add patch fix-overflow-when-updating-superblock-backups
[ext4-patch-queue.git] / add-ext4-encryption-facilities
blobb132509f33b589060ba81dafa207ecebeeaf8fc6
1 ext4: add EXT4 encryption facilities
3 From: Mike Halcrow <mhalcrow@google.com>
5 On encrypt, we will re-assign the buffer_heads to point to a bounce
6 page rather than the control_page (which is the original page to write
7 that contains the plaintext). The block I/O occurs against the bounce
8 page. On write completion, we re-assign the buffer_heads to the
9 original plaintext page.
11 On decrypt, we will attach a read completion callback to the bio
12 struct. This read completion will decrypt the read contents in-place
13 prior to setting the page up-to-date.
15 The current encryption mode, AES-256-XTS, represents the first of
16 several encryption modes on the roadmap. Future in-plan modes are
17 HMAC-SHA1 (integrity only), AES-256-XTS+RANDOM_TWEAK+HMAC-SHA1, and
18 AES-256-GCM.
20 Signed-off-by: Michael Halcrow <mhalcrow@google.com>
21 Signed-off-by: Theodore Ts'o <tytso@mit.edu>
22 ---
23  fs/ext4/Makefile      |    9 +-
24  fs/ext4/crypto.c      | 1135 +++++++++++++++++++++++++++++++++++++++++++++++++
25  fs/ext4/ext4.h        |   25 ++
26  fs/ext4/ext4_crypto.h |  175 ++++++++
27  fs/ext4/super.c       |   38 +-
28  fs/ext4/xattr.h       |    1 +
29  6 files changed, 1377 insertions(+), 6 deletions(-)
30  create mode 100644 fs/ext4/crypto.c
31  create mode 100644 fs/ext4/ext4_crypto.h
33 diff --git a/fs/ext4/Makefile b/fs/ext4/Makefile
34 index 0310fec..de4de1c 100644
35 --- a/fs/ext4/Makefile
36 +++ b/fs/ext4/Makefile
37 @@ -4,10 +4,11 @@
39  obj-$(CONFIG_EXT4_FS) += ext4.o
41 -ext4-y := balloc.o bitmap.o dir.o file.o fsync.o ialloc.o inode.o page-io.o \
42 -               ioctl.o namei.o super.o symlink.o hash.o resize.o extents.o \
43 -               ext4_jbd2.o migrate.o mballoc.o block_validity.o move_extent.o \
44 -               mmp.o indirect.o extents_status.o xattr.o xattr_user.o \
45 +ext4-y := balloc.o bitmap.o crypto.o dir.o file.o fsync.o ialloc.o     \
46 +               inode.o page-io.o ioctl.o namei.o super.o symlink.o     \
47 +               hash.o resize.o extents.o ext4_jbd2.o migrate.o         \
48 +               mballoc.o block_validity.o move_extent.o mmp.o          \
49 +               indirect.o extents_status.o xattr.o xattr_user.o        \
50                 xattr_trusted.o inline.o
52  ext4-$(CONFIG_EXT4_FS_POSIX_ACL)       += acl.o
53 diff --git a/fs/ext4/crypto.c b/fs/ext4/crypto.c
54 new file mode 100644
55 index 0000000..ead3111
56 --- /dev/null
57 +++ b/fs/ext4/crypto.c
58 @@ -0,0 +1,1135 @@
59 +/*
60 + * linux/fs/ext4/crypto.c
61 + *
62 + * This contains encryption functions for ext4
63 + *
64 + * Written by Michael Halcrow, 2014.
65 + *
66 + * This has not yet undergone a rigorous security audit.
67 + *
68 + * The usage of AES-XTS should conform to recommendations in NIST
69 + * Special Publication 800-38E. The usage of AES-GCM should conform to
70 + * the recommendations in NIST Special Publication 800-38D. Further
71 + * guidance for block-oriented storage is in IEEE P1619/D16. The key
72 + * derivation code implements an HKDF (see RFC 5869).
73 + */
75 +#include <crypto/hash.h>
76 +#include <crypto/sha.h>
77 +#include <keys/user-type.h>
78 +#include <keys/encrypted-type.h>
79 +#include <linux/crypto.h>
80 +#include <linux/gfp.h>
81 +#include <linux/kernel.h>
82 +#include <linux/key.h>
83 +#include <linux/list.h>
84 +#include <linux/mempool.h>
85 +#include <linux/random.h>
86 +#include <linux/scatterlist.h>
87 +#include <linux/spinlock_types.h>
89 +#include "ext4.h"
90 +#include "xattr.h"
92 +/* Encryption added and removed here! (L: */
94 +mempool_t *ext4_bounce_page_pool = NULL;
96 +LIST_HEAD(ext4_free_crypto_ctxs);
97 +DEFINE_SPINLOCK(ext4_crypto_ctx_lock);
99 +/* TODO(mhalcrow): Remove for release */
100 +atomic_t ext4_dbg_pages = ATOMIC_INIT(0);
101 +atomic_t ext4_dbg_ctxs = ATOMIC_INIT(0);
103 +/**
104 + * ext4_release_crypto_ctx() - Releases an encryption context
105 + * @ctx: The encryption context to release.
106 + *
107 + * If the encryption context was allocated from the pre-allocated
108 + * pool, returns it to that pool. Else, frees it.
109 + *
110 + * If there's a bounce page in the context, this frees that.
111 + */
112 +void ext4_release_crypto_ctx(struct ext4_crypto_ctx *ctx)
114 +       unsigned long flags;
116 +       atomic_dec(&ctx->dbg_refcnt);
117 +       if (ctx->bounce_page) {
118 +               if (ctx->flags & EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL) {
119 +                       __free_page(ctx->bounce_page);
120 +                       atomic_dec(&ext4_dbg_pages);
121 +               } else {
122 +                       mempool_free(ctx->bounce_page, ext4_bounce_page_pool);
123 +               }
124 +               ctx->bounce_page = NULL;
125 +       }
126 +       ctx->control_page = NULL;
127 +       if (ctx->flags & EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL) {
128 +               if (ctx->tfm)
129 +                       crypto_free_tfm(ctx->tfm);
130 +               kfree(ctx);
131 +               atomic_dec(&ext4_dbg_ctxs);
132 +       } else {
133 +               spin_lock_irqsave(&ext4_crypto_ctx_lock, flags);
134 +               list_add(&ctx->free_list, &ext4_free_crypto_ctxs);
135 +               spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags);
136 +       }
139 +/**
140 + * ext4_alloc_and_init_crypto_ctx() - Allocates and inits an encryption context
141 + * @mask: The allocation mask.
142 + *
143 + * Return: An allocated and initialized encryption context on
144 + * success. An error value or NULL otherwise.
145 + */
146 +static struct ext4_crypto_ctx *ext4_alloc_and_init_crypto_ctx(u32 mask)
148 +       struct ext4_crypto_ctx *ctx = kzalloc(sizeof(struct ext4_crypto_ctx),
149 +                                             mask);
151 +       if (!ctx)
152 +               return ERR_PTR(-ENOMEM);
153 +       atomic_inc(&ext4_dbg_ctxs);
154 +       return ctx;
157 +/**
158 + * ext4_get_crypto_ctx() - Gets an encryption context
159 + * @with_page: If true, allocates and attaches a bounce page.
160 + * @key:       The encryption key for the context.
161 + *
162 + * Allocates and initializes an encryption context.
163 + *
164 + * Return: An allocated and initialized encryption context on success;
165 + * error value or NULL otherwise.
166 + */
167 +struct ext4_crypto_ctx *ext4_get_crypto_ctx(
168 +       bool with_page, const struct ext4_encryption_key *key)
170 +       struct ext4_crypto_ctx *ctx = NULL;
171 +       int res = 0;
172 +       unsigned long flags;
174 +       /* We first try getting the ctx from a free list because in
175 +        * the common case the ctx will have an allocated and
176 +        * initialized crypto tfm, so it's probably a worthwhile
177 +        * optimization. For the bounce page, we first try getting it
178 +        * from the kernel allocator because that's just about as fast
179 +        * as getting it from a list and because a cache of free pages
180 +        * should generally be a "last resort" option for a filesystem
181 +        * to be able to do its job. */
182 +       spin_lock_irqsave(&ext4_crypto_ctx_lock, flags);
183 +       ctx = list_first_entry_or_null(&ext4_free_crypto_ctxs,
184 +                                      struct ext4_crypto_ctx, free_list);
185 +       if (ctx)
186 +               list_del(&ctx->free_list);
187 +       spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags);
188 +       if (!ctx) {
189 +               ctx = ext4_alloc_and_init_crypto_ctx(GFP_NOFS);
190 +               if (IS_ERR(ctx)) {
191 +                       res = PTR_ERR(ctx);
192 +                       goto out;
193 +               }
194 +               ctx->flags |= EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL;
195 +       } else {
196 +               ctx->flags &= ~EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL;
197 +       }
198 +       atomic_set(&ctx->dbg_refcnt, 0);
200 +       /* Allocate a new Crypto API context if we don't already have
201 +        * one or if it isn't the right mode. */
202 +       BUG_ON(key->mode == EXT4_ENCRYPTION_MODE_INVALID);
203 +       if (ctx->tfm && (ctx->mode != key->mode)) {
204 +               crypto_free_tfm(ctx->tfm);
205 +               ctx->tfm = NULL;
206 +               ctx->mode = EXT4_ENCRYPTION_MODE_INVALID;
207 +       }
208 +       if (!ctx->tfm) {
209 +               switch (key->mode) {
210 +               case EXT4_ENCRYPTION_MODE_AES_256_XTS:
211 +                       ctx->tfm = crypto_ablkcipher_tfm(
212 +                               crypto_alloc_ablkcipher("xts(aes)", 0, 0));
213 +                       break;
214 +               case EXT4_ENCRYPTION_MODE_AES_256_GCM:
215 +                       /* TODO(mhalcrow): AEAD w/ gcm(aes);
216 +                        * crypto_aead_setauthsize() */
217 +               case EXT4_ENCRYPTION_MODE_HMAC_SHA1:
218 +                       /* TODO(mhalcrow): AHASH w/ hmac(sha1) */
219 +               case EXT4_ENCRYPTION_MODE_AES_256_XTS_RANDOM_IV_HMAC_SHA1:
220 +                       ctx->tfm = ERR_PTR(-ENOTSUPP);
221 +                       break;
222 +               default:
223 +                       BUG();
224 +               }
225 +               if (IS_ERR_OR_NULL(ctx->tfm)) {
226 +                       res = PTR_ERR(ctx->tfm);
227 +                       ctx->tfm = NULL;
228 +                       goto out;
229 +               }
230 +               ctx->mode = key->mode;
231 +       }
232 +       BUG_ON(key->size != ext4_encryption_key_size(key->mode));
234 +       /* There shouldn't be a bounce page attached to the crypto
235 +        * context at this point. */
236 +       BUG_ON(ctx->bounce_page);
237 +       if (!with_page)
238 +               goto out;
240 +       /* The encryption operation will require a bounce page. */
241 +       ctx->bounce_page = alloc_page(GFP_NOFS);
242 +       if (!ctx->bounce_page) {
243 +               /* This is a potential bottleneck, but at least we'll
244 +                * have forward progress. */
245 +               ctx->bounce_page = mempool_alloc(ext4_bounce_page_pool,
246 +                                                GFP_NOFS);
247 +               if (WARN_ON_ONCE(!ctx->bounce_page)) {
248 +                       ctx->bounce_page = mempool_alloc(ext4_bounce_page_pool,
249 +                                                        GFP_NOFS | __GFP_WAIT);
250 +               }
251 +               ctx->flags &= ~EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL;
252 +       } else {
253 +               atomic_inc(&ext4_dbg_pages);
254 +               ctx->flags |= EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL;
255 +       }
256 +out:
257 +       if (res) {
258 +               if (!IS_ERR_OR_NULL(ctx))
259 +                       ext4_release_crypto_ctx(ctx);
260 +               ctx = ERR_PTR(res);
261 +       }
262 +       return ctx;
265 +struct workqueue_struct *mpage_read_workqueue;
267 +/**
268 + * ext4_delete_crypto_ctxs() - Deletes/frees all encryption contexts
269 + */
270 +static void ext4_delete_crypto_ctxs(void)
272 +       struct ext4_crypto_ctx *pos, *n;
274 +       list_for_each_entry_safe(pos, n, &ext4_free_crypto_ctxs, free_list) {
275 +               if (pos->bounce_page) {
276 +                       if (pos->flags &
277 +                           EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL) {
278 +                               __free_page(pos->bounce_page);
279 +                       } else {
280 +                               mempool_free(pos->bounce_page,
281 +                                            ext4_bounce_page_pool);
282 +                       }
283 +               }
284 +               if (pos->tfm)
285 +                       crypto_free_tfm(pos->tfm);
286 +               kfree(pos);
287 +       }
290 +/**
291 + * ext4_allocate_crypto_ctxs() -  Allocates a pool of encryption contexts
292 + * @num_to_allocate: The number of encryption contexts to allocate.
293 + *
294 + * Return: Zero on success, non-zero otherwise.
295 + */
296 +static int __init ext4_allocate_crypto_ctxs(size_t num_to_allocate)
298 +       struct ext4_crypto_ctx *ctx = NULL;
300 +       while (num_to_allocate > 0) {
301 +               ctx = ext4_alloc_and_init_crypto_ctx(GFP_KERNEL);
302 +               if (IS_ERR(ctx))
303 +                       break;
304 +               list_add(&ctx->free_list, &ext4_free_crypto_ctxs);
305 +               num_to_allocate--;
306 +       }
307 +       if (IS_ERR(ctx))
308 +               ext4_delete_crypto_ctxs();
309 +       return PTR_ERR_OR_ZERO(ctx);
312 +/**
313 + * ext4_delete_crypto() - Frees all allocated encryption objects
314 + */
315 +void ext4_delete_crypto(void)
317 +       ext4_delete_crypto_ctxs();
318 +       mempool_destroy(ext4_bounce_page_pool);
319 +       destroy_workqueue(mpage_read_workqueue);
322 +/**
323 + * ext4_allocate_crypto() - Allocates encryption objects for later use
324 + * @num_crypto_pages: The number of bounce pages to allocate for encryption.
325 + * @num_crypto_ctxs:  The number of encryption contexts to allocate.
326 + *
327 + * Return: Zero on success, non-zero otherwise.
328 + */
329 +int __init ext4_allocate_crypto(size_t num_crypto_pages, size_t num_crypto_ctxs)
331 +       int res = 0;
333 +       mpage_read_workqueue = alloc_workqueue("ext4_crypto", WQ_HIGHPRI, 0);
334 +       if (!mpage_read_workqueue) {
335 +               res = -ENOMEM;
336 +               goto fail;
337 +       }
338 +       res = ext4_allocate_crypto_ctxs(num_crypto_ctxs);
339 +       if (res)
340 +               goto fail;
341 +       ext4_bounce_page_pool = mempool_create_page_pool(num_crypto_pages, 0);
342 +       if (!ext4_bounce_page_pool)
343 +               goto fail;
344 +       return 0;
345 +fail:
346 +       ext4_delete_crypto();
347 +       return res;
350 +/**
351 + * ext4_xts_tweak_for_page() - Generates an XTS tweak for a page
352 + * @xts_tweak: Buffer into which this writes the XTS tweak.
353 + * @page:      The page for which this generates a tweak.
354 + *
355 + * Generates an XTS tweak value for the given page.
356 + */
357 +static void ext4_xts_tweak_for_page(u8 xts_tweak[EXT4_XTS_TWEAK_SIZE],
358 +                                   const struct page *page)
360 +       /* Only do this for XTS tweak values. For other modes (CBC,
361 +        * GCM, etc.), you most like will need to do something
362 +        * different. */
363 +       BUILD_BUG_ON(EXT4_XTS_TWEAK_SIZE < sizeof(page->index));
364 +       memcpy(xts_tweak, &page->index, sizeof(page->index));
365 +       memset(&xts_tweak[sizeof(page->index)], 0,
366 +              EXT4_XTS_TWEAK_SIZE - sizeof(page->index));
369 +/**
370 + * set_bh_to_page() - Re-assigns the pages for a set of buffer heads
371 + * @head: The head of the buffer list to reassign.
372 + * @page: The page to which to re-assign the buffer heads.
373 + */
374 +void set_bh_to_page(struct buffer_head *head, struct page *page)
376 +       struct buffer_head *bh = head;
378 +       do {
379 +               set_bh_page(bh, page, bh_offset(bh));
380 +               if (PageDirty(page))
381 +                       set_buffer_dirty(bh);
382 +               if (!bh->b_this_page)
383 +                       bh->b_this_page = head;
384 +       } while ((bh = bh->b_this_page) != head);
387 +struct ext4_crypt_result {
388 +       struct completion completion;
389 +       int res;
392 +static void ext4_crypt_complete(struct crypto_async_request *req, int res)
394 +       struct ext4_crypt_result *ecr = req->data;
396 +       if (res == -EINPROGRESS)
397 +               return;
398 +       ecr->res = res;
399 +       complete(&ecr->completion);
402 +/**
403 + * ext4_prep_pages_for_write() - Prepare pages for write
404 + * @ciphertext_page: Ciphertext page that will actually be written.
405 + * @plaintext_page:  Plaintext page that acts as a control page.
406 + * @ctx:             Encryption context for the pages.
407 + */
408 +static void ext4_prep_pages_for_write(struct page *ciphertext_page,
409 +                                     struct page *plaintext_page,
410 +                                     struct ext4_crypto_ctx *ctx)
412 +       SetPageDirty(ciphertext_page);
413 +       SetPagePrivate(ciphertext_page);
414 +       ctx->control_page = plaintext_page;
415 +       set_page_private(ciphertext_page, (unsigned long)ctx);
416 +       set_bh_to_page(page_buffers(plaintext_page), ciphertext_page);
419 +/**
420 + * ext4_xts_encrypt() - Encrypts a page using AES-256-XTS
421 + * @ctx:            The encryption context.
422 + * @plaintext_page: The page to encrypt. Must be locked.
423 + *
424 + * Allocates a ciphertext page and encrypts plaintext_page into it
425 + * using the ctx encryption context. Uses AES-256-XTS.
426 + *
427 + * Called on the page write path.
428 + *
429 + * Return: An allocated page with the encrypted content on
430 + * success. Else, an error value or NULL.
431 + */
432 +struct page *ext4_xts_encrypt(struct ext4_crypto_ctx *ctx,
433 +                             struct page *plaintext_page)
435 +       struct page *ciphertext_page = ctx->bounce_page;
436 +       u8 xts_tweak[EXT4_XTS_TWEAK_SIZE];
437 +       struct ablkcipher_request *req = NULL;
438 +       struct ext4_crypt_result ecr;
439 +       struct scatterlist dst, src;
440 +       struct ext4_inode_info *ei = EXT4_I(plaintext_page->mapping->host);
441 +       struct crypto_ablkcipher *atfm = __crypto_ablkcipher_cast(ctx->tfm);
442 +       int res = 0;
444 +       BUG_ON(!ciphertext_page);
445 +       BUG_ON(!ctx->tfm);
446 +       BUG_ON(ei->i_encryption_key.mode != EXT4_ENCRYPTION_MODE_AES_256_XTS);
447 +       crypto_ablkcipher_clear_flags(atfm, ~0);
448 +       crypto_tfm_set_flags(ctx->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
450 +       /* Since in AES-256-XTS mode we only perform one cryptographic
451 +        * operation on each block and there are no constraints about
452 +        * how many blocks a single key can encrypt, we directly use
453 +        * the inode master key */
454 +       res = crypto_ablkcipher_setkey(atfm, ei->i_encryption_key.raw,
455 +                                      ei->i_encryption_key.size);
456 +       req = ablkcipher_request_alloc(atfm, GFP_NOFS);
457 +       if (!req) {
458 +               printk_ratelimited(KERN_ERR
459 +                                  "%s: crypto_request_alloc() failed\n",
460 +                                  __func__);
461 +               ciphertext_page = ERR_PTR(-ENOMEM);
462 +               goto out;
463 +       }
464 +       ablkcipher_request_set_callback(
465 +               req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
466 +               ext4_crypt_complete, &ecr);
467 +       ext4_xts_tweak_for_page(xts_tweak, plaintext_page);
468 +       sg_init_table(&dst, 1);
469 +       sg_set_page(&dst, ciphertext_page, PAGE_CACHE_SIZE, 0);
470 +       sg_init_table(&src, 1);
471 +       sg_set_page(&src, plaintext_page, PAGE_CACHE_SIZE, 0);
472 +       ablkcipher_request_set_crypt(req, &src, &dst, PAGE_CACHE_SIZE,
473 +                                    xts_tweak);
474 +       res = crypto_ablkcipher_encrypt(req);
475 +       if (res == -EINPROGRESS || res == -EBUSY) {
476 +               BUG_ON(req->base.data != &ecr);
477 +               wait_for_completion(&ecr.completion);
478 +               res = ecr.res;
479 +       }
480 +       ablkcipher_request_free(req);
481 +       if (res) {
482 +               printk_ratelimited(KERN_ERR "%s: crypto_ablkcipher_encrypt() returned %d\n",
483 +                                  __func__, res);
484 +               ciphertext_page = ERR_PTR(res);
485 +               goto out;
486 +       }
487 +out:
488 +       return ciphertext_page;
491 +/**
492 + * ext4_encrypt() - Encrypts a page
493 + * @ctx:            The encryption context.
494 + * @plaintext_page: The page to encrypt. Must be locked.
495 + *
496 + * Allocates a ciphertext page and encrypts plaintext_page into it
497 + * using the ctx encryption context.
498 + *
499 + * Called on the page write path.
500 + *
501 + * Return: An allocated page with the encrypted content on
502 + * success. Else, an error value or NULL.
503 + */
504 +struct page *ext4_encrypt(struct ext4_crypto_ctx *ctx,
505 +                         struct page *plaintext_page)
507 +       struct page *ciphertext_page = NULL;
509 +       BUG_ON(!PageLocked(plaintext_page));
510 +       switch (ctx->mode) {
511 +       case EXT4_ENCRYPTION_MODE_AES_256_XTS:
512 +               ciphertext_page = ext4_xts_encrypt(ctx, plaintext_page);
513 +               break;
514 +       case EXT4_ENCRYPTION_MODE_AES_256_GCM:
515 +               /* TODO(mhalcrow): We'll need buffers for the
516 +                * generated IV and/or auth tag for this mode and the
517 +                * ones below */
518 +       case EXT4_ENCRYPTION_MODE_HMAC_SHA1:
519 +       case EXT4_ENCRYPTION_MODE_AES_256_XTS_RANDOM_IV_HMAC_SHA1:
520 +               ciphertext_page = ERR_PTR(-ENOTSUPP);
521 +               break;
522 +       default:
523 +               BUG();
524 +       }
525 +       if (!IS_ERR_OR_NULL(ciphertext_page))
526 +               ext4_prep_pages_for_write(ciphertext_page, plaintext_page, ctx);
527 +       return ciphertext_page;
530 +/**
531 + * ext4_xts_decrypt() - Decrypts a page using AES-256-XTS
532 + * @ctx:  The encryption context.
533 + * @page: The page to decrypt. Must be locked.
534 + *
535 + * Return: Zero on success, non-zero otherwise.
536 + */
537 +int ext4_xts_decrypt(struct ext4_crypto_ctx *ctx, struct page *page)
539 +       u8 xts_tweak[EXT4_XTS_TWEAK_SIZE];
540 +       struct ablkcipher_request *req = NULL;
541 +       struct ext4_crypt_result ecr;
542 +       struct scatterlist sg;
543 +       struct ext4_inode_info *ei = EXT4_I(page->mapping->host);
544 +       struct crypto_ablkcipher *atfm = __crypto_ablkcipher_cast(ctx->tfm);
545 +       int res = 0;
547 +       BUG_ON(!ctx->tfm);
548 +       BUG_ON(ei->i_encryption_key.mode != EXT4_ENCRYPTION_MODE_AES_256_XTS);
549 +       crypto_ablkcipher_clear_flags(atfm, ~0);
550 +       crypto_tfm_set_flags(ctx->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
552 +       /* Since in AES-256-XTS mode we only perform one cryptographic
553 +        * operation on each block and there are no constraints about
554 +        * how many blocks a single key can encrypt, we directly use
555 +        * the inode master key */
556 +       res = crypto_ablkcipher_setkey(atfm, ei->i_encryption_key.raw,
557 +                                      ei->i_encryption_key.size);
558 +       req = ablkcipher_request_alloc(atfm, GFP_NOFS);
559 +       if (!req) {
560 +               res = -ENOMEM;
561 +               goto out;
562 +       }
563 +       ablkcipher_request_set_callback(
564 +               req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
565 +               ext4_crypt_complete, &ecr);
566 +       ext4_xts_tweak_for_page(xts_tweak, page);
567 +       sg_init_table(&sg, 1);
568 +       sg_set_page(&sg, page, PAGE_CACHE_SIZE, 0);
569 +       ablkcipher_request_set_crypt(req, &sg, &sg, PAGE_CACHE_SIZE, xts_tweak);
570 +       res = crypto_ablkcipher_decrypt(req);
571 +       if (res == -EINPROGRESS || res == -EBUSY) {
572 +               BUG_ON(req->base.data != &ecr);
573 +               wait_for_completion(&ecr.completion);
574 +               res = ecr.res;
575 +       }
576 +       ablkcipher_request_free(req);
577 +out:
578 +       if (res)
579 +               printk_ratelimited(KERN_ERR "%s: res = [%d]\n", __func__, res);
580 +       return res;
583 +/**
584 + * ext4_decrypt() - Decrypts a page in-place
585 + * @ctx:  The encryption context.
586 + * @page: The page to decrypt. Must be locked.
587 + *
588 + * Decrypts page in-place using the ctx encryption context.
589 + *
590 + * Called from the read completion callback.
591 + *
592 + * Return: Zero on success, non-zero otherwise.
593 + */
594 +int ext4_decrypt(struct ext4_crypto_ctx *ctx, struct page *page)
596 +       int res = 0;
598 +       BUG_ON(!PageLocked(page));
599 +       switch (ctx->mode) {
600 +       case EXT4_ENCRYPTION_MODE_AES_256_XTS:
601 +               res = ext4_xts_decrypt(ctx, page);
602 +               break;
603 +       case EXT4_ENCRYPTION_MODE_AES_256_GCM:
604 +       case EXT4_ENCRYPTION_MODE_HMAC_SHA1:
605 +       case EXT4_ENCRYPTION_MODE_AES_256_XTS_RANDOM_IV_HMAC_SHA1:
606 +               res = -ENOTSUPP;
607 +               break;
608 +       default:
609 +               BUG();
610 +       }
611 +       return res;
614 +/**
615 + * ext4_get_wrapping_key_from_keyring() - Gets a wrapping key from the keyring
616 + * @wrapping_key: Buffer into which this writes the wrapping key.
617 + * @sig:          The signature for the wrapping key.
618 + *
619 + * Return: Zero on success, non-zero otherwise.
620 + */
621 +static int ext4_get_wrapping_key_from_keyring(
622 +       char wrapping_key[EXT4_MAX_KEY_SIZE],
623 +       const char sig[EXT4_WRAPPING_KEY_SIG_NULL_TERMINATED_SIZE])
625 +       struct key *create_key;
626 +       struct encrypted_key_payload *payload;
627 +       struct ecryptfs_auth_tok *auth_tok;
629 +       create_key = request_key(&key_type_user, sig, NULL);
630 +       if (WARN_ON_ONCE(IS_ERR(create_key)))
631 +               return -ENOENT;
632 +       payload = (struct encrypted_key_payload *)create_key->payload.data;
633 +       if (WARN_ON_ONCE(create_key->datalen !=
634 +                        sizeof(struct ecryptfs_auth_tok))) {
635 +               return -EINVAL;
636 +       }
637 +       auth_tok = (struct ecryptfs_auth_tok *)(&(payload)->payload_data);
638 +       if (WARN_ON_ONCE(!(auth_tok->token.password.flags &
639 +                          ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET))) {
640 +               return -EINVAL;
641 +       }
642 +       BUILD_BUG_ON(EXT4_MAX_KEY_SIZE < EXT4_AES_256_XTS_KEY_SIZE);
643 +       BUILD_BUG_ON(ECRYPTFS_MAX_KEY_BYTES < EXT4_AES_256_XTS_KEY_SIZE);
644 +       memcpy(wrapping_key,
645 +              auth_tok->token.password.session_key_encryption_key,
646 +              EXT4_AES_256_XTS_KEY_SIZE);
647 +       return 0;
650 +/**
651 + * ext4_wrapping_key_sig_for_parent_dir() - Gets the key signature for
652 + *                                          the parent directory
653 + * @sig:          Buffer into which this writes the wrapping key signature.
654 + *
655 + * Return: Zero on success, non-zero otherwise.
656 + */
657 +static int ext4_wrapping_key_sig_for_parent_dir(
658 +       char sig[EXT4_WRAPPING_KEY_SIG_NULL_TERMINATED_SIZE])
660 +       /* TODO(mhalcrow): Here's where we can check for wrapping key
661 +        * specifier in parent directory xattr. */
662 +       return -ENOTSUPP;
665 +/**
666 + * ext4_get_wrapping_key() - Gets the wrapping key from the user session keyring
667 + * @wrapping_key: Buffer into which this writes the wrapping key.
668 + * @sig:          Buffer into which this writes the wrapping key signature.
669 + * @inode:        The inode for the wrapping key.
670 + *
671 + * Return: Zero on success, non-zero otherwise.
672 + */
673 +static int ext4_get_wrapping_key(
674 +       char wrapping_key[EXT4_AES_256_XTS_KEY_SIZE],
675 +       char sig[EXT4_WRAPPING_KEY_SIG_NULL_TERMINATED_SIZE],
676 +       const struct inode *inode)
678 +       struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
679 +       int res = ext4_wrapping_key_sig_for_parent_dir(sig);
681 +       if (res) {
682 +               BUILD_BUG_ON(ECRYPTFS_SIG_SIZE_HEX + 1 !=
683 +                            EXT4_WRAPPING_KEY_SIG_NULL_TERMINATED_SIZE);
684 +               memcpy(sig,
685 +                      sbi->s_default_encryption_wrapper_desc.wrapping_key_sig,
686 +                      EXT4_WRAPPING_KEY_SIG_NULL_TERMINATED_SIZE);
687 +       }
688 +       BUG_ON(sig[EXT4_WRAPPING_KEY_SIG_NULL_TERMINATED_SIZE - 1] != '\0');
689 +       res = ext4_get_wrapping_key_from_keyring(wrapping_key, sig);
690 +       return res;
693 +/**
694 + * ext4_validate_encryption_mode() - Validate the encryption key mode
695 + * @mode: The key mode to validate.
696 + *
697 + * Return: The validated key mode. EXT4_ENCRYPTION_MODE_INVALID if
698 + * invalid.
699 + */
700 +static uint32_t ext4_validate_encryption_mode(uint32_t mode)
702 +       switch (mode) {
703 +       case EXT4_ENCRYPTION_MODE_AES_256_XTS:
704 +               return mode;
705 +       default:
706 +               break;
707 +       }
708 +       return EXT4_ENCRYPTION_MODE_INVALID;
711 +/**
712 + * ext4_validate_encryption_key_size() - Validate the encryption key size
713 + * @mode: The key mode.
714 + * @size: The key size to validate.
715 + *
716 + * Return: The validated key size for @mode. Zero if invalid.
717 + */
718 +static uint32_t ext4_validate_encryption_key_size(uint32_t mode, uint32_t size)
720 +       if (size == ext4_encryption_key_size(mode))
721 +               return size;
722 +       return 0;
725 +struct ext4_hmac_result {
726 +       struct completion completion;
727 +       int res;
728 +} ext4_hmac_result;
730 +/**
731 + * ext4_hmac_complete() - Completion for async HMAC
732 + * @req: The async request.
733 + * @res: The result of the HMAC operation.
734 + */
735 +static void ext4_hmac_complete(struct crypto_async_request *req, int res)
737 +       struct ext4_hmac_result *ehr = req->data;
739 +       if (res == -EINPROGRESS)
740 +               return;
741 +       ehr->res = res;
742 +       complete(&ehr->completion);
745 +/**
746 + * ext4_hmac_derive_key() - Generate an HMAC
747 + * @derivation: If true, derive a key. Else, generate an integrity HMAC.
748 + * @key:        The HMAC key.
749 + * @key_size:   The size of @key.
750 + * @src:        The data to HMAC.
751 + * @src_size:   The size of @src.
752 + * @dst:        The target buffer for the generated HMAC.
753 + * @dst_size:   The size of @dst.
754 + *
755 + * Return: Zero on success, non-zero otherwise.
756 + */
757 +static int ext4_hmac(bool derivation, const char *key, size_t key_size,
758 +                    const char *src, size_t src_size, char *dst,
759 +                    size_t dst_size)
761 +       struct scatterlist sg;
762 +       struct ahash_request *req = NULL;
763 +       struct ext4_hmac_result ehr;
764 +       char hmac[SHA512_DIGEST_SIZE];
765 +       struct crypto_ahash *tfm = crypto_alloc_ahash(derivation ?
766 +                                                     "hmac(sha512)" :
767 +                                                     "hmac(sha1)", 0, 0);
768 +       int res = 0;
770 +       BUG_ON(dst_size > SHA512_DIGEST_SIZE);
771 +       if (IS_ERR(tfm))
772 +               return PTR_ERR(tfm);
773 +       req = ahash_request_alloc(tfm, GFP_NOFS);
774 +       if (!req) {
775 +               res = -ENOMEM;
776 +               goto out;
777 +       }
778 +       ahash_request_set_callback(req,
779 +                                  (CRYPTO_TFM_REQ_MAY_BACKLOG |
780 +                                   CRYPTO_TFM_REQ_MAY_SLEEP),
781 +                                  ext4_hmac_complete, &ehr);
783 +       res = crypto_ahash_setkey(tfm, key, key_size);
784 +       if (res)
785 +               goto out;
786 +       sg_init_one(&sg, src, src_size);
787 +       ahash_request_set_crypt(req, &sg, hmac, src_size);
788 +       init_completion(&ehr.completion);
789 +       res = crypto_ahash_digest(req);
790 +       if (res == -EINPROGRESS || res == -EBUSY) {
791 +               BUG_ON(req->base.data != &ehr);
792 +               wait_for_completion(&ehr.completion);
793 +               res = ehr.res;
794 +       }
795 +       if (res)
796 +               goto out;
797 +       memcpy(dst, hmac, dst_size);
798 +out:
799 +       crypto_free_ahash(tfm);
800 +       if (req)
801 +               ahash_request_free(req);
802 +       return res;
805 +/**
806 + * ext4_hmac_derive_key() - Generate an HMAC for an key derivation (HKDF)
807 + * @key:      The master key.
808 + * @key_size: The size of @key.
809 + * @src:      The derivation data.
810 + * @src_size: The size of @src.
811 + * @dst:      The target buffer for the derived key.
812 + * @dst_size: The size of @dst.
813 + *
814 + * Return: Zero on success, non-zero otherwise.
815 + */
816 +static int ext4_hmac_derive_key(const char *key, size_t key_size,
817 +                               const char *src, size_t src_size, char *dst,
818 +                               size_t dst_size)
820 +       return ext4_hmac(true, key, key_size, src, src_size, dst, dst_size);
823 +/**
824 + * ext4_hmac_integrity() - Generate an HMAC for an integrity measurement
825 + * @key:      The HMAC key.
826 + * @key_size: The size of @key.
827 + * @src:      The data to generate the HMAC over.
828 + * @src_size: The size of @src.
829 + * @dst:      The target buffer for the HMAC.
830 + * @dst_size: The size of @dst.
831 + *
832 + * Return: Zero on success, non-zero otherwise.
833 + */
834 +static int ext4_hmac_integrity(const char *key, size_t key_size,
835 +                              const char *src, size_t src_size, char *dst,
836 +                              size_t dst_size)
838 +       return ext4_hmac(false, key, key_size, src, src_size, dst, dst_size);
841 +/**
842 + * ext4_crypt_wrapper_virt() - Encrypt a key
843 + * @enc_key:  The wrapping key.
844 + * @iv:       The initialization vector for the key encryption.
845 + * @src_virt: The source key object to wrap.
846 + * @dst_virt: The buffer for the wrapped key object.
847 + * @size:     The size of the key object (identical for wrapped or unwrapped).
848 + * @enc:      If 0, decrypt. Else, encrypt.
849 + *
850 + * Uses the wrapped key to unwrap the encryption key.
851 + *
852 + * Return: Zero on success, non-zero otherwise.
853 + */
854 +static int ext4_crypt_wrapper_virt(const char *enc_key, const char *iv,
855 +                                  const char *src_virt, char *dst_virt,
856 +                                  size_t size, bool enc)
858 +       struct scatterlist dst, src;
859 +       struct blkcipher_desc desc = {
860 +               .flags = CRYPTO_TFM_REQ_MAY_SLEEP
861 +       };
862 +       int res = 0;
864 +       desc.tfm = crypto_alloc_blkcipher("ctr(aes)", 0, CRYPTO_ALG_ASYNC);
865 +       if (IS_ERR(desc.tfm))
866 +               return PTR_ERR(desc.tfm);
867 +       if (!desc.tfm)
868 +               return -ENOMEM;
869 +       crypto_blkcipher_set_flags(desc.tfm, CRYPTO_TFM_REQ_WEAK_KEY);
870 +       sg_init_one(&dst, dst_virt, size);
871 +       sg_init_one(&src, src_virt, size);
872 +       crypto_blkcipher_set_iv(desc.tfm, iv, EXT4_WRAPPING_IV_SIZE);
873 +       res = crypto_blkcipher_setkey(desc.tfm, enc_key,
874 +                                     EXT4_AES_256_CTR_KEY_SIZE);
875 +       if (res)
876 +               goto out;
877 +       if (enc)
878 +               res = crypto_blkcipher_encrypt(&desc, &dst, &src, size);
879 +       else
880 +               res = crypto_blkcipher_decrypt(&desc, &dst, &src, size);
881 +out:
882 +       crypto_free_blkcipher(desc.tfm);
883 +       return res;
886 +/**
887 + * ext4_unwrap_key() - Unwraps the encryption key for the inode
888 + * @wrapped_key_packet:      The wrapped encryption key packet.
889 + * @wrapped_key_packet_size: The wrapped encryption key packet size.
890 + * @key:                     The encryption key to fill in with unwrapped data.
891 + *
892 + * Uses the wrapped key to unwrap the encryption key.
893 + *
894 + * Return: Zero on success, non-zero otherwise.
895 + */
896 +static int ext4_unwrap_key(const char *wrapped_key_packet,
897 +                          size_t wrapped_key_packet_size,
898 +                          struct ext4_encryption_key *key)
900 +       struct ext4_wrapped_key_packet *packet =
901 +               (struct ext4_wrapped_key_packet *)wrapped_key_packet;
902 +       uint32_t packet_size = ntohl(*(uint32_t *)packet->size);
903 +       struct ext4_encryption_key_packet key_packet;
904 +       char wrapping_key[EXT4_AES_256_XTS_KEY_SIZE];
905 +       char enc_key[EXT4_AES_256_CTR_KEY_SIZE];
906 +       char int_key[EXT4_HMAC_KEY_SIZE];
907 +       char hmac[EXT4_HMAC_SIZE];
908 +       char hmac_invalid = 0;
909 +       int i;
910 +       int res = 0;
912 +       if (wrapped_key_packet_size < sizeof(packet_size))
913 +               return -EINVAL;
914 +       BUILD_BUG_ON(sizeof(struct ext4_wrapped_key_packet) !=
915 +                    EXT4_FULL_WRAPPED_KEY_PACKET_V0_SIZE);
916 +       if (packet_size != sizeof(struct ext4_wrapped_key_packet))
917 +               return -EINVAL;
918 +       if (wrapped_key_packet_size != packet_size)
919 +               return -EINVAL;
920 +       if (packet->type != EXT4_KEY_PACKET_TYPE_WRAPPED_KEY_V0)
921 +               return -EINVAL;
922 +       if (packet->sig[EXT4_WRAPPING_KEY_SIG_NULL_TERMINATED_SIZE - 1] != '\0')
923 +               return -EINVAL;
924 +       res = ext4_get_wrapping_key_from_keyring(wrapping_key, packet->sig);
925 +       if (res)
926 +               return res;
928 +       /* Always validate the HMAC as soon as we get the key to do so */
929 +       packet->nonce[EXT4_NONCE_SIZE] = EXT4_WRAPPING_INT_DERIVATION_TWEAK;
930 +       res = ext4_hmac_derive_key(wrapping_key, EXT4_AES_256_XTS_KEY_SIZE,
931 +                                  packet->nonce,
932 +                                  EXT4_DERIVATION_TWEAK_NONCE_SIZE, int_key,
933 +                                  EXT4_HMAC_KEY_SIZE);
934 +       if (res)
935 +               goto out;
936 +       res = ext4_hmac_integrity(int_key, EXT4_HMAC_KEY_SIZE,
937 +                                 wrapped_key_packet,
938 +                                 (EXT4_FULL_WRAPPED_KEY_PACKET_V0_SIZE -
939 +                                  EXT4_HMAC_SIZE), hmac, EXT4_HMAC_SIZE);
940 +       memset(int_key, 0, EXT4_HMAC_KEY_SIZE);
941 +       for (i = 0; i < EXT4_HMAC_SIZE; ++i)
942 +               hmac_invalid |= (packet->hmac[i] ^ hmac[i]);
943 +       if (hmac_invalid) {
944 +               printk_ratelimited(KERN_ERR "%s: Security advisory: Wrapped key HMAC check failed\n",
945 +                                  __func__);
946 +               res = -EINVAL;
947 +               goto out;
948 +       }
950 +       /* The HMAC validated. Decrypt the key packet. */
951 +       packet->nonce[EXT4_NONCE_SIZE] = EXT4_WRAPPING_ENC_DERIVATION_TWEAK;
952 +       res = ext4_hmac_derive_key(wrapping_key, EXT4_AES_256_XTS_KEY_SIZE,
953 +                                  packet->nonce,
954 +                                  EXT4_DERIVATION_TWEAK_NONCE_SIZE, enc_key,
955 +                                  EXT4_AES_256_CTR_KEY_SIZE);
956 +       if (res)
957 +               goto out;
958 +       res = ext4_crypt_wrapper_virt(enc_key, packet->iv,
959 +                                     packet->wrapped_key_packet,
960 +                                     (char *)&key_packet,
961 +                                     EXT4_V0_SERIALIZED_KEY_SIZE, false);
962 +       memset(enc_key, 0, EXT4_AES_256_CTR_KEY_SIZE);
963 +       if (res)
964 +               goto out;
965 +       key->mode = ext4_validate_encryption_mode(
966 +               ntohl(*((uint32_t *)key_packet.mode)));
967 +       if (key->mode == EXT4_ENCRYPTION_MODE_INVALID) {
968 +               res = -EINVAL;
969 +               goto out;
970 +       }
971 +       memcpy(key->raw, key_packet.raw, EXT4_MAX_KEY_SIZE);
972 +       memset(key_packet.raw, 0, EXT4_MAX_KEY_SIZE);
973 +       key->size = ext4_validate_encryption_key_size(
974 +               key->mode, ntohl(*((uint32_t *)key_packet.size)));
975 +       if (!key->size) {
976 +               res = -EINVAL;
977 +               goto out;
978 +       }
979 +out:
980 +       if (res)
981 +               key->mode = EXT4_ENCRYPTION_MODE_INVALID;
982 +       memset(wrapping_key, 0, EXT4_AES_256_XTS_KEY_SIZE);
983 +       return res;
986 +/**
987 + * ext4_wrap_key() - Wraps the encryption key for the inode
988 + * @wrapped_crypto_key: The buffer into which this writes the wrapped key.
989 + * @key_packet_size:    The size of the packet.
990 + * @key:                The encryption key.
991 + * @inode:              The inode for the encryption key.
992 + *
993 + * Generates a wrapped key packet from an encryption key and a
994 + * wrapping key for an inode.
995 + *
996 + * Return: Zero on success, non-zero otherwise.
997 + */
998 +static int ext4_wrap_key(char *wrapped_key_packet, size_t *key_packet_size,
999 +                        const struct ext4_encryption_key *key,
1000 +                        const struct inode *inode)
1002 +       struct ext4_wrapped_key_packet *packet =
1003 +               (struct ext4_wrapped_key_packet *)wrapped_key_packet;
1004 +       struct ext4_encryption_key_packet key_packet;
1005 +       char wrapping_key[EXT4_AES_256_XTS_KEY_SIZE];
1006 +       char enc_key[EXT4_AES_256_CTR_KEY_SIZE];
1007 +       char int_key[EXT4_HMAC_KEY_SIZE];
1008 +       int res = 0;
1010 +       BUILD_BUG_ON(sizeof(struct ext4_wrapped_key_packet) !=
1011 +                    EXT4_FULL_WRAPPED_KEY_PACKET_V0_SIZE);
1012 +       if (!wrapped_key_packet) {
1013 +               *key_packet_size = EXT4_FULL_WRAPPED_KEY_PACKET_V0_SIZE;
1014 +               return 0;
1015 +       }
1016 +       res = ext4_get_wrapping_key(wrapping_key, packet->sig, inode);
1017 +       if (res)
1018 +               return res;
1019 +       BUG_ON(*key_packet_size != EXT4_FULL_WRAPPED_KEY_PACKET_V0_SIZE);
1021 +       /* Size, type, nonce, and IV */
1022 +       *((uint32_t *)packet->size) =
1023 +               htonl(EXT4_FULL_WRAPPED_KEY_PACKET_V0_SIZE);
1024 +       packet->type = EXT4_KEY_PACKET_TYPE_WRAPPED_KEY_V0;
1025 +       get_random_bytes(packet->nonce, EXT4_NONCE_SIZE);
1026 +       get_random_bytes(packet->iv, EXT4_WRAPPING_IV_SIZE);
1028 +       /* Derive the wrapping encryption key from the wrapping key */
1029 +       packet->nonce[EXT4_NONCE_SIZE] = EXT4_WRAPPING_ENC_DERIVATION_TWEAK;
1030 +       res = ext4_hmac_derive_key(wrapping_key, EXT4_AES_256_XTS_KEY_SIZE,
1031 +                                  packet->nonce,
1032 +                                  EXT4_DERIVATION_TWEAK_NONCE_SIZE,
1033 +                                  enc_key, EXT4_AES_256_CTR_KEY_SIZE);
1034 +       if (res)
1035 +               goto out;
1037 +       /* Wrap the data key with the wrapping encryption key */
1038 +       *((uint32_t *)key_packet.mode) = htonl(key->mode);
1039 +       memcpy(key_packet.raw, key->raw, EXT4_MAX_KEY_SIZE);
1040 +       *((uint32_t *)key_packet.size) = htonl(key->size);
1041 +       BUILD_BUG_ON(sizeof(struct ext4_encryption_key_packet) !=
1042 +                    EXT4_V0_SERIALIZED_KEY_SIZE);
1043 +       res = ext4_crypt_wrapper_virt(enc_key, packet->iv, (char *)&key_packet,
1044 +                                     (char *)&packet->wrapped_key_packet,
1045 +                                     EXT4_V0_SERIALIZED_KEY_SIZE, true);
1046 +       memset(enc_key, 0, EXT4_AES_256_CTR_KEY_SIZE);
1047 +       memset(key_packet.raw, 0, EXT4_MAX_KEY_SIZE);
1048 +       if (res)
1049 +               goto out;
1051 +       /* Calculate the HMAC over the entire packet (except, of
1052 +        * course, the HMAC buffer at the end) */
1053 +       packet->nonce[EXT4_NONCE_SIZE] = EXT4_WRAPPING_INT_DERIVATION_TWEAK;
1054 +       res = ext4_hmac_derive_key(wrapping_key, EXT4_AES_256_XTS_KEY_SIZE,
1055 +                                  packet->nonce,
1056 +                                  EXT4_DERIVATION_TWEAK_NONCE_SIZE,
1057 +                                  int_key, EXT4_HMAC_KEY_SIZE);
1058 +       if (res)
1059 +               goto out;
1060 +       BUILD_BUG_ON(EXT4_FULL_WRAPPED_KEY_PACKET_V0_SIZE < EXT4_HMAC_SIZE);
1061 +       res = ext4_hmac_integrity(int_key, EXT4_HMAC_KEY_SIZE,
1062 +                                 wrapped_key_packet,
1063 +                                 (EXT4_FULL_WRAPPED_KEY_PACKET_V0_SIZE -
1064 +                                  EXT4_HMAC_SIZE), packet->hmac,
1065 +                                 EXT4_HMAC_SIZE);
1066 +       packet->nonce[EXT4_NONCE_SIZE] = 0; /* to catch decryption bugs */
1067 +       memset(int_key, 0, EXT4_HMAC_KEY_SIZE);
1068 +out:
1069 +       memset(wrapping_key, 0, EXT4_AES_256_XTS_KEY_SIZE);
1070 +       return res;
1073 +/**
1074 + * ext4_generate_encryption_key() - Generates an encryption key
1075 + * @dentry: The dentry containing the encryption key this will set.
1076 + */
1077 +static void ext4_generate_encryption_key(const struct dentry *dentry)
1079 +       struct ext4_inode_info *ei = EXT4_I(dentry->d_inode);
1080 +       struct ext4_sb_info *sbi = EXT4_SB(dentry->d_sb);
1081 +       struct ext4_encryption_key *key = &ei->i_encryption_key;
1083 +       key->mode = sbi->s_default_encryption_mode;
1084 +       key->size = ext4_encryption_key_size(key->mode);
1085 +       BUG_ON(!key->size);
1086 +       get_random_bytes(key->raw, key->size);
1089 +/**
1090 + * ext4_set_crypto_key() - Generates and sets the encryption key for the inode
1091 + * @dentry: The dentry for the encryption key.
1092 + *
1093 + * Generates the encryption key for the inode. Generates and writes
1094 + * the encryption metadata for the inode.
1095 + *
1096 + * Return: Zero on success, non-zero otherwise.
1097 + */
1098 +int ext4_set_crypto_key(struct dentry *dentry)
1100 +       char root_packet[EXT4_PACKET_SET_V0_MAX_SIZE];
1101 +       char *wrapped_key_packet = &root_packet[EXT4_PACKET_HEADER_SIZE];
1102 +       size_t wrapped_key_packet_size = EXT4_FULL_WRAPPED_KEY_PACKET_V0_SIZE;
1103 +       size_t root_packet_size = (EXT4_PACKET_HEADER_SIZE +
1104 +                                  wrapped_key_packet_size);
1105 +       struct inode *inode = dentry->d_inode;
1106 +       struct ext4_inode_info *ei = EXT4_I(inode);
1107 +       int res = 0;
1109 +try_again:
1110 +       ext4_generate_encryption_key(dentry);
1111 +       res = ext4_wrap_key(wrapped_key_packet, &wrapped_key_packet_size,
1112 +                           &ei->i_encryption_key, inode);
1113 +       if (res)
1114 +               goto out;
1115 +       root_packet[0] = EXT4_PACKET_SET_VERSION_V0;
1116 +       BUILD_BUG_ON(EXT4_PACKET_SET_V0_MAX_SIZE !=
1117 +                    (EXT4_PACKET_HEADER_SIZE +
1118 +                     EXT4_FULL_WRAPPED_KEY_PACKET_V0_SIZE));
1119 +       BUG_ON(sizeof(root_packet) != root_packet_size);
1120 +       res = ext4_xattr_set(inode, EXT4_XATTR_INDEX_ENCRYPTION_METADATA, "",
1121 +                            root_packet, root_packet_size, 0);
1122 +out:
1123 +       if (res) {
1124 +               if (res == -EINTR)
1125 +                       goto try_again;
1126 +               ei->i_encryption_key.mode = EXT4_ENCRYPTION_MODE_INVALID;
1127 +               printk_ratelimited(KERN_ERR "%s: res = [%d]\n", __func__, res);
1128 +       }
1129 +       return res;
1132 +/**
1133 + * ext4_get_root_packet() - Reads the root packet
1134 + * @inode:            The inode containing the root packet.
1135 + * @root_packet:      The root packet.
1136 + * @root_packet_size: The size of the root packet. Set by this if
1137 + *                    root_packet == NULL.
1138 + *
1139 + * Return: Zero on success, non-zero otherwise.
1140 + */
1141 +static int ext4_get_root_packet(struct inode *inode, char *root_packet,
1142 +                               size_t *root_packet_size)
1144 +       int res = ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION_METADATA,
1145 +                                "", NULL, 0);
1146 +       if (res < 0)
1147 +               return res;
1148 +       if (!root_packet) {
1149 +               *root_packet_size = res;
1150 +               return 0;
1151 +       }
1152 +       if (res != *root_packet_size)
1153 +               return -ENODATA;
1154 +       res = ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION_METADATA, "",
1155 +                            root_packet, res);
1156 +       if (root_packet[0] != EXT4_PACKET_SET_VERSION_V0) {
1157 +               printk_ratelimited(KERN_ERR "%s: Expected root packet version [%d]; got [%d]\n",
1158 +                                  __func__, EXT4_PACKET_SET_VERSION_V0,
1159 +                                  root_packet[0]);
1160 +               return -EINVAL;
1161 +       }
1162 +       return 0;
1165 +/**
1166 + * ext4_get_crypto_key() - Gets the encryption key for the inode
1167 + * @file: The file for the encryption key.
1168 + *
1169 + * Return: Zero on success, non-zero otherwise.
1170 + */
1171 +int ext4_get_crypto_key(const struct file *file)
1173 +       char root_packet[EXT4_PACKET_SET_V0_MAX_SIZE];
1174 +       char *wrapped_key_packet = &root_packet[EXT4_PACKET_HEADER_SIZE];
1175 +       size_t wrapped_key_packet_size = EXT4_FULL_WRAPPED_KEY_PACKET_V0_SIZE;
1176 +       size_t root_packet_size = (EXT4_PACKET_HEADER_SIZE +
1177 +                                  wrapped_key_packet_size);
1178 +       struct inode *inode = file->f_mapping->host;
1179 +       struct ext4_inode_info *ei = EXT4_I(inode);
1180 +       int res = ext4_get_root_packet(inode, root_packet, &root_packet_size);
1182 +       if (res)
1183 +               goto out;
1184 +       res = ext4_unwrap_key(wrapped_key_packet,
1185 +                             EXT4_FULL_WRAPPED_KEY_PACKET_V0_SIZE,
1186 +                             &ei->i_encryption_key);
1187 +       if (res)
1188 +               goto out;
1189 +out:
1190 +       if (res)
1191 +               ei->i_encryption_key.mode = EXT4_ENCRYPTION_MODE_INVALID;
1192 +       return res;
1194 diff --git a/fs/ext4/ext4.h b/fs/ext4/ext4.h
1195 index 7cc5a0e..ef89b61 100644
1196 --- a/fs/ext4/ext4.h
1197 +++ b/fs/ext4/ext4.h
1198 @@ -32,6 +32,7 @@
1199  #include <linux/ratelimit.h>
1200  #include <crypto/hash.h>
1201  #include <linux/falloc.h>
1202 +#include <linux/ecryptfs.h>
1203  #ifdef __KERNEL__
1204  #include <linux/compat.h>
1205  #endif
1206 @@ -809,6 +810,8 @@ do {                                                                               \
1208  #endif /* defined(__KERNEL__) || defined(__linux__) */
1210 +#include "ext4_crypto.h"
1212  #include "extents_status.h"
1214  /*
1215 @@ -943,6 +946,10 @@ struct ext4_inode_info {
1217         /* Precomputed uuid+inum+igen checksum for seeding inode checksums */
1218         __u32 i_csum_seed;
1220 +       /* Encryption params */
1221 +       struct ext4_encryption_key i_encryption_key;
1222 +       struct ext4_encryption_wrapper_desc i_encryption_wrapper_desc;
1223  };
1225  /*
1226 @@ -1340,6 +1347,10 @@ struct ext4_sb_info {
1227         struct ratelimit_state s_err_ratelimit_state;
1228         struct ratelimit_state s_warning_ratelimit_state;
1229         struct ratelimit_state s_msg_ratelimit_state;
1231 +       /* Encryption */
1232 +       uint32_t s_default_encryption_mode;
1233 +       struct ext4_encryption_wrapper_desc s_default_encryption_wrapper_desc;
1234  };
1236  static inline struct ext4_sb_info *EXT4_SB(struct super_block *sb)
1237 @@ -2783,6 +2794,20 @@ static inline void set_bitmap_uptodate(struct buffer_head *bh)
1238         set_bit(BH_BITMAP_UPTODATE, &(bh)->b_state);
1241 +/* crypto.c */
1242 +extern struct workqueue_struct *mpage_read_workqueue;
1243 +int ext4_allocate_crypto(size_t num_crypto_pages, size_t num_crypto_ctxs);
1244 +void ext4_delete_crypto(void);
1245 +struct ext4_crypto_ctx *ext4_get_crypto_ctx(
1246 +       bool with_page, const struct ext4_encryption_key *key);
1247 +void ext4_release_crypto_ctx(struct ext4_crypto_ctx *ctx);
1248 +void set_bh_to_page(struct buffer_head *head, struct page *page);
1249 +struct page *ext4_encrypt(struct ext4_crypto_ctx *ctx,
1250 +                         struct page *plaintext_page);
1251 +int ext4_decrypt(struct ext4_crypto_ctx *ctx, struct page *page);
1252 +int ext4_get_crypto_key(const struct file *file);
1253 +int ext4_set_crypto_key(struct dentry *dentry);
1255  /*
1256   * Disable DIO read nolock optimization, so new dioreaders will be forced
1257   * to grab i_mutex
1258 diff --git a/fs/ext4/ext4_crypto.h b/fs/ext4/ext4_crypto.h
1259 new file mode 100644
1260 index 0000000..8eaf273
1261 --- /dev/null
1262 +++ b/fs/ext4/ext4_crypto.h
1263 @@ -0,0 +1,175 @@
1265 + * linux/fs/ext4/ext4_crypto.h
1266 + *
1267 + * This contains encryption header content for ext4
1268 + *
1269 + * Written by Michael Halcrow, 2014.
1270 + */
1272 +#ifndef _EXT4_CRYPTO_H
1273 +#define _EXT4_CRYPTO_H
1275 +/* Encryption parameters */
1276 +#define EXT4_AES_256_XTS_KEY_SIZE 64
1277 +#define EXT4_XTS_TWEAK_SIZE 16
1278 +#define EXT4_AES_256_CTR_KEY_SIZE 32
1279 +#define EXT4_AES_256_ECB_KEY_SIZE 32
1280 +#define EXT4_HMAC_KEY_SIZE 12
1281 +#define EXT4_HMAC_SIZE 12
1282 +#define EXT4_NONCE_SIZE 12
1283 +#define EXT4_DERIVATION_TWEAK_SIZE 1
1284 +#define EXT4_DERIVATION_TWEAK_NONCE_SIZE (EXT4_NONCE_SIZE + \
1285 +                                         EXT4_DERIVATION_TWEAK_SIZE)
1286 +#define EXT4_WRAPPING_ENC_DERIVATION_TWEAK 'e'
1287 +#define EXT4_WRAPPING_INT_DERIVATION_TWEAK 'i'
1288 +#define EXT4_AES_256_XTS_RANDOMIV_HMAC_SHA1_KEY_SIZE \
1289 +       (EXT4_AES_256_XTS_KEY_SIZE + EXT4_HMAC_KEY_SIZE)
1290 +#define EXT4_AES_256_GCM_KEY_SIZE 32
1291 +#define EXT4_AES_256_GCM_AUTH_SIZE 16
1292 +#define EXT4_GCM_ASSOC_DATA_SIZE sizeof(pgoff_t)
1293 +#define EXT4_PAGE_REGION_INDEX_SHIFT 16 /* 2**16-sized regions */
1294 +#define EXT4_MAX_KEY_SIZE EXT4_AES_256_XTS_RANDOMIV_HMAC_SHA1_KEY_SIZE
1295 +#define EXT4_MAX_IV_SIZE AES_BLOCK_SIZE
1296 +#define EXT4_MAX_AUTH_SIZE EXT4_AES_256_GCM_AUTH_SIZE
1298 +/* The metadata directory is only necessary only for the sibling file
1299 + * directory under the mount root, which will be replaced by per-block
1300 + * metadata when it's ready. */
1301 +#define EXT4_METADATA_DIRECTORY_NAME ".ext4_crypt_data"
1302 +#define EXT4_METADATA_DIRECTORY_NAME_SIZE 16
1304 +/**
1305 + * Packet format:
1306 + *  4 bytes: Size of packet (inclusive of these 4 bytes)
1307 + *  1 byte: Packet type/version
1308 + *   Variable bytes: Packet content (may contain nested packets)
1309 + *
1310 + * Packets may be nested. The top-level packet is the "packet set".
1311 + */
1312 +#define EXT4_PACKET_SET_VERSION_V0 ((char)0x00)
1313 +#define EXT4_PACKET_SET_VERSION_SIZE 1
1314 +#define EXT4_PACKET_SIZE_SIZE 4
1315 +#define EXT4_PACKET_TYPE_SIZE 1
1316 +#define EXT4_PACKET_HEADER_SIZE (EXT4_PACKET_SIZE_SIZE + EXT4_PACKET_TYPE_SIZE)
1318 +/**
1319 + * Wrapped key packet format:
1320 + *  4 bytes: Size of packet (inclusive of these 4 bytes)
1321 + *  1 byte: Packet type/version (0x00)
1322 + *   17 bytes: NULL-terminated wrapping key signature (printable)
1323 + *   13 bytes: Derivation nonce (last byte ignored)
1324 + *   16 bytes: IV
1325 + *   Variable bytes: Serialized key, AES-256-CTR encrypted
1326 + *   12 bytes: HMAC-SHA1(everything preceding)
1327 + */
1328 +#define EXT4_KEY_PACKET_TYPE_WRAPPED_KEY_V0 ((char)0x00)
1329 +#define EXT4_WRAPPING_KEY_SIG_NULL_TERMINATED_SIZE (ECRYPTFS_SIG_SIZE_HEX + 1)
1330 +#define EXT4_WRAPPING_IV_SIZE 16
1332 +/* These #defines may seem redundant to the sizeof the structs below
1333 + * them. Since naively changing the structs can result in nasty bugs
1334 + * that might have security implications, we use the explict sizes
1335 + * together with BUILD_BUG_ON() to help avoid mistakes. */
1336 +#define EXT4_V0_SERIALIZED_KEY_SIZE (sizeof(uint32_t) + \
1337 +                                    EXT4_MAX_KEY_SIZE + \
1338 +                                    sizeof(uint32_t))
1339 +#define EXT4_WRAPPED_KEY_PACKET_V0_SIZE ( \
1340 +               EXT4_WRAPPING_KEY_SIG_NULL_TERMINATED_SIZE + \
1341 +               EXT4_DERIVATION_TWEAK_NONCE_SIZE + \
1342 +               EXT4_WRAPPING_IV_SIZE + \
1343 +               EXT4_V0_SERIALIZED_KEY_SIZE + \
1344 +               EXT4_HMAC_SIZE)
1346 +#define EXT4_FULL_WRAPPED_KEY_PACKET_V0_SIZE ((uint32_t)( \
1347 +               EXT4_PACKET_HEADER_SIZE +                 \
1348 +               EXT4_WRAPPED_KEY_PACKET_V0_SIZE))
1350 +/* V0 supports only one key in a fixed xattr space. If/when compelling
1351 + * requirements come along, future versions may be able to use
1352 + * (non-xattr) metadata storage to store an arbitrary number of
1353 + * wrapped keys. In the meantime, we won't spend the code complexity
1354 + * budget on supporting multiple wrapped keys. */
1355 +#define EXT4_PACKET_SET_V0_MAX_WRAPPED_KEYS 1
1356 +#define EXT4_PACKET_SET_V0_MAX_SIZE ((uint32_t)(       \
1357 +               EXT4_PACKET_HEADER_SIZE +               \
1358 +               (EXT4_FULL_WRAPPED_KEY_PACKET_V0_SIZE * \
1359 +               EXT4_PACKET_SET_V0_MAX_WRAPPED_KEYS)))
1361 +/* Don't change this without also changing the packet type. Serialized
1362 + * packets are cast directly into this struct. */
1363 +struct ext4_encryption_key_packet {
1364 +       char mode[sizeof(uint32_t)]; /* Network byte order */
1365 +       char raw[EXT4_MAX_KEY_SIZE];
1366 +       char size[sizeof(uint32_t)]; /* Network byte order */
1367 +} __attribute__((__packed__));
1369 +/**
1370 + * If you change the existing modes (order or type), you'll need to
1371 + * change the packet type too.
1372 + */
1373 +enum ext4_encryption_mode {
1374 +       EXT4_ENCRYPTION_MODE_INVALID = 0,
1375 +       EXT4_ENCRYPTION_MODE_AES_256_XTS,
1376 +       EXT4_ENCRYPTION_MODE_AES_256_GCM,
1377 +       EXT4_ENCRYPTION_MODE_HMAC_SHA1,
1378 +       EXT4_ENCRYPTION_MODE_AES_256_XTS_RANDOM_IV_HMAC_SHA1,
1381 +struct ext4_encryption_key {
1382 +       uint32_t mode;
1383 +       char raw[EXT4_MAX_KEY_SIZE];
1384 +       uint32_t size;
1387 +/* Don't change this without also changing the packet type. Serialized
1388 + * packets are cast directly into this struct. */
1389 +struct ext4_wrapped_key_packet {
1390 +       char size[sizeof(uint32_t)]; /* Network byte order */
1391 +       char type;
1392 +       char sig[EXT4_WRAPPING_KEY_SIG_NULL_TERMINATED_SIZE];
1393 +       char nonce[EXT4_DERIVATION_TWEAK_NONCE_SIZE];
1394 +       char iv[EXT4_WRAPPING_IV_SIZE];
1395 +       char wrapped_key_packet[sizeof(struct ext4_encryption_key_packet)];
1396 +       char hmac[EXT4_HMAC_SIZE];
1397 +} __attribute__((__packed__));
1399 +struct ext4_encryption_wrapper_desc {
1400 +       char wrapping_key_sig[ECRYPTFS_SIG_SIZE_HEX + 1];
1403 +#define EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL              0x00000001
1404 +#define EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL      0x00000002
1406 +struct ext4_crypto_ctx {
1407 +       struct crypto_tfm *tfm;         /* Crypto API context */
1408 +       struct page *bounce_page;       /* Ciphertext page on write path */
1409 +       struct page *control_page;      /* Original page on write path */
1410 +       struct bio *bio;                /* The bio for this context */
1411 +       struct work_struct work;        /* Work queue for read complete path */
1412 +       struct list_head free_list;     /* Free list */
1413 +       int flags;                      /* Flags */
1414 +       enum ext4_encryption_mode mode; /* Encryption mode for tfm */
1415 +       atomic_t dbg_refcnt;            /* TODO(mhalcrow): Remove for release */
1418 +static inline int ext4_encryption_key_size(enum ext4_encryption_mode mode)
1420 +       switch (mode) {
1421 +       case EXT4_ENCRYPTION_MODE_AES_256_XTS:
1422 +               return EXT4_AES_256_XTS_KEY_SIZE;
1423 +       case EXT4_ENCRYPTION_MODE_AES_256_GCM:
1424 +               return EXT4_AES_256_GCM_KEY_SIZE;
1425 +       case EXT4_ENCRYPTION_MODE_HMAC_SHA1:
1426 +               return EXT4_HMAC_KEY_SIZE;
1427 +       case EXT4_ENCRYPTION_MODE_AES_256_XTS_RANDOM_IV_HMAC_SHA1:
1428 +               return EXT4_AES_256_XTS_RANDOMIV_HMAC_SHA1_KEY_SIZE;
1429 +       default:
1430 +               BUG();
1431 +       }
1432 +       return 0;
1435 +extern atomic_t ext4_dbg_pages; /* TODO(mhalcrow): Remove for release */
1436 +extern atomic_t ext4_dbg_ctxs; /* TODO(mhalcrow): Remove for release */
1438 +#endif /* _EXT4_CRYPTO_H */
1439 diff --git a/fs/ext4/super.c b/fs/ext4/super.c
1440 index 6df7bc6..a0355a0 100644
1441 --- a/fs/ext4/super.c
1442 +++ b/fs/ext4/super.c
1443 @@ -904,6 +904,7 @@ static struct inode *ext4_alloc_inode(struct super_block *sb)
1444         atomic_set(&ei->i_ioend_count, 0);
1445         atomic_set(&ei->i_unwritten, 0);
1446         INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1447 +       ei->i_encryption_key.mode = EXT4_ENCRYPTION_MODE_INVALID;
1449         return &ei->vfs_inode;
1451 @@ -1168,7 +1169,7 @@ enum {
1452         Opt_inode_readahead_blks, Opt_journal_ioprio,
1453         Opt_dioread_nolock, Opt_dioread_lock,
1454         Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1455 -       Opt_max_dir_size_kb,
1456 +       Opt_max_dir_size_kb, Opt_encrypt_key_sig,
1457  };
1459  static const match_table_t tokens = {
1460 @@ -1244,6 +1245,7 @@ static const match_table_t tokens = {
1461         {Opt_init_itable, "init_itable"},
1462         {Opt_noinit_itable, "noinit_itable"},
1463         {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1464 +       {Opt_encrypt_key_sig, "encrypt_key_sig=%s"},
1465         {Opt_removed, "check=none"},    /* mount option from ext2/3 */
1466         {Opt_removed, "nocheck"},       /* mount option from ext2/3 */
1467         {Opt_removed, "reservation"},   /* mount option from ext2/3 */
1468 @@ -1442,6 +1444,7 @@ static const struct mount_opts {
1469         {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1470         {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1471         {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1472 +       {Opt_encrypt_key_sig, 0, MOPT_STRING},
1473         {Opt_err, 0, 0}
1474  };
1476 @@ -1543,6 +1546,28 @@ static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1477                 sbi->s_li_wait_mult = arg;
1478         } else if (token == Opt_max_dir_size_kb) {
1479                 sbi->s_max_dir_size_kb = arg;
1480 +       } else if (token == Opt_encrypt_key_sig) {
1481 +               char *encrypt_key_sig;
1483 +               encrypt_key_sig = match_strdup(&args[0]);
1484 +               if (!encrypt_key_sig) {
1485 +                       ext4_msg(sb, KERN_ERR,
1486 +                                "error: could not dup encryption key sig string");
1487 +                       return -1;
1488 +               }
1489 +               if (strlen(encrypt_key_sig) != ECRYPTFS_SIG_SIZE_HEX) {
1490 +                       ext4_msg(sb, KERN_ERR,
1491 +                                "error: encryption key sig string must be length %d",
1492 +                                ECRYPTFS_SIG_SIZE_HEX);
1493 +                       return -1;
1494 +               }
1495 +               sbi->s_default_encryption_mode =
1496 +                       EXT4_ENCRYPTION_MODE_AES_256_XTS;
1497 +               memcpy(sbi->s_default_encryption_wrapper_desc.wrapping_key_sig,
1498 +                      encrypt_key_sig,
1499 +                      ECRYPTFS_SIG_SIZE_HEX);
1500 +               sbi->s_default_encryption_wrapper_desc.wrapping_key_sig[
1501 +                       ECRYPTFS_SIG_SIZE_HEX] = '\0';
1502         } else if (token == Opt_stripe) {
1503                 sbi->s_stripe = arg;
1504         } else if (token == Opt_resuid) {
1505 @@ -5517,6 +5542,8 @@ struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
1506  static int __init ext4_init_fs(void)
1508         int i, err;
1509 +       static size_t num_prealloc_crypto_pages = 32;
1510 +       static size_t num_prealloc_crypto_ctxs = 128;
1512         ext4_li_info = NULL;
1513         mutex_init(&ext4_li_mtx);
1514 @@ -5529,10 +5556,15 @@ static int __init ext4_init_fs(void)
1515                 init_waitqueue_head(&ext4__ioend_wq[i]);
1516         }
1518 -       err = ext4_init_es();
1519 +       err = ext4_allocate_crypto(num_prealloc_crypto_pages,
1520 +                                  num_prealloc_crypto_ctxs);
1521         if (err)
1522                 return err;
1524 +       err = ext4_init_es();
1525 +       if (err)
1526 +               goto out8;
1528         err = ext4_init_pageio();
1529         if (err)
1530                 goto out7;
1531 @@ -5585,6 +5617,8 @@ out6:
1532         ext4_exit_pageio();
1533  out7:
1534         ext4_exit_es();
1535 +out8:
1536 +       ext4_delete_crypto();
1538         return err;
1540 diff --git a/fs/ext4/xattr.h b/fs/ext4/xattr.h
1541 index 29bedf5..29d47c7 100644
1542 --- a/fs/ext4/xattr.h
1543 +++ b/fs/ext4/xattr.h
1544 @@ -23,6 +23,7 @@
1545  #define EXT4_XATTR_INDEX_SECURITY              6
1546  #define EXT4_XATTR_INDEX_SYSTEM                        7
1547  #define EXT4_XATTR_INDEX_RICHACL               8
1548 +#define EXT4_XATTR_INDEX_ENCRYPTION_METADATA   9
1550  struct ext4_xattr_header {
1551         __le32  h_magic;        /* magic number for identification */
1552 -- 
1553 2.1.0.rc2.206.gedb03e5