Update ChangeLog
[glibc.git] / string / str-two-way.h
blob59609b868554191fff68d54a589ac127827046de
1 /* Byte-wise substring search, using the Two-Way algorithm.
2 Copyright (C) 2008-2012 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Written by Eric Blake <ebb9@byu.net>, 2008.
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public
8 License as published by the Free Software Foundation; either
9 version 2.1 of the License, or (at your option) any later version.
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
16 You should have received a copy of the GNU Lesser General Public
17 License along with the GNU C Library; if not, see
18 <http://www.gnu.org/licenses/>. */
20 /* Before including this file, you need to include <string.h> (and
21 <config.h> before that, if not part of libc), and define:
22 RESULT_TYPE A macro that expands to the return type.
23 AVAILABLE(h, h_l, j, n_l)
24 A macro that returns nonzero if there are
25 at least N_L bytes left starting at H[J].
26 H is 'unsigned char *', H_L, J, and N_L
27 are 'size_t'; H_L is an lvalue. For
28 NUL-terminated searches, H_L can be
29 modified each iteration to avoid having
30 to compute the end of H up front.
32 For case-insensitivity, you may optionally define:
33 CMP_FUNC(p1, p2, l) A macro that returns 0 iff the first L
34 characters of P1 and P2 are equal.
35 CANON_ELEMENT(c) A macro that canonicalizes an element right after
36 it has been fetched from one of the two strings.
37 The argument is an 'unsigned char'; the result
38 must be an 'unsigned char' as well.
40 This file undefines the macros documented above, and defines
41 LONG_NEEDLE_THRESHOLD.
44 #include <limits.h>
45 #include <stdint.h>
46 #include <sys/param.h> /* Defines MAX. */
48 /* We use the Two-Way string matching algorithm, which guarantees
49 linear complexity with constant space. Additionally, for long
50 needles, we also use a bad character shift table similar to the
51 Boyer-Moore algorithm to achieve improved (potentially sub-linear)
52 performance.
54 See http://www-igm.univ-mlv.fr/~lecroq/string/node26.html#SECTION00260
55 and http://en.wikipedia.org/wiki/Boyer-Moore_string_search_algorithm
58 /* Point at which computing a bad-byte shift table is likely to be
59 worthwhile. Small needles should not compute a table, since it
60 adds (1 << CHAR_BIT) + NEEDLE_LEN computations of preparation for a
61 speedup no greater than a factor of NEEDLE_LEN. The larger the
62 needle, the better the potential performance gain. On the other
63 hand, on non-POSIX systems with CHAR_BIT larger than eight, the
64 memory required for the table is prohibitive. */
65 #if CHAR_BIT < 10
66 # define LONG_NEEDLE_THRESHOLD 32U
67 #else
68 # define LONG_NEEDLE_THRESHOLD SIZE_MAX
69 #endif
71 #ifndef CANON_ELEMENT
72 # define CANON_ELEMENT(c) c
73 #endif
74 #ifndef CMP_FUNC
75 # define CMP_FUNC memcmp
76 #endif
78 #ifndef AVAILABLE1
79 # define AVAILABLE1(h, h_l, j, n_l) AVAILABLE (h, h_l, j, n_l)
80 #endif
81 #ifndef AVAILABLE2
82 # define AVAILABLE2(h, h_l, j, n_l) (1)
83 #endif
84 #ifndef RET0_IF_0
85 # define RET0_IF_0(a) /* nothing */
86 #endif
87 #ifndef AVAILABLE1_USES_J
88 # define AVAILABLE1_USES_J (1)
89 #endif
91 /* Perform a critical factorization of NEEDLE, of length NEEDLE_LEN.
92 Return the index of the first byte in the right half, and set
93 *PERIOD to the global period of the right half.
95 The global period of a string is the smallest index (possibly its
96 length) at which all remaining bytes in the string are repetitions
97 of the prefix (the last repetition may be a subset of the prefix).
99 When NEEDLE is factored into two halves, a local period is the
100 length of the smallest word that shares a suffix with the left half
101 and shares a prefix with the right half. All factorizations of a
102 non-empty NEEDLE have a local period of at least 1 and no greater
103 than NEEDLE_LEN.
105 A critical factorization has the property that the local period
106 equals the global period. All strings have at least one critical
107 factorization with the left half smaller than the global period.
109 Given an ordered alphabet, a critical factorization can be computed
110 in linear time, with 2 * NEEDLE_LEN comparisons, by computing the
111 larger of two ordered maximal suffixes. The ordered maximal
112 suffixes are determined by lexicographic comparison of
113 periodicity. */
114 static size_t
115 critical_factorization (const unsigned char *needle, size_t needle_len,
116 size_t *period)
118 /* Index of last byte of left half, or SIZE_MAX. */
119 size_t max_suffix, max_suffix_rev;
120 size_t j; /* Index into NEEDLE for current candidate suffix. */
121 size_t k; /* Offset into current period. */
122 size_t p; /* Intermediate period. */
123 unsigned char a, b; /* Current comparison bytes. */
125 /* Invariants:
126 0 <= j < NEEDLE_LEN - 1
127 -1 <= max_suffix{,_rev} < j (treating SIZE_MAX as if it were signed)
128 min(max_suffix, max_suffix_rev) < global period of NEEDLE
129 1 <= p <= global period of NEEDLE
130 p == global period of the substring NEEDLE[max_suffix{,_rev}+1...j]
131 1 <= k <= p
134 /* Perform lexicographic search. */
135 max_suffix = SIZE_MAX;
136 j = 0;
137 k = p = 1;
138 while (j + k < needle_len)
140 a = CANON_ELEMENT (needle[j + k]);
141 b = CANON_ELEMENT (needle[max_suffix + k]);
142 if (a < b)
144 /* Suffix is smaller, period is entire prefix so far. */
145 j += k;
146 k = 1;
147 p = j - max_suffix;
149 else if (a == b)
151 /* Advance through repetition of the current period. */
152 if (k != p)
153 ++k;
154 else
156 j += p;
157 k = 1;
160 else /* b < a */
162 /* Suffix is larger, start over from current location. */
163 max_suffix = j++;
164 k = p = 1;
167 *period = p;
169 /* Perform reverse lexicographic search. */
170 max_suffix_rev = SIZE_MAX;
171 j = 0;
172 k = p = 1;
173 while (j + k < needle_len)
175 a = CANON_ELEMENT (needle[j + k]);
176 b = CANON_ELEMENT (needle[max_suffix_rev + k]);
177 if (b < a)
179 /* Suffix is smaller, period is entire prefix so far. */
180 j += k;
181 k = 1;
182 p = j - max_suffix_rev;
184 else if (a == b)
186 /* Advance through repetition of the current period. */
187 if (k != p)
188 ++k;
189 else
191 j += p;
192 k = 1;
195 else /* a < b */
197 /* Suffix is larger, start over from current location. */
198 max_suffix_rev = j++;
199 k = p = 1;
203 /* Choose the longer suffix. Return the first byte of the right
204 half, rather than the last byte of the left half. */
205 if (max_suffix_rev + 1 < max_suffix + 1)
206 return max_suffix + 1;
207 *period = p;
208 return max_suffix_rev + 1;
211 /* Return the first location of non-empty NEEDLE within HAYSTACK, or
212 NULL. HAYSTACK_LEN is the minimum known length of HAYSTACK. This
213 method is optimized for NEEDLE_LEN < LONG_NEEDLE_THRESHOLD.
214 Performance is guaranteed to be linear, with an initialization cost
215 of 2 * NEEDLE_LEN comparisons.
217 If AVAILABLE does not modify HAYSTACK_LEN (as in memmem), then at
218 most 2 * HAYSTACK_LEN - NEEDLE_LEN comparisons occur in searching.
219 If AVAILABLE modifies HAYSTACK_LEN (as in strstr), then at most 3 *
220 HAYSTACK_LEN - NEEDLE_LEN comparisons occur in searching. */
221 static RETURN_TYPE
222 two_way_short_needle (const unsigned char *haystack, size_t haystack_len,
223 const unsigned char *needle, size_t needle_len)
225 size_t i; /* Index into current byte of NEEDLE. */
226 size_t j; /* Index into current window of HAYSTACK. */
227 size_t period; /* The period of the right half of needle. */
228 size_t suffix; /* The index of the right half of needle. */
230 /* Factor the needle into two halves, such that the left half is
231 smaller than the global period, and the right half is
232 periodic (with a period as large as NEEDLE_LEN - suffix). */
233 suffix = critical_factorization (needle, needle_len, &period);
235 /* Perform the search. Each iteration compares the right half
236 first. */
237 if (CMP_FUNC (needle, needle + period, suffix) == 0)
239 /* Entire needle is periodic; a mismatch can only advance by the
240 period, so use memory to avoid rescanning known occurrences
241 of the period. */
242 size_t memory = 0;
243 j = 0;
244 while (AVAILABLE (haystack, haystack_len, j, needle_len))
246 const unsigned char *pneedle;
247 const unsigned char *phaystack;
249 /* Scan for matches in right half. */
250 i = MAX (suffix, memory);
251 pneedle = &needle[i];
252 phaystack = &haystack[i + j];
253 while (i < needle_len && (CANON_ELEMENT (*pneedle++)
254 == CANON_ELEMENT (*phaystack++)))
255 ++i;
256 if (needle_len <= i)
258 /* Scan for matches in left half. */
259 i = suffix - 1;
260 pneedle = &needle[i];
261 phaystack = &haystack[i + j];
262 while (memory < i + 1 && (CANON_ELEMENT (*pneedle--)
263 == CANON_ELEMENT (*phaystack--)))
264 --i;
265 if (i + 1 < memory + 1)
266 return (RETURN_TYPE) (haystack + j);
267 /* No match, so remember how many repetitions of period
268 on the right half were scanned. */
269 j += period;
270 memory = needle_len - period;
272 else
274 j += i - suffix + 1;
275 memory = 0;
279 else
281 const unsigned char *phaystack = &haystack[suffix];
282 /* The comparison always starts from needle[suffix], so cache it
283 and use an optimized first-character loop. */
284 unsigned char needle_suffix = CANON_ELEMENT (needle[suffix]);
286 /* The two halves of needle are distinct; no extra memory is
287 required, and any mismatch results in a maximal shift. */
288 period = MAX (suffix, needle_len - suffix) + 1;
289 j = 0;
290 while (AVAILABLE1 (haystack, haystack_len, j, needle_len))
292 unsigned char haystack_char;
293 const unsigned char *pneedle;
295 /* TODO: The first-character loop can be sped up by adapting
296 longword-at-a-time implementation of memchr/strchr. */
297 if (needle_suffix
298 != (haystack_char = CANON_ELEMENT (*phaystack++)))
300 RET0_IF_0 (haystack_char);
301 #if AVAILABLE1_USES_J
302 ++j;
303 #endif
304 continue;
307 #if !AVAILABLE1_USES_J
308 /* Calculate J if it wasn't kept up-to-date in the first-character
309 loop. */
310 j = phaystack - &haystack[suffix] - 1;
311 #endif
313 /* Scan for matches in right half. */
314 i = suffix + 1;
315 pneedle = &needle[i];
316 while (i < needle_len)
318 if (CANON_ELEMENT (*pneedle++)
319 != (haystack_char = CANON_ELEMENT (*phaystack++)))
321 RET0_IF_0 (haystack_char);
322 break;
324 ++i;
326 if (needle_len <= i)
328 /* Scan for matches in left half. */
329 i = suffix - 1;
330 pneedle = &needle[i];
331 phaystack = &haystack[i + j];
332 while (i != SIZE_MAX)
334 if (CANON_ELEMENT (*pneedle--)
335 != (haystack_char = CANON_ELEMENT (*phaystack--)))
337 RET0_IF_0 (haystack_char);
338 break;
340 --i;
342 if (i == SIZE_MAX)
343 return (RETURN_TYPE) (haystack + j);
344 j += period;
346 else
347 j += i - suffix + 1;
349 if (!AVAILABLE2 (haystack, haystack_len, j, needle_len))
350 break;
352 phaystack = &haystack[suffix + j];
355 ret0: __attribute__ ((unused))
356 return NULL;
359 /* Return the first location of non-empty NEEDLE within HAYSTACK, or
360 NULL. HAYSTACK_LEN is the minimum known length of HAYSTACK. This
361 method is optimized for LONG_NEEDLE_THRESHOLD <= NEEDLE_LEN.
362 Performance is guaranteed to be linear, with an initialization cost
363 of 3 * NEEDLE_LEN + (1 << CHAR_BIT) operations.
365 If AVAILABLE does not modify HAYSTACK_LEN (as in memmem), then at
366 most 2 * HAYSTACK_LEN - NEEDLE_LEN comparisons occur in searching,
367 and sublinear performance O(HAYSTACK_LEN / NEEDLE_LEN) is possible.
368 If AVAILABLE modifies HAYSTACK_LEN (as in strstr), then at most 3 *
369 HAYSTACK_LEN - NEEDLE_LEN comparisons occur in searching, and
370 sublinear performance is not possible. */
371 static RETURN_TYPE
372 two_way_long_needle (const unsigned char *haystack, size_t haystack_len,
373 const unsigned char *needle, size_t needle_len)
375 size_t i; /* Index into current byte of NEEDLE. */
376 size_t j; /* Index into current window of HAYSTACK. */
377 size_t period; /* The period of the right half of needle. */
378 size_t suffix; /* The index of the right half of needle. */
379 size_t shift_table[1U << CHAR_BIT]; /* See below. */
381 /* Factor the needle into two halves, such that the left half is
382 smaller than the global period, and the right half is
383 periodic (with a period as large as NEEDLE_LEN - suffix). */
384 suffix = critical_factorization (needle, needle_len, &period);
386 /* Populate shift_table. For each possible byte value c,
387 shift_table[c] is the distance from the last occurrence of c to
388 the end of NEEDLE, or NEEDLE_LEN if c is absent from the NEEDLE.
389 shift_table[NEEDLE[NEEDLE_LEN - 1]] contains the only 0. */
390 for (i = 0; i < 1U << CHAR_BIT; i++)
391 shift_table[i] = needle_len;
392 for (i = 0; i < needle_len; i++)
393 shift_table[CANON_ELEMENT (needle[i])] = needle_len - i - 1;
395 /* Perform the search. Each iteration compares the right half
396 first. */
397 if (CMP_FUNC (needle, needle + period, suffix) == 0)
399 /* Entire needle is periodic; a mismatch can only advance by the
400 period, so use memory to avoid rescanning known occurrences
401 of the period. */
402 size_t memory = 0;
403 size_t shift;
404 j = 0;
405 while (AVAILABLE (haystack, haystack_len, j, needle_len))
407 const unsigned char *pneedle;
408 const unsigned char *phaystack;
410 /* Check the last byte first; if it does not match, then
411 shift to the next possible match location. */
412 shift = shift_table[CANON_ELEMENT (haystack[j + needle_len - 1])];
413 if (0 < shift)
415 if (memory && shift < period)
417 /* Since needle is periodic, but the last period has
418 a byte out of place, there can be no match until
419 after the mismatch. */
420 shift = needle_len - period;
422 memory = 0;
423 j += shift;
424 continue;
426 /* Scan for matches in right half. The last byte has
427 already been matched, by virtue of the shift table. */
428 i = MAX (suffix, memory);
429 pneedle = &needle[i];
430 phaystack = &haystack[i + j];
431 while (i < needle_len - 1 && (CANON_ELEMENT (*pneedle++)
432 == CANON_ELEMENT (*phaystack++)))
433 ++i;
434 if (needle_len - 1 <= i)
436 /* Scan for matches in left half. */
437 i = suffix - 1;
438 pneedle = &needle[i];
439 phaystack = &haystack[i + j];
440 while (memory < i + 1 && (CANON_ELEMENT (*pneedle--)
441 == CANON_ELEMENT (*phaystack--)))
442 --i;
443 if (i + 1 < memory + 1)
444 return (RETURN_TYPE) (haystack + j);
445 /* No match, so remember how many repetitions of period
446 on the right half were scanned. */
447 j += period;
448 memory = needle_len - period;
450 else
452 j += i - suffix + 1;
453 memory = 0;
457 else
459 /* The two halves of needle are distinct; no extra memory is
460 required, and any mismatch results in a maximal shift. */
461 size_t shift;
462 period = MAX (suffix, needle_len - suffix) + 1;
463 j = 0;
464 while (AVAILABLE (haystack, haystack_len, j, needle_len))
466 const unsigned char *pneedle;
467 const unsigned char *phaystack;
469 /* Check the last byte first; if it does not match, then
470 shift to the next possible match location. */
471 shift = shift_table[CANON_ELEMENT (haystack[j + needle_len - 1])];
472 if (0 < shift)
474 j += shift;
475 continue;
477 /* Scan for matches in right half. The last byte has
478 already been matched, by virtue of the shift table. */
479 i = suffix;
480 pneedle = &needle[i];
481 phaystack = &haystack[i + j];
482 while (i < needle_len - 1 && (CANON_ELEMENT (*pneedle++)
483 == CANON_ELEMENT (*phaystack++)))
484 ++i;
485 if (needle_len - 1 <= i)
487 /* Scan for matches in left half. */
488 i = suffix - 1;
489 pneedle = &needle[i];
490 phaystack = &haystack[i + j];
491 while (i != SIZE_MAX && (CANON_ELEMENT (*pneedle--)
492 == CANON_ELEMENT (*phaystack--)))
493 --i;
494 if (i == SIZE_MAX)
495 return (RETURN_TYPE) (haystack + j);
496 j += period;
498 else
499 j += i - suffix + 1;
502 return NULL;
505 #undef AVAILABLE
506 #undef AVAILABLE1
507 #undef AVAILABLE2
508 #undef AVAILABLE1_USES_J
509 #undef CANON_ELEMENT
510 #undef CMP_FUNC
511 #undef RET0_IF_0
512 #undef RETURN_TYPE