Replace FSF snail mail address with URLs.
[glibc.git] / sysdeps / ieee754 / ldbl-128 / e_jnl.c
blob4c2ec854703ed11626310464c3421577eae4c3c8
1 /*
2 * ====================================================
3 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 * Developed at SunPro, a Sun Microsystems, Inc. business.
6 * Permission to use, copy, modify, and distribute this
7 * software is freely granted, provided that this notice
8 * is preserved.
9 * ====================================================
12 /* Modifications for 128-bit long double are
13 Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
14 and are incorporated herein by permission of the author. The author
15 reserves the right to distribute this material elsewhere under different
16 copying permissions. These modifications are distributed here under
17 the following terms:
19 This library is free software; you can redistribute it and/or
20 modify it under the terms of the GNU Lesser General Public
21 License as published by the Free Software Foundation; either
22 version 2.1 of the License, or (at your option) any later version.
24 This library is distributed in the hope that it will be useful,
25 but WITHOUT ANY WARRANTY; without even the implied warranty of
26 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
27 Lesser General Public License for more details.
29 You should have received a copy of the GNU Lesser General Public
30 License along with this library; if not, see
31 <http://www.gnu.org/licenses/>. */
34 * __ieee754_jn(n, x), __ieee754_yn(n, x)
35 * floating point Bessel's function of the 1st and 2nd kind
36 * of order n
38 * Special cases:
39 * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
40 * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
41 * Note 2. About jn(n,x), yn(n,x)
42 * For n=0, j0(x) is called,
43 * for n=1, j1(x) is called,
44 * for n<x, forward recursion us used starting
45 * from values of j0(x) and j1(x).
46 * for n>x, a continued fraction approximation to
47 * j(n,x)/j(n-1,x) is evaluated and then backward
48 * recursion is used starting from a supposed value
49 * for j(n,x). The resulting value of j(0,x) is
50 * compared with the actual value to correct the
51 * supposed value of j(n,x).
53 * yn(n,x) is similar in all respects, except
54 * that forward recursion is used for all
55 * values of n>1.
59 #include "math.h"
60 #include "math_private.h"
62 static const long double
63 invsqrtpi = 5.6418958354775628694807945156077258584405E-1L,
64 two = 2.0e0L,
65 one = 1.0e0L,
66 zero = 0.0L;
69 long double
70 __ieee754_jnl (int n, long double x)
72 u_int32_t se;
73 int32_t i, ix, sgn;
74 long double a, b, temp, di;
75 long double z, w;
76 ieee854_long_double_shape_type u;
79 /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
80 * Thus, J(-n,x) = J(n,-x)
83 u.value = x;
84 se = u.parts32.w0;
85 ix = se & 0x7fffffff;
87 /* if J(n,NaN) is NaN */
88 if (ix >= 0x7fff0000)
90 if ((u.parts32.w0 & 0xffff) | u.parts32.w1 | u.parts32.w2 | u.parts32.w3)
91 return x + x;
94 if (n < 0)
96 n = -n;
97 x = -x;
98 se ^= 0x80000000;
100 if (n == 0)
101 return (__ieee754_j0l (x));
102 if (n == 1)
103 return (__ieee754_j1l (x));
104 sgn = (n & 1) & (se >> 31); /* even n -- 0, odd n -- sign(x) */
105 x = fabsl (x);
107 if (x == 0.0L || ix >= 0x7fff0000) /* if x is 0 or inf */
108 b = zero;
109 else if ((long double) n <= x)
111 /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
112 if (ix >= 0x412D0000)
113 { /* x > 2**302 */
115 /* ??? Could use an expansion for large x here. */
117 /* (x >> n**2)
118 * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
119 * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
120 * Let s=sin(x), c=cos(x),
121 * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
123 * n sin(xn)*sqt2 cos(xn)*sqt2
124 * ----------------------------------
125 * 0 s-c c+s
126 * 1 -s-c -c+s
127 * 2 -s+c -c-s
128 * 3 s+c c-s
130 long double s;
131 long double c;
132 __sincosl (x, &s, &c);
133 switch (n & 3)
135 case 0:
136 temp = c + s;
137 break;
138 case 1:
139 temp = -c + s;
140 break;
141 case 2:
142 temp = -c - s;
143 break;
144 case 3:
145 temp = c - s;
146 break;
148 b = invsqrtpi * temp / __ieee754_sqrtl (x);
150 else
152 a = __ieee754_j0l (x);
153 b = __ieee754_j1l (x);
154 for (i = 1; i < n; i++)
156 temp = b;
157 b = b * ((long double) (i + i) / x) - a; /* avoid underflow */
158 a = temp;
162 else
164 if (ix < 0x3fc60000)
165 { /* x < 2**-57 */
166 /* x is tiny, return the first Taylor expansion of J(n,x)
167 * J(n,x) = 1/n!*(x/2)^n - ...
169 if (n >= 400) /* underflow, result < 10^-4952 */
170 b = zero;
171 else
173 temp = x * 0.5;
174 b = temp;
175 for (a = one, i = 2; i <= n; i++)
177 a *= (long double) i; /* a = n! */
178 b *= temp; /* b = (x/2)^n */
180 b = b / a;
183 else
185 /* use backward recurrence */
186 /* x x^2 x^2
187 * J(n,x)/J(n-1,x) = ---- ------ ------ .....
188 * 2n - 2(n+1) - 2(n+2)
190 * 1 1 1
191 * (for large x) = ---- ------ ------ .....
192 * 2n 2(n+1) 2(n+2)
193 * -- - ------ - ------ -
194 * x x x
196 * Let w = 2n/x and h=2/x, then the above quotient
197 * is equal to the continued fraction:
199 * = -----------------------
201 * w - -----------------
203 * w+h - ---------
204 * w+2h - ...
206 * To determine how many terms needed, let
207 * Q(0) = w, Q(1) = w(w+h) - 1,
208 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
209 * When Q(k) > 1e4 good for single
210 * When Q(k) > 1e9 good for double
211 * When Q(k) > 1e17 good for quadruple
213 /* determine k */
214 long double t, v;
215 long double q0, q1, h, tmp;
216 int32_t k, m;
217 w = (n + n) / (long double) x;
218 h = 2.0L / (long double) x;
219 q0 = w;
220 z = w + h;
221 q1 = w * z - 1.0L;
222 k = 1;
223 while (q1 < 1.0e17L)
225 k += 1;
226 z += h;
227 tmp = z * q1 - q0;
228 q0 = q1;
229 q1 = tmp;
231 m = n + n;
232 for (t = zero, i = 2 * (n + k); i >= m; i -= 2)
233 t = one / (i / x - t);
234 a = t;
235 b = one;
236 /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
237 * Hence, if n*(log(2n/x)) > ...
238 * single 8.8722839355e+01
239 * double 7.09782712893383973096e+02
240 * long double 1.1356523406294143949491931077970765006170e+04
241 * then recurrent value may overflow and the result is
242 * likely underflow to zero
244 tmp = n;
245 v = two / x;
246 tmp = tmp * __ieee754_logl (fabsl (v * tmp));
248 if (tmp < 1.1356523406294143949491931077970765006170e+04L)
250 for (i = n - 1, di = (long double) (i + i); i > 0; i--)
252 temp = b;
253 b *= di;
254 b = b / x - a;
255 a = temp;
256 di -= two;
259 else
261 for (i = n - 1, di = (long double) (i + i); i > 0; i--)
263 temp = b;
264 b *= di;
265 b = b / x - a;
266 a = temp;
267 di -= two;
268 /* scale b to avoid spurious overflow */
269 if (b > 1e100L)
271 a /= b;
272 t /= b;
273 b = one;
277 /* j0() and j1() suffer enormous loss of precision at and
278 * near zero; however, we know that their zero points never
279 * coincide, so just choose the one further away from zero.
281 z = __ieee754_j0l (x);
282 w = __ieee754_j1l (x);
283 if (fabsl (z) >= fabsl (w))
284 b = (t * z / b);
285 else
286 b = (t * w / a);
289 if (sgn == 1)
290 return -b;
291 else
292 return b;
294 strong_alias (__ieee754_jnl, __jnl_finite)
296 long double
297 __ieee754_ynl (int n, long double x)
299 u_int32_t se;
300 int32_t i, ix;
301 int32_t sign;
302 long double a, b, temp;
303 ieee854_long_double_shape_type u;
305 u.value = x;
306 se = u.parts32.w0;
307 ix = se & 0x7fffffff;
309 /* if Y(n,NaN) is NaN */
310 if (ix >= 0x7fff0000)
312 if ((u.parts32.w0 & 0xffff) | u.parts32.w1 | u.parts32.w2 | u.parts32.w3)
313 return x + x;
315 if (x <= 0.0L)
317 if (x == 0.0L)
318 return -HUGE_VALL + x;
319 if (se & 0x80000000)
320 return zero / (zero * x);
322 sign = 1;
323 if (n < 0)
325 n = -n;
326 sign = 1 - ((n & 1) << 1);
328 if (n == 0)
329 return (__ieee754_y0l (x));
330 if (n == 1)
331 return (sign * __ieee754_y1l (x));
332 if (ix >= 0x7fff0000)
333 return zero;
334 if (ix >= 0x412D0000)
335 { /* x > 2**302 */
337 /* ??? See comment above on the possible futility of this. */
339 /* (x >> n**2)
340 * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
341 * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
342 * Let s=sin(x), c=cos(x),
343 * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
345 * n sin(xn)*sqt2 cos(xn)*sqt2
346 * ----------------------------------
347 * 0 s-c c+s
348 * 1 -s-c -c+s
349 * 2 -s+c -c-s
350 * 3 s+c c-s
352 long double s;
353 long double c;
354 __sincosl (x, &s, &c);
355 switch (n & 3)
357 case 0:
358 temp = s - c;
359 break;
360 case 1:
361 temp = -s - c;
362 break;
363 case 2:
364 temp = -s + c;
365 break;
366 case 3:
367 temp = s + c;
368 break;
370 b = invsqrtpi * temp / __ieee754_sqrtl (x);
372 else
374 a = __ieee754_y0l (x);
375 b = __ieee754_y1l (x);
376 /* quit if b is -inf */
377 u.value = b;
378 se = u.parts32.w0 & 0xffff0000;
379 for (i = 1; i < n && se != 0xffff0000; i++)
381 temp = b;
382 b = ((long double) (i + i) / x) * b - a;
383 u.value = b;
384 se = u.parts32.w0 & 0xffff0000;
385 a = temp;
388 if (sign > 0)
389 return b;
390 else
391 return -b;
393 strong_alias (__ieee754_ynl, __ynl_finite)