Framework to test IFUNC implementations on target
[glibc.git] / manual / lang.texi
blobee04e233a99004002ed6c9c5c4257620e7a20418
1 @c This node must have no pointers.
2 @node Language Features
3 @c @node Language Features, Library Summary, , Top
4 @c %MENU% C language features provided by the library
5 @appendix C Language Facilities in the Library
7 Some of the facilities implemented by the C library really should be
8 thought of as parts of the C language itself.  These facilities ought to
9 be documented in the C Language Manual, not in the library manual; but
10 since we don't have the language manual yet, and documentation for these
11 features has been written, we are publishing it here.
13 @menu
14 * Consistency Checking::        Using @code{assert} to abort if
15                                  something ``impossible'' happens.
16 * Variadic Functions::          Defining functions with varying numbers
17                                  of args.
18 * Null Pointer Constant::       The macro @code{NULL}.
19 * Important Data Types::        Data types for object sizes.
20 * Data Type Measurements::      Parameters of data type representations.
21 @end menu
23 @node Consistency Checking
24 @section Explicitly Checking Internal Consistency
25 @cindex consistency checking
26 @cindex impossible events
27 @cindex assertions
29 When you're writing a program, it's often a good idea to put in checks
30 at strategic places for ``impossible'' errors or violations of basic
31 assumptions.  These kinds of checks are helpful in debugging problems
32 with the interfaces between different parts of the program, for example.
34 @pindex assert.h
35 The @code{assert} macro, defined in the header file @file{assert.h},
36 provides a convenient way to abort the program while printing a message
37 about where in the program the error was detected.
39 @vindex NDEBUG
40 Once you think your program is debugged, you can disable the error
41 checks performed by the @code{assert} macro by recompiling with the
42 macro @code{NDEBUG} defined.  This means you don't actually have to
43 change the program source code to disable these checks.
45 But disabling these consistency checks is undesirable unless they make
46 the program significantly slower.  All else being equal, more error
47 checking is good no matter who is running the program.  A wise user
48 would rather have a program crash, visibly, than have it return nonsense
49 without indicating anything might be wrong.
51 @comment assert.h
52 @comment ISO
53 @deftypefn Macro void assert (int @var{expression})
54 Verify the programmer's belief that @var{expression} is nonzero at
55 this point in the program.
57 If @code{NDEBUG} is not defined, @code{assert} tests the value of
58 @var{expression}.  If it is false (zero), @code{assert} aborts the
59 program (@pxref{Aborting a Program}) after printing a message of the
60 form:
62 @smallexample
63 @file{@var{file}}:@var{linenum}: @var{function}: Assertion `@var{expression}' failed.
64 @end smallexample
66 @noindent
67 on the standard error stream @code{stderr} (@pxref{Standard Streams}).
68 The filename and line number are taken from the C preprocessor macros
69 @code{__FILE__} and @code{__LINE__} and specify where the call to
70 @code{assert} was made.  When using the GNU C compiler, the name of
71 the function which calls @code{assert} is taken from the built-in
72 variable @code{__PRETTY_FUNCTION__}; with older compilers, the function
73 name and following colon are omitted.
75 If the preprocessor macro @code{NDEBUG} is defined before
76 @file{assert.h} is included, the @code{assert} macro is defined to do
77 absolutely nothing.
79 @strong{Warning:} Even the argument expression @var{expression} is not
80 evaluated if @code{NDEBUG} is in effect.  So never use @code{assert}
81 with arguments that involve side effects.  For example, @code{assert
82 (++i > 0);} is a bad idea, because @code{i} will not be incremented if
83 @code{NDEBUG} is defined.
84 @end deftypefn
86 Sometimes the ``impossible'' condition you want to check for is an error
87 return from an operating system function.  Then it is useful to display
88 not only where the program crashes, but also what error was returned.
89 The @code{assert_perror} macro makes this easy.
91 @comment assert.h
92 @comment GNU
93 @deftypefn Macro void assert_perror (int @var{errnum})
94 Similar to @code{assert}, but verifies that @var{errnum} is zero.
96 If @code{NDEBUG} is not defined, @code{assert_perror} tests the value of
97 @var{errnum}.  If it is nonzero, @code{assert_perror} aborts the program
98 after printing a message of the form:
100 @smallexample
101 @file{@var{file}}:@var{linenum}: @var{function}: @var{error text}
102 @end smallexample
104 @noindent
105 on the standard error stream.  The file name, line number, and function
106 name are as for @code{assert}.  The error text is the result of
107 @w{@code{strerror (@var{errnum})}}.  @xref{Error Messages}.
109 Like @code{assert}, if @code{NDEBUG} is defined before @file{assert.h}
110 is included, the @code{assert_perror} macro does absolutely nothing.  It
111 does not evaluate the argument, so @var{errnum} should not have any side
112 effects.  It is best for @var{errnum} to be just a simple variable
113 reference; often it will be @code{errno}.
115 This macro is a GNU extension.
116 @end deftypefn
118 @strong{Usage note:} The @code{assert} facility is designed for
119 detecting @emph{internal inconsistency}; it is not suitable for
120 reporting invalid input or improper usage by the @emph{user} of the
121 program.
123 The information in the diagnostic messages printed by the @code{assert}
124 and @code{assert_perror} macro is intended to help you, the programmer,
125 track down the cause of a bug, but is not really useful for telling a user
126 of your program why his or her input was invalid or why a command could not
127 be carried out.  What's more, your program should not abort when given
128 invalid input, as @code{assert} would do---it should exit with nonzero
129 status (@pxref{Exit Status}) after printing its error messages, or perhaps
130 read another command or move on to the next input file.
132 @xref{Error Messages}, for information on printing error messages for
133 problems that @emph{do not} represent bugs in the program.
136 @node Variadic Functions
137 @section Variadic Functions
138 @cindex variable number of arguments
139 @cindex variadic functions
140 @cindex optional arguments
142 @w{ISO C} defines a syntax for declaring a function to take a variable
143 number or type of arguments.  (Such functions are referred to as
144 @dfn{varargs functions} or @dfn{variadic functions}.)  However, the
145 language itself provides no mechanism for such functions to access their
146 non-required arguments; instead, you use the variable arguments macros
147 defined in @file{stdarg.h}.
149 This section describes how to declare variadic functions, how to write
150 them, and how to call them properly.
152 @strong{Compatibility Note:} Many older C dialects provide a similar,
153 but incompatible, mechanism for defining functions with variable numbers
154 of arguments, using @file{varargs.h}.
156 @menu
157 * Why Variadic::                Reasons for making functions take
158                                  variable arguments.
159 * How Variadic::                How to define and call variadic functions.
160 * Variadic Example::            A complete example.
161 @end menu
163 @node Why Variadic
164 @subsection Why Variadic Functions are Used
166 Ordinary C functions take a fixed number of arguments.  When you define
167 a function, you specify the data type for each argument.  Every call to
168 the function should supply the expected number of arguments, with types
169 that can be converted to the specified ones.  Thus, if the function
170 @samp{foo} is declared with @code{int foo (int, char *);} then you must
171 call it with two arguments, a number (any kind will do) and a string
172 pointer.
174 But some functions perform operations that can meaningfully accept an
175 unlimited number of arguments.
177 In some cases a function can handle any number of values by operating on
178 all of them as a block.  For example, consider a function that allocates
179 a one-dimensional array with @code{malloc} to hold a specified set of
180 values.  This operation makes sense for any number of values, as long as
181 the length of the array corresponds to that number.  Without facilities
182 for variable arguments, you would have to define a separate function for
183 each possible array size.
185 The library function @code{printf} (@pxref{Formatted Output}) is an
186 example of another class of function where variable arguments are
187 useful.  This function prints its arguments (which can vary in type as
188 well as number) under the control of a format template string.
190 These are good reasons to define a @dfn{variadic} function which can
191 handle as many arguments as the caller chooses to pass.
193 Some functions such as @code{open} take a fixed set of arguments, but
194 occasionally ignore the last few.  Strict adherence to @w{ISO C} requires
195 these functions to be defined as variadic; in practice, however, the GNU
196 C compiler and most other C compilers let you define such a function to
197 take a fixed set of arguments---the most it can ever use---and then only
198 @emph{declare} the function as variadic (or not declare its arguments
199 at all!).
201 @node How Variadic
202 @subsection How Variadic Functions are Defined and Used
204 Defining and using a variadic function involves three steps:
206 @itemize @bullet
207 @item
208 @emph{Define} the function as variadic, using an ellipsis
209 (@samp{@dots{}}) in the argument list, and using special macros to
210 access the variable arguments.  @xref{Receiving Arguments}.
212 @item
213 @emph{Declare} the function as variadic, using a prototype with an
214 ellipsis (@samp{@dots{}}), in all the files which call it.
215 @xref{Variadic Prototypes}.
217 @item
218 @emph{Call} the function by writing the fixed arguments followed by the
219 additional variable arguments.  @xref{Calling Variadics}.
220 @end itemize
222 @menu
223 * Variadic Prototypes::  How to make a prototype for a function
224                           with variable arguments.
225 * Receiving Arguments::  Steps you must follow to access the
226                           optional argument values.
227 * How Many Arguments::   How to decide whether there are more arguments.
228 * Calling Variadics::    Things you need to know about calling
229                           variable arguments functions.
230 * Argument Macros::      Detailed specification of the macros
231                           for accessing variable arguments.
232 @end menu
234 @node Variadic Prototypes
235 @subsubsection Syntax for Variable Arguments
236 @cindex function prototypes (variadic)
237 @cindex prototypes for variadic functions
238 @cindex variadic function prototypes
240 A function that accepts a variable number of arguments must be declared
241 with a prototype that says so.   You write the fixed arguments as usual,
242 and then tack on @samp{@dots{}} to indicate the possibility of
243 additional arguments.  The syntax of @w{ISO C} requires at least one fixed
244 argument before the @samp{@dots{}}.  For example,
246 @smallexample
248 func (const char *a, int b, @dots{})
250   @dots{}
252 @end smallexample
254 @noindent
255 defines a function @code{func} which returns an @code{int} and takes two
256 required arguments, a @code{const char *} and an @code{int}.  These are
257 followed by any number of anonymous arguments.
259 @strong{Portability note:} For some C compilers, the last required
260 argument must not be declared @code{register} in the function
261 definition.  Furthermore, this argument's type must be
262 @dfn{self-promoting}: that is, the default promotions must not change
263 its type.  This rules out array and function types, as well as
264 @code{float}, @code{char} (whether signed or not) and @w{@code{short int}}
265 (whether signed or not).  This is actually an @w{ISO C} requirement.
267 @node Receiving Arguments
268 @subsubsection Receiving the Argument Values
269 @cindex variadic function argument access
270 @cindex arguments (variadic functions)
272 Ordinary fixed arguments have individual names, and you can use these
273 names to access their values.  But optional arguments have no
274 names---nothing but @samp{@dots{}}.  How can you access them?
276 @pindex stdarg.h
277 The only way to access them is sequentially, in the order they were
278 written, and you must use special macros from @file{stdarg.h} in the
279 following three step process:
281 @enumerate
282 @item
283 You initialize an argument pointer variable of type @code{va_list} using
284 @code{va_start}.  The argument pointer when initialized points to the
285 first optional argument.
287 @item
288 You access the optional arguments by successive calls to @code{va_arg}.
289 The first call to @code{va_arg} gives you the first optional argument,
290 the next call gives you the second, and so on.
292 You can stop at any time if you wish to ignore any remaining optional
293 arguments.  It is perfectly all right for a function to access fewer
294 arguments than were supplied in the call, but you will get garbage
295 values if you try to access too many arguments.
297 @item
298 You indicate that you are finished with the argument pointer variable by
299 calling @code{va_end}.
301 (In practice, with most C compilers, calling @code{va_end} does nothing.
302 This is always true in the GNU C compiler.  But you might as well call
303 @code{va_end} just in case your program is someday compiled with a peculiar
304 compiler.)
305 @end enumerate
307 @xref{Argument Macros}, for the full definitions of @code{va_start},
308 @code{va_arg} and @code{va_end}.
310 Steps 1 and 3 must be performed in the function that accepts the
311 optional arguments.  However, you can pass the @code{va_list} variable
312 as an argument to another function and perform all or part of step 2
313 there.
315 You can perform the entire sequence of three steps multiple times
316 within a single function invocation.  If you want to ignore the optional
317 arguments, you can do these steps zero times.
319 You can have more than one argument pointer variable if you like.  You
320 can initialize each variable with @code{va_start} when you wish, and
321 then you can fetch arguments with each argument pointer as you wish.
322 Each argument pointer variable will sequence through the same set of
323 argument values, but at its own pace.
325 @strong{Portability note:} With some compilers, once you pass an
326 argument pointer value to a subroutine, you must not keep using the same
327 argument pointer value after that subroutine returns.  For full
328 portability, you should just pass it to @code{va_end}.  This is actually
329 an @w{ISO C} requirement, but most ANSI C compilers work happily
330 regardless.
332 @node How Many Arguments
333 @subsubsection How Many Arguments Were Supplied
334 @cindex number of arguments passed
335 @cindex how many arguments
336 @cindex arguments, how many
338 There is no general way for a function to determine the number and type
339 of the optional arguments it was called with.  So whoever designs the
340 function typically designs a convention for the caller to specify the number
341 and type of arguments.  It is up to you to define an appropriate calling
342 convention for each variadic function, and write all calls accordingly.
344 One kind of calling convention is to pass the number of optional
345 arguments as one of the fixed arguments.  This convention works provided
346 all of the optional arguments are of the same type.
348 A similar alternative is to have one of the required arguments be a bit
349 mask, with a bit for each possible purpose for which an optional
350 argument might be supplied.  You would test the bits in a predefined
351 sequence; if the bit is set, fetch the value of the next argument,
352 otherwise use a default value.
354 A required argument can be used as a pattern to specify both the number
355 and types of the optional arguments.  The format string argument to
356 @code{printf} is one example of this (@pxref{Formatted Output Functions}).
358 Another possibility is to pass an ``end marker'' value as the last
359 optional argument.  For example, for a function that manipulates an
360 arbitrary number of pointer arguments, a null pointer might indicate the
361 end of the argument list.  (This assumes that a null pointer isn't
362 otherwise meaningful to the function.)  The @code{execl} function works
363 in just this way; see @ref{Executing a File}.
366 @node Calling Variadics
367 @subsubsection Calling Variadic Functions
368 @cindex variadic functions, calling
369 @cindex calling variadic functions
370 @cindex declaring variadic functions
372 You don't have to do anything special to call a variadic function.
373 Just put the arguments (required arguments, followed by optional ones)
374 inside parentheses, separated by commas, as usual.  But you must declare
375 the function with a prototype and know how the argument values are converted.
377 In principle, functions that are @emph{defined} to be variadic must also
378 be @emph{declared} to be variadic using a function prototype whenever
379 you call them.  (@xref{Variadic Prototypes}, for how.)  This is because
380 some C compilers use a different calling convention to pass the same set
381 of argument values to a function depending on whether that function
382 takes variable arguments or fixed arguments.
384 In practice, the GNU C compiler always passes a given set of argument
385 types in the same way regardless of whether they are optional or
386 required.  So, as long as the argument types are self-promoting, you can
387 safely omit declaring them.  Usually it is a good idea to declare the
388 argument types for variadic functions, and indeed for all functions.
389 But there are a few functions which it is extremely convenient not to
390 have to declare as variadic---for example, @code{open} and
391 @code{printf}.
393 @cindex default argument promotions
394 @cindex argument promotion
395 Since the prototype doesn't specify types for optional arguments, in a
396 call to a variadic function the @dfn{default argument promotions} are
397 performed on the optional argument values.  This means the objects of
398 type @code{char} or @w{@code{short int}} (whether signed or not) are
399 promoted to either @code{int} or @w{@code{unsigned int}}, as
400 appropriate; and that objects of type @code{float} are promoted to type
401 @code{double}.  So, if the caller passes a @code{char} as an optional
402 argument, it is promoted to an @code{int}, and the function can access
403 it with @code{va_arg (@var{ap}, int)}.
405 Conversion of the required arguments is controlled by the function
406 prototype in the usual way: the argument expression is converted to the
407 declared argument type as if it were being assigned to a variable of
408 that type.
410 @node Argument Macros
411 @subsubsection Argument Access Macros
413 Here are descriptions of the macros used to retrieve variable arguments.
414 These macros are defined in the header file @file{stdarg.h}.
415 @pindex stdarg.h
417 @comment stdarg.h
418 @comment ISO
419 @deftp {Data Type} va_list
420 The type @code{va_list} is used for argument pointer variables.
421 @end deftp
423 @comment stdarg.h
424 @comment ISO
425 @deftypefn {Macro} void va_start (va_list @var{ap}, @var{last-required})
426 This macro initializes the argument pointer variable @var{ap} to point
427 to the first of the optional arguments of the current function;
428 @var{last-required} must be the last required argument to the function.
429 @end deftypefn
431 @comment stdarg.h
432 @comment ISO
433 @deftypefn {Macro} @var{type} va_arg (va_list @var{ap}, @var{type})
434 The @code{va_arg} macro returns the value of the next optional argument,
435 and modifies the value of @var{ap} to point to the subsequent argument.
436 Thus, successive uses of @code{va_arg} return successive optional
437 arguments.
439 The type of the value returned by @code{va_arg} is @var{type} as
440 specified in the call.  @var{type} must be a self-promoting type (not
441 @code{char} or @code{short int} or @code{float}) that matches the type
442 of the actual argument.
443 @end deftypefn
445 @comment stdarg.h
446 @comment ISO
447 @deftypefn {Macro} void va_end (va_list @var{ap})
448 This ends the use of @var{ap}.  After a @code{va_end} call, further
449 @code{va_arg} calls with the same @var{ap} may not work.  You should invoke
450 @code{va_end} before returning from the function in which @code{va_start}
451 was invoked with the same @var{ap} argument.
453 In @theglibc{}, @code{va_end} does nothing, and you need not ever
454 use it except for reasons of portability.
455 @refill
456 @end deftypefn
458 Sometimes it is necessary to parse the list of parameters more than once
459 or one wants to remember a certain position in the parameter list.  To
460 do this, one will have to make a copy of the current value of the
461 argument.  But @code{va_list} is an opaque type and one cannot necessarily
462 assign the value of one variable of type @code{va_list} to another variable
463 of the same type.
465 @comment stdarg.h
466 @comment ISO
467 @deftypefn {Macro} void va_copy (va_list @var{dest}, va_list @var{src})
468 @deftypefnx {Macro} void __va_copy (va_list @var{dest}, va_list @var{src})
469 The @code{va_copy} macro allows copying of objects of type
470 @code{va_list} even if this is not an integral type.  The argument pointer
471 in @var{dest} is initialized to point to the same argument as the
472 pointer in @var{src}.
474 This macro was added in ISO C99.  When building for strict conformance
475 to ISO C90 (@samp{gcc -ansi}), it is not available.  The macro
476 @code{__va_copy} is available as a GNU extension in any standards
477 mode; before GCC 3.0, it was the only macro for this functionality.
478 @end deftypefn
480 If you want to use @code{va_copy} and be portable to pre-C99 systems,
481 you should always be prepared for the
482 possibility that this macro will not be available.  On architectures where a
483 simple assignment is invalid, hopefully @code{va_copy} @emph{will} be available,
484 so one should always write something like this if concerned about
485 pre-C99 portability:
487 @smallexample
489   va_list ap, save;
490   @dots{}
491 #ifdef va_copy
492   va_copy (save, ap);
493 #else
494   save = ap;
495 #endif
496   @dots{}
498 @end smallexample
501 @node Variadic Example
502 @subsection Example of a Variadic Function
504 Here is a complete sample function that accepts a variable number of
505 arguments.  The first argument to the function is the count of remaining
506 arguments, which are added up and the result returned.  While trivial,
507 this function is sufficient to illustrate how to use the variable
508 arguments facility.
510 @comment Yes, this example has been tested.
511 @smallexample
512 @include add.c.texi
513 @end smallexample
515 @node Null Pointer Constant
516 @section Null Pointer Constant
517 @cindex null pointer constant
519 The null pointer constant is guaranteed not to point to any real object.
520 You can assign it to any pointer variable since it has type @code{void
521 *}.  The preferred way to write a null pointer constant is with
522 @code{NULL}.
524 @comment stddef.h
525 @comment ISO
526 @deftypevr Macro {void *} NULL
527 This is a null pointer constant.
528 @end deftypevr
530 You can also use @code{0} or @code{(void *)0} as a null pointer
531 constant, but using @code{NULL} is cleaner because it makes the purpose
532 of the constant more evident.
534 If you use the null pointer constant as a function argument, then for
535 complete portability you should make sure that the function has a
536 prototype declaration.  Otherwise, if the target machine has two
537 different pointer representations, the compiler won't know which
538 representation to use for that argument.  You can avoid the problem by
539 explicitly casting the constant to the proper pointer type, but we
540 recommend instead adding a prototype for the function you are calling.
542 @node Important Data Types
543 @section Important Data Types
545 The result of subtracting two pointers in C is always an integer, but the
546 precise data type varies from C compiler to C compiler.  Likewise, the
547 data type of the result of @code{sizeof} also varies between compilers.
548 ISO defines standard aliases for these two types, so you can refer to
549 them in a portable fashion.  They are defined in the header file
550 @file{stddef.h}.
551 @pindex stddef.h
553 @comment stddef.h
554 @comment ISO
555 @deftp {Data Type} ptrdiff_t
556 This is the signed integer type of the result of subtracting two
557 pointers.  For example, with the declaration @code{char *p1, *p2;}, the
558 expression @code{p2 - p1} is of type @code{ptrdiff_t}.  This will
559 probably be one of the standard signed integer types (@w{@code{short
560 int}}, @code{int} or @w{@code{long int}}), but might be a nonstandard
561 type that exists only for this purpose.
562 @end deftp
564 @comment stddef.h
565 @comment ISO
566 @deftp {Data Type} size_t
567 This is an unsigned integer type used to represent the sizes of objects.
568 The result of the @code{sizeof} operator is of this type, and functions
569 such as @code{malloc} (@pxref{Unconstrained Allocation}) and
570 @code{memcpy} (@pxref{Copying and Concatenation}) accept arguments of
571 this type to specify object sizes.  On systems using @theglibc{}, this
572 will be @w{@code{unsigned int}} or @w{@code{unsigned long int}}.
574 @strong{Usage Note:} @code{size_t} is the preferred way to declare any
575 arguments or variables that hold the size of an object.
576 @end deftp
578 @strong{Compatibility Note:} Implementations of C before the advent of
579 @w{ISO C} generally used @code{unsigned int} for representing object sizes
580 and @code{int} for pointer subtraction results.  They did not
581 necessarily define either @code{size_t} or @code{ptrdiff_t}.  Unix
582 systems did define @code{size_t}, in @file{sys/types.h}, but the
583 definition was usually a signed type.
585 @node Data Type Measurements
586 @section Data Type Measurements
588 Most of the time, if you choose the proper C data type for each object
589 in your program, you need not be concerned with just how it is
590 represented or how many bits it uses.  When you do need such
591 information, the C language itself does not provide a way to get it.
592 The header files @file{limits.h} and @file{float.h} contain macros
593 which give you this information in full detail.
595 @menu
596 * Width of Type::           How many bits does an integer type hold?
597 * Range of Type::           What are the largest and smallest values
598                              that an integer type can hold?
599 * Floating Type Macros::    Parameters that measure the floating point types.
600 * Structure Measurement::   Getting measurements on structure types.
601 @end menu
603 @node Width of Type
604 @subsection Computing the Width of an Integer Data Type
605 @cindex integer type width
606 @cindex width of integer type
607 @cindex type measurements, integer
609 The most common reason that a program needs to know how many bits are in
610 an integer type is for using an array of @code{long int} as a bit vector.
611 You can access the bit at index @var{n} with
613 @smallexample
614 vector[@var{n} / LONGBITS] & (1 << (@var{n} % LONGBITS))
615 @end smallexample
617 @noindent
618 provided you define @code{LONGBITS} as the number of bits in a
619 @code{long int}.
621 @pindex limits.h
622 There is no operator in the C language that can give you the number of
623 bits in an integer data type.  But you can compute it from the macro
624 @code{CHAR_BIT}, defined in the header file @file{limits.h}.
626 @table @code
627 @comment limits.h
628 @comment ISO
629 @item CHAR_BIT
630 This is the number of bits in a @code{char}---eight, on most systems.
631 The value has type @code{int}.
633 You can compute the number of bits in any data type @var{type} like
634 this:
636 @smallexample
637 sizeof (@var{type}) * CHAR_BIT
638 @end smallexample
639 @end table
641 @node Range of Type
642 @subsection Range of an Integer Type
643 @cindex integer type range
644 @cindex range of integer type
645 @cindex limits, integer types
647 Suppose you need to store an integer value which can range from zero to
648 one million.  Which is the smallest type you can use?  There is no
649 general rule; it depends on the C compiler and target machine.  You can
650 use the @samp{MIN} and @samp{MAX} macros in @file{limits.h} to determine
651 which type will work.
653 Each signed integer type has a pair of macros which give the smallest
654 and largest values that it can hold.  Each unsigned integer type has one
655 such macro, for the maximum value; the minimum value is, of course,
656 zero.
658 The values of these macros are all integer constant expressions.  The
659 @samp{MAX} and @samp{MIN} macros for @code{char} and @w{@code{short
660 int}} types have values of type @code{int}.  The @samp{MAX} and
661 @samp{MIN} macros for the other types have values of the same type
662 described by the macro---thus, @code{ULONG_MAX} has type
663 @w{@code{unsigned long int}}.
665 @comment Extra blank lines make it look better.
666 @vtable @code
667 @comment limits.h
668 @comment ISO
669 @item SCHAR_MIN
671 This is the minimum value that can be represented by a @w{@code{signed char}}.
673 @comment limits.h
674 @comment ISO
675 @item SCHAR_MAX
676 @comment limits.h
677 @comment ISO
678 @itemx UCHAR_MAX
680 These are the maximum values that can be represented by a
681 @w{@code{signed char}} and @w{@code{unsigned char}}, respectively.
683 @comment limits.h
684 @comment ISO
685 @item CHAR_MIN
687 This is the minimum value that can be represented by a @code{char}.
688 It's equal to @code{SCHAR_MIN} if @code{char} is signed, or zero
689 otherwise.
691 @comment limits.h
692 @comment ISO
693 @item CHAR_MAX
695 This is the maximum value that can be represented by a @code{char}.
696 It's equal to @code{SCHAR_MAX} if @code{char} is signed, or
697 @code{UCHAR_MAX} otherwise.
699 @comment limits.h
700 @comment ISO
701 @item SHRT_MIN
703 This is the minimum value that can be represented by a @w{@code{signed
704 short int}}.  On most machines that @theglibc{} runs on,
705 @code{short} integers are 16-bit quantities.
707 @comment limits.h
708 @comment ISO
709 @item SHRT_MAX
710 @comment limits.h
711 @comment ISO
712 @itemx USHRT_MAX
714 These are the maximum values that can be represented by a
715 @w{@code{signed short int}} and @w{@code{unsigned short int}},
716 respectively.
718 @comment limits.h
719 @comment ISO
720 @item INT_MIN
722 This is the minimum value that can be represented by a @w{@code{signed
723 int}}.  On most machines that @theglibc{} runs on, an @code{int} is
724 a 32-bit quantity.
726 @comment limits.h
727 @comment ISO
728 @item INT_MAX
729 @comment limits.h
730 @comment ISO
731 @itemx UINT_MAX
733 These are the maximum values that can be represented by, respectively,
734 the type @w{@code{signed int}} and the type @w{@code{unsigned int}}.
736 @comment limits.h
737 @comment ISO
738 @item LONG_MIN
740 This is the minimum value that can be represented by a @w{@code{signed
741 long int}}.  On most machines that @theglibc{} runs on, @code{long}
742 integers are 32-bit quantities, the same size as @code{int}.
744 @comment limits.h
745 @comment ISO
746 @item LONG_MAX
747 @comment limits.h
748 @comment ISO
749 @itemx ULONG_MAX
751 These are the maximum values that can be represented by a
752 @w{@code{signed long int}} and @code{unsigned long int}, respectively.
754 @comment limits.h
755 @comment ISO
756 @item LLONG_MIN
758 This is the minimum value that can be represented by a @w{@code{signed
759 long long int}}.  On most machines that @theglibc{} runs on,
760 @w{@code{long long}} integers are 64-bit quantities.
762 @comment limits.h
763 @comment ISO
764 @item LLONG_MAX
765 @comment limits.h
766 @comment ISO
767 @itemx ULLONG_MAX
769 These are the maximum values that can be represented by a @code{signed
770 long long int} and @code{unsigned long long int}, respectively.
772 @comment limits.h
773 @comment GNU
774 @item LONG_LONG_MIN
775 @comment limits.h
776 @comment GNU
777 @itemx LONG_LONG_MAX
778 @comment limits.h
779 @comment GNU
780 @itemx ULONG_LONG_MAX
781 These are obsolete names for @code{LLONG_MIN}, @code{LLONG_MAX}, and
782 @code{ULLONG_MAX}.  They are only available if @code{_GNU_SOURCE} is
783 defined (@pxref{Feature Test Macros}).  In GCC versions prior to 3.0,
784 these were the only names available.
786 @comment limits.h
787 @comment GNU
788 @item WCHAR_MAX
790 This is the maximum value that can be represented by a @code{wchar_t}.
791 @xref{Extended Char Intro}.
792 @end vtable
794 The header file @file{limits.h} also defines some additional constants
795 that parameterize various operating system and file system limits.  These
796 constants are described in @ref{System Configuration}.
798 @node Floating Type Macros
799 @subsection Floating Type Macros
800 @cindex floating type measurements
801 @cindex measurements of floating types
802 @cindex type measurements, floating
803 @cindex limits, floating types
805 The specific representation of floating point numbers varies from
806 machine to machine.  Because floating point numbers are represented
807 internally as approximate quantities, algorithms for manipulating
808 floating point data often need to take account of the precise details of
809 the machine's floating point representation.
811 Some of the functions in the C library itself need this information; for
812 example, the algorithms for printing and reading floating point numbers
813 (@pxref{I/O on Streams}) and for calculating trigonometric and
814 irrational functions (@pxref{Mathematics}) use it to avoid round-off
815 error and loss of accuracy.  User programs that implement numerical
816 analysis techniques also often need this information in order to
817 minimize or compute error bounds.
819 The header file @file{float.h} describes the format used by your
820 machine.
822 @menu
823 * Floating Point Concepts::     Definitions of terminology.
824 * Floating Point Parameters::   Details of specific macros.
825 * IEEE Floating Point::         The measurements for one common
826                                  representation.
827 @end menu
829 @node Floating Point Concepts
830 @subsubsection Floating Point Representation Concepts
832 This section introduces the terminology for describing floating point
833 representations.
835 You are probably already familiar with most of these concepts in terms
836 of scientific or exponential notation for floating point numbers.  For
837 example, the number @code{123456.0} could be expressed in exponential
838 notation as @code{1.23456e+05}, a shorthand notation indicating that the
839 mantissa @code{1.23456} is multiplied by the base @code{10} raised to
840 power @code{5}.
842 More formally, the internal representation of a floating point number
843 can be characterized in terms of the following parameters:
845 @itemize @bullet
846 @item
847 @cindex sign (of floating point number)
848 The @dfn{sign} is either @code{-1} or @code{1}.
850 @item
851 @cindex base (of floating point number)
852 @cindex radix (of floating point number)
853 The @dfn{base} or @dfn{radix} for exponentiation, an integer greater
854 than @code{1}.  This is a constant for a particular representation.
856 @item
857 @cindex exponent (of floating point number)
858 The @dfn{exponent} to which the base is raised.  The upper and lower
859 bounds of the exponent value are constants for a particular
860 representation.
862 @cindex bias (of floating point number exponent)
863 Sometimes, in the actual bits representing the floating point number,
864 the exponent is @dfn{biased} by adding a constant to it, to make it
865 always be represented as an unsigned quantity.  This is only important
866 if you have some reason to pick apart the bit fields making up the
867 floating point number by hand, which is something for which @theglibc{}
868 provides no support.  So this is ignored in the discussion that
869 follows.
871 @item
872 @cindex mantissa (of floating point number)
873 @cindex significand (of floating point number)
874 The @dfn{mantissa} or @dfn{significand} is an unsigned integer which is a
875 part of each floating point number.
877 @item
878 @cindex precision (of floating point number)
879 The @dfn{precision} of the mantissa.  If the base of the representation
880 is @var{b}, then the precision is the number of base-@var{b} digits in
881 the mantissa.  This is a constant for a particular representation.
883 @cindex hidden bit (of floating point number mantissa)
884 Many floating point representations have an implicit @dfn{hidden bit} in
885 the mantissa.  This is a bit which is present virtually in the mantissa,
886 but not stored in memory because its value is always 1 in a normalized
887 number.  The precision figure (see above) includes any hidden bits.
889 Again, @theglibc{} provides no facilities for dealing with such
890 low-level aspects of the representation.
891 @end itemize
893 The mantissa of a floating point number represents an implicit fraction
894 whose denominator is the base raised to the power of the precision.  Since
895 the largest representable mantissa is one less than this denominator, the
896 value of the fraction is always strictly less than @code{1}.  The
897 mathematical value of a floating point number is then the product of this
898 fraction, the sign, and the base raised to the exponent.
900 @cindex normalized floating point number
901 We say that the floating point number is @dfn{normalized} if the
902 fraction is at least @code{1/@var{b}}, where @var{b} is the base.  In
903 other words, the mantissa would be too large to fit if it were
904 multiplied by the base.  Non-normalized numbers are sometimes called
905 @dfn{denormal}; they contain less precision than the representation
906 normally can hold.
908 If the number is not normalized, then you can subtract @code{1} from the
909 exponent while multiplying the mantissa by the base, and get another
910 floating point number with the same value.  @dfn{Normalization} consists
911 of doing this repeatedly until the number is normalized.  Two distinct
912 normalized floating point numbers cannot be equal in value.
914 (There is an exception to this rule: if the mantissa is zero, it is
915 considered normalized.  Another exception happens on certain machines
916 where the exponent is as small as the representation can hold.  Then
917 it is impossible to subtract @code{1} from the exponent, so a number
918 may be normalized even if its fraction is less than @code{1/@var{b}}.)
920 @node Floating Point Parameters
921 @subsubsection Floating Point Parameters
923 @pindex float.h
924 These macro definitions can be accessed by including the header file
925 @file{float.h} in your program.
927 Macro names starting with @samp{FLT_} refer to the @code{float} type,
928 while names beginning with @samp{DBL_} refer to the @code{double} type
929 and names beginning with @samp{LDBL_} refer to the @code{long double}
930 type.  (If GCC does not support @code{long double} as a distinct data
931 type on a target machine then the values for the @samp{LDBL_} constants
932 are equal to the corresponding constants for the @code{double} type.)
934 Of these macros, only @code{FLT_RADIX} is guaranteed to be a constant
935 expression.  The other macros listed here cannot be reliably used in
936 places that require constant expressions, such as @samp{#if}
937 preprocessing directives or in the dimensions of static arrays.
939 Although the @w{ISO C} standard specifies minimum and maximum values for
940 most of these parameters, the GNU C implementation uses whatever values
941 describe the floating point representation of the target machine.  So in
942 principle GNU C actually satisfies the @w{ISO C} requirements only if the
943 target machine is suitable.  In practice, all the machines currently
944 supported are suitable.
946 @vtable @code
947 @comment float.h
948 @comment ISO
949 @item FLT_ROUNDS
950 This value characterizes the rounding mode for floating point addition.
951 The following values indicate standard rounding modes:
953 @need 750
955 @table @code
956 @item -1
957 The mode is indeterminable.
958 @item 0
959 Rounding is towards zero.
960 @item 1
961 Rounding is to the nearest number.
962 @item 2
963 Rounding is towards positive infinity.
964 @item 3
965 Rounding is towards negative infinity.
966 @end table
968 @noindent
969 Any other value represents a machine-dependent nonstandard rounding
970 mode.
972 On most machines, the value is @code{1}, in accordance with the IEEE
973 standard for floating point.
975 Here is a table showing how certain values round for each possible value
976 of @code{FLT_ROUNDS}, if the other aspects of the representation match
977 the IEEE single-precision standard.
979 @smallexample
980                 0      1             2             3
981  1.00000003    1.0    1.0           1.00000012    1.0
982  1.00000007    1.0    1.00000012    1.00000012    1.0
983 -1.00000003   -1.0   -1.0          -1.0          -1.00000012
984 -1.00000007   -1.0   -1.00000012   -1.0          -1.00000012
985 @end smallexample
987 @comment float.h
988 @comment ISO
989 @item FLT_RADIX
990 This is the value of the base, or radix, of the exponent representation.
991 This is guaranteed to be a constant expression, unlike the other macros
992 described in this section.  The value is 2 on all machines we know of
993 except the IBM 360 and derivatives.
995 @comment float.h
996 @comment ISO
997 @item FLT_MANT_DIG
998 This is the number of base-@code{FLT_RADIX} digits in the floating point
999 mantissa for the @code{float} data type.  The following expression
1000 yields @code{1.0} (even though mathematically it should not) due to the
1001 limited number of mantissa digits:
1003 @smallexample
1004 float radix = FLT_RADIX;
1006 1.0f + 1.0f / radix / radix / @dots{} / radix
1007 @end smallexample
1009 @noindent
1010 where @code{radix} appears @code{FLT_MANT_DIG} times.
1012 @comment float.h
1013 @comment ISO
1014 @item DBL_MANT_DIG
1015 @itemx LDBL_MANT_DIG
1016 This is the number of base-@code{FLT_RADIX} digits in the floating point
1017 mantissa for the data types @code{double} and @code{long double},
1018 respectively.
1020 @comment Extra blank lines make it look better.
1021 @comment float.h
1022 @comment ISO
1023 @item FLT_DIG
1025 This is the number of decimal digits of precision for the @code{float}
1026 data type.  Technically, if @var{p} and @var{b} are the precision and
1027 base (respectively) for the representation, then the decimal precision
1028 @var{q} is the maximum number of decimal digits such that any floating
1029 point number with @var{q} base 10 digits can be rounded to a floating
1030 point number with @var{p} base @var{b} digits and back again, without
1031 change to the @var{q} decimal digits.
1033 The value of this macro is supposed to be at least @code{6}, to satisfy
1034 @w{ISO C}.
1036 @comment float.h
1037 @comment ISO
1038 @item DBL_DIG
1039 @itemx LDBL_DIG
1041 These are similar to @code{FLT_DIG}, but for the data types
1042 @code{double} and @code{long double}, respectively.  The values of these
1043 macros are supposed to be at least @code{10}.
1045 @comment float.h
1046 @comment ISO
1047 @item FLT_MIN_EXP
1048 This is the smallest possible exponent value for type @code{float}.
1049 More precisely, is the minimum negative integer such that the value
1050 @code{FLT_RADIX} raised to this power minus 1 can be represented as a
1051 normalized floating point number of type @code{float}.
1053 @comment float.h
1054 @comment ISO
1055 @item DBL_MIN_EXP
1056 @itemx LDBL_MIN_EXP
1058 These are similar to @code{FLT_MIN_EXP}, but for the data types
1059 @code{double} and @code{long double}, respectively.
1061 @comment float.h
1062 @comment ISO
1063 @item FLT_MIN_10_EXP
1064 This is the minimum negative integer such that @code{10} raised to this
1065 power minus 1 can be represented as a normalized floating point number
1066 of type @code{float}.  This is supposed to be @code{-37} or even less.
1068 @comment float.h
1069 @comment ISO
1070 @item DBL_MIN_10_EXP
1071 @itemx LDBL_MIN_10_EXP
1072 These are similar to @code{FLT_MIN_10_EXP}, but for the data types
1073 @code{double} and @code{long double}, respectively.
1075 @comment float.h
1076 @comment ISO
1077 @item FLT_MAX_EXP
1078 This is the largest possible exponent value for type @code{float}.  More
1079 precisely, this is the maximum positive integer such that value
1080 @code{FLT_RADIX} raised to this power minus 1 can be represented as a
1081 floating point number of type @code{float}.
1083 @comment float.h
1084 @comment ISO
1085 @item DBL_MAX_EXP
1086 @itemx LDBL_MAX_EXP
1087 These are similar to @code{FLT_MAX_EXP}, but for the data types
1088 @code{double} and @code{long double}, respectively.
1090 @comment float.h
1091 @comment ISO
1092 @item FLT_MAX_10_EXP
1093 This is the maximum positive integer such that @code{10} raised to this
1094 power minus 1 can be represented as a normalized floating point number
1095 of type @code{float}.  This is supposed to be at least @code{37}.
1097 @comment float.h
1098 @comment ISO
1099 @item DBL_MAX_10_EXP
1100 @itemx LDBL_MAX_10_EXP
1101 These are similar to @code{FLT_MAX_10_EXP}, but for the data types
1102 @code{double} and @code{long double}, respectively.
1104 @comment float.h
1105 @comment ISO
1106 @item FLT_MAX
1108 The value of this macro is the maximum number representable in type
1109 @code{float}.  It is supposed to be at least @code{1E+37}.  The value
1110 has type @code{float}.
1112 The smallest representable number is @code{- FLT_MAX}.
1114 @comment float.h
1115 @comment ISO
1116 @item DBL_MAX
1117 @itemx LDBL_MAX
1119 These are similar to @code{FLT_MAX}, but for the data types
1120 @code{double} and @code{long double}, respectively.  The type of the
1121 macro's value is the same as the type it describes.
1123 @comment float.h
1124 @comment ISO
1125 @item FLT_MIN
1127 The value of this macro is the minimum normalized positive floating
1128 point number that is representable in type @code{float}.  It is supposed
1129 to be no more than @code{1E-37}.
1131 @comment float.h
1132 @comment ISO
1133 @item DBL_MIN
1134 @itemx LDBL_MIN
1136 These are similar to @code{FLT_MIN}, but for the data types
1137 @code{double} and @code{long double}, respectively.  The type of the
1138 macro's value is the same as the type it describes.
1140 @comment float.h
1141 @comment ISO
1142 @item FLT_EPSILON
1144 This is the difference between 1 and the smallest floating point
1145 number of type @code{float} that is greater than 1.  It's supposed to
1146 be no greater than @code{1E-5}.
1148 @comment float.h
1149 @comment ISO
1150 @item DBL_EPSILON
1151 @itemx LDBL_EPSILON
1153 These are similar to @code{FLT_EPSILON}, but for the data types
1154 @code{double} and @code{long double}, respectively.  The type of the
1155 macro's value is the same as the type it describes.  The values are not
1156 supposed to be greater than @code{1E-9}.
1157 @end vtable
1159 @node IEEE Floating Point
1160 @subsubsection IEEE Floating Point
1161 @cindex IEEE floating point representation
1162 @cindex floating point, IEEE
1164 Here is an example showing how the floating type measurements come out
1165 for the most common floating point representation, specified by the
1166 @cite{IEEE Standard for Binary Floating Point Arithmetic (ANSI/IEEE Std
1167 754-1985)}.  Nearly all computers designed since the 1980s use this
1168 format.
1170 The IEEE single-precision float representation uses a base of 2.  There
1171 is a sign bit, a mantissa with 23 bits plus one hidden bit (so the total
1172 precision is 24 base-2 digits), and an 8-bit exponent that can represent
1173 values in the range -125 to 128, inclusive.
1175 So, for an implementation that uses this representation for the
1176 @code{float} data type, appropriate values for the corresponding
1177 parameters are:
1179 @smallexample
1180 FLT_RADIX                             2
1181 FLT_MANT_DIG                         24
1182 FLT_DIG                               6
1183 FLT_MIN_EXP                        -125
1184 FLT_MIN_10_EXP                      -37
1185 FLT_MAX_EXP                         128
1186 FLT_MAX_10_EXP                      +38
1187 FLT_MIN                 1.17549435E-38F
1188 FLT_MAX                 3.40282347E+38F
1189 FLT_EPSILON             1.19209290E-07F
1190 @end smallexample
1192 Here are the values for the @code{double} data type:
1194 @smallexample
1195 DBL_MANT_DIG                         53
1196 DBL_DIG                              15
1197 DBL_MIN_EXP                       -1021
1198 DBL_MIN_10_EXP                     -307
1199 DBL_MAX_EXP                        1024
1200 DBL_MAX_10_EXP                      308
1201 DBL_MAX         1.7976931348623157E+308
1202 DBL_MIN         2.2250738585072014E-308
1203 DBL_EPSILON     2.2204460492503131E-016
1204 @end smallexample
1206 @node Structure Measurement
1207 @subsection Structure Field Offset Measurement
1209 You can use @code{offsetof} to measure the location within a structure
1210 type of a particular structure member.
1212 @comment stddef.h
1213 @comment ISO
1214 @deftypefn {Macro} size_t offsetof (@var{type}, @var{member})
1215 This expands to a integer constant expression that is the offset of the
1216 structure member named @var{member} in the structure type @var{type}.
1217 For example, @code{offsetof (struct s, elem)} is the offset, in bytes,
1218 of the member @code{elem} in a @code{struct s}.
1220 This macro won't work if @var{member} is a bit field; you get an error
1221 from the C compiler in that case.
1222 @end deftypefn