Update.
[glibc.git] / stdlib / strtod.c
blobf2ff79f6df4963906d2e6f7a9368b6b2b202ca9c
1 /* Read decimal floating point numbers.
2 This file is part of the GNU C Library.
3 Copyright (C) 1995, 1996, 1997, 1998, 1999 Free Software Foundation, Inc.
4 Contributed by Ulrich Drepper <drepper@gnu.org>, 1995.
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Library General Public License as
8 published by the Free Software Foundation; either version 2 of the
9 License, or (at your option) any later version.
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Library General Public License for more details.
16 You should have received a copy of the GNU Library General Public
17 License along with the GNU C Library; see the file COPYING.LIB. If not,
18 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
21 /* Configuration part. These macros are defined by `strtold.c',
22 `strtof.c', `wcstod.c', `wcstold.c', and `wcstof.c' to produce the
23 `long double' and `float' versions of the reader. */
24 #ifndef FLOAT
25 # define FLOAT double
26 # define FLT DBL
27 # ifdef USE_WIDE_CHAR
28 # ifdef USE_IN_EXTENDED_LOCALE_MODEL
29 # define STRTOF __wcstod_l
30 # else
31 # define STRTOF wcstod
32 # endif
33 # else
34 # ifdef USE_IN_EXTENDED_LOCALE_MODEL
35 # define STRTOF __strtod_l
36 # else
37 # define STRTOF strtod
38 # endif
39 # endif
40 # define MPN2FLOAT __mpn_construct_double
41 # define FLOAT_HUGE_VAL HUGE_VAL
42 # define SET_MANTISSA(flt, mant) \
43 do { union ieee754_double u; \
44 u.d = (flt); \
45 if ((mant & 0xfffffffffffffULL) == 0) \
46 mant = 0x8000000000000ULL; \
47 u.ieee.mantissa0 = ((mant) >> 32) & 0xfffff; \
48 u.ieee.mantissa1 = (mant) & 0xffffffff; \
49 (flt) = u.d; \
50 } while (0)
51 #endif
52 /* End of configuration part. */
54 #include <ctype.h>
55 #include <errno.h>
56 #include <float.h>
57 #include <ieee754.h>
58 #include "../locale/localeinfo.h"
59 #include <math.h>
60 #include <stdlib.h>
61 #include <string.h>
63 /* The gmp headers need some configuration frobs. */
64 #define HAVE_ALLOCA 1
66 #include <gmp.h>
67 #include <gmp-impl.h>
68 #include <gmp-mparam.h>
69 #include <longlong.h>
70 #include "fpioconst.h"
72 #define NDEBUG 1
73 #include <assert.h>
76 /* We use this code also for the extended locale handling where the
77 function gets as an additional argument the locale which has to be
78 used. To access the values we have to redefine the _NL_CURRENT
79 macro. */
80 #ifdef USE_IN_EXTENDED_LOCALE_MODEL
81 # undef _NL_CURRENT
82 # define _NL_CURRENT(category, item) \
83 (current->values[_NL_ITEM_INDEX (item)].string)
84 # define LOCALE_PARAM , loc
85 # define LOCALE_PARAM_DECL __locale_t loc;
86 #else
87 # define LOCALE_PARAM
88 # define LOCALE_PARAM_DECL
89 #endif
91 #if defined _LIBC || defined HAVE_WCHAR_H
92 # include <wchar.h>
93 #endif
95 #ifdef USE_WIDE_CHAR
96 # include <wctype.h>
97 # define STRING_TYPE wchar_t
98 # define CHAR_TYPE wint_t
99 # define L_(Ch) L##Ch
100 # ifdef USE_IN_EXTENDED_LOCALE_MODEL
101 # define ISSPACE(Ch) __iswspace_l ((Ch), loc)
102 # define ISDIGIT(Ch) __iswdigit_l ((Ch), loc)
103 # define ISXDIGIT(Ch) __iswxdigit_l ((Ch), loc)
104 # define TOLOWER(Ch) __towlower_l ((Ch), loc)
105 # define STRNCASECMP(S1, S2, N) __wcsncasecmp_l ((S1), (S2), (N), loc)
106 # define STRTOULL(S, E, B) ____wcstoull_l_internal ((S), (E), (B), 0, loc)
107 # else
108 # define ISSPACE(Ch) iswspace (Ch)
109 # define ISDIGIT(Ch) iswdigit (Ch)
110 # define ISXDIGIT(Ch) iswxdigit (Ch)
111 # define TOLOWER(Ch) towlower (Ch)
112 # define STRNCASECMP(S1, S2, N) __wcsncasecmp ((S1), (S2), (N))
113 # define STRTOULL(S, E, B) __wcstoull_internal ((S), (E), (B), 0)
114 # endif
115 #else
116 # define STRING_TYPE char
117 # define CHAR_TYPE char
118 # define L_(Ch) Ch
119 # ifdef USE_IN_EXTENDED_LOCALE_MODEL
120 # define ISSPACE(Ch) __isspace_l ((Ch), loc)
121 # define ISDIGIT(Ch) __isdigit_l ((Ch), loc)
122 # define ISXDIGIT(Ch) __isxdigit_l ((Ch), loc)
123 # define TOLOWER(Ch) __tolower_l ((Ch), loc)
124 # define STRNCASECMP(S1, S2, N) __strncasecmp_l ((S1), (S2), (N), loc)
125 # define STRTOULL(S, E, B) ____strtoull_l_internal ((S), (E), (B), 0, loc)
126 # else
127 # define ISSPACE(Ch) isspace (Ch)
128 # define ISDIGIT(Ch) isdigit (Ch)
129 # define ISXDIGIT(Ch) isxdigit (Ch)
130 # define TOLOWER(Ch) tolower (Ch)
131 # define STRNCASECMP(S1, S2, N) __strncasecmp ((S1), (S2), (N))
132 # define STRTOULL(S, E, B) __strtoull_internal ((S), (E), 0, (B))
133 # endif
134 #endif
137 /* Constants we need from float.h; select the set for the FLOAT precision. */
138 #define MANT_DIG PASTE(FLT,_MANT_DIG)
139 #define DIG PASTE(FLT,_DIG)
140 #define MAX_EXP PASTE(FLT,_MAX_EXP)
141 #define MIN_EXP PASTE(FLT,_MIN_EXP)
142 #define MAX_10_EXP PASTE(FLT,_MAX_10_EXP)
143 #define MIN_10_EXP PASTE(FLT,_MIN_10_EXP)
145 /* Extra macros required to get FLT expanded before the pasting. */
146 #define PASTE(a,b) PASTE1(a,b)
147 #define PASTE1(a,b) a##b
149 /* Function to construct a floating point number from an MP integer
150 containing the fraction bits, a base 2 exponent, and a sign flag. */
151 extern FLOAT MPN2FLOAT (mp_srcptr mpn, int exponent, int negative);
153 /* Definitions according to limb size used. */
154 #if BITS_PER_MP_LIMB == 32
155 # define MAX_DIG_PER_LIMB 9
156 # define MAX_FAC_PER_LIMB 1000000000UL
157 #elif BITS_PER_MP_LIMB == 64
158 # define MAX_DIG_PER_LIMB 19
159 # define MAX_FAC_PER_LIMB 10000000000000000000UL
160 #else
161 # error "mp_limb_t size " BITS_PER_MP_LIMB "not accounted for"
162 #endif
165 /* Local data structure. */
166 static const mp_limb_t _tens_in_limb[MAX_DIG_PER_LIMB + 1] =
167 { 0, 10, 100,
168 1000, 10000, 100000,
169 1000000, 10000000, 100000000,
170 1000000000
171 #if BITS_PER_MP_LIMB > 32
172 , 10000000000U, 100000000000U,
173 1000000000000U, 10000000000000U, 100000000000000U,
174 1000000000000000U, 10000000000000000U, 100000000000000000U,
175 1000000000000000000U, 10000000000000000000U
176 #endif
177 #if BITS_PER_MP_LIMB > 64
178 #error "Need to expand tens_in_limb table to" MAX_DIG_PER_LIMB
179 #endif
182 #ifndef howmany
183 #define howmany(x,y) (((x)+((y)-1))/(y))
184 #endif
185 #define SWAP(x, y) ({ typeof(x) _tmp = x; x = y; y = _tmp; })
187 #define NDIG (MAX_10_EXP - MIN_10_EXP + 2 * MANT_DIG)
188 #define HEXNDIG ((MAX_EXP - MIN_EXP + 7) / 8 + 2 * MANT_DIG)
189 #define RETURN_LIMB_SIZE howmany (MANT_DIG, BITS_PER_MP_LIMB)
191 #define RETURN(val,end) \
192 do { if (endptr != NULL) *endptr = (STRING_TYPE *) (end); \
193 return val; } while (0)
195 /* Maximum size necessary for mpn integers to hold floating point numbers. */
196 #define MPNSIZE (howmany (MAX_EXP + 2 * MANT_DIG, BITS_PER_MP_LIMB) \
197 + 2)
198 /* Declare an mpn integer variable that big. */
199 #define MPN_VAR(name) mp_limb_t name[MPNSIZE]; mp_size_t name##size
200 /* Copy an mpn integer value. */
201 #define MPN_ASSIGN(dst, src) \
202 memcpy (dst, src, (dst##size = src##size) * sizeof (mp_limb_t))
205 /* Return a floating point number of the needed type according to the given
206 multi-precision number after possible rounding. */
207 static inline FLOAT
208 round_and_return (mp_limb_t *retval, int exponent, int negative,
209 mp_limb_t round_limb, mp_size_t round_bit, int more_bits)
211 if (exponent < MIN_EXP - 1)
213 mp_size_t shift = MIN_EXP - 1 - exponent;
215 if (shift > MANT_DIG)
217 __set_errno (EDOM);
218 return 0.0;
221 more_bits |= (round_limb & ((((mp_limb_t) 1) << round_bit) - 1)) != 0;
222 if (shift == MANT_DIG)
223 /* This is a special case to handle the very seldom case where
224 the mantissa will be empty after the shift. */
226 int i;
228 round_limb = retval[RETURN_LIMB_SIZE - 1];
229 round_bit = (MANT_DIG - 1) % BITS_PER_MP_LIMB;
230 for (i = 0; i < RETURN_LIMB_SIZE; ++i)
231 more_bits |= retval[i] != 0;
232 MPN_ZERO (retval, RETURN_LIMB_SIZE);
234 else if (shift >= BITS_PER_MP_LIMB)
236 int i;
238 round_limb = retval[(shift - 1) / BITS_PER_MP_LIMB];
239 round_bit = (shift - 1) % BITS_PER_MP_LIMB;
240 for (i = 0; i < (shift - 1) / BITS_PER_MP_LIMB; ++i)
241 more_bits |= retval[i] != 0;
242 more_bits |= ((round_limb & ((((mp_limb_t) 1) << round_bit) - 1))
243 != 0);
245 (void) __mpn_rshift (retval, &retval[shift / BITS_PER_MP_LIMB],
246 RETURN_LIMB_SIZE - (shift / BITS_PER_MP_LIMB),
247 shift % BITS_PER_MP_LIMB);
248 MPN_ZERO (&retval[RETURN_LIMB_SIZE - (shift / BITS_PER_MP_LIMB)],
249 shift / BITS_PER_MP_LIMB);
251 else if (shift > 0)
253 round_limb = retval[0];
254 round_bit = shift - 1;
255 (void) __mpn_rshift (retval, retval, RETURN_LIMB_SIZE, shift);
257 /* This is a hook for the m68k long double format, where the
258 exponent bias is the same for normalized and denormalized
259 numbers. */
260 #ifndef DENORM_EXP
261 # define DENORM_EXP (MIN_EXP - 2)
262 #endif
263 exponent = DENORM_EXP;
266 if ((round_limb & (((mp_limb_t) 1) << round_bit)) != 0
267 && (more_bits || (retval[0] & 1) != 0
268 || (round_limb & ((((mp_limb_t) 1) << round_bit) - 1)) != 0))
270 mp_limb_t cy = __mpn_add_1 (retval, retval, RETURN_LIMB_SIZE, 1);
272 if (((MANT_DIG % BITS_PER_MP_LIMB) == 0 && cy) ||
273 ((MANT_DIG % BITS_PER_MP_LIMB) != 0 &&
274 (retval[RETURN_LIMB_SIZE - 1]
275 & (((mp_limb_t) 1) << (MANT_DIG % BITS_PER_MP_LIMB))) != 0))
277 ++exponent;
278 (void) __mpn_rshift (retval, retval, RETURN_LIMB_SIZE, 1);
279 retval[RETURN_LIMB_SIZE - 1]
280 |= ((mp_limb_t) 1) << ((MANT_DIG - 1) % BITS_PER_MP_LIMB);
282 else if (exponent == DENORM_EXP
283 && (retval[RETURN_LIMB_SIZE - 1]
284 & (((mp_limb_t) 1) << ((MANT_DIG - 1) % BITS_PER_MP_LIMB)))
285 != 0)
286 /* The number was denormalized but now normalized. */
287 exponent = MIN_EXP - 1;
290 if (exponent > MAX_EXP)
291 return negative ? -FLOAT_HUGE_VAL : FLOAT_HUGE_VAL;
293 return MPN2FLOAT (retval, exponent, negative);
297 /* Read a multi-precision integer starting at STR with exactly DIGCNT digits
298 into N. Return the size of the number limbs in NSIZE at the first
299 character od the string that is not part of the integer as the function
300 value. If the EXPONENT is small enough to be taken as an additional
301 factor for the resulting number (see code) multiply by it. */
302 static inline const STRING_TYPE *
303 str_to_mpn (const STRING_TYPE *str, int digcnt, mp_limb_t *n, mp_size_t *nsize,
304 int *exponent)
306 /* Number of digits for actual limb. */
307 int cnt = 0;
308 mp_limb_t low = 0;
309 mp_limb_t start;
311 *nsize = 0;
312 assert (digcnt > 0);
315 if (cnt == MAX_DIG_PER_LIMB)
317 if (*nsize == 0)
319 n[0] = low;
320 *nsize = 1;
322 else
324 mp_limb_t cy;
325 cy = __mpn_mul_1 (n, n, *nsize, MAX_FAC_PER_LIMB);
326 cy += __mpn_add_1 (n, n, *nsize, low);
327 if (cy != 0)
329 n[*nsize] = cy;
330 ++(*nsize);
333 cnt = 0;
334 low = 0;
337 /* There might be thousands separators or radix characters in
338 the string. But these all can be ignored because we know the
339 format of the number is correct and we have an exact number
340 of characters to read. */
341 while (*str < L_('0') || *str > L_('9'))
342 ++str;
343 low = low * 10 + *str++ - L_('0');
344 ++cnt;
346 while (--digcnt > 0);
348 if (*exponent > 0 && cnt + *exponent <= MAX_DIG_PER_LIMB)
350 low *= _tens_in_limb[*exponent];
351 start = _tens_in_limb[cnt + *exponent];
352 *exponent = 0;
354 else
355 start = _tens_in_limb[cnt];
357 if (*nsize == 0)
359 n[0] = low;
360 *nsize = 1;
362 else
364 mp_limb_t cy;
365 cy = __mpn_mul_1 (n, n, *nsize, start);
366 cy += __mpn_add_1 (n, n, *nsize, low);
367 if (cy != 0)
368 n[(*nsize)++] = cy;
371 return str;
375 /* Shift {PTR, SIZE} COUNT bits to the left, and fill the vacated bits
376 with the COUNT most significant bits of LIMB.
378 Tege doesn't like this function so I have to write it here myself. :)
379 --drepper */
380 static inline void
381 __mpn_lshift_1 (mp_limb_t *ptr, mp_size_t size, unsigned int count,
382 mp_limb_t limb)
384 if (count == BITS_PER_MP_LIMB)
386 /* Optimize the case of shifting by exactly a word:
387 just copy words, with no actual bit-shifting. */
388 mp_size_t i;
389 for (i = size - 1; i > 0; --i)
390 ptr[i] = ptr[i - 1];
391 ptr[0] = limb;
393 else
395 (void) __mpn_lshift (ptr, ptr, size, count);
396 ptr[0] |= limb >> (BITS_PER_MP_LIMB - count);
401 #define INTERNAL(x) INTERNAL1(x)
402 #define INTERNAL1(x) __##x##_internal
404 /* This file defines a function to check for correct grouping. */
405 #include "grouping.h"
408 /* Return a floating point number with the value of the given string NPTR.
409 Set *ENDPTR to the character after the last used one. If the number is
410 smaller than the smallest representable number, set `errno' to ERANGE and
411 return 0.0. If the number is too big to be represented, set `errno' to
412 ERANGE and return HUGE_VAL with the appropriate sign. */
413 FLOAT
414 INTERNAL (STRTOF) (nptr, endptr, group LOCALE_PARAM)
415 const STRING_TYPE *nptr;
416 STRING_TYPE **endptr;
417 int group;
418 LOCALE_PARAM_DECL
420 int negative; /* The sign of the number. */
421 MPN_VAR (num); /* MP representation of the number. */
422 int exponent; /* Exponent of the number. */
424 /* Numbers starting `0X' or `0x' have to be processed with base 16. */
425 int base = 10;
427 /* When we have to compute fractional digits we form a fraction with a
428 second multi-precision number (and we sometimes need a second for
429 temporary results). */
430 MPN_VAR (den);
432 /* Representation for the return value. */
433 mp_limb_t retval[RETURN_LIMB_SIZE];
434 /* Number of bits currently in result value. */
435 int bits;
437 /* Running pointer after the last character processed in the string. */
438 const STRING_TYPE *cp, *tp;
439 /* Start of significant part of the number. */
440 const STRING_TYPE *startp, *start_of_digits;
441 /* Points at the character following the integer and fractional digits. */
442 const STRING_TYPE *expp;
443 /* Total number of digit and number of digits in integer part. */
444 int dig_no, int_no, lead_zero;
445 /* Contains the last character read. */
446 CHAR_TYPE c;
448 /* We should get wint_t from <stddef.h>, but not all GCC versions define it
449 there. So define it ourselves if it remains undefined. */
450 #ifndef _WINT_T
451 typedef unsigned int wint_t;
452 #endif
453 /* The radix character of the current locale. */
454 wchar_t decimal;
455 /* The thousands character of the current locale. */
456 wchar_t thousands = L'\0';
457 /* The numeric grouping specification of the current locale,
458 in the format described in <locale.h>. */
459 const char *grouping;
461 #ifdef USE_IN_EXTENDED_LOCALE_MODEL
462 struct locale_data *current = loc->__locales[LC_NUMERIC];
463 #endif
465 if (group)
467 grouping = _NL_CURRENT (LC_NUMERIC, GROUPING);
468 if (*grouping <= 0 || *grouping == CHAR_MAX)
469 grouping = NULL;
470 else
472 /* Figure out the thousands separator character. */
473 thousands = __btowc (*_NL_CURRENT (LC_NUMERIC, THOUSANDS_SEP));
474 if (thousands == WEOF)
475 thousands = L'\0';
476 if (thousands == L'\0')
477 grouping = NULL;
480 else
481 grouping = NULL;
483 /* Find the locale's decimal point character. */
484 decimal = __btowc (*_NL_CURRENT (LC_NUMERIC, DECIMAL_POINT));
485 if (decimal == WEOF)
486 decimal = L'.';
487 assert (decimal != L'\0');
489 /* Prepare number representation. */
490 exponent = 0;
491 negative = 0;
492 bits = 0;
494 /* Parse string to get maximal legal prefix. We need the number of
495 characters of the integer part, the fractional part and the exponent. */
496 cp = nptr - 1;
497 /* Ignore leading white space. */
499 c = *++cp;
500 while (ISSPACE (c));
502 /* Get sign of the result. */
503 if (c == L_('-'))
505 negative = 1;
506 c = *++cp;
508 else if (c == L_('+'))
509 c = *++cp;
511 /* Return 0.0 if no legal string is found.
512 No character is used even if a sign was found. */
513 if ((c < L_('0') || c > L_('9'))
514 && ((wchar_t) c != decimal || cp[1] < L_('0') || cp[1] > L_('9')))
516 int matched = 0;
517 /* Check for `INF' or `INFINITY'. */
518 if (TOLOWER (c) == L_('i')
519 && ((STRNCASECMP (cp, L_("inf"), 3) == 0 && (matched = 3))
520 || (STRNCASECMP (cp, L_("infinity"), 8) == 0 && (matched = 8))))
522 /* Return +/- infinity. */
523 if (endptr != NULL)
524 *endptr = (STRING_TYPE *) (cp + matched);
526 return negative ? -FLOAT_HUGE_VAL : FLOAT_HUGE_VAL;
529 if (TOLOWER (c) == L_('n') && STRNCASECMP (cp, L_("nan"), 3) == 0)
531 /* Return NaN. */
532 FLOAT retval = NAN;
534 cp += 3;
536 /* Match `(n-char-sequence-digit)'. */
537 if (*cp == L_('('))
539 const STRING_TYPE *startp = cp;
541 ++cp;
542 while ((*cp >= L_('0') && *cp <= L_('9'))
543 || (TOLOWER (*cp) >= L_('a') && TOLOWER (*cp) <= L_('z'))
544 || *cp == L_('_'));
546 if (*cp != L_(')'))
547 /* The closing brace is missing. Only match the NAN
548 part. */
549 cp = startp;
550 else
552 /* This is a system-dependent way to specify the
553 bitmask used for the NaN. We expect it to be
554 a number which is put in the mantissa of the
555 number. */
556 STRING_TYPE *endp;
557 unsigned long long int mant;
559 mant = STRTOULL (startp + 1, &endp, 0);
560 if (endp == cp)
561 SET_MANTISSA (retval, mant);
565 if (endptr != NULL)
566 *endptr = (STRING_TYPE *) cp;
568 return retval;
571 /* It is really a text we do not recognize. */
572 RETURN (0.0, nptr);
575 /* First look whether we are faced with a hexadecimal number. */
576 if (c == L_('0') && TOLOWER (cp[1]) == L_('x'))
578 /* Okay, it is a hexa-decimal number. Remember this and skip
579 the characters. BTW: hexadecimal numbers must not be
580 grouped. */
581 base = 16;
582 cp += 2;
583 c = *cp;
584 grouping = NULL;
587 /* Record the start of the digits, in case we will check their grouping. */
588 start_of_digits = startp = cp;
590 /* Ignore leading zeroes. This helps us to avoid useless computations. */
591 while (c == L_('0') || (thousands != L'\0' && (wchar_t) c == thousands))
592 c = *++cp;
594 /* If no other digit but a '0' is found the result is 0.0.
595 Return current read pointer. */
596 if ((c < L_('0') || c > L_('9')) &&
597 (base == 16 && (c < TOLOWER (L_('a')) || c > TOLOWER (L_('f')))) &&
598 (wchar_t) c != decimal &&
599 (base == 16 && (cp == start_of_digits || TOLOWER (c) != L_('p'))) &&
600 (base != 16 && TOLOWER (c) != L_('e')))
602 tp = correctly_grouped_prefix (start_of_digits, cp, thousands, grouping);
603 /* If TP is at the start of the digits, there was no correctly
604 grouped prefix of the string; so no number found. */
605 RETURN (0.0, tp == start_of_digits ? (base == 16 ? cp - 1 : nptr) : tp);
608 /* Remember first significant digit and read following characters until the
609 decimal point, exponent character or any non-FP number character. */
610 startp = cp;
611 dig_no = 0;
612 while (dig_no < (base == 16 ? HEXNDIG : NDIG) ||
613 /* If parsing grouping info, keep going past useful digits
614 so we can check all the grouping separators. */
615 grouping)
617 if ((c >= L_('0') && c <= L_('9'))
618 || (base == 16 && TOLOWER (c) >= L_('a') && TOLOWER (c) <= L_('f')))
619 ++dig_no;
620 else if (thousands == L'\0' || (wchar_t) c != thousands)
621 /* Not a digit or separator: end of the integer part. */
622 break;
623 c = *++cp;
626 if (grouping && dig_no > 0)
628 /* Check the grouping of the digits. */
629 tp = correctly_grouped_prefix (start_of_digits, cp, thousands, grouping);
630 if (cp != tp)
632 /* Less than the entire string was correctly grouped. */
634 if (tp == start_of_digits)
635 /* No valid group of numbers at all: no valid number. */
636 RETURN (0.0, nptr);
638 if (tp < startp)
639 /* The number is validly grouped, but consists
640 only of zeroes. The whole value is zero. */
641 RETURN (0.0, tp);
643 /* Recompute DIG_NO so we won't read more digits than
644 are properly grouped. */
645 cp = tp;
646 dig_no = 0;
647 for (tp = startp; tp < cp; ++tp)
648 if (*tp >= L_('0') && *tp <= L_('9'))
649 ++dig_no;
651 int_no = dig_no;
652 lead_zero = 0;
654 goto number_parsed;
658 if (dig_no >= (base == 16 ? HEXNDIG : NDIG))
659 /* Too many digits to be representable. Assigning this to EXPONENT
660 allows us to read the full number but return HUGE_VAL after parsing. */
661 exponent = MAX_10_EXP;
663 /* We have the number digits in the integer part. Whether these are all or
664 any is really a fractional digit will be decided later. */
665 int_no = dig_no;
666 lead_zero = int_no == 0 ? -1 : 0;
668 /* Read the fractional digits. A special case are the 'american style'
669 numbers like `16.' i.e. with decimal but without trailing digits. */
670 if ((wchar_t) c == decimal)
672 c = *++cp;
673 while ((c >= L_('0') && c <= L_('9')) ||
674 (base == 16 && TOLOWER (c) >= L_('a') && TOLOWER (c) <= L_('f')))
676 if (c != L_('0') && lead_zero == -1)
677 lead_zero = dig_no - int_no;
678 ++dig_no;
679 c = *++cp;
683 /* Remember start of exponent (if any). */
684 expp = cp;
686 /* Read exponent. */
687 if ((base == 16 && TOLOWER (c) == L_('p'))
688 || (base != 16 && TOLOWER (c) == L_('e')))
690 int exp_negative = 0;
692 c = *++cp;
693 if (c == L_('-'))
695 exp_negative = 1;
696 c = *++cp;
698 else if (c == L_('+'))
699 c = *++cp;
701 if (c >= L_('0') && c <= L_('9'))
703 int exp_limit;
705 /* Get the exponent limit. */
706 if (base == 16)
707 exp_limit = (exp_negative ?
708 -MIN_EXP + MANT_DIG - 4 * int_no :
709 MAX_EXP - 4 * int_no + lead_zero);
710 else
711 exp_limit = (exp_negative ?
712 -MIN_10_EXP + MANT_DIG - int_no :
713 MAX_10_EXP - int_no + lead_zero);
717 exponent *= 10;
719 if (exponent > exp_limit)
720 /* The exponent is too large/small to represent a valid
721 number. */
723 FLOAT result;
725 /* We have to take care for special situation: a joker
726 might have written "0.0e100000" which is in fact
727 zero. */
728 if (lead_zero == -1)
729 result = negative ? -0.0 : 0.0;
730 else
732 /* Overflow or underflow. */
733 __set_errno (ERANGE);
734 result = (exp_negative ? 0.0 :
735 negative ? -FLOAT_HUGE_VAL : FLOAT_HUGE_VAL);
738 /* Accept all following digits as part of the exponent. */
740 ++cp;
741 while (*cp >= L_('0') && *cp <= L_('9'));
743 RETURN (result, cp);
744 /* NOTREACHED */
747 exponent += c - L_('0');
748 c = *++cp;
750 while (c >= L_('0') && c <= L_('9'));
752 if (exp_negative)
753 exponent = -exponent;
755 else
756 cp = expp;
759 /* We don't want to have to work with trailing zeroes after the radix. */
760 if (dig_no > int_no)
762 while (expp[-1] == L_('0'))
764 --expp;
765 --dig_no;
767 assert (dig_no >= int_no);
770 number_parsed:
772 /* The whole string is parsed. Store the address of the next character. */
773 if (endptr)
774 *endptr = (STRING_TYPE *) cp;
776 if (dig_no == 0)
777 return negative ? -0.0 : 0.0;
779 if (lead_zero)
781 /* Find the decimal point */
782 while ((wchar_t) *startp != decimal)
783 ++startp;
784 startp += lead_zero + 1;
785 exponent -= base == 16 ? 4 * lead_zero : lead_zero;
786 dig_no -= lead_zero;
789 /* If the BASE is 16 we can use a simpler algorithm. */
790 if (base == 16)
792 static const int nbits[16] = { 0, 1, 2, 2, 3, 3, 3, 3,
793 4, 4, 4, 4, 4, 4, 4, 4 };
794 int idx = (MANT_DIG - 1) / BITS_PER_MP_LIMB;
795 int pos = (MANT_DIG - 1) % BITS_PER_MP_LIMB;
796 mp_limb_t val;
798 while (!ISXDIGIT (*startp))
799 ++startp;
800 while (*startp == L_('0'))
801 ++startp;
802 if (ISDIGIT (*startp))
803 val = *startp++ - L_('0');
804 else
805 val = 10 + TOLOWER (*startp++) - L_('a');
806 bits = nbits[val];
807 /* We cannot have a leading zero. */
808 assert (bits != 0);
810 if (pos + 1 >= 4 || pos + 1 >= bits)
812 /* We don't have to care for wrapping. This is the normal
813 case so we add the first clause in the `if' expression as
814 an optimization. It is a compile-time constant and so does
815 not cost anything. */
816 retval[idx] = val << (pos - bits + 1);
817 pos -= bits;
819 else
821 retval[idx--] = val >> (bits - pos - 1);
822 retval[idx] = val << (BITS_PER_MP_LIMB - (bits - pos - 1));
823 pos = BITS_PER_MP_LIMB - 1 - (bits - pos - 1);
826 /* Adjust the exponent for the bits we are shifting in. */
827 exponent += bits - 1 + (int_no - 1) * 4;
829 while (--dig_no > 0 && idx >= 0)
831 while (!ISXDIGIT (*startp))
832 ++startp;
833 if (ISDIGIT (*startp))
834 val = *startp++ - L_('0');
835 else
836 val = 10 + TOLOWER (*startp++) - L_('a');
838 if (pos + 1 >= 4)
840 retval[idx] |= val << (pos - 4 + 1);
841 pos -= 4;
843 else
845 retval[idx--] |= val >> (4 - pos - 1);
846 val <<= BITS_PER_MP_LIMB - (4 - pos - 1);
847 if (idx < 0)
848 return round_and_return (retval, exponent, negative, val,
849 BITS_PER_MP_LIMB - 1, dig_no > 0);
851 retval[idx] = val;
852 pos = BITS_PER_MP_LIMB - 1 - (4 - pos - 1);
856 /* We ran out of digits. */
857 MPN_ZERO (retval, idx);
859 return round_and_return (retval, exponent, negative, 0, 0, 0);
862 /* Now we have the number of digits in total and the integer digits as well
863 as the exponent and its sign. We can decide whether the read digits are
864 really integer digits or belong to the fractional part; i.e. we normalize
865 123e-2 to 1.23. */
867 register int incr = (exponent < 0 ? MAX (-int_no, exponent)
868 : MIN (dig_no - int_no, exponent));
869 int_no += incr;
870 exponent -= incr;
873 if (int_no + exponent > MAX_10_EXP + 1)
875 __set_errno (ERANGE);
876 return negative ? -FLOAT_HUGE_VAL : FLOAT_HUGE_VAL;
879 if (exponent < MIN_10_EXP - (DIG + 1))
881 __set_errno (ERANGE);
882 return 0.0;
885 if (int_no > 0)
887 /* Read the integer part as a multi-precision number to NUM. */
888 startp = str_to_mpn (startp, int_no, num, &numsize, &exponent);
890 if (exponent > 0)
892 /* We now multiply the gained number by the given power of ten. */
893 mp_limb_t *psrc = num;
894 mp_limb_t *pdest = den;
895 int expbit = 1;
896 const struct mp_power *ttab = &_fpioconst_pow10[0];
900 if ((exponent & expbit) != 0)
902 size_t size = ttab->arraysize - _FPIO_CONST_OFFSET;
903 mp_limb_t cy;
904 exponent ^= expbit;
906 /* FIXME: not the whole multiplication has to be
907 done. If we have the needed number of bits we
908 only need the information whether more non-zero
909 bits follow. */
910 if (numsize >= ttab->arraysize - _FPIO_CONST_OFFSET)
911 cy = __mpn_mul (pdest, psrc, numsize,
912 &__tens[ttab->arrayoff
913 + _FPIO_CONST_OFFSET],
914 size);
915 else
916 cy = __mpn_mul (pdest, &__tens[ttab->arrayoff
917 + _FPIO_CONST_OFFSET],
918 size, psrc, numsize);
919 numsize += size;
920 if (cy == 0)
921 --numsize;
922 SWAP (psrc, pdest);
924 expbit <<= 1;
925 ++ttab;
927 while (exponent != 0);
929 if (psrc == den)
930 memcpy (num, den, numsize * sizeof (mp_limb_t));
933 /* Determine how many bits of the result we already have. */
934 count_leading_zeros (bits, num[numsize - 1]);
935 bits = numsize * BITS_PER_MP_LIMB - bits;
937 /* Now we know the exponent of the number in base two.
938 Check it against the maximum possible exponent. */
939 if (bits > MAX_EXP)
941 __set_errno (ERANGE);
942 return negative ? -FLOAT_HUGE_VAL : FLOAT_HUGE_VAL;
945 /* We have already the first BITS bits of the result. Together with
946 the information whether more non-zero bits follow this is enough
947 to determine the result. */
948 if (bits > MANT_DIG)
950 int i;
951 const mp_size_t least_idx = (bits - MANT_DIG) / BITS_PER_MP_LIMB;
952 const mp_size_t least_bit = (bits - MANT_DIG) % BITS_PER_MP_LIMB;
953 const mp_size_t round_idx = least_bit == 0 ? least_idx - 1
954 : least_idx;
955 const mp_size_t round_bit = least_bit == 0 ? BITS_PER_MP_LIMB - 1
956 : least_bit - 1;
958 if (least_bit == 0)
959 memcpy (retval, &num[least_idx],
960 RETURN_LIMB_SIZE * sizeof (mp_limb_t));
961 else
963 for (i = least_idx; i < numsize - 1; ++i)
964 retval[i - least_idx] = (num[i] >> least_bit)
965 | (num[i + 1]
966 << (BITS_PER_MP_LIMB - least_bit));
967 if (i - least_idx < RETURN_LIMB_SIZE)
968 retval[RETURN_LIMB_SIZE - 1] = num[i] >> least_bit;
971 /* Check whether any limb beside the ones in RETVAL are non-zero. */
972 for (i = 0; num[i] == 0; ++i)
975 return round_and_return (retval, bits - 1, negative,
976 num[round_idx], round_bit,
977 int_no < dig_no || i < round_idx);
978 /* NOTREACHED */
980 else if (dig_no == int_no)
982 const mp_size_t target_bit = (MANT_DIG - 1) % BITS_PER_MP_LIMB;
983 const mp_size_t is_bit = (bits - 1) % BITS_PER_MP_LIMB;
985 if (target_bit == is_bit)
987 memcpy (&retval[RETURN_LIMB_SIZE - numsize], num,
988 numsize * sizeof (mp_limb_t));
989 /* FIXME: the following loop can be avoided if we assume a
990 maximal MANT_DIG value. */
991 MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize);
993 else if (target_bit > is_bit)
995 (void) __mpn_lshift (&retval[RETURN_LIMB_SIZE - numsize],
996 num, numsize, target_bit - is_bit);
997 /* FIXME: the following loop can be avoided if we assume a
998 maximal MANT_DIG value. */
999 MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize);
1001 else
1003 mp_limb_t cy;
1004 assert (numsize < RETURN_LIMB_SIZE);
1006 cy = __mpn_rshift (&retval[RETURN_LIMB_SIZE - numsize],
1007 num, numsize, is_bit - target_bit);
1008 retval[RETURN_LIMB_SIZE - numsize - 1] = cy;
1009 /* FIXME: the following loop can be avoided if we assume a
1010 maximal MANT_DIG value. */
1011 MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize - 1);
1014 return round_and_return (retval, bits - 1, negative, 0, 0, 0);
1015 /* NOTREACHED */
1018 /* Store the bits we already have. */
1019 memcpy (retval, num, numsize * sizeof (mp_limb_t));
1020 #if RETURN_LIMB_SIZE > 1
1021 if (numsize < RETURN_LIMB_SIZE)
1022 retval[numsize] = 0;
1023 #endif
1026 /* We have to compute at least some of the fractional digits. */
1028 /* We construct a fraction and the result of the division gives us
1029 the needed digits. The denominator is 1.0 multiplied by the
1030 exponent of the lowest digit; i.e. 0.123 gives 123 / 1000 and
1031 123e-6 gives 123 / 1000000. */
1033 int expbit;
1034 int cnt;
1035 int neg_exp;
1036 int more_bits;
1037 mp_limb_t cy;
1038 mp_limb_t *psrc = den;
1039 mp_limb_t *pdest = num;
1040 const struct mp_power *ttab = &_fpioconst_pow10[0];
1042 assert (dig_no > int_no && exponent <= 0);
1045 /* For the fractional part we need not process too many digits. One
1046 decimal digits gives us log_2(10) ~ 3.32 bits. If we now compute
1047 ceil(BITS / 3) =: N
1048 digits we should have enough bits for the result. The remaining
1049 decimal digits give us the information that more bits are following.
1050 This can be used while rounding. (One added as a safety margin.) */
1051 if (dig_no - int_no > (MANT_DIG - bits + 2) / 3 + 1)
1053 dig_no = int_no + (MANT_DIG - bits + 2) / 3 + 1;
1054 more_bits = 1;
1056 else
1057 more_bits = 0;
1059 neg_exp = dig_no - int_no - exponent;
1061 /* Construct the denominator. */
1062 densize = 0;
1063 expbit = 1;
1066 if ((neg_exp & expbit) != 0)
1068 mp_limb_t cy;
1069 neg_exp ^= expbit;
1071 if (densize == 0)
1073 densize = ttab->arraysize - _FPIO_CONST_OFFSET;
1074 memcpy (psrc, &__tens[ttab->arrayoff + _FPIO_CONST_OFFSET],
1075 densize * sizeof (mp_limb_t));
1077 else
1079 cy = __mpn_mul (pdest, &__tens[ttab->arrayoff
1080 + _FPIO_CONST_OFFSET],
1081 ttab->arraysize - _FPIO_CONST_OFFSET,
1082 psrc, densize);
1083 densize += ttab->arraysize - _FPIO_CONST_OFFSET;
1084 if (cy == 0)
1085 --densize;
1086 SWAP (psrc, pdest);
1089 expbit <<= 1;
1090 ++ttab;
1092 while (neg_exp != 0);
1094 if (psrc == num)
1095 memcpy (den, num, densize * sizeof (mp_limb_t));
1097 /* Read the fractional digits from the string. */
1098 (void) str_to_mpn (startp, dig_no - int_no, num, &numsize, &exponent);
1101 /* We now have to shift both numbers so that the highest bit in the
1102 denominator is set. In the same process we copy the numerator to
1103 a high place in the array so that the division constructs the wanted
1104 digits. This is done by a "quasi fix point" number representation.
1106 num: ddddddddddd . 0000000000000000000000
1107 |--- m ---|
1108 den: ddddddddddd n >= m
1109 |--- n ---|
1112 count_leading_zeros (cnt, den[densize - 1]);
1114 if (cnt > 0)
1116 /* Don't call `mpn_shift' with a count of zero since the specification
1117 does not allow this. */
1118 (void) __mpn_lshift (den, den, densize, cnt);
1119 cy = __mpn_lshift (num, num, numsize, cnt);
1120 if (cy != 0)
1121 num[numsize++] = cy;
1124 /* Now we are ready for the division. But it is not necessary to
1125 do a full multi-precision division because we only need a small
1126 number of bits for the result. So we do not use __mpn_divmod
1127 here but instead do the division here by hand and stop whenever
1128 the needed number of bits is reached. The code itself comes
1129 from the GNU MP Library by Torbj\"orn Granlund. */
1131 exponent = bits;
1133 switch (densize)
1135 case 1:
1137 mp_limb_t d, n, quot;
1138 int used = 0;
1140 n = num[0];
1141 d = den[0];
1142 assert (numsize == 1 && n < d);
1146 udiv_qrnnd (quot, n, n, 0, d);
1148 #define got_limb \
1149 if (bits == 0) \
1151 register int cnt; \
1152 if (quot == 0) \
1153 cnt = BITS_PER_MP_LIMB; \
1154 else \
1155 count_leading_zeros (cnt, quot); \
1156 exponent -= cnt; \
1157 if (BITS_PER_MP_LIMB - cnt > MANT_DIG) \
1159 used = MANT_DIG + cnt; \
1160 retval[0] = quot >> (BITS_PER_MP_LIMB - used); \
1161 bits = MANT_DIG + 1; \
1163 else \
1165 /* Note that we only clear the second element. */ \
1166 /* The conditional is determined at compile time. */ \
1167 if (RETURN_LIMB_SIZE > 1) \
1168 retval[1] = 0; \
1169 retval[0] = quot; \
1170 bits = -cnt; \
1173 else if (bits + BITS_PER_MP_LIMB <= MANT_DIG) \
1174 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, BITS_PER_MP_LIMB, \
1175 quot); \
1176 else \
1178 used = MANT_DIG - bits; \
1179 if (used > 0) \
1180 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, quot); \
1182 bits += BITS_PER_MP_LIMB
1184 got_limb;
1186 while (bits <= MANT_DIG);
1188 return round_and_return (retval, exponent - 1, negative,
1189 quot, BITS_PER_MP_LIMB - 1 - used,
1190 more_bits || n != 0);
1192 case 2:
1194 mp_limb_t d0, d1, n0, n1;
1195 mp_limb_t quot = 0;
1196 int used = 0;
1198 d0 = den[0];
1199 d1 = den[1];
1201 if (numsize < densize)
1203 if (num[0] >= d1)
1205 /* The numerator of the number occupies fewer bits than
1206 the denominator but the one limb is bigger than the
1207 high limb of the numerator. */
1208 n1 = 0;
1209 n0 = num[0];
1211 else
1213 if (bits <= 0)
1214 exponent -= BITS_PER_MP_LIMB;
1215 else
1217 if (bits + BITS_PER_MP_LIMB <= MANT_DIG)
1218 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE,
1219 BITS_PER_MP_LIMB, 0);
1220 else
1222 used = MANT_DIG - bits;
1223 if (used > 0)
1224 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, 0);
1226 bits += BITS_PER_MP_LIMB;
1228 n1 = num[0];
1229 n0 = 0;
1232 else
1234 n1 = num[1];
1235 n0 = num[0];
1238 while (bits <= MANT_DIG)
1240 mp_limb_t r;
1242 if (n1 == d1)
1244 /* QUOT should be either 111..111 or 111..110. We need
1245 special treatment of this rare case as normal division
1246 would give overflow. */
1247 quot = ~(mp_limb_t) 0;
1249 r = n0 + d1;
1250 if (r < d1) /* Carry in the addition? */
1252 add_ssaaaa (n1, n0, r - d0, 0, 0, d0);
1253 goto have_quot;
1255 n1 = d0 - (d0 != 0);
1256 n0 = -d0;
1258 else
1260 udiv_qrnnd (quot, r, n1, n0, d1);
1261 umul_ppmm (n1, n0, d0, quot);
1264 q_test:
1265 if (n1 > r || (n1 == r && n0 > 0))
1267 /* The estimated QUOT was too large. */
1268 --quot;
1270 sub_ddmmss (n1, n0, n1, n0, 0, d0);
1271 r += d1;
1272 if (r >= d1) /* If not carry, test QUOT again. */
1273 goto q_test;
1275 sub_ddmmss (n1, n0, r, 0, n1, n0);
1277 have_quot:
1278 got_limb;
1281 return round_and_return (retval, exponent - 1, negative,
1282 quot, BITS_PER_MP_LIMB - 1 - used,
1283 more_bits || n1 != 0 || n0 != 0);
1285 default:
1287 int i;
1288 mp_limb_t cy, dX, d1, n0, n1;
1289 mp_limb_t quot = 0;
1290 int used = 0;
1292 dX = den[densize - 1];
1293 d1 = den[densize - 2];
1295 /* The division does not work if the upper limb of the two-limb
1296 numerator is greater than the denominator. */
1297 if (__mpn_cmp (num, &den[densize - numsize], numsize) > 0)
1298 num[numsize++] = 0;
1300 if (numsize < densize)
1302 mp_size_t empty = densize - numsize;
1304 if (bits <= 0)
1306 register int i;
1307 for (i = numsize; i > 0; --i)
1308 num[i + empty] = num[i - 1];
1309 MPN_ZERO (num, empty + 1);
1310 exponent -= empty * BITS_PER_MP_LIMB;
1312 else
1314 if (bits + empty * BITS_PER_MP_LIMB <= MANT_DIG)
1316 /* We make a difference here because the compiler
1317 cannot optimize the `else' case that good and
1318 this reflects all currently used FLOAT types
1319 and GMP implementations. */
1320 register int i;
1321 #if RETURN_LIMB_SIZE <= 2
1322 assert (empty == 1);
1323 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE,
1324 BITS_PER_MP_LIMB, 0);
1325 #else
1326 for (i = RETURN_LIMB_SIZE; i > empty; --i)
1327 retval[i] = retval[i - empty];
1328 #endif
1329 #if RETURN_LIMB_SIZE > 1
1330 retval[1] = 0;
1331 #endif
1332 for (i = numsize; i > 0; --i)
1333 num[i + empty] = num[i - 1];
1334 MPN_ZERO (num, empty + 1);
1336 else
1338 used = MANT_DIG - bits;
1339 if (used >= BITS_PER_MP_LIMB)
1341 register int i;
1342 (void) __mpn_lshift (&retval[used
1343 / BITS_PER_MP_LIMB],
1344 retval, RETURN_LIMB_SIZE,
1345 used % BITS_PER_MP_LIMB);
1346 for (i = used / BITS_PER_MP_LIMB; i >= 0; --i)
1347 retval[i] = 0;
1349 else if (used > 0)
1350 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, 0);
1352 bits += empty * BITS_PER_MP_LIMB;
1355 else
1357 int i;
1358 assert (numsize == densize);
1359 for (i = numsize; i > 0; --i)
1360 num[i] = num[i - 1];
1363 den[densize] = 0;
1364 n0 = num[densize];
1366 while (bits <= MANT_DIG)
1368 if (n0 == dX)
1369 /* This might over-estimate QUOT, but it's probably not
1370 worth the extra code here to find out. */
1371 quot = ~(mp_limb_t) 0;
1372 else
1374 mp_limb_t r;
1376 udiv_qrnnd (quot, r, n0, num[densize - 1], dX);
1377 umul_ppmm (n1, n0, d1, quot);
1379 while (n1 > r || (n1 == r && n0 > num[densize - 2]))
1381 --quot;
1382 r += dX;
1383 if (r < dX) /* I.e. "carry in previous addition?" */
1384 break;
1385 n1 -= n0 < d1;
1386 n0 -= d1;
1390 /* Possible optimization: We already have (q * n0) and (1 * n1)
1391 after the calculation of QUOT. Taking advantage of this, we
1392 could make this loop make two iterations less. */
1394 cy = __mpn_submul_1 (num, den, densize + 1, quot);
1396 if (num[densize] != cy)
1398 cy = __mpn_add_n (num, num, den, densize);
1399 assert (cy != 0);
1400 --quot;
1402 n0 = num[densize] = num[densize - 1];
1403 for (i = densize - 1; i > 0; --i)
1404 num[i] = num[i - 1];
1406 got_limb;
1409 for (i = densize; num[i] == 0 && i >= 0; --i)
1411 return round_and_return (retval, exponent - 1, negative,
1412 quot, BITS_PER_MP_LIMB - 1 - used,
1413 more_bits || i >= 0);
1418 /* NOTREACHED */
1421 /* External user entry point. */
1423 FLOAT
1424 #ifdef weak_function
1425 weak_function
1426 #endif
1427 STRTOF (nptr, endptr LOCALE_PARAM)
1428 const STRING_TYPE *nptr;
1429 STRING_TYPE **endptr;
1430 LOCALE_PARAM_DECL
1432 return INTERNAL (STRTOF) (nptr, endptr, 0 LOCALE_PARAM);