firewire: 'add CSR_... support' addendum
[firewire-audio.git] / drivers / firewire / ohci.c
blob2abdb3268a10d5acfffb3da998ebd637739229cc
1 /*
2 * Driver for OHCI 1394 controllers
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/bug.h>
22 #include <linux/compiler.h>
23 #include <linux/delay.h>
24 #include <linux/device.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/firewire.h>
27 #include <linux/firewire-constants.h>
28 #include <linux/gfp.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/io.h>
32 #include <linux/kernel.h>
33 #include <linux/list.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/pci.h>
38 #include <linux/pci_ids.h>
39 #include <linux/spinlock.h>
40 #include <linux/string.h>
42 #include <asm/byteorder.h>
43 #include <asm/page.h>
44 #include <asm/system.h>
46 #ifdef CONFIG_PPC_PMAC
47 #include <asm/pmac_feature.h>
48 #endif
50 #include "core.h"
51 #include "ohci.h"
53 #define DESCRIPTOR_OUTPUT_MORE 0
54 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
55 #define DESCRIPTOR_INPUT_MORE (2 << 12)
56 #define DESCRIPTOR_INPUT_LAST (3 << 12)
57 #define DESCRIPTOR_STATUS (1 << 11)
58 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
59 #define DESCRIPTOR_PING (1 << 7)
60 #define DESCRIPTOR_YY (1 << 6)
61 #define DESCRIPTOR_NO_IRQ (0 << 4)
62 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
63 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
64 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
65 #define DESCRIPTOR_WAIT (3 << 0)
67 struct descriptor {
68 __le16 req_count;
69 __le16 control;
70 __le32 data_address;
71 __le32 branch_address;
72 __le16 res_count;
73 __le16 transfer_status;
74 } __attribute__((aligned(16)));
76 #define CONTROL_SET(regs) (regs)
77 #define CONTROL_CLEAR(regs) ((regs) + 4)
78 #define COMMAND_PTR(regs) ((regs) + 12)
79 #define CONTEXT_MATCH(regs) ((regs) + 16)
81 struct ar_buffer {
82 struct descriptor descriptor;
83 struct ar_buffer *next;
84 __le32 data[0];
87 struct ar_context {
88 struct fw_ohci *ohci;
89 struct ar_buffer *current_buffer;
90 struct ar_buffer *last_buffer;
91 void *pointer;
92 u32 regs;
93 struct tasklet_struct tasklet;
96 struct context;
98 typedef int (*descriptor_callback_t)(struct context *ctx,
99 struct descriptor *d,
100 struct descriptor *last);
103 * A buffer that contains a block of DMA-able coherent memory used for
104 * storing a portion of a DMA descriptor program.
106 struct descriptor_buffer {
107 struct list_head list;
108 dma_addr_t buffer_bus;
109 size_t buffer_size;
110 size_t used;
111 struct descriptor buffer[0];
114 struct context {
115 struct fw_ohci *ohci;
116 u32 regs;
117 int total_allocation;
120 * List of page-sized buffers for storing DMA descriptors.
121 * Head of list contains buffers in use and tail of list contains
122 * free buffers.
124 struct list_head buffer_list;
127 * Pointer to a buffer inside buffer_list that contains the tail
128 * end of the current DMA program.
130 struct descriptor_buffer *buffer_tail;
133 * The descriptor containing the branch address of the first
134 * descriptor that has not yet been filled by the device.
136 struct descriptor *last;
139 * The last descriptor in the DMA program. It contains the branch
140 * address that must be updated upon appending a new descriptor.
142 struct descriptor *prev;
144 descriptor_callback_t callback;
146 struct tasklet_struct tasklet;
149 #define IT_HEADER_SY(v) ((v) << 0)
150 #define IT_HEADER_TCODE(v) ((v) << 4)
151 #define IT_HEADER_CHANNEL(v) ((v) << 8)
152 #define IT_HEADER_TAG(v) ((v) << 14)
153 #define IT_HEADER_SPEED(v) ((v) << 16)
154 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
156 struct iso_context {
157 struct fw_iso_context base;
158 struct context context;
159 int excess_bytes;
160 void *header;
161 size_t header_length;
164 #define CONFIG_ROM_SIZE 1024
166 struct fw_ohci {
167 struct fw_card card;
169 __iomem char *registers;
170 int node_id;
171 int generation;
172 int request_generation; /* for timestamping incoming requests */
173 unsigned quirks;
174 unsigned int pri_req_max;
175 unsigned int features;
176 u32 bus_time;
177 bool is_root;
180 * Spinlock for accessing fw_ohci data. Never call out of
181 * this driver with this lock held.
183 spinlock_t lock;
185 struct ar_context ar_request_ctx;
186 struct ar_context ar_response_ctx;
187 struct context at_request_ctx;
188 struct context at_response_ctx;
190 u32 it_context_mask;
191 struct iso_context *it_context_list;
192 u64 ir_context_channels;
193 u32 ir_context_mask;
194 struct iso_context *ir_context_list;
196 __be32 *config_rom;
197 dma_addr_t config_rom_bus;
198 __be32 *next_config_rom;
199 dma_addr_t next_config_rom_bus;
200 __be32 next_header;
202 __le32 *self_id_cpu;
203 dma_addr_t self_id_bus;
204 struct tasklet_struct bus_reset_tasklet;
206 u32 self_id_buffer[512];
209 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
211 return container_of(card, struct fw_ohci, card);
214 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
215 #define IR_CONTEXT_BUFFER_FILL 0x80000000
216 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
217 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
218 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
219 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
221 #define CONTEXT_RUN 0x8000
222 #define CONTEXT_WAKE 0x1000
223 #define CONTEXT_DEAD 0x0800
224 #define CONTEXT_ACTIVE 0x0400
226 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
227 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
228 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
230 #define OHCI1394_REGISTER_SIZE 0x800
231 #define OHCI_LOOP_COUNT 500
232 #define OHCI1394_PCI_HCI_Control 0x40
233 #define SELF_ID_BUF_SIZE 0x800
234 #define OHCI_TCODE_PHY_PACKET 0x0e
235 #define OHCI_VERSION_1_1 0x010010
237 static char ohci_driver_name[] = KBUILD_MODNAME;
239 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
240 #define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
242 #define QUIRK_CYCLE_TIMER 1
243 #define QUIRK_RESET_PACKET 2
244 #define QUIRK_BE_HEADERS 4
245 #define QUIRK_NO_1394A 8
246 #define QUIRK_NO_MSI 16
248 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
249 static const struct {
250 unsigned short vendor, device, flags;
251 } ohci_quirks[] = {
252 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, QUIRK_CYCLE_TIMER |
253 QUIRK_RESET_PACKET |
254 QUIRK_NO_1394A},
255 {PCI_VENDOR_ID_TI, PCI_ANY_ID, QUIRK_RESET_PACKET},
256 {PCI_VENDOR_ID_AL, PCI_ANY_ID, QUIRK_CYCLE_TIMER},
257 {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, QUIRK_NO_MSI},
258 {PCI_VENDOR_ID_NEC, PCI_ANY_ID, QUIRK_CYCLE_TIMER},
259 {PCI_VENDOR_ID_VIA, PCI_ANY_ID, QUIRK_CYCLE_TIMER},
260 {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, QUIRK_BE_HEADERS},
263 /* This overrides anything that was found in ohci_quirks[]. */
264 static int param_quirks;
265 module_param_named(quirks, param_quirks, int, 0644);
266 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
267 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER)
268 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET)
269 ", AR/selfID endianess = " __stringify(QUIRK_BE_HEADERS)
270 ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A)
271 ", disable MSI = " __stringify(QUIRK_NO_MSI)
272 ")");
274 #define OHCI_PARAM_DEBUG_AT_AR 1
275 #define OHCI_PARAM_DEBUG_SELFIDS 2
276 #define OHCI_PARAM_DEBUG_IRQS 4
277 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
279 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
281 static int param_debug;
282 module_param_named(debug, param_debug, int, 0644);
283 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
284 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR)
285 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS)
286 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS)
287 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
288 ", or a combination, or all = -1)");
290 static void log_irqs(u32 evt)
292 if (likely(!(param_debug &
293 (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
294 return;
296 if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
297 !(evt & OHCI1394_busReset))
298 return;
300 fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
301 evt & OHCI1394_selfIDComplete ? " selfID" : "",
302 evt & OHCI1394_RQPkt ? " AR_req" : "",
303 evt & OHCI1394_RSPkt ? " AR_resp" : "",
304 evt & OHCI1394_reqTxComplete ? " AT_req" : "",
305 evt & OHCI1394_respTxComplete ? " AT_resp" : "",
306 evt & OHCI1394_isochRx ? " IR" : "",
307 evt & OHCI1394_isochTx ? " IT" : "",
308 evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "",
309 evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "",
310 evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "",
311 evt & OHCI1394_cycleInconsistent ? " cycleInconsistent" : "",
312 evt & OHCI1394_regAccessFail ? " regAccessFail" : "",
313 evt & OHCI1394_busReset ? " busReset" : "",
314 evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
315 OHCI1394_RSPkt | OHCI1394_reqTxComplete |
316 OHCI1394_respTxComplete | OHCI1394_isochRx |
317 OHCI1394_isochTx | OHCI1394_postedWriteErr |
318 OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
319 OHCI1394_cycleInconsistent |
320 OHCI1394_regAccessFail | OHCI1394_busReset)
321 ? " ?" : "");
324 static const char *speed[] = {
325 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
327 static const char *power[] = {
328 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
329 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
331 static const char port[] = { '.', '-', 'p', 'c', };
333 static char _p(u32 *s, int shift)
335 return port[*s >> shift & 3];
338 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
340 if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
341 return;
343 fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
344 self_id_count, generation, node_id);
346 for (; self_id_count--; ++s)
347 if ((*s & 1 << 23) == 0)
348 fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
349 "%s gc=%d %s %s%s%s\n",
350 *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
351 speed[*s >> 14 & 3], *s >> 16 & 63,
352 power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
353 *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
354 else
355 fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
356 *s, *s >> 24 & 63,
357 _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
358 _p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2));
361 static const char *evts[] = {
362 [0x00] = "evt_no_status", [0x01] = "-reserved-",
363 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
364 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
365 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
366 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
367 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
368 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
369 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
370 [0x10] = "-reserved-", [0x11] = "ack_complete",
371 [0x12] = "ack_pending ", [0x13] = "-reserved-",
372 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
373 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
374 [0x18] = "-reserved-", [0x19] = "-reserved-",
375 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
376 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
377 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
378 [0x20] = "pending/cancelled",
380 static const char *tcodes[] = {
381 [0x0] = "QW req", [0x1] = "BW req",
382 [0x2] = "W resp", [0x3] = "-reserved-",
383 [0x4] = "QR req", [0x5] = "BR req",
384 [0x6] = "QR resp", [0x7] = "BR resp",
385 [0x8] = "cycle start", [0x9] = "Lk req",
386 [0xa] = "async stream packet", [0xb] = "Lk resp",
387 [0xc] = "-reserved-", [0xd] = "-reserved-",
388 [0xe] = "link internal", [0xf] = "-reserved-",
390 static const char *phys[] = {
391 [0x0] = "phy config packet", [0x1] = "link-on packet",
392 [0x2] = "self-id packet", [0x3] = "-reserved-",
395 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
397 int tcode = header[0] >> 4 & 0xf;
398 char specific[12];
400 if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
401 return;
403 if (unlikely(evt >= ARRAY_SIZE(evts)))
404 evt = 0x1f;
406 if (evt == OHCI1394_evt_bus_reset) {
407 fw_notify("A%c evt_bus_reset, generation %d\n",
408 dir, (header[2] >> 16) & 0xff);
409 return;
412 if (header[0] == ~header[1]) {
413 fw_notify("A%c %s, %s, %08x\n",
414 dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
415 return;
418 switch (tcode) {
419 case 0x0: case 0x6: case 0x8:
420 snprintf(specific, sizeof(specific), " = %08x",
421 be32_to_cpu((__force __be32)header[3]));
422 break;
423 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
424 snprintf(specific, sizeof(specific), " %x,%x",
425 header[3] >> 16, header[3] & 0xffff);
426 break;
427 default:
428 specific[0] = '\0';
431 switch (tcode) {
432 case 0xe: case 0xa:
433 fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
434 break;
435 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
436 fw_notify("A%c spd %x tl %02x, "
437 "%04x -> %04x, %s, "
438 "%s, %04x%08x%s\n",
439 dir, speed, header[0] >> 10 & 0x3f,
440 header[1] >> 16, header[0] >> 16, evts[evt],
441 tcodes[tcode], header[1] & 0xffff, header[2], specific);
442 break;
443 default:
444 fw_notify("A%c spd %x tl %02x, "
445 "%04x -> %04x, %s, "
446 "%s%s\n",
447 dir, speed, header[0] >> 10 & 0x3f,
448 header[1] >> 16, header[0] >> 16, evts[evt],
449 tcodes[tcode], specific);
453 #else
455 #define param_debug 0
456 static inline void log_irqs(u32 evt) {}
457 static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
458 static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
460 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
462 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
464 writel(data, ohci->registers + offset);
467 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
469 return readl(ohci->registers + offset);
472 static inline void flush_writes(const struct fw_ohci *ohci)
474 /* Do a dummy read to flush writes. */
475 reg_read(ohci, OHCI1394_Version);
478 static int read_phy_reg(struct fw_ohci *ohci, int addr)
480 u32 val;
481 int i;
483 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
484 for (i = 0; i < 3 + 100; i++) {
485 val = reg_read(ohci, OHCI1394_PhyControl);
486 if (val & OHCI1394_PhyControl_ReadDone)
487 return OHCI1394_PhyControl_ReadData(val);
490 * Try a few times without waiting. Sleeping is necessary
491 * only when the link/PHY interface is busy.
493 if (i >= 3)
494 msleep(1);
496 fw_error("failed to read phy reg\n");
498 return -EBUSY;
501 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
503 int i;
505 reg_write(ohci, OHCI1394_PhyControl,
506 OHCI1394_PhyControl_Write(addr, val));
507 for (i = 0; i < 3 + 100; i++) {
508 val = reg_read(ohci, OHCI1394_PhyControl);
509 if (!(val & OHCI1394_PhyControl_WritePending))
510 return 0;
512 if (i >= 3)
513 msleep(1);
515 fw_error("failed to write phy reg\n");
517 return -EBUSY;
520 static int ohci_update_phy_reg(struct fw_card *card, int addr,
521 int clear_bits, int set_bits)
523 struct fw_ohci *ohci = fw_ohci(card);
524 int ret;
526 ret = read_phy_reg(ohci, addr);
527 if (ret < 0)
528 return ret;
531 * The interrupt status bits are cleared by writing a one bit.
532 * Avoid clearing them unless explicitly requested in set_bits.
534 if (addr == 5)
535 clear_bits |= PHY_INT_STATUS_BITS;
537 return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
540 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
542 int ret;
544 ret = ohci_update_phy_reg(&ohci->card, 7, PHY_PAGE_SELECT, page << 5);
545 if (ret < 0)
546 return ret;
548 return read_phy_reg(ohci, addr);
551 static int ar_context_add_page(struct ar_context *ctx)
553 struct device *dev = ctx->ohci->card.device;
554 struct ar_buffer *ab;
555 dma_addr_t uninitialized_var(ab_bus);
556 size_t offset;
558 ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
559 if (ab == NULL)
560 return -ENOMEM;
562 ab->next = NULL;
563 memset(&ab->descriptor, 0, sizeof(ab->descriptor));
564 ab->descriptor.control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
565 DESCRIPTOR_STATUS |
566 DESCRIPTOR_BRANCH_ALWAYS);
567 offset = offsetof(struct ar_buffer, data);
568 ab->descriptor.req_count = cpu_to_le16(PAGE_SIZE - offset);
569 ab->descriptor.data_address = cpu_to_le32(ab_bus + offset);
570 ab->descriptor.res_count = cpu_to_le16(PAGE_SIZE - offset);
571 ab->descriptor.branch_address = 0;
573 ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
574 ctx->last_buffer->next = ab;
575 ctx->last_buffer = ab;
577 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
578 flush_writes(ctx->ohci);
580 return 0;
583 static void ar_context_release(struct ar_context *ctx)
585 struct ar_buffer *ab, *ab_next;
586 size_t offset;
587 dma_addr_t ab_bus;
589 for (ab = ctx->current_buffer; ab; ab = ab_next) {
590 ab_next = ab->next;
591 offset = offsetof(struct ar_buffer, data);
592 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
593 dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
594 ab, ab_bus);
598 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
599 #define cond_le32_to_cpu(v) \
600 (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
601 #else
602 #define cond_le32_to_cpu(v) le32_to_cpu(v)
603 #endif
605 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
607 struct fw_ohci *ohci = ctx->ohci;
608 struct fw_packet p;
609 u32 status, length, tcode;
610 int evt;
612 p.header[0] = cond_le32_to_cpu(buffer[0]);
613 p.header[1] = cond_le32_to_cpu(buffer[1]);
614 p.header[2] = cond_le32_to_cpu(buffer[2]);
616 tcode = (p.header[0] >> 4) & 0x0f;
617 switch (tcode) {
618 case TCODE_WRITE_QUADLET_REQUEST:
619 case TCODE_READ_QUADLET_RESPONSE:
620 p.header[3] = (__force __u32) buffer[3];
621 p.header_length = 16;
622 p.payload_length = 0;
623 break;
625 case TCODE_READ_BLOCK_REQUEST :
626 p.header[3] = cond_le32_to_cpu(buffer[3]);
627 p.header_length = 16;
628 p.payload_length = 0;
629 break;
631 case TCODE_WRITE_BLOCK_REQUEST:
632 case TCODE_READ_BLOCK_RESPONSE:
633 case TCODE_LOCK_REQUEST:
634 case TCODE_LOCK_RESPONSE:
635 p.header[3] = cond_le32_to_cpu(buffer[3]);
636 p.header_length = 16;
637 p.payload_length = p.header[3] >> 16;
638 break;
640 case TCODE_WRITE_RESPONSE:
641 case TCODE_READ_QUADLET_REQUEST:
642 case OHCI_TCODE_PHY_PACKET:
643 p.header_length = 12;
644 p.payload_length = 0;
645 break;
647 default:
648 /* FIXME: Stop context, discard everything, and restart? */
649 p.header_length = 0;
650 p.payload_length = 0;
653 p.payload = (void *) buffer + p.header_length;
655 /* FIXME: What to do about evt_* errors? */
656 length = (p.header_length + p.payload_length + 3) / 4;
657 status = cond_le32_to_cpu(buffer[length]);
658 evt = (status >> 16) & 0x1f;
660 p.ack = evt - 16;
661 p.speed = (status >> 21) & 0x7;
662 p.timestamp = status & 0xffff;
663 p.generation = ohci->request_generation;
665 log_ar_at_event('R', p.speed, p.header, evt);
668 * The OHCI bus reset handler synthesizes a phy packet with
669 * the new generation number when a bus reset happens (see
670 * section 8.4.2.3). This helps us determine when a request
671 * was received and make sure we send the response in the same
672 * generation. We only need this for requests; for responses
673 * we use the unique tlabel for finding the matching
674 * request.
676 * Alas some chips sometimes emit bus reset packets with a
677 * wrong generation. We set the correct generation for these
678 * at a slightly incorrect time (in bus_reset_tasklet).
680 if (evt == OHCI1394_evt_bus_reset) {
681 if (!(ohci->quirks & QUIRK_RESET_PACKET))
682 ohci->request_generation = (p.header[2] >> 16) & 0xff;
683 } else if (ctx == &ohci->ar_request_ctx) {
684 fw_core_handle_request(&ohci->card, &p);
685 } else {
686 fw_core_handle_response(&ohci->card, &p);
689 return buffer + length + 1;
692 static void ar_context_tasklet(unsigned long data)
694 struct ar_context *ctx = (struct ar_context *)data;
695 struct fw_ohci *ohci = ctx->ohci;
696 struct ar_buffer *ab;
697 struct descriptor *d;
698 void *buffer, *end;
700 ab = ctx->current_buffer;
701 d = &ab->descriptor;
703 if (d->res_count == 0) {
704 size_t size, rest, offset;
705 dma_addr_t start_bus;
706 void *start;
709 * This descriptor is finished and we may have a
710 * packet split across this and the next buffer. We
711 * reuse the page for reassembling the split packet.
714 offset = offsetof(struct ar_buffer, data);
715 start = buffer = ab;
716 start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
718 ab = ab->next;
719 d = &ab->descriptor;
720 size = buffer + PAGE_SIZE - ctx->pointer;
721 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
722 memmove(buffer, ctx->pointer, size);
723 memcpy(buffer + size, ab->data, rest);
724 ctx->current_buffer = ab;
725 ctx->pointer = (void *) ab->data + rest;
726 end = buffer + size + rest;
728 while (buffer < end)
729 buffer = handle_ar_packet(ctx, buffer);
731 dma_free_coherent(ohci->card.device, PAGE_SIZE,
732 start, start_bus);
733 ar_context_add_page(ctx);
734 } else {
735 buffer = ctx->pointer;
736 ctx->pointer = end =
737 (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
739 while (buffer < end)
740 buffer = handle_ar_packet(ctx, buffer);
744 static int ar_context_init(struct ar_context *ctx,
745 struct fw_ohci *ohci, u32 regs)
747 struct ar_buffer ab;
749 ctx->regs = regs;
750 ctx->ohci = ohci;
751 ctx->last_buffer = &ab;
752 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
754 ar_context_add_page(ctx);
755 ar_context_add_page(ctx);
756 ctx->current_buffer = ab.next;
757 ctx->pointer = ctx->current_buffer->data;
759 return 0;
762 static void ar_context_run(struct ar_context *ctx)
764 struct ar_buffer *ab = ctx->current_buffer;
765 dma_addr_t ab_bus;
766 size_t offset;
768 offset = offsetof(struct ar_buffer, data);
769 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
771 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
772 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
773 flush_writes(ctx->ohci);
776 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
778 int b, key;
780 b = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
781 key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
783 /* figure out which descriptor the branch address goes in */
784 if (z == 2 && (b == 3 || key == 2))
785 return d;
786 else
787 return d + z - 1;
790 static void context_tasklet(unsigned long data)
792 struct context *ctx = (struct context *) data;
793 struct descriptor *d, *last;
794 u32 address;
795 int z;
796 struct descriptor_buffer *desc;
798 desc = list_entry(ctx->buffer_list.next,
799 struct descriptor_buffer, list);
800 last = ctx->last;
801 while (last->branch_address != 0) {
802 struct descriptor_buffer *old_desc = desc;
803 address = le32_to_cpu(last->branch_address);
804 z = address & 0xf;
805 address &= ~0xf;
807 /* If the branch address points to a buffer outside of the
808 * current buffer, advance to the next buffer. */
809 if (address < desc->buffer_bus ||
810 address >= desc->buffer_bus + desc->used)
811 desc = list_entry(desc->list.next,
812 struct descriptor_buffer, list);
813 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
814 last = find_branch_descriptor(d, z);
816 if (!ctx->callback(ctx, d, last))
817 break;
819 if (old_desc != desc) {
820 /* If we've advanced to the next buffer, move the
821 * previous buffer to the free list. */
822 unsigned long flags;
823 old_desc->used = 0;
824 spin_lock_irqsave(&ctx->ohci->lock, flags);
825 list_move_tail(&old_desc->list, &ctx->buffer_list);
826 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
828 ctx->last = last;
833 * Allocate a new buffer and add it to the list of free buffers for this
834 * context. Must be called with ohci->lock held.
836 static int context_add_buffer(struct context *ctx)
838 struct descriptor_buffer *desc;
839 dma_addr_t uninitialized_var(bus_addr);
840 int offset;
843 * 16MB of descriptors should be far more than enough for any DMA
844 * program. This will catch run-away userspace or DoS attacks.
846 if (ctx->total_allocation >= 16*1024*1024)
847 return -ENOMEM;
849 desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
850 &bus_addr, GFP_ATOMIC);
851 if (!desc)
852 return -ENOMEM;
854 offset = (void *)&desc->buffer - (void *)desc;
855 desc->buffer_size = PAGE_SIZE - offset;
856 desc->buffer_bus = bus_addr + offset;
857 desc->used = 0;
859 list_add_tail(&desc->list, &ctx->buffer_list);
860 ctx->total_allocation += PAGE_SIZE;
862 return 0;
865 static int context_init(struct context *ctx, struct fw_ohci *ohci,
866 u32 regs, descriptor_callback_t callback)
868 ctx->ohci = ohci;
869 ctx->regs = regs;
870 ctx->total_allocation = 0;
872 INIT_LIST_HEAD(&ctx->buffer_list);
873 if (context_add_buffer(ctx) < 0)
874 return -ENOMEM;
876 ctx->buffer_tail = list_entry(ctx->buffer_list.next,
877 struct descriptor_buffer, list);
879 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
880 ctx->callback = callback;
883 * We put a dummy descriptor in the buffer that has a NULL
884 * branch address and looks like it's been sent. That way we
885 * have a descriptor to append DMA programs to.
887 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
888 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
889 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
890 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
891 ctx->last = ctx->buffer_tail->buffer;
892 ctx->prev = ctx->buffer_tail->buffer;
894 return 0;
897 static void context_release(struct context *ctx)
899 struct fw_card *card = &ctx->ohci->card;
900 struct descriptor_buffer *desc, *tmp;
902 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
903 dma_free_coherent(card->device, PAGE_SIZE, desc,
904 desc->buffer_bus -
905 ((void *)&desc->buffer - (void *)desc));
908 /* Must be called with ohci->lock held */
909 static struct descriptor *context_get_descriptors(struct context *ctx,
910 int z, dma_addr_t *d_bus)
912 struct descriptor *d = NULL;
913 struct descriptor_buffer *desc = ctx->buffer_tail;
915 if (z * sizeof(*d) > desc->buffer_size)
916 return NULL;
918 if (z * sizeof(*d) > desc->buffer_size - desc->used) {
919 /* No room for the descriptor in this buffer, so advance to the
920 * next one. */
922 if (desc->list.next == &ctx->buffer_list) {
923 /* If there is no free buffer next in the list,
924 * allocate one. */
925 if (context_add_buffer(ctx) < 0)
926 return NULL;
928 desc = list_entry(desc->list.next,
929 struct descriptor_buffer, list);
930 ctx->buffer_tail = desc;
933 d = desc->buffer + desc->used / sizeof(*d);
934 memset(d, 0, z * sizeof(*d));
935 *d_bus = desc->buffer_bus + desc->used;
937 return d;
940 static void context_run(struct context *ctx, u32 extra)
942 struct fw_ohci *ohci = ctx->ohci;
944 reg_write(ohci, COMMAND_PTR(ctx->regs),
945 le32_to_cpu(ctx->last->branch_address));
946 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
947 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
948 flush_writes(ohci);
951 static void context_append(struct context *ctx,
952 struct descriptor *d, int z, int extra)
954 dma_addr_t d_bus;
955 struct descriptor_buffer *desc = ctx->buffer_tail;
957 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
959 desc->used += (z + extra) * sizeof(*d);
960 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
961 ctx->prev = find_branch_descriptor(d, z);
963 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
964 flush_writes(ctx->ohci);
967 static void context_stop(struct context *ctx)
969 u32 reg;
970 int i;
972 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
973 flush_writes(ctx->ohci);
975 for (i = 0; i < 10; i++) {
976 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
977 if ((reg & CONTEXT_ACTIVE) == 0)
978 return;
980 mdelay(1);
982 fw_error("Error: DMA context still active (0x%08x)\n", reg);
985 struct driver_data {
986 struct fw_packet *packet;
990 * This function apppends a packet to the DMA queue for transmission.
991 * Must always be called with the ochi->lock held to ensure proper
992 * generation handling and locking around packet queue manipulation.
994 static int at_context_queue_packet(struct context *ctx,
995 struct fw_packet *packet)
997 struct fw_ohci *ohci = ctx->ohci;
998 dma_addr_t d_bus, uninitialized_var(payload_bus);
999 struct driver_data *driver_data;
1000 struct descriptor *d, *last;
1001 __le32 *header;
1002 int z, tcode;
1003 u32 reg;
1005 d = context_get_descriptors(ctx, 4, &d_bus);
1006 if (d == NULL) {
1007 packet->ack = RCODE_SEND_ERROR;
1008 return -1;
1011 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1012 d[0].res_count = cpu_to_le16(packet->timestamp);
1015 * The DMA format for asyncronous link packets is different
1016 * from the IEEE1394 layout, so shift the fields around
1017 * accordingly. If header_length is 8, it's a PHY packet, to
1018 * which we need to prepend an extra quadlet.
1021 header = (__le32 *) &d[1];
1022 switch (packet->header_length) {
1023 case 16:
1024 case 12:
1025 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1026 (packet->speed << 16));
1027 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1028 (packet->header[0] & 0xffff0000));
1029 header[2] = cpu_to_le32(packet->header[2]);
1031 tcode = (packet->header[0] >> 4) & 0x0f;
1032 if (TCODE_IS_BLOCK_PACKET(tcode))
1033 header[3] = cpu_to_le32(packet->header[3]);
1034 else
1035 header[3] = (__force __le32) packet->header[3];
1037 d[0].req_count = cpu_to_le16(packet->header_length);
1038 break;
1040 case 8:
1041 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1042 (packet->speed << 16));
1043 header[1] = cpu_to_le32(packet->header[0]);
1044 header[2] = cpu_to_le32(packet->header[1]);
1045 d[0].req_count = cpu_to_le16(12);
1046 break;
1048 case 4:
1049 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1050 (packet->speed << 16));
1051 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1052 d[0].req_count = cpu_to_le16(8);
1053 break;
1055 default:
1056 /* BUG(); */
1057 packet->ack = RCODE_SEND_ERROR;
1058 return -1;
1061 driver_data = (struct driver_data *) &d[3];
1062 driver_data->packet = packet;
1063 packet->driver_data = driver_data;
1065 if (packet->payload_length > 0) {
1066 payload_bus =
1067 dma_map_single(ohci->card.device, packet->payload,
1068 packet->payload_length, DMA_TO_DEVICE);
1069 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1070 packet->ack = RCODE_SEND_ERROR;
1071 return -1;
1073 packet->payload_bus = payload_bus;
1074 packet->payload_mapped = true;
1076 d[2].req_count = cpu_to_le16(packet->payload_length);
1077 d[2].data_address = cpu_to_le32(payload_bus);
1078 last = &d[2];
1079 z = 3;
1080 } else {
1081 last = &d[0];
1082 z = 2;
1085 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1086 DESCRIPTOR_IRQ_ALWAYS |
1087 DESCRIPTOR_BRANCH_ALWAYS);
1090 * If the controller and packet generations don't match, we need to
1091 * bail out and try again. If IntEvent.busReset is set, the AT context
1092 * is halted, so appending to the context and trying to run it is
1093 * futile. Most controllers do the right thing and just flush the AT
1094 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
1095 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
1096 * up stalling out. So we just bail out in software and try again
1097 * later, and everyone is happy.
1098 * FIXME: Document how the locking works.
1100 if (ohci->generation != packet->generation ||
1101 reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1102 if (packet->payload_mapped)
1103 dma_unmap_single(ohci->card.device, payload_bus,
1104 packet->payload_length, DMA_TO_DEVICE);
1105 packet->ack = RCODE_GENERATION;
1106 return -1;
1109 context_append(ctx, d, z, 4 - z);
1111 /* If the context isn't already running, start it up. */
1112 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1113 if ((reg & CONTEXT_RUN) == 0)
1114 context_run(ctx, 0);
1116 return 0;
1119 static int handle_at_packet(struct context *context,
1120 struct descriptor *d,
1121 struct descriptor *last)
1123 struct driver_data *driver_data;
1124 struct fw_packet *packet;
1125 struct fw_ohci *ohci = context->ohci;
1126 int evt;
1128 if (last->transfer_status == 0)
1129 /* This descriptor isn't done yet, stop iteration. */
1130 return 0;
1132 driver_data = (struct driver_data *) &d[3];
1133 packet = driver_data->packet;
1134 if (packet == NULL)
1135 /* This packet was cancelled, just continue. */
1136 return 1;
1138 if (packet->payload_mapped)
1139 dma_unmap_single(ohci->card.device, packet->payload_bus,
1140 packet->payload_length, DMA_TO_DEVICE);
1142 evt = le16_to_cpu(last->transfer_status) & 0x1f;
1143 packet->timestamp = le16_to_cpu(last->res_count);
1145 log_ar_at_event('T', packet->speed, packet->header, evt);
1147 switch (evt) {
1148 case OHCI1394_evt_timeout:
1149 /* Async response transmit timed out. */
1150 packet->ack = RCODE_CANCELLED;
1151 break;
1153 case OHCI1394_evt_flushed:
1155 * The packet was flushed should give same error as
1156 * when we try to use a stale generation count.
1158 packet->ack = RCODE_GENERATION;
1159 break;
1161 case OHCI1394_evt_missing_ack:
1163 * Using a valid (current) generation count, but the
1164 * node is not on the bus or not sending acks.
1166 packet->ack = RCODE_NO_ACK;
1167 break;
1169 case ACK_COMPLETE + 0x10:
1170 case ACK_PENDING + 0x10:
1171 case ACK_BUSY_X + 0x10:
1172 case ACK_BUSY_A + 0x10:
1173 case ACK_BUSY_B + 0x10:
1174 case ACK_DATA_ERROR + 0x10:
1175 case ACK_TYPE_ERROR + 0x10:
1176 packet->ack = evt - 0x10;
1177 break;
1179 default:
1180 packet->ack = RCODE_SEND_ERROR;
1181 break;
1184 packet->callback(packet, &ohci->card, packet->ack);
1186 return 1;
1189 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1190 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1191 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1192 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1193 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1195 static void handle_local_rom(struct fw_ohci *ohci,
1196 struct fw_packet *packet, u32 csr)
1198 struct fw_packet response;
1199 int tcode, length, i;
1201 tcode = HEADER_GET_TCODE(packet->header[0]);
1202 if (TCODE_IS_BLOCK_PACKET(tcode))
1203 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1204 else
1205 length = 4;
1207 i = csr - CSR_CONFIG_ROM;
1208 if (i + length > CONFIG_ROM_SIZE) {
1209 fw_fill_response(&response, packet->header,
1210 RCODE_ADDRESS_ERROR, NULL, 0);
1211 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1212 fw_fill_response(&response, packet->header,
1213 RCODE_TYPE_ERROR, NULL, 0);
1214 } else {
1215 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1216 (void *) ohci->config_rom + i, length);
1219 fw_core_handle_response(&ohci->card, &response);
1222 static void handle_local_lock(struct fw_ohci *ohci,
1223 struct fw_packet *packet, u32 csr)
1225 struct fw_packet response;
1226 int tcode, length, ext_tcode, sel;
1227 __be32 *payload, lock_old;
1228 u32 lock_arg, lock_data;
1230 tcode = HEADER_GET_TCODE(packet->header[0]);
1231 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1232 payload = packet->payload;
1233 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1235 if (tcode == TCODE_LOCK_REQUEST &&
1236 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1237 lock_arg = be32_to_cpu(payload[0]);
1238 lock_data = be32_to_cpu(payload[1]);
1239 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1240 lock_arg = 0;
1241 lock_data = 0;
1242 } else {
1243 fw_fill_response(&response, packet->header,
1244 RCODE_TYPE_ERROR, NULL, 0);
1245 goto out;
1248 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1249 reg_write(ohci, OHCI1394_CSRData, lock_data);
1250 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1251 reg_write(ohci, OHCI1394_CSRControl, sel);
1253 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
1254 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
1255 else
1256 fw_notify("swap not done yet\n");
1258 fw_fill_response(&response, packet->header,
1259 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1260 out:
1261 fw_core_handle_response(&ohci->card, &response);
1264 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1266 u64 offset;
1267 u32 csr;
1269 if (ctx == &ctx->ohci->at_request_ctx) {
1270 packet->ack = ACK_PENDING;
1271 packet->callback(packet, &ctx->ohci->card, packet->ack);
1274 offset =
1275 ((unsigned long long)
1276 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1277 packet->header[2];
1278 csr = offset - CSR_REGISTER_BASE;
1280 /* Handle config rom reads. */
1281 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1282 handle_local_rom(ctx->ohci, packet, csr);
1283 else switch (csr) {
1284 case CSR_BUS_MANAGER_ID:
1285 case CSR_BANDWIDTH_AVAILABLE:
1286 case CSR_CHANNELS_AVAILABLE_HI:
1287 case CSR_CHANNELS_AVAILABLE_LO:
1288 handle_local_lock(ctx->ohci, packet, csr);
1289 break;
1290 default:
1291 if (ctx == &ctx->ohci->at_request_ctx)
1292 fw_core_handle_request(&ctx->ohci->card, packet);
1293 else
1294 fw_core_handle_response(&ctx->ohci->card, packet);
1295 break;
1298 if (ctx == &ctx->ohci->at_response_ctx) {
1299 packet->ack = ACK_COMPLETE;
1300 packet->callback(packet, &ctx->ohci->card, packet->ack);
1304 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1306 unsigned long flags;
1307 int ret;
1309 spin_lock_irqsave(&ctx->ohci->lock, flags);
1311 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1312 ctx->ohci->generation == packet->generation) {
1313 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1314 handle_local_request(ctx, packet);
1315 return;
1318 ret = at_context_queue_packet(ctx, packet);
1319 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1321 if (ret < 0)
1322 packet->callback(packet, &ctx->ohci->card, packet->ack);
1326 static u32 cycle_timer_ticks(u32 cycle_timer)
1328 u32 ticks;
1330 ticks = cycle_timer & 0xfff;
1331 ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1332 ticks += (3072 * 8000) * (cycle_timer >> 25);
1334 return ticks;
1338 * Some controllers exhibit one or more of the following bugs when updating the
1339 * iso cycle timer register:
1340 * - When the lowest six bits are wrapping around to zero, a read that happens
1341 * at the same time will return garbage in the lowest ten bits.
1342 * - When the cycleOffset field wraps around to zero, the cycleCount field is
1343 * not incremented for about 60 ns.
1344 * - Occasionally, the entire register reads zero.
1346 * To catch these, we read the register three times and ensure that the
1347 * difference between each two consecutive reads is approximately the same, i.e.
1348 * less than twice the other. Furthermore, any negative difference indicates an
1349 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1350 * execute, so we have enough precision to compute the ratio of the differences.)
1352 static u32 get_cycle_time(struct fw_ohci *ohci)
1354 u32 c0, c1, c2;
1355 u32 t0, t1, t2;
1356 s32 diff01, diff12;
1357 int i;
1359 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1361 if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1362 i = 0;
1363 c1 = c2;
1364 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1365 do {
1366 c0 = c1;
1367 c1 = c2;
1368 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1369 t0 = cycle_timer_ticks(c0);
1370 t1 = cycle_timer_ticks(c1);
1371 t2 = cycle_timer_ticks(c2);
1372 diff01 = t1 - t0;
1373 diff12 = t2 - t1;
1374 } while ((diff01 <= 0 || diff12 <= 0 ||
1375 diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1376 && i++ < 20);
1379 return c2;
1383 * This function has to be called at least every 64 seconds. The bus_time
1384 * field stores not only the upper 25 bits of the BUS_TIME register but also
1385 * the most significant bit of the cycle timer in bit 6 so that we can detect
1386 * changes in this bit.
1388 static u32 update_bus_time(struct fw_ohci *ohci)
1390 u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1392 if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1393 ohci->bus_time += 0x40;
1395 return ohci->bus_time | cycle_time_seconds;
1398 static void bus_reset_tasklet(unsigned long data)
1400 struct fw_ohci *ohci = (struct fw_ohci *)data;
1401 int self_id_count, i, j, reg;
1402 int generation, new_generation;
1403 unsigned long flags;
1404 void *free_rom = NULL;
1405 dma_addr_t free_rom_bus = 0;
1406 bool is_new_root;
1408 reg = reg_read(ohci, OHCI1394_NodeID);
1409 if (!(reg & OHCI1394_NodeID_idValid)) {
1410 fw_notify("node ID not valid, new bus reset in progress\n");
1411 return;
1413 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1414 fw_notify("malconfigured bus\n");
1415 return;
1417 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1418 OHCI1394_NodeID_nodeNumber);
1420 is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1421 if (!(ohci->is_root && is_new_root))
1422 reg_write(ohci, OHCI1394_LinkControlSet,
1423 OHCI1394_LinkControl_cycleMaster);
1424 ohci->is_root = is_new_root;
1426 reg = reg_read(ohci, OHCI1394_SelfIDCount);
1427 if (reg & OHCI1394_SelfIDCount_selfIDError) {
1428 fw_notify("inconsistent self IDs\n");
1429 return;
1432 * The count in the SelfIDCount register is the number of
1433 * bytes in the self ID receive buffer. Since we also receive
1434 * the inverted quadlets and a header quadlet, we shift one
1435 * bit extra to get the actual number of self IDs.
1437 self_id_count = (reg >> 3) & 0xff;
1438 if (self_id_count == 0 || self_id_count > 252) {
1439 fw_notify("inconsistent self IDs\n");
1440 return;
1442 generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1443 rmb();
1445 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1446 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1447 fw_notify("inconsistent self IDs\n");
1448 return;
1450 ohci->self_id_buffer[j] =
1451 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1453 rmb();
1456 * Check the consistency of the self IDs we just read. The
1457 * problem we face is that a new bus reset can start while we
1458 * read out the self IDs from the DMA buffer. If this happens,
1459 * the DMA buffer will be overwritten with new self IDs and we
1460 * will read out inconsistent data. The OHCI specification
1461 * (section 11.2) recommends a technique similar to
1462 * linux/seqlock.h, where we remember the generation of the
1463 * self IDs in the buffer before reading them out and compare
1464 * it to the current generation after reading them out. If
1465 * the two generations match we know we have a consistent set
1466 * of self IDs.
1469 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1470 if (new_generation != generation) {
1471 fw_notify("recursive bus reset detected, "
1472 "discarding self ids\n");
1473 return;
1476 /* FIXME: Document how the locking works. */
1477 spin_lock_irqsave(&ohci->lock, flags);
1479 ohci->generation = generation;
1480 context_stop(&ohci->at_request_ctx);
1481 context_stop(&ohci->at_response_ctx);
1482 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1484 if (ohci->quirks & QUIRK_RESET_PACKET)
1485 ohci->request_generation = generation;
1488 * This next bit is unrelated to the AT context stuff but we
1489 * have to do it under the spinlock also. If a new config rom
1490 * was set up before this reset, the old one is now no longer
1491 * in use and we can free it. Update the config rom pointers
1492 * to point to the current config rom and clear the
1493 * next_config_rom pointer so a new udpate can take place.
1496 if (ohci->next_config_rom != NULL) {
1497 if (ohci->next_config_rom != ohci->config_rom) {
1498 free_rom = ohci->config_rom;
1499 free_rom_bus = ohci->config_rom_bus;
1501 ohci->config_rom = ohci->next_config_rom;
1502 ohci->config_rom_bus = ohci->next_config_rom_bus;
1503 ohci->next_config_rom = NULL;
1506 * Restore config_rom image and manually update
1507 * config_rom registers. Writing the header quadlet
1508 * will indicate that the config rom is ready, so we
1509 * do that last.
1511 reg_write(ohci, OHCI1394_BusOptions,
1512 be32_to_cpu(ohci->config_rom[2]));
1513 ohci->config_rom[0] = ohci->next_header;
1514 reg_write(ohci, OHCI1394_ConfigROMhdr,
1515 be32_to_cpu(ohci->next_header));
1518 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1519 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1520 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1521 #endif
1523 spin_unlock_irqrestore(&ohci->lock, flags);
1525 if (free_rom)
1526 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1527 free_rom, free_rom_bus);
1529 log_selfids(ohci->node_id, generation,
1530 self_id_count, ohci->self_id_buffer);
1532 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1533 self_id_count, ohci->self_id_buffer);
1536 static irqreturn_t irq_handler(int irq, void *data)
1538 struct fw_ohci *ohci = data;
1539 u32 event, iso_event;
1540 int i;
1542 event = reg_read(ohci, OHCI1394_IntEventClear);
1544 if (!event || !~event)
1545 return IRQ_NONE;
1547 /* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1548 reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1549 log_irqs(event);
1551 if (event & OHCI1394_selfIDComplete)
1552 tasklet_schedule(&ohci->bus_reset_tasklet);
1554 if (event & OHCI1394_RQPkt)
1555 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1557 if (event & OHCI1394_RSPkt)
1558 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1560 if (event & OHCI1394_reqTxComplete)
1561 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1563 if (event & OHCI1394_respTxComplete)
1564 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1566 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1567 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1569 while (iso_event) {
1570 i = ffs(iso_event) - 1;
1571 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1572 iso_event &= ~(1 << i);
1575 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1576 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1578 while (iso_event) {
1579 i = ffs(iso_event) - 1;
1580 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1581 iso_event &= ~(1 << i);
1584 if (unlikely(event & OHCI1394_regAccessFail))
1585 fw_error("Register access failure - "
1586 "please notify linux1394-devel@lists.sf.net\n");
1588 if (unlikely(event & OHCI1394_postedWriteErr))
1589 fw_error("PCI posted write error\n");
1591 if (unlikely(event & OHCI1394_cycleTooLong)) {
1592 if (printk_ratelimit())
1593 fw_notify("isochronous cycle too long\n");
1594 reg_write(ohci, OHCI1394_LinkControlSet,
1595 OHCI1394_LinkControl_cycleMaster);
1598 if (unlikely(event & OHCI1394_cycleInconsistent)) {
1600 * We need to clear this event bit in order to make
1601 * cycleMatch isochronous I/O work. In theory we should
1602 * stop active cycleMatch iso contexts now and restart
1603 * them at least two cycles later. (FIXME?)
1605 if (printk_ratelimit())
1606 fw_notify("isochronous cycle inconsistent\n");
1609 if (event & OHCI1394_cycle64Seconds) {
1610 spin_lock(&ohci->lock);
1611 update_bus_time(ohci);
1612 spin_unlock(&ohci->lock);
1615 return IRQ_HANDLED;
1618 static int software_reset(struct fw_ohci *ohci)
1620 int i;
1622 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1624 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1625 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1626 OHCI1394_HCControl_softReset) == 0)
1627 return 0;
1628 msleep(1);
1631 return -EBUSY;
1634 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
1636 size_t size = length * 4;
1638 memcpy(dest, src, size);
1639 if (size < CONFIG_ROM_SIZE)
1640 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
1643 static int configure_1394a_enhancements(struct fw_ohci *ohci)
1645 bool enable_1394a;
1646 int ret, clear, set, offset;
1648 /* Check if the driver should configure link and PHY. */
1649 if (!(reg_read(ohci, OHCI1394_HCControlSet) &
1650 OHCI1394_HCControl_programPhyEnable))
1651 return 0;
1653 /* Paranoia: check whether the PHY supports 1394a, too. */
1654 enable_1394a = false;
1655 ret = read_phy_reg(ohci, 2);
1656 if (ret < 0)
1657 return ret;
1658 if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
1659 ret = read_paged_phy_reg(ohci, 1, 8);
1660 if (ret < 0)
1661 return ret;
1662 if (ret >= 1)
1663 enable_1394a = true;
1666 if (ohci->quirks & QUIRK_NO_1394A)
1667 enable_1394a = false;
1669 /* Configure PHY and link consistently. */
1670 if (enable_1394a) {
1671 clear = 0;
1672 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1673 } else {
1674 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1675 set = 0;
1677 ret = ohci_update_phy_reg(&ohci->card, 5, clear, set);
1678 if (ret < 0)
1679 return ret;
1681 if (enable_1394a)
1682 offset = OHCI1394_HCControlSet;
1683 else
1684 offset = OHCI1394_HCControlClear;
1685 reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
1687 /* Clean up: configuration has been taken care of. */
1688 reg_write(ohci, OHCI1394_HCControlClear,
1689 OHCI1394_HCControl_programPhyEnable);
1691 return 0;
1694 static int ohci_enable(struct fw_card *card,
1695 const __be32 *config_rom, size_t length)
1697 struct fw_ohci *ohci = fw_ohci(card);
1698 struct pci_dev *dev = to_pci_dev(card->device);
1699 u32 lps, seconds, version, irqs;
1700 int i, ret;
1702 if (software_reset(ohci)) {
1703 fw_error("Failed to reset ohci card.\n");
1704 return -EBUSY;
1708 * Now enable LPS, which we need in order to start accessing
1709 * most of the registers. In fact, on some cards (ALI M5251),
1710 * accessing registers in the SClk domain without LPS enabled
1711 * will lock up the machine. Wait 50msec to make sure we have
1712 * full link enabled. However, with some cards (well, at least
1713 * a JMicron PCIe card), we have to try again sometimes.
1715 reg_write(ohci, OHCI1394_HCControlSet,
1716 OHCI1394_HCControl_LPS |
1717 OHCI1394_HCControl_postedWriteEnable);
1718 flush_writes(ohci);
1720 for (lps = 0, i = 0; !lps && i < 3; i++) {
1721 msleep(50);
1722 lps = reg_read(ohci, OHCI1394_HCControlSet) &
1723 OHCI1394_HCControl_LPS;
1726 if (!lps) {
1727 fw_error("Failed to set Link Power Status\n");
1728 return -EIO;
1731 reg_write(ohci, OHCI1394_HCControlClear,
1732 OHCI1394_HCControl_noByteSwapData);
1734 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1735 reg_write(ohci, OHCI1394_LinkControlClear,
1736 OHCI1394_LinkControl_rcvPhyPkt);
1737 reg_write(ohci, OHCI1394_LinkControlSet,
1738 OHCI1394_LinkControl_rcvSelfID |
1739 OHCI1394_LinkControl_cycleTimerEnable |
1740 OHCI1394_LinkControl_cycleMaster);
1742 reg_write(ohci, OHCI1394_ATRetries,
1743 OHCI1394_MAX_AT_REQ_RETRIES |
1744 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1745 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
1746 (200 << 16));
1748 seconds = lower_32_bits(get_seconds());
1749 reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
1750 ohci->bus_time = seconds & ~0x3f;
1752 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
1753 if (version >= OHCI_VERSION_1_1) {
1754 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
1755 0xfffffffe);
1756 ohci->features |= FEATURE_CHANNEL_31_ALLOCATED;
1759 /* Get implemented bits of the priority arbitration request counter. */
1760 reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
1761 ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
1762 reg_write(ohci, OHCI1394_FairnessControl, 0);
1763 if (ohci->pri_req_max != 0)
1764 ohci->features |= FEATURE_PRIORITY_BUDGET;
1766 ar_context_run(&ohci->ar_request_ctx);
1767 ar_context_run(&ohci->ar_response_ctx);
1769 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1770 reg_write(ohci, OHCI1394_IntEventClear, ~0);
1771 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1773 ret = configure_1394a_enhancements(ohci);
1774 if (ret < 0)
1775 return ret;
1777 /* Activate link_on bit and contender bit in our self ID packets.*/
1778 ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
1779 if (ret < 0)
1780 return ret;
1783 * When the link is not yet enabled, the atomic config rom
1784 * update mechanism described below in ohci_set_config_rom()
1785 * is not active. We have to update ConfigRomHeader and
1786 * BusOptions manually, and the write to ConfigROMmap takes
1787 * effect immediately. We tie this to the enabling of the
1788 * link, so we have a valid config rom before enabling - the
1789 * OHCI requires that ConfigROMhdr and BusOptions have valid
1790 * values before enabling.
1792 * However, when the ConfigROMmap is written, some controllers
1793 * always read back quadlets 0 and 2 from the config rom to
1794 * the ConfigRomHeader and BusOptions registers on bus reset.
1795 * They shouldn't do that in this initial case where the link
1796 * isn't enabled. This means we have to use the same
1797 * workaround here, setting the bus header to 0 and then write
1798 * the right values in the bus reset tasklet.
1801 if (config_rom) {
1802 ohci->next_config_rom =
1803 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1804 &ohci->next_config_rom_bus,
1805 GFP_KERNEL);
1806 if (ohci->next_config_rom == NULL)
1807 return -ENOMEM;
1809 copy_config_rom(ohci->next_config_rom, config_rom, length);
1810 } else {
1812 * In the suspend case, config_rom is NULL, which
1813 * means that we just reuse the old config rom.
1815 ohci->next_config_rom = ohci->config_rom;
1816 ohci->next_config_rom_bus = ohci->config_rom_bus;
1819 ohci->next_header = ohci->next_config_rom[0];
1820 ohci->next_config_rom[0] = 0;
1821 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1822 reg_write(ohci, OHCI1394_BusOptions,
1823 be32_to_cpu(ohci->next_config_rom[2]));
1824 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1826 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1828 if (!(ohci->quirks & QUIRK_NO_MSI))
1829 pci_enable_msi(dev);
1830 if (request_irq(dev->irq, irq_handler,
1831 pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
1832 ohci_driver_name, ohci)) {
1833 fw_error("Failed to allocate interrupt %d.\n", dev->irq);
1834 pci_disable_msi(dev);
1835 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1836 ohci->config_rom, ohci->config_rom_bus);
1837 return -EIO;
1840 irqs = OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1841 OHCI1394_RQPkt | OHCI1394_RSPkt |
1842 OHCI1394_isochTx | OHCI1394_isochRx |
1843 OHCI1394_postedWriteErr |
1844 OHCI1394_selfIDComplete |
1845 OHCI1394_regAccessFail |
1846 OHCI1394_cycle64Seconds |
1847 OHCI1394_cycleInconsistent | OHCI1394_cycleTooLong |
1848 OHCI1394_masterIntEnable;
1849 if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
1850 irqs |= OHCI1394_busReset;
1851 reg_write(ohci, OHCI1394_IntMaskSet, irqs);
1853 reg_write(ohci, OHCI1394_HCControlSet,
1854 OHCI1394_HCControl_linkEnable |
1855 OHCI1394_HCControl_BIBimageValid);
1856 flush_writes(ohci);
1859 * We are ready to go, initiate bus reset to finish the
1860 * initialization.
1863 fw_core_initiate_bus_reset(&ohci->card, 1);
1865 return 0;
1868 static int ohci_set_config_rom(struct fw_card *card,
1869 const __be32 *config_rom, size_t length)
1871 struct fw_ohci *ohci;
1872 unsigned long flags;
1873 int ret = -EBUSY;
1874 __be32 *next_config_rom;
1875 dma_addr_t uninitialized_var(next_config_rom_bus);
1877 ohci = fw_ohci(card);
1880 * When the OHCI controller is enabled, the config rom update
1881 * mechanism is a bit tricky, but easy enough to use. See
1882 * section 5.5.6 in the OHCI specification.
1884 * The OHCI controller caches the new config rom address in a
1885 * shadow register (ConfigROMmapNext) and needs a bus reset
1886 * for the changes to take place. When the bus reset is
1887 * detected, the controller loads the new values for the
1888 * ConfigRomHeader and BusOptions registers from the specified
1889 * config rom and loads ConfigROMmap from the ConfigROMmapNext
1890 * shadow register. All automatically and atomically.
1892 * Now, there's a twist to this story. The automatic load of
1893 * ConfigRomHeader and BusOptions doesn't honor the
1894 * noByteSwapData bit, so with a be32 config rom, the
1895 * controller will load be32 values in to these registers
1896 * during the atomic update, even on litte endian
1897 * architectures. The workaround we use is to put a 0 in the
1898 * header quadlet; 0 is endian agnostic and means that the
1899 * config rom isn't ready yet. In the bus reset tasklet we
1900 * then set up the real values for the two registers.
1902 * We use ohci->lock to avoid racing with the code that sets
1903 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1906 next_config_rom =
1907 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1908 &next_config_rom_bus, GFP_KERNEL);
1909 if (next_config_rom == NULL)
1910 return -ENOMEM;
1912 spin_lock_irqsave(&ohci->lock, flags);
1914 if (ohci->next_config_rom == NULL) {
1915 ohci->next_config_rom = next_config_rom;
1916 ohci->next_config_rom_bus = next_config_rom_bus;
1918 copy_config_rom(ohci->next_config_rom, config_rom, length);
1920 ohci->next_header = config_rom[0];
1921 ohci->next_config_rom[0] = 0;
1923 reg_write(ohci, OHCI1394_ConfigROMmap,
1924 ohci->next_config_rom_bus);
1925 ret = 0;
1928 spin_unlock_irqrestore(&ohci->lock, flags);
1931 * Now initiate a bus reset to have the changes take
1932 * effect. We clean up the old config rom memory and DMA
1933 * mappings in the bus reset tasklet, since the OHCI
1934 * controller could need to access it before the bus reset
1935 * takes effect.
1937 if (ret == 0)
1938 fw_core_initiate_bus_reset(&ohci->card, 1);
1939 else
1940 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1941 next_config_rom, next_config_rom_bus);
1943 return ret;
1946 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1948 struct fw_ohci *ohci = fw_ohci(card);
1950 at_context_transmit(&ohci->at_request_ctx, packet);
1953 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1955 struct fw_ohci *ohci = fw_ohci(card);
1957 at_context_transmit(&ohci->at_response_ctx, packet);
1960 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1962 struct fw_ohci *ohci = fw_ohci(card);
1963 struct context *ctx = &ohci->at_request_ctx;
1964 struct driver_data *driver_data = packet->driver_data;
1965 int ret = -ENOENT;
1967 tasklet_disable(&ctx->tasklet);
1969 if (packet->ack != 0)
1970 goto out;
1972 if (packet->payload_mapped)
1973 dma_unmap_single(ohci->card.device, packet->payload_bus,
1974 packet->payload_length, DMA_TO_DEVICE);
1976 log_ar_at_event('T', packet->speed, packet->header, 0x20);
1977 driver_data->packet = NULL;
1978 packet->ack = RCODE_CANCELLED;
1979 packet->callback(packet, &ohci->card, packet->ack);
1980 ret = 0;
1981 out:
1982 tasklet_enable(&ctx->tasklet);
1984 return ret;
1987 static int ohci_enable_phys_dma(struct fw_card *card,
1988 int node_id, int generation)
1990 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1991 return 0;
1992 #else
1993 struct fw_ohci *ohci = fw_ohci(card);
1994 unsigned long flags;
1995 int n, ret = 0;
1998 * FIXME: Make sure this bitmask is cleared when we clear the busReset
1999 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
2002 spin_lock_irqsave(&ohci->lock, flags);
2004 if (ohci->generation != generation) {
2005 ret = -ESTALE;
2006 goto out;
2010 * Note, if the node ID contains a non-local bus ID, physical DMA is
2011 * enabled for _all_ nodes on remote buses.
2014 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2015 if (n < 32)
2016 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2017 else
2018 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2020 flush_writes(ohci);
2021 out:
2022 spin_unlock_irqrestore(&ohci->lock, flags);
2024 return ret;
2025 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2028 static u32 ohci_read_csr_reg(struct fw_card *card, int csr_offset)
2030 struct fw_ohci *ohci = fw_ohci(card);
2031 unsigned long flags;
2032 u32 value;
2034 switch (csr_offset) {
2035 case CSR_STATE_CLEAR:
2036 case CSR_STATE_SET:
2037 /* the controller driver handles only the cmstr bit */
2038 if (ohci->is_root &&
2039 (reg_read(ohci, OHCI1394_LinkControlSet) &
2040 OHCI1394_LinkControl_cycleMaster))
2041 return CSR_STATE_BIT_CMSTR;
2042 else
2043 return 0;
2045 case CSR_NODE_IDS:
2046 return reg_read(ohci, OHCI1394_NodeID) << 16;
2048 case CSR_CYCLE_TIME:
2049 return get_cycle_time(ohci);
2051 case CSR_BUS_TIME:
2053 * We might be called just after the cycle timer has wrapped
2054 * around but just before the cycle64Seconds handler, so we
2055 * better check here, too, if the bus time needs to be updated.
2057 spin_lock_irqsave(&ohci->lock, flags);
2058 value = update_bus_time(ohci);
2059 spin_unlock_irqrestore(&ohci->lock, flags);
2060 return value;
2062 case CSR_BUSY_TIMEOUT:
2063 value = reg_read(ohci, OHCI1394_ATRetries);
2064 return (value >> 4) & 0x0ffff00f;
2066 case CSR_PRIORITY_BUDGET:
2067 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2068 (ohci->pri_req_max << 8);
2070 default:
2071 WARN_ON(1);
2072 return 0;
2076 static void ohci_write_csr_reg(struct fw_card *card, int csr_offset, u32 value)
2078 struct fw_ohci *ohci = fw_ohci(card);
2079 unsigned long flags;
2081 switch (csr_offset) {
2082 case CSR_STATE_CLEAR:
2083 /* the controller driver handles only the cmstr bit */
2084 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2085 reg_write(ohci, OHCI1394_LinkControlClear,
2086 OHCI1394_LinkControl_cycleMaster);
2087 flush_writes(ohci);
2089 break;
2091 case CSR_STATE_SET:
2092 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2093 reg_write(ohci, OHCI1394_LinkControlSet,
2094 OHCI1394_LinkControl_cycleMaster);
2095 flush_writes(ohci);
2097 break;
2099 case CSR_NODE_IDS:
2100 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2101 flush_writes(ohci);
2102 break;
2104 case CSR_CYCLE_TIME:
2105 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2106 reg_write(ohci, OHCI1394_IntEventSet,
2107 OHCI1394_cycleInconsistent);
2108 flush_writes(ohci);
2109 break;
2111 case CSR_BUS_TIME:
2112 spin_lock_irqsave(&ohci->lock, flags);
2113 ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
2114 spin_unlock_irqrestore(&ohci->lock, flags);
2115 break;
2117 case CSR_BUSY_TIMEOUT:
2118 value = (value & 0xf) | ((value & 0xf) << 4) |
2119 ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2120 reg_write(ohci, OHCI1394_ATRetries, value);
2121 flush_writes(ohci);
2122 break;
2124 case CSR_PRIORITY_BUDGET:
2125 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2126 flush_writes(ohci);
2127 break;
2129 default:
2130 WARN_ON(1);
2131 break;
2135 static unsigned int ohci_get_features(struct fw_card *card)
2137 struct fw_ohci *ohci = fw_ohci(card);
2139 return ohci->features;
2142 static void copy_iso_headers(struct iso_context *ctx, void *p)
2144 int i = ctx->header_length;
2146 if (i + ctx->base.header_size > PAGE_SIZE)
2147 return;
2150 * The iso header is byteswapped to little endian by
2151 * the controller, but the remaining header quadlets
2152 * are big endian. We want to present all the headers
2153 * as big endian, so we have to swap the first quadlet.
2155 if (ctx->base.header_size > 0)
2156 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
2157 if (ctx->base.header_size > 4)
2158 *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
2159 if (ctx->base.header_size > 8)
2160 memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
2161 ctx->header_length += ctx->base.header_size;
2164 static int handle_ir_packet_per_buffer(struct context *context,
2165 struct descriptor *d,
2166 struct descriptor *last)
2168 struct iso_context *ctx =
2169 container_of(context, struct iso_context, context);
2170 struct descriptor *pd;
2171 __le32 *ir_header;
2172 void *p;
2174 for (pd = d; pd <= last; pd++) {
2175 if (pd->transfer_status)
2176 break;
2178 if (pd > last)
2179 /* Descriptor(s) not done yet, stop iteration */
2180 return 0;
2182 p = last + 1;
2183 copy_iso_headers(ctx, p);
2185 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2186 ir_header = (__le32 *) p;
2187 ctx->base.callback(&ctx->base,
2188 le32_to_cpu(ir_header[0]) & 0xffff,
2189 ctx->header_length, ctx->header,
2190 ctx->base.callback_data);
2191 ctx->header_length = 0;
2194 return 1;
2197 static int handle_it_packet(struct context *context,
2198 struct descriptor *d,
2199 struct descriptor *last)
2201 struct iso_context *ctx =
2202 container_of(context, struct iso_context, context);
2203 int i;
2204 struct descriptor *pd;
2206 for (pd = d; pd <= last; pd++)
2207 if (pd->transfer_status)
2208 break;
2209 if (pd > last)
2210 /* Descriptor(s) not done yet, stop iteration */
2211 return 0;
2213 i = ctx->header_length;
2214 if (i + 4 < PAGE_SIZE) {
2215 /* Present this value as big-endian to match the receive code */
2216 *(__be32 *)(ctx->header + i) = cpu_to_be32(
2217 ((u32)le16_to_cpu(pd->transfer_status) << 16) |
2218 le16_to_cpu(pd->res_count));
2219 ctx->header_length += 4;
2221 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2222 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
2223 ctx->header_length, ctx->header,
2224 ctx->base.callback_data);
2225 ctx->header_length = 0;
2227 return 1;
2230 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2231 int type, int channel, size_t header_size)
2233 struct fw_ohci *ohci = fw_ohci(card);
2234 struct iso_context *ctx, *list;
2235 descriptor_callback_t callback;
2236 u64 *channels, dont_care = ~0ULL;
2237 u32 *mask, regs;
2238 unsigned long flags;
2239 int index, ret = -ENOMEM;
2241 if (type == FW_ISO_CONTEXT_TRANSMIT) {
2242 channels = &dont_care;
2243 mask = &ohci->it_context_mask;
2244 list = ohci->it_context_list;
2245 callback = handle_it_packet;
2246 } else {
2247 channels = &ohci->ir_context_channels;
2248 mask = &ohci->ir_context_mask;
2249 list = ohci->ir_context_list;
2250 callback = handle_ir_packet_per_buffer;
2253 spin_lock_irqsave(&ohci->lock, flags);
2254 index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2255 if (index >= 0) {
2256 *channels &= ~(1ULL << channel);
2257 *mask &= ~(1 << index);
2259 spin_unlock_irqrestore(&ohci->lock, flags);
2261 if (index < 0)
2262 return ERR_PTR(-EBUSY);
2264 if (type == FW_ISO_CONTEXT_TRANSMIT)
2265 regs = OHCI1394_IsoXmitContextBase(index);
2266 else
2267 regs = OHCI1394_IsoRcvContextBase(index);
2269 ctx = &list[index];
2270 memset(ctx, 0, sizeof(*ctx));
2271 ctx->header_length = 0;
2272 ctx->header = (void *) __get_free_page(GFP_KERNEL);
2273 if (ctx->header == NULL)
2274 goto out;
2276 ret = context_init(&ctx->context, ohci, regs, callback);
2277 if (ret < 0)
2278 goto out_with_header;
2280 return &ctx->base;
2282 out_with_header:
2283 free_page((unsigned long)ctx->header);
2284 out:
2285 spin_lock_irqsave(&ohci->lock, flags);
2286 *mask |= 1 << index;
2287 spin_unlock_irqrestore(&ohci->lock, flags);
2289 return ERR_PTR(ret);
2292 static int ohci_start_iso(struct fw_iso_context *base,
2293 s32 cycle, u32 sync, u32 tags)
2295 struct iso_context *ctx = container_of(base, struct iso_context, base);
2296 struct fw_ohci *ohci = ctx->context.ohci;
2297 u32 control, match;
2298 int index;
2300 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2301 index = ctx - ohci->it_context_list;
2302 match = 0;
2303 if (cycle >= 0)
2304 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2305 (cycle & 0x7fff) << 16;
2307 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2308 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2309 context_run(&ctx->context, match);
2310 } else {
2311 index = ctx - ohci->ir_context_list;
2312 control = IR_CONTEXT_ISOCH_HEADER;
2313 match = (tags << 28) | (sync << 8) | ctx->base.channel;
2314 if (cycle >= 0) {
2315 match |= (cycle & 0x07fff) << 12;
2316 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2319 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2320 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2321 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2322 context_run(&ctx->context, control);
2325 return 0;
2328 static int ohci_stop_iso(struct fw_iso_context *base)
2330 struct fw_ohci *ohci = fw_ohci(base->card);
2331 struct iso_context *ctx = container_of(base, struct iso_context, base);
2332 int index;
2334 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2335 index = ctx - ohci->it_context_list;
2336 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2337 } else {
2338 index = ctx - ohci->ir_context_list;
2339 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2341 flush_writes(ohci);
2342 context_stop(&ctx->context);
2344 return 0;
2347 static void ohci_free_iso_context(struct fw_iso_context *base)
2349 struct fw_ohci *ohci = fw_ohci(base->card);
2350 struct iso_context *ctx = container_of(base, struct iso_context, base);
2351 unsigned long flags;
2352 int index;
2354 ohci_stop_iso(base);
2355 context_release(&ctx->context);
2356 free_page((unsigned long)ctx->header);
2358 spin_lock_irqsave(&ohci->lock, flags);
2360 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2361 index = ctx - ohci->it_context_list;
2362 ohci->it_context_mask |= 1 << index;
2363 } else {
2364 index = ctx - ohci->ir_context_list;
2365 ohci->ir_context_mask |= 1 << index;
2366 ohci->ir_context_channels |= 1ULL << base->channel;
2369 spin_unlock_irqrestore(&ohci->lock, flags);
2372 static int ohci_queue_iso_transmit(struct fw_iso_context *base,
2373 struct fw_iso_packet *packet,
2374 struct fw_iso_buffer *buffer,
2375 unsigned long payload)
2377 struct iso_context *ctx = container_of(base, struct iso_context, base);
2378 struct descriptor *d, *last, *pd;
2379 struct fw_iso_packet *p;
2380 __le32 *header;
2381 dma_addr_t d_bus, page_bus;
2382 u32 z, header_z, payload_z, irq;
2383 u32 payload_index, payload_end_index, next_page_index;
2384 int page, end_page, i, length, offset;
2386 p = packet;
2387 payload_index = payload;
2389 if (p->skip)
2390 z = 1;
2391 else
2392 z = 2;
2393 if (p->header_length > 0)
2394 z++;
2396 /* Determine the first page the payload isn't contained in. */
2397 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2398 if (p->payload_length > 0)
2399 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2400 else
2401 payload_z = 0;
2403 z += payload_z;
2405 /* Get header size in number of descriptors. */
2406 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2408 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2409 if (d == NULL)
2410 return -ENOMEM;
2412 if (!p->skip) {
2413 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2414 d[0].req_count = cpu_to_le16(8);
2416 * Link the skip address to this descriptor itself. This causes
2417 * a context to skip a cycle whenever lost cycles or FIFO
2418 * overruns occur, without dropping the data. The application
2419 * should then decide whether this is an error condition or not.
2420 * FIXME: Make the context's cycle-lost behaviour configurable?
2422 d[0].branch_address = cpu_to_le32(d_bus | z);
2424 header = (__le32 *) &d[1];
2425 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2426 IT_HEADER_TAG(p->tag) |
2427 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2428 IT_HEADER_CHANNEL(ctx->base.channel) |
2429 IT_HEADER_SPEED(ctx->base.speed));
2430 header[1] =
2431 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2432 p->payload_length));
2435 if (p->header_length > 0) {
2436 d[2].req_count = cpu_to_le16(p->header_length);
2437 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2438 memcpy(&d[z], p->header, p->header_length);
2441 pd = d + z - payload_z;
2442 payload_end_index = payload_index + p->payload_length;
2443 for (i = 0; i < payload_z; i++) {
2444 page = payload_index >> PAGE_SHIFT;
2445 offset = payload_index & ~PAGE_MASK;
2446 next_page_index = (page + 1) << PAGE_SHIFT;
2447 length =
2448 min(next_page_index, payload_end_index) - payload_index;
2449 pd[i].req_count = cpu_to_le16(length);
2451 page_bus = page_private(buffer->pages[page]);
2452 pd[i].data_address = cpu_to_le32(page_bus + offset);
2454 payload_index += length;
2457 if (p->interrupt)
2458 irq = DESCRIPTOR_IRQ_ALWAYS;
2459 else
2460 irq = DESCRIPTOR_NO_IRQ;
2462 last = z == 2 ? d : d + z - 1;
2463 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2464 DESCRIPTOR_STATUS |
2465 DESCRIPTOR_BRANCH_ALWAYS |
2466 irq);
2468 context_append(&ctx->context, d, z, header_z);
2470 return 0;
2473 static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
2474 struct fw_iso_packet *packet,
2475 struct fw_iso_buffer *buffer,
2476 unsigned long payload)
2478 struct iso_context *ctx = container_of(base, struct iso_context, base);
2479 struct descriptor *d, *pd;
2480 struct fw_iso_packet *p = packet;
2481 dma_addr_t d_bus, page_bus;
2482 u32 z, header_z, rest;
2483 int i, j, length;
2484 int page, offset, packet_count, header_size, payload_per_buffer;
2487 * The OHCI controller puts the isochronous header and trailer in the
2488 * buffer, so we need at least 8 bytes.
2490 packet_count = p->header_length / ctx->base.header_size;
2491 header_size = max(ctx->base.header_size, (size_t)8);
2493 /* Get header size in number of descriptors. */
2494 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2495 page = payload >> PAGE_SHIFT;
2496 offset = payload & ~PAGE_MASK;
2497 payload_per_buffer = p->payload_length / packet_count;
2499 for (i = 0; i < packet_count; i++) {
2500 /* d points to the header descriptor */
2501 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2502 d = context_get_descriptors(&ctx->context,
2503 z + header_z, &d_bus);
2504 if (d == NULL)
2505 return -ENOMEM;
2507 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
2508 DESCRIPTOR_INPUT_MORE);
2509 if (p->skip && i == 0)
2510 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2511 d->req_count = cpu_to_le16(header_size);
2512 d->res_count = d->req_count;
2513 d->transfer_status = 0;
2514 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2516 rest = payload_per_buffer;
2517 pd = d;
2518 for (j = 1; j < z; j++) {
2519 pd++;
2520 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2521 DESCRIPTOR_INPUT_MORE);
2523 if (offset + rest < PAGE_SIZE)
2524 length = rest;
2525 else
2526 length = PAGE_SIZE - offset;
2527 pd->req_count = cpu_to_le16(length);
2528 pd->res_count = pd->req_count;
2529 pd->transfer_status = 0;
2531 page_bus = page_private(buffer->pages[page]);
2532 pd->data_address = cpu_to_le32(page_bus + offset);
2534 offset = (offset + length) & ~PAGE_MASK;
2535 rest -= length;
2536 if (offset == 0)
2537 page++;
2539 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2540 DESCRIPTOR_INPUT_LAST |
2541 DESCRIPTOR_BRANCH_ALWAYS);
2542 if (p->interrupt && i == packet_count - 1)
2543 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2545 context_append(&ctx->context, d, z, header_z);
2548 return 0;
2551 static int ohci_queue_iso(struct fw_iso_context *base,
2552 struct fw_iso_packet *packet,
2553 struct fw_iso_buffer *buffer,
2554 unsigned long payload)
2556 struct iso_context *ctx = container_of(base, struct iso_context, base);
2557 unsigned long flags;
2558 int ret;
2560 spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2561 if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2562 ret = ohci_queue_iso_transmit(base, packet, buffer, payload);
2563 else
2564 ret = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2565 buffer, payload);
2566 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2568 return ret;
2571 static const struct fw_card_driver ohci_driver = {
2572 .enable = ohci_enable,
2573 .update_phy_reg = ohci_update_phy_reg,
2574 .set_config_rom = ohci_set_config_rom,
2575 .send_request = ohci_send_request,
2576 .send_response = ohci_send_response,
2577 .cancel_packet = ohci_cancel_packet,
2578 .enable_phys_dma = ohci_enable_phys_dma,
2579 .read_csr_reg = ohci_read_csr_reg,
2580 .write_csr_reg = ohci_write_csr_reg,
2581 .get_features = ohci_get_features,
2583 .allocate_iso_context = ohci_allocate_iso_context,
2584 .free_iso_context = ohci_free_iso_context,
2585 .queue_iso = ohci_queue_iso,
2586 .start_iso = ohci_start_iso,
2587 .stop_iso = ohci_stop_iso,
2590 #ifdef CONFIG_PPC_PMAC
2591 static void pmac_ohci_on(struct pci_dev *dev)
2593 if (machine_is(powermac)) {
2594 struct device_node *ofn = pci_device_to_OF_node(dev);
2596 if (ofn) {
2597 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2598 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2603 static void pmac_ohci_off(struct pci_dev *dev)
2605 if (machine_is(powermac)) {
2606 struct device_node *ofn = pci_device_to_OF_node(dev);
2608 if (ofn) {
2609 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2610 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2614 #else
2615 static inline void pmac_ohci_on(struct pci_dev *dev) {}
2616 static inline void pmac_ohci_off(struct pci_dev *dev) {}
2617 #endif /* CONFIG_PPC_PMAC */
2619 static int __devinit pci_probe(struct pci_dev *dev,
2620 const struct pci_device_id *ent)
2622 struct fw_ohci *ohci;
2623 u32 bus_options, max_receive, link_speed, version, link_enh;
2624 u64 guid;
2625 int i, err, n_ir, n_it;
2626 size_t size;
2628 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2629 if (ohci == NULL) {
2630 err = -ENOMEM;
2631 goto fail;
2634 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2636 pmac_ohci_on(dev);
2638 err = pci_enable_device(dev);
2639 if (err) {
2640 fw_error("Failed to enable OHCI hardware\n");
2641 goto fail_free;
2644 pci_set_master(dev);
2645 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2646 pci_set_drvdata(dev, ohci);
2648 spin_lock_init(&ohci->lock);
2650 tasklet_init(&ohci->bus_reset_tasklet,
2651 bus_reset_tasklet, (unsigned long)ohci);
2653 err = pci_request_region(dev, 0, ohci_driver_name);
2654 if (err) {
2655 fw_error("MMIO resource unavailable\n");
2656 goto fail_disable;
2659 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2660 if (ohci->registers == NULL) {
2661 fw_error("Failed to remap registers\n");
2662 err = -ENXIO;
2663 goto fail_iomem;
2666 for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
2667 if (ohci_quirks[i].vendor == dev->vendor &&
2668 (ohci_quirks[i].device == dev->device ||
2669 ohci_quirks[i].device == (unsigned short)PCI_ANY_ID)) {
2670 ohci->quirks = ohci_quirks[i].flags;
2671 break;
2673 if (param_quirks)
2674 ohci->quirks = param_quirks;
2676 /* TI OHCI-Lynx and compatible: set recommended configuration bits. */
2677 if (dev->vendor == PCI_VENDOR_ID_TI) {
2678 pci_read_config_dword(dev, PCI_CFG_TI_LinkEnh, &link_enh);
2680 /* adjust latency of ATx FIFO: use 1.7 KB threshold */
2681 link_enh &= ~TI_LinkEnh_atx_thresh_mask;
2682 link_enh |= TI_LinkEnh_atx_thresh_1_7K;
2684 /* use priority arbitration for asynchronous responses */
2685 link_enh |= TI_LinkEnh_enab_unfair;
2687 /* required for aPhyEnhanceEnable to work */
2688 link_enh |= TI_LinkEnh_enab_accel;
2690 pci_write_config_dword(dev, PCI_CFG_TI_LinkEnh, link_enh);
2693 ar_context_init(&ohci->ar_request_ctx, ohci,
2694 OHCI1394_AsReqRcvContextControlSet);
2696 ar_context_init(&ohci->ar_response_ctx, ohci,
2697 OHCI1394_AsRspRcvContextControlSet);
2699 context_init(&ohci->at_request_ctx, ohci,
2700 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2702 context_init(&ohci->at_response_ctx, ohci,
2703 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2705 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2706 ohci->ir_context_channels = ~0ULL;
2707 ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2708 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2709 n_ir = hweight32(ohci->ir_context_mask);
2710 size = sizeof(struct iso_context) * n_ir;
2711 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2713 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2714 ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2715 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2716 n_it = hweight32(ohci->it_context_mask);
2717 size = sizeof(struct iso_context) * n_it;
2718 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2720 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2721 err = -ENOMEM;
2722 goto fail_contexts;
2725 /* self-id dma buffer allocation */
2726 ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2727 SELF_ID_BUF_SIZE,
2728 &ohci->self_id_bus,
2729 GFP_KERNEL);
2730 if (ohci->self_id_cpu == NULL) {
2731 err = -ENOMEM;
2732 goto fail_contexts;
2735 bus_options = reg_read(ohci, OHCI1394_BusOptions);
2736 max_receive = (bus_options >> 12) & 0xf;
2737 link_speed = bus_options & 0x7;
2738 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2739 reg_read(ohci, OHCI1394_GUIDLo);
2741 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2742 if (err)
2743 goto fail_self_id;
2745 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2746 fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
2747 "%d IR + %d IT contexts, quirks 0x%x\n",
2748 dev_name(&dev->dev), version >> 16, version & 0xff,
2749 n_ir, n_it, ohci->quirks);
2751 return 0;
2753 fail_self_id:
2754 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2755 ohci->self_id_cpu, ohci->self_id_bus);
2756 fail_contexts:
2757 kfree(ohci->ir_context_list);
2758 kfree(ohci->it_context_list);
2759 context_release(&ohci->at_response_ctx);
2760 context_release(&ohci->at_request_ctx);
2761 ar_context_release(&ohci->ar_response_ctx);
2762 ar_context_release(&ohci->ar_request_ctx);
2763 pci_iounmap(dev, ohci->registers);
2764 fail_iomem:
2765 pci_release_region(dev, 0);
2766 fail_disable:
2767 pci_disable_device(dev);
2768 fail_free:
2769 kfree(&ohci->card);
2770 pmac_ohci_off(dev);
2771 fail:
2772 if (err == -ENOMEM)
2773 fw_error("Out of memory\n");
2775 return err;
2778 static void pci_remove(struct pci_dev *dev)
2780 struct fw_ohci *ohci;
2782 ohci = pci_get_drvdata(dev);
2783 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2784 flush_writes(ohci);
2785 fw_core_remove_card(&ohci->card);
2788 * FIXME: Fail all pending packets here, now that the upper
2789 * layers can't queue any more.
2792 software_reset(ohci);
2793 free_irq(dev->irq, ohci);
2795 if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
2796 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2797 ohci->next_config_rom, ohci->next_config_rom_bus);
2798 if (ohci->config_rom)
2799 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2800 ohci->config_rom, ohci->config_rom_bus);
2801 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2802 ohci->self_id_cpu, ohci->self_id_bus);
2803 ar_context_release(&ohci->ar_request_ctx);
2804 ar_context_release(&ohci->ar_response_ctx);
2805 context_release(&ohci->at_request_ctx);
2806 context_release(&ohci->at_response_ctx);
2807 kfree(ohci->it_context_list);
2808 kfree(ohci->ir_context_list);
2809 pci_disable_msi(dev);
2810 pci_iounmap(dev, ohci->registers);
2811 pci_release_region(dev, 0);
2812 pci_disable_device(dev);
2813 kfree(&ohci->card);
2814 pmac_ohci_off(dev);
2816 fw_notify("Removed fw-ohci device.\n");
2819 #ifdef CONFIG_PM
2820 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2822 struct fw_ohci *ohci = pci_get_drvdata(dev);
2823 int err;
2825 software_reset(ohci);
2826 free_irq(dev->irq, ohci);
2827 pci_disable_msi(dev);
2828 err = pci_save_state(dev);
2829 if (err) {
2830 fw_error("pci_save_state failed\n");
2831 return err;
2833 err = pci_set_power_state(dev, pci_choose_state(dev, state));
2834 if (err)
2835 fw_error("pci_set_power_state failed with %d\n", err);
2836 pmac_ohci_off(dev);
2838 return 0;
2841 static int pci_resume(struct pci_dev *dev)
2843 struct fw_ohci *ohci = pci_get_drvdata(dev);
2844 int err;
2846 pmac_ohci_on(dev);
2847 pci_set_power_state(dev, PCI_D0);
2848 pci_restore_state(dev);
2849 err = pci_enable_device(dev);
2850 if (err) {
2851 fw_error("pci_enable_device failed\n");
2852 return err;
2855 return ohci_enable(&ohci->card, NULL, 0);
2857 #endif
2859 static const struct pci_device_id pci_table[] = {
2860 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2864 MODULE_DEVICE_TABLE(pci, pci_table);
2866 static struct pci_driver fw_ohci_pci_driver = {
2867 .name = ohci_driver_name,
2868 .id_table = pci_table,
2869 .probe = pci_probe,
2870 .remove = pci_remove,
2871 #ifdef CONFIG_PM
2872 .resume = pci_resume,
2873 .suspend = pci_suspend,
2874 #endif
2877 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2878 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2879 MODULE_LICENSE("GPL");
2881 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2882 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2883 MODULE_ALIAS("ohci1394");
2884 #endif
2886 static int __init fw_ohci_init(void)
2888 return pci_register_driver(&fw_ohci_pci_driver);
2891 static void __exit fw_ohci_cleanup(void)
2893 pci_unregister_driver(&fw_ohci_pci_driver);
2896 module_init(fw_ohci_init);
2897 module_exit(fw_ohci_cleanup);