entry_matches(): inline function
[git/mjg.git] / refs.c
blob6bdd34fc728ece31a9b0f64b29269222dcf98d60
1 #include "cache.h"
2 #include "lockfile.h"
3 #include "refs.h"
4 #include "object.h"
5 #include "tag.h"
6 #include "dir.h"
7 #include "string-list.h"
9 struct ref_lock {
10 char *ref_name;
11 char *orig_ref_name;
12 struct lock_file *lk;
13 unsigned char old_sha1[20];
14 int lock_fd;
18 * How to handle various characters in refnames:
19 * 0: An acceptable character for refs
20 * 1: End-of-component
21 * 2: ., look for a preceding . to reject .. in refs
22 * 3: {, look for a preceding @ to reject @{ in refs
23 * 4: A bad character: ASCII control characters, "~", "^", ":" or SP
25 static unsigned char refname_disposition[256] = {
26 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
27 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
28 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 2, 1,
29 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 4,
30 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
31 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 0, 4, 0,
32 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
33 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 4, 4
37 * Flag passed to lock_ref_sha1_basic() telling it to tolerate broken
38 * refs (i.e., because the reference is about to be deleted anyway).
40 #define REF_DELETING 0x02
43 * Used as a flag in ref_update::flags when a loose ref is being
44 * pruned.
46 #define REF_ISPRUNING 0x04
49 * Used as a flag in ref_update::flags when the reference should be
50 * updated to new_sha1.
52 #define REF_HAVE_NEW 0x08
55 * Used as a flag in ref_update::flags when old_sha1 should be
56 * checked.
58 #define REF_HAVE_OLD 0x10
61 * Try to read one refname component from the front of refname.
62 * Return the length of the component found, or -1 if the component is
63 * not legal. It is legal if it is something reasonable to have under
64 * ".git/refs/"; We do not like it if:
66 * - any path component of it begins with ".", or
67 * - it has double dots "..", or
68 * - it has ASCII control character, "~", "^", ":" or SP, anywhere, or
69 * - it ends with a "/".
70 * - it ends with ".lock"
71 * - it contains a "\" (backslash)
73 static int check_refname_component(const char *refname, int flags)
75 const char *cp;
76 char last = '\0';
78 for (cp = refname; ; cp++) {
79 int ch = *cp & 255;
80 unsigned char disp = refname_disposition[ch];
81 switch (disp) {
82 case 1:
83 goto out;
84 case 2:
85 if (last == '.')
86 return -1; /* Refname contains "..". */
87 break;
88 case 3:
89 if (last == '@')
90 return -1; /* Refname contains "@{". */
91 break;
92 case 4:
93 return -1;
95 last = ch;
97 out:
98 if (cp == refname)
99 return 0; /* Component has zero length. */
100 if (refname[0] == '.')
101 return -1; /* Component starts with '.'. */
102 if (cp - refname >= LOCK_SUFFIX_LEN &&
103 !memcmp(cp - LOCK_SUFFIX_LEN, LOCK_SUFFIX, LOCK_SUFFIX_LEN))
104 return -1; /* Refname ends with ".lock". */
105 return cp - refname;
108 int check_refname_format(const char *refname, int flags)
110 int component_len, component_count = 0;
112 if (!strcmp(refname, "@"))
113 /* Refname is a single character '@'. */
114 return -1;
116 while (1) {
117 /* We are at the start of a path component. */
118 component_len = check_refname_component(refname, flags);
119 if (component_len <= 0) {
120 if ((flags & REFNAME_REFSPEC_PATTERN) &&
121 refname[0] == '*' &&
122 (refname[1] == '\0' || refname[1] == '/')) {
123 /* Accept one wildcard as a full refname component. */
124 flags &= ~REFNAME_REFSPEC_PATTERN;
125 component_len = 1;
126 } else {
127 return -1;
130 component_count++;
131 if (refname[component_len] == '\0')
132 break;
133 /* Skip to next component. */
134 refname += component_len + 1;
137 if (refname[component_len - 1] == '.')
138 return -1; /* Refname ends with '.'. */
139 if (!(flags & REFNAME_ALLOW_ONELEVEL) && component_count < 2)
140 return -1; /* Refname has only one component. */
141 return 0;
144 struct ref_entry;
147 * Information used (along with the information in ref_entry) to
148 * describe a single cached reference. This data structure only
149 * occurs embedded in a union in struct ref_entry, and only when
150 * (ref_entry->flag & REF_DIR) is zero.
152 struct ref_value {
154 * The name of the object to which this reference resolves
155 * (which may be a tag object). If REF_ISBROKEN, this is
156 * null. If REF_ISSYMREF, then this is the name of the object
157 * referred to by the last reference in the symlink chain.
159 unsigned char sha1[20];
162 * If REF_KNOWS_PEELED, then this field holds the peeled value
163 * of this reference, or null if the reference is known not to
164 * be peelable. See the documentation for peel_ref() for an
165 * exact definition of "peelable".
167 unsigned char peeled[20];
170 struct ref_cache;
173 * Information used (along with the information in ref_entry) to
174 * describe a level in the hierarchy of references. This data
175 * structure only occurs embedded in a union in struct ref_entry, and
176 * only when (ref_entry.flag & REF_DIR) is set. In that case,
177 * (ref_entry.flag & REF_INCOMPLETE) determines whether the references
178 * in the directory have already been read:
180 * (ref_entry.flag & REF_INCOMPLETE) unset -- a directory of loose
181 * or packed references, already read.
183 * (ref_entry.flag & REF_INCOMPLETE) set -- a directory of loose
184 * references that hasn't been read yet (nor has any of its
185 * subdirectories).
187 * Entries within a directory are stored within a growable array of
188 * pointers to ref_entries (entries, nr, alloc). Entries 0 <= i <
189 * sorted are sorted by their component name in strcmp() order and the
190 * remaining entries are unsorted.
192 * Loose references are read lazily, one directory at a time. When a
193 * directory of loose references is read, then all of the references
194 * in that directory are stored, and REF_INCOMPLETE stubs are created
195 * for any subdirectories, but the subdirectories themselves are not
196 * read. The reading is triggered by get_ref_dir().
198 struct ref_dir {
199 int nr, alloc;
202 * Entries with index 0 <= i < sorted are sorted by name. New
203 * entries are appended to the list unsorted, and are sorted
204 * only when required; thus we avoid the need to sort the list
205 * after the addition of every reference.
207 int sorted;
209 /* A pointer to the ref_cache that contains this ref_dir. */
210 struct ref_cache *ref_cache;
212 struct ref_entry **entries;
216 * Bit values for ref_entry::flag. REF_ISSYMREF=0x01,
217 * REF_ISPACKED=0x02, REF_ISBROKEN=0x04 and REF_BAD_NAME=0x08 are
218 * public values; see refs.h.
222 * The field ref_entry->u.value.peeled of this value entry contains
223 * the correct peeled value for the reference, which might be
224 * null_sha1 if the reference is not a tag or if it is broken.
226 #define REF_KNOWS_PEELED 0x10
228 /* ref_entry represents a directory of references */
229 #define REF_DIR 0x20
232 * Entry has not yet been read from disk (used only for REF_DIR
233 * entries representing loose references)
235 #define REF_INCOMPLETE 0x40
238 * A ref_entry represents either a reference or a "subdirectory" of
239 * references.
241 * Each directory in the reference namespace is represented by a
242 * ref_entry with (flags & REF_DIR) set and containing a subdir member
243 * that holds the entries in that directory that have been read so
244 * far. If (flags & REF_INCOMPLETE) is set, then the directory and
245 * its subdirectories haven't been read yet. REF_INCOMPLETE is only
246 * used for loose reference directories.
248 * References are represented by a ref_entry with (flags & REF_DIR)
249 * unset and a value member that describes the reference's value. The
250 * flag member is at the ref_entry level, but it is also needed to
251 * interpret the contents of the value field (in other words, a
252 * ref_value object is not very much use without the enclosing
253 * ref_entry).
255 * Reference names cannot end with slash and directories' names are
256 * always stored with a trailing slash (except for the top-level
257 * directory, which is always denoted by ""). This has two nice
258 * consequences: (1) when the entries in each subdir are sorted
259 * lexicographically by name (as they usually are), the references in
260 * a whole tree can be generated in lexicographic order by traversing
261 * the tree in left-to-right, depth-first order; (2) the names of
262 * references and subdirectories cannot conflict, and therefore the
263 * presence of an empty subdirectory does not block the creation of a
264 * similarly-named reference. (The fact that reference names with the
265 * same leading components can conflict *with each other* is a
266 * separate issue that is regulated by is_refname_available().)
268 * Please note that the name field contains the fully-qualified
269 * reference (or subdirectory) name. Space could be saved by only
270 * storing the relative names. But that would require the full names
271 * to be generated on the fly when iterating in do_for_each_ref(), and
272 * would break callback functions, who have always been able to assume
273 * that the name strings that they are passed will not be freed during
274 * the iteration.
276 struct ref_entry {
277 unsigned char flag; /* ISSYMREF? ISPACKED? */
278 union {
279 struct ref_value value; /* if not (flags&REF_DIR) */
280 struct ref_dir subdir; /* if (flags&REF_DIR) */
281 } u;
283 * The full name of the reference (e.g., "refs/heads/master")
284 * or the full name of the directory with a trailing slash
285 * (e.g., "refs/heads/"):
287 char name[FLEX_ARRAY];
290 static void read_loose_refs(const char *dirname, struct ref_dir *dir);
292 static struct ref_dir *get_ref_dir(struct ref_entry *entry)
294 struct ref_dir *dir;
295 assert(entry->flag & REF_DIR);
296 dir = &entry->u.subdir;
297 if (entry->flag & REF_INCOMPLETE) {
298 read_loose_refs(entry->name, dir);
299 entry->flag &= ~REF_INCOMPLETE;
301 return dir;
305 * Check if a refname is safe.
306 * For refs that start with "refs/" we consider it safe as long they do
307 * not try to resolve to outside of refs/.
309 * For all other refs we only consider them safe iff they only contain
310 * upper case characters and '_' (like "HEAD" AND "MERGE_HEAD", and not like
311 * "config").
313 static int refname_is_safe(const char *refname)
315 if (starts_with(refname, "refs/")) {
316 char *buf;
317 int result;
319 buf = xmalloc(strlen(refname) + 1);
321 * Does the refname try to escape refs/?
322 * For example: refs/foo/../bar is safe but refs/foo/../../bar
323 * is not.
325 result = !normalize_path_copy(buf, refname + strlen("refs/"));
326 free(buf);
327 return result;
329 while (*refname) {
330 if (!isupper(*refname) && *refname != '_')
331 return 0;
332 refname++;
334 return 1;
337 static struct ref_entry *create_ref_entry(const char *refname,
338 const unsigned char *sha1, int flag,
339 int check_name)
341 int len;
342 struct ref_entry *ref;
344 if (check_name &&
345 check_refname_format(refname, REFNAME_ALLOW_ONELEVEL))
346 die("Reference has invalid format: '%s'", refname);
347 if (!check_name && !refname_is_safe(refname))
348 die("Reference has invalid name: '%s'", refname);
349 len = strlen(refname) + 1;
350 ref = xmalloc(sizeof(struct ref_entry) + len);
351 hashcpy(ref->u.value.sha1, sha1);
352 hashclr(ref->u.value.peeled);
353 memcpy(ref->name, refname, len);
354 ref->flag = flag;
355 return ref;
358 static void clear_ref_dir(struct ref_dir *dir);
360 static void free_ref_entry(struct ref_entry *entry)
362 if (entry->flag & REF_DIR) {
364 * Do not use get_ref_dir() here, as that might
365 * trigger the reading of loose refs.
367 clear_ref_dir(&entry->u.subdir);
369 free(entry);
373 * Add a ref_entry to the end of dir (unsorted). Entry is always
374 * stored directly in dir; no recursion into subdirectories is
375 * done.
377 static void add_entry_to_dir(struct ref_dir *dir, struct ref_entry *entry)
379 ALLOC_GROW(dir->entries, dir->nr + 1, dir->alloc);
380 dir->entries[dir->nr++] = entry;
381 /* optimize for the case that entries are added in order */
382 if (dir->nr == 1 ||
383 (dir->nr == dir->sorted + 1 &&
384 strcmp(dir->entries[dir->nr - 2]->name,
385 dir->entries[dir->nr - 1]->name) < 0))
386 dir->sorted = dir->nr;
390 * Clear and free all entries in dir, recursively.
392 static void clear_ref_dir(struct ref_dir *dir)
394 int i;
395 for (i = 0; i < dir->nr; i++)
396 free_ref_entry(dir->entries[i]);
397 free(dir->entries);
398 dir->sorted = dir->nr = dir->alloc = 0;
399 dir->entries = NULL;
403 * Create a struct ref_entry object for the specified dirname.
404 * dirname is the name of the directory with a trailing slash (e.g.,
405 * "refs/heads/") or "" for the top-level directory.
407 static struct ref_entry *create_dir_entry(struct ref_cache *ref_cache,
408 const char *dirname, size_t len,
409 int incomplete)
411 struct ref_entry *direntry;
412 direntry = xcalloc(1, sizeof(struct ref_entry) + len + 1);
413 memcpy(direntry->name, dirname, len);
414 direntry->name[len] = '\0';
415 direntry->u.subdir.ref_cache = ref_cache;
416 direntry->flag = REF_DIR | (incomplete ? REF_INCOMPLETE : 0);
417 return direntry;
420 static int ref_entry_cmp(const void *a, const void *b)
422 struct ref_entry *one = *(struct ref_entry **)a;
423 struct ref_entry *two = *(struct ref_entry **)b;
424 return strcmp(one->name, two->name);
427 static void sort_ref_dir(struct ref_dir *dir);
429 struct string_slice {
430 size_t len;
431 const char *str;
434 static int ref_entry_cmp_sslice(const void *key_, const void *ent_)
436 const struct string_slice *key = key_;
437 const struct ref_entry *ent = *(const struct ref_entry * const *)ent_;
438 int cmp = strncmp(key->str, ent->name, key->len);
439 if (cmp)
440 return cmp;
441 return '\0' - (unsigned char)ent->name[key->len];
445 * Return the index of the entry with the given refname from the
446 * ref_dir (non-recursively), sorting dir if necessary. Return -1 if
447 * no such entry is found. dir must already be complete.
449 static int search_ref_dir(struct ref_dir *dir, const char *refname, size_t len)
451 struct ref_entry **r;
452 struct string_slice key;
454 if (refname == NULL || !dir->nr)
455 return -1;
457 sort_ref_dir(dir);
458 key.len = len;
459 key.str = refname;
460 r = bsearch(&key, dir->entries, dir->nr, sizeof(*dir->entries),
461 ref_entry_cmp_sslice);
463 if (r == NULL)
464 return -1;
466 return r - dir->entries;
470 * Search for a directory entry directly within dir (without
471 * recursing). Sort dir if necessary. subdirname must be a directory
472 * name (i.e., end in '/'). If mkdir is set, then create the
473 * directory if it is missing; otherwise, return NULL if the desired
474 * directory cannot be found. dir must already be complete.
476 static struct ref_dir *search_for_subdir(struct ref_dir *dir,
477 const char *subdirname, size_t len,
478 int mkdir)
480 int entry_index = search_ref_dir(dir, subdirname, len);
481 struct ref_entry *entry;
482 if (entry_index == -1) {
483 if (!mkdir)
484 return NULL;
486 * Since dir is complete, the absence of a subdir
487 * means that the subdir really doesn't exist;
488 * therefore, create an empty record for it but mark
489 * the record complete.
491 entry = create_dir_entry(dir->ref_cache, subdirname, len, 0);
492 add_entry_to_dir(dir, entry);
493 } else {
494 entry = dir->entries[entry_index];
496 return get_ref_dir(entry);
500 * If refname is a reference name, find the ref_dir within the dir
501 * tree that should hold refname. If refname is a directory name
502 * (i.e., ends in '/'), then return that ref_dir itself. dir must
503 * represent the top-level directory and must already be complete.
504 * Sort ref_dirs and recurse into subdirectories as necessary. If
505 * mkdir is set, then create any missing directories; otherwise,
506 * return NULL if the desired directory cannot be found.
508 static struct ref_dir *find_containing_dir(struct ref_dir *dir,
509 const char *refname, int mkdir)
511 const char *slash;
512 for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
513 size_t dirnamelen = slash - refname + 1;
514 struct ref_dir *subdir;
515 subdir = search_for_subdir(dir, refname, dirnamelen, mkdir);
516 if (!subdir) {
517 dir = NULL;
518 break;
520 dir = subdir;
523 return dir;
527 * Find the value entry with the given name in dir, sorting ref_dirs
528 * and recursing into subdirectories as necessary. If the name is not
529 * found or it corresponds to a directory entry, return NULL.
531 static struct ref_entry *find_ref(struct ref_dir *dir, const char *refname)
533 int entry_index;
534 struct ref_entry *entry;
535 dir = find_containing_dir(dir, refname, 0);
536 if (!dir)
537 return NULL;
538 entry_index = search_ref_dir(dir, refname, strlen(refname));
539 if (entry_index == -1)
540 return NULL;
541 entry = dir->entries[entry_index];
542 return (entry->flag & REF_DIR) ? NULL : entry;
546 * Remove the entry with the given name from dir, recursing into
547 * subdirectories as necessary. If refname is the name of a directory
548 * (i.e., ends with '/'), then remove the directory and its contents.
549 * If the removal was successful, return the number of entries
550 * remaining in the directory entry that contained the deleted entry.
551 * If the name was not found, return -1. Please note that this
552 * function only deletes the entry from the cache; it does not delete
553 * it from the filesystem or ensure that other cache entries (which
554 * might be symbolic references to the removed entry) are updated.
555 * Nor does it remove any containing dir entries that might be made
556 * empty by the removal. dir must represent the top-level directory
557 * and must already be complete.
559 static int remove_entry(struct ref_dir *dir, const char *refname)
561 int refname_len = strlen(refname);
562 int entry_index;
563 struct ref_entry *entry;
564 int is_dir = refname[refname_len - 1] == '/';
565 if (is_dir) {
567 * refname represents a reference directory. Remove
568 * the trailing slash; otherwise we will get the
569 * directory *representing* refname rather than the
570 * one *containing* it.
572 char *dirname = xmemdupz(refname, refname_len - 1);
573 dir = find_containing_dir(dir, dirname, 0);
574 free(dirname);
575 } else {
576 dir = find_containing_dir(dir, refname, 0);
578 if (!dir)
579 return -1;
580 entry_index = search_ref_dir(dir, refname, refname_len);
581 if (entry_index == -1)
582 return -1;
583 entry = dir->entries[entry_index];
585 memmove(&dir->entries[entry_index],
586 &dir->entries[entry_index + 1],
587 (dir->nr - entry_index - 1) * sizeof(*dir->entries)
589 dir->nr--;
590 if (dir->sorted > entry_index)
591 dir->sorted--;
592 free_ref_entry(entry);
593 return dir->nr;
597 * Add a ref_entry to the ref_dir (unsorted), recursing into
598 * subdirectories as necessary. dir must represent the top-level
599 * directory. Return 0 on success.
601 static int add_ref(struct ref_dir *dir, struct ref_entry *ref)
603 dir = find_containing_dir(dir, ref->name, 1);
604 if (!dir)
605 return -1;
606 add_entry_to_dir(dir, ref);
607 return 0;
611 * Emit a warning and return true iff ref1 and ref2 have the same name
612 * and the same sha1. Die if they have the same name but different
613 * sha1s.
615 static int is_dup_ref(const struct ref_entry *ref1, const struct ref_entry *ref2)
617 if (strcmp(ref1->name, ref2->name))
618 return 0;
620 /* Duplicate name; make sure that they don't conflict: */
622 if ((ref1->flag & REF_DIR) || (ref2->flag & REF_DIR))
623 /* This is impossible by construction */
624 die("Reference directory conflict: %s", ref1->name);
626 if (hashcmp(ref1->u.value.sha1, ref2->u.value.sha1))
627 die("Duplicated ref, and SHA1s don't match: %s", ref1->name);
629 warning("Duplicated ref: %s", ref1->name);
630 return 1;
634 * Sort the entries in dir non-recursively (if they are not already
635 * sorted) and remove any duplicate entries.
637 static void sort_ref_dir(struct ref_dir *dir)
639 int i, j;
640 struct ref_entry *last = NULL;
643 * This check also prevents passing a zero-length array to qsort(),
644 * which is a problem on some platforms.
646 if (dir->sorted == dir->nr)
647 return;
649 qsort(dir->entries, dir->nr, sizeof(*dir->entries), ref_entry_cmp);
651 /* Remove any duplicates: */
652 for (i = 0, j = 0; j < dir->nr; j++) {
653 struct ref_entry *entry = dir->entries[j];
654 if (last && is_dup_ref(last, entry))
655 free_ref_entry(entry);
656 else
657 last = dir->entries[i++] = entry;
659 dir->sorted = dir->nr = i;
662 /* Include broken references in a do_for_each_ref*() iteration: */
663 #define DO_FOR_EACH_INCLUDE_BROKEN 0x01
666 * Return true iff the reference described by entry can be resolved to
667 * an object in the database. Emit a warning if the referred-to
668 * object does not exist.
670 static int ref_resolves_to_object(struct ref_entry *entry)
672 if (entry->flag & REF_ISBROKEN)
673 return 0;
674 if (!has_sha1_file(entry->u.value.sha1)) {
675 error("%s does not point to a valid object!", entry->name);
676 return 0;
678 return 1;
682 * current_ref is a performance hack: when iterating over references
683 * using the for_each_ref*() functions, current_ref is set to the
684 * current reference's entry before calling the callback function. If
685 * the callback function calls peel_ref(), then peel_ref() first
686 * checks whether the reference to be peeled is the current reference
687 * (it usually is) and if so, returns that reference's peeled version
688 * if it is available. This avoids a refname lookup in a common case.
690 static struct ref_entry *current_ref;
692 typedef int each_ref_entry_fn(struct ref_entry *entry, void *cb_data);
694 struct ref_entry_cb {
695 const char *base;
696 int trim;
697 int flags;
698 each_ref_fn *fn;
699 void *cb_data;
703 * Handle one reference in a do_for_each_ref*()-style iteration,
704 * calling an each_ref_fn for each entry.
706 static int do_one_ref(struct ref_entry *entry, void *cb_data)
708 struct ref_entry_cb *data = cb_data;
709 struct ref_entry *old_current_ref;
710 int retval;
712 if (!starts_with(entry->name, data->base))
713 return 0;
715 if (!(data->flags & DO_FOR_EACH_INCLUDE_BROKEN) &&
716 !ref_resolves_to_object(entry))
717 return 0;
719 /* Store the old value, in case this is a recursive call: */
720 old_current_ref = current_ref;
721 current_ref = entry;
722 retval = data->fn(entry->name + data->trim, entry->u.value.sha1,
723 entry->flag, data->cb_data);
724 current_ref = old_current_ref;
725 return retval;
729 * Call fn for each reference in dir that has index in the range
730 * offset <= index < dir->nr. Recurse into subdirectories that are in
731 * that index range, sorting them before iterating. This function
732 * does not sort dir itself; it should be sorted beforehand. fn is
733 * called for all references, including broken ones.
735 static int do_for_each_entry_in_dir(struct ref_dir *dir, int offset,
736 each_ref_entry_fn fn, void *cb_data)
738 int i;
739 assert(dir->sorted == dir->nr);
740 for (i = offset; i < dir->nr; i++) {
741 struct ref_entry *entry = dir->entries[i];
742 int retval;
743 if (entry->flag & REF_DIR) {
744 struct ref_dir *subdir = get_ref_dir(entry);
745 sort_ref_dir(subdir);
746 retval = do_for_each_entry_in_dir(subdir, 0, fn, cb_data);
747 } else {
748 retval = fn(entry, cb_data);
750 if (retval)
751 return retval;
753 return 0;
757 * Call fn for each reference in the union of dir1 and dir2, in order
758 * by refname. Recurse into subdirectories. If a value entry appears
759 * in both dir1 and dir2, then only process the version that is in
760 * dir2. The input dirs must already be sorted, but subdirs will be
761 * sorted as needed. fn is called for all references, including
762 * broken ones.
764 static int do_for_each_entry_in_dirs(struct ref_dir *dir1,
765 struct ref_dir *dir2,
766 each_ref_entry_fn fn, void *cb_data)
768 int retval;
769 int i1 = 0, i2 = 0;
771 assert(dir1->sorted == dir1->nr);
772 assert(dir2->sorted == dir2->nr);
773 while (1) {
774 struct ref_entry *e1, *e2;
775 int cmp;
776 if (i1 == dir1->nr) {
777 return do_for_each_entry_in_dir(dir2, i2, fn, cb_data);
779 if (i2 == dir2->nr) {
780 return do_for_each_entry_in_dir(dir1, i1, fn, cb_data);
782 e1 = dir1->entries[i1];
783 e2 = dir2->entries[i2];
784 cmp = strcmp(e1->name, e2->name);
785 if (cmp == 0) {
786 if ((e1->flag & REF_DIR) && (e2->flag & REF_DIR)) {
787 /* Both are directories; descend them in parallel. */
788 struct ref_dir *subdir1 = get_ref_dir(e1);
789 struct ref_dir *subdir2 = get_ref_dir(e2);
790 sort_ref_dir(subdir1);
791 sort_ref_dir(subdir2);
792 retval = do_for_each_entry_in_dirs(
793 subdir1, subdir2, fn, cb_data);
794 i1++;
795 i2++;
796 } else if (!(e1->flag & REF_DIR) && !(e2->flag & REF_DIR)) {
797 /* Both are references; ignore the one from dir1. */
798 retval = fn(e2, cb_data);
799 i1++;
800 i2++;
801 } else {
802 die("conflict between reference and directory: %s",
803 e1->name);
805 } else {
806 struct ref_entry *e;
807 if (cmp < 0) {
808 e = e1;
809 i1++;
810 } else {
811 e = e2;
812 i2++;
814 if (e->flag & REF_DIR) {
815 struct ref_dir *subdir = get_ref_dir(e);
816 sort_ref_dir(subdir);
817 retval = do_for_each_entry_in_dir(
818 subdir, 0, fn, cb_data);
819 } else {
820 retval = fn(e, cb_data);
823 if (retval)
824 return retval;
829 * Load all of the refs from the dir into our in-memory cache. The hard work
830 * of loading loose refs is done by get_ref_dir(), so we just need to recurse
831 * through all of the sub-directories. We do not even need to care about
832 * sorting, as traversal order does not matter to us.
834 static void prime_ref_dir(struct ref_dir *dir)
836 int i;
837 for (i = 0; i < dir->nr; i++) {
838 struct ref_entry *entry = dir->entries[i];
839 if (entry->flag & REF_DIR)
840 prime_ref_dir(get_ref_dir(entry));
844 struct nonmatching_ref_data {
845 const struct string_list *skip;
846 struct ref_entry *found;
849 static int nonmatching_ref_fn(struct ref_entry *entry, void *vdata)
851 struct nonmatching_ref_data *data = vdata;
853 if (data->skip && string_list_has_string(data->skip, entry->name))
854 return 0;
856 data->found = entry;
857 return 1;
860 static void report_refname_conflict(struct ref_entry *entry,
861 const char *refname)
863 error("'%s' exists; cannot create '%s'", entry->name, refname);
867 * Return true iff a reference named refname could be created without
868 * conflicting with the name of an existing reference in dir. If
869 * skip is non-NULL, ignore potential conflicts with refs in skip
870 * (e.g., because they are scheduled for deletion in the same
871 * operation).
873 * Two reference names conflict if one of them exactly matches the
874 * leading components of the other; e.g., "refs/foo/bar" conflicts
875 * with both "refs/foo" and with "refs/foo/bar/baz" but not with
876 * "refs/foo/bar" or "refs/foo/barbados".
878 * skip must be sorted.
880 static int is_refname_available(const char *refname,
881 const struct string_list *skip,
882 struct ref_dir *dir)
884 const char *slash;
885 int pos;
886 struct strbuf dirname = STRBUF_INIT;
889 * For the sake of comments in this function, suppose that
890 * refname is "refs/foo/bar".
893 for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
895 * We are still at a leading dir of the refname (e.g.,
896 * "refs/foo"; if there is a reference with that name,
897 * it is a conflict, *unless* it is in skip.
899 pos = search_ref_dir(dir, refname, slash - refname);
900 if (pos >= 0) {
902 * We found a reference whose name is a proper
903 * prefix of refname; e.g., "refs/foo".
905 struct ref_entry *entry = dir->entries[pos];
906 if (skip && string_list_has_string(skip, entry->name)) {
908 * The reference we just found, e.g.,
909 * "refs/foo", is also in skip, so it
910 * is not considered a conflict.
911 * Moreover, the fact that "refs/foo"
912 * exists means that there cannot be
913 * any references anywhere under the
914 * "refs/foo/" namespace (because they
915 * would have conflicted with
916 * "refs/foo"). So we can stop looking
917 * now and return true.
919 return 1;
921 report_refname_conflict(entry, refname);
922 return 0;
927 * Otherwise, we can try to continue our search with
928 * the next component. So try to look up the
929 * directory, e.g., "refs/foo/".
931 pos = search_ref_dir(dir, refname, slash + 1 - refname);
932 if (pos < 0) {
934 * There was no directory "refs/foo/", so
935 * there is nothing under this whole prefix,
936 * and we are OK.
938 return 1;
941 dir = get_ref_dir(dir->entries[pos]);
945 * We are at the leaf of our refname (e.g., "refs/foo/bar").
946 * There is no point in searching for a reference with that
947 * name, because a refname isn't considered to conflict with
948 * itself. But we still need to check for references whose
949 * names are in the "refs/foo/bar/" namespace, because they
950 * *do* conflict.
952 strbuf_addstr(&dirname, refname);
953 strbuf_addch(&dirname, '/');
954 pos = search_ref_dir(dir, dirname.buf, dirname.len);
955 strbuf_release(&dirname);
957 if (pos >= 0) {
959 * We found a directory named "$refname/" (e.g.,
960 * "refs/foo/bar/"). It is a problem iff it contains
961 * any ref that is not in "skip".
963 struct nonmatching_ref_data data;
964 struct ref_entry *entry = dir->entries[pos];
966 dir = get_ref_dir(entry);
967 data.skip = skip;
968 sort_ref_dir(dir);
969 if (!do_for_each_entry_in_dir(dir, 0, nonmatching_ref_fn, &data))
970 return 1;
972 report_refname_conflict(data.found, refname);
973 return 0;
976 return 1;
979 struct packed_ref_cache {
980 struct ref_entry *root;
983 * Count of references to the data structure in this instance,
984 * including the pointer from ref_cache::packed if any. The
985 * data will not be freed as long as the reference count is
986 * nonzero.
988 unsigned int referrers;
991 * Iff the packed-refs file associated with this instance is
992 * currently locked for writing, this points at the associated
993 * lock (which is owned by somebody else). The referrer count
994 * is also incremented when the file is locked and decremented
995 * when it is unlocked.
997 struct lock_file *lock;
999 /* The metadata from when this packed-refs cache was read */
1000 struct stat_validity validity;
1004 * Future: need to be in "struct repository"
1005 * when doing a full libification.
1007 static struct ref_cache {
1008 struct ref_cache *next;
1009 struct ref_entry *loose;
1010 struct packed_ref_cache *packed;
1012 * The submodule name, or "" for the main repo. We allocate
1013 * length 1 rather than FLEX_ARRAY so that the main ref_cache
1014 * is initialized correctly.
1016 char name[1];
1017 } ref_cache, *submodule_ref_caches;
1019 /* Lock used for the main packed-refs file: */
1020 static struct lock_file packlock;
1023 * Increment the reference count of *packed_refs.
1025 static void acquire_packed_ref_cache(struct packed_ref_cache *packed_refs)
1027 packed_refs->referrers++;
1031 * Decrease the reference count of *packed_refs. If it goes to zero,
1032 * free *packed_refs and return true; otherwise return false.
1034 static int release_packed_ref_cache(struct packed_ref_cache *packed_refs)
1036 if (!--packed_refs->referrers) {
1037 free_ref_entry(packed_refs->root);
1038 stat_validity_clear(&packed_refs->validity);
1039 free(packed_refs);
1040 return 1;
1041 } else {
1042 return 0;
1046 static void clear_packed_ref_cache(struct ref_cache *refs)
1048 if (refs->packed) {
1049 struct packed_ref_cache *packed_refs = refs->packed;
1051 if (packed_refs->lock)
1052 die("internal error: packed-ref cache cleared while locked");
1053 refs->packed = NULL;
1054 release_packed_ref_cache(packed_refs);
1058 static void clear_loose_ref_cache(struct ref_cache *refs)
1060 if (refs->loose) {
1061 free_ref_entry(refs->loose);
1062 refs->loose = NULL;
1066 static struct ref_cache *create_ref_cache(const char *submodule)
1068 int len;
1069 struct ref_cache *refs;
1070 if (!submodule)
1071 submodule = "";
1072 len = strlen(submodule) + 1;
1073 refs = xcalloc(1, sizeof(struct ref_cache) + len);
1074 memcpy(refs->name, submodule, len);
1075 return refs;
1079 * Return a pointer to a ref_cache for the specified submodule. For
1080 * the main repository, use submodule==NULL. The returned structure
1081 * will be allocated and initialized but not necessarily populated; it
1082 * should not be freed.
1084 static struct ref_cache *get_ref_cache(const char *submodule)
1086 struct ref_cache *refs;
1088 if (!submodule || !*submodule)
1089 return &ref_cache;
1091 for (refs = submodule_ref_caches; refs; refs = refs->next)
1092 if (!strcmp(submodule, refs->name))
1093 return refs;
1095 refs = create_ref_cache(submodule);
1096 refs->next = submodule_ref_caches;
1097 submodule_ref_caches = refs;
1098 return refs;
1101 /* The length of a peeled reference line in packed-refs, including EOL: */
1102 #define PEELED_LINE_LENGTH 42
1105 * The packed-refs header line that we write out. Perhaps other
1106 * traits will be added later. The trailing space is required.
1108 static const char PACKED_REFS_HEADER[] =
1109 "# pack-refs with: peeled fully-peeled \n";
1112 * Parse one line from a packed-refs file. Write the SHA1 to sha1.
1113 * Return a pointer to the refname within the line (null-terminated),
1114 * or NULL if there was a problem.
1116 static const char *parse_ref_line(struct strbuf *line, unsigned char *sha1)
1118 const char *ref;
1121 * 42: the answer to everything.
1123 * In this case, it happens to be the answer to
1124 * 40 (length of sha1 hex representation)
1125 * +1 (space in between hex and name)
1126 * +1 (newline at the end of the line)
1128 if (line->len <= 42)
1129 return NULL;
1131 if (get_sha1_hex(line->buf, sha1) < 0)
1132 return NULL;
1133 if (!isspace(line->buf[40]))
1134 return NULL;
1136 ref = line->buf + 41;
1137 if (isspace(*ref))
1138 return NULL;
1140 if (line->buf[line->len - 1] != '\n')
1141 return NULL;
1142 line->buf[--line->len] = 0;
1144 return ref;
1148 * Read f, which is a packed-refs file, into dir.
1150 * A comment line of the form "# pack-refs with: " may contain zero or
1151 * more traits. We interpret the traits as follows:
1153 * No traits:
1155 * Probably no references are peeled. But if the file contains a
1156 * peeled value for a reference, we will use it.
1158 * peeled:
1160 * References under "refs/tags/", if they *can* be peeled, *are*
1161 * peeled in this file. References outside of "refs/tags/" are
1162 * probably not peeled even if they could have been, but if we find
1163 * a peeled value for such a reference we will use it.
1165 * fully-peeled:
1167 * All references in the file that can be peeled are peeled.
1168 * Inversely (and this is more important), any references in the
1169 * file for which no peeled value is recorded is not peelable. This
1170 * trait should typically be written alongside "peeled" for
1171 * compatibility with older clients, but we do not require it
1172 * (i.e., "peeled" is a no-op if "fully-peeled" is set).
1174 static void read_packed_refs(FILE *f, struct ref_dir *dir)
1176 struct ref_entry *last = NULL;
1177 struct strbuf line = STRBUF_INIT;
1178 enum { PEELED_NONE, PEELED_TAGS, PEELED_FULLY } peeled = PEELED_NONE;
1180 while (strbuf_getwholeline(&line, f, '\n') != EOF) {
1181 unsigned char sha1[20];
1182 const char *refname;
1183 const char *traits;
1185 if (skip_prefix(line.buf, "# pack-refs with:", &traits)) {
1186 if (strstr(traits, " fully-peeled "))
1187 peeled = PEELED_FULLY;
1188 else if (strstr(traits, " peeled "))
1189 peeled = PEELED_TAGS;
1190 /* perhaps other traits later as well */
1191 continue;
1194 refname = parse_ref_line(&line, sha1);
1195 if (refname) {
1196 int flag = REF_ISPACKED;
1198 if (check_refname_format(refname, REFNAME_ALLOW_ONELEVEL)) {
1199 hashclr(sha1);
1200 flag |= REF_BAD_NAME | REF_ISBROKEN;
1202 last = create_ref_entry(refname, sha1, flag, 0);
1203 if (peeled == PEELED_FULLY ||
1204 (peeled == PEELED_TAGS && starts_with(refname, "refs/tags/")))
1205 last->flag |= REF_KNOWS_PEELED;
1206 add_ref(dir, last);
1207 continue;
1209 if (last &&
1210 line.buf[0] == '^' &&
1211 line.len == PEELED_LINE_LENGTH &&
1212 line.buf[PEELED_LINE_LENGTH - 1] == '\n' &&
1213 !get_sha1_hex(line.buf + 1, sha1)) {
1214 hashcpy(last->u.value.peeled, sha1);
1216 * Regardless of what the file header said,
1217 * we definitely know the value of *this*
1218 * reference:
1220 last->flag |= REF_KNOWS_PEELED;
1224 strbuf_release(&line);
1228 * Get the packed_ref_cache for the specified ref_cache, creating it
1229 * if necessary.
1231 static struct packed_ref_cache *get_packed_ref_cache(struct ref_cache *refs)
1233 const char *packed_refs_file;
1235 if (*refs->name)
1236 packed_refs_file = git_path_submodule(refs->name, "packed-refs");
1237 else
1238 packed_refs_file = git_path("packed-refs");
1240 if (refs->packed &&
1241 !stat_validity_check(&refs->packed->validity, packed_refs_file))
1242 clear_packed_ref_cache(refs);
1244 if (!refs->packed) {
1245 FILE *f;
1247 refs->packed = xcalloc(1, sizeof(*refs->packed));
1248 acquire_packed_ref_cache(refs->packed);
1249 refs->packed->root = create_dir_entry(refs, "", 0, 0);
1250 f = fopen(packed_refs_file, "r");
1251 if (f) {
1252 stat_validity_update(&refs->packed->validity, fileno(f));
1253 read_packed_refs(f, get_ref_dir(refs->packed->root));
1254 fclose(f);
1257 return refs->packed;
1260 static struct ref_dir *get_packed_ref_dir(struct packed_ref_cache *packed_ref_cache)
1262 return get_ref_dir(packed_ref_cache->root);
1265 static struct ref_dir *get_packed_refs(struct ref_cache *refs)
1267 return get_packed_ref_dir(get_packed_ref_cache(refs));
1270 void add_packed_ref(const char *refname, const unsigned char *sha1)
1272 struct packed_ref_cache *packed_ref_cache =
1273 get_packed_ref_cache(&ref_cache);
1275 if (!packed_ref_cache->lock)
1276 die("internal error: packed refs not locked");
1277 add_ref(get_packed_ref_dir(packed_ref_cache),
1278 create_ref_entry(refname, sha1, REF_ISPACKED, 1));
1282 * Read the loose references from the namespace dirname into dir
1283 * (without recursing). dirname must end with '/'. dir must be the
1284 * directory entry corresponding to dirname.
1286 static void read_loose_refs(const char *dirname, struct ref_dir *dir)
1288 struct ref_cache *refs = dir->ref_cache;
1289 DIR *d;
1290 const char *path;
1291 struct dirent *de;
1292 int dirnamelen = strlen(dirname);
1293 struct strbuf refname;
1295 if (*refs->name)
1296 path = git_path_submodule(refs->name, "%s", dirname);
1297 else
1298 path = git_path("%s", dirname);
1300 d = opendir(path);
1301 if (!d)
1302 return;
1304 strbuf_init(&refname, dirnamelen + 257);
1305 strbuf_add(&refname, dirname, dirnamelen);
1307 while ((de = readdir(d)) != NULL) {
1308 unsigned char sha1[20];
1309 struct stat st;
1310 int flag;
1311 const char *refdir;
1313 if (de->d_name[0] == '.')
1314 continue;
1315 if (ends_with(de->d_name, ".lock"))
1316 continue;
1317 strbuf_addstr(&refname, de->d_name);
1318 refdir = *refs->name
1319 ? git_path_submodule(refs->name, "%s", refname.buf)
1320 : git_path("%s", refname.buf);
1321 if (stat(refdir, &st) < 0) {
1322 ; /* silently ignore */
1323 } else if (S_ISDIR(st.st_mode)) {
1324 strbuf_addch(&refname, '/');
1325 add_entry_to_dir(dir,
1326 create_dir_entry(refs, refname.buf,
1327 refname.len, 1));
1328 } else {
1329 if (*refs->name) {
1330 hashclr(sha1);
1331 flag = 0;
1332 if (resolve_gitlink_ref(refs->name, refname.buf, sha1) < 0) {
1333 hashclr(sha1);
1334 flag |= REF_ISBROKEN;
1336 } else if (read_ref_full(refname.buf,
1337 RESOLVE_REF_READING,
1338 sha1, &flag)) {
1339 hashclr(sha1);
1340 flag |= REF_ISBROKEN;
1342 if (check_refname_format(refname.buf,
1343 REFNAME_ALLOW_ONELEVEL)) {
1344 hashclr(sha1);
1345 flag |= REF_BAD_NAME | REF_ISBROKEN;
1347 add_entry_to_dir(dir,
1348 create_ref_entry(refname.buf, sha1, flag, 0));
1350 strbuf_setlen(&refname, dirnamelen);
1352 strbuf_release(&refname);
1353 closedir(d);
1356 static struct ref_dir *get_loose_refs(struct ref_cache *refs)
1358 if (!refs->loose) {
1360 * Mark the top-level directory complete because we
1361 * are about to read the only subdirectory that can
1362 * hold references:
1364 refs->loose = create_dir_entry(refs, "", 0, 0);
1366 * Create an incomplete entry for "refs/":
1368 add_entry_to_dir(get_ref_dir(refs->loose),
1369 create_dir_entry(refs, "refs/", 5, 1));
1371 return get_ref_dir(refs->loose);
1374 /* We allow "recursive" symbolic refs. Only within reason, though */
1375 #define MAXDEPTH 5
1376 #define MAXREFLEN (1024)
1379 * Called by resolve_gitlink_ref_recursive() after it failed to read
1380 * from the loose refs in ref_cache refs. Find <refname> in the
1381 * packed-refs file for the submodule.
1383 static int resolve_gitlink_packed_ref(struct ref_cache *refs,
1384 const char *refname, unsigned char *sha1)
1386 struct ref_entry *ref;
1387 struct ref_dir *dir = get_packed_refs(refs);
1389 ref = find_ref(dir, refname);
1390 if (ref == NULL)
1391 return -1;
1393 hashcpy(sha1, ref->u.value.sha1);
1394 return 0;
1397 static int resolve_gitlink_ref_recursive(struct ref_cache *refs,
1398 const char *refname, unsigned char *sha1,
1399 int recursion)
1401 int fd, len;
1402 char buffer[128], *p;
1403 char *path;
1405 if (recursion > MAXDEPTH || strlen(refname) > MAXREFLEN)
1406 return -1;
1407 path = *refs->name
1408 ? git_path_submodule(refs->name, "%s", refname)
1409 : git_path("%s", refname);
1410 fd = open(path, O_RDONLY);
1411 if (fd < 0)
1412 return resolve_gitlink_packed_ref(refs, refname, sha1);
1414 len = read(fd, buffer, sizeof(buffer)-1);
1415 close(fd);
1416 if (len < 0)
1417 return -1;
1418 while (len && isspace(buffer[len-1]))
1419 len--;
1420 buffer[len] = 0;
1422 /* Was it a detached head or an old-fashioned symlink? */
1423 if (!get_sha1_hex(buffer, sha1))
1424 return 0;
1426 /* Symref? */
1427 if (strncmp(buffer, "ref:", 4))
1428 return -1;
1429 p = buffer + 4;
1430 while (isspace(*p))
1431 p++;
1433 return resolve_gitlink_ref_recursive(refs, p, sha1, recursion+1);
1436 int resolve_gitlink_ref(const char *path, const char *refname, unsigned char *sha1)
1438 int len = strlen(path), retval;
1439 char *submodule;
1440 struct ref_cache *refs;
1442 while (len && path[len-1] == '/')
1443 len--;
1444 if (!len)
1445 return -1;
1446 submodule = xstrndup(path, len);
1447 refs = get_ref_cache(submodule);
1448 free(submodule);
1450 retval = resolve_gitlink_ref_recursive(refs, refname, sha1, 0);
1451 return retval;
1455 * Return the ref_entry for the given refname from the packed
1456 * references. If it does not exist, return NULL.
1458 static struct ref_entry *get_packed_ref(const char *refname)
1460 return find_ref(get_packed_refs(&ref_cache), refname);
1464 * A loose ref file doesn't exist; check for a packed ref. The
1465 * options are forwarded from resolve_safe_unsafe().
1467 static int resolve_missing_loose_ref(const char *refname,
1468 int resolve_flags,
1469 unsigned char *sha1,
1470 int *flags)
1472 struct ref_entry *entry;
1475 * The loose reference file does not exist; check for a packed
1476 * reference.
1478 entry = get_packed_ref(refname);
1479 if (entry) {
1480 hashcpy(sha1, entry->u.value.sha1);
1481 if (flags)
1482 *flags |= REF_ISPACKED;
1483 return 0;
1485 /* The reference is not a packed reference, either. */
1486 if (resolve_flags & RESOLVE_REF_READING) {
1487 errno = ENOENT;
1488 return -1;
1489 } else {
1490 hashclr(sha1);
1491 return 0;
1495 /* This function needs to return a meaningful errno on failure */
1496 const char *resolve_ref_unsafe(const char *refname, int resolve_flags, unsigned char *sha1, int *flags)
1498 int depth = MAXDEPTH;
1499 ssize_t len;
1500 char buffer[256];
1501 static char refname_buffer[256];
1502 int bad_name = 0;
1504 if (flags)
1505 *flags = 0;
1507 if (check_refname_format(refname, REFNAME_ALLOW_ONELEVEL)) {
1508 if (flags)
1509 *flags |= REF_BAD_NAME;
1511 if (!(resolve_flags & RESOLVE_REF_ALLOW_BAD_NAME) ||
1512 !refname_is_safe(refname)) {
1513 errno = EINVAL;
1514 return NULL;
1517 * dwim_ref() uses REF_ISBROKEN to distinguish between
1518 * missing refs and refs that were present but invalid,
1519 * to complain about the latter to stderr.
1521 * We don't know whether the ref exists, so don't set
1522 * REF_ISBROKEN yet.
1524 bad_name = 1;
1526 for (;;) {
1527 char path[PATH_MAX];
1528 struct stat st;
1529 char *buf;
1530 int fd;
1532 if (--depth < 0) {
1533 errno = ELOOP;
1534 return NULL;
1537 git_snpath(path, sizeof(path), "%s", refname);
1540 * We might have to loop back here to avoid a race
1541 * condition: first we lstat() the file, then we try
1542 * to read it as a link or as a file. But if somebody
1543 * changes the type of the file (file <-> directory
1544 * <-> symlink) between the lstat() and reading, then
1545 * we don't want to report that as an error but rather
1546 * try again starting with the lstat().
1548 stat_ref:
1549 if (lstat(path, &st) < 0) {
1550 if (errno != ENOENT)
1551 return NULL;
1552 if (resolve_missing_loose_ref(refname, resolve_flags,
1553 sha1, flags))
1554 return NULL;
1555 if (bad_name) {
1556 hashclr(sha1);
1557 if (flags)
1558 *flags |= REF_ISBROKEN;
1560 return refname;
1563 /* Follow "normalized" - ie "refs/.." symlinks by hand */
1564 if (S_ISLNK(st.st_mode)) {
1565 len = readlink(path, buffer, sizeof(buffer)-1);
1566 if (len < 0) {
1567 if (errno == ENOENT || errno == EINVAL)
1568 /* inconsistent with lstat; retry */
1569 goto stat_ref;
1570 else
1571 return NULL;
1573 buffer[len] = 0;
1574 if (starts_with(buffer, "refs/") &&
1575 !check_refname_format(buffer, 0)) {
1576 strcpy(refname_buffer, buffer);
1577 refname = refname_buffer;
1578 if (flags)
1579 *flags |= REF_ISSYMREF;
1580 if (resolve_flags & RESOLVE_REF_NO_RECURSE) {
1581 hashclr(sha1);
1582 return refname;
1584 continue;
1588 /* Is it a directory? */
1589 if (S_ISDIR(st.st_mode)) {
1590 errno = EISDIR;
1591 return NULL;
1595 * Anything else, just open it and try to use it as
1596 * a ref
1598 fd = open(path, O_RDONLY);
1599 if (fd < 0) {
1600 if (errno == ENOENT)
1601 /* inconsistent with lstat; retry */
1602 goto stat_ref;
1603 else
1604 return NULL;
1606 len = read_in_full(fd, buffer, sizeof(buffer)-1);
1607 if (len < 0) {
1608 int save_errno = errno;
1609 close(fd);
1610 errno = save_errno;
1611 return NULL;
1613 close(fd);
1614 while (len && isspace(buffer[len-1]))
1615 len--;
1616 buffer[len] = '\0';
1619 * Is it a symbolic ref?
1621 if (!starts_with(buffer, "ref:")) {
1623 * Please note that FETCH_HEAD has a second
1624 * line containing other data.
1626 if (get_sha1_hex(buffer, sha1) ||
1627 (buffer[40] != '\0' && !isspace(buffer[40]))) {
1628 if (flags)
1629 *flags |= REF_ISBROKEN;
1630 errno = EINVAL;
1631 return NULL;
1633 if (bad_name) {
1634 hashclr(sha1);
1635 if (flags)
1636 *flags |= REF_ISBROKEN;
1638 return refname;
1640 if (flags)
1641 *flags |= REF_ISSYMREF;
1642 buf = buffer + 4;
1643 while (isspace(*buf))
1644 buf++;
1645 refname = strcpy(refname_buffer, buf);
1646 if (resolve_flags & RESOLVE_REF_NO_RECURSE) {
1647 hashclr(sha1);
1648 return refname;
1650 if (check_refname_format(buf, REFNAME_ALLOW_ONELEVEL)) {
1651 if (flags)
1652 *flags |= REF_ISBROKEN;
1654 if (!(resolve_flags & RESOLVE_REF_ALLOW_BAD_NAME) ||
1655 !refname_is_safe(buf)) {
1656 errno = EINVAL;
1657 return NULL;
1659 bad_name = 1;
1664 char *resolve_refdup(const char *ref, int resolve_flags, unsigned char *sha1, int *flags)
1666 return xstrdup_or_null(resolve_ref_unsafe(ref, resolve_flags, sha1, flags));
1669 /* The argument to filter_refs */
1670 struct ref_filter {
1671 const char *pattern;
1672 each_ref_fn *fn;
1673 void *cb_data;
1676 int read_ref_full(const char *refname, int resolve_flags, unsigned char *sha1, int *flags)
1678 if (resolve_ref_unsafe(refname, resolve_flags, sha1, flags))
1679 return 0;
1680 return -1;
1683 int read_ref(const char *refname, unsigned char *sha1)
1685 return read_ref_full(refname, RESOLVE_REF_READING, sha1, NULL);
1688 int ref_exists(const char *refname)
1690 unsigned char sha1[20];
1691 return !!resolve_ref_unsafe(refname, RESOLVE_REF_READING, sha1, NULL);
1694 static int filter_refs(const char *refname, const unsigned char *sha1, int flags,
1695 void *data)
1697 struct ref_filter *filter = (struct ref_filter *)data;
1698 if (wildmatch(filter->pattern, refname, 0, NULL))
1699 return 0;
1700 return filter->fn(refname, sha1, flags, filter->cb_data);
1703 enum peel_status {
1704 /* object was peeled successfully: */
1705 PEEL_PEELED = 0,
1708 * object cannot be peeled because the named object (or an
1709 * object referred to by a tag in the peel chain), does not
1710 * exist.
1712 PEEL_INVALID = -1,
1714 /* object cannot be peeled because it is not a tag: */
1715 PEEL_NON_TAG = -2,
1717 /* ref_entry contains no peeled value because it is a symref: */
1718 PEEL_IS_SYMREF = -3,
1721 * ref_entry cannot be peeled because it is broken (i.e., the
1722 * symbolic reference cannot even be resolved to an object
1723 * name):
1725 PEEL_BROKEN = -4
1729 * Peel the named object; i.e., if the object is a tag, resolve the
1730 * tag recursively until a non-tag is found. If successful, store the
1731 * result to sha1 and return PEEL_PEELED. If the object is not a tag
1732 * or is not valid, return PEEL_NON_TAG or PEEL_INVALID, respectively,
1733 * and leave sha1 unchanged.
1735 static enum peel_status peel_object(const unsigned char *name, unsigned char *sha1)
1737 struct object *o = lookup_unknown_object(name);
1739 if (o->type == OBJ_NONE) {
1740 int type = sha1_object_info(name, NULL);
1741 if (type < 0 || !object_as_type(o, type, 0))
1742 return PEEL_INVALID;
1745 if (o->type != OBJ_TAG)
1746 return PEEL_NON_TAG;
1748 o = deref_tag_noverify(o);
1749 if (!o)
1750 return PEEL_INVALID;
1752 hashcpy(sha1, o->sha1);
1753 return PEEL_PEELED;
1757 * Peel the entry (if possible) and return its new peel_status. If
1758 * repeel is true, re-peel the entry even if there is an old peeled
1759 * value that is already stored in it.
1761 * It is OK to call this function with a packed reference entry that
1762 * might be stale and might even refer to an object that has since
1763 * been garbage-collected. In such a case, if the entry has
1764 * REF_KNOWS_PEELED then leave the status unchanged and return
1765 * PEEL_PEELED or PEEL_NON_TAG; otherwise, return PEEL_INVALID.
1767 static enum peel_status peel_entry(struct ref_entry *entry, int repeel)
1769 enum peel_status status;
1771 if (entry->flag & REF_KNOWS_PEELED) {
1772 if (repeel) {
1773 entry->flag &= ~REF_KNOWS_PEELED;
1774 hashclr(entry->u.value.peeled);
1775 } else {
1776 return is_null_sha1(entry->u.value.peeled) ?
1777 PEEL_NON_TAG : PEEL_PEELED;
1780 if (entry->flag & REF_ISBROKEN)
1781 return PEEL_BROKEN;
1782 if (entry->flag & REF_ISSYMREF)
1783 return PEEL_IS_SYMREF;
1785 status = peel_object(entry->u.value.sha1, entry->u.value.peeled);
1786 if (status == PEEL_PEELED || status == PEEL_NON_TAG)
1787 entry->flag |= REF_KNOWS_PEELED;
1788 return status;
1791 int peel_ref(const char *refname, unsigned char *sha1)
1793 int flag;
1794 unsigned char base[20];
1796 if (current_ref && (current_ref->name == refname
1797 || !strcmp(current_ref->name, refname))) {
1798 if (peel_entry(current_ref, 0))
1799 return -1;
1800 hashcpy(sha1, current_ref->u.value.peeled);
1801 return 0;
1804 if (read_ref_full(refname, RESOLVE_REF_READING, base, &flag))
1805 return -1;
1808 * If the reference is packed, read its ref_entry from the
1809 * cache in the hope that we already know its peeled value.
1810 * We only try this optimization on packed references because
1811 * (a) forcing the filling of the loose reference cache could
1812 * be expensive and (b) loose references anyway usually do not
1813 * have REF_KNOWS_PEELED.
1815 if (flag & REF_ISPACKED) {
1816 struct ref_entry *r = get_packed_ref(refname);
1817 if (r) {
1818 if (peel_entry(r, 0))
1819 return -1;
1820 hashcpy(sha1, r->u.value.peeled);
1821 return 0;
1825 return peel_object(base, sha1);
1828 struct warn_if_dangling_data {
1829 FILE *fp;
1830 const char *refname;
1831 const struct string_list *refnames;
1832 const char *msg_fmt;
1835 static int warn_if_dangling_symref(const char *refname, const unsigned char *sha1,
1836 int flags, void *cb_data)
1838 struct warn_if_dangling_data *d = cb_data;
1839 const char *resolves_to;
1840 unsigned char junk[20];
1842 if (!(flags & REF_ISSYMREF))
1843 return 0;
1845 resolves_to = resolve_ref_unsafe(refname, 0, junk, NULL);
1846 if (!resolves_to
1847 || (d->refname
1848 ? strcmp(resolves_to, d->refname)
1849 : !string_list_has_string(d->refnames, resolves_to))) {
1850 return 0;
1853 fprintf(d->fp, d->msg_fmt, refname);
1854 fputc('\n', d->fp);
1855 return 0;
1858 void warn_dangling_symref(FILE *fp, const char *msg_fmt, const char *refname)
1860 struct warn_if_dangling_data data;
1862 data.fp = fp;
1863 data.refname = refname;
1864 data.refnames = NULL;
1865 data.msg_fmt = msg_fmt;
1866 for_each_rawref(warn_if_dangling_symref, &data);
1869 void warn_dangling_symrefs(FILE *fp, const char *msg_fmt, const struct string_list *refnames)
1871 struct warn_if_dangling_data data;
1873 data.fp = fp;
1874 data.refname = NULL;
1875 data.refnames = refnames;
1876 data.msg_fmt = msg_fmt;
1877 for_each_rawref(warn_if_dangling_symref, &data);
1881 * Call fn for each reference in the specified ref_cache, omitting
1882 * references not in the containing_dir of base. fn is called for all
1883 * references, including broken ones. If fn ever returns a non-zero
1884 * value, stop the iteration and return that value; otherwise, return
1885 * 0.
1887 static int do_for_each_entry(struct ref_cache *refs, const char *base,
1888 each_ref_entry_fn fn, void *cb_data)
1890 struct packed_ref_cache *packed_ref_cache;
1891 struct ref_dir *loose_dir;
1892 struct ref_dir *packed_dir;
1893 int retval = 0;
1896 * We must make sure that all loose refs are read before accessing the
1897 * packed-refs file; this avoids a race condition in which loose refs
1898 * are migrated to the packed-refs file by a simultaneous process, but
1899 * our in-memory view is from before the migration. get_packed_ref_cache()
1900 * takes care of making sure our view is up to date with what is on
1901 * disk.
1903 loose_dir = get_loose_refs(refs);
1904 if (base && *base) {
1905 loose_dir = find_containing_dir(loose_dir, base, 0);
1907 if (loose_dir)
1908 prime_ref_dir(loose_dir);
1910 packed_ref_cache = get_packed_ref_cache(refs);
1911 acquire_packed_ref_cache(packed_ref_cache);
1912 packed_dir = get_packed_ref_dir(packed_ref_cache);
1913 if (base && *base) {
1914 packed_dir = find_containing_dir(packed_dir, base, 0);
1917 if (packed_dir && loose_dir) {
1918 sort_ref_dir(packed_dir);
1919 sort_ref_dir(loose_dir);
1920 retval = do_for_each_entry_in_dirs(
1921 packed_dir, loose_dir, fn, cb_data);
1922 } else if (packed_dir) {
1923 sort_ref_dir(packed_dir);
1924 retval = do_for_each_entry_in_dir(
1925 packed_dir, 0, fn, cb_data);
1926 } else if (loose_dir) {
1927 sort_ref_dir(loose_dir);
1928 retval = do_for_each_entry_in_dir(
1929 loose_dir, 0, fn, cb_data);
1932 release_packed_ref_cache(packed_ref_cache);
1933 return retval;
1937 * Call fn for each reference in the specified ref_cache for which the
1938 * refname begins with base. If trim is non-zero, then trim that many
1939 * characters off the beginning of each refname before passing the
1940 * refname to fn. flags can be DO_FOR_EACH_INCLUDE_BROKEN to include
1941 * broken references in the iteration. If fn ever returns a non-zero
1942 * value, stop the iteration and return that value; otherwise, return
1943 * 0.
1945 static int do_for_each_ref(struct ref_cache *refs, const char *base,
1946 each_ref_fn fn, int trim, int flags, void *cb_data)
1948 struct ref_entry_cb data;
1949 data.base = base;
1950 data.trim = trim;
1951 data.flags = flags;
1952 data.fn = fn;
1953 data.cb_data = cb_data;
1955 if (ref_paranoia < 0)
1956 ref_paranoia = git_env_bool("GIT_REF_PARANOIA", 0);
1957 if (ref_paranoia)
1958 data.flags |= DO_FOR_EACH_INCLUDE_BROKEN;
1960 return do_for_each_entry(refs, base, do_one_ref, &data);
1963 static int do_head_ref(const char *submodule, each_ref_fn fn, void *cb_data)
1965 unsigned char sha1[20];
1966 int flag;
1968 if (submodule) {
1969 if (resolve_gitlink_ref(submodule, "HEAD", sha1) == 0)
1970 return fn("HEAD", sha1, 0, cb_data);
1972 return 0;
1975 if (!read_ref_full("HEAD", RESOLVE_REF_READING, sha1, &flag))
1976 return fn("HEAD", sha1, flag, cb_data);
1978 return 0;
1981 int head_ref(each_ref_fn fn, void *cb_data)
1983 return do_head_ref(NULL, fn, cb_data);
1986 int head_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
1988 return do_head_ref(submodule, fn, cb_data);
1991 int for_each_ref(each_ref_fn fn, void *cb_data)
1993 return do_for_each_ref(&ref_cache, "", fn, 0, 0, cb_data);
1996 int for_each_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
1998 return do_for_each_ref(get_ref_cache(submodule), "", fn, 0, 0, cb_data);
2001 int for_each_ref_in(const char *prefix, each_ref_fn fn, void *cb_data)
2003 return do_for_each_ref(&ref_cache, prefix, fn, strlen(prefix), 0, cb_data);
2006 int for_each_ref_in_submodule(const char *submodule, const char *prefix,
2007 each_ref_fn fn, void *cb_data)
2009 return do_for_each_ref(get_ref_cache(submodule), prefix, fn, strlen(prefix), 0, cb_data);
2012 int for_each_tag_ref(each_ref_fn fn, void *cb_data)
2014 return for_each_ref_in("refs/tags/", fn, cb_data);
2017 int for_each_tag_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
2019 return for_each_ref_in_submodule(submodule, "refs/tags/", fn, cb_data);
2022 int for_each_branch_ref(each_ref_fn fn, void *cb_data)
2024 return for_each_ref_in("refs/heads/", fn, cb_data);
2027 int for_each_branch_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
2029 return for_each_ref_in_submodule(submodule, "refs/heads/", fn, cb_data);
2032 int for_each_remote_ref(each_ref_fn fn, void *cb_data)
2034 return for_each_ref_in("refs/remotes/", fn, cb_data);
2037 int for_each_remote_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
2039 return for_each_ref_in_submodule(submodule, "refs/remotes/", fn, cb_data);
2042 int for_each_replace_ref(each_ref_fn fn, void *cb_data)
2044 return do_for_each_ref(&ref_cache, "refs/replace/", fn, 13, 0, cb_data);
2047 int head_ref_namespaced(each_ref_fn fn, void *cb_data)
2049 struct strbuf buf = STRBUF_INIT;
2050 int ret = 0;
2051 unsigned char sha1[20];
2052 int flag;
2054 strbuf_addf(&buf, "%sHEAD", get_git_namespace());
2055 if (!read_ref_full(buf.buf, RESOLVE_REF_READING, sha1, &flag))
2056 ret = fn(buf.buf, sha1, flag, cb_data);
2057 strbuf_release(&buf);
2059 return ret;
2062 int for_each_namespaced_ref(each_ref_fn fn, void *cb_data)
2064 struct strbuf buf = STRBUF_INIT;
2065 int ret;
2066 strbuf_addf(&buf, "%srefs/", get_git_namespace());
2067 ret = do_for_each_ref(&ref_cache, buf.buf, fn, 0, 0, cb_data);
2068 strbuf_release(&buf);
2069 return ret;
2072 int for_each_glob_ref_in(each_ref_fn fn, const char *pattern,
2073 const char *prefix, void *cb_data)
2075 struct strbuf real_pattern = STRBUF_INIT;
2076 struct ref_filter filter;
2077 int ret;
2079 if (!prefix && !starts_with(pattern, "refs/"))
2080 strbuf_addstr(&real_pattern, "refs/");
2081 else if (prefix)
2082 strbuf_addstr(&real_pattern, prefix);
2083 strbuf_addstr(&real_pattern, pattern);
2085 if (!has_glob_specials(pattern)) {
2086 /* Append implied '/' '*' if not present. */
2087 if (real_pattern.buf[real_pattern.len - 1] != '/')
2088 strbuf_addch(&real_pattern, '/');
2089 /* No need to check for '*', there is none. */
2090 strbuf_addch(&real_pattern, '*');
2093 filter.pattern = real_pattern.buf;
2094 filter.fn = fn;
2095 filter.cb_data = cb_data;
2096 ret = for_each_ref(filter_refs, &filter);
2098 strbuf_release(&real_pattern);
2099 return ret;
2102 int for_each_glob_ref(each_ref_fn fn, const char *pattern, void *cb_data)
2104 return for_each_glob_ref_in(fn, pattern, NULL, cb_data);
2107 int for_each_rawref(each_ref_fn fn, void *cb_data)
2109 return do_for_each_ref(&ref_cache, "", fn, 0,
2110 DO_FOR_EACH_INCLUDE_BROKEN, cb_data);
2113 const char *prettify_refname(const char *name)
2115 return name + (
2116 starts_with(name, "refs/heads/") ? 11 :
2117 starts_with(name, "refs/tags/") ? 10 :
2118 starts_with(name, "refs/remotes/") ? 13 :
2122 static const char *ref_rev_parse_rules[] = {
2123 "%.*s",
2124 "refs/%.*s",
2125 "refs/tags/%.*s",
2126 "refs/heads/%.*s",
2127 "refs/remotes/%.*s",
2128 "refs/remotes/%.*s/HEAD",
2129 NULL
2132 int refname_match(const char *abbrev_name, const char *full_name)
2134 const char **p;
2135 const int abbrev_name_len = strlen(abbrev_name);
2137 for (p = ref_rev_parse_rules; *p; p++) {
2138 if (!strcmp(full_name, mkpath(*p, abbrev_name_len, abbrev_name))) {
2139 return 1;
2143 return 0;
2146 static void unlock_ref(struct ref_lock *lock)
2148 /* Do not free lock->lk -- atexit() still looks at them */
2149 if (lock->lk)
2150 rollback_lock_file(lock->lk);
2151 free(lock->ref_name);
2152 free(lock->orig_ref_name);
2153 free(lock);
2156 /* This function should make sure errno is meaningful on error */
2157 static struct ref_lock *verify_lock(struct ref_lock *lock,
2158 const unsigned char *old_sha1, int mustexist)
2160 if (read_ref_full(lock->ref_name,
2161 mustexist ? RESOLVE_REF_READING : 0,
2162 lock->old_sha1, NULL)) {
2163 int save_errno = errno;
2164 error("Can't verify ref %s", lock->ref_name);
2165 unlock_ref(lock);
2166 errno = save_errno;
2167 return NULL;
2169 if (hashcmp(lock->old_sha1, old_sha1)) {
2170 error("Ref %s is at %s but expected %s", lock->ref_name,
2171 sha1_to_hex(lock->old_sha1), sha1_to_hex(old_sha1));
2172 unlock_ref(lock);
2173 errno = EBUSY;
2174 return NULL;
2176 return lock;
2179 static int remove_empty_directories(const char *file)
2181 /* we want to create a file but there is a directory there;
2182 * if that is an empty directory (or a directory that contains
2183 * only empty directories), remove them.
2185 struct strbuf path;
2186 int result, save_errno;
2188 strbuf_init(&path, 20);
2189 strbuf_addstr(&path, file);
2191 result = remove_dir_recursively(&path, REMOVE_DIR_EMPTY_ONLY);
2192 save_errno = errno;
2194 strbuf_release(&path);
2195 errno = save_errno;
2197 return result;
2201 * *string and *len will only be substituted, and *string returned (for
2202 * later free()ing) if the string passed in is a magic short-hand form
2203 * to name a branch.
2205 static char *substitute_branch_name(const char **string, int *len)
2207 struct strbuf buf = STRBUF_INIT;
2208 int ret = interpret_branch_name(*string, *len, &buf);
2210 if (ret == *len) {
2211 size_t size;
2212 *string = strbuf_detach(&buf, &size);
2213 *len = size;
2214 return (char *)*string;
2217 return NULL;
2220 int dwim_ref(const char *str, int len, unsigned char *sha1, char **ref)
2222 char *last_branch = substitute_branch_name(&str, &len);
2223 const char **p, *r;
2224 int refs_found = 0;
2226 *ref = NULL;
2227 for (p = ref_rev_parse_rules; *p; p++) {
2228 char fullref[PATH_MAX];
2229 unsigned char sha1_from_ref[20];
2230 unsigned char *this_result;
2231 int flag;
2233 this_result = refs_found ? sha1_from_ref : sha1;
2234 mksnpath(fullref, sizeof(fullref), *p, len, str);
2235 r = resolve_ref_unsafe(fullref, RESOLVE_REF_READING,
2236 this_result, &flag);
2237 if (r) {
2238 if (!refs_found++)
2239 *ref = xstrdup(r);
2240 if (!warn_ambiguous_refs)
2241 break;
2242 } else if ((flag & REF_ISSYMREF) && strcmp(fullref, "HEAD")) {
2243 warning("ignoring dangling symref %s.", fullref);
2244 } else if ((flag & REF_ISBROKEN) && strchr(fullref, '/')) {
2245 warning("ignoring broken ref %s.", fullref);
2248 free(last_branch);
2249 return refs_found;
2252 int dwim_log(const char *str, int len, unsigned char *sha1, char **log)
2254 char *last_branch = substitute_branch_name(&str, &len);
2255 const char **p;
2256 int logs_found = 0;
2258 *log = NULL;
2259 for (p = ref_rev_parse_rules; *p; p++) {
2260 unsigned char hash[20];
2261 char path[PATH_MAX];
2262 const char *ref, *it;
2264 mksnpath(path, sizeof(path), *p, len, str);
2265 ref = resolve_ref_unsafe(path, RESOLVE_REF_READING,
2266 hash, NULL);
2267 if (!ref)
2268 continue;
2269 if (reflog_exists(path))
2270 it = path;
2271 else if (strcmp(ref, path) && reflog_exists(ref))
2272 it = ref;
2273 else
2274 continue;
2275 if (!logs_found++) {
2276 *log = xstrdup(it);
2277 hashcpy(sha1, hash);
2279 if (!warn_ambiguous_refs)
2280 break;
2282 free(last_branch);
2283 return logs_found;
2287 * Locks a ref returning the lock on success and NULL on failure.
2288 * On failure errno is set to something meaningful.
2290 static struct ref_lock *lock_ref_sha1_basic(const char *refname,
2291 const unsigned char *old_sha1,
2292 const struct string_list *skip,
2293 unsigned int flags, int *type_p)
2295 char *ref_file;
2296 const char *orig_refname = refname;
2297 struct ref_lock *lock;
2298 int last_errno = 0;
2299 int type, lflags;
2300 int mustexist = (old_sha1 && !is_null_sha1(old_sha1));
2301 int resolve_flags = 0;
2302 int attempts_remaining = 3;
2304 lock = xcalloc(1, sizeof(struct ref_lock));
2305 lock->lock_fd = -1;
2307 if (mustexist)
2308 resolve_flags |= RESOLVE_REF_READING;
2309 if (flags & REF_DELETING) {
2310 resolve_flags |= RESOLVE_REF_ALLOW_BAD_NAME;
2311 if (flags & REF_NODEREF)
2312 resolve_flags |= RESOLVE_REF_NO_RECURSE;
2315 refname = resolve_ref_unsafe(refname, resolve_flags,
2316 lock->old_sha1, &type);
2317 if (!refname && errno == EISDIR) {
2318 /* we are trying to lock foo but we used to
2319 * have foo/bar which now does not exist;
2320 * it is normal for the empty directory 'foo'
2321 * to remain.
2323 ref_file = git_path("%s", orig_refname);
2324 if (remove_empty_directories(ref_file)) {
2325 last_errno = errno;
2326 error("there are still refs under '%s'", orig_refname);
2327 goto error_return;
2329 refname = resolve_ref_unsafe(orig_refname, resolve_flags,
2330 lock->old_sha1, &type);
2332 if (type_p)
2333 *type_p = type;
2334 if (!refname) {
2335 last_errno = errno;
2336 error("unable to resolve reference %s: %s",
2337 orig_refname, strerror(errno));
2338 goto error_return;
2341 * If the ref did not exist and we are creating it, make sure
2342 * there is no existing packed ref whose name begins with our
2343 * refname, nor a packed ref whose name is a proper prefix of
2344 * our refname.
2346 if (is_null_sha1(lock->old_sha1) &&
2347 !is_refname_available(refname, skip, get_packed_refs(&ref_cache))) {
2348 last_errno = ENOTDIR;
2349 goto error_return;
2352 lock->lk = xcalloc(1, sizeof(struct lock_file));
2354 lflags = 0;
2355 if (flags & REF_NODEREF) {
2356 refname = orig_refname;
2357 lflags |= LOCK_NO_DEREF;
2359 lock->ref_name = xstrdup(refname);
2360 lock->orig_ref_name = xstrdup(orig_refname);
2361 ref_file = git_path("%s", refname);
2363 retry:
2364 switch (safe_create_leading_directories(ref_file)) {
2365 case SCLD_OK:
2366 break; /* success */
2367 case SCLD_VANISHED:
2368 if (--attempts_remaining > 0)
2369 goto retry;
2370 /* fall through */
2371 default:
2372 last_errno = errno;
2373 error("unable to create directory for %s", ref_file);
2374 goto error_return;
2377 lock->lock_fd = hold_lock_file_for_update(lock->lk, ref_file, lflags);
2378 if (lock->lock_fd < 0) {
2379 last_errno = errno;
2380 if (errno == ENOENT && --attempts_remaining > 0)
2382 * Maybe somebody just deleted one of the
2383 * directories leading to ref_file. Try
2384 * again:
2386 goto retry;
2387 else {
2388 struct strbuf err = STRBUF_INIT;
2389 unable_to_lock_message(ref_file, errno, &err);
2390 error("%s", err.buf);
2391 strbuf_release(&err);
2392 goto error_return;
2395 return old_sha1 ? verify_lock(lock, old_sha1, mustexist) : lock;
2397 error_return:
2398 unlock_ref(lock);
2399 errno = last_errno;
2400 return NULL;
2404 * Write an entry to the packed-refs file for the specified refname.
2405 * If peeled is non-NULL, write it as the entry's peeled value.
2407 static void write_packed_entry(FILE *fh, char *refname, unsigned char *sha1,
2408 unsigned char *peeled)
2410 fprintf_or_die(fh, "%s %s\n", sha1_to_hex(sha1), refname);
2411 if (peeled)
2412 fprintf_or_die(fh, "^%s\n", sha1_to_hex(peeled));
2416 * An each_ref_entry_fn that writes the entry to a packed-refs file.
2418 static int write_packed_entry_fn(struct ref_entry *entry, void *cb_data)
2420 enum peel_status peel_status = peel_entry(entry, 0);
2422 if (peel_status != PEEL_PEELED && peel_status != PEEL_NON_TAG)
2423 error("internal error: %s is not a valid packed reference!",
2424 entry->name);
2425 write_packed_entry(cb_data, entry->name, entry->u.value.sha1,
2426 peel_status == PEEL_PEELED ?
2427 entry->u.value.peeled : NULL);
2428 return 0;
2431 /* This should return a meaningful errno on failure */
2432 int lock_packed_refs(int flags)
2434 struct packed_ref_cache *packed_ref_cache;
2436 if (hold_lock_file_for_update(&packlock, git_path("packed-refs"), flags) < 0)
2437 return -1;
2439 * Get the current packed-refs while holding the lock. If the
2440 * packed-refs file has been modified since we last read it,
2441 * this will automatically invalidate the cache and re-read
2442 * the packed-refs file.
2444 packed_ref_cache = get_packed_ref_cache(&ref_cache);
2445 packed_ref_cache->lock = &packlock;
2446 /* Increment the reference count to prevent it from being freed: */
2447 acquire_packed_ref_cache(packed_ref_cache);
2448 return 0;
2452 * Commit the packed refs changes.
2453 * On error we must make sure that errno contains a meaningful value.
2455 int commit_packed_refs(void)
2457 struct packed_ref_cache *packed_ref_cache =
2458 get_packed_ref_cache(&ref_cache);
2459 int error = 0;
2460 int save_errno = 0;
2461 FILE *out;
2463 if (!packed_ref_cache->lock)
2464 die("internal error: packed-refs not locked");
2466 out = fdopen_lock_file(packed_ref_cache->lock, "w");
2467 if (!out)
2468 die_errno("unable to fdopen packed-refs descriptor");
2470 fprintf_or_die(out, "%s", PACKED_REFS_HEADER);
2471 do_for_each_entry_in_dir(get_packed_ref_dir(packed_ref_cache),
2472 0, write_packed_entry_fn, out);
2474 if (commit_lock_file(packed_ref_cache->lock)) {
2475 save_errno = errno;
2476 error = -1;
2478 packed_ref_cache->lock = NULL;
2479 release_packed_ref_cache(packed_ref_cache);
2480 errno = save_errno;
2481 return error;
2484 void rollback_packed_refs(void)
2486 struct packed_ref_cache *packed_ref_cache =
2487 get_packed_ref_cache(&ref_cache);
2489 if (!packed_ref_cache->lock)
2490 die("internal error: packed-refs not locked");
2491 rollback_lock_file(packed_ref_cache->lock);
2492 packed_ref_cache->lock = NULL;
2493 release_packed_ref_cache(packed_ref_cache);
2494 clear_packed_ref_cache(&ref_cache);
2497 struct ref_to_prune {
2498 struct ref_to_prune *next;
2499 unsigned char sha1[20];
2500 char name[FLEX_ARRAY];
2503 struct pack_refs_cb_data {
2504 unsigned int flags;
2505 struct ref_dir *packed_refs;
2506 struct ref_to_prune *ref_to_prune;
2510 * An each_ref_entry_fn that is run over loose references only. If
2511 * the loose reference can be packed, add an entry in the packed ref
2512 * cache. If the reference should be pruned, also add it to
2513 * ref_to_prune in the pack_refs_cb_data.
2515 static int pack_if_possible_fn(struct ref_entry *entry, void *cb_data)
2517 struct pack_refs_cb_data *cb = cb_data;
2518 enum peel_status peel_status;
2519 struct ref_entry *packed_entry;
2520 int is_tag_ref = starts_with(entry->name, "refs/tags/");
2522 /* ALWAYS pack tags */
2523 if (!(cb->flags & PACK_REFS_ALL) && !is_tag_ref)
2524 return 0;
2526 /* Do not pack symbolic or broken refs: */
2527 if ((entry->flag & REF_ISSYMREF) || !ref_resolves_to_object(entry))
2528 return 0;
2530 /* Add a packed ref cache entry equivalent to the loose entry. */
2531 peel_status = peel_entry(entry, 1);
2532 if (peel_status != PEEL_PEELED && peel_status != PEEL_NON_TAG)
2533 die("internal error peeling reference %s (%s)",
2534 entry->name, sha1_to_hex(entry->u.value.sha1));
2535 packed_entry = find_ref(cb->packed_refs, entry->name);
2536 if (packed_entry) {
2537 /* Overwrite existing packed entry with info from loose entry */
2538 packed_entry->flag = REF_ISPACKED | REF_KNOWS_PEELED;
2539 hashcpy(packed_entry->u.value.sha1, entry->u.value.sha1);
2540 } else {
2541 packed_entry = create_ref_entry(entry->name, entry->u.value.sha1,
2542 REF_ISPACKED | REF_KNOWS_PEELED, 0);
2543 add_ref(cb->packed_refs, packed_entry);
2545 hashcpy(packed_entry->u.value.peeled, entry->u.value.peeled);
2547 /* Schedule the loose reference for pruning if requested. */
2548 if ((cb->flags & PACK_REFS_PRUNE)) {
2549 int namelen = strlen(entry->name) + 1;
2550 struct ref_to_prune *n = xcalloc(1, sizeof(*n) + namelen);
2551 hashcpy(n->sha1, entry->u.value.sha1);
2552 strcpy(n->name, entry->name);
2553 n->next = cb->ref_to_prune;
2554 cb->ref_to_prune = n;
2556 return 0;
2560 * Remove empty parents, but spare refs/ and immediate subdirs.
2561 * Note: munges *name.
2563 static void try_remove_empty_parents(char *name)
2565 char *p, *q;
2566 int i;
2567 p = name;
2568 for (i = 0; i < 2; i++) { /* refs/{heads,tags,...}/ */
2569 while (*p && *p != '/')
2570 p++;
2571 /* tolerate duplicate slashes; see check_refname_format() */
2572 while (*p == '/')
2573 p++;
2575 for (q = p; *q; q++)
2577 while (1) {
2578 while (q > p && *q != '/')
2579 q--;
2580 while (q > p && *(q-1) == '/')
2581 q--;
2582 if (q == p)
2583 break;
2584 *q = '\0';
2585 if (rmdir(git_path("%s", name)))
2586 break;
2590 /* make sure nobody touched the ref, and unlink */
2591 static void prune_ref(struct ref_to_prune *r)
2593 struct ref_transaction *transaction;
2594 struct strbuf err = STRBUF_INIT;
2596 if (check_refname_format(r->name, 0))
2597 return;
2599 transaction = ref_transaction_begin(&err);
2600 if (!transaction ||
2601 ref_transaction_delete(transaction, r->name, r->sha1,
2602 REF_ISPRUNING, NULL, &err) ||
2603 ref_transaction_commit(transaction, &err)) {
2604 ref_transaction_free(transaction);
2605 error("%s", err.buf);
2606 strbuf_release(&err);
2607 return;
2609 ref_transaction_free(transaction);
2610 strbuf_release(&err);
2611 try_remove_empty_parents(r->name);
2614 static void prune_refs(struct ref_to_prune *r)
2616 while (r) {
2617 prune_ref(r);
2618 r = r->next;
2622 int pack_refs(unsigned int flags)
2624 struct pack_refs_cb_data cbdata;
2626 memset(&cbdata, 0, sizeof(cbdata));
2627 cbdata.flags = flags;
2629 lock_packed_refs(LOCK_DIE_ON_ERROR);
2630 cbdata.packed_refs = get_packed_refs(&ref_cache);
2632 do_for_each_entry_in_dir(get_loose_refs(&ref_cache), 0,
2633 pack_if_possible_fn, &cbdata);
2635 if (commit_packed_refs())
2636 die_errno("unable to overwrite old ref-pack file");
2638 prune_refs(cbdata.ref_to_prune);
2639 return 0;
2642 int repack_without_refs(struct string_list *refnames, struct strbuf *err)
2644 struct ref_dir *packed;
2645 struct string_list_item *refname;
2646 int ret, needs_repacking = 0, removed = 0;
2648 assert(err);
2650 /* Look for a packed ref */
2651 for_each_string_list_item(refname, refnames) {
2652 if (get_packed_ref(refname->string)) {
2653 needs_repacking = 1;
2654 break;
2658 /* Avoid locking if we have nothing to do */
2659 if (!needs_repacking)
2660 return 0; /* no refname exists in packed refs */
2662 if (lock_packed_refs(0)) {
2663 unable_to_lock_message(git_path("packed-refs"), errno, err);
2664 return -1;
2666 packed = get_packed_refs(&ref_cache);
2668 /* Remove refnames from the cache */
2669 for_each_string_list_item(refname, refnames)
2670 if (remove_entry(packed, refname->string) != -1)
2671 removed = 1;
2672 if (!removed) {
2674 * All packed entries disappeared while we were
2675 * acquiring the lock.
2677 rollback_packed_refs();
2678 return 0;
2681 /* Write what remains */
2682 ret = commit_packed_refs();
2683 if (ret)
2684 strbuf_addf(err, "unable to overwrite old ref-pack file: %s",
2685 strerror(errno));
2686 return ret;
2689 static int delete_ref_loose(struct ref_lock *lock, int flag, struct strbuf *err)
2691 assert(err);
2693 if (!(flag & REF_ISPACKED) || flag & REF_ISSYMREF) {
2695 * loose. The loose file name is the same as the
2696 * lockfile name, minus ".lock":
2698 char *loose_filename = get_locked_file_path(lock->lk);
2699 int res = unlink_or_msg(loose_filename, err);
2700 free(loose_filename);
2701 if (res)
2702 return 1;
2704 return 0;
2707 int delete_ref(const char *refname, const unsigned char *sha1, unsigned int flags)
2709 struct ref_transaction *transaction;
2710 struct strbuf err = STRBUF_INIT;
2712 transaction = ref_transaction_begin(&err);
2713 if (!transaction ||
2714 ref_transaction_delete(transaction, refname,
2715 (sha1 && !is_null_sha1(sha1)) ? sha1 : NULL,
2716 flags, NULL, &err) ||
2717 ref_transaction_commit(transaction, &err)) {
2718 error("%s", err.buf);
2719 ref_transaction_free(transaction);
2720 strbuf_release(&err);
2721 return 1;
2723 ref_transaction_free(transaction);
2724 strbuf_release(&err);
2725 return 0;
2729 * People using contrib's git-new-workdir have .git/logs/refs ->
2730 * /some/other/path/.git/logs/refs, and that may live on another device.
2732 * IOW, to avoid cross device rename errors, the temporary renamed log must
2733 * live into logs/refs.
2735 #define TMP_RENAMED_LOG "logs/refs/.tmp-renamed-log"
2737 static int rename_tmp_log(const char *newrefname)
2739 int attempts_remaining = 4;
2741 retry:
2742 switch (safe_create_leading_directories(git_path("logs/%s", newrefname))) {
2743 case SCLD_OK:
2744 break; /* success */
2745 case SCLD_VANISHED:
2746 if (--attempts_remaining > 0)
2747 goto retry;
2748 /* fall through */
2749 default:
2750 error("unable to create directory for %s", newrefname);
2751 return -1;
2754 if (rename(git_path(TMP_RENAMED_LOG), git_path("logs/%s", newrefname))) {
2755 if ((errno==EISDIR || errno==ENOTDIR) && --attempts_remaining > 0) {
2757 * rename(a, b) when b is an existing
2758 * directory ought to result in ISDIR, but
2759 * Solaris 5.8 gives ENOTDIR. Sheesh.
2761 if (remove_empty_directories(git_path("logs/%s", newrefname))) {
2762 error("Directory not empty: logs/%s", newrefname);
2763 return -1;
2765 goto retry;
2766 } else if (errno == ENOENT && --attempts_remaining > 0) {
2768 * Maybe another process just deleted one of
2769 * the directories in the path to newrefname.
2770 * Try again from the beginning.
2772 goto retry;
2773 } else {
2774 error("unable to move logfile "TMP_RENAMED_LOG" to logs/%s: %s",
2775 newrefname, strerror(errno));
2776 return -1;
2779 return 0;
2782 static int rename_ref_available(const char *oldname, const char *newname)
2784 struct string_list skip = STRING_LIST_INIT_NODUP;
2785 int ret;
2787 string_list_insert(&skip, oldname);
2788 ret = is_refname_available(newname, &skip, get_packed_refs(&ref_cache))
2789 && is_refname_available(newname, &skip, get_loose_refs(&ref_cache));
2790 string_list_clear(&skip, 0);
2791 return ret;
2794 static int write_ref_sha1(struct ref_lock *lock, const unsigned char *sha1,
2795 const char *logmsg);
2797 int rename_ref(const char *oldrefname, const char *newrefname, const char *logmsg)
2799 unsigned char sha1[20], orig_sha1[20];
2800 int flag = 0, logmoved = 0;
2801 struct ref_lock *lock;
2802 struct stat loginfo;
2803 int log = !lstat(git_path("logs/%s", oldrefname), &loginfo);
2804 const char *symref = NULL;
2806 if (log && S_ISLNK(loginfo.st_mode))
2807 return error("reflog for %s is a symlink", oldrefname);
2809 symref = resolve_ref_unsafe(oldrefname, RESOLVE_REF_READING,
2810 orig_sha1, &flag);
2811 if (flag & REF_ISSYMREF)
2812 return error("refname %s is a symbolic ref, renaming it is not supported",
2813 oldrefname);
2814 if (!symref)
2815 return error("refname %s not found", oldrefname);
2817 if (!rename_ref_available(oldrefname, newrefname))
2818 return 1;
2820 if (log && rename(git_path("logs/%s", oldrefname), git_path(TMP_RENAMED_LOG)))
2821 return error("unable to move logfile logs/%s to "TMP_RENAMED_LOG": %s",
2822 oldrefname, strerror(errno));
2824 if (delete_ref(oldrefname, orig_sha1, REF_NODEREF)) {
2825 error("unable to delete old %s", oldrefname);
2826 goto rollback;
2829 if (!read_ref_full(newrefname, RESOLVE_REF_READING, sha1, NULL) &&
2830 delete_ref(newrefname, sha1, REF_NODEREF)) {
2831 if (errno==EISDIR) {
2832 if (remove_empty_directories(git_path("%s", newrefname))) {
2833 error("Directory not empty: %s", newrefname);
2834 goto rollback;
2836 } else {
2837 error("unable to delete existing %s", newrefname);
2838 goto rollback;
2842 if (log && rename_tmp_log(newrefname))
2843 goto rollback;
2845 logmoved = log;
2847 lock = lock_ref_sha1_basic(newrefname, NULL, NULL, 0, NULL);
2848 if (!lock) {
2849 error("unable to lock %s for update", newrefname);
2850 goto rollback;
2852 hashcpy(lock->old_sha1, orig_sha1);
2853 if (write_ref_sha1(lock, orig_sha1, logmsg)) {
2854 error("unable to write current sha1 into %s", newrefname);
2855 goto rollback;
2858 return 0;
2860 rollback:
2861 lock = lock_ref_sha1_basic(oldrefname, NULL, NULL, 0, NULL);
2862 if (!lock) {
2863 error("unable to lock %s for rollback", oldrefname);
2864 goto rollbacklog;
2867 flag = log_all_ref_updates;
2868 log_all_ref_updates = 0;
2869 if (write_ref_sha1(lock, orig_sha1, NULL))
2870 error("unable to write current sha1 into %s", oldrefname);
2871 log_all_ref_updates = flag;
2873 rollbacklog:
2874 if (logmoved && rename(git_path("logs/%s", newrefname), git_path("logs/%s", oldrefname)))
2875 error("unable to restore logfile %s from %s: %s",
2876 oldrefname, newrefname, strerror(errno));
2877 if (!logmoved && log &&
2878 rename(git_path(TMP_RENAMED_LOG), git_path("logs/%s", oldrefname)))
2879 error("unable to restore logfile %s from "TMP_RENAMED_LOG": %s",
2880 oldrefname, strerror(errno));
2882 return 1;
2885 static int close_ref(struct ref_lock *lock)
2887 if (close_lock_file(lock->lk))
2888 return -1;
2889 lock->lock_fd = -1;
2890 return 0;
2893 static int commit_ref(struct ref_lock *lock)
2895 if (commit_lock_file(lock->lk))
2896 return -1;
2897 lock->lock_fd = -1;
2898 return 0;
2902 * copy the reflog message msg to buf, which has been allocated sufficiently
2903 * large, while cleaning up the whitespaces. Especially, convert LF to space,
2904 * because reflog file is one line per entry.
2906 static int copy_msg(char *buf, const char *msg)
2908 char *cp = buf;
2909 char c;
2910 int wasspace = 1;
2912 *cp++ = '\t';
2913 while ((c = *msg++)) {
2914 if (wasspace && isspace(c))
2915 continue;
2916 wasspace = isspace(c);
2917 if (wasspace)
2918 c = ' ';
2919 *cp++ = c;
2921 while (buf < cp && isspace(cp[-1]))
2922 cp--;
2923 *cp++ = '\n';
2924 return cp - buf;
2927 /* This function must set a meaningful errno on failure */
2928 int log_ref_setup(const char *refname, char *logfile, int bufsize)
2930 int logfd, oflags = O_APPEND | O_WRONLY;
2932 git_snpath(logfile, bufsize, "logs/%s", refname);
2933 if (log_all_ref_updates &&
2934 (starts_with(refname, "refs/heads/") ||
2935 starts_with(refname, "refs/remotes/") ||
2936 starts_with(refname, "refs/notes/") ||
2937 !strcmp(refname, "HEAD"))) {
2938 if (safe_create_leading_directories(logfile) < 0) {
2939 int save_errno = errno;
2940 error("unable to create directory for %s", logfile);
2941 errno = save_errno;
2942 return -1;
2944 oflags |= O_CREAT;
2947 logfd = open(logfile, oflags, 0666);
2948 if (logfd < 0) {
2949 if (!(oflags & O_CREAT) && (errno == ENOENT || errno == EISDIR))
2950 return 0;
2952 if (errno == EISDIR) {
2953 if (remove_empty_directories(logfile)) {
2954 int save_errno = errno;
2955 error("There are still logs under '%s'",
2956 logfile);
2957 errno = save_errno;
2958 return -1;
2960 logfd = open(logfile, oflags, 0666);
2963 if (logfd < 0) {
2964 int save_errno = errno;
2965 error("Unable to append to %s: %s", logfile,
2966 strerror(errno));
2967 errno = save_errno;
2968 return -1;
2972 adjust_shared_perm(logfile);
2973 close(logfd);
2974 return 0;
2977 static int log_ref_write_fd(int fd, const unsigned char *old_sha1,
2978 const unsigned char *new_sha1,
2979 const char *committer, const char *msg)
2981 int msglen, written;
2982 unsigned maxlen, len;
2983 char *logrec;
2985 msglen = msg ? strlen(msg) : 0;
2986 maxlen = strlen(committer) + msglen + 100;
2987 logrec = xmalloc(maxlen);
2988 len = sprintf(logrec, "%s %s %s\n",
2989 sha1_to_hex(old_sha1),
2990 sha1_to_hex(new_sha1),
2991 committer);
2992 if (msglen)
2993 len += copy_msg(logrec + len - 1, msg) - 1;
2995 written = len <= maxlen ? write_in_full(fd, logrec, len) : -1;
2996 free(logrec);
2997 if (written != len)
2998 return -1;
3000 return 0;
3003 static int log_ref_write(const char *refname, const unsigned char *old_sha1,
3004 const unsigned char *new_sha1, const char *msg)
3006 int logfd, result, oflags = O_APPEND | O_WRONLY;
3007 char log_file[PATH_MAX];
3009 if (log_all_ref_updates < 0)
3010 log_all_ref_updates = !is_bare_repository();
3012 result = log_ref_setup(refname, log_file, sizeof(log_file));
3013 if (result)
3014 return result;
3016 logfd = open(log_file, oflags);
3017 if (logfd < 0)
3018 return 0;
3019 result = log_ref_write_fd(logfd, old_sha1, new_sha1,
3020 git_committer_info(0), msg);
3021 if (result) {
3022 int save_errno = errno;
3023 close(logfd);
3024 error("Unable to append to %s", log_file);
3025 errno = save_errno;
3026 return -1;
3028 if (close(logfd)) {
3029 int save_errno = errno;
3030 error("Unable to append to %s", log_file);
3031 errno = save_errno;
3032 return -1;
3034 return 0;
3037 int is_branch(const char *refname)
3039 return !strcmp(refname, "HEAD") || starts_with(refname, "refs/heads/");
3043 * Write sha1 into the ref specified by the lock. Make sure that errno
3044 * is sane on error.
3046 static int write_ref_sha1(struct ref_lock *lock,
3047 const unsigned char *sha1, const char *logmsg)
3049 static char term = '\n';
3050 struct object *o;
3052 o = parse_object(sha1);
3053 if (!o) {
3054 error("Trying to write ref %s with nonexistent object %s",
3055 lock->ref_name, sha1_to_hex(sha1));
3056 unlock_ref(lock);
3057 errno = EINVAL;
3058 return -1;
3060 if (o->type != OBJ_COMMIT && is_branch(lock->ref_name)) {
3061 error("Trying to write non-commit object %s to branch %s",
3062 sha1_to_hex(sha1), lock->ref_name);
3063 unlock_ref(lock);
3064 errno = EINVAL;
3065 return -1;
3067 if (write_in_full(lock->lock_fd, sha1_to_hex(sha1), 40) != 40 ||
3068 write_in_full(lock->lock_fd, &term, 1) != 1 ||
3069 close_ref(lock) < 0) {
3070 int save_errno = errno;
3071 error("Couldn't write %s", lock->lk->filename.buf);
3072 unlock_ref(lock);
3073 errno = save_errno;
3074 return -1;
3076 clear_loose_ref_cache(&ref_cache);
3077 if (log_ref_write(lock->ref_name, lock->old_sha1, sha1, logmsg) < 0 ||
3078 (strcmp(lock->ref_name, lock->orig_ref_name) &&
3079 log_ref_write(lock->orig_ref_name, lock->old_sha1, sha1, logmsg) < 0)) {
3080 unlock_ref(lock);
3081 return -1;
3083 if (strcmp(lock->orig_ref_name, "HEAD") != 0) {
3085 * Special hack: If a branch is updated directly and HEAD
3086 * points to it (may happen on the remote side of a push
3087 * for example) then logically the HEAD reflog should be
3088 * updated too.
3089 * A generic solution implies reverse symref information,
3090 * but finding all symrefs pointing to the given branch
3091 * would be rather costly for this rare event (the direct
3092 * update of a branch) to be worth it. So let's cheat and
3093 * check with HEAD only which should cover 99% of all usage
3094 * scenarios (even 100% of the default ones).
3096 unsigned char head_sha1[20];
3097 int head_flag;
3098 const char *head_ref;
3099 head_ref = resolve_ref_unsafe("HEAD", RESOLVE_REF_READING,
3100 head_sha1, &head_flag);
3101 if (head_ref && (head_flag & REF_ISSYMREF) &&
3102 !strcmp(head_ref, lock->ref_name))
3103 log_ref_write("HEAD", lock->old_sha1, sha1, logmsg);
3105 if (commit_ref(lock)) {
3106 error("Couldn't set %s", lock->ref_name);
3107 unlock_ref(lock);
3108 return -1;
3110 unlock_ref(lock);
3111 return 0;
3114 int create_symref(const char *ref_target, const char *refs_heads_master,
3115 const char *logmsg)
3117 const char *lockpath;
3118 char ref[1000];
3119 int fd, len, written;
3120 char *git_HEAD = git_pathdup("%s", ref_target);
3121 unsigned char old_sha1[20], new_sha1[20];
3123 if (logmsg && read_ref(ref_target, old_sha1))
3124 hashclr(old_sha1);
3126 if (safe_create_leading_directories(git_HEAD) < 0)
3127 return error("unable to create directory for %s", git_HEAD);
3129 #ifndef NO_SYMLINK_HEAD
3130 if (prefer_symlink_refs) {
3131 unlink(git_HEAD);
3132 if (!symlink(refs_heads_master, git_HEAD))
3133 goto done;
3134 fprintf(stderr, "no symlink - falling back to symbolic ref\n");
3136 #endif
3138 len = snprintf(ref, sizeof(ref), "ref: %s\n", refs_heads_master);
3139 if (sizeof(ref) <= len) {
3140 error("refname too long: %s", refs_heads_master);
3141 goto error_free_return;
3143 lockpath = mkpath("%s.lock", git_HEAD);
3144 fd = open(lockpath, O_CREAT | O_EXCL | O_WRONLY, 0666);
3145 if (fd < 0) {
3146 error("Unable to open %s for writing", lockpath);
3147 goto error_free_return;
3149 written = write_in_full(fd, ref, len);
3150 if (close(fd) != 0 || written != len) {
3151 error("Unable to write to %s", lockpath);
3152 goto error_unlink_return;
3154 if (rename(lockpath, git_HEAD) < 0) {
3155 error("Unable to create %s", git_HEAD);
3156 goto error_unlink_return;
3158 if (adjust_shared_perm(git_HEAD)) {
3159 error("Unable to fix permissions on %s", lockpath);
3160 error_unlink_return:
3161 unlink_or_warn(lockpath);
3162 error_free_return:
3163 free(git_HEAD);
3164 return -1;
3167 #ifndef NO_SYMLINK_HEAD
3168 done:
3169 #endif
3170 if (logmsg && !read_ref(refs_heads_master, new_sha1))
3171 log_ref_write(ref_target, old_sha1, new_sha1, logmsg);
3173 free(git_HEAD);
3174 return 0;
3177 struct read_ref_at_cb {
3178 const char *refname;
3179 unsigned long at_time;
3180 int cnt;
3181 int reccnt;
3182 unsigned char *sha1;
3183 int found_it;
3185 unsigned char osha1[20];
3186 unsigned char nsha1[20];
3187 int tz;
3188 unsigned long date;
3189 char **msg;
3190 unsigned long *cutoff_time;
3191 int *cutoff_tz;
3192 int *cutoff_cnt;
3195 static int read_ref_at_ent(unsigned char *osha1, unsigned char *nsha1,
3196 const char *email, unsigned long timestamp, int tz,
3197 const char *message, void *cb_data)
3199 struct read_ref_at_cb *cb = cb_data;
3201 cb->reccnt++;
3202 cb->tz = tz;
3203 cb->date = timestamp;
3205 if (timestamp <= cb->at_time || cb->cnt == 0) {
3206 if (cb->msg)
3207 *cb->msg = xstrdup(message);
3208 if (cb->cutoff_time)
3209 *cb->cutoff_time = timestamp;
3210 if (cb->cutoff_tz)
3211 *cb->cutoff_tz = tz;
3212 if (cb->cutoff_cnt)
3213 *cb->cutoff_cnt = cb->reccnt - 1;
3215 * we have not yet updated cb->[n|o]sha1 so they still
3216 * hold the values for the previous record.
3218 if (!is_null_sha1(cb->osha1)) {
3219 hashcpy(cb->sha1, nsha1);
3220 if (hashcmp(cb->osha1, nsha1))
3221 warning("Log for ref %s has gap after %s.",
3222 cb->refname, show_date(cb->date, cb->tz, DATE_RFC2822));
3224 else if (cb->date == cb->at_time)
3225 hashcpy(cb->sha1, nsha1);
3226 else if (hashcmp(nsha1, cb->sha1))
3227 warning("Log for ref %s unexpectedly ended on %s.",
3228 cb->refname, show_date(cb->date, cb->tz,
3229 DATE_RFC2822));
3230 hashcpy(cb->osha1, osha1);
3231 hashcpy(cb->nsha1, nsha1);
3232 cb->found_it = 1;
3233 return 1;
3235 hashcpy(cb->osha1, osha1);
3236 hashcpy(cb->nsha1, nsha1);
3237 if (cb->cnt > 0)
3238 cb->cnt--;
3239 return 0;
3242 static int read_ref_at_ent_oldest(unsigned char *osha1, unsigned char *nsha1,
3243 const char *email, unsigned long timestamp,
3244 int tz, const char *message, void *cb_data)
3246 struct read_ref_at_cb *cb = cb_data;
3248 if (cb->msg)
3249 *cb->msg = xstrdup(message);
3250 if (cb->cutoff_time)
3251 *cb->cutoff_time = timestamp;
3252 if (cb->cutoff_tz)
3253 *cb->cutoff_tz = tz;
3254 if (cb->cutoff_cnt)
3255 *cb->cutoff_cnt = cb->reccnt;
3256 hashcpy(cb->sha1, osha1);
3257 if (is_null_sha1(cb->sha1))
3258 hashcpy(cb->sha1, nsha1);
3259 /* We just want the first entry */
3260 return 1;
3263 int read_ref_at(const char *refname, unsigned int flags, unsigned long at_time, int cnt,
3264 unsigned char *sha1, char **msg,
3265 unsigned long *cutoff_time, int *cutoff_tz, int *cutoff_cnt)
3267 struct read_ref_at_cb cb;
3269 memset(&cb, 0, sizeof(cb));
3270 cb.refname = refname;
3271 cb.at_time = at_time;
3272 cb.cnt = cnt;
3273 cb.msg = msg;
3274 cb.cutoff_time = cutoff_time;
3275 cb.cutoff_tz = cutoff_tz;
3276 cb.cutoff_cnt = cutoff_cnt;
3277 cb.sha1 = sha1;
3279 for_each_reflog_ent_reverse(refname, read_ref_at_ent, &cb);
3281 if (!cb.reccnt) {
3282 if (flags & GET_SHA1_QUIETLY)
3283 exit(128);
3284 else
3285 die("Log for %s is empty.", refname);
3287 if (cb.found_it)
3288 return 0;
3290 for_each_reflog_ent(refname, read_ref_at_ent_oldest, &cb);
3292 return 1;
3295 int reflog_exists(const char *refname)
3297 struct stat st;
3299 return !lstat(git_path("logs/%s", refname), &st) &&
3300 S_ISREG(st.st_mode);
3303 int delete_reflog(const char *refname)
3305 return remove_path(git_path("logs/%s", refname));
3308 static int show_one_reflog_ent(struct strbuf *sb, each_reflog_ent_fn fn, void *cb_data)
3310 unsigned char osha1[20], nsha1[20];
3311 char *email_end, *message;
3312 unsigned long timestamp;
3313 int tz;
3315 /* old SP new SP name <email> SP time TAB msg LF */
3316 if (sb->len < 83 || sb->buf[sb->len - 1] != '\n' ||
3317 get_sha1_hex(sb->buf, osha1) || sb->buf[40] != ' ' ||
3318 get_sha1_hex(sb->buf + 41, nsha1) || sb->buf[81] != ' ' ||
3319 !(email_end = strchr(sb->buf + 82, '>')) ||
3320 email_end[1] != ' ' ||
3321 !(timestamp = strtoul(email_end + 2, &message, 10)) ||
3322 !message || message[0] != ' ' ||
3323 (message[1] != '+' && message[1] != '-') ||
3324 !isdigit(message[2]) || !isdigit(message[3]) ||
3325 !isdigit(message[4]) || !isdigit(message[5]))
3326 return 0; /* corrupt? */
3327 email_end[1] = '\0';
3328 tz = strtol(message + 1, NULL, 10);
3329 if (message[6] != '\t')
3330 message += 6;
3331 else
3332 message += 7;
3333 return fn(osha1, nsha1, sb->buf + 82, timestamp, tz, message, cb_data);
3336 static char *find_beginning_of_line(char *bob, char *scan)
3338 while (bob < scan && *(--scan) != '\n')
3339 ; /* keep scanning backwards */
3341 * Return either beginning of the buffer, or LF at the end of
3342 * the previous line.
3344 return scan;
3347 int for_each_reflog_ent_reverse(const char *refname, each_reflog_ent_fn fn, void *cb_data)
3349 struct strbuf sb = STRBUF_INIT;
3350 FILE *logfp;
3351 long pos;
3352 int ret = 0, at_tail = 1;
3354 logfp = fopen(git_path("logs/%s", refname), "r");
3355 if (!logfp)
3356 return -1;
3358 /* Jump to the end */
3359 if (fseek(logfp, 0, SEEK_END) < 0)
3360 return error("cannot seek back reflog for %s: %s",
3361 refname, strerror(errno));
3362 pos = ftell(logfp);
3363 while (!ret && 0 < pos) {
3364 int cnt;
3365 size_t nread;
3366 char buf[BUFSIZ];
3367 char *endp, *scanp;
3369 /* Fill next block from the end */
3370 cnt = (sizeof(buf) < pos) ? sizeof(buf) : pos;
3371 if (fseek(logfp, pos - cnt, SEEK_SET))
3372 return error("cannot seek back reflog for %s: %s",
3373 refname, strerror(errno));
3374 nread = fread(buf, cnt, 1, logfp);
3375 if (nread != 1)
3376 return error("cannot read %d bytes from reflog for %s: %s",
3377 cnt, refname, strerror(errno));
3378 pos -= cnt;
3380 scanp = endp = buf + cnt;
3381 if (at_tail && scanp[-1] == '\n')
3382 /* Looking at the final LF at the end of the file */
3383 scanp--;
3384 at_tail = 0;
3386 while (buf < scanp) {
3388 * terminating LF of the previous line, or the beginning
3389 * of the buffer.
3391 char *bp;
3393 bp = find_beginning_of_line(buf, scanp);
3395 if (*bp == '\n') {
3397 * The newline is the end of the previous line,
3398 * so we know we have complete line starting
3399 * at (bp + 1). Prefix it onto any prior data
3400 * we collected for the line and process it.
3402 strbuf_splice(&sb, 0, 0, bp + 1, endp - (bp + 1));
3403 scanp = bp;
3404 endp = bp + 1;
3405 ret = show_one_reflog_ent(&sb, fn, cb_data);
3406 strbuf_reset(&sb);
3407 if (ret)
3408 break;
3409 } else if (!pos) {
3411 * We are at the start of the buffer, and the
3412 * start of the file; there is no previous
3413 * line, and we have everything for this one.
3414 * Process it, and we can end the loop.
3416 strbuf_splice(&sb, 0, 0, buf, endp - buf);
3417 ret = show_one_reflog_ent(&sb, fn, cb_data);
3418 strbuf_reset(&sb);
3419 break;
3422 if (bp == buf) {
3424 * We are at the start of the buffer, and there
3425 * is more file to read backwards. Which means
3426 * we are in the middle of a line. Note that we
3427 * may get here even if *bp was a newline; that
3428 * just means we are at the exact end of the
3429 * previous line, rather than some spot in the
3430 * middle.
3432 * Save away what we have to be combined with
3433 * the data from the next read.
3435 strbuf_splice(&sb, 0, 0, buf, endp - buf);
3436 break;
3441 if (!ret && sb.len)
3442 die("BUG: reverse reflog parser had leftover data");
3444 fclose(logfp);
3445 strbuf_release(&sb);
3446 return ret;
3449 int for_each_reflog_ent(const char *refname, each_reflog_ent_fn fn, void *cb_data)
3451 FILE *logfp;
3452 struct strbuf sb = STRBUF_INIT;
3453 int ret = 0;
3455 logfp = fopen(git_path("logs/%s", refname), "r");
3456 if (!logfp)
3457 return -1;
3459 while (!ret && !strbuf_getwholeline(&sb, logfp, '\n'))
3460 ret = show_one_reflog_ent(&sb, fn, cb_data);
3461 fclose(logfp);
3462 strbuf_release(&sb);
3463 return ret;
3466 * Call fn for each reflog in the namespace indicated by name. name
3467 * must be empty or end with '/'. Name will be used as a scratch
3468 * space, but its contents will be restored before return.
3470 static int do_for_each_reflog(struct strbuf *name, each_ref_fn fn, void *cb_data)
3472 DIR *d = opendir(git_path("logs/%s", name->buf));
3473 int retval = 0;
3474 struct dirent *de;
3475 int oldlen = name->len;
3477 if (!d)
3478 return name->len ? errno : 0;
3480 while ((de = readdir(d)) != NULL) {
3481 struct stat st;
3483 if (de->d_name[0] == '.')
3484 continue;
3485 if (ends_with(de->d_name, ".lock"))
3486 continue;
3487 strbuf_addstr(name, de->d_name);
3488 if (stat(git_path("logs/%s", name->buf), &st) < 0) {
3489 ; /* silently ignore */
3490 } else {
3491 if (S_ISDIR(st.st_mode)) {
3492 strbuf_addch(name, '/');
3493 retval = do_for_each_reflog(name, fn, cb_data);
3494 } else {
3495 unsigned char sha1[20];
3496 if (read_ref_full(name->buf, 0, sha1, NULL))
3497 retval = error("bad ref for %s", name->buf);
3498 else
3499 retval = fn(name->buf, sha1, 0, cb_data);
3501 if (retval)
3502 break;
3504 strbuf_setlen(name, oldlen);
3506 closedir(d);
3507 return retval;
3510 int for_each_reflog(each_ref_fn fn, void *cb_data)
3512 int retval;
3513 struct strbuf name;
3514 strbuf_init(&name, PATH_MAX);
3515 retval = do_for_each_reflog(&name, fn, cb_data);
3516 strbuf_release(&name);
3517 return retval;
3521 * Information needed for a single ref update. Set new_sha1 to the new
3522 * value or to null_sha1 to delete the ref. To check the old value
3523 * while the ref is locked, set (flags & REF_HAVE_OLD) and set
3524 * old_sha1 to the old value, or to null_sha1 to ensure the ref does
3525 * not exist before update.
3527 struct ref_update {
3529 * If (flags & REF_HAVE_NEW), set the reference to this value:
3531 unsigned char new_sha1[20];
3533 * If (flags & REF_HAVE_OLD), check that the reference
3534 * previously had this value:
3536 unsigned char old_sha1[20];
3538 * One or more of REF_HAVE_NEW, REF_HAVE_OLD, REF_NODEREF,
3539 * REF_DELETING, and REF_ISPRUNING:
3541 unsigned int flags;
3542 struct ref_lock *lock;
3543 int type;
3544 char *msg;
3545 const char refname[FLEX_ARRAY];
3549 * Transaction states.
3550 * OPEN: The transaction is in a valid state and can accept new updates.
3551 * An OPEN transaction can be committed.
3552 * CLOSED: A closed transaction is no longer active and no other operations
3553 * than free can be used on it in this state.
3554 * A transaction can either become closed by successfully committing
3555 * an active transaction or if there is a failure while building
3556 * the transaction thus rendering it failed/inactive.
3558 enum ref_transaction_state {
3559 REF_TRANSACTION_OPEN = 0,
3560 REF_TRANSACTION_CLOSED = 1
3564 * Data structure for holding a reference transaction, which can
3565 * consist of checks and updates to multiple references, carried out
3566 * as atomically as possible. This structure is opaque to callers.
3568 struct ref_transaction {
3569 struct ref_update **updates;
3570 size_t alloc;
3571 size_t nr;
3572 enum ref_transaction_state state;
3575 struct ref_transaction *ref_transaction_begin(struct strbuf *err)
3577 assert(err);
3579 return xcalloc(1, sizeof(struct ref_transaction));
3582 void ref_transaction_free(struct ref_transaction *transaction)
3584 int i;
3586 if (!transaction)
3587 return;
3589 for (i = 0; i < transaction->nr; i++) {
3590 free(transaction->updates[i]->msg);
3591 free(transaction->updates[i]);
3593 free(transaction->updates);
3594 free(transaction);
3597 static struct ref_update *add_update(struct ref_transaction *transaction,
3598 const char *refname)
3600 size_t len = strlen(refname);
3601 struct ref_update *update = xcalloc(1, sizeof(*update) + len + 1);
3603 strcpy((char *)update->refname, refname);
3604 ALLOC_GROW(transaction->updates, transaction->nr + 1, transaction->alloc);
3605 transaction->updates[transaction->nr++] = update;
3606 return update;
3609 int ref_transaction_update(struct ref_transaction *transaction,
3610 const char *refname,
3611 const unsigned char *new_sha1,
3612 const unsigned char *old_sha1,
3613 unsigned int flags, const char *msg,
3614 struct strbuf *err)
3616 struct ref_update *update;
3618 assert(err);
3620 if (transaction->state != REF_TRANSACTION_OPEN)
3621 die("BUG: update called for transaction that is not open");
3623 if (new_sha1 && !is_null_sha1(new_sha1) &&
3624 check_refname_format(refname, REFNAME_ALLOW_ONELEVEL)) {
3625 strbuf_addf(err, "refusing to update ref with bad name %s",
3626 refname);
3627 return -1;
3630 update = add_update(transaction, refname);
3631 if (new_sha1) {
3632 hashcpy(update->new_sha1, new_sha1);
3633 flags |= REF_HAVE_NEW;
3635 if (old_sha1) {
3636 hashcpy(update->old_sha1, old_sha1);
3637 flags |= REF_HAVE_OLD;
3639 update->flags = flags;
3640 if (msg)
3641 update->msg = xstrdup(msg);
3642 return 0;
3645 int ref_transaction_create(struct ref_transaction *transaction,
3646 const char *refname,
3647 const unsigned char *new_sha1,
3648 unsigned int flags, const char *msg,
3649 struct strbuf *err)
3651 if (!new_sha1 || is_null_sha1(new_sha1))
3652 die("BUG: create called without valid new_sha1");
3653 return ref_transaction_update(transaction, refname, new_sha1,
3654 null_sha1, flags, msg, err);
3657 int ref_transaction_delete(struct ref_transaction *transaction,
3658 const char *refname,
3659 const unsigned char *old_sha1,
3660 unsigned int flags, const char *msg,
3661 struct strbuf *err)
3663 if (old_sha1 && is_null_sha1(old_sha1))
3664 die("BUG: delete called with old_sha1 set to zeros");
3665 return ref_transaction_update(transaction, refname,
3666 null_sha1, old_sha1,
3667 flags, msg, err);
3670 int ref_transaction_verify(struct ref_transaction *transaction,
3671 const char *refname,
3672 const unsigned char *old_sha1,
3673 unsigned int flags,
3674 struct strbuf *err)
3676 if (!old_sha1)
3677 die("BUG: verify called with old_sha1 set to NULL");
3678 return ref_transaction_update(transaction, refname,
3679 NULL, old_sha1,
3680 flags, NULL, err);
3683 int update_ref(const char *msg, const char *refname,
3684 const unsigned char *new_sha1, const unsigned char *old_sha1,
3685 unsigned int flags, enum action_on_err onerr)
3687 struct ref_transaction *t;
3688 struct strbuf err = STRBUF_INIT;
3690 t = ref_transaction_begin(&err);
3691 if (!t ||
3692 ref_transaction_update(t, refname, new_sha1, old_sha1,
3693 flags, msg, &err) ||
3694 ref_transaction_commit(t, &err)) {
3695 const char *str = "update_ref failed for ref '%s': %s";
3697 ref_transaction_free(t);
3698 switch (onerr) {
3699 case UPDATE_REFS_MSG_ON_ERR:
3700 error(str, refname, err.buf);
3701 break;
3702 case UPDATE_REFS_DIE_ON_ERR:
3703 die(str, refname, err.buf);
3704 break;
3705 case UPDATE_REFS_QUIET_ON_ERR:
3706 break;
3708 strbuf_release(&err);
3709 return 1;
3711 strbuf_release(&err);
3712 ref_transaction_free(t);
3713 return 0;
3716 static int ref_update_compare(const void *r1, const void *r2)
3718 const struct ref_update * const *u1 = r1;
3719 const struct ref_update * const *u2 = r2;
3720 return strcmp((*u1)->refname, (*u2)->refname);
3723 static int ref_update_reject_duplicates(struct ref_update **updates, int n,
3724 struct strbuf *err)
3726 int i;
3728 assert(err);
3730 for (i = 1; i < n; i++)
3731 if (!strcmp(updates[i - 1]->refname, updates[i]->refname)) {
3732 strbuf_addf(err,
3733 "Multiple updates for ref '%s' not allowed.",
3734 updates[i]->refname);
3735 return 1;
3737 return 0;
3740 int ref_transaction_commit(struct ref_transaction *transaction,
3741 struct strbuf *err)
3743 int ret = 0, i;
3744 int n = transaction->nr;
3745 struct ref_update **updates = transaction->updates;
3746 struct string_list refs_to_delete = STRING_LIST_INIT_NODUP;
3747 struct string_list_item *ref_to_delete;
3749 assert(err);
3751 if (transaction->state != REF_TRANSACTION_OPEN)
3752 die("BUG: commit called for transaction that is not open");
3754 if (!n) {
3755 transaction->state = REF_TRANSACTION_CLOSED;
3756 return 0;
3759 /* Copy, sort, and reject duplicate refs */
3760 qsort(updates, n, sizeof(*updates), ref_update_compare);
3761 if (ref_update_reject_duplicates(updates, n, err)) {
3762 ret = TRANSACTION_GENERIC_ERROR;
3763 goto cleanup;
3766 /* Acquire all locks while verifying old values */
3767 for (i = 0; i < n; i++) {
3768 struct ref_update *update = updates[i];
3769 unsigned int flags = update->flags;
3771 if ((flags & REF_HAVE_NEW) && is_null_sha1(update->new_sha1))
3772 flags |= REF_DELETING;
3773 update->lock = lock_ref_sha1_basic(
3774 update->refname,
3775 ((update->flags & REF_HAVE_OLD) ?
3776 update->old_sha1 : NULL),
3777 NULL,
3778 flags,
3779 &update->type);
3780 if (!update->lock) {
3781 ret = (errno == ENOTDIR)
3782 ? TRANSACTION_NAME_CONFLICT
3783 : TRANSACTION_GENERIC_ERROR;
3784 strbuf_addf(err, "Cannot lock the ref '%s'.",
3785 update->refname);
3786 goto cleanup;
3790 /* Perform updates first so live commits remain referenced */
3791 for (i = 0; i < n; i++) {
3792 struct ref_update *update = updates[i];
3793 int flags = update->flags;
3795 if ((flags & REF_HAVE_NEW) && !is_null_sha1(update->new_sha1)) {
3796 int overwriting_symref = ((update->type & REF_ISSYMREF) &&
3797 (update->flags & REF_NODEREF));
3799 if (!overwriting_symref
3800 && !hashcmp(update->lock->old_sha1, update->new_sha1)) {
3802 * The reference already has the desired
3803 * value, so we don't need to write it.
3805 unlock_ref(update->lock);
3806 update->lock = NULL;
3807 } else if (write_ref_sha1(update->lock, update->new_sha1,
3808 update->msg)) {
3809 update->lock = NULL; /* freed by write_ref_sha1 */
3810 strbuf_addf(err, "Cannot update the ref '%s'.",
3811 update->refname);
3812 ret = TRANSACTION_GENERIC_ERROR;
3813 goto cleanup;
3814 } else {
3815 /* freed by write_ref_sha1(): */
3816 update->lock = NULL;
3821 /* Perform deletes now that updates are safely completed */
3822 for (i = 0; i < n; i++) {
3823 struct ref_update *update = updates[i];
3824 int flags = update->flags;
3826 if ((flags & REF_HAVE_NEW) && is_null_sha1(update->new_sha1)) {
3827 if (delete_ref_loose(update->lock, update->type, err)) {
3828 ret = TRANSACTION_GENERIC_ERROR;
3829 goto cleanup;
3832 if (!(flags & REF_ISPRUNING))
3833 string_list_append(&refs_to_delete,
3834 update->lock->ref_name);
3838 if (repack_without_refs(&refs_to_delete, err)) {
3839 ret = TRANSACTION_GENERIC_ERROR;
3840 goto cleanup;
3842 for_each_string_list_item(ref_to_delete, &refs_to_delete)
3843 unlink_or_warn(git_path("logs/%s", ref_to_delete->string));
3844 clear_loose_ref_cache(&ref_cache);
3846 cleanup:
3847 transaction->state = REF_TRANSACTION_CLOSED;
3849 for (i = 0; i < n; i++)
3850 if (updates[i]->lock)
3851 unlock_ref(updates[i]->lock);
3852 string_list_clear(&refs_to_delete, 0);
3853 return ret;
3856 char *shorten_unambiguous_ref(const char *refname, int strict)
3858 int i;
3859 static char **scanf_fmts;
3860 static int nr_rules;
3861 char *short_name;
3863 if (!nr_rules) {
3865 * Pre-generate scanf formats from ref_rev_parse_rules[].
3866 * Generate a format suitable for scanf from a
3867 * ref_rev_parse_rules rule by interpolating "%s" at the
3868 * location of the "%.*s".
3870 size_t total_len = 0;
3871 size_t offset = 0;
3873 /* the rule list is NULL terminated, count them first */
3874 for (nr_rules = 0; ref_rev_parse_rules[nr_rules]; nr_rules++)
3875 /* -2 for strlen("%.*s") - strlen("%s"); +1 for NUL */
3876 total_len += strlen(ref_rev_parse_rules[nr_rules]) - 2 + 1;
3878 scanf_fmts = xmalloc(nr_rules * sizeof(char *) + total_len);
3880 offset = 0;
3881 for (i = 0; i < nr_rules; i++) {
3882 assert(offset < total_len);
3883 scanf_fmts[i] = (char *)&scanf_fmts[nr_rules] + offset;
3884 offset += snprintf(scanf_fmts[i], total_len - offset,
3885 ref_rev_parse_rules[i], 2, "%s") + 1;
3889 /* bail out if there are no rules */
3890 if (!nr_rules)
3891 return xstrdup(refname);
3893 /* buffer for scanf result, at most refname must fit */
3894 short_name = xstrdup(refname);
3896 /* skip first rule, it will always match */
3897 for (i = nr_rules - 1; i > 0 ; --i) {
3898 int j;
3899 int rules_to_fail = i;
3900 int short_name_len;
3902 if (1 != sscanf(refname, scanf_fmts[i], short_name))
3903 continue;
3905 short_name_len = strlen(short_name);
3908 * in strict mode, all (except the matched one) rules
3909 * must fail to resolve to a valid non-ambiguous ref
3911 if (strict)
3912 rules_to_fail = nr_rules;
3915 * check if the short name resolves to a valid ref,
3916 * but use only rules prior to the matched one
3918 for (j = 0; j < rules_to_fail; j++) {
3919 const char *rule = ref_rev_parse_rules[j];
3920 char refname[PATH_MAX];
3922 /* skip matched rule */
3923 if (i == j)
3924 continue;
3927 * the short name is ambiguous, if it resolves
3928 * (with this previous rule) to a valid ref
3929 * read_ref() returns 0 on success
3931 mksnpath(refname, sizeof(refname),
3932 rule, short_name_len, short_name);
3933 if (ref_exists(refname))
3934 break;
3938 * short name is non-ambiguous if all previous rules
3939 * haven't resolved to a valid ref
3941 if (j == rules_to_fail)
3942 return short_name;
3945 free(short_name);
3946 return xstrdup(refname);
3949 static struct string_list *hide_refs;
3951 int parse_hide_refs_config(const char *var, const char *value, const char *section)
3953 if (!strcmp("transfer.hiderefs", var) ||
3954 /* NEEDSWORK: use parse_config_key() once both are merged */
3955 (starts_with(var, section) && var[strlen(section)] == '.' &&
3956 !strcmp(var + strlen(section), ".hiderefs"))) {
3957 char *ref;
3958 int len;
3960 if (!value)
3961 return config_error_nonbool(var);
3962 ref = xstrdup(value);
3963 len = strlen(ref);
3964 while (len && ref[len - 1] == '/')
3965 ref[--len] = '\0';
3966 if (!hide_refs) {
3967 hide_refs = xcalloc(1, sizeof(*hide_refs));
3968 hide_refs->strdup_strings = 1;
3970 string_list_append(hide_refs, ref);
3972 return 0;
3975 int ref_is_hidden(const char *refname)
3977 struct string_list_item *item;
3979 if (!hide_refs)
3980 return 0;
3981 for_each_string_list_item(item, hide_refs) {
3982 int len;
3983 if (!starts_with(refname, item->string))
3984 continue;
3985 len = strlen(item->string);
3986 if (!refname[len] || refname[len] == '/')
3987 return 1;
3989 return 0;
3992 struct expire_reflog_cb {
3993 unsigned int flags;
3994 reflog_expiry_should_prune_fn *should_prune_fn;
3995 void *policy_cb;
3996 FILE *newlog;
3997 unsigned char last_kept_sha1[20];
4000 static int expire_reflog_ent(unsigned char *osha1, unsigned char *nsha1,
4001 const char *email, unsigned long timestamp, int tz,
4002 const char *message, void *cb_data)
4004 struct expire_reflog_cb *cb = cb_data;
4005 struct expire_reflog_policy_cb *policy_cb = cb->policy_cb;
4007 if (cb->flags & EXPIRE_REFLOGS_REWRITE)
4008 osha1 = cb->last_kept_sha1;
4010 if ((*cb->should_prune_fn)(osha1, nsha1, email, timestamp, tz,
4011 message, policy_cb)) {
4012 if (!cb->newlog)
4013 printf("would prune %s", message);
4014 else if (cb->flags & EXPIRE_REFLOGS_VERBOSE)
4015 printf("prune %s", message);
4016 } else {
4017 if (cb->newlog) {
4018 fprintf(cb->newlog, "%s %s %s %lu %+05d\t%s",
4019 sha1_to_hex(osha1), sha1_to_hex(nsha1),
4020 email, timestamp, tz, message);
4021 hashcpy(cb->last_kept_sha1, nsha1);
4023 if (cb->flags & EXPIRE_REFLOGS_VERBOSE)
4024 printf("keep %s", message);
4026 return 0;
4029 int reflog_expire(const char *refname, const unsigned char *sha1,
4030 unsigned int flags,
4031 reflog_expiry_prepare_fn prepare_fn,
4032 reflog_expiry_should_prune_fn should_prune_fn,
4033 reflog_expiry_cleanup_fn cleanup_fn,
4034 void *policy_cb_data)
4036 static struct lock_file reflog_lock;
4037 struct expire_reflog_cb cb;
4038 struct ref_lock *lock;
4039 char *log_file;
4040 int status = 0;
4041 int type;
4043 memset(&cb, 0, sizeof(cb));
4044 cb.flags = flags;
4045 cb.policy_cb = policy_cb_data;
4046 cb.should_prune_fn = should_prune_fn;
4049 * The reflog file is locked by holding the lock on the
4050 * reference itself, plus we might need to update the
4051 * reference if --updateref was specified:
4053 lock = lock_ref_sha1_basic(refname, sha1, NULL, 0, &type);
4054 if (!lock)
4055 return error("cannot lock ref '%s'", refname);
4056 if (!reflog_exists(refname)) {
4057 unlock_ref(lock);
4058 return 0;
4061 log_file = git_pathdup("logs/%s", refname);
4062 if (!(flags & EXPIRE_REFLOGS_DRY_RUN)) {
4064 * Even though holding $GIT_DIR/logs/$reflog.lock has
4065 * no locking implications, we use the lock_file
4066 * machinery here anyway because it does a lot of the
4067 * work we need, including cleaning up if the program
4068 * exits unexpectedly.
4070 if (hold_lock_file_for_update(&reflog_lock, log_file, 0) < 0) {
4071 struct strbuf err = STRBUF_INIT;
4072 unable_to_lock_message(log_file, errno, &err);
4073 error("%s", err.buf);
4074 strbuf_release(&err);
4075 goto failure;
4077 cb.newlog = fdopen_lock_file(&reflog_lock, "w");
4078 if (!cb.newlog) {
4079 error("cannot fdopen %s (%s)",
4080 reflog_lock.filename.buf, strerror(errno));
4081 goto failure;
4085 (*prepare_fn)(refname, sha1, cb.policy_cb);
4086 for_each_reflog_ent(refname, expire_reflog_ent, &cb);
4087 (*cleanup_fn)(cb.policy_cb);
4089 if (!(flags & EXPIRE_REFLOGS_DRY_RUN)) {
4091 * It doesn't make sense to adjust a reference pointed
4092 * to by a symbolic ref based on expiring entries in
4093 * the symbolic reference's reflog. Nor can we update
4094 * a reference if there are no remaining reflog
4095 * entries.
4097 int update = (flags & EXPIRE_REFLOGS_UPDATE_REF) &&
4098 !(type & REF_ISSYMREF) &&
4099 !is_null_sha1(cb.last_kept_sha1);
4101 if (close_lock_file(&reflog_lock)) {
4102 status |= error("couldn't write %s: %s", log_file,
4103 strerror(errno));
4104 } else if (update &&
4105 (write_in_full(lock->lock_fd,
4106 sha1_to_hex(cb.last_kept_sha1), 40) != 40 ||
4107 write_str_in_full(lock->lock_fd, "\n") != 1 ||
4108 close_ref(lock) < 0)) {
4109 status |= error("couldn't write %s",
4110 lock->lk->filename.buf);
4111 rollback_lock_file(&reflog_lock);
4112 } else if (commit_lock_file(&reflog_lock)) {
4113 status |= error("unable to commit reflog '%s' (%s)",
4114 log_file, strerror(errno));
4115 } else if (update && commit_ref(lock)) {
4116 status |= error("couldn't set %s", lock->ref_name);
4119 free(log_file);
4120 unlock_ref(lock);
4121 return status;
4123 failure:
4124 rollback_lock_file(&reflog_lock);
4125 free(log_file);
4126 unlock_ref(lock);
4127 return -1;