Merge branch 'firewire-kernel-streaming' of git://git.alsa-project.org/alsa-kprivate
[firewire-audio.git] / kernel / futex.c
blobb766d28accd6be8dc2b735de11aa004514b8f91b
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/module.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
63 #include <asm/futex.h>
65 #include "rtmutex_common.h"
67 int __read_mostly futex_cmpxchg_enabled;
69 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
72 * Futex flags used to encode options to functions and preserve them across
73 * restarts.
75 #define FLAGS_SHARED 0x01
76 #define FLAGS_CLOCKRT 0x02
77 #define FLAGS_HAS_TIMEOUT 0x04
80 * Priority Inheritance state:
82 struct futex_pi_state {
84 * list of 'owned' pi_state instances - these have to be
85 * cleaned up in do_exit() if the task exits prematurely:
87 struct list_head list;
90 * The PI object:
92 struct rt_mutex pi_mutex;
94 struct task_struct *owner;
95 atomic_t refcount;
97 union futex_key key;
101 * struct futex_q - The hashed futex queue entry, one per waiting task
102 * @list: priority-sorted list of tasks waiting on this futex
103 * @task: the task waiting on the futex
104 * @lock_ptr: the hash bucket lock
105 * @key: the key the futex is hashed on
106 * @pi_state: optional priority inheritance state
107 * @rt_waiter: rt_waiter storage for use with requeue_pi
108 * @requeue_pi_key: the requeue_pi target futex key
109 * @bitset: bitset for the optional bitmasked wakeup
111 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
112 * we can wake only the relevant ones (hashed queues may be shared).
114 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
115 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
116 * The order of wakeup is always to make the first condition true, then
117 * the second.
119 * PI futexes are typically woken before they are removed from the hash list via
120 * the rt_mutex code. See unqueue_me_pi().
122 struct futex_q {
123 struct plist_node list;
125 struct task_struct *task;
126 spinlock_t *lock_ptr;
127 union futex_key key;
128 struct futex_pi_state *pi_state;
129 struct rt_mutex_waiter *rt_waiter;
130 union futex_key *requeue_pi_key;
131 u32 bitset;
134 static const struct futex_q futex_q_init = {
135 /* list gets initialized in queue_me()*/
136 .key = FUTEX_KEY_INIT,
137 .bitset = FUTEX_BITSET_MATCH_ANY
141 * Hash buckets are shared by all the futex_keys that hash to the same
142 * location. Each key may have multiple futex_q structures, one for each task
143 * waiting on a futex.
145 struct futex_hash_bucket {
146 spinlock_t lock;
147 struct plist_head chain;
150 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
153 * We hash on the keys returned from get_futex_key (see below).
155 static struct futex_hash_bucket *hash_futex(union futex_key *key)
157 u32 hash = jhash2((u32*)&key->both.word,
158 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
159 key->both.offset);
160 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
164 * Return 1 if two futex_keys are equal, 0 otherwise.
166 static inline int match_futex(union futex_key *key1, union futex_key *key2)
168 return (key1 && key2
169 && key1->both.word == key2->both.word
170 && key1->both.ptr == key2->both.ptr
171 && key1->both.offset == key2->both.offset);
175 * Take a reference to the resource addressed by a key.
176 * Can be called while holding spinlocks.
179 static void get_futex_key_refs(union futex_key *key)
181 if (!key->both.ptr)
182 return;
184 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
185 case FUT_OFF_INODE:
186 ihold(key->shared.inode);
187 break;
188 case FUT_OFF_MMSHARED:
189 atomic_inc(&key->private.mm->mm_count);
190 break;
195 * Drop a reference to the resource addressed by a key.
196 * The hash bucket spinlock must not be held.
198 static void drop_futex_key_refs(union futex_key *key)
200 if (!key->both.ptr) {
201 /* If we're here then we tried to put a key we failed to get */
202 WARN_ON_ONCE(1);
203 return;
206 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
207 case FUT_OFF_INODE:
208 iput(key->shared.inode);
209 break;
210 case FUT_OFF_MMSHARED:
211 mmdrop(key->private.mm);
212 break;
217 * get_futex_key() - Get parameters which are the keys for a futex
218 * @uaddr: virtual address of the futex
219 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
220 * @key: address where result is stored.
222 * Returns a negative error code or 0
223 * The key words are stored in *key on success.
225 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
226 * offset_within_page). For private mappings, it's (uaddr, current->mm).
227 * We can usually work out the index without swapping in the page.
229 * lock_page() might sleep, the caller should not hold a spinlock.
231 static int
232 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
234 unsigned long address = (unsigned long)uaddr;
235 struct mm_struct *mm = current->mm;
236 struct page *page, *page_head;
237 int err;
240 * The futex address must be "naturally" aligned.
242 key->both.offset = address % PAGE_SIZE;
243 if (unlikely((address % sizeof(u32)) != 0))
244 return -EINVAL;
245 address -= key->both.offset;
248 * PROCESS_PRIVATE futexes are fast.
249 * As the mm cannot disappear under us and the 'key' only needs
250 * virtual address, we dont even have to find the underlying vma.
251 * Note : We do have to check 'uaddr' is a valid user address,
252 * but access_ok() should be faster than find_vma()
254 if (!fshared) {
255 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
256 return -EFAULT;
257 key->private.mm = mm;
258 key->private.address = address;
259 get_futex_key_refs(key);
260 return 0;
263 again:
264 err = get_user_pages_fast(address, 1, 1, &page);
265 if (err < 0)
266 return err;
268 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
269 page_head = page;
270 if (unlikely(PageTail(page))) {
271 put_page(page);
272 /* serialize against __split_huge_page_splitting() */
273 local_irq_disable();
274 if (likely(__get_user_pages_fast(address, 1, 1, &page) == 1)) {
275 page_head = compound_head(page);
277 * page_head is valid pointer but we must pin
278 * it before taking the PG_lock and/or
279 * PG_compound_lock. The moment we re-enable
280 * irqs __split_huge_page_splitting() can
281 * return and the head page can be freed from
282 * under us. We can't take the PG_lock and/or
283 * PG_compound_lock on a page that could be
284 * freed from under us.
286 if (page != page_head) {
287 get_page(page_head);
288 put_page(page);
290 local_irq_enable();
291 } else {
292 local_irq_enable();
293 goto again;
296 #else
297 page_head = compound_head(page);
298 if (page != page_head) {
299 get_page(page_head);
300 put_page(page);
302 #endif
304 lock_page(page_head);
305 if (!page_head->mapping) {
306 unlock_page(page_head);
307 put_page(page_head);
308 goto again;
312 * Private mappings are handled in a simple way.
314 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
315 * it's a read-only handle, it's expected that futexes attach to
316 * the object not the particular process.
318 if (PageAnon(page_head)) {
319 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
320 key->private.mm = mm;
321 key->private.address = address;
322 } else {
323 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
324 key->shared.inode = page_head->mapping->host;
325 key->shared.pgoff = page_head->index;
328 get_futex_key_refs(key);
330 unlock_page(page_head);
331 put_page(page_head);
332 return 0;
335 static inline void put_futex_key(union futex_key *key)
337 drop_futex_key_refs(key);
341 * fault_in_user_writeable() - Fault in user address and verify RW access
342 * @uaddr: pointer to faulting user space address
344 * Slow path to fixup the fault we just took in the atomic write
345 * access to @uaddr.
347 * We have no generic implementation of a non-destructive write to the
348 * user address. We know that we faulted in the atomic pagefault
349 * disabled section so we can as well avoid the #PF overhead by
350 * calling get_user_pages() right away.
352 static int fault_in_user_writeable(u32 __user *uaddr)
354 struct mm_struct *mm = current->mm;
355 int ret;
357 down_read(&mm->mmap_sem);
358 ret = get_user_pages(current, mm, (unsigned long)uaddr,
359 1, 1, 0, NULL, NULL);
360 up_read(&mm->mmap_sem);
362 return ret < 0 ? ret : 0;
366 * futex_top_waiter() - Return the highest priority waiter on a futex
367 * @hb: the hash bucket the futex_q's reside in
368 * @key: the futex key (to distinguish it from other futex futex_q's)
370 * Must be called with the hb lock held.
372 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
373 union futex_key *key)
375 struct futex_q *this;
377 plist_for_each_entry(this, &hb->chain, list) {
378 if (match_futex(&this->key, key))
379 return this;
381 return NULL;
384 static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
386 u32 curval;
388 pagefault_disable();
389 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
390 pagefault_enable();
392 return curval;
395 static int get_futex_value_locked(u32 *dest, u32 __user *from)
397 int ret;
399 pagefault_disable();
400 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
401 pagefault_enable();
403 return ret ? -EFAULT : 0;
408 * PI code:
410 static int refill_pi_state_cache(void)
412 struct futex_pi_state *pi_state;
414 if (likely(current->pi_state_cache))
415 return 0;
417 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
419 if (!pi_state)
420 return -ENOMEM;
422 INIT_LIST_HEAD(&pi_state->list);
423 /* pi_mutex gets initialized later */
424 pi_state->owner = NULL;
425 atomic_set(&pi_state->refcount, 1);
426 pi_state->key = FUTEX_KEY_INIT;
428 current->pi_state_cache = pi_state;
430 return 0;
433 static struct futex_pi_state * alloc_pi_state(void)
435 struct futex_pi_state *pi_state = current->pi_state_cache;
437 WARN_ON(!pi_state);
438 current->pi_state_cache = NULL;
440 return pi_state;
443 static void free_pi_state(struct futex_pi_state *pi_state)
445 if (!atomic_dec_and_test(&pi_state->refcount))
446 return;
449 * If pi_state->owner is NULL, the owner is most probably dying
450 * and has cleaned up the pi_state already
452 if (pi_state->owner) {
453 raw_spin_lock_irq(&pi_state->owner->pi_lock);
454 list_del_init(&pi_state->list);
455 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
457 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
460 if (current->pi_state_cache)
461 kfree(pi_state);
462 else {
464 * pi_state->list is already empty.
465 * clear pi_state->owner.
466 * refcount is at 0 - put it back to 1.
468 pi_state->owner = NULL;
469 atomic_set(&pi_state->refcount, 1);
470 current->pi_state_cache = pi_state;
475 * Look up the task based on what TID userspace gave us.
476 * We dont trust it.
478 static struct task_struct * futex_find_get_task(pid_t pid)
480 struct task_struct *p;
482 rcu_read_lock();
483 p = find_task_by_vpid(pid);
484 if (p)
485 get_task_struct(p);
487 rcu_read_unlock();
489 return p;
493 * This task is holding PI mutexes at exit time => bad.
494 * Kernel cleans up PI-state, but userspace is likely hosed.
495 * (Robust-futex cleanup is separate and might save the day for userspace.)
497 void exit_pi_state_list(struct task_struct *curr)
499 struct list_head *next, *head = &curr->pi_state_list;
500 struct futex_pi_state *pi_state;
501 struct futex_hash_bucket *hb;
502 union futex_key key = FUTEX_KEY_INIT;
504 if (!futex_cmpxchg_enabled)
505 return;
507 * We are a ZOMBIE and nobody can enqueue itself on
508 * pi_state_list anymore, but we have to be careful
509 * versus waiters unqueueing themselves:
511 raw_spin_lock_irq(&curr->pi_lock);
512 while (!list_empty(head)) {
514 next = head->next;
515 pi_state = list_entry(next, struct futex_pi_state, list);
516 key = pi_state->key;
517 hb = hash_futex(&key);
518 raw_spin_unlock_irq(&curr->pi_lock);
520 spin_lock(&hb->lock);
522 raw_spin_lock_irq(&curr->pi_lock);
524 * We dropped the pi-lock, so re-check whether this
525 * task still owns the PI-state:
527 if (head->next != next) {
528 spin_unlock(&hb->lock);
529 continue;
532 WARN_ON(pi_state->owner != curr);
533 WARN_ON(list_empty(&pi_state->list));
534 list_del_init(&pi_state->list);
535 pi_state->owner = NULL;
536 raw_spin_unlock_irq(&curr->pi_lock);
538 rt_mutex_unlock(&pi_state->pi_mutex);
540 spin_unlock(&hb->lock);
542 raw_spin_lock_irq(&curr->pi_lock);
544 raw_spin_unlock_irq(&curr->pi_lock);
547 static int
548 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
549 union futex_key *key, struct futex_pi_state **ps)
551 struct futex_pi_state *pi_state = NULL;
552 struct futex_q *this, *next;
553 struct plist_head *head;
554 struct task_struct *p;
555 pid_t pid = uval & FUTEX_TID_MASK;
557 head = &hb->chain;
559 plist_for_each_entry_safe(this, next, head, list) {
560 if (match_futex(&this->key, key)) {
562 * Another waiter already exists - bump up
563 * the refcount and return its pi_state:
565 pi_state = this->pi_state;
567 * Userspace might have messed up non-PI and PI futexes
569 if (unlikely(!pi_state))
570 return -EINVAL;
572 WARN_ON(!atomic_read(&pi_state->refcount));
575 * When pi_state->owner is NULL then the owner died
576 * and another waiter is on the fly. pi_state->owner
577 * is fixed up by the task which acquires
578 * pi_state->rt_mutex.
580 * We do not check for pid == 0 which can happen when
581 * the owner died and robust_list_exit() cleared the
582 * TID.
584 if (pid && pi_state->owner) {
586 * Bail out if user space manipulated the
587 * futex value.
589 if (pid != task_pid_vnr(pi_state->owner))
590 return -EINVAL;
593 atomic_inc(&pi_state->refcount);
594 *ps = pi_state;
596 return 0;
601 * We are the first waiter - try to look up the real owner and attach
602 * the new pi_state to it, but bail out when TID = 0
604 if (!pid)
605 return -ESRCH;
606 p = futex_find_get_task(pid);
607 if (!p)
608 return -ESRCH;
611 * We need to look at the task state flags to figure out,
612 * whether the task is exiting. To protect against the do_exit
613 * change of the task flags, we do this protected by
614 * p->pi_lock:
616 raw_spin_lock_irq(&p->pi_lock);
617 if (unlikely(p->flags & PF_EXITING)) {
619 * The task is on the way out. When PF_EXITPIDONE is
620 * set, we know that the task has finished the
621 * cleanup:
623 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
625 raw_spin_unlock_irq(&p->pi_lock);
626 put_task_struct(p);
627 return ret;
630 pi_state = alloc_pi_state();
633 * Initialize the pi_mutex in locked state and make 'p'
634 * the owner of it:
636 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
638 /* Store the key for possible exit cleanups: */
639 pi_state->key = *key;
641 WARN_ON(!list_empty(&pi_state->list));
642 list_add(&pi_state->list, &p->pi_state_list);
643 pi_state->owner = p;
644 raw_spin_unlock_irq(&p->pi_lock);
646 put_task_struct(p);
648 *ps = pi_state;
650 return 0;
654 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
655 * @uaddr: the pi futex user address
656 * @hb: the pi futex hash bucket
657 * @key: the futex key associated with uaddr and hb
658 * @ps: the pi_state pointer where we store the result of the
659 * lookup
660 * @task: the task to perform the atomic lock work for. This will
661 * be "current" except in the case of requeue pi.
662 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
664 * Returns:
665 * 0 - ready to wait
666 * 1 - acquired the lock
667 * <0 - error
669 * The hb->lock and futex_key refs shall be held by the caller.
671 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
672 union futex_key *key,
673 struct futex_pi_state **ps,
674 struct task_struct *task, int set_waiters)
676 int lock_taken, ret, ownerdied = 0;
677 u32 uval, newval, curval;
679 retry:
680 ret = lock_taken = 0;
683 * To avoid races, we attempt to take the lock here again
684 * (by doing a 0 -> TID atomic cmpxchg), while holding all
685 * the locks. It will most likely not succeed.
687 newval = task_pid_vnr(task);
688 if (set_waiters)
689 newval |= FUTEX_WAITERS;
691 curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
693 if (unlikely(curval == -EFAULT))
694 return -EFAULT;
697 * Detect deadlocks.
699 if ((unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(task))))
700 return -EDEADLK;
703 * Surprise - we got the lock. Just return to userspace:
705 if (unlikely(!curval))
706 return 1;
708 uval = curval;
711 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
712 * to wake at the next unlock.
714 newval = curval | FUTEX_WAITERS;
717 * There are two cases, where a futex might have no owner (the
718 * owner TID is 0): OWNER_DIED. We take over the futex in this
719 * case. We also do an unconditional take over, when the owner
720 * of the futex died.
722 * This is safe as we are protected by the hash bucket lock !
724 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
725 /* Keep the OWNER_DIED bit */
726 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(task);
727 ownerdied = 0;
728 lock_taken = 1;
731 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
733 if (unlikely(curval == -EFAULT))
734 return -EFAULT;
735 if (unlikely(curval != uval))
736 goto retry;
739 * We took the lock due to owner died take over.
741 if (unlikely(lock_taken))
742 return 1;
745 * We dont have the lock. Look up the PI state (or create it if
746 * we are the first waiter):
748 ret = lookup_pi_state(uval, hb, key, ps);
750 if (unlikely(ret)) {
751 switch (ret) {
752 case -ESRCH:
754 * No owner found for this futex. Check if the
755 * OWNER_DIED bit is set to figure out whether
756 * this is a robust futex or not.
758 if (get_futex_value_locked(&curval, uaddr))
759 return -EFAULT;
762 * We simply start over in case of a robust
763 * futex. The code above will take the futex
764 * and return happy.
766 if (curval & FUTEX_OWNER_DIED) {
767 ownerdied = 1;
768 goto retry;
770 default:
771 break;
775 return ret;
779 * The hash bucket lock must be held when this is called.
780 * Afterwards, the futex_q must not be accessed.
782 static void wake_futex(struct futex_q *q)
784 struct task_struct *p = q->task;
787 * We set q->lock_ptr = NULL _before_ we wake up the task. If
788 * a non-futex wake up happens on another CPU then the task
789 * might exit and p would dereference a non-existing task
790 * struct. Prevent this by holding a reference on p across the
791 * wake up.
793 get_task_struct(p);
795 plist_del(&q->list, &q->list.plist);
797 * The waiting task can free the futex_q as soon as
798 * q->lock_ptr = NULL is written, without taking any locks. A
799 * memory barrier is required here to prevent the following
800 * store to lock_ptr from getting ahead of the plist_del.
802 smp_wmb();
803 q->lock_ptr = NULL;
805 wake_up_state(p, TASK_NORMAL);
806 put_task_struct(p);
809 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
811 struct task_struct *new_owner;
812 struct futex_pi_state *pi_state = this->pi_state;
813 u32 curval, newval;
815 if (!pi_state)
816 return -EINVAL;
819 * If current does not own the pi_state then the futex is
820 * inconsistent and user space fiddled with the futex value.
822 if (pi_state->owner != current)
823 return -EINVAL;
825 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
826 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
829 * It is possible that the next waiter (the one that brought
830 * this owner to the kernel) timed out and is no longer
831 * waiting on the lock.
833 if (!new_owner)
834 new_owner = this->task;
837 * We pass it to the next owner. (The WAITERS bit is always
838 * kept enabled while there is PI state around. We must also
839 * preserve the owner died bit.)
841 if (!(uval & FUTEX_OWNER_DIED)) {
842 int ret = 0;
844 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
846 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
848 if (curval == -EFAULT)
849 ret = -EFAULT;
850 else if (curval != uval)
851 ret = -EINVAL;
852 if (ret) {
853 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
854 return ret;
858 raw_spin_lock_irq(&pi_state->owner->pi_lock);
859 WARN_ON(list_empty(&pi_state->list));
860 list_del_init(&pi_state->list);
861 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
863 raw_spin_lock_irq(&new_owner->pi_lock);
864 WARN_ON(!list_empty(&pi_state->list));
865 list_add(&pi_state->list, &new_owner->pi_state_list);
866 pi_state->owner = new_owner;
867 raw_spin_unlock_irq(&new_owner->pi_lock);
869 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
870 rt_mutex_unlock(&pi_state->pi_mutex);
872 return 0;
875 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
877 u32 oldval;
880 * There is no waiter, so we unlock the futex. The owner died
881 * bit has not to be preserved here. We are the owner:
883 oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
885 if (oldval == -EFAULT)
886 return oldval;
887 if (oldval != uval)
888 return -EAGAIN;
890 return 0;
894 * Express the locking dependencies for lockdep:
896 static inline void
897 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
899 if (hb1 <= hb2) {
900 spin_lock(&hb1->lock);
901 if (hb1 < hb2)
902 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
903 } else { /* hb1 > hb2 */
904 spin_lock(&hb2->lock);
905 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
909 static inline void
910 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
912 spin_unlock(&hb1->lock);
913 if (hb1 != hb2)
914 spin_unlock(&hb2->lock);
918 * Wake up waiters matching bitset queued on this futex (uaddr).
920 static int
921 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
923 struct futex_hash_bucket *hb;
924 struct futex_q *this, *next;
925 struct plist_head *head;
926 union futex_key key = FUTEX_KEY_INIT;
927 int ret;
929 if (!bitset)
930 return -EINVAL;
932 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key);
933 if (unlikely(ret != 0))
934 goto out;
936 hb = hash_futex(&key);
937 spin_lock(&hb->lock);
938 head = &hb->chain;
940 plist_for_each_entry_safe(this, next, head, list) {
941 if (match_futex (&this->key, &key)) {
942 if (this->pi_state || this->rt_waiter) {
943 ret = -EINVAL;
944 break;
947 /* Check if one of the bits is set in both bitsets */
948 if (!(this->bitset & bitset))
949 continue;
951 wake_futex(this);
952 if (++ret >= nr_wake)
953 break;
957 spin_unlock(&hb->lock);
958 put_futex_key(&key);
959 out:
960 return ret;
964 * Wake up all waiters hashed on the physical page that is mapped
965 * to this virtual address:
967 static int
968 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
969 int nr_wake, int nr_wake2, int op)
971 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
972 struct futex_hash_bucket *hb1, *hb2;
973 struct plist_head *head;
974 struct futex_q *this, *next;
975 int ret, op_ret;
977 retry:
978 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1);
979 if (unlikely(ret != 0))
980 goto out;
981 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2);
982 if (unlikely(ret != 0))
983 goto out_put_key1;
985 hb1 = hash_futex(&key1);
986 hb2 = hash_futex(&key2);
988 retry_private:
989 double_lock_hb(hb1, hb2);
990 op_ret = futex_atomic_op_inuser(op, uaddr2);
991 if (unlikely(op_ret < 0)) {
993 double_unlock_hb(hb1, hb2);
995 #ifndef CONFIG_MMU
997 * we don't get EFAULT from MMU faults if we don't have an MMU,
998 * but we might get them from range checking
1000 ret = op_ret;
1001 goto out_put_keys;
1002 #endif
1004 if (unlikely(op_ret != -EFAULT)) {
1005 ret = op_ret;
1006 goto out_put_keys;
1009 ret = fault_in_user_writeable(uaddr2);
1010 if (ret)
1011 goto out_put_keys;
1013 if (!(flags & FLAGS_SHARED))
1014 goto retry_private;
1016 put_futex_key(&key2);
1017 put_futex_key(&key1);
1018 goto retry;
1021 head = &hb1->chain;
1023 plist_for_each_entry_safe(this, next, head, list) {
1024 if (match_futex (&this->key, &key1)) {
1025 wake_futex(this);
1026 if (++ret >= nr_wake)
1027 break;
1031 if (op_ret > 0) {
1032 head = &hb2->chain;
1034 op_ret = 0;
1035 plist_for_each_entry_safe(this, next, head, list) {
1036 if (match_futex (&this->key, &key2)) {
1037 wake_futex(this);
1038 if (++op_ret >= nr_wake2)
1039 break;
1042 ret += op_ret;
1045 double_unlock_hb(hb1, hb2);
1046 out_put_keys:
1047 put_futex_key(&key2);
1048 out_put_key1:
1049 put_futex_key(&key1);
1050 out:
1051 return ret;
1055 * requeue_futex() - Requeue a futex_q from one hb to another
1056 * @q: the futex_q to requeue
1057 * @hb1: the source hash_bucket
1058 * @hb2: the target hash_bucket
1059 * @key2: the new key for the requeued futex_q
1061 static inline
1062 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1063 struct futex_hash_bucket *hb2, union futex_key *key2)
1067 * If key1 and key2 hash to the same bucket, no need to
1068 * requeue.
1070 if (likely(&hb1->chain != &hb2->chain)) {
1071 plist_del(&q->list, &hb1->chain);
1072 plist_add(&q->list, &hb2->chain);
1073 q->lock_ptr = &hb2->lock;
1074 #ifdef CONFIG_DEBUG_PI_LIST
1075 q->list.plist.spinlock = &hb2->lock;
1076 #endif
1078 get_futex_key_refs(key2);
1079 q->key = *key2;
1083 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1084 * @q: the futex_q
1085 * @key: the key of the requeue target futex
1086 * @hb: the hash_bucket of the requeue target futex
1088 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1089 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1090 * to the requeue target futex so the waiter can detect the wakeup on the right
1091 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1092 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1093 * to protect access to the pi_state to fixup the owner later. Must be called
1094 * with both q->lock_ptr and hb->lock held.
1096 static inline
1097 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1098 struct futex_hash_bucket *hb)
1100 get_futex_key_refs(key);
1101 q->key = *key;
1103 WARN_ON(plist_node_empty(&q->list));
1104 plist_del(&q->list, &q->list.plist);
1106 WARN_ON(!q->rt_waiter);
1107 q->rt_waiter = NULL;
1109 q->lock_ptr = &hb->lock;
1110 #ifdef CONFIG_DEBUG_PI_LIST
1111 q->list.plist.spinlock = &hb->lock;
1112 #endif
1114 wake_up_state(q->task, TASK_NORMAL);
1118 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1119 * @pifutex: the user address of the to futex
1120 * @hb1: the from futex hash bucket, must be locked by the caller
1121 * @hb2: the to futex hash bucket, must be locked by the caller
1122 * @key1: the from futex key
1123 * @key2: the to futex key
1124 * @ps: address to store the pi_state pointer
1125 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1127 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1128 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1129 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1130 * hb1 and hb2 must be held by the caller.
1132 * Returns:
1133 * 0 - failed to acquire the lock atomicly
1134 * 1 - acquired the lock
1135 * <0 - error
1137 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1138 struct futex_hash_bucket *hb1,
1139 struct futex_hash_bucket *hb2,
1140 union futex_key *key1, union futex_key *key2,
1141 struct futex_pi_state **ps, int set_waiters)
1143 struct futex_q *top_waiter = NULL;
1144 u32 curval;
1145 int ret;
1147 if (get_futex_value_locked(&curval, pifutex))
1148 return -EFAULT;
1151 * Find the top_waiter and determine if there are additional waiters.
1152 * If the caller intends to requeue more than 1 waiter to pifutex,
1153 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1154 * as we have means to handle the possible fault. If not, don't set
1155 * the bit unecessarily as it will force the subsequent unlock to enter
1156 * the kernel.
1158 top_waiter = futex_top_waiter(hb1, key1);
1160 /* There are no waiters, nothing for us to do. */
1161 if (!top_waiter)
1162 return 0;
1164 /* Ensure we requeue to the expected futex. */
1165 if (!match_futex(top_waiter->requeue_pi_key, key2))
1166 return -EINVAL;
1169 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1170 * the contended case or if set_waiters is 1. The pi_state is returned
1171 * in ps in contended cases.
1173 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1174 set_waiters);
1175 if (ret == 1)
1176 requeue_pi_wake_futex(top_waiter, key2, hb2);
1178 return ret;
1182 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1183 * @uaddr1: source futex user address
1184 * @flags: futex flags (FLAGS_SHARED, etc.)
1185 * @uaddr2: target futex user address
1186 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1187 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1188 * @cmpval: @uaddr1 expected value (or %NULL)
1189 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1190 * pi futex (pi to pi requeue is not supported)
1192 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1193 * uaddr2 atomically on behalf of the top waiter.
1195 * Returns:
1196 * >=0 - on success, the number of tasks requeued or woken
1197 * <0 - on error
1199 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1200 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1201 u32 *cmpval, int requeue_pi)
1203 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1204 int drop_count = 0, task_count = 0, ret;
1205 struct futex_pi_state *pi_state = NULL;
1206 struct futex_hash_bucket *hb1, *hb2;
1207 struct plist_head *head1;
1208 struct futex_q *this, *next;
1209 u32 curval2;
1211 if (requeue_pi) {
1213 * requeue_pi requires a pi_state, try to allocate it now
1214 * without any locks in case it fails.
1216 if (refill_pi_state_cache())
1217 return -ENOMEM;
1219 * requeue_pi must wake as many tasks as it can, up to nr_wake
1220 * + nr_requeue, since it acquires the rt_mutex prior to
1221 * returning to userspace, so as to not leave the rt_mutex with
1222 * waiters and no owner. However, second and third wake-ups
1223 * cannot be predicted as they involve race conditions with the
1224 * first wake and a fault while looking up the pi_state. Both
1225 * pthread_cond_signal() and pthread_cond_broadcast() should
1226 * use nr_wake=1.
1228 if (nr_wake != 1)
1229 return -EINVAL;
1232 retry:
1233 if (pi_state != NULL) {
1235 * We will have to lookup the pi_state again, so free this one
1236 * to keep the accounting correct.
1238 free_pi_state(pi_state);
1239 pi_state = NULL;
1242 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1);
1243 if (unlikely(ret != 0))
1244 goto out;
1245 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2);
1246 if (unlikely(ret != 0))
1247 goto out_put_key1;
1249 hb1 = hash_futex(&key1);
1250 hb2 = hash_futex(&key2);
1252 retry_private:
1253 double_lock_hb(hb1, hb2);
1255 if (likely(cmpval != NULL)) {
1256 u32 curval;
1258 ret = get_futex_value_locked(&curval, uaddr1);
1260 if (unlikely(ret)) {
1261 double_unlock_hb(hb1, hb2);
1263 ret = get_user(curval, uaddr1);
1264 if (ret)
1265 goto out_put_keys;
1267 if (!(flags & FLAGS_SHARED))
1268 goto retry_private;
1270 put_futex_key(&key2);
1271 put_futex_key(&key1);
1272 goto retry;
1274 if (curval != *cmpval) {
1275 ret = -EAGAIN;
1276 goto out_unlock;
1280 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1282 * Attempt to acquire uaddr2 and wake the top waiter. If we
1283 * intend to requeue waiters, force setting the FUTEX_WAITERS
1284 * bit. We force this here where we are able to easily handle
1285 * faults rather in the requeue loop below.
1287 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1288 &key2, &pi_state, nr_requeue);
1291 * At this point the top_waiter has either taken uaddr2 or is
1292 * waiting on it. If the former, then the pi_state will not
1293 * exist yet, look it up one more time to ensure we have a
1294 * reference to it.
1296 if (ret == 1) {
1297 WARN_ON(pi_state);
1298 drop_count++;
1299 task_count++;
1300 ret = get_futex_value_locked(&curval2, uaddr2);
1301 if (!ret)
1302 ret = lookup_pi_state(curval2, hb2, &key2,
1303 &pi_state);
1306 switch (ret) {
1307 case 0:
1308 break;
1309 case -EFAULT:
1310 double_unlock_hb(hb1, hb2);
1311 put_futex_key(&key2);
1312 put_futex_key(&key1);
1313 ret = fault_in_user_writeable(uaddr2);
1314 if (!ret)
1315 goto retry;
1316 goto out;
1317 case -EAGAIN:
1318 /* The owner was exiting, try again. */
1319 double_unlock_hb(hb1, hb2);
1320 put_futex_key(&key2);
1321 put_futex_key(&key1);
1322 cond_resched();
1323 goto retry;
1324 default:
1325 goto out_unlock;
1329 head1 = &hb1->chain;
1330 plist_for_each_entry_safe(this, next, head1, list) {
1331 if (task_count - nr_wake >= nr_requeue)
1332 break;
1334 if (!match_futex(&this->key, &key1))
1335 continue;
1338 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1339 * be paired with each other and no other futex ops.
1341 if ((requeue_pi && !this->rt_waiter) ||
1342 (!requeue_pi && this->rt_waiter)) {
1343 ret = -EINVAL;
1344 break;
1348 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1349 * lock, we already woke the top_waiter. If not, it will be
1350 * woken by futex_unlock_pi().
1352 if (++task_count <= nr_wake && !requeue_pi) {
1353 wake_futex(this);
1354 continue;
1357 /* Ensure we requeue to the expected futex for requeue_pi. */
1358 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1359 ret = -EINVAL;
1360 break;
1364 * Requeue nr_requeue waiters and possibly one more in the case
1365 * of requeue_pi if we couldn't acquire the lock atomically.
1367 if (requeue_pi) {
1368 /* Prepare the waiter to take the rt_mutex. */
1369 atomic_inc(&pi_state->refcount);
1370 this->pi_state = pi_state;
1371 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1372 this->rt_waiter,
1373 this->task, 1);
1374 if (ret == 1) {
1375 /* We got the lock. */
1376 requeue_pi_wake_futex(this, &key2, hb2);
1377 drop_count++;
1378 continue;
1379 } else if (ret) {
1380 /* -EDEADLK */
1381 this->pi_state = NULL;
1382 free_pi_state(pi_state);
1383 goto out_unlock;
1386 requeue_futex(this, hb1, hb2, &key2);
1387 drop_count++;
1390 out_unlock:
1391 double_unlock_hb(hb1, hb2);
1394 * drop_futex_key_refs() must be called outside the spinlocks. During
1395 * the requeue we moved futex_q's from the hash bucket at key1 to the
1396 * one at key2 and updated their key pointer. We no longer need to
1397 * hold the references to key1.
1399 while (--drop_count >= 0)
1400 drop_futex_key_refs(&key1);
1402 out_put_keys:
1403 put_futex_key(&key2);
1404 out_put_key1:
1405 put_futex_key(&key1);
1406 out:
1407 if (pi_state != NULL)
1408 free_pi_state(pi_state);
1409 return ret ? ret : task_count;
1412 /* The key must be already stored in q->key. */
1413 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1414 __acquires(&hb->lock)
1416 struct futex_hash_bucket *hb;
1418 hb = hash_futex(&q->key);
1419 q->lock_ptr = &hb->lock;
1421 spin_lock(&hb->lock);
1422 return hb;
1425 static inline void
1426 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1427 __releases(&hb->lock)
1429 spin_unlock(&hb->lock);
1433 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1434 * @q: The futex_q to enqueue
1435 * @hb: The destination hash bucket
1437 * The hb->lock must be held by the caller, and is released here. A call to
1438 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1439 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1440 * or nothing if the unqueue is done as part of the wake process and the unqueue
1441 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1442 * an example).
1444 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1445 __releases(&hb->lock)
1447 int prio;
1450 * The priority used to register this element is
1451 * - either the real thread-priority for the real-time threads
1452 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1453 * - or MAX_RT_PRIO for non-RT threads.
1454 * Thus, all RT-threads are woken first in priority order, and
1455 * the others are woken last, in FIFO order.
1457 prio = min(current->normal_prio, MAX_RT_PRIO);
1459 plist_node_init(&q->list, prio);
1460 #ifdef CONFIG_DEBUG_PI_LIST
1461 q->list.plist.spinlock = &hb->lock;
1462 #endif
1463 plist_add(&q->list, &hb->chain);
1464 q->task = current;
1465 spin_unlock(&hb->lock);
1469 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1470 * @q: The futex_q to unqueue
1472 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1473 * be paired with exactly one earlier call to queue_me().
1475 * Returns:
1476 * 1 - if the futex_q was still queued (and we removed unqueued it)
1477 * 0 - if the futex_q was already removed by the waking thread
1479 static int unqueue_me(struct futex_q *q)
1481 spinlock_t *lock_ptr;
1482 int ret = 0;
1484 /* In the common case we don't take the spinlock, which is nice. */
1485 retry:
1486 lock_ptr = q->lock_ptr;
1487 barrier();
1488 if (lock_ptr != NULL) {
1489 spin_lock(lock_ptr);
1491 * q->lock_ptr can change between reading it and
1492 * spin_lock(), causing us to take the wrong lock. This
1493 * corrects the race condition.
1495 * Reasoning goes like this: if we have the wrong lock,
1496 * q->lock_ptr must have changed (maybe several times)
1497 * between reading it and the spin_lock(). It can
1498 * change again after the spin_lock() but only if it was
1499 * already changed before the spin_lock(). It cannot,
1500 * however, change back to the original value. Therefore
1501 * we can detect whether we acquired the correct lock.
1503 if (unlikely(lock_ptr != q->lock_ptr)) {
1504 spin_unlock(lock_ptr);
1505 goto retry;
1507 WARN_ON(plist_node_empty(&q->list));
1508 plist_del(&q->list, &q->list.plist);
1510 BUG_ON(q->pi_state);
1512 spin_unlock(lock_ptr);
1513 ret = 1;
1516 drop_futex_key_refs(&q->key);
1517 return ret;
1521 * PI futexes can not be requeued and must remove themself from the
1522 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1523 * and dropped here.
1525 static void unqueue_me_pi(struct futex_q *q)
1526 __releases(q->lock_ptr)
1528 WARN_ON(plist_node_empty(&q->list));
1529 plist_del(&q->list, &q->list.plist);
1531 BUG_ON(!q->pi_state);
1532 free_pi_state(q->pi_state);
1533 q->pi_state = NULL;
1535 spin_unlock(q->lock_ptr);
1539 * Fixup the pi_state owner with the new owner.
1541 * Must be called with hash bucket lock held and mm->sem held for non
1542 * private futexes.
1544 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1545 struct task_struct *newowner)
1547 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1548 struct futex_pi_state *pi_state = q->pi_state;
1549 struct task_struct *oldowner = pi_state->owner;
1550 u32 uval, curval, newval;
1551 int ret;
1553 /* Owner died? */
1554 if (!pi_state->owner)
1555 newtid |= FUTEX_OWNER_DIED;
1558 * We are here either because we stole the rtmutex from the
1559 * pending owner or we are the pending owner which failed to
1560 * get the rtmutex. We have to replace the pending owner TID
1561 * in the user space variable. This must be atomic as we have
1562 * to preserve the owner died bit here.
1564 * Note: We write the user space value _before_ changing the pi_state
1565 * because we can fault here. Imagine swapped out pages or a fork
1566 * that marked all the anonymous memory readonly for cow.
1568 * Modifying pi_state _before_ the user space value would
1569 * leave the pi_state in an inconsistent state when we fault
1570 * here, because we need to drop the hash bucket lock to
1571 * handle the fault. This might be observed in the PID check
1572 * in lookup_pi_state.
1574 retry:
1575 if (get_futex_value_locked(&uval, uaddr))
1576 goto handle_fault;
1578 while (1) {
1579 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1581 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1583 if (curval == -EFAULT)
1584 goto handle_fault;
1585 if (curval == uval)
1586 break;
1587 uval = curval;
1591 * We fixed up user space. Now we need to fix the pi_state
1592 * itself.
1594 if (pi_state->owner != NULL) {
1595 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1596 WARN_ON(list_empty(&pi_state->list));
1597 list_del_init(&pi_state->list);
1598 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1601 pi_state->owner = newowner;
1603 raw_spin_lock_irq(&newowner->pi_lock);
1604 WARN_ON(!list_empty(&pi_state->list));
1605 list_add(&pi_state->list, &newowner->pi_state_list);
1606 raw_spin_unlock_irq(&newowner->pi_lock);
1607 return 0;
1610 * To handle the page fault we need to drop the hash bucket
1611 * lock here. That gives the other task (either the pending
1612 * owner itself or the task which stole the rtmutex) the
1613 * chance to try the fixup of the pi_state. So once we are
1614 * back from handling the fault we need to check the pi_state
1615 * after reacquiring the hash bucket lock and before trying to
1616 * do another fixup. When the fixup has been done already we
1617 * simply return.
1619 handle_fault:
1620 spin_unlock(q->lock_ptr);
1622 ret = fault_in_user_writeable(uaddr);
1624 spin_lock(q->lock_ptr);
1627 * Check if someone else fixed it for us:
1629 if (pi_state->owner != oldowner)
1630 return 0;
1632 if (ret)
1633 return ret;
1635 goto retry;
1638 static long futex_wait_restart(struct restart_block *restart);
1641 * fixup_owner() - Post lock pi_state and corner case management
1642 * @uaddr: user address of the futex
1643 * @q: futex_q (contains pi_state and access to the rt_mutex)
1644 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1646 * After attempting to lock an rt_mutex, this function is called to cleanup
1647 * the pi_state owner as well as handle race conditions that may allow us to
1648 * acquire the lock. Must be called with the hb lock held.
1650 * Returns:
1651 * 1 - success, lock taken
1652 * 0 - success, lock not taken
1653 * <0 - on error (-EFAULT)
1655 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1657 struct task_struct *owner;
1658 int ret = 0;
1660 if (locked) {
1662 * Got the lock. We might not be the anticipated owner if we
1663 * did a lock-steal - fix up the PI-state in that case:
1665 if (q->pi_state->owner != current)
1666 ret = fixup_pi_state_owner(uaddr, q, current);
1667 goto out;
1671 * Catch the rare case, where the lock was released when we were on the
1672 * way back before we locked the hash bucket.
1674 if (q->pi_state->owner == current) {
1676 * Try to get the rt_mutex now. This might fail as some other
1677 * task acquired the rt_mutex after we removed ourself from the
1678 * rt_mutex waiters list.
1680 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1681 locked = 1;
1682 goto out;
1686 * pi_state is incorrect, some other task did a lock steal and
1687 * we returned due to timeout or signal without taking the
1688 * rt_mutex. Too late. We can access the rt_mutex_owner without
1689 * locking, as the other task is now blocked on the hash bucket
1690 * lock. Fix the state up.
1692 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1693 ret = fixup_pi_state_owner(uaddr, q, owner);
1694 goto out;
1698 * Paranoia check. If we did not take the lock, then we should not be
1699 * the owner, nor the pending owner, of the rt_mutex.
1701 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1702 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1703 "pi-state %p\n", ret,
1704 q->pi_state->pi_mutex.owner,
1705 q->pi_state->owner);
1707 out:
1708 return ret ? ret : locked;
1712 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1713 * @hb: the futex hash bucket, must be locked by the caller
1714 * @q: the futex_q to queue up on
1715 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
1717 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1718 struct hrtimer_sleeper *timeout)
1721 * The task state is guaranteed to be set before another task can
1722 * wake it. set_current_state() is implemented using set_mb() and
1723 * queue_me() calls spin_unlock() upon completion, both serializing
1724 * access to the hash list and forcing another memory barrier.
1726 set_current_state(TASK_INTERRUPTIBLE);
1727 queue_me(q, hb);
1729 /* Arm the timer */
1730 if (timeout) {
1731 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1732 if (!hrtimer_active(&timeout->timer))
1733 timeout->task = NULL;
1737 * If we have been removed from the hash list, then another task
1738 * has tried to wake us, and we can skip the call to schedule().
1740 if (likely(!plist_node_empty(&q->list))) {
1742 * If the timer has already expired, current will already be
1743 * flagged for rescheduling. Only call schedule if there
1744 * is no timeout, or if it has yet to expire.
1746 if (!timeout || timeout->task)
1747 schedule();
1749 __set_current_state(TASK_RUNNING);
1753 * futex_wait_setup() - Prepare to wait on a futex
1754 * @uaddr: the futex userspace address
1755 * @val: the expected value
1756 * @flags: futex flags (FLAGS_SHARED, etc.)
1757 * @q: the associated futex_q
1758 * @hb: storage for hash_bucket pointer to be returned to caller
1760 * Setup the futex_q and locate the hash_bucket. Get the futex value and
1761 * compare it with the expected value. Handle atomic faults internally.
1762 * Return with the hb lock held and a q.key reference on success, and unlocked
1763 * with no q.key reference on failure.
1765 * Returns:
1766 * 0 - uaddr contains val and hb has been locked
1767 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
1769 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
1770 struct futex_q *q, struct futex_hash_bucket **hb)
1772 u32 uval;
1773 int ret;
1776 * Access the page AFTER the hash-bucket is locked.
1777 * Order is important:
1779 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1780 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1782 * The basic logical guarantee of a futex is that it blocks ONLY
1783 * if cond(var) is known to be true at the time of blocking, for
1784 * any cond. If we queued after testing *uaddr, that would open
1785 * a race condition where we could block indefinitely with
1786 * cond(var) false, which would violate the guarantee.
1788 * A consequence is that futex_wait() can return zero and absorb
1789 * a wakeup when *uaddr != val on entry to the syscall. This is
1790 * rare, but normal.
1792 retry:
1793 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key);
1794 if (unlikely(ret != 0))
1795 return ret;
1797 retry_private:
1798 *hb = queue_lock(q);
1800 ret = get_futex_value_locked(&uval, uaddr);
1802 if (ret) {
1803 queue_unlock(q, *hb);
1805 ret = get_user(uval, uaddr);
1806 if (ret)
1807 goto out;
1809 if (!(flags & FLAGS_SHARED))
1810 goto retry_private;
1812 put_futex_key(&q->key);
1813 goto retry;
1816 if (uval != val) {
1817 queue_unlock(q, *hb);
1818 ret = -EWOULDBLOCK;
1821 out:
1822 if (ret)
1823 put_futex_key(&q->key);
1824 return ret;
1827 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
1828 ktime_t *abs_time, u32 bitset)
1830 struct hrtimer_sleeper timeout, *to = NULL;
1831 struct restart_block *restart;
1832 struct futex_hash_bucket *hb;
1833 struct futex_q q = futex_q_init;
1834 int ret;
1836 if (!bitset)
1837 return -EINVAL;
1838 q.bitset = bitset;
1840 if (abs_time) {
1841 to = &timeout;
1843 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
1844 CLOCK_REALTIME : CLOCK_MONOTONIC,
1845 HRTIMER_MODE_ABS);
1846 hrtimer_init_sleeper(to, current);
1847 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1848 current->timer_slack_ns);
1851 retry:
1853 * Prepare to wait on uaddr. On success, holds hb lock and increments
1854 * q.key refs.
1856 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
1857 if (ret)
1858 goto out;
1860 /* queue_me and wait for wakeup, timeout, or a signal. */
1861 futex_wait_queue_me(hb, &q, to);
1863 /* If we were woken (and unqueued), we succeeded, whatever. */
1864 ret = 0;
1865 /* unqueue_me() drops q.key ref */
1866 if (!unqueue_me(&q))
1867 goto out;
1868 ret = -ETIMEDOUT;
1869 if (to && !to->task)
1870 goto out;
1873 * We expect signal_pending(current), but we might be the
1874 * victim of a spurious wakeup as well.
1876 if (!signal_pending(current))
1877 goto retry;
1879 ret = -ERESTARTSYS;
1880 if (!abs_time)
1881 goto out;
1883 restart = &current_thread_info()->restart_block;
1884 restart->fn = futex_wait_restart;
1885 restart->futex.uaddr = uaddr;
1886 restart->futex.val = val;
1887 restart->futex.time = abs_time->tv64;
1888 restart->futex.bitset = bitset;
1889 restart->futex.flags = flags;
1891 ret = -ERESTART_RESTARTBLOCK;
1893 out:
1894 if (to) {
1895 hrtimer_cancel(&to->timer);
1896 destroy_hrtimer_on_stack(&to->timer);
1898 return ret;
1902 static long futex_wait_restart(struct restart_block *restart)
1904 u32 __user *uaddr = restart->futex.uaddr;
1905 ktime_t t, *tp = NULL;
1907 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1908 t.tv64 = restart->futex.time;
1909 tp = &t;
1911 restart->fn = do_no_restart_syscall;
1913 return (long)futex_wait(uaddr, restart->futex.flags,
1914 restart->futex.val, tp, restart->futex.bitset);
1919 * Userspace tried a 0 -> TID atomic transition of the futex value
1920 * and failed. The kernel side here does the whole locking operation:
1921 * if there are waiters then it will block, it does PI, etc. (Due to
1922 * races the kernel might see a 0 value of the futex too.)
1924 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
1925 ktime_t *time, int trylock)
1927 struct hrtimer_sleeper timeout, *to = NULL;
1928 struct futex_hash_bucket *hb;
1929 struct futex_q q = futex_q_init;
1930 int res, ret;
1932 if (refill_pi_state_cache())
1933 return -ENOMEM;
1935 if (time) {
1936 to = &timeout;
1937 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1938 HRTIMER_MODE_ABS);
1939 hrtimer_init_sleeper(to, current);
1940 hrtimer_set_expires(&to->timer, *time);
1943 retry:
1944 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key);
1945 if (unlikely(ret != 0))
1946 goto out;
1948 retry_private:
1949 hb = queue_lock(&q);
1951 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
1952 if (unlikely(ret)) {
1953 switch (ret) {
1954 case 1:
1955 /* We got the lock. */
1956 ret = 0;
1957 goto out_unlock_put_key;
1958 case -EFAULT:
1959 goto uaddr_faulted;
1960 case -EAGAIN:
1962 * Task is exiting and we just wait for the
1963 * exit to complete.
1965 queue_unlock(&q, hb);
1966 put_futex_key(&q.key);
1967 cond_resched();
1968 goto retry;
1969 default:
1970 goto out_unlock_put_key;
1975 * Only actually queue now that the atomic ops are done:
1977 queue_me(&q, hb);
1979 WARN_ON(!q.pi_state);
1981 * Block on the PI mutex:
1983 if (!trylock)
1984 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1985 else {
1986 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1987 /* Fixup the trylock return value: */
1988 ret = ret ? 0 : -EWOULDBLOCK;
1991 spin_lock(q.lock_ptr);
1993 * Fixup the pi_state owner and possibly acquire the lock if we
1994 * haven't already.
1996 res = fixup_owner(uaddr, &q, !ret);
1998 * If fixup_owner() returned an error, proprogate that. If it acquired
1999 * the lock, clear our -ETIMEDOUT or -EINTR.
2001 if (res)
2002 ret = (res < 0) ? res : 0;
2005 * If fixup_owner() faulted and was unable to handle the fault, unlock
2006 * it and return the fault to userspace.
2008 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2009 rt_mutex_unlock(&q.pi_state->pi_mutex);
2011 /* Unqueue and drop the lock */
2012 unqueue_me_pi(&q);
2014 goto out_put_key;
2016 out_unlock_put_key:
2017 queue_unlock(&q, hb);
2019 out_put_key:
2020 put_futex_key(&q.key);
2021 out:
2022 if (to)
2023 destroy_hrtimer_on_stack(&to->timer);
2024 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2026 uaddr_faulted:
2027 queue_unlock(&q, hb);
2029 ret = fault_in_user_writeable(uaddr);
2030 if (ret)
2031 goto out_put_key;
2033 if (!(flags & FLAGS_SHARED))
2034 goto retry_private;
2036 put_futex_key(&q.key);
2037 goto retry;
2041 * Userspace attempted a TID -> 0 atomic transition, and failed.
2042 * This is the in-kernel slowpath: we look up the PI state (if any),
2043 * and do the rt-mutex unlock.
2045 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2047 struct futex_hash_bucket *hb;
2048 struct futex_q *this, *next;
2049 u32 uval;
2050 struct plist_head *head;
2051 union futex_key key = FUTEX_KEY_INIT;
2052 int ret;
2054 retry:
2055 if (get_user(uval, uaddr))
2056 return -EFAULT;
2058 * We release only a lock we actually own:
2060 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
2061 return -EPERM;
2063 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key);
2064 if (unlikely(ret != 0))
2065 goto out;
2067 hb = hash_futex(&key);
2068 spin_lock(&hb->lock);
2071 * To avoid races, try to do the TID -> 0 atomic transition
2072 * again. If it succeeds then we can return without waking
2073 * anyone else up:
2075 if (!(uval & FUTEX_OWNER_DIED))
2076 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
2079 if (unlikely(uval == -EFAULT))
2080 goto pi_faulted;
2082 * Rare case: we managed to release the lock atomically,
2083 * no need to wake anyone else up:
2085 if (unlikely(uval == task_pid_vnr(current)))
2086 goto out_unlock;
2089 * Ok, other tasks may need to be woken up - check waiters
2090 * and do the wakeup if necessary:
2092 head = &hb->chain;
2094 plist_for_each_entry_safe(this, next, head, list) {
2095 if (!match_futex (&this->key, &key))
2096 continue;
2097 ret = wake_futex_pi(uaddr, uval, this);
2099 * The atomic access to the futex value
2100 * generated a pagefault, so retry the
2101 * user-access and the wakeup:
2103 if (ret == -EFAULT)
2104 goto pi_faulted;
2105 goto out_unlock;
2108 * No waiters - kernel unlocks the futex:
2110 if (!(uval & FUTEX_OWNER_DIED)) {
2111 ret = unlock_futex_pi(uaddr, uval);
2112 if (ret == -EFAULT)
2113 goto pi_faulted;
2116 out_unlock:
2117 spin_unlock(&hb->lock);
2118 put_futex_key(&key);
2120 out:
2121 return ret;
2123 pi_faulted:
2124 spin_unlock(&hb->lock);
2125 put_futex_key(&key);
2127 ret = fault_in_user_writeable(uaddr);
2128 if (!ret)
2129 goto retry;
2131 return ret;
2135 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2136 * @hb: the hash_bucket futex_q was original enqueued on
2137 * @q: the futex_q woken while waiting to be requeued
2138 * @key2: the futex_key of the requeue target futex
2139 * @timeout: the timeout associated with the wait (NULL if none)
2141 * Detect if the task was woken on the initial futex as opposed to the requeue
2142 * target futex. If so, determine if it was a timeout or a signal that caused
2143 * the wakeup and return the appropriate error code to the caller. Must be
2144 * called with the hb lock held.
2146 * Returns
2147 * 0 - no early wakeup detected
2148 * <0 - -ETIMEDOUT or -ERESTARTNOINTR
2150 static inline
2151 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2152 struct futex_q *q, union futex_key *key2,
2153 struct hrtimer_sleeper *timeout)
2155 int ret = 0;
2158 * With the hb lock held, we avoid races while we process the wakeup.
2159 * We only need to hold hb (and not hb2) to ensure atomicity as the
2160 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2161 * It can't be requeued from uaddr2 to something else since we don't
2162 * support a PI aware source futex for requeue.
2164 if (!match_futex(&q->key, key2)) {
2165 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2167 * We were woken prior to requeue by a timeout or a signal.
2168 * Unqueue the futex_q and determine which it was.
2170 plist_del(&q->list, &q->list.plist);
2172 /* Handle spurious wakeups gracefully */
2173 ret = -EWOULDBLOCK;
2174 if (timeout && !timeout->task)
2175 ret = -ETIMEDOUT;
2176 else if (signal_pending(current))
2177 ret = -ERESTARTNOINTR;
2179 return ret;
2183 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2184 * @uaddr: the futex we initially wait on (non-pi)
2185 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2186 * the same type, no requeueing from private to shared, etc.
2187 * @val: the expected value of uaddr
2188 * @abs_time: absolute timeout
2189 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
2190 * @clockrt: whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
2191 * @uaddr2: the pi futex we will take prior to returning to user-space
2193 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2194 * uaddr2 which must be PI aware. Normal wakeup will wake on uaddr2 and
2195 * complete the acquisition of the rt_mutex prior to returning to userspace.
2196 * This ensures the rt_mutex maintains an owner when it has waiters; without
2197 * one, the pi logic wouldn't know which task to boost/deboost, if there was a
2198 * need to.
2200 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2201 * via the following:
2202 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2203 * 2) wakeup on uaddr2 after a requeue
2204 * 3) signal
2205 * 4) timeout
2207 * If 3, cleanup and return -ERESTARTNOINTR.
2209 * If 2, we may then block on trying to take the rt_mutex and return via:
2210 * 5) successful lock
2211 * 6) signal
2212 * 7) timeout
2213 * 8) other lock acquisition failure
2215 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2217 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2219 * Returns:
2220 * 0 - On success
2221 * <0 - On error
2223 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2224 u32 val, ktime_t *abs_time, u32 bitset,
2225 u32 __user *uaddr2)
2227 struct hrtimer_sleeper timeout, *to = NULL;
2228 struct rt_mutex_waiter rt_waiter;
2229 struct rt_mutex *pi_mutex = NULL;
2230 struct futex_hash_bucket *hb;
2231 union futex_key key2 = FUTEX_KEY_INIT;
2232 struct futex_q q = futex_q_init;
2233 int res, ret;
2235 if (!bitset)
2236 return -EINVAL;
2238 if (abs_time) {
2239 to = &timeout;
2240 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2241 CLOCK_REALTIME : CLOCK_MONOTONIC,
2242 HRTIMER_MODE_ABS);
2243 hrtimer_init_sleeper(to, current);
2244 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2245 current->timer_slack_ns);
2249 * The waiter is allocated on our stack, manipulated by the requeue
2250 * code while we sleep on uaddr.
2252 debug_rt_mutex_init_waiter(&rt_waiter);
2253 rt_waiter.task = NULL;
2255 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2);
2256 if (unlikely(ret != 0))
2257 goto out;
2259 q.bitset = bitset;
2260 q.rt_waiter = &rt_waiter;
2261 q.requeue_pi_key = &key2;
2264 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2265 * count.
2267 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2268 if (ret)
2269 goto out_key2;
2271 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2272 futex_wait_queue_me(hb, &q, to);
2274 spin_lock(&hb->lock);
2275 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2276 spin_unlock(&hb->lock);
2277 if (ret)
2278 goto out_put_keys;
2281 * In order for us to be here, we know our q.key == key2, and since
2282 * we took the hb->lock above, we also know that futex_requeue() has
2283 * completed and we no longer have to concern ourselves with a wakeup
2284 * race with the atomic proxy lock acquisition by the requeue code. The
2285 * futex_requeue dropped our key1 reference and incremented our key2
2286 * reference count.
2289 /* Check if the requeue code acquired the second futex for us. */
2290 if (!q.rt_waiter) {
2292 * Got the lock. We might not be the anticipated owner if we
2293 * did a lock-steal - fix up the PI-state in that case.
2295 if (q.pi_state && (q.pi_state->owner != current)) {
2296 spin_lock(q.lock_ptr);
2297 ret = fixup_pi_state_owner(uaddr2, &q, current);
2298 spin_unlock(q.lock_ptr);
2300 } else {
2302 * We have been woken up by futex_unlock_pi(), a timeout, or a
2303 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2304 * the pi_state.
2306 WARN_ON(!&q.pi_state);
2307 pi_mutex = &q.pi_state->pi_mutex;
2308 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2309 debug_rt_mutex_free_waiter(&rt_waiter);
2311 spin_lock(q.lock_ptr);
2313 * Fixup the pi_state owner and possibly acquire the lock if we
2314 * haven't already.
2316 res = fixup_owner(uaddr2, &q, !ret);
2318 * If fixup_owner() returned an error, proprogate that. If it
2319 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2321 if (res)
2322 ret = (res < 0) ? res : 0;
2324 /* Unqueue and drop the lock. */
2325 unqueue_me_pi(&q);
2329 * If fixup_pi_state_owner() faulted and was unable to handle the
2330 * fault, unlock the rt_mutex and return the fault to userspace.
2332 if (ret == -EFAULT) {
2333 if (rt_mutex_owner(pi_mutex) == current)
2334 rt_mutex_unlock(pi_mutex);
2335 } else if (ret == -EINTR) {
2337 * We've already been requeued, but cannot restart by calling
2338 * futex_lock_pi() directly. We could restart this syscall, but
2339 * it would detect that the user space "val" changed and return
2340 * -EWOULDBLOCK. Save the overhead of the restart and return
2341 * -EWOULDBLOCK directly.
2343 ret = -EWOULDBLOCK;
2346 out_put_keys:
2347 put_futex_key(&q.key);
2348 out_key2:
2349 put_futex_key(&key2);
2351 out:
2352 if (to) {
2353 hrtimer_cancel(&to->timer);
2354 destroy_hrtimer_on_stack(&to->timer);
2356 return ret;
2360 * Support for robust futexes: the kernel cleans up held futexes at
2361 * thread exit time.
2363 * Implementation: user-space maintains a per-thread list of locks it
2364 * is holding. Upon do_exit(), the kernel carefully walks this list,
2365 * and marks all locks that are owned by this thread with the
2366 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2367 * always manipulated with the lock held, so the list is private and
2368 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2369 * field, to allow the kernel to clean up if the thread dies after
2370 * acquiring the lock, but just before it could have added itself to
2371 * the list. There can only be one such pending lock.
2375 * sys_set_robust_list() - Set the robust-futex list head of a task
2376 * @head: pointer to the list-head
2377 * @len: length of the list-head, as userspace expects
2379 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2380 size_t, len)
2382 if (!futex_cmpxchg_enabled)
2383 return -ENOSYS;
2385 * The kernel knows only one size for now:
2387 if (unlikely(len != sizeof(*head)))
2388 return -EINVAL;
2390 current->robust_list = head;
2392 return 0;
2396 * sys_get_robust_list() - Get the robust-futex list head of a task
2397 * @pid: pid of the process [zero for current task]
2398 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2399 * @len_ptr: pointer to a length field, the kernel fills in the header size
2401 SYSCALL_DEFINE3(get_robust_list, int, pid,
2402 struct robust_list_head __user * __user *, head_ptr,
2403 size_t __user *, len_ptr)
2405 struct robust_list_head __user *head;
2406 unsigned long ret;
2407 const struct cred *cred = current_cred(), *pcred;
2409 if (!futex_cmpxchg_enabled)
2410 return -ENOSYS;
2412 if (!pid)
2413 head = current->robust_list;
2414 else {
2415 struct task_struct *p;
2417 ret = -ESRCH;
2418 rcu_read_lock();
2419 p = find_task_by_vpid(pid);
2420 if (!p)
2421 goto err_unlock;
2422 ret = -EPERM;
2423 pcred = __task_cred(p);
2424 if (cred->euid != pcred->euid &&
2425 cred->euid != pcred->uid &&
2426 !capable(CAP_SYS_PTRACE))
2427 goto err_unlock;
2428 head = p->robust_list;
2429 rcu_read_unlock();
2432 if (put_user(sizeof(*head), len_ptr))
2433 return -EFAULT;
2434 return put_user(head, head_ptr);
2436 err_unlock:
2437 rcu_read_unlock();
2439 return ret;
2443 * Process a futex-list entry, check whether it's owned by the
2444 * dying task, and do notification if so:
2446 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2448 u32 uval, nval, mval;
2450 retry:
2451 if (get_user(uval, uaddr))
2452 return -1;
2454 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2456 * Ok, this dying thread is truly holding a futex
2457 * of interest. Set the OWNER_DIED bit atomically
2458 * via cmpxchg, and if the value had FUTEX_WAITERS
2459 * set, wake up a waiter (if any). (We have to do a
2460 * futex_wake() even if OWNER_DIED is already set -
2461 * to handle the rare but possible case of recursive
2462 * thread-death.) The rest of the cleanup is done in
2463 * userspace.
2465 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2466 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
2468 if (nval == -EFAULT)
2469 return -1;
2471 if (nval != uval)
2472 goto retry;
2475 * Wake robust non-PI futexes here. The wakeup of
2476 * PI futexes happens in exit_pi_state():
2478 if (!pi && (uval & FUTEX_WAITERS))
2479 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2481 return 0;
2485 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2487 static inline int fetch_robust_entry(struct robust_list __user **entry,
2488 struct robust_list __user * __user *head,
2489 unsigned int *pi)
2491 unsigned long uentry;
2493 if (get_user(uentry, (unsigned long __user *)head))
2494 return -EFAULT;
2496 *entry = (void __user *)(uentry & ~1UL);
2497 *pi = uentry & 1;
2499 return 0;
2503 * Walk curr->robust_list (very carefully, it's a userspace list!)
2504 * and mark any locks found there dead, and notify any waiters.
2506 * We silently return on any sign of list-walking problem.
2508 void exit_robust_list(struct task_struct *curr)
2510 struct robust_list_head __user *head = curr->robust_list;
2511 struct robust_list __user *entry, *next_entry, *pending;
2512 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2513 unsigned int uninitialized_var(next_pi);
2514 unsigned long futex_offset;
2515 int rc;
2517 if (!futex_cmpxchg_enabled)
2518 return;
2521 * Fetch the list head (which was registered earlier, via
2522 * sys_set_robust_list()):
2524 if (fetch_robust_entry(&entry, &head->list.next, &pi))
2525 return;
2527 * Fetch the relative futex offset:
2529 if (get_user(futex_offset, &head->futex_offset))
2530 return;
2532 * Fetch any possibly pending lock-add first, and handle it
2533 * if it exists:
2535 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2536 return;
2538 next_entry = NULL; /* avoid warning with gcc */
2539 while (entry != &head->list) {
2541 * Fetch the next entry in the list before calling
2542 * handle_futex_death:
2544 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2546 * A pending lock might already be on the list, so
2547 * don't process it twice:
2549 if (entry != pending)
2550 if (handle_futex_death((void __user *)entry + futex_offset,
2551 curr, pi))
2552 return;
2553 if (rc)
2554 return;
2555 entry = next_entry;
2556 pi = next_pi;
2558 * Avoid excessively long or circular lists:
2560 if (!--limit)
2561 break;
2563 cond_resched();
2566 if (pending)
2567 handle_futex_death((void __user *)pending + futex_offset,
2568 curr, pip);
2571 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2572 u32 __user *uaddr2, u32 val2, u32 val3)
2574 int ret = -ENOSYS, cmd = op & FUTEX_CMD_MASK;
2575 unsigned int flags = 0;
2577 if (!(op & FUTEX_PRIVATE_FLAG))
2578 flags |= FLAGS_SHARED;
2580 if (op & FUTEX_CLOCK_REALTIME) {
2581 flags |= FLAGS_CLOCKRT;
2582 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2583 return -ENOSYS;
2586 switch (cmd) {
2587 case FUTEX_WAIT:
2588 val3 = FUTEX_BITSET_MATCH_ANY;
2589 case FUTEX_WAIT_BITSET:
2590 ret = futex_wait(uaddr, flags, val, timeout, val3);
2591 break;
2592 case FUTEX_WAKE:
2593 val3 = FUTEX_BITSET_MATCH_ANY;
2594 case FUTEX_WAKE_BITSET:
2595 ret = futex_wake(uaddr, flags, val, val3);
2596 break;
2597 case FUTEX_REQUEUE:
2598 ret = futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2599 break;
2600 case FUTEX_CMP_REQUEUE:
2601 ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2602 break;
2603 case FUTEX_WAKE_OP:
2604 ret = futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2605 break;
2606 case FUTEX_LOCK_PI:
2607 if (futex_cmpxchg_enabled)
2608 ret = futex_lock_pi(uaddr, flags, val, timeout, 0);
2609 break;
2610 case FUTEX_UNLOCK_PI:
2611 if (futex_cmpxchg_enabled)
2612 ret = futex_unlock_pi(uaddr, flags);
2613 break;
2614 case FUTEX_TRYLOCK_PI:
2615 if (futex_cmpxchg_enabled)
2616 ret = futex_lock_pi(uaddr, flags, 0, timeout, 1);
2617 break;
2618 case FUTEX_WAIT_REQUEUE_PI:
2619 val3 = FUTEX_BITSET_MATCH_ANY;
2620 ret = futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2621 uaddr2);
2622 break;
2623 case FUTEX_CMP_REQUEUE_PI:
2624 ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2625 break;
2626 default:
2627 ret = -ENOSYS;
2629 return ret;
2633 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2634 struct timespec __user *, utime, u32 __user *, uaddr2,
2635 u32, val3)
2637 struct timespec ts;
2638 ktime_t t, *tp = NULL;
2639 u32 val2 = 0;
2640 int cmd = op & FUTEX_CMD_MASK;
2642 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2643 cmd == FUTEX_WAIT_BITSET ||
2644 cmd == FUTEX_WAIT_REQUEUE_PI)) {
2645 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2646 return -EFAULT;
2647 if (!timespec_valid(&ts))
2648 return -EINVAL;
2650 t = timespec_to_ktime(ts);
2651 if (cmd == FUTEX_WAIT)
2652 t = ktime_add_safe(ktime_get(), t);
2653 tp = &t;
2656 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2657 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2659 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2660 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2661 val2 = (u32) (unsigned long) utime;
2663 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2666 static int __init futex_init(void)
2668 u32 curval;
2669 int i;
2672 * This will fail and we want it. Some arch implementations do
2673 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2674 * functionality. We want to know that before we call in any
2675 * of the complex code paths. Also we want to prevent
2676 * registration of robust lists in that case. NULL is
2677 * guaranteed to fault and we get -EFAULT on functional
2678 * implementation, the non-functional ones will return
2679 * -ENOSYS.
2681 curval = cmpxchg_futex_value_locked(NULL, 0, 0);
2682 if (curval == -EFAULT)
2683 futex_cmpxchg_enabled = 1;
2685 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2686 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2687 spin_lock_init(&futex_queues[i].lock);
2690 return 0;
2692 __initcall(futex_init);