update from main archive 970209
[glibc.git] / stdlib / qsort.c
blob7e36ffea970b77b1fb548b4b0e48fecef2533d65
1 /* Copyright (C) 1991, 1992, 1996, 1997 Free Software Foundation, Inc.
2 This file is part of the GNU C Library.
3 Written by Douglas C. Schmidt (schmidt@ics.uci.edu).
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Library General Public License as
7 published by the Free Software Foundation; either version 2 of the
8 License, or (at your option) any later version.
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Library General Public License for more details.
15 You should have received a copy of the GNU Library General Public
16 License along with the GNU C Library; see the file COPYING.LIB. If not,
17 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
18 Boston, MA 02111-1307, USA. */
20 #include <stdlib.h>
21 #include <string.h>
23 /* Byte-wise swap two items of size SIZE. */
24 #define SWAP(a, b, size) \
25 do \
26 { \
27 register size_t __size = (size); \
28 register char *__a = (a), *__b = (b); \
29 do \
30 { \
31 char __tmp = *__a; \
32 *__a++ = *__b; \
33 *__b++ = __tmp; \
34 } while (--__size > 0); \
35 } while (0)
37 /* Discontinue quicksort algorithm when partition gets below this size.
38 This particular magic number was chosen to work best on a Sun 4/260. */
39 #define MAX_THRESH 4
41 /* Stack node declarations used to store unfulfilled partition obligations. */
42 typedef struct
44 char *lo;
45 char *hi;
46 } stack_node;
48 /* The next 4 #defines implement a very fast in-line stack abstraction. */
49 #define STACK_SIZE (8 * sizeof(unsigned long int))
50 #define PUSH(low, high) ((void) ((top->lo = (low)), (top->hi = (high)), ++top))
51 #define POP(low, high) ((void) (--top, (low = top->lo), (high = top->hi)))
52 #define STACK_NOT_EMPTY (stack < top)
55 /* Order size using quicksort. This implementation incorporates
56 four optimizations discussed in Sedgewick:
58 1. Non-recursive, using an explicit stack of pointer that store the
59 next array partition to sort. To save time, this maximum amount
60 of space required to store an array of MAX_INT is allocated on the
61 stack. Assuming a 32-bit integer, this needs only 32 *
62 sizeof(stack_node) == 136 bits. Pretty cheap, actually.
64 2. Chose the pivot element using a median-of-three decision tree.
65 This reduces the probability of selecting a bad pivot value and
66 eliminates certain extraneous comparisons.
68 3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving
69 insertion sort to order the MAX_THRESH items within each partition.
70 This is a big win, since insertion sort is faster for small, mostly
71 sorted array segments.
73 4. The larger of the two sub-partitions is always pushed onto the
74 stack first, with the algorithm then concentrating on the
75 smaller partition. This *guarantees* no more than log (n)
76 stack size is needed (actually O(1) in this case)! */
78 void
79 _quicksort (pbase, total_elems, size, cmp)
80 void *const pbase;
81 size_t total_elems;
82 size_t size;
83 int (*cmp) __P ((const void *, const void *));
85 register char *base_ptr = (char *) pbase;
87 /* Allocating SIZE bytes for a pivot buffer facilitates a better
88 algorithm below since we can do comparisons directly on the pivot. */
89 char *pivot_buffer = (char *) __alloca (size);
90 const size_t max_thresh = MAX_THRESH * size;
92 if (total_elems == 0)
93 /* Avoid lossage with unsigned arithmetic below. */
94 return;
96 if (total_elems > MAX_THRESH)
98 char *lo = base_ptr;
99 char *hi = &lo[size * (total_elems - 1)];
100 /* Largest size needed for 32-bit int!!! */
101 stack_node stack[STACK_SIZE];
102 stack_node *top = stack + 1;
104 while (STACK_NOT_EMPTY)
106 char *left_ptr;
107 char *right_ptr;
109 char *pivot = pivot_buffer;
111 /* Select median value from among LO, MID, and HI. Rearrange
112 LO and HI so the three values are sorted. This lowers the
113 probability of picking a pathological pivot value and
114 skips a comparison for both the LEFT_PTR and RIGHT_PTR. */
116 char *mid = lo + size * ((hi - lo) / size >> 1);
118 if ((*cmp) ((void *) mid, (void *) lo) < 0)
119 SWAP (mid, lo, size);
120 if ((*cmp) ((void *) hi, (void *) mid) < 0)
121 SWAP (mid, hi, size);
122 else
123 goto jump_over;
124 if ((*cmp) ((void *) mid, (void *) lo) < 0)
125 SWAP (mid, lo, size);
126 jump_over:;
127 memcpy (pivot, mid, size);
128 pivot = pivot_buffer;
130 left_ptr = lo + size;
131 right_ptr = hi - size;
133 /* Here's the famous ``collapse the walls'' section of quicksort.
134 Gotta like those tight inner loops! They are the main reason
135 that this algorithm runs much faster than others. */
138 while ((*cmp) ((void *) left_ptr, (void *) pivot) < 0)
139 left_ptr += size;
141 while ((*cmp) ((void *) pivot, (void *) right_ptr) < 0)
142 right_ptr -= size;
144 if (left_ptr < right_ptr)
146 SWAP (left_ptr, right_ptr, size);
147 left_ptr += size;
148 right_ptr -= size;
150 else if (left_ptr == right_ptr)
152 left_ptr += size;
153 right_ptr -= size;
154 break;
157 while (left_ptr <= right_ptr);
159 /* Set up pointers for next iteration. First determine whether
160 left and right partitions are below the threshold size. If so,
161 ignore one or both. Otherwise, push the larger partition's
162 bounds on the stack and continue sorting the smaller one. */
164 if ((size_t) (right_ptr - lo) <= max_thresh)
166 if ((size_t) (hi - left_ptr) <= max_thresh)
167 /* Ignore both small partitions. */
168 POP (lo, hi);
169 else
170 /* Ignore small left partition. */
171 lo = left_ptr;
173 else if ((size_t) (hi - left_ptr) <= max_thresh)
174 /* Ignore small right partition. */
175 hi = right_ptr;
176 else if ((right_ptr - lo) > (hi - left_ptr))
178 /* Push larger left partition indices. */
179 PUSH (lo, right_ptr);
180 lo = left_ptr;
182 else
184 /* Push larger right partition indices. */
185 PUSH (left_ptr, hi);
186 hi = right_ptr;
191 /* Once the BASE_PTR array is partially sorted by quicksort the rest
192 is completely sorted using insertion sort, since this is efficient
193 for partitions below MAX_THRESH size. BASE_PTR points to the beginning
194 of the array to sort, and END_PTR points at the very last element in
195 the array (*not* one beyond it!). */
197 #define min(x, y) ((x) < (y) ? (x) : (y))
200 char *const end_ptr = &base_ptr[size * (total_elems - 1)];
201 char *tmp_ptr = base_ptr;
202 char *thresh = min(end_ptr, base_ptr + max_thresh);
203 register char *run_ptr;
205 /* Find smallest element in first threshold and place it at the
206 array's beginning. This is the smallest array element,
207 and the operation speeds up insertion sort's inner loop. */
209 for (run_ptr = tmp_ptr + size; run_ptr <= thresh; run_ptr += size)
210 if ((*cmp) ((void *) run_ptr, (void *) tmp_ptr) < 0)
211 tmp_ptr = run_ptr;
213 if (tmp_ptr != base_ptr)
214 SWAP (tmp_ptr, base_ptr, size);
216 /* Insertion sort, running from left-hand-side up to right-hand-side. */
218 run_ptr = base_ptr + size;
219 while ((run_ptr += size) <= end_ptr)
221 tmp_ptr = run_ptr - size;
222 while ((*cmp) ((void *) run_ptr, (void *) tmp_ptr) < 0)
223 tmp_ptr -= size;
225 tmp_ptr += size;
226 if (tmp_ptr != run_ptr)
228 char *trav;
230 trav = run_ptr + size;
231 while (--trav >= run_ptr)
233 char c = *trav;
234 char *hi, *lo;
236 for (hi = lo = trav; (lo -= size) >= tmp_ptr; hi = lo)
237 *hi = *lo;
238 *hi = c;