Remove x32/iofopen.c and x32/iofopen64.c
[glibc.git] / crypt / sha512-crypt.c
blobe5d9cacfdac437a13f0f28457462f906e8eaf370
1 /* One way encryption based on SHA512 sum.
2 Copyright (C) 2007, 2009, 2012 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Ulrich Drepper <drepper@redhat.com>, 2007.
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public
8 License as published by the Free Software Foundation; either
9 version 2.1 of the License, or (at your option) any later version.
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
16 You should have received a copy of the GNU Lesser General Public
17 License along with the GNU C Library; if not, see
18 <http://www.gnu.org/licenses/>. */
20 #include <assert.h>
21 #include <errno.h>
22 #include <stdbool.h>
23 #include <stdlib.h>
24 #include <string.h>
25 #include <sys/param.h>
27 #include "sha512.h"
30 #ifdef USE_NSS
31 typedef int PRBool;
32 # include <hasht.h>
33 # include <nsslowhash.h>
35 # define sha512_init_ctx(ctxp, nss_ctxp) \
36 do \
37 { \
38 if (((nss_ctxp = NSSLOWHASH_NewContext (nss_ictx, HASH_AlgSHA512)) \
39 == NULL)) \
40 { \
41 if (nss_ctx != NULL) \
42 NSSLOWHASH_Destroy (nss_ctx); \
43 if (nss_alt_ctx != NULL) \
44 NSSLOWHASH_Destroy (nss_alt_ctx); \
45 return NULL; \
46 } \
47 NSSLOWHASH_Begin (nss_ctxp); \
48 } \
49 while (0)
51 # define sha512_process_bytes(buf, len, ctxp, nss_ctxp) \
52 NSSLOWHASH_Update (nss_ctxp, (const unsigned char *) buf, len)
54 # define sha512_finish_ctx(ctxp, nss_ctxp, result) \
55 do \
56 { \
57 unsigned int ret; \
58 NSSLOWHASH_End (nss_ctxp, result, &ret, sizeof (result)); \
59 assert (ret == sizeof (result)); \
60 NSSLOWHASH_Destroy (nss_ctxp); \
61 nss_ctxp = NULL; \
62 } \
63 while (0)
64 #else
65 # define sha512_init_ctx(ctxp, nss_ctxp) \
66 __sha512_init_ctx (ctxp)
68 # define sha512_process_bytes(buf, len, ctxp, nss_ctxp) \
69 __sha512_process_bytes(buf, len, ctxp)
71 # define sha512_finish_ctx(ctxp, nss_ctxp, result) \
72 __sha512_finish_ctx (ctxp, result)
73 #endif
76 /* Define our magic string to mark salt for SHA512 "encryption"
77 replacement. */
78 static const char sha512_salt_prefix[] = "$6$";
80 /* Prefix for optional rounds specification. */
81 static const char sha512_rounds_prefix[] = "rounds=";
83 /* Maximum salt string length. */
84 #define SALT_LEN_MAX 16
85 /* Default number of rounds if not explicitly specified. */
86 #define ROUNDS_DEFAULT 5000
87 /* Minimum number of rounds. */
88 #define ROUNDS_MIN 1000
89 /* Maximum number of rounds. */
90 #define ROUNDS_MAX 999999999
92 /* Table with characters for base64 transformation. */
93 static const char b64t[64] =
94 "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
97 /* Prototypes for local functions. */
98 extern char *__sha512_crypt_r (const char *key, const char *salt,
99 char *buffer, int buflen);
100 extern char *__sha512_crypt (const char *key, const char *salt);
103 char *
104 __sha512_crypt_r (key, salt, buffer, buflen)
105 const char *key;
106 const char *salt;
107 char *buffer;
108 int buflen;
110 unsigned char alt_result[64]
111 __attribute__ ((__aligned__ (__alignof__ (uint64_t))));
112 unsigned char temp_result[64]
113 __attribute__ ((__aligned__ (__alignof__ (uint64_t))));
114 size_t salt_len;
115 size_t key_len;
116 size_t cnt;
117 char *cp;
118 char *copied_key = NULL;
119 char *copied_salt = NULL;
120 char *p_bytes;
121 char *s_bytes;
122 /* Default number of rounds. */
123 size_t rounds = ROUNDS_DEFAULT;
124 bool rounds_custom = false;
125 size_t alloca_used = 0;
126 char *free_key = NULL;
127 char *free_pbytes = NULL;
129 /* Find beginning of salt string. The prefix should normally always
130 be present. Just in case it is not. */
131 if (strncmp (sha512_salt_prefix, salt, sizeof (sha512_salt_prefix) - 1) == 0)
132 /* Skip salt prefix. */
133 salt += sizeof (sha512_salt_prefix) - 1;
135 if (strncmp (salt, sha512_rounds_prefix, sizeof (sha512_rounds_prefix) - 1)
136 == 0)
138 const char *num = salt + sizeof (sha512_rounds_prefix) - 1;
139 char *endp;
140 unsigned long int srounds = strtoul (num, &endp, 10);
141 if (*endp == '$')
143 salt = endp + 1;
144 rounds = MAX (ROUNDS_MIN, MIN (srounds, ROUNDS_MAX));
145 rounds_custom = true;
149 salt_len = MIN (strcspn (salt, "$"), SALT_LEN_MAX);
150 key_len = strlen (key);
152 if ((key - (char *) 0) % __alignof__ (uint64_t) != 0)
154 char *tmp;
156 if (__libc_use_alloca (alloca_used + key_len + __alignof__ (uint64_t)))
157 tmp = alloca_account (key_len + __alignof__ (uint64_t), alloca_used);
158 else
160 free_key = tmp = (char *) malloc (key_len + __alignof__ (uint64_t));
161 if (tmp == NULL)
162 return NULL;
165 key = copied_key =
166 memcpy (tmp + __alignof__ (uint64_t)
167 - (tmp - (char *) 0) % __alignof__ (uint64_t),
168 key, key_len);
169 assert ((key - (char *) 0) % __alignof__ (uint64_t) == 0);
172 if ((salt - (char *) 0) % __alignof__ (uint64_t) != 0)
174 char *tmp = (char *) alloca (salt_len + __alignof__ (uint64_t));
175 salt = copied_salt =
176 memcpy (tmp + __alignof__ (uint64_t)
177 - (tmp - (char *) 0) % __alignof__ (uint64_t),
178 salt, salt_len);
179 assert ((salt - (char *) 0) % __alignof__ (uint64_t) == 0);
182 #ifdef USE_NSS
183 /* Initialize libfreebl3. */
184 NSSLOWInitContext *nss_ictx = NSSLOW_Init ();
185 if (nss_ictx == NULL)
187 free (free_key);
188 return NULL;
190 NSSLOWHASHContext *nss_ctx = NULL;
191 NSSLOWHASHContext *nss_alt_ctx = NULL;
192 #else
193 struct sha512_ctx ctx;
194 struct sha512_ctx alt_ctx;
195 #endif
197 /* Prepare for the real work. */
198 sha512_init_ctx (&ctx, nss_ctx);
200 /* Add the key string. */
201 sha512_process_bytes (key, key_len, &ctx, nss_ctx);
203 /* The last part is the salt string. This must be at most 16
204 characters and it ends at the first `$' character. */
205 sha512_process_bytes (salt, salt_len, &ctx, nss_ctx);
208 /* Compute alternate SHA512 sum with input KEY, SALT, and KEY. The
209 final result will be added to the first context. */
210 sha512_init_ctx (&alt_ctx, nss_alt_ctx);
212 /* Add key. */
213 sha512_process_bytes (key, key_len, &alt_ctx, nss_alt_ctx);
215 /* Add salt. */
216 sha512_process_bytes (salt, salt_len, &alt_ctx, nss_alt_ctx);
218 /* Add key again. */
219 sha512_process_bytes (key, key_len, &alt_ctx, nss_alt_ctx);
221 /* Now get result of this (64 bytes) and add it to the other
222 context. */
223 sha512_finish_ctx (&alt_ctx, nss_alt_ctx, alt_result);
225 /* Add for any character in the key one byte of the alternate sum. */
226 for (cnt = key_len; cnt > 64; cnt -= 64)
227 sha512_process_bytes (alt_result, 64, &ctx, nss_ctx);
228 sha512_process_bytes (alt_result, cnt, &ctx, nss_ctx);
230 /* Take the binary representation of the length of the key and for every
231 1 add the alternate sum, for every 0 the key. */
232 for (cnt = key_len; cnt > 0; cnt >>= 1)
233 if ((cnt & 1) != 0)
234 sha512_process_bytes (alt_result, 64, &ctx, nss_ctx);
235 else
236 sha512_process_bytes (key, key_len, &ctx, nss_ctx);
238 /* Create intermediate result. */
239 sha512_finish_ctx (&ctx, nss_ctx, alt_result);
241 /* Start computation of P byte sequence. */
242 sha512_init_ctx (&alt_ctx, nss_alt_ctx);
244 /* For every character in the password add the entire password. */
245 for (cnt = 0; cnt < key_len; ++cnt)
246 sha512_process_bytes (key, key_len, &alt_ctx, nss_alt_ctx);
248 /* Finish the digest. */
249 sha512_finish_ctx (&alt_ctx, nss_alt_ctx, temp_result);
251 /* Create byte sequence P. */
252 if (__libc_use_alloca (alloca_used + key_len))
253 cp = p_bytes = (char *) alloca (key_len);
254 else
256 free_pbytes = cp = p_bytes = (char *)malloc (key_len);
257 if (free_pbytes == NULL)
259 free (free_key);
260 return NULL;
264 for (cnt = key_len; cnt >= 64; cnt -= 64)
265 cp = mempcpy (cp, temp_result, 64);
266 memcpy (cp, temp_result, cnt);
268 /* Start computation of S byte sequence. */
269 sha512_init_ctx (&alt_ctx, nss_alt_ctx);
271 /* For every character in the password add the entire password. */
272 for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt)
273 sha512_process_bytes (salt, salt_len, &alt_ctx, nss_alt_ctx);
275 /* Finish the digest. */
276 sha512_finish_ctx (&alt_ctx, nss_alt_ctx, temp_result);
278 /* Create byte sequence S. */
279 cp = s_bytes = alloca (salt_len);
280 for (cnt = salt_len; cnt >= 64; cnt -= 64)
281 cp = mempcpy (cp, temp_result, 64);
282 memcpy (cp, temp_result, cnt);
284 /* Repeatedly run the collected hash value through SHA512 to burn
285 CPU cycles. */
286 for (cnt = 0; cnt < rounds; ++cnt)
288 /* New context. */
289 sha512_init_ctx (&ctx, nss_ctx);
291 /* Add key or last result. */
292 if ((cnt & 1) != 0)
293 sha512_process_bytes (p_bytes, key_len, &ctx, nss_ctx);
294 else
295 sha512_process_bytes (alt_result, 64, &ctx, nss_ctx);
297 /* Add salt for numbers not divisible by 3. */
298 if (cnt % 3 != 0)
299 sha512_process_bytes (s_bytes, salt_len, &ctx, nss_ctx);
301 /* Add key for numbers not divisible by 7. */
302 if (cnt % 7 != 0)
303 sha512_process_bytes (p_bytes, key_len, &ctx, nss_ctx);
305 /* Add key or last result. */
306 if ((cnt & 1) != 0)
307 sha512_process_bytes (alt_result, 64, &ctx, nss_ctx);
308 else
309 sha512_process_bytes (p_bytes, key_len, &ctx, nss_ctx);
311 /* Create intermediate result. */
312 sha512_finish_ctx (&ctx, nss_ctx, alt_result);
315 #ifdef USE_NSS
316 /* Free libfreebl3 resources. */
317 NSSLOW_Shutdown (nss_ictx);
318 #endif
320 /* Now we can construct the result string. It consists of three
321 parts. */
322 cp = __stpncpy (buffer, sha512_salt_prefix, MAX (0, buflen));
323 buflen -= sizeof (sha512_salt_prefix) - 1;
325 if (rounds_custom)
327 int n = snprintf (cp, MAX (0, buflen), "%s%zu$",
328 sha512_rounds_prefix, rounds);
329 cp += n;
330 buflen -= n;
333 cp = __stpncpy (cp, salt, MIN ((size_t) MAX (0, buflen), salt_len));
334 buflen -= MIN ((size_t) MAX (0, buflen), salt_len);
336 if (buflen > 0)
338 *cp++ = '$';
339 --buflen;
342 void b64_from_24bit (unsigned int b2, unsigned int b1, unsigned int b0,
343 int n)
345 unsigned int w = (b2 << 16) | (b1 << 8) | b0;
346 while (n-- > 0 && buflen > 0)
348 *cp++ = b64t[w & 0x3f];
349 --buflen;
350 w >>= 6;
354 b64_from_24bit (alt_result[0], alt_result[21], alt_result[42], 4);
355 b64_from_24bit (alt_result[22], alt_result[43], alt_result[1], 4);
356 b64_from_24bit (alt_result[44], alt_result[2], alt_result[23], 4);
357 b64_from_24bit (alt_result[3], alt_result[24], alt_result[45], 4);
358 b64_from_24bit (alt_result[25], alt_result[46], alt_result[4], 4);
359 b64_from_24bit (alt_result[47], alt_result[5], alt_result[26], 4);
360 b64_from_24bit (alt_result[6], alt_result[27], alt_result[48], 4);
361 b64_from_24bit (alt_result[28], alt_result[49], alt_result[7], 4);
362 b64_from_24bit (alt_result[50], alt_result[8], alt_result[29], 4);
363 b64_from_24bit (alt_result[9], alt_result[30], alt_result[51], 4);
364 b64_from_24bit (alt_result[31], alt_result[52], alt_result[10], 4);
365 b64_from_24bit (alt_result[53], alt_result[11], alt_result[32], 4);
366 b64_from_24bit (alt_result[12], alt_result[33], alt_result[54], 4);
367 b64_from_24bit (alt_result[34], alt_result[55], alt_result[13], 4);
368 b64_from_24bit (alt_result[56], alt_result[14], alt_result[35], 4);
369 b64_from_24bit (alt_result[15], alt_result[36], alt_result[57], 4);
370 b64_from_24bit (alt_result[37], alt_result[58], alt_result[16], 4);
371 b64_from_24bit (alt_result[59], alt_result[17], alt_result[38], 4);
372 b64_from_24bit (alt_result[18], alt_result[39], alt_result[60], 4);
373 b64_from_24bit (alt_result[40], alt_result[61], alt_result[19], 4);
374 b64_from_24bit (alt_result[62], alt_result[20], alt_result[41], 4);
375 b64_from_24bit (0, 0, alt_result[63], 2);
377 if (buflen <= 0)
379 __set_errno (ERANGE);
380 buffer = NULL;
382 else
383 *cp = '\0'; /* Terminate the string. */
385 /* Clear the buffer for the intermediate result so that people
386 attaching to processes or reading core dumps cannot get any
387 information. We do it in this way to clear correct_words[]
388 inside the SHA512 implementation as well. */
389 #ifndef USE_NSS
390 __sha512_init_ctx (&ctx);
391 __sha512_finish_ctx (&ctx, alt_result);
392 memset (&ctx, '\0', sizeof (ctx));
393 memset (&alt_ctx, '\0', sizeof (alt_ctx));
394 #endif
395 memset (temp_result, '\0', sizeof (temp_result));
396 memset (p_bytes, '\0', key_len);
397 memset (s_bytes, '\0', salt_len);
398 if (copied_key != NULL)
399 memset (copied_key, '\0', key_len);
400 if (copied_salt != NULL)
401 memset (copied_salt, '\0', salt_len);
403 free (free_key);
404 free (free_pbytes);
405 return buffer;
408 #ifndef _LIBC
409 # define libc_freeres_ptr(decl) decl
410 #endif
411 libc_freeres_ptr (static char *buffer);
413 /* This entry point is equivalent to the `crypt' function in Unix
414 libcs. */
415 char *
416 __sha512_crypt (const char *key, const char *salt)
418 /* We don't want to have an arbitrary limit in the size of the
419 password. We can compute an upper bound for the size of the
420 result in advance and so we can prepare the buffer we pass to
421 `sha512_crypt_r'. */
422 static int buflen;
423 int needed = (sizeof (sha512_salt_prefix) - 1
424 + sizeof (sha512_rounds_prefix) + 9 + 1
425 + strlen (salt) + 1 + 86 + 1);
427 if (buflen < needed)
429 char *new_buffer = (char *) realloc (buffer, needed);
430 if (new_buffer == NULL)
431 return NULL;
433 buffer = new_buffer;
434 buflen = needed;
437 return __sha512_crypt_r (key, salt, buffer, buflen);
440 #ifndef _LIBC
441 static void
442 __attribute__ ((__destructor__))
443 free_mem (void)
445 free (buffer);
447 #endif