size_t sz, const Void_t *caller);
1646 static void free_check(Void_t* mem, const Void_t *caller);
1647 static Void_t* realloc_check(Void_t* oldmem, size_t bytes,
1648 const Void_t *caller);
1649 static Void_t* memalign_check(size_t alignment, size_t bytes,
1650 const Void_t *caller);
1651 #ifndef NO_THREADS
1652 # ifdef _LIBC
1653 # if USE___THREAD || !defined SHARED
1654 /* These routines are never needed in this configuration. */
1655 # define NO_STARTER
1656 # endif
1657 # endif
1658 # ifdef NO_STARTER
1659 # undef NO_STARTER
1660 # else
1661 static Void_t* malloc_starter(size_t sz, const Void_t *caller);
1662 static Void_t* memalign_starter(size_t aln, size_t sz, const Void_t *caller);
1663 static void free_starter(Void_t* mem, const Void_t *caller);
1664 # endif
1665 static Void_t* malloc_atfork(size_t sz, const Void_t *caller);
1666 static void free_atfork(Void_t* mem, const Void_t *caller);
1667 #endif
1669 #else
1671 static Void_t* _int_malloc();
1672 static void _int_free();
1673 static Void_t* _int_realloc();
1674 static Void_t* _int_memalign();
1675 static Void_t* _int_valloc();
1676 static Void_t* _int_pvalloc();
1677 /*static Void_t* cALLOc();*/
1678 static Void_t** _int_icalloc();
1679 static Void_t** _int_icomalloc();
1680 static int mTRIm();
1681 static size_t mUSABLe();
1682 static void mSTATs();
1683 static int mALLOPt();
1684 static struct mallinfo mALLINFo();
1686 #endif
1691 /* ------------- Optional versions of memcopy ---------------- */
1694 #if USE_MEMCPY
1697 Note: memcpy is ONLY invoked with non-overlapping regions,
1698 so the (usually slower) memmove is not needed.
1701 #define MALLOC_COPY(dest, src, nbytes) memcpy(dest, src, nbytes)
1702 #define MALLOC_ZERO(dest, nbytes) memset(dest, 0, nbytes)
1704 #else /* !USE_MEMCPY */
1706 /* Use Duff's device for good zeroing/copying performance. */
1708 #define MALLOC_ZERO(charp, nbytes) \
1709 do { \
1710 INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp); \
1711 unsigned long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T); \
1712 long mcn; \
1713 if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \
1714 switch (mctmp) { \
1715 case 0: for(;;) { *mzp++ = 0; \
1716 case 7: *mzp++ = 0; \
1717 case 6: *mzp++ = 0; \
1718 case 5: *mzp++ = 0; \
1719 case 4: *mzp++ = 0; \
1720 case 3: *mzp++ = 0; \
1721 case 2: *mzp++ = 0; \
1722 case 1: *mzp++ = 0; if(mcn <= 0) break; mcn--; } \
1724 } while(0)
1726 #define MALLOC_COPY(dest,src,nbytes) \
1727 do { \
1728 INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) src; \
1729 INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) dest; \
1730 unsigned long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T); \
1731 long mcn; \
1732 if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \
1733 switch (mctmp) { \
1734 case 0: for(;;) { *mcdst++ = *mcsrc++; \
1735 case 7: *mcdst++ = *mcsrc++; \
1736 case 6: *mcdst++ = *mcsrc++; \
1737 case 5: *mcdst++ = *mcsrc++; \
1738 case 4: *mcdst++ = *mcsrc++; \
1739 case 3: *mcdst++ = *mcsrc++; \
1740 case 2: *mcdst++ = *mcsrc++; \
1741 case 1: *mcdst++ = *mcsrc++; if(mcn <= 0) break; mcn--; } \
1743 } while(0)
1745 #endif
1747 /* ------------------ MMAP support ------------------ */
1750 #if HAVE_MMAP
1752 #include <fcntl.h>
1753 #ifndef LACKS_SYS_MMAN_H
1754 #include <sys/mman.h>
1755 #endif
1757 #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
1758 # define MAP_ANONYMOUS MAP_ANON
1759 #endif
1760 #if !defined(MAP_FAILED)
1761 # define MAP_FAILED ((char*)-1)
1762 #endif
1764 #ifndef MAP_NORESERVE
1765 # ifdef MAP_AUTORESRV
1766 # define MAP_NORESERVE MAP_AUTORESRV
1767 # else
1768 # define MAP_NORESERVE 0
1769 # endif
1770 #endif
1773 Nearly all versions of mmap support MAP_ANONYMOUS,
1774 so the following is unlikely to be needed, but is
1775 supplied just in case.
1778 #ifndef MAP_ANONYMOUS
1780 static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */
1782 #define MMAP(addr, size, prot, flags) ((dev_zero_fd < 0) ? \
1783 (dev_zero_fd = open("/dev/zero", O_RDWR), \
1784 mmap((addr), (size), (prot), (flags), dev_zero_fd, 0)) : \
1785 mmap((addr), (size), (prot), (flags), dev_zero_fd, 0))
1787 #else
1789 #define MMAP(addr, size, prot, flags) \
1790 (mmap((addr), (size), (prot), (flags)|MAP_ANONYMOUS, -1, 0))
1792 #endif
1795 #endif /* HAVE_MMAP */
1799 ----------------------- Chunk representations -----------------------
1804 This struct declaration is misleading (but accurate and necessary).
1805 It declares a "view" into memory allowing access to necessary
1806 fields at known offsets from a given base. See explanation below.
1809 struct malloc_chunk {
1811 INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
1812 INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */
1814 struct malloc_chunk* fd; /* double links -- used only if free. */
1815 struct malloc_chunk* bk;
1817 /* Only used for large blocks: pointer to next larger size. */
1818 struct malloc_chunk* fd_nextsize; /* double links -- used only if free. */
1819 struct malloc_chunk* bk_nextsize;
1824 malloc_chunk details:
1826 (The following includes lightly edited explanations by Colin Plumb.)
1828 Chunks of memory are maintained using a `boundary tag' method as
1829 described in e.g., Knuth or Standish. (See the paper by Paul
1830 Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
1831 survey of such techniques.) Sizes of free chunks are stored both
1832 in the front of each chunk and at the end. This makes
1833 consolidating fragmented chunks into bigger chunks very fast. The
1834 size fields also hold bits representing whether chunks are free or
1835 in use.
1837 An allocated chunk looks like this:
1840 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1841 | Size of previous chunk, if allocated | |
1842 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1843 | Size of chunk, in bytes |M|P|
1844 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1845 | User data starts here... .
1847 . (malloc_usable_size() bytes) .
1849 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1850 | Size of chunk |
1851 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1854 Where "chunk" is the front of the chunk for the purpose of most of
1855 the malloc code, but "mem" is the pointer that is returned to the
1856 user. "Nextchunk" is the beginning of the next contiguous chunk.
1858 Chunks always begin on even word boundries, so the mem portion
1859 (which is returned to the user) is also on an even word boundary, and
1860 thus at least double-word aligned.
1862 Free chunks are stored in circular doubly-linked lists, and look like this:
1864 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1865 | Size of previous chunk |
1866 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1867 `head:' | Size of chunk, in bytes |P|
1868 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1869 | Forward pointer to next chunk in list |
1870 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1871 | Back pointer to previous chunk in list |
1872 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1873 | Unused space (may be 0 bytes long) .
1876 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1877 `foot:' | Size of chunk, in bytes |
1878 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1880 The P (PREV_INUSE) bit, stored in the unused low-order bit of the
1881 chunk size (which is always a multiple of two words), is an in-use
1882 bit for the *previous* chunk. If that bit is *clear*, then the
1883 word before the current chunk size contains the previous chunk
1884 size, and can be used to find the front of the previous chunk.
1885 The very first chunk allocated always has this bit set,
1886 preventing access to non-existent (or non-owned) memory. If
1887 prev_inuse is set for any given chunk, then you CANNOT determine
1888 the size of the previous chunk, and might even get a memory
1889 addressing fault when trying to do so.
1891 Note that the `foot' of the current chunk is actually represented
1892 as the prev_size of the NEXT chunk. This makes it easier to
1893 deal with alignments etc but can be very confusing when trying
1894 to extend or adapt this code.
1896 The two exceptions to all this are
1898 1. The special chunk `top' doesn't bother using the
1899 trailing size field since there is no next contiguous chunk
1900 that would have to index off it. After initialization, `top'
1901 is forced to always exist. If it would become less than
1902 MINSIZE bytes long, it is replenished.
1904 2. Chunks allocated via mmap, which have the second-lowest-order
1905 bit M (IS_MMAPPED) set in their size fields. Because they are
1906 allocated one-by-one, each must contain its own trailing size field.
1911 ---------- Size and alignment checks and conversions ----------
1914 /* conversion from malloc headers to user pointers, and back */
1916 #define chunk2mem(p) ((Void_t*)((char*)(p) + 2*SIZE_SZ))
1917 #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
1919 /* The smallest possible chunk */
1920 #define MIN_CHUNK_SIZE (offsetof(struct malloc_chunk, fd_nextsize))
1922 /* The smallest size we can malloc is an aligned minimal chunk */
1924 #define MINSIZE \
1925 (unsigned long)(((MIN_CHUNK_SIZE+MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK))
1927 /* Check if m has acceptable alignment */
1929 #define aligned_OK(m) (((unsigned long)(m) & MALLOC_ALIGN_MASK) == 0)
1931 #define misaligned_chunk(p) \
1932 ((uintptr_t)(MALLOC_ALIGNMENT == 2 * SIZE_SZ ? (p) : chunk2mem (p)) \
1933 & MALLOC_ALIGN_MASK)
1937 Check if a request is so large that it would wrap around zero when
1938 padded and aligned. To simplify some other code, the bound is made
1939 low enough so that adding MINSIZE will also not wrap around zero.
1942 #define REQUEST_OUT_OF_RANGE(req) \
1943 ((unsigned long)(req) >= \
1944 (unsigned long)(INTERNAL_SIZE_T)(-2 * MINSIZE))
1946 /* pad request bytes into a usable size -- internal version */
1948 #define request2size(req) \
1949 (((req) + SIZE_SZ + MALLOC_ALIGN_MASK < MINSIZE) ? \
1950 MINSIZE : \
1951 ((req) + SIZE_SZ + MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK)
1953 /* Same, except also perform argument check */
1955 #define checked_request2size(req, sz) \
1956 if (REQUEST_OUT_OF_RANGE(req)) { \
1957 MALLOC_FAILURE_ACTION; \
1958 return 0; \
1960 (sz) = request2size(req);
1963 --------------- Physical chunk operations ---------------
1967 /* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
1968 #define PREV_INUSE 0x1
1970 /* extract inuse bit of previous chunk */
1971 #define prev_inuse(p) ((p)->size & PREV_INUSE)
1974 /* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
1975 #define IS_MMAPPED 0x2
1977 /* check for mmap()'ed chunk */
1978 #define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
1981 /* size field is or'ed with NON_MAIN_ARENA if the chunk was obtained
1982 from a non-main arena. This is only set immediately before handing
1983 the chunk to the user, if necessary. */
1984 #define NON_MAIN_ARENA 0x4
1986 /* check for chunk from non-main arena */
1987 #define chunk_non_main_arena(p) ((p)->size & NON_MAIN_ARENA)
1991 Bits to mask off when extracting size
1993 Note: IS_MMAPPED is intentionally not masked off from size field in
1994 macros for which mmapped chunks should never be seen. This should
1995 cause helpful core dumps to occur if it is tried by accident by
1996 people extending or adapting this malloc.
1998 #define SIZE_BITS (PREV_INUSE|IS_MMAPPED|NON_MAIN_ARENA)
2000 /* Get size, ignoring use bits */
2001 #define chunksize(p) ((p)->size & ~(SIZE_BITS))
2004 /* Ptr to next physical malloc_chunk. */
2005 #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~SIZE_BITS) ))
2007 /* Ptr to previous physical malloc_chunk */
2008 #define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
2010 /* Treat space at ptr + offset as a chunk */
2011 #define chunk_at_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
2013 /* extract p's inuse bit */
2014 #define inuse(p)\
2015 ((((mchunkptr)(((char*)(p))+((p)->size & ~SIZE_BITS)))->size) & PREV_INUSE)
2017 /* set/clear chunk as being inuse without otherwise disturbing */
2018 #define set_inuse(p)\
2019 ((mchunkptr)(((char*)(p)) + ((p)->size & ~SIZE_BITS)))->size |= PREV_INUSE
2021 #define clear_inuse(p)\
2022 ((mchunkptr)(((char*)(p)) + ((p)->size & ~SIZE_BITS)))->size &= ~(PREV_INUSE)
2025 /* check/set/clear inuse bits in known places */
2026 #define inuse_bit_at_offset(p, s)\
2027 (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
2029 #define set_inuse_bit_at_offset(p, s)\
2030 (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
2032 #define clear_inuse_bit_at_offset(p, s)\
2033 (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
2036 /* Set size at head, without disturbing its use bit */
2037 #define set_head_size(p, s) ((p)->size = (((p)->size & SIZE_BITS) | (s)))
2039 /* Set size/use field */
2040 #define set_head(p, s) ((p)->size = (s))
2042 /* Set size at footer (only when chunk is not in use) */
2043 #define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))
2047 -------------------- Internal data structures --------------------
2049 All internal state is held in an instance of malloc_state defined
2050 below. There are no other static variables, except in two optional
2051 cases:
2052 * If USE_MALLOC_LOCK is defined, the mALLOC_MUTEx declared above.
2053 * If HAVE_MMAP is true, but mmap doesn't support
2054 MAP_ANONYMOUS, a dummy file descriptor for mmap.
2056 Beware of lots of tricks that minimize the total bookkeeping space
2057 requirements. The result is a little over 1K bytes (for 4byte
2058 pointers and size_t.)
2062 Bins
2064 An array of bin headers for free chunks. Each bin is doubly
2065 linked. The bins are approximately proportionally (log) spaced.
2066 There are a lot of these bins (128). This may look excessive, but
2067 works very well in practice. Most bins hold sizes that are
2068 unusual as malloc request sizes, but are more usual for fragments
2069 and consolidated sets of chunks, which is what these bins hold, so
2070 they can be found quickly. All procedures maintain the invariant
2071 that no consolidated chunk physically borders another one, so each
2072 chunk in a list is known to be preceeded and followed by either
2073 inuse chunks or the ends of memory.
2075 Chunks in bins are kept in size order, with ties going to the
2076 approximately least recently used chunk. Ordering isn't needed
2077 for the small bins, which all contain the same-sized chunks, but
2078 facilitates best-fit allocation for larger chunks. These lists
2079 are just sequential. Keeping them in order almost never requires
2080 enough traversal to warrant using fancier ordered data
2081 structures.
2083 Chunks of the same size are linked with the most
2084 recently freed at the front, and allocations are taken from the
2085 back. This results in LRU (FIFO) allocation order, which tends
2086 to give each chunk an equal opportunity to be consolidated with
2087 adjacent freed chunks, resulting in larger free chunks and less
2088 fragmentation.
2090 To simplify use in double-linked lists, each bin header acts
2091 as a malloc_chunk. This avoids special-casing for headers.
2092 But to conserve space and improve locality, we allocate
2093 only the fd/bk pointers of bins, and then use repositioning tricks
2094 to treat these as the fields of a malloc_chunk*.
2097 typedef struct malloc_chunk* mbinptr;
2099 /* addressing -- note that bin_at(0) does not exist */
2100 #define bin_at(m, i) \
2101 (mbinptr) (((char *) &((m)->bins[((i) - 1) * 2])) \
2102 - offsetof (struct malloc_chunk, fd))
2104 /* analog of ++bin */
2105 #define next_bin(b) ((mbinptr)((char*)(b) + (sizeof(mchunkptr)<<1)))
2107 /* Reminders about list directionality within bins */
2108 #define first(b) ((b)->fd)
2109 #define last(b) ((b)->bk)
2111 /* Take a chunk off a bin list */
2112 #define unlink(P, BK, FD) { \
2113 FD = P->fd; \
2114 BK = P->bk; \
2115 if (__builtin_expect (FD->bk != P || BK->fd != P, 0)) \
2116 malloc_printerr (check_action, "corrupted double-linked list", P); \
2117 else { \
2118 FD->bk = BK; \
2119 BK->fd = FD; \
2120 if (!in_smallbin_range (P->size) \
2121 && __builtin_expect (P->fd_nextsize != NULL, 0)) { \
2122 assert (P->fd_nextsize->bk_nextsize == P); \
2123 assert (P->bk_nextsize->fd_nextsize == P); \
2124 if (FD->fd_nextsize == NULL) { \
2125 if (P->fd_nextsize == P) \
2126 FD->fd_nextsize = FD->bk_nextsize = FD; \
2127 else { \
2128 FD->fd_nextsize = P->fd_nextsize; \
2129 FD->bk_nextsize = P->bk_nextsize; \
2130 P->fd_nextsize->bk_nextsize = FD; \
2131 P->bk_nextsize->fd_nextsize = FD; \
2133 } else { \
2134 P->fd_nextsize->bk_nextsize = P->bk_nextsize; \
2135 P->bk_nextsize->fd_nextsize = P->fd_nextsize; \
2142 Indexing
2144 Bins for sizes < 512 bytes contain chunks of all the same size, spaced
2145 8 bytes apart. Larger bins are approximately logarithmically spaced:
2147 64 bins of size 8
2148 32 bins of size 64
2149 16 bins of size 512
2150 8 bins of size 4096
2151 4 bins of size 32768
2152 2 bins of size 262144
2153 1 bin of size what's left
2155 There is actually a little bit of slop in the numbers in bin_index
2156 for the sake of speed. This makes no difference elsewhere.
2158 The bins top out around 1MB because we expect to service large
2159 requests via mmap.
2162 #define NBINS 128
2163 #define NSMALLBINS 64
2164 #define SMALLBIN_WIDTH MALLOC_ALIGNMENT
2165 #define MIN_LARGE_SIZE (NSMALLBINS * SMALLBIN_WIDTH)
2167 #define in_smallbin_range(sz) \
2168 ((unsigned long)(sz) < (unsigned long)MIN_LARGE_SIZE)
2170 #define smallbin_index(sz) \
2171 (SMALLBIN_WIDTH == 16 ? (((unsigned)(sz)) >> 4) : (((unsigned)(sz)) >> 3))
2173 #define largebin_index_32(sz) \
2174 (((((unsigned long)(sz)) >> 6) <= 38)? 56 + (((unsigned long)(sz)) >> 6): \
2175 ((((unsigned long)(sz)) >> 9) <= 20)? 91 + (((unsigned long)(sz)) >> 9): \
2176 ((((unsigned long)(sz)) >> 12) <= 10)? 110 + (((unsigned long)(sz)) >> 12): \
2177 ((((unsigned long)(sz)) >> 15) <= 4)? 119 + (((unsigned long)(sz)) >> 15): \
2178 ((((unsigned long)(sz)) >> 18) <= 2)? 124 + (((unsigned long)(sz)) >> 18): \
2179 126)
2181 // XXX It remains to be seen whether it is good to keep the widths of
2182 // XXX the buckets the same or whether it should be scaled by a factor
2183 // XXX of two as well.
2184 #define largebin_index_64(sz) \
2185 (((((unsigned long)(sz)) >> 6) <= 48)? 48 + (((unsigned long)(sz)) >> 6): \
2186 ((((unsigned long)(sz)) >> 9) <= 20)? 91 + (((unsigned long)(sz)) >> 9): \
2187 ((((unsigned long)(sz)) >> 12) <= 10)? 110 + (((unsigned long)(sz)) >> 12): \
2188 ((((unsigned long)(sz)) >> 15) <= 4)? 119 + (((unsigned long)(sz)) >> 15): \
2189 ((((unsigned long)(sz)) >> 18) <= 2)? 124 + (((unsigned long)(sz)) >> 18): \
2190 126)
2192 #define largebin_index(sz) \
2193 (SIZE_SZ == 8 ? largebin_index_64 (sz) : largebin_index_32 (sz))
2195 #define bin_index(sz) \
2196 ((in_smallbin_range(sz)) ? smallbin_index(sz) : largebin_index(sz))
2200 Unsorted chunks
2202 All remainders from chunk splits, as well as all returned chunks,
2203 are first placed in the "unsorted" bin. They are then placed
2204 in regular bins after malloc gives them ONE chance to be used before
2205 binning. So, basically, the unsorted_chunks list acts as a queue,
2206 with chunks being placed on it in free (and malloc_consolidate),
2207 and taken off (to be either used or placed in bins) in malloc.
2209 The NON_MAIN_ARENA flag is never set for unsorted chunks, so it
2210 does not have to be taken into account in size comparisons.
2213 /* The otherwise unindexable 1-bin is used to hold unsorted chunks. */
2214 #define unsorted_chunks(M) (bin_at(M, 1))
2219 The top-most available chunk (i.e., the one bordering the end of
2220 available memory) is treated specially. It is never included in
2221 any bin, is used only if no other chunk is available, and is
2222 released back to the system if it is very large (see
2223 M_TRIM_THRESHOLD). Because top initially
2224 points to its own bin with initial zero size, thus forcing
2225 extension on the first malloc request, we avoid having any special
2226 code in malloc to check whether it even exists yet. But we still
2227 need to do so when getting memory from system, so we make
2228 initial_top treat the bin as a legal but unusable chunk during the
2229 interval between initialization and the first call to
2230 sYSMALLOc. (This is somewhat delicate, since it relies on
2231 the 2 preceding words to be zero during this interval as well.)
2234 /* Conveniently, the unsorted bin can be used as dummy top on first call */
2235 #define initial_top(M) (unsorted_chunks(M))
2238 Binmap
2240 To help compensate for the large number of bins, a one-level index
2241 structure is used for bin-by-bin searching. `binmap' is a
2242 bitvector recording whether bins are definitely empty so they can
2243 be skipped over during during traversals. The bits are NOT always
2244 cleared as soon as bins are empty, but instead only
2245 when they are noticed to be empty during traversal in malloc.
2248 /* Conservatively use 32 bits per map word, even if on 64bit system */
2249 #define BINMAPSHIFT 5
2250 #define BITSPERMAP (1U << BINMAPSHIFT)
2251 #define BINMAPSIZE (NBINS / BITSPERMAP)
2253 #define idx2block(i) ((i) >> BINMAPSHIFT)
2254 #define idx2bit(i) ((1U << ((i) & ((1U << BINMAPSHIFT)-1))))
2256 #define mark_bin(m,i) ((m)->binmap[idx2block(i)] |= idx2bit(i))
2257 #define unmark_bin(m,i) ((m)->binmap[idx2block(i)] &= ~(idx2bit(i)))
2258 #define get_binmap(m,i) ((m)->binmap[idx2block(i)] & idx2bit(i))
2261 Fastbins
2263 An array of lists holding recently freed small chunks. Fastbins
2264 are not doubly linked. It is faster to single-link them, and
2265 since chunks are never removed from the middles of these lists,
2266 double linking is not necessary. Also, unlike regular bins, they
2267 are not even processed in FIFO order (they use faster LIFO) since
2268 ordering doesn't much matter in the transient contexts in which
2269 fastbins are normally used.
2271 Chunks in fastbins keep their inuse bit set, so they cannot
2272 be consolidated with other free chunks. malloc_consolidate
2273 releases all chunks in fastbins and consolidates them with
2274 other free chunks.
2277 typedef struct malloc_chunk* mfastbinptr;
2278 #define fastbin(ar_ptr, idx) ((ar_ptr)->fastbinsY[idx])
2280 /* offset 2 to use otherwise unindexable first 2 bins */
2281 #define fastbin_index(sz) \
2282 ((((unsigned int)(sz)) >> (SIZE_SZ == 8 ? 4 : 3)) - 2)
2285 /* The maximum fastbin request size we support */
2286 #define MAX_FAST_SIZE (80 * SIZE_SZ / 4)
2288 #define NFASTBINS (fastbin_index(request2size(MAX_FAST_SIZE))+1)
2291 FASTBIN_CONSOLIDATION_THRESHOLD is the size of a chunk in free()
2292 that triggers automatic consolidation of possibly-surrounding
2293 fastbin chunks. This is a heuristic, so the exact value should not
2294 matter too much. It is defined at half the default trim threshold as a
2295 compromise heuristic to only attempt consolidation if it is likely
2296 to lead to trimming. However, it is not dynamically tunable, since
2297 consolidation reduces fragmentation surrounding large chunks even
2298 if trimming is not used.
2301 #define FASTBIN_CONSOLIDATION_THRESHOLD (65536UL)
2304 Since the lowest 2 bits in max_fast don't matter in size comparisons,
2305 they are used as flags.
2309 FASTCHUNKS_BIT held in max_fast indicates that there are probably
2310 some fastbin chunks. It is set true on entering a chunk into any
2311 fastbin, and cleared only in malloc_consolidate.
2313 The truth value is inverted so that have_fastchunks will be true
2314 upon startup (since statics are zero-filled), simplifying
2315 initialization checks.
2318 #define FASTCHUNKS_BIT (1U)
2320 #define have_fastchunks(M) (((M)->flags & FASTCHUNKS_BIT) == 0)
2321 #ifdef ATOMIC_FASTBINS
2322 #define clear_fastchunks(M) catomic_or (&(M)->flags, FASTCHUNKS_BIT)
2323 #define set_fastchunks(M) catomic_and (&(M)->flags, ~FASTCHUNKS_BIT)
2324 #else
2325 #define clear_fastchunks(M) ((M)->flags |= FASTCHUNKS_BIT)
2326 #define set_fastchunks(M) ((M)->flags &= ~FASTCHUNKS_BIT)
2327 #endif
2330 NONCONTIGUOUS_BIT indicates that MORECORE does not return contiguous
2331 regions. Otherwise, contiguity is exploited in merging together,
2332 when possible, results from consecutive MORECORE calls.
2334 The initial value comes from MORECORE_CONTIGUOUS, but is
2335 changed dynamically if mmap is ever used as an sbrk substitute.
2338 #define NONCONTIGUOUS_BIT (2U)
2340 #define contiguous(M) (((M)->flags & NONCONTIGUOUS_BIT) == 0)
2341 #define noncontiguous(M) (((M)->flags & NONCONTIGUOUS_BIT) != 0)
2342 #define set_noncontiguous(M) ((M)->flags |= NONCONTIGUOUS_BIT)
2343 #define set_contiguous(M) ((M)->flags &= ~NONCONTIGUOUS_BIT)
2346 Set value of max_fast.
2347 Use impossibly small value if 0.
2348 Precondition: there are no existing fastbin chunks.
2349 Setting the value clears fastchunk bit but preserves noncontiguous bit.
2352 #define set_max_fast(s) \
2353 global_max_fast = (((s) == 0) \
2354 ? SMALLBIN_WIDTH: ((s + SIZE_SZ) & ~MALLOC_ALIGN_MASK))
2355 #define get_max_fast() global_max_fast
2359 ----------- Internal state representation and initialization -----------
2362 struct malloc_state {
2363 /* Serialize access. */
2364 mutex_t mutex;
2366 /* Flags (formerly in max_fast). */
2367 int flags;
2369 #if THREAD_STATS
2370 /* Statistics for locking. Only used if THREAD_STATS is defined. */
2371 long stat_lock_direct, stat_lock_loop, stat_lock_wait;
2372 #endif
2374 /* Fastbins */
2375 mfastbinptr fastbinsY[NFASTBINS];
2377 /* Base of the topmost chunk -- not otherwise kept in a bin */
2378 mchunkptr top;
2380 /* The remainder from the most recent split of a small request */
2381 mchunkptr last_remainder;
2383 /* Normal bins packed as described above */
2384 mchunkptr bins[NBINS * 2 - 2];
2386 /* Bitmap of bins */
2387 unsigned int binmap[BINMAPSIZE];
2389 /* Linked list */
2390 struct malloc_state *next;
2392 #ifdef PER_THREAD
2393 /* Linked list for free arenas. */
2394 struct malloc_state *next_free;
2395 #endif
2397 /* Memory allocated from the system in this arena. */
2398 INTERNAL_SIZE_T system_mem;
2399 INTERNAL_SIZE_T max_system_mem;
2402 struct malloc_par {
2403 /* Tunable parameters */
2404 unsigned long trim_threshold;
2405 INTERNAL_SIZE_T top_pad;
2406 INTERNAL_SIZE_T mmap_threshold;
2407 #ifdef PER_THREAD
2408 INTERNAL_SIZE_T arena_test;
2409 INTERNAL_SIZE_T arena_max;
2410 #endif
2412 /* Memory map support */
2413 int n_mmaps;
2414 int n_mmaps_max;
2415 int max_n_mmaps;
2416 /* the mmap_threshold is dynamic, until the user sets
2417 it manually, at which point we need to disable any
2418 dynamic behavior. */
2419 int no_dyn_threshold;
2421 /* Cache malloc_getpagesize */
2422 unsigned int pagesize;
2424 /* Statistics */
2425 INTERNAL_SIZE_T mmapped_mem;
2426 /*INTERNAL_SIZE_T sbrked_mem;*/
2427 /*INTERNAL_SIZE_T max_sbrked_mem;*/
2428 INTERNAL_SIZE_T max_mmapped_mem;
2429 INTERNAL_SIZE_T max_total_mem; /* only kept for NO_THREADS */
2431 /* First address handed out by MORECORE/sbrk. */
2432 char* sbrk_base;
2435 /* There are several instances of this struct ("arenas") in this
2436 malloc. If you are adapting this malloc in a way that does NOT use
2437 a static or mmapped malloc_state, you MUST explicitly zero-fill it
2438 before using. This malloc relies on the property that malloc_state
2439 is initialized to all zeroes (as is true of C statics). */
2441 static struct malloc_state main_arena;
2443 /* There is only one instance of the malloc parameters. */
2445 static struct malloc_par mp_;
2448 #ifdef PER_THREAD
2449 /* Non public mallopt parameters. */
2450 #define M_ARENA_TEST -7
2451 #define M_ARENA_MAX -8
2452 #endif
2455 /* Maximum size of memory handled in fastbins. */
2456 static INTERNAL_SIZE_T global_max_fast;
2459 Initialize a malloc_state struct.
2461 This is called only from within malloc_consolidate, which needs
2462 be called in the same contexts anyway. It is never called directly
2463 outside of malloc_consolidate because some optimizing compilers try
2464 to inline it at all call points, which turns out not to be an
2465 optimization at all. (Inlining it in malloc_consolidate is fine though.)
2468 #if __STD_C
2469 static void malloc_init_state(mstate av)
2470 #else
2471 static void malloc_init_state(av) mstate av;
2472 #endif
2474 int i;
2475 mbinptr bin;
2477 /* Establish circular links for normal bins */
2478 for (i = 1; i < NBINS; ++i) {
2479 bin = bin_at(av,i);
2480 bin->fd = bin->bk = bin;
2483 #if MORECORE_CONTIGUOUS
2484 if (av != &main_arena)
2485 #endif
2486 set_noncontiguous(av);
2487 if (av == &main_arena)
2488 set_max_fast(DEFAULT_MXFAST);
2489 av->flags |= FASTCHUNKS_BIT;
2491 av->top = initial_top(av);
2495 Other internal utilities operating on mstates
2498 #if __STD_C
2499 static Void_t* sYSMALLOc(INTERNAL_SIZE_T, mstate);
2500 static int sYSTRIm(size_t, mstate);
2501 static void malloc_consolidate(mstate);
2502 #ifndef _LIBC
2503 static Void_t** iALLOc(mstate, size_t, size_t*, int, Void_t**);
2504 #endif
2505 #else
2506 static Void_t* sYSMALLOc();
2507 static int sYSTRIm();
2508 static void malloc_consolidate();
2509 static Void_t** iALLOc();
2510 #endif
2513 /* -------------- Early definitions for debugging hooks ---------------- */
2515 /* Define and initialize the hook variables. These weak definitions must
2516 appear before any use of the variables in a function (arena.c uses one). */
2517 #ifndef weak_variable
2518 #ifndef _LIBC
2519 #define weak_variable /**/
2520 #else
2521 /* In GNU libc we want the hook variables to be weak definitions to
2522 avoid a problem with Emacs. */
2523 #define weak_variable weak_function
2524 #endif
2525 #endif
2527 /* Forward declarations. */
2528 static Void_t* malloc_hook_ini __MALLOC_P ((size_t sz,
2529 const __malloc_ptr_t caller));
2530 static Void_t* realloc_hook_ini __MALLOC_P ((Void_t* ptr, size_t sz,
2531 const __malloc_ptr_t caller));
2532 static Void_t* memalign_hook_ini __MALLOC_P ((size_t alignment, size_t sz,
2533 const __malloc_ptr_t caller));
2535 void weak_variable (*__malloc_initialize_hook) (void) = NULL;
2536 void weak_variable (*__free_hook) (__malloc_ptr_t __ptr,
2537 const __malloc_ptr_t) = NULL;
2538 __malloc_ptr_t weak_variable (*__malloc_hook)
2539 (size_t __size, const __malloc_ptr_t) = malloc_hook_ini;
2540 __malloc_ptr_t weak_variable (*__realloc_hook)
2541 (__malloc_ptr_t __ptr, size_t __size, const __malloc_ptr_t)
2542 = realloc_hook_ini;
2543 __malloc_ptr_t weak_variable (*__memalign_hook)
2544 (size_t __alignment, size_t __size, const __malloc_ptr_t)
2545 = memalign_hook_ini;
2546 void weak_variable (*__after_morecore_hook) (void) = NULL;
2549 /* ---------------- Error behavior ------------------------------------ */
2551 #ifndef DEFAULT_CHECK_ACTION
2552 #define DEFAULT_CHECK_ACTION 3
2553 #endif
2555 static int check_action = DEFAULT_CHECK_ACTION;
2558 /* ------------------ Testing support ----------------------------------*/
2560 static int perturb_byte;
2562 #define alloc_perturb(p, n) memset (p, (perturb_byte ^ 0xff) & 0xff, n)
2563 #define free_perturb(p, n) memset (p, perturb_byte & 0xff, n)
2566 /* ------------------- Support for multiple arenas -------------------- */
2567 #include "arena.c"
2570 Debugging support
2572 These routines make a number of assertions about the states
2573 of data structures that should be true at all times. If any
2574 are not true, it's very likely that a user program has somehow
2575 trashed memory. (It's also possible that there is a coding error
2576 in malloc. In which case, please report it!)
2579 #if ! MALLOC_DEBUG
2581 #define check_chunk(A,P)
2582 #define check_free_chunk(A,P)
2583 #define check_inuse_chunk(A,P)
2584 #define check_remalloced_chunk(A,P,N)
2585 #define check_malloced_chunk(A,P,N)
2586 #define check_malloc_state(A)
2588 #else
2590 #define check_chunk(A,P) do_check_chunk(A,P)
2591 #define check_free_chunk(A,P) do_check_free_chunk(A,P)
2592 #define check_inuse_chunk(A,P) do_check_inuse_chunk(A,P)
2593 #define check_remalloced_chunk(A,P,N) do_check_remalloced_chunk(A,P,N)
2594 #define check_malloced_chunk(A,P,N) do_check_malloced_chunk(A,P,N)
2595 #define check_malloc_state(A) do_check_malloc_state(A)
2598 Properties of all chunks
2601 #if __STD_C
2602 static void do_check_chunk(mstate av, mchunkptr p)
2603 #else
2604 static void do_check_chunk(av, p) mstate av; mchunkptr p;
2605 #endif
2607 unsigned long sz = chunksize(p);
2608 /* min and max possible addresses assuming contiguous allocation */
2609 char* max_address = (char*)(av->top) + chunksize(av->top);
2610 char* min_address = max_address - av->system_mem;
2612 if (!chunk_is_mmapped(p)) {
2614 /* Has legal address ... */
2615 if (p != av->top) {
2616 if (contiguous(av)) {
2617 assert(((char*)p) >= min_address);
2618 assert(((char*)p + sz) <= ((char*)(av->top)));
2621 else {
2622 /* top size is always at least MINSIZE */
2623 assert((unsigned long)(sz) >= MINSIZE);
2624 /* top predecessor always marked inuse */
2625 assert(prev_inuse(p));
2629 else {
2630 #if HAVE_MMAP
2631 /* address is outside main heap */
2632 if (contiguous(av) && av->top != initial_top(av)) {
2633 assert(((char*)p) < min_address || ((char*)p) >= max_address);
2635 /* chunk is page-aligned */
2636 assert(((p->prev_size + sz) & (mp_.pagesize-1)) == 0);
2637 /* mem is aligned */
2638 assert(aligned_OK(chunk2mem(p)));
2639 #else
2640 /* force an appropriate assert violation if debug set */
2641 assert(!chunk_is_mmapped(p));
2642 #endif
2647 Properties of free chunks
2650 #if __STD_C
2651 static void do_check_free_chunk(mstate av, mchunkptr p)
2652 #else
2653 static void do_check_free_chunk(av, p) mstate av; mchunkptr p;
2654 #endif
2656 INTERNAL_SIZE_T sz = p->size & ~(PREV_INUSE|NON_MAIN_ARENA);
2657 mchunkptr next = chunk_at_offset(p, sz);
2659 do_check_chunk(av, p);
2661 /* Chunk must claim to be free ... */
2662 assert(!inuse(p));
2663 assert (!chunk_is_mmapped(p));
2665 /* Unless a special marker, must have OK fields */
2666 if ((unsigned long)(sz) >= MINSIZE)
2668 assert((sz & MALLOC_ALIGN_MASK) == 0);
2669 assert(aligned_OK(chunk2mem(p)));
2670 /* ... matching footer field */
2671 assert(next->prev_size == sz);
2672 /* ... and is fully consolidated */
2673 assert(prev_inuse(p));
2674 assert (next == av->top || inuse(next));
2676 /* ... and has minimally sane links */
2677 assert(p->fd->bk == p);
2678 assert(p->bk->fd == p);
2680 else /* markers are always of size SIZE_SZ */
2681 assert(sz == SIZE_SZ);
2685 Properties of inuse chunks
2688 #if __STD_C
2689 static void do_check_inuse_chunk(mstate av, mchunkptr p)
2690 #else
2691 static void do_check_inuse_chunk(av, p) mstate av; mchunkptr p;
2692 #endif
2694 mchunkptr next;
2696 do_check_chunk(av, p);
2698 if (chunk_is_mmapped(p))
2699 return; /* mmapped chunks have no next/prev */
2701 /* Check whether it claims to be in use ... */
2702 assert(inuse(p));
2704 next = next_chunk(p);
2706 /* ... and is surrounded by OK chunks.
2707 Since more things can be checked with free chunks than inuse ones,
2708 if an inuse chunk borders them and debug is on, it's worth doing them.
2710 if (!prev_inuse(p)) {
2711 /* Note that we cannot even look at prev unless it is not inuse */
2712 mchunkptr prv = prev_chunk(p);
2713 assert(next_chunk(prv) == p);
2714 do_check_free_chunk(av, prv);
2717 if (next == av->top) {
2718 assert(prev_inuse(next));
2719 assert(chunksize(next) >= MINSIZE);
2721 else if (!inuse(next))
2722 do_check_free_chunk(av, next);
2726 Properties of chunks recycled from fastbins
2729 #if __STD_C
2730 static void do_check_remalloced_chunk(mstate av, mchunkptr p, INTERNAL_SIZE_T s)
2731 #else
2732 static void do_check_remalloced_chunk(av, p, s)
2733 mstate av; mchunkptr p; INTERNAL_SIZE_T s;
2734 #endif
2736 INTERNAL_SIZE_T sz = p->size & ~(PREV_INUSE|NON_MAIN_ARENA);
2738 if (!chunk_is_mmapped(p)) {
2739 assert(av == arena_for_chunk(p));
2740 if (chunk_non_main_arena(p))
2741 assert(av != &main_arena);
2742 else
2743 assert(av == &main_arena);
2746 do_check_inuse_chunk(av, p);
2748 /* Legal size ... */
2749 assert((sz & MALLOC_ALIGN_MASK) == 0);
2750 assert((unsigned long)(sz) >= MINSIZE);
2751 /* ... and alignment */
2752 assert(aligned_OK(chunk2mem(p)));
2753 /* chunk is less than MINSIZE more than request */
2754 assert((long)(sz) - (long)(s) >= 0);
2755 assert((long)(sz) - (long)(s + MINSIZE) < 0);
2759 Properties of nonrecycled chunks at the point they are malloced
2762 #if __STD_C
2763 static void do_check_malloced_chunk(mstate av, mchunkptr p, INTERNAL_SIZE_T s)
2764 #else
2765 static void do_check_malloced_chunk(av, p, s)
2766 mstate av; mchunkptr p; INTERNAL_SIZE_T s;
2767 #endif
2769 /* same as recycled case ... */
2770 do_check_remalloced_chunk(av, p, s);
2773 ... plus, must obey implementation invariant that prev_inuse is
2774 always true of any allocated chunk; i.e., that each allocated
2775 chunk borders either a previously allocated and still in-use
2776 chunk, or the base of its memory arena. This is ensured
2777 by making all allocations from the the `lowest' part of any found
2778 chunk. This does not necessarily hold however for chunks
2779 recycled via fastbins.
2782 assert(prev_inuse(p));
2787 Properties of malloc_state.
2789 This may be useful for debugging malloc, as well as detecting user
2790 programmer errors that somehow write into malloc_state.
2792 If you are extending or experimenting with this malloc, you can
2793 probably figure out how to hack this routine to print out or
2794 display chunk addresses, sizes, bins, and other instrumentation.
2797 static void do_check_malloc_state(mstate av)
2799 int i;
2800 mchunkptr p;
2801 mchunkptr q;
2802 mbinptr b;
2803 unsigned int idx;
2804 INTERNAL_SIZE_T size;
2805 unsigned long total = 0;
2806 int max_fast_bin;
2808 /* internal size_t must be no wider than pointer type */
2809 assert(sizeof(INTERNAL_SIZE_T) <= sizeof(char*));
2811 /* alignment is a power of 2 */
2812 assert((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-1)) == 0);
2814 /* cannot run remaining checks until fully initialized */
2815 if (av->top == 0 || av->top == initial_top(av))
2816 return;
2818 /* pagesize is a power of 2 */
2819 assert((mp_.pagesize & (mp_.pagesize-1)) == 0);
2821 /* A contiguous main_arena is consistent with sbrk_base. */
2822 if (av == &main_arena && contiguous(av))
2823 assert((char*)mp_.sbrk_base + av->system_mem ==
2824 (char*)av->top + chunksize(av->top));
2826 /* properties of fastbins */
2828 /* max_fast is in allowed range */
2829 assert((get_max_fast () & ~1) <= request2size(MAX_FAST_SIZE));
2831 max_fast_bin = fastbin_index(get_max_fast ());
2833 for (i = 0; i < NFASTBINS; ++i) {
2834 p = av->fastbins[i];
2836 /* The following test can only be performed for the main arena.
2837 While mallopt calls malloc_consolidate to get rid of all fast
2838 bins (especially those larger than the new maximum) this does
2839 only happen for the main arena. Trying to do this for any
2840 other arena would mean those arenas have to be locked and
2841 malloc_consolidate be called for them. This is excessive. And
2842 even if this is acceptable to somebody it still cannot solve
2843 the problem completely since if the arena is locked a
2844 concurrent malloc call might create a new arena which then
2845 could use the newly invalid fast bins. */
2847 /* all bins past max_fast are empty */
2848 if (av == &main_arena && i > max_fast_bin)
2849 assert(p == 0);
2851 while (p != 0) {
2852 /* each chunk claims to be inuse */
2853 do_check_inuse_chunk(av, p);
2854 total += chunksize(p);
2855 /* chunk belongs in this bin */
2856 assert(fastbin_index(chunksize(p)) == i);
2857 p = p->fd;
2861 if (total != 0)
2862 assert(have_fastchunks(av));
2863 else if (!have_fastchunks(av))
2864 assert(total == 0);
2866 /* check normal bins */
2867 for (i = 1; i < NBINS; ++i) {
2868 b = bin_at(av,i);
2870 /* binmap is accurate (except for bin 1 == unsorted_chunks) */
2871 if (i >= 2) {
2872 unsigned int binbit = get_binmap(av,i);
2873 int empty = last(b) == b;
2874 if (!binbit)
2875 assert(empty);
2876 else if (!empty)
2877 assert(binbit);
2880 for (p = last(b); p != b; p = p->bk) {
2881 /* each chunk claims to be free */
2882 do_check_free_chunk(av, p);
2883 size = chunksize(p);
2884 total += size;
2885 if (i >= 2) {
2886 /* chunk belongs in bin */
2887 idx = bin_index(size);
2888 assert(idx == i);
2889 /* lists are sorted */
2890 assert(p->bk == b ||
2891 (unsigned long)chunksize(p->bk) >= (unsigned long)chunksize(p));
2893 if (!in_smallbin_range(size))
2895 if (p->fd_nextsize != NULL)
2897 if (p->fd_nextsize == p)
2898 assert (p->bk_nextsize == p);
2899 else
2901 if (p->fd_nextsize == first (b))
2902 assert (chunksize (p) < chunksize (p->fd_nextsize));
2903 else
2904 assert (chunksize (p) > chunksize (p->fd_nextsize));
2906 if (p == first (b))
2907 assert (chunksize (p) > chunksize (p->bk_nextsize));
2908 else
2909 assert (chunksize (p) < chunksize (p->bk_nextsize));
2912 else
2913 assert (p->bk_nextsize == NULL);
2915 } else if (!in_smallbin_range(size))
2916 assert (p->fd_nextsize == NULL && p->bk_nextsize == NULL);
2917 /* chunk is followed by a legal chain of inuse chunks */
2918 for (q = next_chunk(p);
2919 (q != av->top && inuse(q) &&
2920 (unsigned long)(chunksize(q)) >= MINSIZE);
2921 q = next_chunk(q))
2922 do_check_inuse_chunk(av, q);
2926 /* top chunk is OK */
2927 check_chunk(av, av->top);
2929 /* sanity checks for statistics */
2931 #ifdef NO_THREADS
2932 assert(total <= (unsigned long)(mp_.max_total_mem));
2933 assert(mp_.n_mmaps >= 0);
2934 #endif
2935 assert(mp_.n_mmaps <= mp_.max_n_mmaps);
2937 assert((unsigned long)(av->system_mem) <=
2938 (unsigned long)(av->max_system_mem));
2940 assert((unsigned long)(mp_.mmapped_mem) <=
2941 (unsigned long)(mp_.max_mmapped_mem));
2943 #ifdef NO_THREADS
2944 assert((unsigned long)(mp_.max_total_mem) >=
2945 (unsigned long)(mp_.mmapped_mem) + (unsigned long)(av->system_mem));
2946 #endif
2948 #endif
2951 /* ----------------- Support for debugging hooks -------------------- */
2952 #include "hooks.c"
2955 /* ----------- Routines dealing with system allocation -------------- */
2958 sysmalloc handles malloc cases requiring more memory from the system.
2959 On entry, it is assumed that av->top does not have enough
2960 space to service request for nb bytes, thus requiring that av->top
2961 be extended or replaced.
2964 #if __STD_C
2965 static Void_t* sYSMALLOc(INTERNAL_SIZE_T nb, mstate av)
2966 #else
2967 static Void_t* sYSMALLOc(nb, av) INTERNAL_SIZE_T nb; mstate av;
2968 #endif
2970 mchunkptr old_top; /* incoming value of av->top */
2971 INTERNAL_SIZE_T old_size; /* its size */
2972 char* old_end; /* its end address */
2974 long size; /* arg to first MORECORE or mmap call */
2975 char* brk; /* return value from MORECORE */
2977 long correction; /* arg to 2nd MORECORE call */
2978 char* snd_brk; /* 2nd return val */
2980 INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of new space */
2981 INTERNAL_SIZE_T end_misalign; /* partial page left at end of new space */
2982 char* aligned_brk; /* aligned offset into brk */
2984 mchunkptr p; /* the allocated/returned chunk */
2985 mchunkptr remainder; /* remainder from allocation */
2986 unsigned long remainder_size; /* its size */
2988 unsigned long sum; /* for updating stats */
2990 size_t pagemask = mp_.pagesize - 1;
2991 bool tried_mmap = false;
2994 #if HAVE_MMAP
2997 If have mmap, and the request size meets the mmap threshold, and
2998 the system supports mmap, and there are few enough currently
2999 allocated mmapped regions, try to directly map this request
3000 rather than expanding top.
3003 if ((unsigned long)(nb) >= (unsigned long)(mp_.mmap_threshold) &&
3004 (mp_.n_mmaps < mp_.n_mmaps_max)) {
3006 char* mm; /* return value from mmap call*/
3008 try_mmap:
3010 Round up size to nearest page. For mmapped chunks, the overhead
3011 is one SIZE_SZ unit larger than for normal chunks, because there
3012 is no following chunk whose prev_size field could be used.
3014 #if 1
3015 /* See the front_misalign handling below, for glibc there is no
3016 need for further alignments. */
3017 size = (nb + SIZE_SZ + pagemask) & ~pagemask;
3018 #else
3019 size = (nb + SIZE_SZ + MALLOC_ALIGN_MASK + pagemask) & ~pagemask;
3020 #endif
3021 tried_mmap = true;
3023 /* Don't try if size wraps around 0 */
3024 if ((unsigned long)(size) > (unsigned long)(nb)) {
3026 mm = (char*)(MMAP(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE));
3028 if (mm != MAP_FAILED) {
3031 The offset to the start of the mmapped region is stored
3032 in the prev_size field of the chunk. This allows us to adjust
3033 returned start address to meet alignment requirements here
3034 and in memalign(), and still be able to compute proper
3035 address argument for later munmap in free() and realloc().
3038 #if 1
3039 /* For glibc, chunk2mem increases the address by 2*SIZE_SZ and
3040 MALLOC_ALIGN_MASK is 2*SIZE_SZ-1. Each mmap'ed area is page
3041 aligned and therefore definitely MALLOC_ALIGN_MASK-aligned. */
3042 assert (((INTERNAL_SIZE_T)chunk2mem(mm) & MALLOC_ALIGN_MASK) == 0);
3043 #else
3044 front_misalign = (INTERNAL_SIZE_T)chunk2mem(mm) & MALLOC_ALIGN_MASK;
3045 if (front_misalign > 0) {
3046 correction = MALLOC_ALIGNMENT - front_misalign;
3047 p = (mchunkptr)(mm + correction);
3048 p->prev_size = correction;
3049 set_head(p, (size - correction) |IS_MMAPPED);
3051 else
3052 #endif
3054 p = (mchunkptr)mm;
3055 set_head(p, size|IS_MMAPPED);
3058 /* update statistics */
3060 if (++mp_.n_mmaps > mp_.max_n_mmaps)
3061 mp_.max_n_mmaps = mp_.n_mmaps;
3063 sum = mp_.mmapped_mem += size;
3064 if (sum > (unsigned long)(mp_.max_mmapped_mem))
3065 mp_.max_mmapped_mem = sum;
3066 #ifdef NO_THREADS
3067 sum += av->system_mem;
3068 if (sum > (unsigned long)(mp_.max_total_mem))
3069 mp_.max_total_mem = sum;
3070 #endif
3072 check_chunk(av, p);
3074 return chunk2mem(p);
3078 #endif
3080 /* Record incoming configuration of top */
3082 old_top = av->top;
3083 old_size = chunksize(old_top);
3084 old_end = (char*)(chunk_at_offset(old_top, old_size));
3086 brk = snd_brk = (char*)(MORECORE_FAILURE);
3089 If not the first time through, we require old_size to be
3090 at least MINSIZE and to have prev_inuse set.
3093 assert((old_top == initial_top(av) && old_size == 0) ||
3094 ((unsigned long) (old_size) >= MINSIZE &&
3095 prev_inuse(old_top) &&
3096 ((unsigned long)old_end & pagemask) == 0));
3098 /* Precondition: not enough current space to satisfy nb request */
3099 assert((unsigned long)(old_size) < (unsigned long)(nb + MINSIZE));
3101 #ifndef ATOMIC_FASTBINS
3102 /* Precondition: all fastbins are consolidated */
3103 assert(!have_fastchunks(av));
3104 #endif
3107 if (av != &main_arena) {
3109 heap_info *old_heap, *heap;
3110 size_t old_heap_size;
3112 /* First try to extend the current heap. */
3113 old_heap = heap_for_ptr(old_top);
3114 old_heap_size = old_heap->size;
3115 if ((long) (MINSIZE + nb - old_size) > 0
3116 && grow_heap(old_heap, MINSIZE + nb - old_size) == 0) {
3117 av->system_mem += old_heap->size - old_heap_size;
3118 arena_mem += old_heap->size - old_heap_size;
3119 #if 0
3120 if(mmapped_mem + arena_mem + sbrked_mem > max_total_mem)
3121 max_total_mem = mmapped_mem + arena_mem + sbrked_mem;
3122 #endif
3123 set_head(old_top, (((char *)old_heap + old_heap->size) - (char *)old_top)
3124 | PREV_INUSE);
3126 else if ((heap = new_heap(nb + (MINSIZE + sizeof(*heap)), mp_.top_pad))) {
3127 /* Use a newly allocated heap. */
3128 heap->ar_ptr = av;
3129 heap->prev = old_heap;
3130 av->system_mem += heap->size;
3131 arena_mem += heap->size;
3132 #if 0
3133 if((unsigned long)(mmapped_mem + arena_mem + sbrked_mem) > max_total_mem)
3134 max_total_mem = mmapped_mem + arena_mem + sbrked_mem;
3135 #endif
3136 /* Set up the new top. */
3137 top(av) = chunk_at_offset(heap, sizeof(*heap));
3138 set_head(top(av), (heap->size - sizeof(*heap)) | PREV_INUSE);
3140 /* Setup fencepost and free the old top chunk. */
3141 /* The fencepost takes at least MINSIZE bytes, because it might
3142 become the top chunk again later. Note that a footer is set
3143 up, too, although the chunk is marked in use. */
3144 old_size -= MINSIZE;
3145 set_head(chunk_at_offset(old_top, old_size + 2*SIZE_SZ), 0|PREV_INUSE);
3146 if (old_size >= MINSIZE) {
3147 set_head(chunk_at_offset(old_top, old_size), (2*SIZE_SZ)|PREV_INUSE);
3148 set_foot(chunk_at_offset(old_top, old_size), (2*SIZE_SZ));
3149 set_head(old_top, old_size|PREV_INUSE|NON_MAIN_ARENA);
3150 #ifdef ATOMIC_FASTBINS
3151 _int_free(av, old_top, 1);
3152 #else
3153 _int_free(av, old_top);
3154 #endif
3155 } else {
3156 set_head(old_top, (old_size + 2*SIZE_SZ)|PREV_INUSE);
3157 set_foot(old_top, (old_size + 2*SIZE_SZ));
3160 else if (!tried_mmap)
3161 /* We can at least try to use to mmap memory. */
3162 goto try_mmap;
3164 } else { /* av == main_arena */
3167 /* Request enough space for nb + pad + overhead */
3169 size = nb + mp_.top_pad + MINSIZE;
3172 If contiguous, we can subtract out existing space that we hope to
3173 combine with new space. We add it back later only if
3174 we don't actually get contiguous space.
3177 if (contiguous(av))
3178 size -= old_size;
3181 Round to a multiple of page size.
3182 If MORECORE is not contiguous, this ensures that we only call it
3183 with whole-page arguments. And if MORECORE is contiguous and
3184 this is not first time through, this preserves page-alignment of
3185 previous calls. Otherwise, we correct to page-align below.
3188 size = (size + pagemask) & ~pagemask;
3191 Don't try to call MORECORE if argument is so big as to appear
3192 negative. Note that since mmap takes size_t arg, it may succeed
3193 below even if we cannot call MORECORE.
3196 if (size > 0)
3197 brk = (char*)(MORECORE(size));
3199 if (brk != (char*)(MORECORE_FAILURE)) {
3200 /* Call the `morecore' hook if necessary. */
3201 void (*hook) (void) = force_reg (__after_morecore_hook);
3202 if (__builtin_expect (hook != NULL, 0))
3203 (*hook) ();
3204 } else {
3206 If have mmap, try using it as a backup when MORECORE fails or
3207 cannot be used. This is worth doing on systems that have "holes" in
3208 address space, so sbrk cannot extend to give contiguous space, but
3209 space is available elsewhere. Note that we ignore mmap max count
3210 and threshold limits, since the space will not be used as a
3211 segregated mmap region.
3214 #if HAVE_MMAP
3215 /* Cannot merge with old top, so add its size back in */
3216 if (contiguous(av))
3217 size = (size + old_size + pagemask) & ~pagemask;
3219 /* If we are relying on mmap as backup, then use larger units */
3220 if ((unsigned long)(size) < (unsigned long)(MMAP_AS_MORECORE_SIZE))
3221 size = MMAP_AS_MORECORE_SIZE;
3223 /* Don't try if size wraps around 0 */
3224 if ((unsigned long)(size) > (unsigned long)(nb)) {
3226 char *mbrk = (char*)(MMAP(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE));
3228 if (mbrk != MAP_FAILED) {
3230 /* We do not need, and cannot use, another sbrk call to find end */
3231 brk = mbrk;
3232 snd_brk = brk + size;
3235 Record that we no longer have a contiguous sbrk region.
3236 After the first time mmap is used as backup, we do not
3237 ever rely on contiguous space since this could incorrectly
3238 bridge regions.
3240 set_noncontiguous(av);
3243 #endif
3246 if (brk != (char*)(MORECORE_FAILURE)) {
3247 if (mp_.sbrk_base == 0)
3248 mp_.sbrk_base = brk;
3249 av->system_mem += size;
3252 If MORECORE extends previous space, we can likewise extend top size.
3255 if (brk == old_end && snd_brk == (char*)(MORECORE_FAILURE))
3256 set_head(old_top, (size + old_size) | PREV_INUSE);
3258 else if (contiguous(av) && old_size && brk < old_end) {
3259 /* Oops! Someone else killed our space.. Can't touch anything. */
3260 malloc_printerr (3, "break adjusted to free malloc space", brk);
3264 Otherwise, make adjustments:
3266 * If the first time through or noncontiguous, we need to call sbrk
3267 just to find out where the end of memory lies.
3269 * We need to ensure that all returned chunks from malloc will meet
3270 MALLOC_ALIGNMENT
3272 * If there was an intervening foreign sbrk, we need to adjust sbrk
3273 request size to account for fact that we will not be able to
3274 combine new space with existing space in old_top.
3276 * Almost all systems internally allocate whole pages at a time, in
3277 which case we might as well use the whole last page of request.
3278 So we allocate enough more memory to hit a page boundary now,
3279 which in turn causes future contiguous calls to page-align.
3282 else {
3283 front_misalign = 0;
3284 end_misalign = 0;
3285 correction = 0;
3286 aligned_brk = brk;
3288 /* handle contiguous cases */
3289 if (contiguous(av)) {
3291 /* Count foreign sbrk as system_mem. */
3292 if (old_size)
3293 av->system_mem += brk - old_end;
3295 /* Guarantee alignment of first new chunk made from this space */
3297 front_misalign = (INTERNAL_SIZE_T)chunk2mem(brk) & MALLOC_ALIGN_MASK;
3298 if (front_misalign > 0) {
3301 Skip over some bytes to arrive at an aligned position.
3302 We don't need to specially mark these wasted front bytes.
3303 They will never be accessed anyway because
3304 prev_inuse of av->top (and any chunk created from its start)
3305 is always true after initialization.
3308 correction = MALLOC_ALIGNMENT - front_misalign;
3309 aligned_brk += correction;
3313 If this isn't adjacent to existing space, then we will not
3314 be able to merge with old_top space, so must add to 2nd request.
3317 correction += old_size;
3319 /* Extend the end address to hit a page boundary */
3320 end_misalign = (INTERNAL_SIZE_T)(brk + size + correction);
3321 correction += ((end_misalign + pagemask) & ~pagemask) - end_misalign;
3323 assert(correction >= 0);
3324 snd_brk = (char*)(MORECORE(correction));
3327 If can't allocate correction, try to at least find out current
3328 brk. It might be enough to proceed without failing.
3330 Note that if second sbrk did NOT fail, we assume that space
3331 is contiguous with first sbrk. This is a safe assumption unless
3332 program is multithreaded but doesn't use locks and a foreign sbrk
3333 occurred between our first and second calls.
3336 if (snd_brk == (char*)(MORECORE_FAILURE)) {
3337 correction = 0;
3338 snd_brk = (char*)(MORECORE(0));
3339 } else {
3340 /* Call the `morecore' hook if necessary. */
3341 void (*hook) (void) = force_reg (__after_morecore_hook);
3342 if (__builtin_expect (hook != NULL, 0))
3343 (*hook) ();
3347 /* handle non-contiguous cases */
3348 else {
3349 /* MORECORE/mmap must correctly align */
3350 assert(((unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK) == 0);
3352 /* Find out current end of memory */
3353 if (snd_brk == (char*)(MORECORE_FAILURE)) {
3354 snd_brk = (char*)(MORECORE(0));
3358 /* Adjust top based on results of second sbrk */
3359 if (snd_brk != (char*)(MORECORE_FAILURE)) {
3360 av->top = (mchunkptr)aligned_brk;
3361 set_head(av->top, (snd_brk - aligned_brk + correction) | PREV_INUSE);
3362 av->system_mem += correction;
3365 If not the first time through, we either have a
3366 gap due to foreign sbrk or a non-contiguous region. Insert a
3367 double fencepost at old_top to prevent consolidation with space
3368 we don't own. These fenceposts are artificial chunks that are
3369 marked as inuse and are in any case too small to use. We need
3370 two to make sizes and alignments work out.
3373 if (old_size != 0) {
3375 Shrink old_top to insert fenceposts, keeping size a
3376 multiple of MALLOC_ALIGNMENT. We know there is at least
3377 enough space in old_top to do this.
3379 old_size = (old_size - 4*SIZE_SZ) & ~MALLOC_ALIGN_MASK;
3380 set_head(old_top, old_size | PREV_INUSE);
3383 Note that the following assignments completely overwrite
3384 old_top when old_size was previously MINSIZE. This is
3385 intentional. We need the fencepost, even if old_top otherwise gets
3386 lost.
3388 chunk_at_offset(old_top, old_size )->size =
3389 (2*SIZE_SZ)|PREV_INUSE;
3391 chunk_at_offset(old_top, old_size + 2*SIZE_SZ)->size =
3392 (2*SIZE_SZ)|PREV_INUSE;
3394 /* If possible, release the rest. */
3395 if (old_size >= MINSIZE) {
3396 #ifdef ATOMIC_FASTBINS
3397 _int_free(av, old_top, 1);
3398 #else
3399 _int_free(av, old_top);
3400 #endif
3407 /* Update statistics */
3408 #ifdef NO_THREADS
3409 sum = av->system_mem + mp_.mmapped_mem;
3410 if (sum > (unsigned long)(mp_.max_total_mem))
3411 mp_.max_total_mem = sum;
3412 #endif
3416 } /* if (av != &main_arena) */
3418 if ((unsigned long)av->system_mem > (unsigned long)(av->max_system_mem))
3419 av->max_system_mem = av->system_mem;
3420 check_malloc_state(av);
3422 /* finally, do the allocation */
3423 p = av->top;
3424 size = chunksize(p);
3426 /* check that one of the above allocation paths succeeded */
3427 if ((unsigned long)(size) >= (unsigned long)(nb + MINSIZE)) {
3428 remainder_size = size - nb;
3429 remainder = chunk_at_offset(p, nb);
3430 av->top = remainder;
3431 set_head(p, nb | PREV_INUSE | (av != &main_arena ? NON_MAIN_ARENA : 0));
3432 set_head(remainder, remainder_size | PREV_INUSE);
3433 check_malloced_chunk(av, p, nb);
3434 return chunk2mem(p);
3437 /* catch all failure paths */
3438 MALLOC_FAILURE_ACTION;
3439 return 0;
3444 sYSTRIm is an inverse of sorts to sYSMALLOc. It gives memory back
3445 to the system (via negative arguments to sbrk) if there is unused
3446 memory at the `high' end of the malloc pool. It is called
3447 automatically by free() when top space exceeds the trim
3448 threshold. It is also called by the public malloc_trim routine. It
3449 returns 1 if it actually released any memory, else 0.
3452 #if __STD_C
3453 static int sYSTRIm(size_t pad, mstate av)
3454 #else
3455 static int sYSTRIm(pad, av) size_t pad; mstate av;
3456 #endif
3458 long top_size; /* Amount of top-most memory */
3459 long extra; /* Amount to release */
3460 long released; /* Amount actually released */
3461 char* current_brk; /* address returned by pre-check sbrk call */
3462 char* new_brk; /* address returned by post-check sbrk call */
3463 size_t pagesz;
3465 pagesz = mp_.pagesize;
3466 top_size = chunksize(av->top);
3468 /* Release in pagesize units, keeping at least one page */
3469 extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz;
3471 if (extra > 0) {
3474 Only proceed if end of memory is where we last set it.
3475 This avoids problems if there were foreign sbrk calls.
3477 current_brk = (char*)(MORECORE(0));
3478 if (current_brk == (char*)(av->top) + top_size) {
3481 Attempt to release memory. We ignore MORECORE return value,
3482 and instead call again to find out where new end of memory is.
3483 This avoids problems if first call releases less than we asked,
3484 of if failure somehow altered brk value. (We could still
3485 encounter problems if it altered brk in some very bad way,
3486 but the only thing we can do is adjust anyway, which will cause
3487 some downstream failure.)
3490 MORECORE(-extra);
3491 /* Call the `morecore' hook if necessary. */
3492 void (*hook) (void) = force_reg (__after_morecore_hook);
3493 if (__builtin_expect (hook != NULL, 0))
3494 (*hook) ();
3495 new_brk = (char*)(MORECORE(0));
3497 if (new_brk != (char*)MORECORE_FAILURE) {
3498 released = (long)(current_brk - new_brk);
3500 if (released != 0) {
3501 /* Success. Adjust top. */
3502 av->system_mem -= released;
3503 set_head(av->top, (top_size - released) | PREV_INUSE);
3504 check_malloc_state(av);
3505 return 1;
3510 return 0;
3513 #ifdef HAVE_MMAP
3515 static void
3516 internal_function
3517 #if __STD_C
3518 munmap_chunk(mchunkptr p)
3519 #else
3520 munmap_chunk(p) mchunkptr p;
3521 #endif
3523 INTERNAL_SIZE_T size = chunksize(p);
3525 assert (chunk_is_mmapped(p));
3526 #if 0
3527 assert(! ((char*)p >= mp_.sbrk_base && (char*)p < mp_.sbrk_base + mp_.sbrked_mem));
3528 assert((mp_.n_mmaps > 0));
3529 #endif
3531 uintptr_t block = (uintptr_t) p - p->prev_size;
3532 size_t total_size = p->prev_size + size;
3533 /* Unfortunately we have to do the compilers job by hand here. Normally
3534 we would test BLOCK and TOTAL-SIZE separately for compliance with the
3535 page size. But gcc does not recognize the optimization possibility
3536 (in the moment at least) so we combine the two values into one before
3537 the bit test. */
3538 if (__builtin_expect (((block | total_size) & (mp_.pagesize - 1)) != 0, 0))
3540 malloc_printerr (check_action, "munmap_chunk(): invalid pointer",
3541 chunk2mem (p));
3542 return;
3545 mp_.n_mmaps--;
3546 mp_.mmapped_mem -= total_size;
3548 int ret __attribute__ ((unused)) = munmap((char *)block, total_size);
3550 /* munmap returns non-zero on failure */
3551 assert(ret == 0);
3554 #if HAVE_MREMAP
3556 static mchunkptr
3557 internal_function
3558 #if __STD_C
3559 mremap_chunk(mchunkptr p, size_t new_size)
3560 #else
3561 mremap_chunk(p, new_size) mchunkptr p; size_t new_size;
3562 #endif
3564 size_t page_mask = mp_.pagesize - 1;
3565 INTERNAL_SIZE_T offset = p->prev_size;
3566 INTERNAL_SIZE_T size = chunksize(p);
3567 char *cp;
3569 assert (chunk_is_mmapped(p));
3570 #if 0
3571 assert(! ((char*)p >= mp_.sbrk_base && (char*)p < mp_.sbrk_base + mp_.sbrked_mem));
3572 assert((mp_.n_mmaps > 0));
3573 #endif
3574 assert(((size + offset) & (mp_.pagesize-1)) == 0);
3576 /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
3577 new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask;
3579 /* No need to remap if the number of pages does not change. */
3580 if (size + offset == new_size)
3581 return p;
3583 cp = (char *)mremap((char *)p - offset, size + offset, new_size,
3584 MREMAP_MAYMOVE);
3586 if (cp == MAP_FAILED) return 0;
3588 p = (mchunkptr)(cp + offset);
3590 assert(aligned_OK(chunk2mem(p)));
3592 assert((p->prev_size == offset));
3593 set_head(p, (new_size - offset)|IS_MMAPPED);
3595 mp_.mmapped_mem -= size + offset;
3596 mp_.mmapped_mem += new_size;
3597 if ((unsigned long)mp_.mmapped_mem > (unsigned long)mp_.max_mmapped_mem)
3598 mp_.max_mmapped_mem = mp_.mmapped_mem;
3599 #ifdef NO_THREADS
3600 if ((unsigned long)(mp_.mmapped_mem + arena_mem + main_arena.system_mem) >
3601 mp_.max_total_mem)
3602 mp_.max_total_mem = mp_.mmapped_mem + arena_mem + main_arena.system_mem;
3603 #endif
3604 return p;
3607 #endif /* HAVE_MREMAP */
3609 #endif /* HAVE_MMAP */
3611 /*------------------------ Public wrappers. --------------------------------*/
3613 Void_t*
3614 public_mALLOc(size_t bytes)
3616 mstate ar_ptr;
3617 Void_t *victim;
3619 __malloc_ptr_t (*hook) (size_t, __const __malloc_ptr_t)
3620 = force_reg (__malloc_hook);
3621 if (__builtin_expect (hook != NULL, 0))
3622 return (*hook)(bytes, RETURN_ADDRESS (0));
3624 arena_lookup(ar_ptr);
3625 #if 0
3626 // XXX We need double-word CAS and fastbins must be extended to also
3627 // XXX hold a generation counter for each entry.
3628 if (ar_ptr) {
3629 INTERNAL_SIZE_T nb; /* normalized request size */
3630 checked_request2size(bytes, nb);
3631 if (nb <= get_max_fast ()) {
3632 long int idx = fastbin_index(nb);
3633 mfastbinptr* fb = &fastbin (ar_ptr, idx);
3634 mchunkptr pp = *fb;
3635 mchunkptr v;
3638 v = pp;
3639 if (v == NULL)
3640 break;
3642 while ((pp = catomic_compare_and_exchange_val_acq (fb, v->fd, v)) != v);
3643 if (v != 0) {
3644 if (__builtin_expect (fastbin_index (chunksize (v)) != idx, 0))
3645 malloc_printerr (check_action, "malloc(): memory corruption (fast)",
3646 chunk2mem (v));
3647 check_remalloced_chunk(ar_ptr, v, nb);
3648 void *p = chunk2mem(v);
3649 if (__builtin_expect (perturb_byte, 0))
3650 alloc_perturb (p, bytes);
3651 return p;
3655 #endif
3657 arena_lock(ar_ptr, bytes);
3658 if(!ar_ptr)
3659 return 0;
3660 victim = _int_malloc(ar_ptr, bytes);
3661 if(!victim) {
3662 /* Maybe the failure is due to running out of mmapped areas. */
3663 if(ar_ptr != &main_arena) {
3664 (void)mutex_unlock(&ar_ptr->mutex);
3665 ar_ptr = &main_arena;
3666 (void)mutex_lock(&ar_ptr->mutex);
3667 victim = _int_malloc(ar_ptr, bytes);
3668 (void)mutex_unlock(&ar_ptr->mutex);
3669 } else {
3670 #if USE_ARENAS
3671 /* ... or sbrk() has failed and there is still a chance to mmap() */
3672 ar_ptr = arena_get2(ar_ptr->next ? ar_ptr : 0, bytes);
3673 (void)mutex_unlock(&main_arena.mutex);
3674 if(ar_ptr) {
3675 victim = _int_malloc(ar_ptr, bytes);
3676 (void)mutex_unlock(&ar_ptr->mutex);
3678 #endif
3680 } else
3681 (void)mutex_unlock(&ar_ptr->mutex);
3682 assert(!victim || chunk_is_mmapped(mem2chunk(victim)) ||
3683 ar_ptr == arena_for_chunk(mem2chunk(victim)));
3684 return victim;
3686 #ifdef libc_hidden_def
3687 libc_hidden_def(public_mALLOc)
3688 #endif
3690 void
3691 public_fREe(Void_t* mem)
3693 mstate ar_ptr;
3694 mchunkptr p; /* chunk corresponding to mem */
3696 void (*hook) (__malloc_ptr_t, __const __malloc_ptr_t)
3697 = force_reg (__free_hook);
3698 if (__builtin_expect (hook != NULL, 0)) {
3699 (*hook)(mem, RETURN_ADDRESS (0));
3700 return;
3703 if (mem == 0) /* free(0) has no effect */
3704 return;
3706 p = mem2chunk(mem);
3708 #if HAVE_MMAP
3709 if (chunk_is_mmapped(p)) /* release mmapped memory. */
3711 /* see if the dynamic brk/mmap threshold needs adjusting */
3712 if (!mp_.no_dyn_threshold
3713 && p->size > mp_.mmap_threshold
3714 && p->size <= DEFAULT_MMAP_THRESHOLD_MAX)
3716 mp_.mmap_threshold = chunksize (p);
3717 mp_.trim_threshold = 2 * mp_.mmap_threshold;
3719 munmap_chunk(p);
3720 return;
3722 #endif
3724 ar_ptr = arena_for_chunk(p);
3725 #ifdef ATOMIC_FASTBINS
3726 _int_free(ar_ptr, p, 0);
3727 #else
3728 # if THREAD_STATS
3729 if(!mutex_trylock(&ar_ptr->mutex))
3730 ++(ar_ptr->stat_lock_direct);
3731 else {
3732 (void)mutex_lock(&ar_ptr->mutex);
3733 ++(ar_ptr->stat_lock_wait);
3735 # else
3736 (void)mutex_lock(&ar_ptr->mutex);
3737 # endif
3738 _int_free(ar_ptr, p);
3739 (void)mutex_unlock(&ar_ptr->mutex);
3740 #endif
3742 #ifdef libc_hidden_def
3743 libc_hidden_def (public_fREe)
3744 #endif
3746 Void_t*
3747 public_rEALLOc(Void_t* oldmem, size_t bytes)
3749 mstate ar_ptr;
3750 INTERNAL_SIZE_T nb; /* padded request size */
3752 Void_t* newp; /* chunk to return */
3754 __malloc_ptr_t (*hook) (__malloc_ptr_t, size_t, __const __malloc_ptr_t) =
3755 force_reg (__realloc_hook);
3756 if (__builtin_expect (hook != NULL, 0))
3757 return (*hook)(oldmem, bytes, RETURN_ADDRESS (0));
3759 #if REALLOC_ZERO_BYTES_FREES
3760 if (bytes == 0 && oldmem != NULL) { public_fREe(oldmem); return 0; }
3761 #endif
3763 /* realloc of null is supposed to be same as malloc */
3764 if (oldmem == 0) return public_mALLOc(bytes);
3766 /* chunk corresponding to oldmem */
3767 const mchunkptr oldp = mem2chunk(oldmem);
3768 /* its size */
3769 const INTERNAL_SIZE_T oldsize = chunksize(oldp);
3771 /* Little security check which won't hurt performance: the
3772 allocator never wrapps around at the end of the address space.
3773 Therefore we can exclude some size values which might appear
3774 here by accident or by "design" from some intruder. */
3775 if (__builtin_expect ((uintptr_t) oldp > (uintptr_t) -oldsize, 0)
3776 || __builtin_expect (misaligned_chunk (oldp), 0))
3778 malloc_printerr (check_action, "realloc(): invalid pointer", oldmem);
3779 return NULL;
3782 checked_request2size(bytes, nb);
3784 #if HAVE_MMAP
3785 if (chunk_is_mmapped(oldp))
3787 Void_t* newmem;
3789 #if HAVE_MREMAP
3790 newp = mremap_chunk(oldp, nb);
3791 if(newp) return chunk2mem(newp);
3792 #endif
3793 /* Note the extra SIZE_SZ overhead. */
3794 if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */
3795 /* Must alloc, copy, free. */
3796 newmem = public_mALLOc(bytes);
3797 if (newmem == 0) return 0; /* propagate failure */
3798 MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ);
3799 munmap_chunk(oldp);
3800 return newmem;
3802 #endif
3804 ar_ptr = arena_for_chunk(oldp);
3805 #if THREAD_STATS
3806 if(!mutex_trylock(&ar_ptr->mutex))
3807 ++(ar_ptr->stat_lock_direct);
3808 else {
3809 (void)mutex_lock(&ar_ptr->mutex);
3810 ++(ar_ptr->stat_lock_wait);
3812 #else
3813 (void)mutex_lock(&ar_ptr->mutex);
3814 #endif
3816 #if !defined NO_THREADS && !defined PER_THREAD
3817 /* As in malloc(), remember this arena for the next allocation. */
3818 tsd_setspecific(arena_key, (Void_t *)ar_ptr);
3819 #endif
3821 newp = _int_realloc(ar_ptr, oldp, oldsize, nb);
3823 (void)mutex_unlock(&ar_ptr->mutex);
3824 assert(!newp || chunk_is_mmapped(mem2chunk(newp)) ||
3825 ar_ptr == arena_for_chunk(mem2chunk(newp)));
3827 if (newp == NULL)
3829 /* Try harder to allocate memory in other arenas. */
3830 newp = public_mALLOc(bytes);
3831 if (newp != NULL)
3833 MALLOC_COPY (newp, oldmem, oldsize - SIZE_SZ);
3834 #ifdef ATOMIC_FASTBINS
3835 _int_free(ar_ptr, oldp, 0);
3836 #else
3837 # if THREAD_STATS
3838 if(!mutex_trylock(&ar_ptr->mutex))
3839 ++(ar_ptr->stat_lock_direct);
3840 else {
3841 (void)mutex_lock(&ar_ptr->mutex);
3842 ++(ar_ptr->stat_lock_wait);
3844 # else
3845 (void)mutex_lock(&ar_ptr->mutex);
3846 # endif
3847 _int_free(ar_ptr, oldp);
3848 (void)mutex_unlock(&ar_ptr->mutex);
3849 #endif
3853 return newp;
3855 #ifdef libc_hidden_def
3856 libc_hidden_def (public_rEALLOc)
3857 #endif
3859 Void_t*
3860 public_mEMALIGn(size_t alignment, size_t bytes)
3862 mstate ar_ptr;
3863 Void_t *p;
3865 __malloc_ptr_t (*hook) __MALLOC_PMT ((size_t, size_t,
3866 __const __malloc_ptr_t)) =
3867 force_reg (__memalign_hook);
3868 if (__builtin_expect (hook != NULL, 0))
3869 return (*hook)(alignment, bytes, RETURN_ADDRESS (0));
3871 /* If need less alignment than we give anyway, just relay to malloc */
3872 if (alignment <= MALLOC_ALIGNMENT) return public_mALLOc(bytes);
3874 /* Otherwise, ensure that it is at least a minimum chunk size */
3875 if (alignment < MINSIZE) alignment = MINSIZE;
3877 arena_get(ar_ptr, bytes + alignment + MINSIZE);
3878 if(!ar_ptr)
3879 return 0;
3880 p = _int_memalign(ar_ptr, alignment, bytes);
3881 if(!p) {
3882 /* Maybe the failure is due to running out of mmapped areas. */
3883 if(ar_ptr != &main_arena) {
3884 (void)mutex_unlock(&ar_ptr->mutex);
3885 ar_ptr = &main_arena;
3886 (void)mutex_lock(&ar_ptr->mutex);
3887 p = _int_memalign(ar_ptr, alignment, bytes);
3888 (void)mutex_unlock(&ar_ptr->mutex);
3889 } else {
3890 #if USE_ARENAS
3891 /* ... or sbrk() has failed and there is still a chance to mmap() */
3892 mstate prev = ar_ptr->next ? ar_ptr : 0;
3893 (void)mutex_unlock(&ar_ptr->mutex);
3894 ar_ptr = arena_get2(prev, bytes);
3895 if(ar_ptr) {
3896 p = _int_memalign(ar_ptr, alignment, bytes);
3897 (void)mutex_unlock(&ar_ptr->mutex);
3899 #endif
3901 } else
3902 (void)mutex_unlock(&ar_ptr->mutex);
3903 assert(!p || chunk_is_mmapped(mem2chunk(p)) ||
3904 ar_ptr == arena_for_chunk(mem2chunk(p)));
3905 return p;
3907 #ifdef libc_hidden_def
3908 libc_hidden_def (public_mEMALIGn)
3909 #endif
3911 Void_t*
3912 public_vALLOc(size_t bytes)
3914 mstate ar_ptr;
3915 Void_t *p;
3917 if(__malloc_initialized < 0)
3918 ptmalloc_init ();
3920 size_t pagesz = mp_.pagesize;
3922 __malloc_ptr_t (*hook) __MALLOC_PMT ((size_t, size_t,
3923 __const __malloc_ptr_t)) =
3924 force_reg (__memalign_hook);
3925 if (__builtin_expect (hook != NULL, 0))
3926 return (*hook)(pagesz, bytes, RETURN_ADDRESS (0));
3928 arena_get(ar_ptr, bytes + pagesz + MINSIZE);
3929 if(!ar_ptr)
3930 return 0;
3931 p = _int_valloc(ar_ptr, bytes);
3932 (void)mutex_unlock(&ar_ptr->mutex);
3933 if(!p) {
3934 /* Maybe the failure is due to running out of mmapped areas. */
3935 if(ar_ptr != &main_arena) {
3936 ar_ptr = &main_arena;
3937 (void)mutex_lock(&ar_ptr->mutex);
3938 p = _int_memalign(ar_ptr, pagesz, bytes);
3939 (void)mutex_unlock(&ar_ptr->mutex);
3940 } else {
3941 #if USE_ARENAS
3942 /* ... or sbrk() has failed and there is still a chance to mmap() */
3943 ar_ptr = arena_get2(ar_ptr->next ? ar_ptr : 0, bytes);
3944 if(ar_ptr) {
3945 p = _int_memalign(ar_ptr, pagesz, bytes);
3946 (void)mutex_unlock(&ar_ptr->mutex);
3948 #endif
3951 assert(!p || chunk_is_mmapped(mem2chunk(p)) ||
3952 ar_ptr == arena_for_chunk(mem2chunk(p)));
3954 return p;
3957 Void_t*
3958 public_pVALLOc(size_t bytes)
3960 mstate ar_ptr;
3961 Void_t *p;
3963 if(__malloc_initialized < 0)
3964 ptmalloc_init ();
3966 size_t pagesz = mp_.pagesize;
3967 size_t page_mask = mp_.pagesize - 1;
3968 size_t rounded_bytes = (bytes + page_mask) & ~(page_mask);
3970 __malloc_ptr_t (*hook) __MALLOC_PMT ((size_t, size_t,
3971 __const __malloc_ptr_t)) =
3972 force_reg (__memalign_hook);
3973 if (__builtin_expect (hook != NULL, 0))
3974 return (*hook)(pagesz, rounded_bytes, RETURN_ADDRESS (0));
3976 arena_get(ar_ptr, bytes + 2*pagesz + MINSIZE);
3977 p = _int_pvalloc(ar_ptr, bytes);
3978 (void)mutex_unlock(&ar_ptr->mutex);
3979 if(!p) {
3980 /* Maybe the failure is due to running out of mmapped areas. */
3981 if(ar_ptr != &main_arena) {
3982 ar_ptr = &main_arena;
3983 (void)mutex_lock(&ar_ptr->mutex);
3984 p = _int_memalign(ar_ptr, pagesz, rounded_bytes);
3985 (void)mutex_unlock(&ar_ptr->mutex);
3986 } else {
3987 #if USE_ARENAS
3988 /* ... or sbrk() has failed and there is still a chance to mmap() */
3989 ar_ptr = arena_get2(ar_ptr->next ? ar_ptr : 0,
3990 bytes + 2*pagesz + MINSIZE);
3991 if(ar_ptr) {
3992 p = _int_memalign(ar_ptr, pagesz, rounded_bytes);
3993 (void)mutex_unlock(&ar_ptr->mutex);
3995 #endif
3998 assert(!p || chunk_is_mmapped(mem2chunk(p)) ||
3999 ar_ptr == arena_for_chunk(mem2chunk(p)));
4001 return p;
4004 Void_t*
4005 public_cALLOc(size_t n, size_t elem_size)
4007 mstate av;
4008 mchunkptr oldtop, p;
4009 INTERNAL_SIZE_T bytes, sz, csz, oldtopsize;
4010 Void_t* mem;
4011 unsigned long clearsize;
4012 unsigned long nclears;
4013 INTERNAL_SIZE_T* d;
4015 /* size_t is unsigned so the behavior on overflow is defined. */
4016 bytes = n * elem_size;
4017 #define HALF_INTERNAL_SIZE_T \
4018 (((INTERNAL_SIZE_T) 1) << (8 * sizeof (INTERNAL_SIZE_T) / 2))
4019 if (__builtin_expect ((n | elem_size) >= HALF_INTERNAL_SIZE_T, 0)) {
4020 if (elem_size != 0 && bytes / elem_size != n) {
4021 MALLOC_FAILURE_ACTION;
4022 return 0;
4026 __malloc_ptr_t (*hook) __MALLOC_PMT ((size_t, __const __malloc_ptr_t)) =
4027 force_reg (__malloc_hook);
4028 if (__builtin_expect (hook != NULL, 0)) {
4029 sz = bytes;
4030 mem = (*hook)(sz, RETURN_ADDRESS (0));
4031 if(mem == 0)
4032 return 0;
4033 #ifdef HAVE_MEMCPY
4034 return memset(mem, 0, sz);
4035 #else
4036 while(sz > 0) ((char*)mem)[--sz] = 0; /* rather inefficient */
4037 return mem;
4038 #endif
4041 sz = bytes;
4043 arena_get(av, sz);
4044 if(!av)
4045 return 0;
4047 /* Check if we hand out the top chunk, in which case there may be no
4048 need to clear. */
4049 #if MORECORE_CLEARS
4050 oldtop = top(av);
4051 oldtopsize = chunksize(top(av));
4052 #if MORECORE_CLEARS < 2
4053 /* Only newly allocated memory is guaranteed to be cleared. */
4054 if (av == &main_arena &&
4055 oldtopsize < mp_.sbrk_base + av->max_system_mem - (char *)oldtop)
4056 oldtopsize = (mp_.sbrk_base + av->max_system_mem - (char *)oldtop);
4057 #endif
4058 if (av != &main_arena)
4060 heap_info *heap = heap_for_ptr (oldtop);
4061 if (oldtopsize < (char *) heap + heap->mprotect_size - (char *) oldtop)
4062 oldtopsize = (char *) heap + heap->mprotect_size - (char *) oldtop;
4064 #endif
4065 mem = _int_malloc(av, sz);
4067 /* Only clearing follows, so we can unlock early. */
4068 (void)mutex_unlock(&av->mutex);
4070 assert(!mem || chunk_is_mmapped(mem2chunk(mem)) ||
4071 av == arena_for_chunk(mem2chunk(mem)));
4073 if (mem == 0) {
4074 /* Maybe the failure is due to running out of mmapped areas. */
4075 if(av != &main_arena) {
4076 (void)mutex_lock(&main_arena.mutex);
4077 mem = _int_malloc(&main_arena, sz);
4078 (void)mutex_unlock(&main_arena.mutex);
4079 } else {
4080 #if USE_ARENAS
4081 /* ... or sbrk() has failed and there is still a chance to mmap() */
4082 (void)mutex_lock(&main_arena.mutex);
4083 av = arena_get2(av->next ? av : 0, sz);
4084 (void)mutex_unlock(&main_arena.mutex);
4085 if(av) {
4086 mem = _int_malloc(av, sz);
4087 (void)mutex_unlock(&av->mutex);
4089 #endif
4091 if (mem == 0) return 0;
4093 p = mem2chunk(mem);
4095 /* Two optional cases in which clearing not necessary */
4096 #if HAVE_MMAP
4097 if (chunk_is_mmapped (p))
4099 if (__builtin_expect (perturb_byte, 0))
4100 MALLOC_ZERO (mem, sz);
4101 return mem;
4103 #endif
4105 csz = chunksize(p);
4107 #if MORECORE_CLEARS
4108 if (perturb_byte == 0 && (p == oldtop && csz > oldtopsize)) {
4109 /* clear only the bytes from non-freshly-sbrked memory */
4110 csz = oldtopsize;
4112 #endif
4114 /* Unroll clear of <= 36 bytes (72 if 8byte sizes). We know that
4115 contents have an odd number of INTERNAL_SIZE_T-sized words;
4116 minimally 3. */
4117 d = (INTERNAL_SIZE_T*)mem;
4118 clearsize = csz - SIZE_SZ;
4119 nclears = clearsize / sizeof(INTERNAL_SIZE_T);
4120 assert(nclears >= 3);
4122 if (nclears > 9)
4123 MALLOC_ZERO(d, clearsize);
4125 else {
4126 *(d+0) = 0;
4127 *(d+1) = 0;
4128 *(d+2) = 0;
4129 if (nclears > 4) {
4130 *(d+3) = 0;
4131 *(d+4) = 0;
4132 if (nclears > 6) {
4133 *(d+5) = 0;
4134 *(d+6) = 0;
4135 if (nclears > 8) {
4136 *(d+7) = 0;
4137 *(d+8) = 0;
4143 return mem;
4146 #ifndef _LIBC
4148 Void_t**
4149 public_iCALLOc(size_t n, size_t elem_size, Void_t** chunks)
4151 mstate ar_ptr;
4152 Void_t** m;
4154 arena_get(ar_ptr, n*elem_size);
4155 if(!ar_ptr)
4156 return 0;
4158 m = _int_icalloc(ar_ptr, n, elem_size, chunks);
4159 (void)mutex_unlock(&ar_ptr->mutex);
4160 return m;
4163 Void_t**
4164 public_iCOMALLOc(size_t n, size_t sizes[], Void_t** chunks)
4166 mstate ar_ptr;
4167 Void_t** m;
4169 arena_get(ar_ptr, 0);
4170 if(!ar_ptr)
4171 return 0;
4173 m = _int_icomalloc(ar_ptr, n, sizes, chunks);
4174 (void)mutex_unlock(&ar_ptr->mutex);
4175 return m;
4178 void
4179 public_cFREe(Void_t* m)
4181 public_fREe(m);
4184 #endif /* _LIBC */
4187 public_mTRIm(size_t s)
4189 int result = 0;
4191 if(__malloc_initialized < 0)
4192 ptmalloc_init ();
4194 mstate ar_ptr = &main_arena;
4197 (void) mutex_lock (&ar_ptr->mutex);
4198 result |= mTRIm (ar_ptr, s);
4199 (void) mutex_unlock (&ar_ptr->mutex);
4201 ar_ptr = ar_ptr->next;
4203 while (ar_ptr != &main_arena);
4205 return result;
4208 size_t
4209 public_mUSABLe(Void_t* m)
4211 size_t result;
4213 result = mUSABLe(m);
4214 return result;
4217 void
4218 public_mSTATs()
4220 mSTATs();
4223 struct mallinfo public_mALLINFo()
4225 struct mallinfo m;
4227 if(__malloc_initialized < 0)
4228 ptmalloc_init ();
4229 (void)mutex_lock(&main_arena.mutex);
4230 m = mALLINFo(&main_arena);
4231 (void)mutex_unlock(&main_arena.mutex);
4232 return m;
4236 public_mALLOPt(int p, int v)
4238 int result;
4239 result = mALLOPt(p, v);
4240 return result;
4244 ------------------------------ malloc ------------------------------
4247 static Void_t*
4248 _int_malloc(mstate av, size_t bytes)
4250 INTERNAL_SIZE_T nb; /* normalized request size */
4251 unsigned int idx; /* associated bin index */
4252 mbinptr bin; /* associated bin */
4254 mchunkptr victim; /* inspected/selected chunk */
4255 INTERNAL_SIZE_T size; /* its size */
4256 int victim_index; /* its bin index */
4258 mchunkptr remainder; /* remainder from a split */
4259 unsigned long remainder_size; /* its size */
4261 unsigned int block; /* bit map traverser */
4262 unsigned int bit; /* bit map traverser */
4263 unsigned int map; /* current word of binmap */
4265 mchunkptr fwd; /* misc temp for linking */
4266 mchunkptr bck; /* misc temp for linking */
4268 const char *errstr = NULL;
4271 Convert request size to internal form by adding SIZE_SZ bytes
4272 overhead plus possibly more to obtain necessary alignment and/or
4273 to obtain a size of at least MINSIZE, the smallest allocatable
4274 size. Also, checked_request2size traps (returning 0) request sizes
4275 that are so large that they wrap around zero when padded and
4276 aligned.
4279 checked_request2size(bytes, nb);
4282 If the size qualifies as a fastbin, first check corresponding bin.
4283 This code is safe to execute even if av is not yet initialized, so we
4284 can try it without checking, which saves some time on this fast path.
4287 if ((unsigned long)(nb) <= (unsigned long)(get_max_fast ())) {
4288 idx = fastbin_index(nb);
4289 mfastbinptr* fb = &fastbin (av, idx);
4290 #ifdef ATOMIC_FASTBINS
4291 mchunkptr pp = *fb;
4294 victim = pp;
4295 if (victim == NULL)
4296 break;
4298 while ((pp = catomic_compare_and_exchange_val_acq (fb, victim->fd, victim))
4299 != victim);
4300 #else
4301 victim = *fb;
4302 #endif
4303 if (victim != 0) {
4304 if (__builtin_expect (fastbin_index (chunksize (victim)) != idx, 0))
4306 errstr = "malloc(): memory corruption (fast)";
4307 errout:
4308 malloc_printerr (check_action, errstr, chunk2mem (victim));
4310 #ifndef ATOMIC_FASTBINS
4311 *fb = victim->fd;
4312 #endif
4313 check_remalloced_chunk(av, victim, nb);
4314 void *p = chunk2mem(victim);
4315 if (__builtin_expect (perturb_byte, 0))
4316 alloc_perturb (p, bytes);
4317 return p;
4322 If a small request, check regular bin. Since these "smallbins"
4323 hold one size each, no searching within bins is necessary.
4324 (For a large request, we need to wait until unsorted chunks are
4325 processed to find best fit. But for small ones, fits are exact
4326 anyway, so we can check now, which is faster.)
4329 if (in_smallbin_range(nb)) {
4330 idx = smallbin_index(nb);
4331 bin = bin_at(av,idx);
4333 if ( (victim = last(bin)) != bin) {
4334 if (victim == 0) /* initialization check */
4335 malloc_consolidate(av);
4336 else {
4337 bck = victim->bk;
4338 if (__builtin_expect (bck->fd != victim, 0))
4340 errstr = "malloc(): smallbin double linked list corrupted";
4341 goto errout;
4343 set_inuse_bit_at_offset(victim, nb);
4344 bin->bk = bck;
4345 bck->fd = bin;
4347 if (av != &main_arena)
4348 victim->size |= NON_MAIN_ARENA;
4349 check_malloced_chunk(av, victim, nb);
4350 void *p = chunk2mem(victim);
4351 if (__builtin_expect (perturb_byte, 0))
4352 alloc_perturb (p, bytes);
4353 return p;
4359 If this is a large request, consolidate fastbins before continuing.
4360 While it might look excessive to kill all fastbins before
4361 even seeing if there is space available, this avoids
4362 fragmentation problems normally associated with fastbins.
4363 Also, in practice, programs tend to have runs of either small or
4364 large requests, but less often mixtures, so consolidation is not
4365 invoked all that often in most programs. And the programs that
4366 it is called frequently in otherwise tend to fragment.
4369 else {
4370 idx = largebin_index(nb);
4371 if (have_fastchunks(av))
4372 malloc_consolidate(av);
4376 Process recently freed or remaindered chunks, taking one only if
4377 it is exact fit, or, if this a small request, the chunk is remainder from
4378 the most recent non-exact fit. Place other traversed chunks in
4379 bins. Note that this step is the only place in any routine where
4380 chunks are placed in bins.
4382 The outer loop here is needed because we might not realize until
4383 near the end of malloc that we should have consolidated, so must
4384 do so and retry. This happens at most once, and only when we would
4385 otherwise need to expand memory to service a "small" request.
4388 for(;;) {
4390 int iters = 0;
4391 while ( (victim = unsorted_chunks(av)->bk) != unsorted_chunks(av)) {
4392 bck = victim->bk;
4393 if (__builtin_expect (victim->size <= 2 * SIZE_SZ, 0)
4394 || __builtin_expect (victim->size > av->system_mem, 0))
4395 malloc_printerr (check_action, "malloc(): memory corruption",
4396 chunk2mem (victim));
4397 size = chunksize(victim);
4400 If a small request, try to use last remainder if it is the
4401 only chunk in unsorted bin. This helps promote locality for
4402 runs of consecutive small requests. This is the only
4403 exception to best-fit, and applies only when there is
4404 no exact fit for a small chunk.
4407 if (in_smallbin_range(nb) &&
4408 bck == unsorted_chunks(av) &&
4409 victim == av->last_remainder &&
4410 (unsigned long)(size) > (unsigned long)(nb + MINSIZE)) {
4412 /* split and reattach remainder */
4413 remainder_size = size - nb;
4414 remainder = chunk_at_offset(victim, nb);
4415 unsorted_chunks(av)->bk = unsorted_chunks(av)->fd = remainder;
4416 av->last_remainder = remainder;
4417 remainder->bk = remainder->fd = unsorted_chunks(av);
4418 if (!in_smallbin_range(remainder_size))
4420 remainder->fd_nextsize = NULL;
4421 remainder->bk_nextsize = NULL;
4424 set_head(victim, nb | PREV_INUSE |
4425 (av != &main_arena ? NON_MAIN_ARENA : 0));
4426 set_head(remainder, remainder_size | PREV_INUSE);
4427 set_foot(remainder, remainder_size);
4429 check_malloced_chunk(av, victim, nb);
4430 void *p = chunk2mem(victim);
4431 if (__builtin_expect (perturb_byte, 0))
4432 alloc_perturb (p, bytes);
4433 return p;
4436 /* remove from unsorted list */
4437 unsorted_chunks(av)->bk = bck;
4438 bck->fd = unsorted_chunks(av);
4440 /* Take now instead of binning if exact fit */
4442 if (size == nb) {
4443 set_inuse_bit_at_offset(victim, size);
4444 if (av != &main_arena)
4445 victim->size |= NON_MAIN_ARENA;
4446 check_malloced_chunk(av, victim, nb);
4447 void *p = chunk2mem(victim);
4448 if (__builtin_expect (perturb_byte, 0))
4449 alloc_perturb (p, bytes);
4450 return p;
4453 /* place chunk in bin */
4455 if (in_smallbin_range(size)) {
4456 victim_index = smallbin_index(size);
4457 bck = bin_at(av, victim_index);
4458 fwd = bck->fd;
4460 else {
4461 victim_index = largebin_index(size);
4462 bck = bin_at(av, victim_index);
4463 fwd = bck->fd;
4465 /* maintain large bins in sorted order */
4466 if (fwd != bck) {
4467 /* Or with inuse bit to speed comparisons */
4468 size |= PREV_INUSE;
4469 /* if smaller than smallest, bypass loop below */
4470 assert((bck->bk->size & NON_MAIN_ARENA) == 0);
4471 if ((unsigned long)(size) < (unsigned long)(bck->bk->size)) {
4472 fwd = bck;
4473 bck = bck->bk;
4475 victim->fd_nextsize = fwd->fd;
4476 victim->bk_nextsize = fwd->fd->bk_nextsize;
4477 fwd->fd->bk_nextsize = victim->bk_nextsize->fd_nextsize = victim;
4479 else {
4480 assert((fwd->size & NON_MAIN_ARENA) == 0);
4481 while ((unsigned long) size < fwd->size)
4483 fwd = fwd->fd_nextsize;
4484 assert((fwd->size & NON_MAIN_ARENA) == 0);
4487 if ((unsigned long) size == (unsigned long) fwd->size)
4488 /* Always insert in the second position. */
4489 fwd = fwd->fd;
4490 else
4492 victim->fd_nextsize = fwd;
4493 victim->bk_nextsize = fwd->bk_nextsize;
4494 fwd->bk_nextsize = victim;
4495 victim->bk_nextsize->fd_nextsize = victim;
4497 bck = fwd->bk;
4499 } else
4500 victim->fd_nextsize = victim->bk_nextsize = victim;
4503 mark_bin(av, victim_index);
4504 victim->bk = bck;
4505 victim->fd = fwd;
4506 fwd->bk = victim;
4507 bck->fd = victim;
4509 #define MAX_ITERS 10000
4510 if (++iters >= MAX_ITERS)
4511 break;
4515 If a large request, scan through the chunks of current bin in
4516 sorted order to find smallest that fits. Use the skip list for this.
4519 if (!in_smallbin_range(nb)) {
4520 bin = bin_at(av, idx);
4522 /* skip scan if empty or largest chunk is too small */
4523 if ((victim = first(bin)) != bin &&
4524 (unsigned long)(victim->size) >= (unsigned long)(nb)) {
4526 victim = victim->bk_nextsize;
4527 while (((unsigned long)(size = chunksize(victim)) <
4528 (unsigned long)(nb)))
4529 victim = victim->bk_nextsize;
4531 /* Avoid removing the first entry for a size so that the skip
4532 list does not have to be rerouted. */
4533 if (victim != last(bin) && victim->size == victim->fd->size)
4534 victim = victim->fd;
4536 remainder_size = size - nb;
4537 unlink(victim, bck, fwd);
4539 /* Exhaust */
4540 if (remainder_size < MINSIZE) {
4541 set_inuse_bit_at_offset(victim, size);
4542 if (av != &main_arena)
4543 victim->size |= NON_MAIN_ARENA;
4545 /* Split */
4546 else {
4547 remainder = chunk_at_offset(victim, nb);
4548 /* We cannot assume the unsorted list is empty and therefore
4549 have to perform a complete insert here. */
4550 bck = unsorted_chunks(av);
4551 fwd = bck->fd;
4552 if (__builtin_expect (fwd->bk != bck, 0))
4554 errstr = "malloc(): corrupted unsorted chunks";
4555 goto errout;
4557 remainder->bk = bck;
4558 remainder->fd = fwd;
4559 bck->fd = remainder;
4560 fwd->bk = remainder;
4561 if (!in_smallbin_range(remainder_size))
4563 remainder->fd_nextsize = NULL;
4564 remainder->bk_nextsize = NULL;
4566 set_head(victim, nb | PREV_INUSE |
4567 (av != &main_arena ? NON_MAIN_ARENA : 0));
4568 set_head(remainder, remainder_size | PREV_INUSE);
4569 set_foot(remainder, remainder_size);
4571 check_malloced_chunk(av, victim, nb);
4572 void *p = chunk2mem(victim);
4573 if (__builtin_expect (perturb_byte, 0))
4574 alloc_perturb (p, bytes);
4575 return p;
4580 Search for a chunk by scanning bins, starting with next largest
4581 bin. This search is strictly by best-fit; i.e., the smallest
4582 (with ties going to approximately the least recently used) chunk
4583 that fits is selected.
4585 The bitmap avoids needing to check that most blocks are nonempty.
4586 The particular case of skipping all bins during warm-up phases
4587 when no chunks have been returned yet is faster than it might look.
4590 ++idx;
4591 bin = bin_at(av,idx);
4592 block = idx2block(idx);
4593 map = av->binmap[block];
4594 bit = idx2bit(idx);
4596 for (;;) {
4598 /* Skip rest of block if there are no more set bits in this block. */
4599 if (bit > map || bit == 0) {
4600 do {
4601 if (++block >= BINMAPSIZE) /* out of bins */
4602 goto use_top;
4603 } while ( (map = av->binmap[block]) == 0);
4605 bin = bin_at(av, (block << BINMAPSHIFT));
4606 bit = 1;
4609 /* Advance to bin with set bit. There must be one. */
4610 while ((bit & map) == 0) {
4611 bin = next_bin(bin);
4612 bit <<= 1;
4613 assert(bit != 0);
4616 /* Inspect the bin. It is likely to be non-empty */
4617 victim = last(bin);
4619 /* If a false alarm (empty bin), clear the bit. */
4620 if (victim == bin) {
4621 av->binmap[block] = map &= ~bit; /* Write through */
4622 bin = next_bin(bin);
4623 bit <<= 1;
4626 else {
4627 size = chunksize(victim);
4629 /* We know the first chunk in this bin is big enough to use. */
4630 assert((unsigned long)(size) >= (unsigned long)(nb));
4632 remainder_size = size - nb;
4634 /* unlink */
4635 unlink(victim, bck, fwd);
4637 /* Exhaust */
4638 if (remainder_size < MINSIZE) {
4639 set_inuse_bit_at_offset(victim, size);
4640 if (av != &main_arena)
4641 victim->size |= NON_MAIN_ARENA;
4644 /* Split */
4645 else {
4646 remainder = chunk_at_offset(victim, nb);
4648 /* We cannot assume the unsorted list is empty and therefore
4649 have to perform a complete insert here. */
4650 bck = unsorted_chunks(av);
4651 fwd = bck->fd;
4652 if (__builtin_expect (fwd->bk != bck, 0))
4654 errstr = "malloc(): corrupted unsorted chunks 2";
4655 goto errout;
4657 remainder->bk = bck;
4658 remainder->fd = fwd;
4659 bck->fd = remainder;
4660 fwd->bk = remainder;
4662 /* advertise as last remainder */
4663 if (in_smallbin_range(nb))
4664 av->last_remainder = remainder;
4665 if (!in_smallbin_range(remainder_size))
4667 remainder->fd_nextsize = NULL;
4668 remainder->bk_nextsize = NULL;
4670 set_head(victim, nb | PREV_INUSE |
4671 (av != &main_arena ? NON_MAIN_ARENA : 0));
4672 set_head(remainder, remainder_size | PREV_INUSE);
4673 set_foot(remainder, remainder_size);
4675 check_malloced_chunk(av, victim, nb);
4676 void *p = chunk2mem(victim);
4677 if (__builtin_expect (perturb_byte, 0))
4678 alloc_perturb (p, bytes);
4679 return p;
4683 use_top:
4685 If large enough, split off the chunk bordering the end of memory
4686 (held in av->top). Note that this is in accord with the best-fit
4687 search rule. In effect, av->top is treated as larger (and thus
4688 less well fitting) than any other available chunk since it can
4689 be extended to be as large as necessary (up to system
4690 limitations).
4692 We require that av->top always exists (i.e., has size >=
4693 MINSIZE) after initialization, so if it would otherwise be
4694 exhausted by current request, it is replenished. (The main
4695 reason for ensuring it exists is that we may need MINSIZE space
4696 to put in fenceposts in sysmalloc.)
4699 victim = av->top;
4700 size = chunksize(victim);
4702 if ((unsigned long)(size) >= (unsigned long)(nb + MINSIZE)) {
4703 remainder_size = size - nb;
4704 remainder = chunk_at_offset(victim, nb);
4705 av->top = remainder;
4706 set_head(victim, nb | PREV_INUSE |
4707 (av != &main_arena ? NON_MAIN_ARENA : 0));
4708 set_head(remainder, remainder_size | PREV_INUSE);
4710 check_malloced_chunk(av, victim, nb);
4711 void *p = chunk2mem(victim);
4712 if (__builtin_expect (perturb_byte, 0))
4713 alloc_perturb (p, bytes);
4714 return p;
4717 #ifdef ATOMIC_FASTBINS
4718 /* When we are using atomic ops to free fast chunks we can get
4719 here for all block sizes. */
4720 else if (have_fastchunks(av)) {
4721 malloc_consolidate(av);
4722 /* restore original bin index */
4723 if (in_smallbin_range(nb))
4724 idx = smallbin_index(nb);
4725 else
4726 idx = largebin_index(nb);
4728 #else
4730 If there is space available in fastbins, consolidate and retry,
4731 to possibly avoid expanding memory. This can occur only if nb is
4732 in smallbin range so we didn't consolidate upon entry.
4735 else if (have_fastchunks(av)) {
4736 assert(in_smallbin_range(nb));
4737 malloc_consolidate(av);
4738 idx = smallbin_index(nb); /* restore original bin index */
4740 #endif
4743 Otherwise, relay to handle system-dependent cases
4745 else {
4746 void *p = sYSMALLOc(nb, av);
4747 if (p != NULL && __builtin_expect (perturb_byte, 0))
4748 alloc_perturb (p, bytes);
4749 return p;
4755 ------------------------------ free ------------------------------
4758 static void
4759 #ifdef ATOMIC_FASTBINS
4760 _int_free(mstate av, mchunkptr p, int have_lock)
4761 #else
4762 _int_free(mstate av, mchunkptr p)
4763 #endif
4765 INTERNAL_SIZE_T size; /* its size */
4766 mfastbinptr* fb; /* associated fastbin */
4767 mchunkptr nextchunk; /* next contiguous chunk */
4768 INTERNAL_SIZE_T nextsize; /* its size */
4769 int nextinuse; /* true if nextchunk is used */
4770 INTERNAL_SIZE_T prevsize; /* size of previous contiguous chunk */
4771 mchunkptr bck; /* misc temp for linking */
4772 mchunkptr fwd; /* misc temp for linking */
4774 const char *errstr = NULL;
4775 #ifdef ATOMIC_FASTBINS
4776 int locked = 0;
4777 #endif
4779 size = chunksize(p);
4781 /* Little security check which won't hurt performance: the
4782 allocator never wrapps around at the end of the address space.
4783 Therefore we can exclude some size values which might appear
4784 here by accident or by "design" from some intruder. */
4785 if (__builtin_expect ((uintptr_t) p > (uintptr_t) -size, 0)
4786 || __builtin_expect (misaligned_chunk (p), 0))
4788 errstr = "free(): invalid pointer";
4789 errout:
4790 #ifdef ATOMIC_FASTBINS
4791 if (! have_lock && locked)
4792 (void)mutex_unlock(&av->mutex);
4793 #endif
4794 malloc_printerr (check_action, errstr, chunk2mem(p));
4795 return;
4797 /* We know that each chunk is at least MINSIZE bytes in size. */
4798 if (__builtin_expect (size < MINSIZE, 0))
4800 errstr = "free(): invalid size";
4801 goto errout;
4804 check_inuse_chunk(av, p);
4807 If eligible, place chunk on a fastbin so it can be found
4808 and used quickly in malloc.
4811 if ((unsigned long)(size) <= (unsigned long)(get_max_fast ())
4813 #if TRIM_FASTBINS
4815 If TRIM_FASTBINS set, don't place chunks
4816 bordering top into fastbins
4818 && (chunk_at_offset(p, size) != av->top)
4819 #endif
4822 if (__builtin_expect (chunk_at_offset (p, size)->size <= 2 * SIZE_SZ, 0)
4823 || __builtin_expect (chunksize (chunk_at_offset (p, size))
4824 >= av->system_mem, 0))
4826 #ifdef ATOMIC_FASTBINS
4827 /* We might not have a lock at this point and concurrent modifications
4828 of system_mem might have let to a false positive. Redo the test
4829 after getting the lock. */
4830 if (have_lock
4831 || ({ assert (locked == 0);
4832 mutex_lock(&av->mutex);
4833 locked = 1;
4834 chunk_at_offset (p, size)->size <= 2 * SIZE_SZ
4835 || chunksize (chunk_at_offset (p, size)) >= av->system_mem;
4837 #endif
4839 errstr = "free(): invalid next size (fast)";
4840 goto errout;
4842 #ifdef ATOMIC_FASTBINS
4843 if (! have_lock)
4845 (void)mutex_unlock(&av->mutex);
4846 locked = 0;
4848 #endif
4851 if (__builtin_expect (perturb_byte, 0))
4852 free_perturb (chunk2mem(p), size - SIZE_SZ);
4854 set_fastchunks(av);
4855 unsigned int idx = fastbin_index(size);
4856 fb = &fastbin (av, idx);
4858 #ifdef ATOMIC_FASTBINS
4859 mchunkptr fd;
4860 mchunkptr old = *fb;
4863 /* Another simple check: make sure the top of the bin is not the
4864 record we are going to add (i.e., double free). */
4865 if (__builtin_expect (old == p, 0))
4867 errstr = "double free or corruption (fasttop)";
4868 goto errout;
4870 if (old != NULL
4871 && __builtin_expect (fastbin_index(chunksize(old)) != idx, 0))
4873 errstr = "invalid fastbin entry (free)";
4874 goto errout;
4876 p->fd = fd = old;
4878 while ((old = catomic_compare_and_exchange_val_rel (fb, p, fd)) != fd);
4879 #else
4880 /* Another simple check: make sure the top of the bin is not the
4881 record we are going to add (i.e., double free). */
4882 if (__builtin_expect (*fb == p, 0))
4884 errstr = "double free or corruption (fasttop)";
4885 goto errout;
4887 if (*fb != NULL
4888 && __builtin_expect (fastbin_index(chunksize(*fb)) != idx, 0))
4890 errstr = "invalid fastbin entry (free)";
4891 goto errout;
4894 p->fd = *fb;
4895 *fb = p;
4896 #endif
4900 Consolidate other non-mmapped chunks as they arrive.
4903 else if (!chunk_is_mmapped(p)) {
4904 #ifdef ATOMIC_FASTBINS
4905 if (! have_lock) {
4906 # if THREAD_STATS
4907 if(!mutex_trylock(&av->mutex))
4908 ++(av->stat_lock_direct);
4909 else {
4910 (void)mutex_lock(&av->mutex);
4911 ++(av->stat_lock_wait);
4913 # else
4914 (void)mutex_lock(&av->mutex);
4915 # endif
4916 locked = 1;
4918 #endif
4920 nextchunk = chunk_at_offset(p, size);
4922 /* Lightweight tests: check whether the block is already the
4923 top block. */
4924 if (__builtin_expect (p == av->top, 0))
4926 errstr = "double free or corruption (top)";
4927 goto errout;
4929 /* Or whether the next chunk is beyond the boundaries of the arena. */
4930 if (__builtin_expect (contiguous (av)
4931 && (char *) nextchunk
4932 >= ((char *) av->top + chunksize(av->top)), 0))
4934 errstr = "double free or corruption (out)";
4935 goto errout;
4937 /* Or whether the block is actually not marked used. */
4938 if (__builtin_expect (!prev_inuse(nextchunk), 0))
4940 errstr = "double free or corruption (!prev)";
4941 goto errout;
4944 nextsize = chunksize(nextchunk);
4945 if (__builtin_expect (nextchunk->size <= 2 * SIZE_SZ, 0)
4946 || __builtin_expect (nextsize >= av->system_mem, 0))
4948 errstr = "free(): invalid next size (normal)";
4949 goto errout;
4952 if (__builtin_expect (perturb_byte, 0))
4953 free_perturb (chunk2mem(p), size - SIZE_SZ);
4955 /* consolidate backward */
4956 if (!prev_inuse(p)) {
4957 prevsize = p->prev_size;
4958 size += prevsize;
4959 p = chunk_at_offset(p, -((long) prevsize));
4960 unlink(p, bck, fwd);
4963 if (nextchunk != av->top) {
4964 /* get and clear inuse bit */
4965 nextinuse = inuse_bit_at_offset(nextchunk, nextsize);
4967 /* consolidate forward */
4968 if (!nextinuse) {
4969 unlink(nextchunk, bck, fwd);
4970 size += nextsize;
4971 } else
4972 clear_inuse_bit_at_offset(nextchunk, 0);
4975 Place the chunk in unsorted chunk list. Chunks are
4976 not placed into regular bins until after they have
4977 been given one chance to be used in malloc.
4980 bck = unsorted_chunks(av);
4981 fwd = bck->fd;
4982 if (__builtin_expect (fwd->bk != bck, 0))
4984 errstr = "free(): corrupted unsorted chunks";
4985 goto errout;
4987 p->fd = fwd;
4988 p->bk = bck;
4989 if (!in_smallbin_range(size))
4991 p->fd_nextsize = NULL;
4992 p->bk_nextsize = NULL;
4994 bck->fd = p;
4995 fwd->bk = p;
4997 set_head(p, size | PREV_INUSE);
4998 set_foot(p, size);
5000 check_free_chunk(av, p);
5004 If the chunk borders the current high end of memory,
5005 consolidate into top
5008 else {
5009 size += nextsize;
5010 set_head(p, size | PREV_INUSE);
5011 av->top = p;
5012 check_chunk(av, p);
5016 If freeing a large space, consolidate possibly-surrounding
5017 chunks. Then, if the total unused topmost memory exceeds trim
5018 threshold, ask malloc_trim to reduce top.
5020 Unless max_fast is 0, we don't know if there are fastbins
5021 bordering top, so we cannot tell for sure whether threshold
5022 has been reached unless fastbins are consolidated. But we
5023 don't want to consolidate on each free. As a compromise,
5024 consolidation is performed if FASTBIN_CONSOLIDATION_THRESHOLD
5025 is reached.
5028 if ((unsigned long)(size) >= FASTBIN_CONSOLIDATION_THRESHOLD) {
5029 if (have_fastchunks(av))
5030 malloc_consolidate(av);
5032 if (av == &main_arena) {
5033 #ifndef MORECORE_CANNOT_TRIM
5034 if ((unsigned long)(chunksize(av->top)) >=
5035 (unsigned long)(mp_.trim_threshold))
5036 sYSTRIm(mp_.top_pad, av);
5037 #endif
5038 } else {
5039 /* Always try heap_trim(), even if the top chunk is not
5040 large, because the corresponding heap might go away. */
5041 heap_info *heap = heap_for_ptr(top(av));
5043 assert(heap->ar_ptr == av);
5044 heap_trim(heap, mp_.top_pad);
5048 #ifdef ATOMIC_FASTBINS
5049 if (! have_lock) {
5050 assert (locked);
5051 (void)mutex_unlock(&av->mutex);
5053 #endif
5056 If the chunk was allocated via mmap, release via munmap(). Note
5057 that if HAVE_MMAP is false but chunk_is_mmapped is true, then
5058 user must have overwritten memory. There's nothing we can do to
5059 catch this error unless MALLOC_DEBUG is set, in which case
5060 check_inuse_chunk (above) will have triggered error.
5063 else {
5064 #if HAVE_MMAP
5065 munmap_chunk (p);
5066 #endif
5071 ------------------------- malloc_consolidate -------------------------
5073 malloc_consolidate is a specialized version of free() that tears
5074 down chunks held in fastbins. Free itself cannot be used for this
5075 purpose since, among other things, it might place chunks back onto
5076 fastbins. So, instead, we need to use a minor variant of the same
5077 code.
5079 Also, because this routine needs to be called the first time through
5080 malloc anyway, it turns out to be the perfect place to trigger
5081 initialization code.
5084 #if __STD_C
5085 static void malloc_consolidate(mstate av)
5086 #else
5087 static void malloc_consolidate(av) mstate av;
5088 #endif
5090 mfastbinptr* fb; /* current fastbin being consolidated */
5091 mfastbinptr* maxfb; /* last fastbin (for loop control) */
5092 mchunkptr p; /* current chunk being consolidated */
5093 mchunkptr nextp; /* next chunk to consolidate */
5094 mchunkptr unsorted_bin; /* bin header */
5095 mchunkptr first_unsorted; /* chunk to link to */
5097 /* These have same use as in free() */
5098 mchunkptr nextchunk;
5099 INTERNAL_SIZE_T size;
5100 INTERNAL_SIZE_T nextsize;
5101 INTERNAL_SIZE_T prevsize;
5102 int nextinuse;
5103 mchunkptr bck;
5104 mchunkptr fwd;
5107 If max_fast is 0, we know that av hasn't
5108 yet been initialized, in which case do so below
5111 if (get_max_fast () != 0) {
5112 clear_fastchunks(av);
5114 unsorted_bin = unsorted_chunks(av);
5117 Remove each chunk from fast bin and consolidate it, placing it
5118 then in unsorted bin. Among other reasons for doing this,
5119 placing in unsorted bin avoids needing to calculate actual bins
5120 until malloc is sure that chunks aren't immediately going to be
5121 reused anyway.
5124 #if 0
5125 /* It is wrong to limit the fast bins to search using get_max_fast
5126 because, except for the main arena, all the others might have
5127 blocks in the high fast bins. It's not worth it anyway, just
5128 search all bins all the time. */
5129 maxfb = &fastbin (av, fastbin_index(get_max_fast ()));
5130 #else
5131 maxfb = &fastbin (av, NFASTBINS - 1);
5132 #endif
5133 fb = &fastbin (av, 0);
5134 do {
5135 #ifdef ATOMIC_FASTBINS
5136 p = atomic_exchange_acq (fb, 0);
5137 #else
5138 p = *fb;
5139 #endif
5140 if (p != 0) {
5141 #ifndef ATOMIC_FASTBINS
5142 *fb = 0;
5143 #endif
5144 do {
5145 check_inuse_chunk(av, p);
5146 nextp = p->fd;
5148 /* Slightly streamlined version of consolidation code in free() */
5149 size = p->size & ~(PREV_INUSE|NON_MAIN_ARENA);
5150 nextchunk = chunk_at_offset(p, size);
5151 nextsize = chunksize(nextchunk);
5153 if (!prev_inuse(p)) {
5154 prevsize = p->prev_size;
5155 size += prevsize;
5156 p = chunk_at_offset(p, -((long) prevsize));
5157 unlink(p, bck, fwd);
5160 if (nextchunk != av->top) {
5161 nextinuse = inuse_bit_at_offset(nextchunk, nextsize);
5163 if (!nextinuse) {
5164 size += nextsize;
5165 unlink(nextchunk, bck, fwd);
5166 } else
5167 clear_inuse_bit_at_offset(nextchunk, 0);
5169 first_unsorted = unsorted_bin->fd;
5170 unsorted_bin->fd = p;
5171 first_unsorted->bk = p;
5173 if (!in_smallbin_range (size)) {
5174 p->fd_nextsize = NULL;
5175 p->bk_nextsize = NULL;
5178 set_head(p, size | PREV_INUSE);
5179 p->bk = unsorted_bin;
5180 p->fd = first_unsorted;
5181 set_foot(p, size);
5184 else {
5185 size += nextsize;
5186 set_head(p, size | PREV_INUSE);
5187 av->top = p;
5190 } while ( (p = nextp) != 0);
5193 } while (fb++ != maxfb);
5195 else {
5196 malloc_init_state(av);
5197 check_malloc_state(av);
5202 ------------------------------ realloc ------------------------------
5205 Void_t*
5206 _int_realloc(mstate av, mchunkptr oldp, INTERNAL_SIZE_T oldsize,
5207 INTERNAL_SIZE_T nb)
5209 mchunkptr newp; /* chunk to return */
5210 INTERNAL_SIZE_T newsize; /* its size */
5211 Void_t* newmem; /* corresponding user mem */
5213 mchunkptr next; /* next contiguous chunk after oldp */
5215 mchunkptr remainder; /* extra space at end of newp */
5216 unsigned long remainder_size; /* its size */
5218 mchunkptr bck; /* misc temp for linking */
5219 mchunkptr fwd; /* misc temp for linking */
5221 unsigned long copysize; /* bytes to copy */
5222 unsigned int ncopies; /* INTERNAL_SIZE_T words to copy */
5223 INTERNAL_SIZE_T* s; /* copy source */
5224 INTERNAL_SIZE_T* d; /* copy destination */
5226 const char *errstr = NULL;
5228 /* oldmem size */
5229 if (__builtin_expect (oldp->size <= 2 * SIZE_SZ, 0)
5230 || __builtin_expect (oldsize >= av->system_mem, 0))
5232 errstr = "realloc(): invalid old size";
5233 errout:
5234 malloc_printerr (check_action, errstr, chunk2mem(oldp));
5235 return NULL;
5238 check_inuse_chunk(av, oldp);
5240 /* All callers already filter out mmap'ed chunks. */
5241 #if 0
5242 if (!chunk_is_mmapped(oldp))
5243 #else
5244 assert (!chunk_is_mmapped(oldp));
5245 #endif
5248 next = chunk_at_offset(oldp, oldsize);
5249 INTERNAL_SIZE_T nextsize = chunksize(next);
5250 if (__builtin_expect (next->size <= 2 * SIZE_SZ, 0)
5251 || __builtin_expect (nextsize >= av->system_mem, 0))
5253 errstr = "realloc(): invalid next size";
5254 goto errout;
5257 if ((unsigned long)(oldsize) >= (unsigned long)(nb)) {
5258 /* already big enough; split below */
5259 newp = oldp;
5260 newsize = oldsize;
5263 else {
5264 /* Try to expand forward into top */
5265 if (next == av->top &&
5266 (unsigned long)(newsize = oldsize + nextsize) >=
5267 (unsigned long)(nb + MINSIZE)) {
5268 set_head_size(oldp, nb | (av != &main_arena ? NON_MAIN_ARENA : 0));
5269 av->top = chunk_at_offset(oldp, nb);
5270 set_head(av->top, (newsize - nb) | PREV_INUSE);
5271 check_inuse_chunk(av, oldp);
5272 return chunk2mem(oldp);
5275 /* Try to expand forward into next chunk; split off remainder below */
5276 else if (next != av->top &&
5277 !inuse(next) &&
5278 (unsigned long)(newsize = oldsize + nextsize) >=
5279 (unsigned long)(nb)) {
5280 newp = oldp;
5281 unlink(next, bck, fwd);
5284 /* allocate, copy, free */
5285 else {
5286 newmem = _int_malloc(av, nb - MALLOC_ALIGN_MASK);
5287 if (newmem == 0)
5288 return 0; /* propagate failure */
5290 newp = mem2chunk(newmem);
5291 newsize = chunksize(newp);
5294 Avoid copy if newp is next chunk after oldp.
5296 if (newp == next) {
5297 newsize += oldsize;
5298 newp = oldp;
5300 else {
5302 Unroll copy of <= 36 bytes (72 if 8byte sizes)
5303 We know that contents have an odd number of
5304 INTERNAL_SIZE_T-sized words; minimally 3.
5307 copysize = oldsize - SIZE_SZ;
5308 s = (INTERNAL_SIZE_T*)(chunk2mem(oldp));
5309 d = (INTERNAL_SIZE_T*)(newmem);
5310 ncopies = copysize / sizeof(INTERNAL_SIZE_T);
5311 assert(ncopies >= 3);
5313 if (ncopies > 9)
5314 MALLOC_COPY(d, s, copysize);
5316 else {
5317 *(d+0) = *(s+0);
5318 *(d+1) = *(s+1);
5319 *(d+2) = *(s+2);
5320 if (ncopies > 4) {
5321 *(d+3) = *(s+3);
5322 *(d+4) = *(s+4);
5323 if (ncopies > 6) {
5324 *(d+5) = *(s+5);
5325 *(d+6) = *(s+6);
5326 if (ncopies > 8) {
5327 *(d+7) = *(s+7);
5328 *(d+8) = *(s+8);
5334 #ifdef ATOMIC_FASTBINS
5335 _int_free(av, oldp, 1);
5336 #else
5337 _int_free(av, oldp);
5338 #endif
5339 check_inuse_chunk(av, newp);
5340 return chunk2mem(newp);
5345 /* If possible, free extra space in old or extended chunk */
5347 assert((unsigned long)(newsize) >= (unsigned long)(nb));
5349 remainder_size = newsize - nb;
5351 if (remainder_size < MINSIZE) { /* not enough extra to split off */
5352 set_head_size(newp, newsize | (av != &main_arena ? NON_MAIN_ARENA : 0));
5353 set_inuse_bit_at_offset(newp, newsize);
5355 else { /* split remainder */
5356 remainder = chunk_at_offset(newp, nb);
5357 set_head_size(newp, nb | (av != &main_arena ? NON_MAIN_ARENA : 0));
5358 set_head(remainder, remainder_size | PREV_INUSE |
5359 (av != &main_arena ? NON_MAIN_ARENA : 0));
5360 /* Mark remainder as inuse so free() won't complain */
5361 set_inuse_bit_at_offset(remainder, remainder_size);
5362 #ifdef ATOMIC_FASTBINS
5363 _int_free(av, remainder, 1);
5364 #else
5365 _int_free(av, remainder);
5366 #endif
5369 check_inuse_chunk(av, newp);
5370 return chunk2mem(newp);
5373 #if 0
5375 Handle mmap cases
5378 else {
5379 #if HAVE_MMAP
5381 #if HAVE_MREMAP
5382 INTERNAL_SIZE_T offset = oldp->prev_size;
5383 size_t pagemask = mp_.pagesize - 1;
5384 char *cp;
5385 unsigned long sum;
5387 /* Note the extra SIZE_SZ overhead */
5388 newsize = (nb + offset + SIZE_SZ + pagemask) & ~pagemask;
5390 /* don't need to remap if still within same page */
5391 if (oldsize == newsize - offset)
5392 return chunk2mem(oldp);
5394 cp = (char*)mremap((char*)oldp - offset, oldsize + offset, newsize, 1);
5396 if (cp != MAP_FAILED) {
5398 newp = (mchunkptr)(cp + offset);
5399 set_head(newp, (newsize - offset)|IS_MMAPPED);
5401 assert(aligned_OK(chunk2mem(newp)));
5402 assert((newp->prev_size == offset));
5404 /* update statistics */
5405 sum = mp_.mmapped_mem += newsize - oldsize;
5406 if (sum > (unsigned long)(mp_.max_mmapped_mem))
5407 mp_.max_mmapped_mem = sum;
5408 #ifdef NO_THREADS
5409 sum += main_arena.system_mem;
5410 if (sum > (unsigned long)(mp_.max_total_mem))
5411 mp_.max_total_mem = sum;
5412 #endif
5414 return chunk2mem(newp);
5416 #endif
5418 /* Note the extra SIZE_SZ overhead. */
5419 if ((unsigned long)(oldsize) >= (unsigned long)(nb + SIZE_SZ))
5420 newmem = chunk2mem(oldp); /* do nothing */
5421 else {
5422 /* Must alloc, copy, free. */
5423 newmem = _int_malloc(av, nb - MALLOC_ALIGN_MASK);
5424 if (newmem != 0) {
5425 MALLOC_COPY(newmem, chunk2mem(oldp), oldsize - 2*SIZE_SZ);
5426 #ifdef ATOMIC_FASTBINS
5427 _int_free(av, oldp, 1);
5428 #else
5429 _int_free(av, oldp);
5430 #endif
5433 return newmem;
5435 #else
5436 /* If !HAVE_MMAP, but chunk_is_mmapped, user must have overwritten mem */
5437 check_malloc_state(av);
5438 MALLOC_FAILURE_ACTION;
5439 return 0;
5440 #endif
5442 #endif
5446 ------------------------------ memalign ------------------------------
5449 static Void_t*
5450 _int_memalign(mstate av, size_t alignment, size_t bytes)
5452 INTERNAL_SIZE_T nb; /* padded request size */
5453 char* m; /* memory returned by malloc call */
5454 mchunkptr p; /* corresponding chunk */
5455 char* brk; /* alignment point within p */
5456 mchunkptr newp; /* chunk to return */
5457 INTERNAL_SIZE_T newsize; /* its size */
5458 INTERNAL_SIZE_T leadsize; /* leading space before alignment point */
5459 mchunkptr remainder; /* spare room at end to split off */
5460 unsigned long remainder_size; /* its size */
5461 INTERNAL_SIZE_T size;
5463 /* If need less alignment than we give anyway, just relay to malloc */
5465 if (alignment <= MALLOC_ALIGNMENT) return _int_malloc(av, bytes);
5467 /* Otherwise, ensure that it is at least a minimum chunk size */
5469 if (alignment < MINSIZE) alignment = MINSIZE;
5471 /* Make sure alignment is power of 2 (in case MINSIZE is not). */
5472 if ((alignment & (alignment - 1)) != 0) {
5473 size_t a = MALLOC_ALIGNMENT * 2;
5474 while ((unsigned long)a < (unsigned long)alignment) a <<= 1;
5475 alignment = a;
5478 checked_request2size(bytes, nb);
5481 Strategy: find a spot within that chunk that meets the alignment
5482 request, and then possibly free the leading and trailing space.
5486 /* Call malloc with worst case padding to hit alignment. */
5488 m = (char*)(_int_malloc(av, nb + alignment + MINSIZE));
5490 if (m == 0) return 0; /* propagate failure */
5492 p = mem2chunk(m);
5494 if ((((unsigned long)(m)) % alignment) != 0) { /* misaligned */
5497 Find an aligned spot inside chunk. Since we need to give back
5498 leading space in a chunk of at least MINSIZE, if the first
5499 calculation places us at a spot with less than MINSIZE leader,
5500 we can move to the next aligned spot -- we've allocated enough
5501 total room so that this is always possible.
5504 brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) &
5505 -((signed long) alignment));
5506 if ((unsigned long)(brk - (char*)(p)) < MINSIZE)
5507 brk += alignment;
5509 newp = (mchunkptr)brk;
5510 leadsize = brk - (char*)(p);
5511 newsize = chunksize(p) - leadsize;
5513 /* For mmapped chunks, just adjust offset */
5514 if (chunk_is_mmapped(p)) {
5515 newp->prev_size = p->prev_size + leadsize;
5516 set_head(newp, newsize|IS_MMAPPED);
5517 return chunk2mem(newp);
5520 /* Otherwise, give back leader, use the rest */
5521 set_head(newp, newsize | PREV_INUSE |
5522 (av != &main_arena ? NON_MAIN_ARENA : 0));
5523 set_inuse_bit_at_offset(newp, newsize);
5524 set_head_size(p, leadsize | (av != &main_arena ? NON_MAIN_ARENA : 0));
5525 #ifdef ATOMIC_FASTBINS
5526 _int_free(av, p, 1);
5527 #else
5528 _int_free(av, p);
5529 #endif
5530 p = newp;
5532 assert (newsize >= nb &&
5533 (((unsigned long)(chunk2mem(p))) % alignment) == 0);
5536 /* Also give back spare room at the end */
5537 if (!chunk_is_mmapped(p)) {
5538 size = chunksize(p);
5539 if ((unsigned long)(size) > (unsigned long)(nb + MINSIZE)) {
5540 remainder_size = size - nb;
5541 remainder = chunk_at_offset(p, nb);
5542 set_head(remainder, remainder_size | PREV_INUSE |
5543 (av != &main_arena ? NON_MAIN_ARENA : 0));
5544 set_head_size(p, nb);
5545 #ifdef ATOMIC_FASTBINS
5546 _int_free(av, remainder, 1);
5547 #else
5548 _int_free(av, remainder);
5549 #endif
5553 check_inuse_chunk(av, p);
5554 return chunk2mem(p);
5557 #if 0
5559 ------------------------------ calloc ------------------------------
5562 #if __STD_C
5563 Void_t* cALLOc(size_t n_elements, size_t elem_size)
5564 #else
5565 Void_t* cALLOc(n_elements, elem_size) size_t n_elements; size_t elem_size;
5566 #endif
5568 mchunkptr p;
5569 unsigned long clearsize;
5570 unsigned long nclears;
5571 INTERNAL_SIZE_T* d;
5573 Void_t* mem = mALLOc(n_elements * elem_size);
5575 if (mem != 0) {
5576 p = mem2chunk(mem);
5578 #if MMAP_CLEARS
5579 if (!chunk_is_mmapped(p)) /* don't need to clear mmapped space */
5580 #endif
5583 Unroll clear of <= 36 bytes (72 if 8byte sizes)
5584 We know that contents have an odd number of
5585 INTERNAL_SIZE_T-sized words; minimally 3.
5588 d = (INTERNAL_SIZE_T*)mem;
5589 clearsize = chunksize(p) - SIZE_SZ;
5590 nclears = clearsize / sizeof(INTERNAL_SIZE_T);
5591 assert(nclears >= 3);
5593 if (nclears > 9)
5594 MALLOC_ZERO(d, clearsize);
5596 else {
5597 *(d+0) = 0;
5598 *(d+1) = 0;
5599 *(d+2) = 0;
5600 if (nclears > 4) {
5601 *(d+3) = 0;
5602 *(d+4) = 0;
5603 if (nclears > 6) {
5604 *(d+5) = 0;
5605 *(d+6) = 0;
5606 if (nclears > 8) {
5607 *(d+7) = 0;
5608 *(d+8) = 0;
5615 return mem;
5617 #endif /* 0 */
5619 #ifndef _LIBC
5621 ------------------------- independent_calloc -------------------------
5624 Void_t**
5625 #if __STD_C
5626 _int_icalloc(mstate av, size_t n_elements, size_t elem_size, Void_t* chunks[])
5627 #else
5628 _int_icalloc(av, n_elements, elem_size, chunks)
5629 mstate av; size_t n_elements; size_t elem_size; Void_t* chunks[];
5630 #endif
5632 size_t sz = elem_size; /* serves as 1-element array */
5633 /* opts arg of 3 means all elements are same size, and should be cleared */
5634 return iALLOc(av, n_elements, &sz, 3, chunks);
5638 ------------------------- independent_comalloc -------------------------
5641 Void_t**
5642 #if __STD_C
5643 _int_icomalloc(mstate av, size_t n_elements, size_t sizes[], Void_t* chunks[])
5644 #else
5645 _int_icomalloc(av, n_elements, sizes, chunks)
5646 mstate av; size_t n_elements; size_t sizes[]; Void_t* chunks[];
5647 #endif
5649 return iALLOc(av, n_elements, sizes, 0, chunks);
5654 ------------------------------ ialloc ------------------------------
5655 ialloc provides common support for independent_X routines, handling all of
5656 the combinations that can result.
5658 The opts arg has:
5659 bit 0 set if all elements are same size (using sizes[0])
5660 bit 1 set if elements should be zeroed
5664 static Void_t**
5665 #if __STD_C
5666 iALLOc(mstate av, size_t n_elements, size_t* sizes, int opts, Void_t* chunks[])
5667 #else
5668 iALLOc(av, n_elements, sizes, opts, chunks)
5669 mstate av; size_t n_elements; size_t* sizes; int opts; Void_t* chunks[];
5670 #endif
5672 INTERNAL_SIZE_T element_size; /* chunksize of each element, if all same */
5673 INTERNAL_SIZE_T contents_size; /* total size of elements */
5674 INTERNAL_SIZE_T array_size; /* request size of pointer array */
5675 Void_t* mem; /* malloced aggregate space */
5676 mchunkptr p; /* corresponding chunk */
5677 INTERNAL_SIZE_T remainder_size; /* remaining bytes while splitting */
5678 Void_t** marray; /* either "chunks" or malloced ptr array */
5679 mchunkptr array_chunk; /* chunk for malloced ptr array */
5680 int mmx; /* to disable mmap */
5681 INTERNAL_SIZE_T size;
5682 INTERNAL_SIZE_T size_flags;
5683 size_t i;
5685 /* Ensure initialization/consolidation */
5686 if (have_fastchunks(av)) malloc_consolidate(av);
5688 /* compute array length, if needed */
5689 if (chunks != 0) {
5690 if (n_elements == 0)
5691 return chunks; /* nothing to do */
5692 marray = chunks;
5693 array_size = 0;
5695 else {
5696 /* if empty req, must still return chunk representing empty array */
5697 if (n_elements == 0)
5698 return (Void_t**) _int_malloc(av, 0);
5699 marray = 0;
5700 array_size = request2size(n_elements * (sizeof(Void_t*)));
5703 /* compute total element size */
5704 if (opts & 0x1) { /* all-same-size */
5705 element_size = request2size(*sizes);
5706 contents_size = n_elements * element_size;
5708 else { /* add up all the sizes */
5709 element_size = 0;
5710 contents_size = 0;
5711 for (i = 0; i != n_elements; ++i)
5712 contents_size += request2size(sizes[i]);
5715 /* subtract out alignment bytes from total to minimize overallocation */
5716 size = contents_size + array_size - MALLOC_ALIGN_MASK;
5719 Allocate the aggregate chunk.
5720 But first disable mmap so malloc won't use it, since
5721 we would not be able to later free/realloc space internal
5722 to a segregated mmap region.
5724 mmx = mp_.n_mmaps_max; /* disable mmap */
5725 mp_.n_mmaps_max = 0;
5726 mem = _int_malloc(av, size);
5727 mp_.n_mmaps_max = mmx; /* reset mmap */
5728 if (mem == 0)
5729 return 0;
5731 p = mem2chunk(mem);
5732 assert(!chunk_is_mmapped(p));
5733 remainder_size = chunksize(p);
5735 if (opts & 0x2) { /* optionally clear the elements */
5736 MALLOC_ZERO(mem, remainder_size - SIZE_SZ - array_size);
5739 size_flags = PREV_INUSE | (av != &main_arena ? NON_MAIN_ARENA : 0);
5741 /* If not provided, allocate the pointer array as final part of chunk */
5742 if (marray == 0) {
5743 array_chunk = chunk_at_offset(p, contents_size);
5744 marray = (Void_t**) (chunk2mem(array_chunk));
5745 set_head(array_chunk, (remainder_size - contents_size) | size_flags);
5746 remainder_size = contents_size;
5749 /* split out elements */
5750 for (i = 0; ; ++i) {
5751 marray[i] = chunk2mem(p);
5752 if (i != n_elements-1) {
5753 if (element_size != 0)
5754 size = element_size;
5755 else
5756 size = request2size(sizes[i]);
5757 remainder_size -= size;
5758 set_head(p, size | size_flags);
5759 p = chunk_at_offset(p, size);
5761 else { /* the final element absorbs any overallocation slop */
5762 set_head(p, remainder_size | size_flags);
5763 break;
5767 #if MALLOC_DEBUG
5768 if (marray != chunks) {
5769 /* final element must have exactly exhausted chunk */
5770 if (element_size != 0)
5771 assert(remainder_size == element_size);
5772 else
5773 assert(remainder_size == request2size(sizes[i]));
5774 check_inuse_chunk(av, mem2chunk(marray));
5777 for (i = 0; i != n_elements; ++i)
5778 check_inuse_chunk(av, mem2chunk(marray[i]));
5779 #endif
5781 return marray;
5783 #endif /* _LIBC */
5787 ------------------------------ valloc ------------------------------
5790 static Void_t*
5791 #if __STD_C
5792 _int_valloc(mstate av, size_t bytes)
5793 #else
5794 _int_valloc(av, bytes) mstate av; size_t bytes;
5795 #endif
5797 /* Ensure initialization/consolidation */
5798 if (have_fastchunks(av)) malloc_consolidate(av);
5799 return _int_memalign(av, mp_.pagesize, bytes);
5803 ------------------------------ pvalloc ------------------------------
5807 static Void_t*
5808 #if __STD_C
5809 _int_pvalloc(mstate av, size_t bytes)
5810 #else
5811 _int_pvalloc(av, bytes) mstate av, size_t bytes;
5812 #endif
5814 size_t pagesz;
5816 /* Ensure initialization/consolidation */
5817 if (have_fastchunks(av)) malloc_consolidate(av);
5818 pagesz = mp_.pagesize;
5819 return _int_memalign(av, pagesz, (bytes + pagesz - 1) & ~(pagesz - 1));
5824 ------------------------------ malloc_trim ------------------------------
5827 #if __STD_C
5828 static int mTRIm(mstate av, size_t pad)
5829 #else
5830 static int mTRIm(av, pad) mstate av; size_t pad;
5831 #endif
5833 /* Ensure initialization/consolidation */
5834 malloc_consolidate (av);
5836 const size_t ps = mp_.pagesize;
5837 int psindex = bin_index (ps);
5838 const size_t psm1 = ps - 1;
5840 int result = 0;
5841 for (int i = 1; i < NBINS; ++i)
5842 if (i == 1 || i >= psindex)
5844 mbinptr bin = bin_at (av, i);
5846 for (mchunkptr p = last (bin); p != bin; p = p->bk)
5848 INTERNAL_SIZE_T size = chunksize (p);
5850 if (size > psm1 + sizeof (struct malloc_chunk))
5852 /* See whether the chunk contains at least one unused page. */
5853 char *paligned_mem = (char *) (((uintptr_t) p
5854 + sizeof (struct malloc_chunk)
5855 + psm1) & ~psm1);
5857 assert ((char *) chunk2mem (p) + 4 * SIZE_SZ <= paligned_mem);
5858 assert ((char *) p + size > paligned_mem);
5860 /* This is the size we could potentially free. */
5861 size -= paligned_mem - (char *) p;
5863 if (size > psm1)
5865 #ifdef MALLOC_DEBUG
5866 /* When debugging we simulate destroying the memory
5867 content. */
5868 memset (paligned_mem, 0x89, size & ~psm1);
5869 #endif
5870 madvise (paligned_mem, size & ~psm1, MADV_DONTNEED);
5872 result = 1;
5878 #ifndef MORECORE_CANNOT_TRIM
5879 return result | (av == &main_arena ? sYSTRIm (pad, av) : 0);
5880 #else
5881 return result;
5882 #endif
5887 ------------------------- malloc_usable_size -------------------------
5890 #if __STD_C
5891 size_t mUSABLe(Void_t* mem)
5892 #else
5893 size_t mUSABLe(mem) Void_t* mem;
5894 #endif
5896 mchunkptr p;
5897 if (mem != 0) {
5898 p = mem2chunk(mem);
5899 if (chunk_is_mmapped(p))
5900 return chunksize(p) - 2*SIZE_SZ;
5901 else if (inuse(p))
5902 return chunksize(p) - SIZE_SZ;
5904 return 0;
5908 ------------------------------ mallinfo ------------------------------
5911 struct mallinfo mALLINFo(mstate av)
5913 struct mallinfo mi;
5914 size_t i;
5915 mbinptr b;
5916 mchunkptr p;
5917 INTERNAL_SIZE_T avail;
5918 INTERNAL_SIZE_T fastavail;
5919 int nblocks;
5920 int nfastblocks;
5922 /* Ensure initialization */
5923 if (av->top == 0) malloc_consolidate(av);
5925 check_malloc_state(av);
5927 /* Account for top */
5928 avail = chunksize(av->top);
5929 nblocks = 1; /* top always exists */
5931 /* traverse fastbins */
5932 nfastblocks = 0;
5933 fastavail = 0;
5935 for (i = 0; i < NFASTBINS; ++i) {
5936 for (p = fastbin (av, i); p != 0; p = p->fd) {
5937 ++nfastblocks;
5938 fastavail += chunksize(p);
5942 avail += fastavail;
5944 /* traverse regular bins */
5945 for (i = 1; i < NBINS; ++i) {
5946 b = bin_at(av, i);
5947 for (p = last(b); p != b; p = p->bk) {
5948 ++nblocks;
5949 avail += chunksize(p);
5953 mi.smblks = nfastblocks;
5954 mi.ordblks = nblocks;
5955 mi.fordblks = avail;
5956 mi.uordblks = av->system_mem - avail;
5957 mi.arena = av->system_mem;
5958 mi.hblks = mp_.n_mmaps;
5959 mi.hblkhd = mp_.mmapped_mem;
5960 mi.fsmblks = fastavail;
5961 mi.keepcost = chunksize(av->top);
5962 mi.usmblks = mp_.max_total_mem;
5963 return mi;
5967 ------------------------------ malloc_stats ------------------------------
5970 void mSTATs()
5972 int i;
5973 mstate ar_ptr;
5974 struct mallinfo mi;
5975 unsigned int in_use_b = mp_.mmapped_mem, system_b = in_use_b;
5976 #if THREAD_STATS
5977 long stat_lock_direct = 0, stat_lock_loop = 0, stat_lock_wait = 0;
5978 #endif
5980 if(__malloc_initialized < 0)
5981 ptmalloc_init ();
5982 #ifdef _LIBC
5983 _IO_flockfile (stderr);
5984 int old_flags2 = ((_IO_FILE *) stderr)->_flags2;
5985 ((_IO_FILE *) stderr)->_flags2 |= _IO_FLAGS2_NOTCANCEL;
5986 #endif
5987 for (i=0, ar_ptr = &main_arena;; i++) {
5988 (void)mutex_lock(&ar_ptr->mutex);
5989 mi = mALLINFo(ar_ptr);
5990 fprintf(stderr, "Arena %d:\n", i);
5991 fprintf(stderr, "system bytes = %10u\n", (unsigned int)mi.arena);
5992 fprintf(stderr, "in use bytes = %10u\n", (unsigned int)mi.uordblks);
5993 #if MALLOC_DEBUG > 1
5994 if (i > 0)
5995 dump_heap(heap_for_ptr(top(ar_ptr)));
5996 #endif
5997 system_b += mi.arena;
5998 in_use_b += mi.uordblks;
5999 #if THREAD_STATS
6000 stat_lock_direct += ar_ptr->stat_lock_direct;
6001 stat_lock_loop += ar_ptr->stat_lock_loop;
6002 stat_lock_wait += ar_ptr->stat_lock_wait;
6003 #endif
6004 (void)mutex_unlock(&ar_ptr->mutex);
6005 ar_ptr = ar_ptr->next;
6006 if(ar_ptr == &main_arena) break;
6008 #if HAVE_MMAP
6009 fprintf(stderr, "Total (incl. mmap):\n");
6010 #else
6011 fprintf(stderr, "Total:\n");
6012 #endif
6013 fprintf(stderr, "system bytes = %10u\n", system_b);
6014 fprintf(stderr, "in use bytes = %10u\n", in_use_b);
6015 #ifdef NO_THREADS
6016 fprintf(stderr, "max system bytes = %10u\n", (unsigned int)mp_.max_total_mem);
6017 #endif
6018 #if HAVE_MMAP
6019 fprintf(stderr, "max mmap regions = %10u\n", (unsigned int)mp_.max_n_mmaps);
6020 fprintf(stderr, "max mmap bytes = %10lu\n",
6021 (unsigned long)mp_.max_mmapped_mem);
6022 #endif
6023 #if THREAD_STATS
6024 fprintf(stderr, "heaps created = %10d\n", stat_n_heaps);
6025 fprintf(stderr, "locked directly = %10ld\n", stat_lock_direct);
6026 fprintf(stderr, "locked in loop = %10ld\n", stat_lock_loop);
6027 fprintf(stderr, "locked waiting = %10ld\n", stat_lock_wait);
6028 fprintf(stderr, "locked total = %10ld\n",
6029 stat_lock_direct + stat_lock_loop + stat_lock_wait);
6030 #endif
6031 #ifdef _LIBC
6032 ((_IO_FILE *) stderr)->_flags2 |= old_flags2;
6033 _IO_funlockfile (stderr);
6034 #endif
6039 ------------------------------ mallopt ------------------------------
6042 #if __STD_C
6043 int mALLOPt(int param_number, int value)
6044 #else
6045 int mALLOPt(param_number, value) int param_number; int value;
6046 #endif
6048 mstate av = &main_arena;
6049 int res = 1;
6051 if(__malloc_initialized < 0)
6052 ptmalloc_init ();
6053 (void)mutex_lock(&av->mutex);
6054 /* Ensure initialization/consolidation */
6055 malloc_consolidate(av);
6057 switch(param_number) {
6058 case M_MXFAST:
6059 if (value >= 0 && value <= MAX_FAST_SIZE) {
6060 set_max_fast(value);
6062 else
6063 res = 0;
6064 break;
6066 case M_TRIM_THRESHOLD:
6067 mp_.trim_threshold = value;
6068 mp_.no_dyn_threshold = 1;
6069 break;
6071 case M_TOP_PAD:
6072 mp_.top_pad = value;
6073 mp_.no_dyn_threshold = 1;
6074 break;
6076 case M_MMAP_THRESHOLD:
6077 #if USE_ARENAS
6078 /* Forbid setting the threshold too high. */
6079 if((unsigned long)value > HEAP_MAX_SIZE/2)
6080 res = 0;
6081 else
6082 #endif
6083 mp_.mmap_threshold = value;
6084 mp_.no_dyn_threshold = 1;
6085 break;
6087 case M_MMAP_MAX:
6088 #if !HAVE_MMAP
6089 if (value != 0)
6090 res = 0;
6091 else
6092 #endif
6093 mp_.n_mmaps_max = value;
6094 mp_.no_dyn_threshold = 1;
6095 break;
6097 case M_CHECK_ACTION:
6098 check_action = value;
6099 break;
6101 case M_PERTURB:
6102 perturb_byte = value;
6103 break;
6105 #ifdef PER_THREAD
6106 case M_ARENA_TEST:
6107 if (value > 0)
6108 mp_.arena_test = value;
6109 break;
6111 case M_ARENA_MAX:
6112 if (value > 0)
6113 mp_.arena_max = value;
6114 break;
6115 #endif
6117 (void)mutex_unlock(&av->mutex);
6118 return res;
6123 -------------------- Alternative MORECORE functions --------------------
6128 General Requirements for MORECORE.
6130 The MORECORE function must have the following properties:
6132 If MORECORE_CONTIGUOUS is false:
6134 * MORECORE must allocate in multiples of pagesize. It will
6135 only be called with arguments that are multiples of pagesize.
6137 * MORECORE(0) must return an address that is at least
6138 MALLOC_ALIGNMENT aligned. (Page-aligning always suffices.)
6140 else (i.e. If MORECORE_CONTIGUOUS is true):
6142 * Consecutive calls to MORECORE with positive arguments
6143 return increasing addresses, indicating that space has been
6144 contiguously extended.
6146 * MORECORE need not allocate in multiples of pagesize.
6147 Calls to MORECORE need not have args of multiples of pagesize.
6149 * MORECORE need not page-align.
6151 In either case:
6153 * MORECORE may allocate more memory than requested. (Or even less,
6154 but this will generally result in a malloc failure.)
6156 * MORECORE must not allocate memory when given argument zero, but
6157 instead return one past the end address of memory from previous
6158 nonzero call. This malloc does NOT call MORECORE(0)
6159 until at least one call with positive arguments is made, so
6160 the initial value returned is not important.
6162 * Even though consecutive calls to MORECORE need not return contiguous
6163 addresses, it must be OK for malloc'ed chunks to span multiple
6164 regions in those cases where they do happen to be contiguous.
6166 * MORECORE need not handle negative arguments -- it may instead
6167 just return MORECORE_FAILURE when given negative arguments.
6168 Negative arguments are always multiples of pagesize. MORECORE
6169 must not misinterpret negative args as large positive unsigned
6170 args. You can suppress all such calls from even occurring by defining
6171 MORECORE_CANNOT_TRIM,
6173 There is some variation across systems about the type of the
6174 argument to sbrk/MORECORE. If size_t is unsigned, then it cannot
6175 actually be size_t, because sbrk supports negative args, so it is
6176 normally the signed type of the same width as size_t (sometimes
6177 declared as "intptr_t", and sometimes "ptrdiff_t"). It doesn't much
6178 matter though. Internally, we use "long" as arguments, which should
6179 work across all reasonable possibilities.
6181 Additionally, if MORECORE ever returns failure for a positive
6182 request, and HAVE_MMAP is true, then mmap is used as a noncontiguous
6183 system allocator. This is a useful backup strategy for systems with
6184 holes in address spaces -- in this case sbrk cannot contiguously
6185 expand the heap, but mmap may be able to map noncontiguous space.
6187 If you'd like mmap to ALWAYS be used, you can define MORECORE to be
6188 a function that always returns MORECORE_FAILURE.
6190 If you are using this malloc with something other than sbrk (or its
6191 emulation) to supply memory regions, you probably want to set
6192 MORECORE_CONTIGUOUS as false. As an example, here is a custom
6193 allocator kindly contributed for pre-OSX macOS. It uses virtually
6194 but not necessarily physically contiguous non-paged memory (locked
6195 in, present and won't get swapped out). You can use it by
6196 uncommenting this section, adding some #includes, and setting up the
6197 appropriate defines above:
6199 #define MORECORE osMoreCore
6200 #define MORECORE_CONTIGUOUS 0
6202 There is also a shutdown routine that should somehow be called for
6203 cleanup upon program exit.
6205 #define MAX_POOL_ENTRIES 100
6206 #define MINIMUM_MORECORE_SIZE (64 * 1024)
6207 static int next_os_pool;
6208 void *our_os_pools[MAX_POOL_ENTRIES];
6210 void *osMoreCore(int size)
6212 void *ptr = 0;
6213 static void *sbrk_top = 0;
6215 if (size > 0)
6217 if (size < MINIMUM_MORECORE_SIZE)
6218 size = MINIMUM_MORECORE_SIZE;
6219 if (CurrentExecutionLevel() == kTaskLevel)
6220 ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0);
6221 if (ptr == 0)
6223 return (void *) MORECORE_FAILURE;
6225 // save ptrs so they can be freed during cleanup
6226 our_os_pools[next_os_pool] = ptr;
6227 next_os_pool++;
6228 ptr = (void *) ((((unsigned long) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK);
6229 sbrk_top = (char *) ptr + size;
6230 return ptr;
6232 else if (size < 0)
6234 // we don't currently support shrink behavior
6235 return (void *) MORECORE_FAILURE;
6237 else
6239 return sbrk_top;
6243 // cleanup any allocated memory pools
6244 // called as last thing before shutting down driver
6246 void osCleanupMem(void)
6248 void **ptr;
6250 for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++)
6251 if (*ptr)
6253 PoolDeallocate(*ptr);
6254 *ptr = 0;
6261 /* Helper code. */
6263 extern char **__libc_argv attribute_hidden;
6265 static void
6266 malloc_printerr(int action, const char *str, void *ptr)
6268 if ((action & 5) == 5)
6269 __libc_message (action & 2, "%s\n", str);
6270 else if (action & 1)
6272 char buf[2 * sizeof (uintptr_t) + 1];
6274 buf[sizeof (buf) - 1] = '\0';
6275 char *cp = _itoa_word ((uintptr_t) ptr, &buf[sizeof (buf) - 1], 16, 0);
6276 while (cp > buf)
6277 *--cp = '0';
6279 __libc_message (action & 2,
6280 "*** glibc detected *** %s: %s: 0x%s ***\n",
6281 __libc_argv[0] ?: "<unknown>", str, cp);
6283 else if (action & 2)
6284 abort ();
6287 #ifdef _LIBC
6288 # include <sys/param.h>
6290 /* We need a wrapper function for one of the additions of POSIX. */
6292 __posix_memalign (void **memptr, size_t alignment, size_t size)
6294 void *mem;
6296 /* Test whether the SIZE argument is valid. It must be a power of
6297 two multiple of sizeof (void *). */
6298 if (alignment % sizeof (void *) != 0
6299 || !powerof2 (alignment / sizeof (void *)) != 0
6300 || alignment == 0)
6301 return EINVAL;
6303 /* Call the hook here, so that caller is posix_memalign's caller
6304 and not posix_memalign itself. */
6305 __malloc_ptr_t (*hook) __MALLOC_PMT ((size_t, size_t,
6306 __const __malloc_ptr_t)) =
6307 force_reg (__memalign_hook);
6308 if (__builtin_expect (hook != NULL, 0))
6309 mem = (*hook)(alignment, size, RETURN_ADDRESS (0));
6310 else
6311 mem = public_mEMALIGn (alignment, size);
6313 if (mem != NULL) {
6314 *memptr = mem;
6315 return 0;
6318 return ENOMEM;
6320 weak_alias (__posix_memalign, posix_memalign)
6324 malloc_info (int options, FILE *fp)
6326 /* For now, at least. */
6327 if (options != 0)
6328 return EINVAL;
6330 int n = 0;
6331 size_t total_nblocks = 0;
6332 size_t total_nfastblocks = 0;
6333 size_t total_avail = 0;
6334 size_t total_fastavail = 0;
6335 size_t total_system = 0;
6336 size_t total_max_system = 0;
6337 size_t total_aspace = 0;
6338 size_t total_aspace_mprotect = 0;
6340 void mi_arena (mstate ar_ptr)
6342 fprintf (fp, "<heap nr=\"%d\">\n<sizes>\n", n++);
6344 size_t nblocks = 0;
6345 size_t nfastblocks = 0;
6346 size_t avail = 0;
6347 size_t fastavail = 0;
6348 struct
6350 size_t from;
6351 size_t to;
6352 size_t total;
6353 size_t count;
6354 } sizes[NFASTBINS + NBINS - 1];
6355 #define nsizes (sizeof (sizes) / sizeof (sizes[0]))
6357 mutex_lock (&ar_ptr->mutex);
6359 for (size_t i = 0; i < NFASTBINS; ++i)
6361 mchunkptr p = fastbin (ar_ptr, i);
6362 if (p != NULL)
6364 size_t nthissize = 0;
6365 size_t thissize = chunksize (p);
6367 while (p != NULL)
6369 ++nthissize;
6370 p = p->fd;
6373 fastavail += nthissize * thissize;
6374 nfastblocks += nthissize;
6375 sizes[i].from = thissize - (MALLOC_ALIGNMENT - 1);
6376 sizes[i].to = thissize;
6377 sizes[i].count = nthissize;
6379 else
6380 sizes[i].from = sizes[i].to = sizes[i].count = 0;
6382 sizes[i].total = sizes[i].count * sizes[i].to;
6385 mbinptr bin = bin_at (ar_ptr, 1);
6386 struct malloc_chunk *r = bin->fd;
6387 if (r != NULL)
6389 while (r != bin)
6391 ++sizes[NFASTBINS].count;
6392 sizes[NFASTBINS].total += r->size;
6393 sizes[NFASTBINS].from = MIN (sizes[NFASTBINS].from, r->size);
6394 sizes[NFASTBINS].to = MAX (sizes[NFASTBINS].to, r->size);
6395 r = r->fd;
6397 nblocks += sizes[NFASTBINS].count;
6398 avail += sizes[NFASTBINS].total;
6401 for (size_t i = 2; i < NBINS; ++i)
6403 bin = bin_at (ar_ptr, i);
6404 r = bin->fd;
6405 sizes[NFASTBINS - 1 + i].from = ~((size_t) 0);
6406 sizes[NFASTBINS - 1 + i].to = sizes[NFASTBINS - 1 + i].total
6407 = sizes[NFASTBINS - 1 + i].count = 0;
6409 if (r != NULL)
6410 while (r != bin)
6412 ++sizes[NFASTBINS - 1 + i].count;
6413 sizes[NFASTBINS - 1 + i].total += r->size;
6414 sizes[NFASTBINS - 1 + i].from
6415 = MIN (sizes[NFASTBINS - 1 + i].from, r->size);
6416 sizes[NFASTBINS - 1 + i].to = MAX (sizes[NFASTBINS - 1 + i].to,
6417 r->size);
6419 r = r->fd;
6422 if (sizes[NFASTBINS - 1 + i].count == 0)
6423 sizes[NFASTBINS - 1 + i].from = 0;
6424 nblocks += sizes[NFASTBINS - 1 + i].count;
6425 avail += sizes[NFASTBINS - 1 + i].total;
6428 mutex_unlock (&ar_ptr->mutex);
6430 total_nfastblocks += nfastblocks;
6431 total_fastavail += fastavail;
6433 total_nblocks += nblocks;
6434 total_avail += avail;
6436 for (size_t i = 0; i < nsizes; ++i)
6437 if (sizes[i].count != 0 && i != NFASTBINS)
6438 fprintf (fp, "\
6439 <size from=\"%zu\" to=\"%zu\" total=\"%zu\" count=\"%zu\"/>\n",
6440 sizes[i].from, sizes[i].to, sizes[i].total, sizes[i].count);
6442 if (sizes[NFASTBINS].count != 0)
6443 fprintf (fp, "\
6444 <unsorted from=\"%zu\" to=\"%zu\" total=\"%zu\" count=\"%zu\"/>\n",
6445 sizes[NFASTBINS].from, sizes[NFASTBINS].to,
6446 sizes[NFASTBINS].total, sizes[NFASTBINS].count);
6448 total_system += ar_ptr->system_mem;
6449 total_max_system += ar_ptr->max_system_mem;
6451 fprintf (fp,
6452 "</sizes>\n<total type=\"fast\" count=\"%zu\" size=\"%zu\"/>\n"
6453 "<total type=\"rest\" count=\"%zu\" size=\"%zu\"/>\n"
6454 "<system type=\"current\" size=\"%zu\"/>\n"
6455 "<system type=\"max\" size=\"%zu\"/>\n",
6456 nfastblocks, fastavail, nblocks, avail,
6457 ar_ptr->system_mem, ar_ptr->max_system_mem);
6459 if (ar_ptr != &main_arena)
6461 heap_info *heap = heap_for_ptr(top(ar_ptr));
6462 fprintf (fp,
6463 "<aspace type=\"total\" size=\"%zu\"/>\n"
6464 "<aspace type=\"mprotect\" size=\"%zu\"/>\n",
6465 heap->size, heap->mprotect_size);
6466 total_aspace += heap->size;
6467 total_aspace_mprotect += heap->mprotect_size;
6469 else
6471 fprintf (fp,
6472 "<aspace type=\"total\" size=\"%zu\"/>\n"
6473 "<aspace type=\"mprotect\" size=\"%zu\"/>\n",
6474 ar_ptr->system_mem, ar_ptr->system_mem);
6475 total_aspace += ar_ptr->system_mem;
6476 total_aspace_mprotect += ar_ptr->system_mem;
6479 fputs ("</heap>\n", fp);
6482 if(__malloc_initialized < 0)
6483 ptmalloc_init ();
6485 fputs ("<malloc version=\"1\">\n", fp);
6487 /* Iterate over all arenas currently in use. */
6488 mstate ar_ptr = &main_arena;
6491 mi_arena (ar_ptr);
6492 ar_ptr = ar_ptr->next;
6494 while (ar_ptr != &main_arena);
6496 fprintf (fp,
6497 "<total type=\"fast\" count=\"%zu\" size=\"%zu\"/>\n"
6498 "<total type=\"rest\" count=\"%zu\" size=\"%zu\"/>\n"
6499 "<system type=\"current\" size=\"%zu\"/>\n"
6500 "<system type=\"max\" size=\"%zu\"/>\n"
6501 "<aspace type=\"total\" size=\"%zu\"/>\n"
6502 "<aspace type=\"mprotect\" size=\"%zu\"/>\n"
6503 "</malloc>\n",
6504 total_nfastblocks, total_fastavail, total_nblocks, total_avail,
6505 total_system, total_max_system,
6506 total_aspace, total_aspace_mprotect);
6508 return 0;
6512 strong_alias (__libc_calloc, __calloc) weak_alias (__libc_calloc, calloc)
6513 strong_alias (__libc_free, __cfree) weak_alias (__libc_free, cfree)
6514 strong_alias (__libc_free, __free) strong_alias (__libc_free, free)
6515 strong_alias (__libc_malloc, __malloc) strong_alias (__libc_malloc, malloc)
6516 strong_alias (__libc_memalign, __memalign)
6517 weak_alias (__libc_memalign, memalign)
6518 strong_alias (__libc_realloc, __realloc) strong_alias (__libc_realloc, realloc)
6519 strong_alias (__libc_valloc, __valloc) weak_alias (__libc_valloc, valloc)
6520 strong_alias (__libc_pvalloc, __pvalloc) weak_alias (__libc_pvalloc, pvalloc)
6521 strong_alias (__libc_mallinfo, __mallinfo)
6522 weak_alias (__libc_mallinfo, mallinfo)
6523 strong_alias (__libc_mallopt, __mallopt) weak_alias (__libc_mallopt, mallopt)
6525 weak_alias (__malloc_stats, malloc_stats)
6526 weak_alias (__malloc_usable_size, malloc_usable_size)
6527 weak_alias (__malloc_trim, malloc_trim)
6528 weak_alias (__malloc_get_state, malloc_get_state)
6529 weak_alias (__malloc_set_state, malloc_set_state)
6531 #endif /* _LIBC */
6533 /* ------------------------------------------------------------
6534 History:
6536 [see ftp://g.oswego.edu/pub/misc/malloc.c for the history of dlmalloc]
6540 * Local variables:
6541 * c-basic-offset: 2
6542 * End: