stdlib: Optimization qsort{_r} swap implementation
[glibc.git] / stdlib / qsort.c
blob072ccdfb954be2f94e2fe6932d9d8a65a95da167
1 /* Copyright (C) 1991-2023 Free Software Foundation, Inc.
2 This file is part of the GNU C Library.
4 The GNU C Library is free software; you can redistribute it and/or
5 modify it under the terms of the GNU Lesser General Public
6 License as published by the Free Software Foundation; either
7 version 2.1 of the License, or (at your option) any later version.
9 The GNU C Library is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 Lesser General Public License for more details.
14 You should have received a copy of the GNU Lesser General Public
15 License along with the GNU C Library; if not, see
16 <https://www.gnu.org/licenses/>. */
18 /* If you consider tuning this algorithm, you should consult first:
19 Engineering a sort function; Jon Bentley and M. Douglas McIlroy;
20 Software - Practice and Experience; Vol. 23 (11), 1249-1265, 1993. */
22 #include <alloca.h>
23 #include <limits.h>
24 #include <memswap.h>
25 #include <stdlib.h>
26 #include <string.h>
27 #include <stdbool.h>
29 /* Swap SIZE bytes between addresses A and B. These helpers are provided
30 along the generic one as an optimization. */
32 enum swap_type_t
34 SWAP_WORDS_64,
35 SWAP_WORDS_32,
36 SWAP_BYTES
39 /* If this function returns true, elements can be safely copied using word
40 loads and stores. Otherwise, it might not be safe. BASE (as an integer)
41 must be a multiple of the word alignment. SIZE must be a multiple of
42 WORDSIZE. Since WORDSIZE must be a multiple of the word alignment, and
43 WORDSIZE is a power of two on all supported platforms, this function for
44 speed merely checks that BASE and SIZE are both multiples of the word
45 size. */
46 static inline bool
47 is_aligned (const void *base, size_t size, size_t wordsize)
49 return (((uintptr_t) base | size) & (wordsize - 1)) == 0;
52 static inline void
53 swap_words_64 (void * restrict a, void * restrict b, size_t n)
55 typedef uint64_t __attribute__ ((__may_alias__)) u64_alias_t;
58 n -= 8;
59 u64_alias_t t = *(u64_alias_t *)(a + n);
60 *(u64_alias_t *)(a + n) = *(u64_alias_t *)(b + n);
61 *(u64_alias_t *)(b + n) = t;
62 } while (n);
65 static inline void
66 swap_words_32 (void * restrict a, void * restrict b, size_t n)
68 typedef uint32_t __attribute__ ((__may_alias__)) u32_alias_t;
71 n -= 4;
72 u32_alias_t t = *(u32_alias_t *)(a + n);
73 *(u32_alias_t *)(a + n) = *(u32_alias_t *)(b + n);
74 *(u32_alias_t *)(b + n) = t;
75 } while (n);
78 /* Replace the indirect call with a serie of if statements. It should help
79 the branch predictor. */
80 static void
81 do_swap (void * restrict a, void * restrict b, size_t size,
82 enum swap_type_t swap_type)
84 if (swap_type == SWAP_WORDS_64)
85 swap_words_64 (a, b, size);
86 else if (swap_type == SWAP_WORDS_32)
87 swap_words_32 (a, b, size);
88 else
89 __memswap (a, b, size);
92 /* Discontinue quicksort algorithm when partition gets below this size.
93 This particular magic number was chosen to work best on a Sun 4/260. */
94 #define MAX_THRESH 4
96 /* Stack node declarations used to store unfulfilled partition obligations. */
97 typedef struct
99 char *lo;
100 char *hi;
101 } stack_node;
103 /* The next 4 #defines implement a very fast in-line stack abstraction. */
104 /* The stack needs log (total_elements) entries (we could even subtract
105 log(MAX_THRESH)). Since total_elements has type size_t, we get as
106 upper bound for log (total_elements):
107 bits per byte (CHAR_BIT) * sizeof(size_t). */
108 #define STACK_SIZE (CHAR_BIT * sizeof (size_t))
109 #define PUSH(low, high) ((void) ((top->lo = (low)), (top->hi = (high)), ++top))
110 #define POP(low, high) ((void) (--top, (low = top->lo), (high = top->hi)))
111 #define STACK_NOT_EMPTY (stack < top)
114 /* Order size using quicksort. This implementation incorporates
115 four optimizations discussed in Sedgewick:
117 1. Non-recursive, using an explicit stack of pointer that store the
118 next array partition to sort. To save time, this maximum amount
119 of space required to store an array of SIZE_MAX is allocated on the
120 stack. Assuming a 32-bit (64 bit) integer for size_t, this needs
121 only 32 * sizeof(stack_node) == 256 bytes (for 64 bit: 1024 bytes).
122 Pretty cheap, actually.
124 2. Chose the pivot element using a median-of-three decision tree.
125 This reduces the probability of selecting a bad pivot value and
126 eliminates certain extraneous comparisons.
128 3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving
129 insertion sort to order the MAX_THRESH items within each partition.
130 This is a big win, since insertion sort is faster for small, mostly
131 sorted array segments.
133 4. The larger of the two sub-partitions is always pushed onto the
134 stack first, with the algorithm then concentrating on the
135 smaller partition. This *guarantees* no more than log (total_elems)
136 stack size is needed (actually O(1) in this case)! */
138 void
139 _quicksort (void *const pbase, size_t total_elems, size_t size,
140 __compar_d_fn_t cmp, void *arg)
142 char *base_ptr = (char *) pbase;
144 const size_t max_thresh = MAX_THRESH * size;
146 if (total_elems == 0)
147 /* Avoid lossage with unsigned arithmetic below. */
148 return;
150 enum swap_type_t swap_type;
151 if (is_aligned (pbase, size, 8))
152 swap_type = SWAP_WORDS_64;
153 else if (is_aligned (pbase, size, 4))
154 swap_type = SWAP_WORDS_32;
155 else
156 swap_type = SWAP_BYTES;
158 if (total_elems > MAX_THRESH)
160 char *lo = base_ptr;
161 char *hi = &lo[size * (total_elems - 1)];
162 stack_node stack[STACK_SIZE];
163 stack_node *top = stack;
165 PUSH (NULL, NULL);
167 while (STACK_NOT_EMPTY)
169 char *left_ptr;
170 char *right_ptr;
172 /* Select median value from among LO, MID, and HI. Rearrange
173 LO and HI so the three values are sorted. This lowers the
174 probability of picking a pathological pivot value and
175 skips a comparison for both the LEFT_PTR and RIGHT_PTR in
176 the while loops. */
178 char *mid = lo + size * ((hi - lo) / size >> 1);
180 if ((*cmp) ((void *) mid, (void *) lo, arg) < 0)
181 do_swap (mid, lo, size, swap_type);
182 if ((*cmp) ((void *) hi, (void *) mid, arg) < 0)
183 do_swap (mid, hi, size, swap_type);
184 else
185 goto jump_over;
186 if ((*cmp) ((void *) mid, (void *) lo, arg) < 0)
187 do_swap (mid, lo, size, swap_type);
188 jump_over:;
190 left_ptr = lo + size;
191 right_ptr = hi - size;
193 /* Here's the famous ``collapse the walls'' section of quicksort.
194 Gotta like those tight inner loops! They are the main reason
195 that this algorithm runs much faster than others. */
198 while ((*cmp) ((void *) left_ptr, (void *) mid, arg) < 0)
199 left_ptr += size;
201 while ((*cmp) ((void *) mid, (void *) right_ptr, arg) < 0)
202 right_ptr -= size;
204 if (left_ptr < right_ptr)
206 do_swap (left_ptr, right_ptr, size, swap_type);
207 if (mid == left_ptr)
208 mid = right_ptr;
209 else if (mid == right_ptr)
210 mid = left_ptr;
211 left_ptr += size;
212 right_ptr -= size;
214 else if (left_ptr == right_ptr)
216 left_ptr += size;
217 right_ptr -= size;
218 break;
221 while (left_ptr <= right_ptr);
223 /* Set up pointers for next iteration. First determine whether
224 left and right partitions are below the threshold size. If so,
225 ignore one or both. Otherwise, push the larger partition's
226 bounds on the stack and continue sorting the smaller one. */
228 if ((size_t) (right_ptr - lo) <= max_thresh)
230 if ((size_t) (hi - left_ptr) <= max_thresh)
231 /* Ignore both small partitions. */
232 POP (lo, hi);
233 else
234 /* Ignore small left partition. */
235 lo = left_ptr;
237 else if ((size_t) (hi - left_ptr) <= max_thresh)
238 /* Ignore small right partition. */
239 hi = right_ptr;
240 else if ((right_ptr - lo) > (hi - left_ptr))
242 /* Push larger left partition indices. */
243 PUSH (lo, right_ptr);
244 lo = left_ptr;
246 else
248 /* Push larger right partition indices. */
249 PUSH (left_ptr, hi);
250 hi = right_ptr;
255 /* Once the BASE_PTR array is partially sorted by quicksort the rest
256 is completely sorted using insertion sort, since this is efficient
257 for partitions below MAX_THRESH size. BASE_PTR points to the beginning
258 of the array to sort, and END_PTR points at the very last element in
259 the array (*not* one beyond it!). */
261 #define min(x, y) ((x) < (y) ? (x) : (y))
264 char *const end_ptr = &base_ptr[size * (total_elems - 1)];
265 char *tmp_ptr = base_ptr;
266 char *thresh = min(end_ptr, base_ptr + max_thresh);
267 char *run_ptr;
269 /* Find smallest element in first threshold and place it at the
270 array's beginning. This is the smallest array element,
271 and the operation speeds up insertion sort's inner loop. */
273 for (run_ptr = tmp_ptr + size; run_ptr <= thresh; run_ptr += size)
274 if ((*cmp) ((void *) run_ptr, (void *) tmp_ptr, arg) < 0)
275 tmp_ptr = run_ptr;
277 if (tmp_ptr != base_ptr)
278 do_swap (tmp_ptr, base_ptr, size, swap_type);
280 /* Insertion sort, running from left-hand-side up to right-hand-side. */
282 run_ptr = base_ptr + size;
283 while ((run_ptr += size) <= end_ptr)
285 tmp_ptr = run_ptr - size;
286 while ((*cmp) ((void *) run_ptr, (void *) tmp_ptr, arg) < 0)
287 tmp_ptr -= size;
289 tmp_ptr += size;
290 if (tmp_ptr != run_ptr)
292 char *trav;
294 trav = run_ptr + size;
295 while (--trav >= run_ptr)
297 char c = *trav;
298 char *hi, *lo;
300 for (hi = lo = trav; (lo -= size) >= tmp_ptr; hi = lo)
301 *hi = *lo;
302 *hi = c;