firewire: ohci: flush AT contexts after bus reset for OHCI 1.2
[firewire-audio.git] / drivers / firewire / ohci.c
blob3372cd187c258d766033b3feb9d672693c15cdec
1 /*
2 * Driver for OHCI 1394 controllers
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/bitops.h>
22 #include <linux/bug.h>
23 #include <linux/compiler.h>
24 #include <linux/delay.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firewire.h>
28 #include <linux/firewire-constants.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/io.h>
32 #include <linux/kernel.h>
33 #include <linux/list.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mutex.h>
38 #include <linux/pci.h>
39 #include <linux/pci_ids.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/time.h>
44 #include <linux/vmalloc.h>
46 #include <asm/byteorder.h>
47 #include <asm/page.h>
48 #include <asm/system.h>
50 #ifdef CONFIG_PPC_PMAC
51 #include <asm/pmac_feature.h>
52 #endif
54 #include "core.h"
55 #include "ohci.h"
57 #define DESCRIPTOR_OUTPUT_MORE 0
58 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
59 #define DESCRIPTOR_INPUT_MORE (2 << 12)
60 #define DESCRIPTOR_INPUT_LAST (3 << 12)
61 #define DESCRIPTOR_STATUS (1 << 11)
62 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
63 #define DESCRIPTOR_PING (1 << 7)
64 #define DESCRIPTOR_YY (1 << 6)
65 #define DESCRIPTOR_NO_IRQ (0 << 4)
66 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
67 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
68 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
69 #define DESCRIPTOR_WAIT (3 << 0)
71 struct descriptor {
72 __le16 req_count;
73 __le16 control;
74 __le32 data_address;
75 __le32 branch_address;
76 __le16 res_count;
77 __le16 transfer_status;
78 } __attribute__((aligned(16)));
80 #define CONTROL_SET(regs) (regs)
81 #define CONTROL_CLEAR(regs) ((regs) + 4)
82 #define COMMAND_PTR(regs) ((regs) + 12)
83 #define CONTEXT_MATCH(regs) ((regs) + 16)
85 #define AR_BUFFER_SIZE (32*1024)
86 #define AR_BUFFERS_MIN DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
87 /* we need at least two pages for proper list management */
88 #define AR_BUFFERS (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
90 #define MAX_ASYNC_PAYLOAD 4096
91 #define MAX_AR_PACKET_SIZE (16 + MAX_ASYNC_PAYLOAD + 4)
92 #define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
94 struct ar_context {
95 struct fw_ohci *ohci;
96 struct page *pages[AR_BUFFERS];
97 void *buffer;
98 struct descriptor *descriptors;
99 dma_addr_t descriptors_bus;
100 void *pointer;
101 unsigned int last_buffer_index;
102 u32 regs;
103 struct tasklet_struct tasklet;
106 struct context;
108 typedef int (*descriptor_callback_t)(struct context *ctx,
109 struct descriptor *d,
110 struct descriptor *last);
113 * A buffer that contains a block of DMA-able coherent memory used for
114 * storing a portion of a DMA descriptor program.
116 struct descriptor_buffer {
117 struct list_head list;
118 dma_addr_t buffer_bus;
119 size_t buffer_size;
120 size_t used;
121 struct descriptor buffer[0];
124 struct context {
125 struct fw_ohci *ohci;
126 u32 regs;
127 int total_allocation;
128 bool flushing;
131 * List of page-sized buffers for storing DMA descriptors.
132 * Head of list contains buffers in use and tail of list contains
133 * free buffers.
135 struct list_head buffer_list;
138 * Pointer to a buffer inside buffer_list that contains the tail
139 * end of the current DMA program.
141 struct descriptor_buffer *buffer_tail;
144 * The descriptor containing the branch address of the first
145 * descriptor that has not yet been filled by the device.
147 struct descriptor *last;
150 * The last descriptor in the DMA program. It contains the branch
151 * address that must be updated upon appending a new descriptor.
153 struct descriptor *prev;
155 descriptor_callback_t callback;
157 struct tasklet_struct tasklet;
158 bool active;
161 #define IT_HEADER_SY(v) ((v) << 0)
162 #define IT_HEADER_TCODE(v) ((v) << 4)
163 #define IT_HEADER_CHANNEL(v) ((v) << 8)
164 #define IT_HEADER_TAG(v) ((v) << 14)
165 #define IT_HEADER_SPEED(v) ((v) << 16)
166 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
168 struct iso_context {
169 struct fw_iso_context base;
170 struct context context;
171 int excess_bytes;
172 void *header;
173 size_t header_length;
175 u8 sync;
176 u8 tags;
179 #define CONFIG_ROM_SIZE 1024
181 struct fw_ohci {
182 struct fw_card card;
184 __iomem char *registers;
185 int node_id;
186 int generation;
187 int request_generation; /* for timestamping incoming requests */
188 unsigned quirks;
189 unsigned int pri_req_max;
190 u32 bus_time;
191 bool is_root;
192 bool csr_state_setclear_abdicate;
193 int n_ir;
194 int n_it;
196 * Spinlock for accessing fw_ohci data. Never call out of
197 * this driver with this lock held.
199 spinlock_t lock;
201 struct mutex phy_reg_mutex;
203 void *misc_buffer;
204 dma_addr_t misc_buffer_bus;
206 struct ar_context ar_request_ctx;
207 struct ar_context ar_response_ctx;
208 struct context at_request_ctx;
209 struct context at_response_ctx;
211 u32 it_context_mask; /* unoccupied IT contexts */
212 struct iso_context *it_context_list;
213 u64 ir_context_channels; /* unoccupied channels */
214 u32 ir_context_mask; /* unoccupied IR contexts */
215 struct iso_context *ir_context_list;
216 u64 mc_channels; /* channels in use by the multichannel IR context */
217 bool mc_allocated;
219 __be32 *config_rom;
220 dma_addr_t config_rom_bus;
221 __be32 *next_config_rom;
222 dma_addr_t next_config_rom_bus;
223 __be32 next_header;
225 __le32 *self_id_cpu;
226 dma_addr_t self_id_bus;
227 struct tasklet_struct bus_reset_tasklet;
229 u32 self_id_buffer[512];
232 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
234 return container_of(card, struct fw_ohci, card);
237 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
238 #define IR_CONTEXT_BUFFER_FILL 0x80000000
239 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
240 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
241 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
242 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
244 #define CONTEXT_RUN 0x8000
245 #define CONTEXT_WAKE 0x1000
246 #define CONTEXT_DEAD 0x0800
247 #define CONTEXT_ACTIVE 0x0400
249 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
250 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
251 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
253 #define OHCI1394_REGISTER_SIZE 0x800
254 #define OHCI_LOOP_COUNT 500
255 #define OHCI1394_PCI_HCI_Control 0x40
256 #define SELF_ID_BUF_SIZE 0x800
257 #define OHCI_TCODE_PHY_PACKET 0x0e
258 #define OHCI_VERSION_1_1 0x010010
260 static char ohci_driver_name[] = KBUILD_MODNAME;
262 #define PCI_DEVICE_ID_AGERE_FW643 0x5901
263 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
264 #define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
266 #define QUIRK_CYCLE_TIMER 1
267 #define QUIRK_RESET_PACKET 2
268 #define QUIRK_BE_HEADERS 4
269 #define QUIRK_NO_1394A 8
270 #define QUIRK_NO_MSI 16
272 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
273 static const struct {
274 unsigned short vendor, device, revision, flags;
275 } ohci_quirks[] = {
276 {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
277 QUIRK_CYCLE_TIMER},
279 {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
280 QUIRK_BE_HEADERS},
282 {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
283 QUIRK_NO_MSI},
285 {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
286 QUIRK_NO_MSI},
288 {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
289 QUIRK_CYCLE_TIMER},
291 {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
292 QUIRK_CYCLE_TIMER},
294 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
295 QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
297 {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
298 QUIRK_RESET_PACKET},
300 {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
301 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
304 /* This overrides anything that was found in ohci_quirks[]. */
305 static int param_quirks;
306 module_param_named(quirks, param_quirks, int, 0644);
307 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
308 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER)
309 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET)
310 ", AR/selfID endianess = " __stringify(QUIRK_BE_HEADERS)
311 ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A)
312 ", disable MSI = " __stringify(QUIRK_NO_MSI)
313 ")");
315 #define OHCI_PARAM_DEBUG_AT_AR 1
316 #define OHCI_PARAM_DEBUG_SELFIDS 2
317 #define OHCI_PARAM_DEBUG_IRQS 4
318 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
320 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
322 static int param_debug;
323 module_param_named(debug, param_debug, int, 0644);
324 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
325 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR)
326 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS)
327 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS)
328 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
329 ", or a combination, or all = -1)");
331 static void log_irqs(u32 evt)
333 if (likely(!(param_debug &
334 (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
335 return;
337 if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
338 !(evt & OHCI1394_busReset))
339 return;
341 fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
342 evt & OHCI1394_selfIDComplete ? " selfID" : "",
343 evt & OHCI1394_RQPkt ? " AR_req" : "",
344 evt & OHCI1394_RSPkt ? " AR_resp" : "",
345 evt & OHCI1394_reqTxComplete ? " AT_req" : "",
346 evt & OHCI1394_respTxComplete ? " AT_resp" : "",
347 evt & OHCI1394_isochRx ? " IR" : "",
348 evt & OHCI1394_isochTx ? " IT" : "",
349 evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "",
350 evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "",
351 evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "",
352 evt & OHCI1394_cycleInconsistent ? " cycleInconsistent" : "",
353 evt & OHCI1394_regAccessFail ? " regAccessFail" : "",
354 evt & OHCI1394_busReset ? " busReset" : "",
355 evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
356 OHCI1394_RSPkt | OHCI1394_reqTxComplete |
357 OHCI1394_respTxComplete | OHCI1394_isochRx |
358 OHCI1394_isochTx | OHCI1394_postedWriteErr |
359 OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
360 OHCI1394_cycleInconsistent |
361 OHCI1394_regAccessFail | OHCI1394_busReset)
362 ? " ?" : "");
365 static const char *speed[] = {
366 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
368 static const char *power[] = {
369 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
370 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
372 static const char port[] = { '.', '-', 'p', 'c', };
374 static char _p(u32 *s, int shift)
376 return port[*s >> shift & 3];
379 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
381 if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
382 return;
384 fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
385 self_id_count, generation, node_id);
387 for (; self_id_count--; ++s)
388 if ((*s & 1 << 23) == 0)
389 fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
390 "%s gc=%d %s %s%s%s\n",
391 *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
392 speed[*s >> 14 & 3], *s >> 16 & 63,
393 power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
394 *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
395 else
396 fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
397 *s, *s >> 24 & 63,
398 _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
399 _p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2));
402 static const char *evts[] = {
403 [0x00] = "evt_no_status", [0x01] = "-reserved-",
404 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
405 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
406 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
407 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
408 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
409 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
410 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
411 [0x10] = "-reserved-", [0x11] = "ack_complete",
412 [0x12] = "ack_pending ", [0x13] = "-reserved-",
413 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
414 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
415 [0x18] = "-reserved-", [0x19] = "-reserved-",
416 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
417 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
418 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
419 [0x20] = "pending/cancelled",
421 static const char *tcodes[] = {
422 [0x0] = "QW req", [0x1] = "BW req",
423 [0x2] = "W resp", [0x3] = "-reserved-",
424 [0x4] = "QR req", [0x5] = "BR req",
425 [0x6] = "QR resp", [0x7] = "BR resp",
426 [0x8] = "cycle start", [0x9] = "Lk req",
427 [0xa] = "async stream packet", [0xb] = "Lk resp",
428 [0xc] = "-reserved-", [0xd] = "-reserved-",
429 [0xe] = "link internal", [0xf] = "-reserved-",
432 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
434 int tcode = header[0] >> 4 & 0xf;
435 char specific[12];
437 if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
438 return;
440 if (unlikely(evt >= ARRAY_SIZE(evts)))
441 evt = 0x1f;
443 if (evt == OHCI1394_evt_bus_reset) {
444 fw_notify("A%c evt_bus_reset, generation %d\n",
445 dir, (header[2] >> 16) & 0xff);
446 return;
449 switch (tcode) {
450 case 0x0: case 0x6: case 0x8:
451 snprintf(specific, sizeof(specific), " = %08x",
452 be32_to_cpu((__force __be32)header[3]));
453 break;
454 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
455 snprintf(specific, sizeof(specific), " %x,%x",
456 header[3] >> 16, header[3] & 0xffff);
457 break;
458 default:
459 specific[0] = '\0';
462 switch (tcode) {
463 case 0xa:
464 fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
465 break;
466 case 0xe:
467 fw_notify("A%c %s, PHY %08x %08x\n",
468 dir, evts[evt], header[1], header[2]);
469 break;
470 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
471 fw_notify("A%c spd %x tl %02x, "
472 "%04x -> %04x, %s, "
473 "%s, %04x%08x%s\n",
474 dir, speed, header[0] >> 10 & 0x3f,
475 header[1] >> 16, header[0] >> 16, evts[evt],
476 tcodes[tcode], header[1] & 0xffff, header[2], specific);
477 break;
478 default:
479 fw_notify("A%c spd %x tl %02x, "
480 "%04x -> %04x, %s, "
481 "%s%s\n",
482 dir, speed, header[0] >> 10 & 0x3f,
483 header[1] >> 16, header[0] >> 16, evts[evt],
484 tcodes[tcode], specific);
488 #else
490 #define param_debug 0
491 static inline void log_irqs(u32 evt) {}
492 static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
493 static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
495 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
497 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
499 writel(data, ohci->registers + offset);
502 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
504 return readl(ohci->registers + offset);
507 static inline void flush_writes(const struct fw_ohci *ohci)
509 /* Do a dummy read to flush writes. */
510 reg_read(ohci, OHCI1394_Version);
513 static int read_phy_reg(struct fw_ohci *ohci, int addr)
515 u32 val;
516 int i;
518 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
519 for (i = 0; i < 3 + 100; i++) {
520 val = reg_read(ohci, OHCI1394_PhyControl);
521 if (val & OHCI1394_PhyControl_ReadDone)
522 return OHCI1394_PhyControl_ReadData(val);
525 * Try a few times without waiting. Sleeping is necessary
526 * only when the link/PHY interface is busy.
528 if (i >= 3)
529 msleep(1);
531 fw_error("failed to read phy reg\n");
533 return -EBUSY;
536 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
538 int i;
540 reg_write(ohci, OHCI1394_PhyControl,
541 OHCI1394_PhyControl_Write(addr, val));
542 for (i = 0; i < 3 + 100; i++) {
543 val = reg_read(ohci, OHCI1394_PhyControl);
544 if (!(val & OHCI1394_PhyControl_WritePending))
545 return 0;
547 if (i >= 3)
548 msleep(1);
550 fw_error("failed to write phy reg\n");
552 return -EBUSY;
555 static int update_phy_reg(struct fw_ohci *ohci, int addr,
556 int clear_bits, int set_bits)
558 int ret = read_phy_reg(ohci, addr);
559 if (ret < 0)
560 return ret;
563 * The interrupt status bits are cleared by writing a one bit.
564 * Avoid clearing them unless explicitly requested in set_bits.
566 if (addr == 5)
567 clear_bits |= PHY_INT_STATUS_BITS;
569 return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
572 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
574 int ret;
576 ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
577 if (ret < 0)
578 return ret;
580 return read_phy_reg(ohci, addr);
583 static int ohci_read_phy_reg(struct fw_card *card, int addr)
585 struct fw_ohci *ohci = fw_ohci(card);
586 int ret;
588 mutex_lock(&ohci->phy_reg_mutex);
589 ret = read_phy_reg(ohci, addr);
590 mutex_unlock(&ohci->phy_reg_mutex);
592 return ret;
595 static int ohci_update_phy_reg(struct fw_card *card, int addr,
596 int clear_bits, int set_bits)
598 struct fw_ohci *ohci = fw_ohci(card);
599 int ret;
601 mutex_lock(&ohci->phy_reg_mutex);
602 ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
603 mutex_unlock(&ohci->phy_reg_mutex);
605 return ret;
608 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
610 return page_private(ctx->pages[i]);
613 static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
615 struct descriptor *d;
617 d = &ctx->descriptors[index];
618 d->branch_address &= cpu_to_le32(~0xf);
619 d->res_count = cpu_to_le16(PAGE_SIZE);
620 d->transfer_status = 0;
622 wmb(); /* finish init of new descriptors before branch_address update */
623 d = &ctx->descriptors[ctx->last_buffer_index];
624 d->branch_address |= cpu_to_le32(1);
626 ctx->last_buffer_index = index;
628 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
629 flush_writes(ctx->ohci);
632 static void ar_context_release(struct ar_context *ctx)
634 unsigned int i;
636 if (ctx->buffer)
637 vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
639 for (i = 0; i < AR_BUFFERS; i++)
640 if (ctx->pages[i]) {
641 dma_unmap_page(ctx->ohci->card.device,
642 ar_buffer_bus(ctx, i),
643 PAGE_SIZE, DMA_FROM_DEVICE);
644 __free_page(ctx->pages[i]);
648 static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
650 if (reg_read(ctx->ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
651 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
652 flush_writes(ctx->ohci);
654 fw_error("AR error: %s; DMA stopped\n", error_msg);
656 /* FIXME: restart? */
659 static inline unsigned int ar_next_buffer_index(unsigned int index)
661 return (index + 1) % AR_BUFFERS;
664 static inline unsigned int ar_prev_buffer_index(unsigned int index)
666 return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
669 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
671 return ar_next_buffer_index(ctx->last_buffer_index);
675 * We search for the buffer that contains the last AR packet DMA data written
676 * by the controller.
678 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
679 unsigned int *buffer_offset)
681 unsigned int i, next_i, last = ctx->last_buffer_index;
682 __le16 res_count, next_res_count;
684 i = ar_first_buffer_index(ctx);
685 res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);
687 /* A buffer that is not yet completely filled must be the last one. */
688 while (i != last && res_count == 0) {
690 /* Peek at the next descriptor. */
691 next_i = ar_next_buffer_index(i);
692 rmb(); /* read descriptors in order */
693 next_res_count = ACCESS_ONCE(
694 ctx->descriptors[next_i].res_count);
696 * If the next descriptor is still empty, we must stop at this
697 * descriptor.
699 if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
701 * The exception is when the DMA data for one packet is
702 * split over three buffers; in this case, the middle
703 * buffer's descriptor might be never updated by the
704 * controller and look still empty, and we have to peek
705 * at the third one.
707 if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
708 next_i = ar_next_buffer_index(next_i);
709 rmb();
710 next_res_count = ACCESS_ONCE(
711 ctx->descriptors[next_i].res_count);
712 if (next_res_count != cpu_to_le16(PAGE_SIZE))
713 goto next_buffer_is_active;
716 break;
719 next_buffer_is_active:
720 i = next_i;
721 res_count = next_res_count;
724 rmb(); /* read res_count before the DMA data */
726 *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
727 if (*buffer_offset > PAGE_SIZE) {
728 *buffer_offset = 0;
729 ar_context_abort(ctx, "corrupted descriptor");
732 return i;
735 static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
736 unsigned int end_buffer_index,
737 unsigned int end_buffer_offset)
739 unsigned int i;
741 i = ar_first_buffer_index(ctx);
742 while (i != end_buffer_index) {
743 dma_sync_single_for_cpu(ctx->ohci->card.device,
744 ar_buffer_bus(ctx, i),
745 PAGE_SIZE, DMA_FROM_DEVICE);
746 i = ar_next_buffer_index(i);
748 if (end_buffer_offset > 0)
749 dma_sync_single_for_cpu(ctx->ohci->card.device,
750 ar_buffer_bus(ctx, i),
751 end_buffer_offset, DMA_FROM_DEVICE);
754 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
755 #define cond_le32_to_cpu(v) \
756 (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
757 #else
758 #define cond_le32_to_cpu(v) le32_to_cpu(v)
759 #endif
761 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
763 struct fw_ohci *ohci = ctx->ohci;
764 struct fw_packet p;
765 u32 status, length, tcode;
766 int evt;
768 p.header[0] = cond_le32_to_cpu(buffer[0]);
769 p.header[1] = cond_le32_to_cpu(buffer[1]);
770 p.header[2] = cond_le32_to_cpu(buffer[2]);
772 tcode = (p.header[0] >> 4) & 0x0f;
773 switch (tcode) {
774 case TCODE_WRITE_QUADLET_REQUEST:
775 case TCODE_READ_QUADLET_RESPONSE:
776 p.header[3] = (__force __u32) buffer[3];
777 p.header_length = 16;
778 p.payload_length = 0;
779 break;
781 case TCODE_READ_BLOCK_REQUEST :
782 p.header[3] = cond_le32_to_cpu(buffer[3]);
783 p.header_length = 16;
784 p.payload_length = 0;
785 break;
787 case TCODE_WRITE_BLOCK_REQUEST:
788 case TCODE_READ_BLOCK_RESPONSE:
789 case TCODE_LOCK_REQUEST:
790 case TCODE_LOCK_RESPONSE:
791 p.header[3] = cond_le32_to_cpu(buffer[3]);
792 p.header_length = 16;
793 p.payload_length = p.header[3] >> 16;
794 if (p.payload_length > MAX_ASYNC_PAYLOAD) {
795 ar_context_abort(ctx, "invalid packet length");
796 return NULL;
798 break;
800 case TCODE_WRITE_RESPONSE:
801 case TCODE_READ_QUADLET_REQUEST:
802 case OHCI_TCODE_PHY_PACKET:
803 p.header_length = 12;
804 p.payload_length = 0;
805 break;
807 default:
808 ar_context_abort(ctx, "invalid tcode");
809 return NULL;
812 p.payload = (void *) buffer + p.header_length;
814 /* FIXME: What to do about evt_* errors? */
815 length = (p.header_length + p.payload_length + 3) / 4;
816 status = cond_le32_to_cpu(buffer[length]);
817 evt = (status >> 16) & 0x1f;
819 p.ack = evt - 16;
820 p.speed = (status >> 21) & 0x7;
821 p.timestamp = status & 0xffff;
822 p.generation = ohci->request_generation;
824 log_ar_at_event('R', p.speed, p.header, evt);
827 * Several controllers, notably from NEC and VIA, forget to
828 * write ack_complete status at PHY packet reception.
830 if (evt == OHCI1394_evt_no_status &&
831 (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
832 p.ack = ACK_COMPLETE;
835 * The OHCI bus reset handler synthesizes a PHY packet with
836 * the new generation number when a bus reset happens (see
837 * section 8.4.2.3). This helps us determine when a request
838 * was received and make sure we send the response in the same
839 * generation. We only need this for requests; for responses
840 * we use the unique tlabel for finding the matching
841 * request.
843 * Alas some chips sometimes emit bus reset packets with a
844 * wrong generation. We set the correct generation for these
845 * at a slightly incorrect time (in bus_reset_tasklet).
847 if (evt == OHCI1394_evt_bus_reset) {
848 if (!(ohci->quirks & QUIRK_RESET_PACKET))
849 ohci->request_generation = (p.header[2] >> 16) & 0xff;
850 } else if (ctx == &ohci->ar_request_ctx) {
851 fw_core_handle_request(&ohci->card, &p);
852 } else {
853 fw_core_handle_response(&ohci->card, &p);
856 return buffer + length + 1;
859 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
861 void *next;
863 while (p < end) {
864 next = handle_ar_packet(ctx, p);
865 if (!next)
866 return p;
867 p = next;
870 return p;
873 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
875 unsigned int i;
877 i = ar_first_buffer_index(ctx);
878 while (i != end_buffer) {
879 dma_sync_single_for_device(ctx->ohci->card.device,
880 ar_buffer_bus(ctx, i),
881 PAGE_SIZE, DMA_FROM_DEVICE);
882 ar_context_link_page(ctx, i);
883 i = ar_next_buffer_index(i);
887 static void ar_context_tasklet(unsigned long data)
889 struct ar_context *ctx = (struct ar_context *)data;
890 unsigned int end_buffer_index, end_buffer_offset;
891 void *p, *end;
893 p = ctx->pointer;
894 if (!p)
895 return;
897 end_buffer_index = ar_search_last_active_buffer(ctx,
898 &end_buffer_offset);
899 ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
900 end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
902 if (end_buffer_index < ar_first_buffer_index(ctx)) {
904 * The filled part of the overall buffer wraps around; handle
905 * all packets up to the buffer end here. If the last packet
906 * wraps around, its tail will be visible after the buffer end
907 * because the buffer start pages are mapped there again.
909 void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
910 p = handle_ar_packets(ctx, p, buffer_end);
911 if (p < buffer_end)
912 goto error;
913 /* adjust p to point back into the actual buffer */
914 p -= AR_BUFFERS * PAGE_SIZE;
917 p = handle_ar_packets(ctx, p, end);
918 if (p != end) {
919 if (p > end)
920 ar_context_abort(ctx, "inconsistent descriptor");
921 goto error;
924 ctx->pointer = p;
925 ar_recycle_buffers(ctx, end_buffer_index);
927 return;
929 error:
930 ctx->pointer = NULL;
933 static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
934 unsigned int descriptors_offset, u32 regs)
936 unsigned int i;
937 dma_addr_t dma_addr;
938 struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
939 struct descriptor *d;
941 ctx->regs = regs;
942 ctx->ohci = ohci;
943 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
945 for (i = 0; i < AR_BUFFERS; i++) {
946 ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
947 if (!ctx->pages[i])
948 goto out_of_memory;
949 dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
950 0, PAGE_SIZE, DMA_FROM_DEVICE);
951 if (dma_mapping_error(ohci->card.device, dma_addr)) {
952 __free_page(ctx->pages[i]);
953 ctx->pages[i] = NULL;
954 goto out_of_memory;
956 set_page_private(ctx->pages[i], dma_addr);
959 for (i = 0; i < AR_BUFFERS; i++)
960 pages[i] = ctx->pages[i];
961 for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
962 pages[AR_BUFFERS + i] = ctx->pages[i];
963 ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
964 -1, PAGE_KERNEL_RO);
965 if (!ctx->buffer)
966 goto out_of_memory;
968 ctx->descriptors = ohci->misc_buffer + descriptors_offset;
969 ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
971 for (i = 0; i < AR_BUFFERS; i++) {
972 d = &ctx->descriptors[i];
973 d->req_count = cpu_to_le16(PAGE_SIZE);
974 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
975 DESCRIPTOR_STATUS |
976 DESCRIPTOR_BRANCH_ALWAYS);
977 d->data_address = cpu_to_le32(ar_buffer_bus(ctx, i));
978 d->branch_address = cpu_to_le32(ctx->descriptors_bus +
979 ar_next_buffer_index(i) * sizeof(struct descriptor));
982 return 0;
984 out_of_memory:
985 ar_context_release(ctx);
987 return -ENOMEM;
990 static void ar_context_run(struct ar_context *ctx)
992 unsigned int i;
994 for (i = 0; i < AR_BUFFERS; i++)
995 ar_context_link_page(ctx, i);
997 ctx->pointer = ctx->buffer;
999 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1000 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1001 flush_writes(ctx->ohci);
1004 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1006 int b, key;
1008 b = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
1009 key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
1011 /* figure out which descriptor the branch address goes in */
1012 if (z == 2 && (b == 3 || key == 2))
1013 return d;
1014 else
1015 return d + z - 1;
1018 static void context_tasklet(unsigned long data)
1020 struct context *ctx = (struct context *) data;
1021 struct descriptor *d, *last;
1022 u32 address;
1023 int z;
1024 struct descriptor_buffer *desc;
1026 desc = list_entry(ctx->buffer_list.next,
1027 struct descriptor_buffer, list);
1028 last = ctx->last;
1029 while (last->branch_address != 0) {
1030 struct descriptor_buffer *old_desc = desc;
1031 address = le32_to_cpu(last->branch_address);
1032 z = address & 0xf;
1033 address &= ~0xf;
1035 /* If the branch address points to a buffer outside of the
1036 * current buffer, advance to the next buffer. */
1037 if (address < desc->buffer_bus ||
1038 address >= desc->buffer_bus + desc->used)
1039 desc = list_entry(desc->list.next,
1040 struct descriptor_buffer, list);
1041 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1042 last = find_branch_descriptor(d, z);
1044 if (!ctx->callback(ctx, d, last))
1045 break;
1047 if (old_desc != desc) {
1048 /* If we've advanced to the next buffer, move the
1049 * previous buffer to the free list. */
1050 unsigned long flags;
1051 old_desc->used = 0;
1052 spin_lock_irqsave(&ctx->ohci->lock, flags);
1053 list_move_tail(&old_desc->list, &ctx->buffer_list);
1054 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1056 ctx->last = last;
1061 * Allocate a new buffer and add it to the list of free buffers for this
1062 * context. Must be called with ohci->lock held.
1064 static int context_add_buffer(struct context *ctx)
1066 struct descriptor_buffer *desc;
1067 dma_addr_t uninitialized_var(bus_addr);
1068 int offset;
1071 * 16MB of descriptors should be far more than enough for any DMA
1072 * program. This will catch run-away userspace or DoS attacks.
1074 if (ctx->total_allocation >= 16*1024*1024)
1075 return -ENOMEM;
1077 desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1078 &bus_addr, GFP_ATOMIC);
1079 if (!desc)
1080 return -ENOMEM;
1082 offset = (void *)&desc->buffer - (void *)desc;
1083 desc->buffer_size = PAGE_SIZE - offset;
1084 desc->buffer_bus = bus_addr + offset;
1085 desc->used = 0;
1087 list_add_tail(&desc->list, &ctx->buffer_list);
1088 ctx->total_allocation += PAGE_SIZE;
1090 return 0;
1093 static int context_init(struct context *ctx, struct fw_ohci *ohci,
1094 u32 regs, descriptor_callback_t callback)
1096 ctx->ohci = ohci;
1097 ctx->regs = regs;
1098 ctx->total_allocation = 0;
1100 INIT_LIST_HEAD(&ctx->buffer_list);
1101 if (context_add_buffer(ctx) < 0)
1102 return -ENOMEM;
1104 ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1105 struct descriptor_buffer, list);
1107 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1108 ctx->callback = callback;
1111 * We put a dummy descriptor in the buffer that has a NULL
1112 * branch address and looks like it's been sent. That way we
1113 * have a descriptor to append DMA programs to.
1115 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1116 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1117 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1118 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1119 ctx->last = ctx->buffer_tail->buffer;
1120 ctx->prev = ctx->buffer_tail->buffer;
1122 return 0;
1125 static void context_release(struct context *ctx)
1127 struct fw_card *card = &ctx->ohci->card;
1128 struct descriptor_buffer *desc, *tmp;
1130 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1131 dma_free_coherent(card->device, PAGE_SIZE, desc,
1132 desc->buffer_bus -
1133 ((void *)&desc->buffer - (void *)desc));
1136 /* Must be called with ohci->lock held */
1137 static struct descriptor *context_get_descriptors(struct context *ctx,
1138 int z, dma_addr_t *d_bus)
1140 struct descriptor *d = NULL;
1141 struct descriptor_buffer *desc = ctx->buffer_tail;
1143 if (z * sizeof(*d) > desc->buffer_size)
1144 return NULL;
1146 if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1147 /* No room for the descriptor in this buffer, so advance to the
1148 * next one. */
1150 if (desc->list.next == &ctx->buffer_list) {
1151 /* If there is no free buffer next in the list,
1152 * allocate one. */
1153 if (context_add_buffer(ctx) < 0)
1154 return NULL;
1156 desc = list_entry(desc->list.next,
1157 struct descriptor_buffer, list);
1158 ctx->buffer_tail = desc;
1161 d = desc->buffer + desc->used / sizeof(*d);
1162 memset(d, 0, z * sizeof(*d));
1163 *d_bus = desc->buffer_bus + desc->used;
1165 return d;
1168 static void context_run(struct context *ctx, u32 extra)
1170 struct fw_ohci *ohci = ctx->ohci;
1171 ctx->active = true;
1173 reg_write(ohci, COMMAND_PTR(ctx->regs),
1174 le32_to_cpu(ctx->last->branch_address));
1175 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1176 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1177 flush_writes(ohci);
1180 static void context_append(struct context *ctx,
1181 struct descriptor *d, int z, int extra)
1183 dma_addr_t d_bus;
1184 struct descriptor_buffer *desc = ctx->buffer_tail;
1186 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1188 desc->used += (z + extra) * sizeof(*d);
1190 wmb(); /* finish init of new descriptors before branch_address update */
1191 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1192 ctx->prev = find_branch_descriptor(d, z);
1194 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1195 flush_writes(ctx->ohci);
1198 static void context_stop(struct context *ctx)
1200 u32 reg;
1201 int i;
1203 ctx->active = false;
1204 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1205 flush_writes(ctx->ohci);
1207 for (i = 0; i < 10; i++) {
1208 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1209 if ((reg & CONTEXT_ACTIVE) == 0)
1210 return;
1212 mdelay(1);
1214 fw_error("Error: DMA context still active (0x%08x)\n", reg);
1217 struct driver_data {
1218 struct fw_packet *packet;
1222 * This function apppends a packet to the DMA queue for transmission.
1223 * Must always be called with the ochi->lock held to ensure proper
1224 * generation handling and locking around packet queue manipulation.
1226 static int at_context_queue_packet(struct context *ctx,
1227 struct fw_packet *packet)
1229 struct fw_ohci *ohci = ctx->ohci;
1230 dma_addr_t d_bus, uninitialized_var(payload_bus);
1231 struct driver_data *driver_data;
1232 struct descriptor *d, *last;
1233 __le32 *header;
1234 int z, tcode;
1235 u32 reg;
1237 d = context_get_descriptors(ctx, 4, &d_bus);
1238 if (d == NULL) {
1239 packet->ack = RCODE_SEND_ERROR;
1240 return -1;
1243 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1244 d[0].res_count = cpu_to_le16(packet->timestamp);
1247 * The DMA format for asyncronous link packets is different
1248 * from the IEEE1394 layout, so shift the fields around
1249 * accordingly.
1252 tcode = (packet->header[0] >> 4) & 0x0f;
1253 header = (__le32 *) &d[1];
1254 switch (tcode) {
1255 case TCODE_WRITE_QUADLET_REQUEST:
1256 case TCODE_WRITE_BLOCK_REQUEST:
1257 case TCODE_WRITE_RESPONSE:
1258 case TCODE_READ_QUADLET_REQUEST:
1259 case TCODE_READ_BLOCK_REQUEST:
1260 case TCODE_READ_QUADLET_RESPONSE:
1261 case TCODE_READ_BLOCK_RESPONSE:
1262 case TCODE_LOCK_REQUEST:
1263 case TCODE_LOCK_RESPONSE:
1264 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1265 (packet->speed << 16));
1266 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1267 (packet->header[0] & 0xffff0000));
1268 header[2] = cpu_to_le32(packet->header[2]);
1270 if (TCODE_IS_BLOCK_PACKET(tcode))
1271 header[3] = cpu_to_le32(packet->header[3]);
1272 else
1273 header[3] = (__force __le32) packet->header[3];
1275 d[0].req_count = cpu_to_le16(packet->header_length);
1276 break;
1278 case TCODE_LINK_INTERNAL:
1279 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1280 (packet->speed << 16));
1281 header[1] = cpu_to_le32(packet->header[1]);
1282 header[2] = cpu_to_le32(packet->header[2]);
1283 d[0].req_count = cpu_to_le16(12);
1285 if (is_ping_packet(&packet->header[1]))
1286 d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1287 break;
1289 case TCODE_STREAM_DATA:
1290 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1291 (packet->speed << 16));
1292 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1293 d[0].req_count = cpu_to_le16(8);
1294 break;
1296 default:
1297 /* BUG(); */
1298 packet->ack = RCODE_SEND_ERROR;
1299 return -1;
1302 driver_data = (struct driver_data *) &d[3];
1303 driver_data->packet = packet;
1304 packet->driver_data = driver_data;
1306 if (packet->payload_length > 0) {
1307 payload_bus =
1308 dma_map_single(ohci->card.device, packet->payload,
1309 packet->payload_length, DMA_TO_DEVICE);
1310 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1311 packet->ack = RCODE_SEND_ERROR;
1312 return -1;
1314 packet->payload_bus = payload_bus;
1315 packet->payload_mapped = true;
1317 d[2].req_count = cpu_to_le16(packet->payload_length);
1318 d[2].data_address = cpu_to_le32(payload_bus);
1319 last = &d[2];
1320 z = 3;
1321 } else {
1322 last = &d[0];
1323 z = 2;
1326 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1327 DESCRIPTOR_IRQ_ALWAYS |
1328 DESCRIPTOR_BRANCH_ALWAYS);
1331 * If the controller and packet generations don't match, we need to
1332 * bail out and try again. If IntEvent.busReset is set, the AT context
1333 * is halted, so appending to the context and trying to run it is
1334 * futile. Most controllers do the right thing and just flush the AT
1335 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
1336 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
1337 * up stalling out. So we just bail out in software and try again
1338 * later, and everyone is happy.
1339 * FIXME: Document how the locking works.
1341 if (ohci->generation != packet->generation ||
1342 reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1343 if (packet->payload_mapped)
1344 dma_unmap_single(ohci->card.device, payload_bus,
1345 packet->payload_length, DMA_TO_DEVICE);
1346 packet->ack = RCODE_GENERATION;
1347 return -1;
1350 context_append(ctx, d, z, 4 - z);
1352 /* If the context isn't already running, start it up. */
1353 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1354 if ((reg & CONTEXT_RUN) == 0)
1355 context_run(ctx, 0);
1357 return 0;
1360 static void at_context_flush(struct context *ctx)
1362 tasklet_disable(&ctx->tasklet);
1364 ctx->flushing = true;
1365 context_tasklet((unsigned long)ctx);
1366 ctx->flushing = false;
1368 tasklet_enable(&ctx->tasklet);
1371 static int handle_at_packet(struct context *context,
1372 struct descriptor *d,
1373 struct descriptor *last)
1375 struct driver_data *driver_data;
1376 struct fw_packet *packet;
1377 struct fw_ohci *ohci = context->ohci;
1378 int evt;
1380 if (last->transfer_status == 0 && !context->flushing)
1381 /* This descriptor isn't done yet, stop iteration. */
1382 return 0;
1384 driver_data = (struct driver_data *) &d[3];
1385 packet = driver_data->packet;
1386 if (packet == NULL)
1387 /* This packet was cancelled, just continue. */
1388 return 1;
1390 if (packet->payload_mapped)
1391 dma_unmap_single(ohci->card.device, packet->payload_bus,
1392 packet->payload_length, DMA_TO_DEVICE);
1394 evt = le16_to_cpu(last->transfer_status) & 0x1f;
1395 packet->timestamp = le16_to_cpu(last->res_count);
1397 log_ar_at_event('T', packet->speed, packet->header, evt);
1399 switch (evt) {
1400 case OHCI1394_evt_timeout:
1401 /* Async response transmit timed out. */
1402 packet->ack = RCODE_CANCELLED;
1403 break;
1405 case OHCI1394_evt_flushed:
1407 * The packet was flushed should give same error as
1408 * when we try to use a stale generation count.
1410 packet->ack = RCODE_GENERATION;
1411 break;
1413 case OHCI1394_evt_missing_ack:
1414 if (context->flushing)
1415 packet->ack = RCODE_GENERATION;
1416 else {
1418 * Using a valid (current) generation count, but the
1419 * node is not on the bus or not sending acks.
1421 packet->ack = RCODE_NO_ACK;
1423 break;
1425 case ACK_COMPLETE + 0x10:
1426 case ACK_PENDING + 0x10:
1427 case ACK_BUSY_X + 0x10:
1428 case ACK_BUSY_A + 0x10:
1429 case ACK_BUSY_B + 0x10:
1430 case ACK_DATA_ERROR + 0x10:
1431 case ACK_TYPE_ERROR + 0x10:
1432 packet->ack = evt - 0x10;
1433 break;
1435 case OHCI1394_evt_no_status:
1436 if (context->flushing) {
1437 packet->ack = RCODE_GENERATION;
1438 break;
1440 /* fall through */
1442 default:
1443 packet->ack = RCODE_SEND_ERROR;
1444 break;
1447 packet->callback(packet, &ohci->card, packet->ack);
1449 return 1;
1452 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1453 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1454 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1455 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1456 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1458 static void handle_local_rom(struct fw_ohci *ohci,
1459 struct fw_packet *packet, u32 csr)
1461 struct fw_packet response;
1462 int tcode, length, i;
1464 tcode = HEADER_GET_TCODE(packet->header[0]);
1465 if (TCODE_IS_BLOCK_PACKET(tcode))
1466 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1467 else
1468 length = 4;
1470 i = csr - CSR_CONFIG_ROM;
1471 if (i + length > CONFIG_ROM_SIZE) {
1472 fw_fill_response(&response, packet->header,
1473 RCODE_ADDRESS_ERROR, NULL, 0);
1474 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1475 fw_fill_response(&response, packet->header,
1476 RCODE_TYPE_ERROR, NULL, 0);
1477 } else {
1478 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1479 (void *) ohci->config_rom + i, length);
1482 fw_core_handle_response(&ohci->card, &response);
1485 static void handle_local_lock(struct fw_ohci *ohci,
1486 struct fw_packet *packet, u32 csr)
1488 struct fw_packet response;
1489 int tcode, length, ext_tcode, sel, try;
1490 __be32 *payload, lock_old;
1491 u32 lock_arg, lock_data;
1493 tcode = HEADER_GET_TCODE(packet->header[0]);
1494 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1495 payload = packet->payload;
1496 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1498 if (tcode == TCODE_LOCK_REQUEST &&
1499 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1500 lock_arg = be32_to_cpu(payload[0]);
1501 lock_data = be32_to_cpu(payload[1]);
1502 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1503 lock_arg = 0;
1504 lock_data = 0;
1505 } else {
1506 fw_fill_response(&response, packet->header,
1507 RCODE_TYPE_ERROR, NULL, 0);
1508 goto out;
1511 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1512 reg_write(ohci, OHCI1394_CSRData, lock_data);
1513 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1514 reg_write(ohci, OHCI1394_CSRControl, sel);
1516 for (try = 0; try < 20; try++)
1517 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1518 lock_old = cpu_to_be32(reg_read(ohci,
1519 OHCI1394_CSRData));
1520 fw_fill_response(&response, packet->header,
1521 RCODE_COMPLETE,
1522 &lock_old, sizeof(lock_old));
1523 goto out;
1526 fw_error("swap not done (CSR lock timeout)\n");
1527 fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1529 out:
1530 fw_core_handle_response(&ohci->card, &response);
1533 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1535 u64 offset, csr;
1537 if (ctx == &ctx->ohci->at_request_ctx) {
1538 packet->ack = ACK_PENDING;
1539 packet->callback(packet, &ctx->ohci->card, packet->ack);
1542 offset =
1543 ((unsigned long long)
1544 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1545 packet->header[2];
1546 csr = offset - CSR_REGISTER_BASE;
1548 /* Handle config rom reads. */
1549 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1550 handle_local_rom(ctx->ohci, packet, csr);
1551 else switch (csr) {
1552 case CSR_BUS_MANAGER_ID:
1553 case CSR_BANDWIDTH_AVAILABLE:
1554 case CSR_CHANNELS_AVAILABLE_HI:
1555 case CSR_CHANNELS_AVAILABLE_LO:
1556 handle_local_lock(ctx->ohci, packet, csr);
1557 break;
1558 default:
1559 if (ctx == &ctx->ohci->at_request_ctx)
1560 fw_core_handle_request(&ctx->ohci->card, packet);
1561 else
1562 fw_core_handle_response(&ctx->ohci->card, packet);
1563 break;
1566 if (ctx == &ctx->ohci->at_response_ctx) {
1567 packet->ack = ACK_COMPLETE;
1568 packet->callback(packet, &ctx->ohci->card, packet->ack);
1572 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1574 unsigned long flags;
1575 int ret;
1577 spin_lock_irqsave(&ctx->ohci->lock, flags);
1579 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1580 ctx->ohci->generation == packet->generation) {
1581 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1582 handle_local_request(ctx, packet);
1583 return;
1586 ret = at_context_queue_packet(ctx, packet);
1587 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1589 if (ret < 0)
1590 packet->callback(packet, &ctx->ohci->card, packet->ack);
1594 static u32 cycle_timer_ticks(u32 cycle_timer)
1596 u32 ticks;
1598 ticks = cycle_timer & 0xfff;
1599 ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1600 ticks += (3072 * 8000) * (cycle_timer >> 25);
1602 return ticks;
1606 * Some controllers exhibit one or more of the following bugs when updating the
1607 * iso cycle timer register:
1608 * - When the lowest six bits are wrapping around to zero, a read that happens
1609 * at the same time will return garbage in the lowest ten bits.
1610 * - When the cycleOffset field wraps around to zero, the cycleCount field is
1611 * not incremented for about 60 ns.
1612 * - Occasionally, the entire register reads zero.
1614 * To catch these, we read the register three times and ensure that the
1615 * difference between each two consecutive reads is approximately the same, i.e.
1616 * less than twice the other. Furthermore, any negative difference indicates an
1617 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1618 * execute, so we have enough precision to compute the ratio of the differences.)
1620 static u32 get_cycle_time(struct fw_ohci *ohci)
1622 u32 c0, c1, c2;
1623 u32 t0, t1, t2;
1624 s32 diff01, diff12;
1625 int i;
1627 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1629 if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1630 i = 0;
1631 c1 = c2;
1632 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1633 do {
1634 c0 = c1;
1635 c1 = c2;
1636 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1637 t0 = cycle_timer_ticks(c0);
1638 t1 = cycle_timer_ticks(c1);
1639 t2 = cycle_timer_ticks(c2);
1640 diff01 = t1 - t0;
1641 diff12 = t2 - t1;
1642 } while ((diff01 <= 0 || diff12 <= 0 ||
1643 diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1644 && i++ < 20);
1647 return c2;
1651 * This function has to be called at least every 64 seconds. The bus_time
1652 * field stores not only the upper 25 bits of the BUS_TIME register but also
1653 * the most significant bit of the cycle timer in bit 6 so that we can detect
1654 * changes in this bit.
1656 static u32 update_bus_time(struct fw_ohci *ohci)
1658 u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1660 if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1661 ohci->bus_time += 0x40;
1663 return ohci->bus_time | cycle_time_seconds;
1666 static void bus_reset_tasklet(unsigned long data)
1668 struct fw_ohci *ohci = (struct fw_ohci *)data;
1669 int self_id_count, i, j, reg;
1670 int generation, new_generation;
1671 unsigned long flags;
1672 void *free_rom = NULL;
1673 dma_addr_t free_rom_bus = 0;
1674 bool is_new_root;
1676 reg = reg_read(ohci, OHCI1394_NodeID);
1677 if (!(reg & OHCI1394_NodeID_idValid)) {
1678 fw_notify("node ID not valid, new bus reset in progress\n");
1679 return;
1681 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1682 fw_notify("malconfigured bus\n");
1683 return;
1685 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1686 OHCI1394_NodeID_nodeNumber);
1688 is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1689 if (!(ohci->is_root && is_new_root))
1690 reg_write(ohci, OHCI1394_LinkControlSet,
1691 OHCI1394_LinkControl_cycleMaster);
1692 ohci->is_root = is_new_root;
1694 reg = reg_read(ohci, OHCI1394_SelfIDCount);
1695 if (reg & OHCI1394_SelfIDCount_selfIDError) {
1696 fw_notify("inconsistent self IDs\n");
1697 return;
1700 * The count in the SelfIDCount register is the number of
1701 * bytes in the self ID receive buffer. Since we also receive
1702 * the inverted quadlets and a header quadlet, we shift one
1703 * bit extra to get the actual number of self IDs.
1705 self_id_count = (reg >> 3) & 0xff;
1706 if (self_id_count == 0 || self_id_count > 252) {
1707 fw_notify("inconsistent self IDs\n");
1708 return;
1710 generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1711 rmb();
1713 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1714 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1715 fw_notify("inconsistent self IDs\n");
1716 return;
1718 ohci->self_id_buffer[j] =
1719 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1721 rmb();
1724 * Check the consistency of the self IDs we just read. The
1725 * problem we face is that a new bus reset can start while we
1726 * read out the self IDs from the DMA buffer. If this happens,
1727 * the DMA buffer will be overwritten with new self IDs and we
1728 * will read out inconsistent data. The OHCI specification
1729 * (section 11.2) recommends a technique similar to
1730 * linux/seqlock.h, where we remember the generation of the
1731 * self IDs in the buffer before reading them out and compare
1732 * it to the current generation after reading them out. If
1733 * the two generations match we know we have a consistent set
1734 * of self IDs.
1737 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1738 if (new_generation != generation) {
1739 fw_notify("recursive bus reset detected, "
1740 "discarding self ids\n");
1741 return;
1744 /* FIXME: Document how the locking works. */
1745 spin_lock_irqsave(&ohci->lock, flags);
1747 ohci->generation = -1; /* prevent AT packet queueing */
1748 context_stop(&ohci->at_request_ctx);
1749 context_stop(&ohci->at_response_ctx);
1751 spin_unlock_irqrestore(&ohci->lock, flags);
1753 at_context_flush(&ohci->at_request_ctx);
1754 at_context_flush(&ohci->at_response_ctx);
1756 spin_lock_irqsave(&ohci->lock, flags);
1758 ohci->generation = generation;
1759 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1761 if (ohci->quirks & QUIRK_RESET_PACKET)
1762 ohci->request_generation = generation;
1765 * This next bit is unrelated to the AT context stuff but we
1766 * have to do it under the spinlock also. If a new config rom
1767 * was set up before this reset, the old one is now no longer
1768 * in use and we can free it. Update the config rom pointers
1769 * to point to the current config rom and clear the
1770 * next_config_rom pointer so a new update can take place.
1773 if (ohci->next_config_rom != NULL) {
1774 if (ohci->next_config_rom != ohci->config_rom) {
1775 free_rom = ohci->config_rom;
1776 free_rom_bus = ohci->config_rom_bus;
1778 ohci->config_rom = ohci->next_config_rom;
1779 ohci->config_rom_bus = ohci->next_config_rom_bus;
1780 ohci->next_config_rom = NULL;
1783 * Restore config_rom image and manually update
1784 * config_rom registers. Writing the header quadlet
1785 * will indicate that the config rom is ready, so we
1786 * do that last.
1788 reg_write(ohci, OHCI1394_BusOptions,
1789 be32_to_cpu(ohci->config_rom[2]));
1790 ohci->config_rom[0] = ohci->next_header;
1791 reg_write(ohci, OHCI1394_ConfigROMhdr,
1792 be32_to_cpu(ohci->next_header));
1795 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1796 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1797 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1798 #endif
1800 spin_unlock_irqrestore(&ohci->lock, flags);
1802 if (free_rom)
1803 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1804 free_rom, free_rom_bus);
1806 log_selfids(ohci->node_id, generation,
1807 self_id_count, ohci->self_id_buffer);
1809 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1810 self_id_count, ohci->self_id_buffer,
1811 ohci->csr_state_setclear_abdicate);
1812 ohci->csr_state_setclear_abdicate = false;
1815 static irqreturn_t irq_handler(int irq, void *data)
1817 struct fw_ohci *ohci = data;
1818 u32 event, iso_event;
1819 int i;
1821 event = reg_read(ohci, OHCI1394_IntEventClear);
1823 if (!event || !~event)
1824 return IRQ_NONE;
1827 * busReset and postedWriteErr must not be cleared yet
1828 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
1830 reg_write(ohci, OHCI1394_IntEventClear,
1831 event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
1832 log_irqs(event);
1834 if (event & OHCI1394_selfIDComplete)
1835 tasklet_schedule(&ohci->bus_reset_tasklet);
1837 if (event & OHCI1394_RQPkt)
1838 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1840 if (event & OHCI1394_RSPkt)
1841 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1843 if (event & OHCI1394_reqTxComplete)
1844 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1846 if (event & OHCI1394_respTxComplete)
1847 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1849 if (event & OHCI1394_isochRx) {
1850 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1851 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1853 while (iso_event) {
1854 i = ffs(iso_event) - 1;
1855 tasklet_schedule(
1856 &ohci->ir_context_list[i].context.tasklet);
1857 iso_event &= ~(1 << i);
1861 if (event & OHCI1394_isochTx) {
1862 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1863 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1865 while (iso_event) {
1866 i = ffs(iso_event) - 1;
1867 tasklet_schedule(
1868 &ohci->it_context_list[i].context.tasklet);
1869 iso_event &= ~(1 << i);
1873 if (unlikely(event & OHCI1394_regAccessFail))
1874 fw_error("Register access failure - "
1875 "please notify linux1394-devel@lists.sf.net\n");
1877 if (unlikely(event & OHCI1394_postedWriteErr)) {
1878 reg_read(ohci, OHCI1394_PostedWriteAddressHi);
1879 reg_read(ohci, OHCI1394_PostedWriteAddressLo);
1880 reg_write(ohci, OHCI1394_IntEventClear,
1881 OHCI1394_postedWriteErr);
1882 fw_error("PCI posted write error\n");
1885 if (unlikely(event & OHCI1394_cycleTooLong)) {
1886 if (printk_ratelimit())
1887 fw_notify("isochronous cycle too long\n");
1888 reg_write(ohci, OHCI1394_LinkControlSet,
1889 OHCI1394_LinkControl_cycleMaster);
1892 if (unlikely(event & OHCI1394_cycleInconsistent)) {
1894 * We need to clear this event bit in order to make
1895 * cycleMatch isochronous I/O work. In theory we should
1896 * stop active cycleMatch iso contexts now and restart
1897 * them at least two cycles later. (FIXME?)
1899 if (printk_ratelimit())
1900 fw_notify("isochronous cycle inconsistent\n");
1903 if (event & OHCI1394_cycle64Seconds) {
1904 spin_lock(&ohci->lock);
1905 update_bus_time(ohci);
1906 spin_unlock(&ohci->lock);
1907 } else
1908 flush_writes(ohci);
1910 return IRQ_HANDLED;
1913 static int software_reset(struct fw_ohci *ohci)
1915 int i;
1917 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1919 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1920 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1921 OHCI1394_HCControl_softReset) == 0)
1922 return 0;
1923 msleep(1);
1926 return -EBUSY;
1929 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
1931 size_t size = length * 4;
1933 memcpy(dest, src, size);
1934 if (size < CONFIG_ROM_SIZE)
1935 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
1938 static int configure_1394a_enhancements(struct fw_ohci *ohci)
1940 bool enable_1394a;
1941 int ret, clear, set, offset;
1943 /* Check if the driver should configure link and PHY. */
1944 if (!(reg_read(ohci, OHCI1394_HCControlSet) &
1945 OHCI1394_HCControl_programPhyEnable))
1946 return 0;
1948 /* Paranoia: check whether the PHY supports 1394a, too. */
1949 enable_1394a = false;
1950 ret = read_phy_reg(ohci, 2);
1951 if (ret < 0)
1952 return ret;
1953 if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
1954 ret = read_paged_phy_reg(ohci, 1, 8);
1955 if (ret < 0)
1956 return ret;
1957 if (ret >= 1)
1958 enable_1394a = true;
1961 if (ohci->quirks & QUIRK_NO_1394A)
1962 enable_1394a = false;
1964 /* Configure PHY and link consistently. */
1965 if (enable_1394a) {
1966 clear = 0;
1967 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1968 } else {
1969 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1970 set = 0;
1972 ret = update_phy_reg(ohci, 5, clear, set);
1973 if (ret < 0)
1974 return ret;
1976 if (enable_1394a)
1977 offset = OHCI1394_HCControlSet;
1978 else
1979 offset = OHCI1394_HCControlClear;
1980 reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
1982 /* Clean up: configuration has been taken care of. */
1983 reg_write(ohci, OHCI1394_HCControlClear,
1984 OHCI1394_HCControl_programPhyEnable);
1986 return 0;
1989 static int ohci_enable(struct fw_card *card,
1990 const __be32 *config_rom, size_t length)
1992 struct fw_ohci *ohci = fw_ohci(card);
1993 struct pci_dev *dev = to_pci_dev(card->device);
1994 u32 lps, seconds, version, irqs;
1995 int i, ret;
1997 if (software_reset(ohci)) {
1998 fw_error("Failed to reset ohci card.\n");
1999 return -EBUSY;
2003 * Now enable LPS, which we need in order to start accessing
2004 * most of the registers. In fact, on some cards (ALI M5251),
2005 * accessing registers in the SClk domain without LPS enabled
2006 * will lock up the machine. Wait 50msec to make sure we have
2007 * full link enabled. However, with some cards (well, at least
2008 * a JMicron PCIe card), we have to try again sometimes.
2010 reg_write(ohci, OHCI1394_HCControlSet,
2011 OHCI1394_HCControl_LPS |
2012 OHCI1394_HCControl_postedWriteEnable);
2013 flush_writes(ohci);
2015 for (lps = 0, i = 0; !lps && i < 3; i++) {
2016 msleep(50);
2017 lps = reg_read(ohci, OHCI1394_HCControlSet) &
2018 OHCI1394_HCControl_LPS;
2021 if (!lps) {
2022 fw_error("Failed to set Link Power Status\n");
2023 return -EIO;
2026 reg_write(ohci, OHCI1394_HCControlClear,
2027 OHCI1394_HCControl_noByteSwapData);
2029 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2030 reg_write(ohci, OHCI1394_LinkControlSet,
2031 OHCI1394_LinkControl_rcvSelfID |
2032 OHCI1394_LinkControl_rcvPhyPkt |
2033 OHCI1394_LinkControl_cycleTimerEnable |
2034 OHCI1394_LinkControl_cycleMaster);
2036 reg_write(ohci, OHCI1394_ATRetries,
2037 OHCI1394_MAX_AT_REQ_RETRIES |
2038 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2039 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2040 (200 << 16));
2042 seconds = lower_32_bits(get_seconds());
2043 reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
2044 ohci->bus_time = seconds & ~0x3f;
2046 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2047 if (version >= OHCI_VERSION_1_1) {
2048 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2049 0xfffffffe);
2050 card->broadcast_channel_auto_allocated = true;
2053 /* Get implemented bits of the priority arbitration request counter. */
2054 reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2055 ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2056 reg_write(ohci, OHCI1394_FairnessControl, 0);
2057 card->priority_budget_implemented = ohci->pri_req_max != 0;
2059 ar_context_run(&ohci->ar_request_ctx);
2060 ar_context_run(&ohci->ar_response_ctx);
2062 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
2063 reg_write(ohci, OHCI1394_IntEventClear, ~0);
2064 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2066 ret = configure_1394a_enhancements(ohci);
2067 if (ret < 0)
2068 return ret;
2070 /* Activate link_on bit and contender bit in our self ID packets.*/
2071 ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2072 if (ret < 0)
2073 return ret;
2076 * When the link is not yet enabled, the atomic config rom
2077 * update mechanism described below in ohci_set_config_rom()
2078 * is not active. We have to update ConfigRomHeader and
2079 * BusOptions manually, and the write to ConfigROMmap takes
2080 * effect immediately. We tie this to the enabling of the
2081 * link, so we have a valid config rom before enabling - the
2082 * OHCI requires that ConfigROMhdr and BusOptions have valid
2083 * values before enabling.
2085 * However, when the ConfigROMmap is written, some controllers
2086 * always read back quadlets 0 and 2 from the config rom to
2087 * the ConfigRomHeader and BusOptions registers on bus reset.
2088 * They shouldn't do that in this initial case where the link
2089 * isn't enabled. This means we have to use the same
2090 * workaround here, setting the bus header to 0 and then write
2091 * the right values in the bus reset tasklet.
2094 if (config_rom) {
2095 ohci->next_config_rom =
2096 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2097 &ohci->next_config_rom_bus,
2098 GFP_KERNEL);
2099 if (ohci->next_config_rom == NULL)
2100 return -ENOMEM;
2102 copy_config_rom(ohci->next_config_rom, config_rom, length);
2103 } else {
2105 * In the suspend case, config_rom is NULL, which
2106 * means that we just reuse the old config rom.
2108 ohci->next_config_rom = ohci->config_rom;
2109 ohci->next_config_rom_bus = ohci->config_rom_bus;
2112 ohci->next_header = ohci->next_config_rom[0];
2113 ohci->next_config_rom[0] = 0;
2114 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2115 reg_write(ohci, OHCI1394_BusOptions,
2116 be32_to_cpu(ohci->next_config_rom[2]));
2117 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2119 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2121 if (!(ohci->quirks & QUIRK_NO_MSI))
2122 pci_enable_msi(dev);
2123 if (request_irq(dev->irq, irq_handler,
2124 pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
2125 ohci_driver_name, ohci)) {
2126 fw_error("Failed to allocate interrupt %d.\n", dev->irq);
2127 pci_disable_msi(dev);
2128 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2129 ohci->config_rom, ohci->config_rom_bus);
2130 return -EIO;
2133 irqs = OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2134 OHCI1394_RQPkt | OHCI1394_RSPkt |
2135 OHCI1394_isochTx | OHCI1394_isochRx |
2136 OHCI1394_postedWriteErr |
2137 OHCI1394_selfIDComplete |
2138 OHCI1394_regAccessFail |
2139 OHCI1394_cycle64Seconds |
2140 OHCI1394_cycleInconsistent | OHCI1394_cycleTooLong |
2141 OHCI1394_masterIntEnable;
2142 if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2143 irqs |= OHCI1394_busReset;
2144 reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2146 reg_write(ohci, OHCI1394_HCControlSet,
2147 OHCI1394_HCControl_linkEnable |
2148 OHCI1394_HCControl_BIBimageValid);
2149 flush_writes(ohci);
2151 /* We are ready to go, reset bus to finish initialization. */
2152 fw_schedule_bus_reset(&ohci->card, false, true);
2154 return 0;
2157 static int ohci_set_config_rom(struct fw_card *card,
2158 const __be32 *config_rom, size_t length)
2160 struct fw_ohci *ohci;
2161 unsigned long flags;
2162 int ret = -EBUSY;
2163 __be32 *next_config_rom;
2164 dma_addr_t uninitialized_var(next_config_rom_bus);
2166 ohci = fw_ohci(card);
2169 * When the OHCI controller is enabled, the config rom update
2170 * mechanism is a bit tricky, but easy enough to use. See
2171 * section 5.5.6 in the OHCI specification.
2173 * The OHCI controller caches the new config rom address in a
2174 * shadow register (ConfigROMmapNext) and needs a bus reset
2175 * for the changes to take place. When the bus reset is
2176 * detected, the controller loads the new values for the
2177 * ConfigRomHeader and BusOptions registers from the specified
2178 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2179 * shadow register. All automatically and atomically.
2181 * Now, there's a twist to this story. The automatic load of
2182 * ConfigRomHeader and BusOptions doesn't honor the
2183 * noByteSwapData bit, so with a be32 config rom, the
2184 * controller will load be32 values in to these registers
2185 * during the atomic update, even on litte endian
2186 * architectures. The workaround we use is to put a 0 in the
2187 * header quadlet; 0 is endian agnostic and means that the
2188 * config rom isn't ready yet. In the bus reset tasklet we
2189 * then set up the real values for the two registers.
2191 * We use ohci->lock to avoid racing with the code that sets
2192 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
2195 next_config_rom =
2196 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2197 &next_config_rom_bus, GFP_KERNEL);
2198 if (next_config_rom == NULL)
2199 return -ENOMEM;
2201 spin_lock_irqsave(&ohci->lock, flags);
2203 if (ohci->next_config_rom == NULL) {
2204 ohci->next_config_rom = next_config_rom;
2205 ohci->next_config_rom_bus = next_config_rom_bus;
2207 copy_config_rom(ohci->next_config_rom, config_rom, length);
2209 ohci->next_header = config_rom[0];
2210 ohci->next_config_rom[0] = 0;
2212 reg_write(ohci, OHCI1394_ConfigROMmap,
2213 ohci->next_config_rom_bus);
2214 ret = 0;
2217 spin_unlock_irqrestore(&ohci->lock, flags);
2220 * Now initiate a bus reset to have the changes take
2221 * effect. We clean up the old config rom memory and DMA
2222 * mappings in the bus reset tasklet, since the OHCI
2223 * controller could need to access it before the bus reset
2224 * takes effect.
2226 if (ret == 0)
2227 fw_schedule_bus_reset(&ohci->card, true, true);
2228 else
2229 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2230 next_config_rom, next_config_rom_bus);
2232 return ret;
2235 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2237 struct fw_ohci *ohci = fw_ohci(card);
2239 at_context_transmit(&ohci->at_request_ctx, packet);
2242 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2244 struct fw_ohci *ohci = fw_ohci(card);
2246 at_context_transmit(&ohci->at_response_ctx, packet);
2249 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2251 struct fw_ohci *ohci = fw_ohci(card);
2252 struct context *ctx = &ohci->at_request_ctx;
2253 struct driver_data *driver_data = packet->driver_data;
2254 int ret = -ENOENT;
2256 tasklet_disable(&ctx->tasklet);
2258 if (packet->ack != 0)
2259 goto out;
2261 if (packet->payload_mapped)
2262 dma_unmap_single(ohci->card.device, packet->payload_bus,
2263 packet->payload_length, DMA_TO_DEVICE);
2265 log_ar_at_event('T', packet->speed, packet->header, 0x20);
2266 driver_data->packet = NULL;
2267 packet->ack = RCODE_CANCELLED;
2268 packet->callback(packet, &ohci->card, packet->ack);
2269 ret = 0;
2270 out:
2271 tasklet_enable(&ctx->tasklet);
2273 return ret;
2276 static int ohci_enable_phys_dma(struct fw_card *card,
2277 int node_id, int generation)
2279 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2280 return 0;
2281 #else
2282 struct fw_ohci *ohci = fw_ohci(card);
2283 unsigned long flags;
2284 int n, ret = 0;
2287 * FIXME: Make sure this bitmask is cleared when we clear the busReset
2288 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
2291 spin_lock_irqsave(&ohci->lock, flags);
2293 if (ohci->generation != generation) {
2294 ret = -ESTALE;
2295 goto out;
2299 * Note, if the node ID contains a non-local bus ID, physical DMA is
2300 * enabled for _all_ nodes on remote buses.
2303 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2304 if (n < 32)
2305 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2306 else
2307 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2309 flush_writes(ohci);
2310 out:
2311 spin_unlock_irqrestore(&ohci->lock, flags);
2313 return ret;
2314 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2317 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2319 struct fw_ohci *ohci = fw_ohci(card);
2320 unsigned long flags;
2321 u32 value;
2323 switch (csr_offset) {
2324 case CSR_STATE_CLEAR:
2325 case CSR_STATE_SET:
2326 if (ohci->is_root &&
2327 (reg_read(ohci, OHCI1394_LinkControlSet) &
2328 OHCI1394_LinkControl_cycleMaster))
2329 value = CSR_STATE_BIT_CMSTR;
2330 else
2331 value = 0;
2332 if (ohci->csr_state_setclear_abdicate)
2333 value |= CSR_STATE_BIT_ABDICATE;
2335 return value;
2337 case CSR_NODE_IDS:
2338 return reg_read(ohci, OHCI1394_NodeID) << 16;
2340 case CSR_CYCLE_TIME:
2341 return get_cycle_time(ohci);
2343 case CSR_BUS_TIME:
2345 * We might be called just after the cycle timer has wrapped
2346 * around but just before the cycle64Seconds handler, so we
2347 * better check here, too, if the bus time needs to be updated.
2349 spin_lock_irqsave(&ohci->lock, flags);
2350 value = update_bus_time(ohci);
2351 spin_unlock_irqrestore(&ohci->lock, flags);
2352 return value;
2354 case CSR_BUSY_TIMEOUT:
2355 value = reg_read(ohci, OHCI1394_ATRetries);
2356 return (value >> 4) & 0x0ffff00f;
2358 case CSR_PRIORITY_BUDGET:
2359 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2360 (ohci->pri_req_max << 8);
2362 default:
2363 WARN_ON(1);
2364 return 0;
2368 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2370 struct fw_ohci *ohci = fw_ohci(card);
2371 unsigned long flags;
2373 switch (csr_offset) {
2374 case CSR_STATE_CLEAR:
2375 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2376 reg_write(ohci, OHCI1394_LinkControlClear,
2377 OHCI1394_LinkControl_cycleMaster);
2378 flush_writes(ohci);
2380 if (value & CSR_STATE_BIT_ABDICATE)
2381 ohci->csr_state_setclear_abdicate = false;
2382 break;
2384 case CSR_STATE_SET:
2385 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2386 reg_write(ohci, OHCI1394_LinkControlSet,
2387 OHCI1394_LinkControl_cycleMaster);
2388 flush_writes(ohci);
2390 if (value & CSR_STATE_BIT_ABDICATE)
2391 ohci->csr_state_setclear_abdicate = true;
2392 break;
2394 case CSR_NODE_IDS:
2395 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2396 flush_writes(ohci);
2397 break;
2399 case CSR_CYCLE_TIME:
2400 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2401 reg_write(ohci, OHCI1394_IntEventSet,
2402 OHCI1394_cycleInconsistent);
2403 flush_writes(ohci);
2404 break;
2406 case CSR_BUS_TIME:
2407 spin_lock_irqsave(&ohci->lock, flags);
2408 ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
2409 spin_unlock_irqrestore(&ohci->lock, flags);
2410 break;
2412 case CSR_BUSY_TIMEOUT:
2413 value = (value & 0xf) | ((value & 0xf) << 4) |
2414 ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2415 reg_write(ohci, OHCI1394_ATRetries, value);
2416 flush_writes(ohci);
2417 break;
2419 case CSR_PRIORITY_BUDGET:
2420 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2421 flush_writes(ohci);
2422 break;
2424 default:
2425 WARN_ON(1);
2426 break;
2430 static void copy_iso_headers(struct iso_context *ctx, void *p)
2432 int i = ctx->header_length;
2434 if (i + ctx->base.header_size > PAGE_SIZE)
2435 return;
2438 * The iso header is byteswapped to little endian by
2439 * the controller, but the remaining header quadlets
2440 * are big endian. We want to present all the headers
2441 * as big endian, so we have to swap the first quadlet.
2443 if (ctx->base.header_size > 0)
2444 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
2445 if (ctx->base.header_size > 4)
2446 *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
2447 if (ctx->base.header_size > 8)
2448 memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
2449 ctx->header_length += ctx->base.header_size;
2452 static int handle_ir_packet_per_buffer(struct context *context,
2453 struct descriptor *d,
2454 struct descriptor *last)
2456 struct iso_context *ctx =
2457 container_of(context, struct iso_context, context);
2458 struct descriptor *pd;
2459 __le32 *ir_header;
2460 void *p;
2462 for (pd = d; pd <= last; pd++)
2463 if (pd->transfer_status)
2464 break;
2465 if (pd > last)
2466 /* Descriptor(s) not done yet, stop iteration */
2467 return 0;
2469 p = last + 1;
2470 copy_iso_headers(ctx, p);
2472 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2473 ir_header = (__le32 *) p;
2474 ctx->base.callback.sc(&ctx->base,
2475 le32_to_cpu(ir_header[0]) & 0xffff,
2476 ctx->header_length, ctx->header,
2477 ctx->base.callback_data);
2478 ctx->header_length = 0;
2481 return 1;
2484 /* d == last because each descriptor block is only a single descriptor. */
2485 static int handle_ir_buffer_fill(struct context *context,
2486 struct descriptor *d,
2487 struct descriptor *last)
2489 struct iso_context *ctx =
2490 container_of(context, struct iso_context, context);
2492 if (!last->transfer_status)
2493 /* Descriptor(s) not done yet, stop iteration */
2494 return 0;
2496 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
2497 ctx->base.callback.mc(&ctx->base,
2498 le32_to_cpu(last->data_address) +
2499 le16_to_cpu(last->req_count) -
2500 le16_to_cpu(last->res_count),
2501 ctx->base.callback_data);
2503 return 1;
2506 static int handle_it_packet(struct context *context,
2507 struct descriptor *d,
2508 struct descriptor *last)
2510 struct iso_context *ctx =
2511 container_of(context, struct iso_context, context);
2512 int i;
2513 struct descriptor *pd;
2515 for (pd = d; pd <= last; pd++)
2516 if (pd->transfer_status)
2517 break;
2518 if (pd > last)
2519 /* Descriptor(s) not done yet, stop iteration */
2520 return 0;
2522 i = ctx->header_length;
2523 if (i + 4 < PAGE_SIZE) {
2524 /* Present this value as big-endian to match the receive code */
2525 *(__be32 *)(ctx->header + i) = cpu_to_be32(
2526 ((u32)le16_to_cpu(pd->transfer_status) << 16) |
2527 le16_to_cpu(pd->res_count));
2528 ctx->header_length += 4;
2530 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2531 ctx->base.callback.sc(&ctx->base, le16_to_cpu(last->res_count),
2532 ctx->header_length, ctx->header,
2533 ctx->base.callback_data);
2534 ctx->header_length = 0;
2536 return 1;
2539 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2541 u32 hi = channels >> 32, lo = channels;
2543 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2544 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2545 reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2546 reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2547 mmiowb();
2548 ohci->mc_channels = channels;
2551 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2552 int type, int channel, size_t header_size)
2554 struct fw_ohci *ohci = fw_ohci(card);
2555 struct iso_context *uninitialized_var(ctx);
2556 descriptor_callback_t uninitialized_var(callback);
2557 u64 *uninitialized_var(channels);
2558 u32 *uninitialized_var(mask), uninitialized_var(regs);
2559 unsigned long flags;
2560 int index, ret = -EBUSY;
2562 spin_lock_irqsave(&ohci->lock, flags);
2564 switch (type) {
2565 case FW_ISO_CONTEXT_TRANSMIT:
2566 mask = &ohci->it_context_mask;
2567 callback = handle_it_packet;
2568 index = ffs(*mask) - 1;
2569 if (index >= 0) {
2570 *mask &= ~(1 << index);
2571 regs = OHCI1394_IsoXmitContextBase(index);
2572 ctx = &ohci->it_context_list[index];
2574 break;
2576 case FW_ISO_CONTEXT_RECEIVE:
2577 channels = &ohci->ir_context_channels;
2578 mask = &ohci->ir_context_mask;
2579 callback = handle_ir_packet_per_buffer;
2580 index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2581 if (index >= 0) {
2582 *channels &= ~(1ULL << channel);
2583 *mask &= ~(1 << index);
2584 regs = OHCI1394_IsoRcvContextBase(index);
2585 ctx = &ohci->ir_context_list[index];
2587 break;
2589 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2590 mask = &ohci->ir_context_mask;
2591 callback = handle_ir_buffer_fill;
2592 index = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2593 if (index >= 0) {
2594 ohci->mc_allocated = true;
2595 *mask &= ~(1 << index);
2596 regs = OHCI1394_IsoRcvContextBase(index);
2597 ctx = &ohci->ir_context_list[index];
2599 break;
2601 default:
2602 index = -1;
2603 ret = -ENOSYS;
2606 spin_unlock_irqrestore(&ohci->lock, flags);
2608 if (index < 0)
2609 return ERR_PTR(ret);
2611 memset(ctx, 0, sizeof(*ctx));
2612 ctx->header_length = 0;
2613 ctx->header = (void *) __get_free_page(GFP_KERNEL);
2614 if (ctx->header == NULL) {
2615 ret = -ENOMEM;
2616 goto out;
2618 ret = context_init(&ctx->context, ohci, regs, callback);
2619 if (ret < 0)
2620 goto out_with_header;
2622 if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL)
2623 set_multichannel_mask(ohci, 0);
2625 return &ctx->base;
2627 out_with_header:
2628 free_page((unsigned long)ctx->header);
2629 out:
2630 spin_lock_irqsave(&ohci->lock, flags);
2632 switch (type) {
2633 case FW_ISO_CONTEXT_RECEIVE:
2634 *channels |= 1ULL << channel;
2635 break;
2637 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2638 ohci->mc_allocated = false;
2639 break;
2641 *mask |= 1 << index;
2643 spin_unlock_irqrestore(&ohci->lock, flags);
2645 return ERR_PTR(ret);
2648 static int ohci_start_iso(struct fw_iso_context *base,
2649 s32 cycle, u32 sync, u32 tags)
2651 struct iso_context *ctx = container_of(base, struct iso_context, base);
2652 struct fw_ohci *ohci = ctx->context.ohci;
2653 u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2654 int index;
2656 switch (ctx->base.type) {
2657 case FW_ISO_CONTEXT_TRANSMIT:
2658 index = ctx - ohci->it_context_list;
2659 match = 0;
2660 if (cycle >= 0)
2661 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2662 (cycle & 0x7fff) << 16;
2664 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2665 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2666 context_run(&ctx->context, match);
2667 break;
2669 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2670 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
2671 /* fall through */
2672 case FW_ISO_CONTEXT_RECEIVE:
2673 index = ctx - ohci->ir_context_list;
2674 match = (tags << 28) | (sync << 8) | ctx->base.channel;
2675 if (cycle >= 0) {
2676 match |= (cycle & 0x07fff) << 12;
2677 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2680 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2681 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2682 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2683 context_run(&ctx->context, control);
2685 ctx->sync = sync;
2686 ctx->tags = tags;
2688 break;
2691 return 0;
2694 static int ohci_stop_iso(struct fw_iso_context *base)
2696 struct fw_ohci *ohci = fw_ohci(base->card);
2697 struct iso_context *ctx = container_of(base, struct iso_context, base);
2698 int index;
2700 switch (ctx->base.type) {
2701 case FW_ISO_CONTEXT_TRANSMIT:
2702 index = ctx - ohci->it_context_list;
2703 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2704 break;
2706 case FW_ISO_CONTEXT_RECEIVE:
2707 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2708 index = ctx - ohci->ir_context_list;
2709 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2710 break;
2712 flush_writes(ohci);
2713 context_stop(&ctx->context);
2715 return 0;
2718 static void ohci_free_iso_context(struct fw_iso_context *base)
2720 struct fw_ohci *ohci = fw_ohci(base->card);
2721 struct iso_context *ctx = container_of(base, struct iso_context, base);
2722 unsigned long flags;
2723 int index;
2725 ohci_stop_iso(base);
2726 context_release(&ctx->context);
2727 free_page((unsigned long)ctx->header);
2729 spin_lock_irqsave(&ohci->lock, flags);
2731 switch (base->type) {
2732 case FW_ISO_CONTEXT_TRANSMIT:
2733 index = ctx - ohci->it_context_list;
2734 ohci->it_context_mask |= 1 << index;
2735 break;
2737 case FW_ISO_CONTEXT_RECEIVE:
2738 index = ctx - ohci->ir_context_list;
2739 ohci->ir_context_mask |= 1 << index;
2740 ohci->ir_context_channels |= 1ULL << base->channel;
2741 break;
2743 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2744 index = ctx - ohci->ir_context_list;
2745 ohci->ir_context_mask |= 1 << index;
2746 ohci->ir_context_channels |= ohci->mc_channels;
2747 ohci->mc_channels = 0;
2748 ohci->mc_allocated = false;
2749 break;
2752 spin_unlock_irqrestore(&ohci->lock, flags);
2755 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
2757 struct fw_ohci *ohci = fw_ohci(base->card);
2758 unsigned long flags;
2759 int ret;
2761 switch (base->type) {
2762 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2764 spin_lock_irqsave(&ohci->lock, flags);
2766 /* Don't allow multichannel to grab other contexts' channels. */
2767 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
2768 *channels = ohci->ir_context_channels;
2769 ret = -EBUSY;
2770 } else {
2771 set_multichannel_mask(ohci, *channels);
2772 ret = 0;
2775 spin_unlock_irqrestore(&ohci->lock, flags);
2777 break;
2778 default:
2779 ret = -EINVAL;
2782 return ret;
2785 #ifdef CONFIG_PM
2786 static void ohci_resume_iso_dma(struct fw_ohci *ohci)
2788 int i;
2789 struct iso_context *ctx;
2791 for (i = 0 ; i < ohci->n_ir ; i++) {
2792 ctx = &ohci->ir_context_list[i];
2793 if (ctx->context.active)
2794 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
2797 for (i = 0 ; i < ohci->n_it ; i++) {
2798 ctx = &ohci->it_context_list[i];
2799 if (ctx->context.active)
2800 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
2803 #endif
2805 static int queue_iso_transmit(struct iso_context *ctx,
2806 struct fw_iso_packet *packet,
2807 struct fw_iso_buffer *buffer,
2808 unsigned long payload)
2810 struct descriptor *d, *last, *pd;
2811 struct fw_iso_packet *p;
2812 __le32 *header;
2813 dma_addr_t d_bus, page_bus;
2814 u32 z, header_z, payload_z, irq;
2815 u32 payload_index, payload_end_index, next_page_index;
2816 int page, end_page, i, length, offset;
2818 p = packet;
2819 payload_index = payload;
2821 if (p->skip)
2822 z = 1;
2823 else
2824 z = 2;
2825 if (p->header_length > 0)
2826 z++;
2828 /* Determine the first page the payload isn't contained in. */
2829 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2830 if (p->payload_length > 0)
2831 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2832 else
2833 payload_z = 0;
2835 z += payload_z;
2837 /* Get header size in number of descriptors. */
2838 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2840 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2841 if (d == NULL)
2842 return -ENOMEM;
2844 if (!p->skip) {
2845 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2846 d[0].req_count = cpu_to_le16(8);
2848 * Link the skip address to this descriptor itself. This causes
2849 * a context to skip a cycle whenever lost cycles or FIFO
2850 * overruns occur, without dropping the data. The application
2851 * should then decide whether this is an error condition or not.
2852 * FIXME: Make the context's cycle-lost behaviour configurable?
2854 d[0].branch_address = cpu_to_le32(d_bus | z);
2856 header = (__le32 *) &d[1];
2857 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2858 IT_HEADER_TAG(p->tag) |
2859 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2860 IT_HEADER_CHANNEL(ctx->base.channel) |
2861 IT_HEADER_SPEED(ctx->base.speed));
2862 header[1] =
2863 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2864 p->payload_length));
2867 if (p->header_length > 0) {
2868 d[2].req_count = cpu_to_le16(p->header_length);
2869 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2870 memcpy(&d[z], p->header, p->header_length);
2873 pd = d + z - payload_z;
2874 payload_end_index = payload_index + p->payload_length;
2875 for (i = 0; i < payload_z; i++) {
2876 page = payload_index >> PAGE_SHIFT;
2877 offset = payload_index & ~PAGE_MASK;
2878 next_page_index = (page + 1) << PAGE_SHIFT;
2879 length =
2880 min(next_page_index, payload_end_index) - payload_index;
2881 pd[i].req_count = cpu_to_le16(length);
2883 page_bus = page_private(buffer->pages[page]);
2884 pd[i].data_address = cpu_to_le32(page_bus + offset);
2886 payload_index += length;
2889 if (p->interrupt)
2890 irq = DESCRIPTOR_IRQ_ALWAYS;
2891 else
2892 irq = DESCRIPTOR_NO_IRQ;
2894 last = z == 2 ? d : d + z - 1;
2895 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2896 DESCRIPTOR_STATUS |
2897 DESCRIPTOR_BRANCH_ALWAYS |
2898 irq);
2900 context_append(&ctx->context, d, z, header_z);
2902 return 0;
2905 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
2906 struct fw_iso_packet *packet,
2907 struct fw_iso_buffer *buffer,
2908 unsigned long payload)
2910 struct descriptor *d, *pd;
2911 dma_addr_t d_bus, page_bus;
2912 u32 z, header_z, rest;
2913 int i, j, length;
2914 int page, offset, packet_count, header_size, payload_per_buffer;
2917 * The OHCI controller puts the isochronous header and trailer in the
2918 * buffer, so we need at least 8 bytes.
2920 packet_count = packet->header_length / ctx->base.header_size;
2921 header_size = max(ctx->base.header_size, (size_t)8);
2923 /* Get header size in number of descriptors. */
2924 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2925 page = payload >> PAGE_SHIFT;
2926 offset = payload & ~PAGE_MASK;
2927 payload_per_buffer = packet->payload_length / packet_count;
2929 for (i = 0; i < packet_count; i++) {
2930 /* d points to the header descriptor */
2931 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2932 d = context_get_descriptors(&ctx->context,
2933 z + header_z, &d_bus);
2934 if (d == NULL)
2935 return -ENOMEM;
2937 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
2938 DESCRIPTOR_INPUT_MORE);
2939 if (packet->skip && i == 0)
2940 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2941 d->req_count = cpu_to_le16(header_size);
2942 d->res_count = d->req_count;
2943 d->transfer_status = 0;
2944 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2946 rest = payload_per_buffer;
2947 pd = d;
2948 for (j = 1; j < z; j++) {
2949 pd++;
2950 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2951 DESCRIPTOR_INPUT_MORE);
2953 if (offset + rest < PAGE_SIZE)
2954 length = rest;
2955 else
2956 length = PAGE_SIZE - offset;
2957 pd->req_count = cpu_to_le16(length);
2958 pd->res_count = pd->req_count;
2959 pd->transfer_status = 0;
2961 page_bus = page_private(buffer->pages[page]);
2962 pd->data_address = cpu_to_le32(page_bus + offset);
2964 offset = (offset + length) & ~PAGE_MASK;
2965 rest -= length;
2966 if (offset == 0)
2967 page++;
2969 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2970 DESCRIPTOR_INPUT_LAST |
2971 DESCRIPTOR_BRANCH_ALWAYS);
2972 if (packet->interrupt && i == packet_count - 1)
2973 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2975 context_append(&ctx->context, d, z, header_z);
2978 return 0;
2981 static int queue_iso_buffer_fill(struct iso_context *ctx,
2982 struct fw_iso_packet *packet,
2983 struct fw_iso_buffer *buffer,
2984 unsigned long payload)
2986 struct descriptor *d;
2987 dma_addr_t d_bus, page_bus;
2988 int page, offset, rest, z, i, length;
2990 page = payload >> PAGE_SHIFT;
2991 offset = payload & ~PAGE_MASK;
2992 rest = packet->payload_length;
2994 /* We need one descriptor for each page in the buffer. */
2995 z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
2997 if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
2998 return -EFAULT;
3000 for (i = 0; i < z; i++) {
3001 d = context_get_descriptors(&ctx->context, 1, &d_bus);
3002 if (d == NULL)
3003 return -ENOMEM;
3005 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3006 DESCRIPTOR_BRANCH_ALWAYS);
3007 if (packet->skip && i == 0)
3008 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3009 if (packet->interrupt && i == z - 1)
3010 d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3012 if (offset + rest < PAGE_SIZE)
3013 length = rest;
3014 else
3015 length = PAGE_SIZE - offset;
3016 d->req_count = cpu_to_le16(length);
3017 d->res_count = d->req_count;
3018 d->transfer_status = 0;
3020 page_bus = page_private(buffer->pages[page]);
3021 d->data_address = cpu_to_le32(page_bus + offset);
3023 rest -= length;
3024 offset = 0;
3025 page++;
3027 context_append(&ctx->context, d, 1, 0);
3030 return 0;
3033 static int ohci_queue_iso(struct fw_iso_context *base,
3034 struct fw_iso_packet *packet,
3035 struct fw_iso_buffer *buffer,
3036 unsigned long payload)
3038 struct iso_context *ctx = container_of(base, struct iso_context, base);
3039 unsigned long flags;
3040 int ret = -ENOSYS;
3042 spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3043 switch (base->type) {
3044 case FW_ISO_CONTEXT_TRANSMIT:
3045 ret = queue_iso_transmit(ctx, packet, buffer, payload);
3046 break;
3047 case FW_ISO_CONTEXT_RECEIVE:
3048 ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3049 break;
3050 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3051 ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3052 break;
3054 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3056 return ret;
3059 static const struct fw_card_driver ohci_driver = {
3060 .enable = ohci_enable,
3061 .read_phy_reg = ohci_read_phy_reg,
3062 .update_phy_reg = ohci_update_phy_reg,
3063 .set_config_rom = ohci_set_config_rom,
3064 .send_request = ohci_send_request,
3065 .send_response = ohci_send_response,
3066 .cancel_packet = ohci_cancel_packet,
3067 .enable_phys_dma = ohci_enable_phys_dma,
3068 .read_csr = ohci_read_csr,
3069 .write_csr = ohci_write_csr,
3071 .allocate_iso_context = ohci_allocate_iso_context,
3072 .free_iso_context = ohci_free_iso_context,
3073 .set_iso_channels = ohci_set_iso_channels,
3074 .queue_iso = ohci_queue_iso,
3075 .start_iso = ohci_start_iso,
3076 .stop_iso = ohci_stop_iso,
3079 #ifdef CONFIG_PPC_PMAC
3080 static void pmac_ohci_on(struct pci_dev *dev)
3082 if (machine_is(powermac)) {
3083 struct device_node *ofn = pci_device_to_OF_node(dev);
3085 if (ofn) {
3086 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3087 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3092 static void pmac_ohci_off(struct pci_dev *dev)
3094 if (machine_is(powermac)) {
3095 struct device_node *ofn = pci_device_to_OF_node(dev);
3097 if (ofn) {
3098 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3099 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3103 #else
3104 static inline void pmac_ohci_on(struct pci_dev *dev) {}
3105 static inline void pmac_ohci_off(struct pci_dev *dev) {}
3106 #endif /* CONFIG_PPC_PMAC */
3108 static int __devinit pci_probe(struct pci_dev *dev,
3109 const struct pci_device_id *ent)
3111 struct fw_ohci *ohci;
3112 u32 bus_options, max_receive, link_speed, version;
3113 u64 guid;
3114 int i, err;
3115 size_t size;
3117 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3118 if (ohci == NULL) {
3119 err = -ENOMEM;
3120 goto fail;
3123 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3125 pmac_ohci_on(dev);
3127 err = pci_enable_device(dev);
3128 if (err) {
3129 fw_error("Failed to enable OHCI hardware\n");
3130 goto fail_free;
3133 pci_set_master(dev);
3134 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3135 pci_set_drvdata(dev, ohci);
3137 spin_lock_init(&ohci->lock);
3138 mutex_init(&ohci->phy_reg_mutex);
3140 tasklet_init(&ohci->bus_reset_tasklet,
3141 bus_reset_tasklet, (unsigned long)ohci);
3143 err = pci_request_region(dev, 0, ohci_driver_name);
3144 if (err) {
3145 fw_error("MMIO resource unavailable\n");
3146 goto fail_disable;
3149 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3150 if (ohci->registers == NULL) {
3151 fw_error("Failed to remap registers\n");
3152 err = -ENXIO;
3153 goto fail_iomem;
3156 for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3157 if ((ohci_quirks[i].vendor == dev->vendor) &&
3158 (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3159 ohci_quirks[i].device == dev->device) &&
3160 (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3161 ohci_quirks[i].revision >= dev->revision)) {
3162 ohci->quirks = ohci_quirks[i].flags;
3163 break;
3165 if (param_quirks)
3166 ohci->quirks = param_quirks;
3169 * Because dma_alloc_coherent() allocates at least one page,
3170 * we save space by using a common buffer for the AR request/
3171 * response descriptors and the self IDs buffer.
3173 BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3174 BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3175 ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3176 PAGE_SIZE,
3177 &ohci->misc_buffer_bus,
3178 GFP_KERNEL);
3179 if (!ohci->misc_buffer) {
3180 err = -ENOMEM;
3181 goto fail_iounmap;
3184 err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3185 OHCI1394_AsReqRcvContextControlSet);
3186 if (err < 0)
3187 goto fail_misc_buf;
3189 err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3190 OHCI1394_AsRspRcvContextControlSet);
3191 if (err < 0)
3192 goto fail_arreq_ctx;
3194 err = context_init(&ohci->at_request_ctx, ohci,
3195 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3196 if (err < 0)
3197 goto fail_arrsp_ctx;
3199 err = context_init(&ohci->at_response_ctx, ohci,
3200 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3201 if (err < 0)
3202 goto fail_atreq_ctx;
3204 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3205 ohci->ir_context_channels = ~0ULL;
3206 ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3207 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3208 ohci->n_ir = hweight32(ohci->ir_context_mask);
3209 size = sizeof(struct iso_context) * ohci->n_ir;
3210 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3212 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3213 ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3214 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3215 ohci->n_it = hweight32(ohci->it_context_mask);
3216 size = sizeof(struct iso_context) * ohci->n_it;
3217 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3219 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3220 err = -ENOMEM;
3221 goto fail_contexts;
3224 ohci->self_id_cpu = ohci->misc_buffer + PAGE_SIZE/2;
3225 ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3227 bus_options = reg_read(ohci, OHCI1394_BusOptions);
3228 max_receive = (bus_options >> 12) & 0xf;
3229 link_speed = bus_options & 0x7;
3230 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3231 reg_read(ohci, OHCI1394_GUIDLo);
3233 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3234 if (err)
3235 goto fail_contexts;
3237 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3238 fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
3239 "%d IR + %d IT contexts, quirks 0x%x\n",
3240 dev_name(&dev->dev), version >> 16, version & 0xff,
3241 ohci->n_ir, ohci->n_it, ohci->quirks);
3243 return 0;
3245 fail_contexts:
3246 kfree(ohci->ir_context_list);
3247 kfree(ohci->it_context_list);
3248 context_release(&ohci->at_response_ctx);
3249 fail_atreq_ctx:
3250 context_release(&ohci->at_request_ctx);
3251 fail_arrsp_ctx:
3252 ar_context_release(&ohci->ar_response_ctx);
3253 fail_arreq_ctx:
3254 ar_context_release(&ohci->ar_request_ctx);
3255 fail_misc_buf:
3256 dma_free_coherent(ohci->card.device, PAGE_SIZE,
3257 ohci->misc_buffer, ohci->misc_buffer_bus);
3258 fail_iounmap:
3259 pci_iounmap(dev, ohci->registers);
3260 fail_iomem:
3261 pci_release_region(dev, 0);
3262 fail_disable:
3263 pci_disable_device(dev);
3264 fail_free:
3265 kfree(&ohci->card);
3266 pmac_ohci_off(dev);
3267 fail:
3268 if (err == -ENOMEM)
3269 fw_error("Out of memory\n");
3271 return err;
3274 static void pci_remove(struct pci_dev *dev)
3276 struct fw_ohci *ohci;
3278 ohci = pci_get_drvdata(dev);
3279 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3280 flush_writes(ohci);
3281 fw_core_remove_card(&ohci->card);
3284 * FIXME: Fail all pending packets here, now that the upper
3285 * layers can't queue any more.
3288 software_reset(ohci);
3289 free_irq(dev->irq, ohci);
3291 if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3292 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3293 ohci->next_config_rom, ohci->next_config_rom_bus);
3294 if (ohci->config_rom)
3295 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3296 ohci->config_rom, ohci->config_rom_bus);
3297 ar_context_release(&ohci->ar_request_ctx);
3298 ar_context_release(&ohci->ar_response_ctx);
3299 dma_free_coherent(ohci->card.device, PAGE_SIZE,
3300 ohci->misc_buffer, ohci->misc_buffer_bus);
3301 context_release(&ohci->at_request_ctx);
3302 context_release(&ohci->at_response_ctx);
3303 kfree(ohci->it_context_list);
3304 kfree(ohci->ir_context_list);
3305 pci_disable_msi(dev);
3306 pci_iounmap(dev, ohci->registers);
3307 pci_release_region(dev, 0);
3308 pci_disable_device(dev);
3309 kfree(&ohci->card);
3310 pmac_ohci_off(dev);
3312 fw_notify("Removed fw-ohci device.\n");
3315 #ifdef CONFIG_PM
3316 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3318 struct fw_ohci *ohci = pci_get_drvdata(dev);
3319 int err;
3321 software_reset(ohci);
3322 free_irq(dev->irq, ohci);
3323 pci_disable_msi(dev);
3324 err = pci_save_state(dev);
3325 if (err) {
3326 fw_error("pci_save_state failed\n");
3327 return err;
3329 err = pci_set_power_state(dev, pci_choose_state(dev, state));
3330 if (err)
3331 fw_error("pci_set_power_state failed with %d\n", err);
3332 pmac_ohci_off(dev);
3334 return 0;
3337 static int pci_resume(struct pci_dev *dev)
3339 struct fw_ohci *ohci = pci_get_drvdata(dev);
3340 int err;
3342 pmac_ohci_on(dev);
3343 pci_set_power_state(dev, PCI_D0);
3344 pci_restore_state(dev);
3345 err = pci_enable_device(dev);
3346 if (err) {
3347 fw_error("pci_enable_device failed\n");
3348 return err;
3351 /* Some systems don't setup GUID register on resume from ram */
3352 if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3353 !reg_read(ohci, OHCI1394_GUIDHi)) {
3354 reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3355 reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3358 err = ohci_enable(&ohci->card, NULL, 0);
3360 if (err)
3361 return err;
3363 ohci_resume_iso_dma(ohci);
3364 return 0;
3366 #endif
3368 static const struct pci_device_id pci_table[] = {
3369 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3373 MODULE_DEVICE_TABLE(pci, pci_table);
3375 static struct pci_driver fw_ohci_pci_driver = {
3376 .name = ohci_driver_name,
3377 .id_table = pci_table,
3378 .probe = pci_probe,
3379 .remove = pci_remove,
3380 #ifdef CONFIG_PM
3381 .resume = pci_resume,
3382 .suspend = pci_suspend,
3383 #endif
3386 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3387 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3388 MODULE_LICENSE("GPL");
3390 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3391 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
3392 MODULE_ALIAS("ohci1394");
3393 #endif
3395 static int __init fw_ohci_init(void)
3397 return pci_register_driver(&fw_ohci_pci_driver);
3400 static void __exit fw_ohci_cleanup(void)
3402 pci_unregister_driver(&fw_ohci_pci_driver);
3405 module_init(fw_ohci_init);
3406 module_exit(fw_ohci_cleanup);