make the minibuffer mutex recursive.
[emacs.git] / src / alloc.c
blobcea0bacca3d86b8794f94ad69b31999c109edcb3
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GNU Emacs.
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
21 #include <config.h>
22 #include <stdio.h>
23 #include <limits.h> /* For CHAR_BIT. */
24 #include <setjmp.h>
26 #ifdef STDC_HEADERS
27 #include <stddef.h> /* For offsetof, used by PSEUDOVECSIZE. */
28 #endif
30 #ifdef ALLOC_DEBUG
31 #undef INLINE
32 #endif
34 #include <signal.h>
36 #ifdef HAVE_GTK_AND_PTHREAD
37 #include <pthread.h>
38 #endif
40 /* This file is part of the core Lisp implementation, and thus must
41 deal with the real data structures. If the Lisp implementation is
42 replaced, this file likely will not be used. */
44 #undef HIDE_LISP_IMPLEMENTATION
45 #include "lisp.h"
46 #include "process.h"
47 #include "intervals.h"
48 #include "puresize.h"
49 #include "buffer.h"
50 #include "window.h"
51 #include "keyboard.h"
52 #include "frame.h"
53 #include "blockinput.h"
54 #include "character.h"
55 #include "syssignal.h"
56 #include "termhooks.h" /* For struct terminal. */
57 #include <setjmp.h>
59 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
60 memory. Can do this only if using gmalloc.c. */
62 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
63 #undef GC_MALLOC_CHECK
64 #endif
66 #ifdef HAVE_UNISTD_H
67 #include <unistd.h>
68 #else
69 extern POINTER_TYPE *sbrk ();
70 #endif
72 #ifdef HAVE_FCNTL_H
73 #define INCLUDED_FCNTL
74 #include <fcntl.h>
75 #endif
76 #ifndef O_WRONLY
77 #define O_WRONLY 1
78 #endif
80 #ifdef WINDOWSNT
81 #include <fcntl.h>
82 #include "w32.h"
83 #endif
85 #ifdef DOUG_LEA_MALLOC
87 #include <malloc.h>
88 /* malloc.h #defines this as size_t, at least in glibc2. */
89 #ifndef __malloc_size_t
90 #define __malloc_size_t int
91 #endif
93 /* Specify maximum number of areas to mmap. It would be nice to use a
94 value that explicitly means "no limit". */
96 #define MMAP_MAX_AREAS 100000000
98 #else /* not DOUG_LEA_MALLOC */
100 /* The following come from gmalloc.c. */
102 #define __malloc_size_t size_t
103 extern __malloc_size_t _bytes_used;
104 extern __malloc_size_t __malloc_extra_blocks;
106 #endif /* not DOUG_LEA_MALLOC */
108 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
110 /* When GTK uses the file chooser dialog, different backends can be loaded
111 dynamically. One such a backend is the Gnome VFS backend that gets loaded
112 if you run Gnome. That backend creates several threads and also allocates
113 memory with malloc.
115 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
116 functions below are called from malloc, there is a chance that one
117 of these threads preempts the Emacs main thread and the hook variables
118 end up in an inconsistent state. So we have a mutex to prevent that (note
119 that the backend handles concurrent access to malloc within its own threads
120 but Emacs code running in the main thread is not included in that control).
122 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
123 happens in one of the backend threads we will have two threads that tries
124 to run Emacs code at once, and the code is not prepared for that.
125 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
127 static pthread_mutex_t alloc_mutex;
129 #define BLOCK_INPUT_ALLOC \
130 do \
132 if (pthread_equal (pthread_self (), main_thread)) \
133 BLOCK_INPUT; \
134 pthread_mutex_lock (&alloc_mutex); \
136 while (0)
137 #define UNBLOCK_INPUT_ALLOC \
138 do \
140 pthread_mutex_unlock (&alloc_mutex); \
141 if (pthread_equal (pthread_self (), main_thread)) \
142 UNBLOCK_INPUT; \
144 while (0)
146 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
148 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
149 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
151 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
153 /* Value of _bytes_used, when spare_memory was freed. */
155 static __malloc_size_t bytes_used_when_full;
157 static __malloc_size_t bytes_used_when_reconsidered;
159 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
160 to a struct Lisp_String. */
162 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
163 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
164 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
166 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
167 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
168 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
170 /* Value is the number of bytes/chars of S, a pointer to a struct
171 Lisp_String. This must be used instead of STRING_BYTES (S) or
172 S->size during GC, because S->size contains the mark bit for
173 strings. */
175 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
176 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
178 /* Number of bytes of consing done since the last gc. */
180 int consing_since_gc;
182 /* Count the amount of consing of various sorts of space. */
184 EMACS_INT cons_cells_consed;
185 EMACS_INT floats_consed;
186 EMACS_INT vector_cells_consed;
187 EMACS_INT symbols_consed;
188 EMACS_INT string_chars_consed;
189 EMACS_INT misc_objects_consed;
190 EMACS_INT intervals_consed;
191 EMACS_INT strings_consed;
193 /* Minimum number of bytes of consing since GC before next GC. */
195 EMACS_INT gc_cons_threshold;
197 /* Similar minimum, computed from Vgc_cons_percentage. */
199 EMACS_INT gc_relative_threshold;
201 static Lisp_Object impl_Vgc_cons_percentage;
203 /* Minimum number of bytes of consing since GC before next GC,
204 when memory is full. */
206 EMACS_INT memory_full_cons_threshold;
208 /* Nonzero during GC. */
210 int gc_in_progress;
212 /* Nonzero means abort if try to GC.
213 This is for code which is written on the assumption that
214 no GC will happen, so as to verify that assumption. */
216 int abort_on_gc;
218 /* Nonzero means display messages at beginning and end of GC. */
220 int garbage_collection_messages;
222 #ifndef VIRT_ADDR_VARIES
223 extern
224 #endif /* VIRT_ADDR_VARIES */
225 int malloc_sbrk_used;
227 #ifndef VIRT_ADDR_VARIES
228 extern
229 #endif /* VIRT_ADDR_VARIES */
230 int malloc_sbrk_unused;
232 /* Number of live and free conses etc. */
234 static int total_conses, total_markers, total_symbols, total_vector_size;
235 static int total_free_conses, total_free_markers, total_free_symbols;
236 static int total_free_floats, total_floats;
238 /* Points to memory space allocated as "spare", to be freed if we run
239 out of memory. We keep one large block, four cons-blocks, and
240 two string blocks. */
242 static char *spare_memory[7];
244 /* Amount of spare memory to keep in large reserve block. */
246 #define SPARE_MEMORY (1 << 14)
248 /* Number of extra blocks malloc should get when it needs more core. */
250 static int malloc_hysteresis;
252 /* Non-nil means defun should do purecopy on the function definition. */
254 Lisp_Object impl_Vpurify_flag;
256 /* Non-nil means we are handling a memory-full error. */
258 Lisp_Object impl_Vmemory_full;
260 /* Initialize it to a nonzero value to force it into data space
261 (rather than bss space). That way unexec will remap it into text
262 space (pure), on some systems. We have not implemented the
263 remapping on more recent systems because this is less important
264 nowadays than in the days of small memories and timesharing. */
266 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
267 #define PUREBEG (char *) pure
269 /* Pointer to the pure area, and its size. */
271 static char *purebeg;
272 static size_t pure_size;
274 /* Number of bytes of pure storage used before pure storage overflowed.
275 If this is non-zero, this implies that an overflow occurred. */
277 static size_t pure_bytes_used_before_overflow;
279 /* Value is non-zero if P points into pure space. */
281 #define PURE_POINTER_P(P) \
282 (((PNTR_COMPARISON_TYPE) (P) \
283 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
284 && ((PNTR_COMPARISON_TYPE) (P) \
285 >= (PNTR_COMPARISON_TYPE) purebeg))
287 /* Total number of bytes allocated in pure storage. */
289 EMACS_INT pure_bytes_used;
291 /* Index in pure at which next pure Lisp object will be allocated.. */
293 static EMACS_INT pure_bytes_used_lisp;
295 /* Number of bytes allocated for non-Lisp objects in pure storage. */
297 static EMACS_INT pure_bytes_used_non_lisp;
299 /* If nonzero, this is a warning delivered by malloc and not yet
300 displayed. */
302 char *pending_malloc_warning;
304 /* Pre-computed signal argument for use when memory is exhausted. */
306 Lisp_Object impl_Vmemory_signal_data;
308 /* Maximum amount of C stack to save when a GC happens. */
310 #ifndef MAX_SAVE_STACK
311 #define MAX_SAVE_STACK 16000
312 #endif
314 /* Buffer in which we save a copy of the C stack at each GC. */
316 static char *stack_copy;
317 static int stack_copy_size;
319 /* Non-zero means ignore malloc warnings. Set during initialization.
320 Currently not used. */
322 static int ignore_warnings;
324 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
326 /* Hook run after GC has finished. */
328 Lisp_Object impl_Vpost_gc_hook, Qpost_gc_hook;
330 Lisp_Object impl_Vgc_elapsed; /* accumulated elapsed time in GC */
331 EMACS_INT gcs_done; /* accumulated GCs */
333 static void mark_buffer P_ ((Lisp_Object));
334 static void mark_terminals P_ ((void));
335 extern void mark_kboards P_ ((void));
336 extern void mark_ttys P_ ((void));
337 extern void mark_threads P_ ((void));
338 static void gc_sweep P_ ((void));
339 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
340 static void mark_face_cache P_ ((struct face_cache *));
342 #ifdef HAVE_WINDOW_SYSTEM
343 extern void mark_fringe_data P_ ((void));
344 #endif /* HAVE_WINDOW_SYSTEM */
346 static struct Lisp_String *allocate_string P_ ((void));
347 static void compact_small_strings P_ ((void));
348 static void free_large_strings P_ ((void));
349 static void sweep_strings P_ ((void));
351 extern int message_enable_multibyte;
353 /* When scanning the C stack for live Lisp objects, Emacs keeps track
354 of what memory allocated via lisp_malloc is intended for what
355 purpose. This enumeration specifies the type of memory. */
357 enum mem_type
359 MEM_TYPE_NON_LISP,
360 MEM_TYPE_BUFFER,
361 MEM_TYPE_CONS,
362 MEM_TYPE_STRING,
363 MEM_TYPE_MISC,
364 MEM_TYPE_SYMBOL,
365 MEM_TYPE_FLOAT,
366 /* We used to keep separate mem_types for subtypes of vectors such as
367 process, hash_table, frame, terminal, and window, but we never made
368 use of the distinction, so it only caused source-code complexity
369 and runtime slowdown. Minor but pointless. */
370 MEM_TYPE_VECTORLIKE
373 static POINTER_TYPE *lisp_align_malloc P_ ((size_t, enum mem_type));
374 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
375 void refill_memory_reserve ();
378 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
380 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
381 #include <stdio.h> /* For fprintf. */
382 #endif
384 /* A unique object in pure space used to make some Lisp objects
385 on free lists recognizable in O(1). */
387 static Lisp_Object Vdead;
389 #ifdef GC_MALLOC_CHECK
391 enum mem_type allocated_mem_type;
392 static int dont_register_blocks;
394 #endif /* GC_MALLOC_CHECK */
396 /* A node in the red-black tree describing allocated memory containing
397 Lisp data. Each such block is recorded with its start and end
398 address when it is allocated, and removed from the tree when it
399 is freed.
401 A red-black tree is a balanced binary tree with the following
402 properties:
404 1. Every node is either red or black.
405 2. Every leaf is black.
406 3. If a node is red, then both of its children are black.
407 4. Every simple path from a node to a descendant leaf contains
408 the same number of black nodes.
409 5. The root is always black.
411 When nodes are inserted into the tree, or deleted from the tree,
412 the tree is "fixed" so that these properties are always true.
414 A red-black tree with N internal nodes has height at most 2
415 log(N+1). Searches, insertions and deletions are done in O(log N).
416 Please see a text book about data structures for a detailed
417 description of red-black trees. Any book worth its salt should
418 describe them. */
420 struct mem_node
422 /* Children of this node. These pointers are never NULL. When there
423 is no child, the value is MEM_NIL, which points to a dummy node. */
424 struct mem_node *left, *right;
426 /* The parent of this node. In the root node, this is NULL. */
427 struct mem_node *parent;
429 /* Start and end of allocated region. */
430 void *start, *end;
432 /* Node color. */
433 enum {MEM_BLACK, MEM_RED} color;
435 /* Memory type. */
436 enum mem_type type;
439 /* Root of the tree describing allocated Lisp memory. */
441 static struct mem_node *mem_root;
443 /* Lowest and highest known address in the heap. */
445 static void *min_heap_address, *max_heap_address;
447 /* Sentinel node of the tree. */
449 static struct mem_node mem_z;
450 #define MEM_NIL &mem_z
452 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
453 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT));
454 static void lisp_free P_ ((POINTER_TYPE *));
455 static int live_vector_p P_ ((struct mem_node *, void *));
456 static int live_buffer_p P_ ((struct mem_node *, void *));
457 static int live_string_p P_ ((struct mem_node *, void *));
458 static int live_cons_p P_ ((struct mem_node *, void *));
459 static int live_symbol_p P_ ((struct mem_node *, void *));
460 static int live_float_p P_ ((struct mem_node *, void *));
461 static int live_misc_p P_ ((struct mem_node *, void *));
462 static void mark_maybe_object P_ ((Lisp_Object));
463 static void mark_memory P_ ((void *, void *, int));
464 static void mem_init P_ ((void));
465 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
466 static void mem_insert_fixup P_ ((struct mem_node *));
467 static void mem_rotate_left P_ ((struct mem_node *));
468 static void mem_rotate_right P_ ((struct mem_node *));
469 static void mem_delete P_ ((struct mem_node *));
470 static void mem_delete_fixup P_ ((struct mem_node *));
471 static INLINE struct mem_node *mem_find P_ ((void *));
474 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
475 static void check_gcpros P_ ((void));
476 #endif
478 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
480 /* Addresses of staticpro'd variables. Initialize it to a nonzero
481 value; otherwise some compilers put it into BSS. */
483 #define NSTATICS 0x640
484 static Lisp_Object placeholder;
485 static Lisp_Object *staticvec[NSTATICS] = {&placeholder};
487 /* Index of next unused slot in staticvec. */
489 static int staticidx = 0;
491 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
494 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
495 ALIGNMENT must be a power of 2. */
497 #define ALIGN(ptr, ALIGNMENT) \
498 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
499 & ~((ALIGNMENT) - 1)))
503 /************************************************************************
504 Malloc
505 ************************************************************************/
507 /* Function malloc calls this if it finds we are near exhausting storage. */
509 void
510 malloc_warning (str)
511 char *str;
513 pending_malloc_warning = str;
517 /* Display an already-pending malloc warning. */
519 void
520 display_malloc_warning ()
522 call3 (intern ("display-warning"),
523 intern ("alloc"),
524 build_string (pending_malloc_warning),
525 intern ("emergency"));
526 pending_malloc_warning = 0;
530 #ifdef DOUG_LEA_MALLOC
531 # define BYTES_USED (mallinfo ().uordblks)
532 #else
533 # define BYTES_USED _bytes_used
534 #endif
536 /* Called if we can't allocate relocatable space for a buffer. */
538 void
539 buffer_memory_full ()
541 /* If buffers use the relocating allocator, no need to free
542 spare_memory, because we may have plenty of malloc space left
543 that we could get, and if we don't, the malloc that fails will
544 itself cause spare_memory to be freed. If buffers don't use the
545 relocating allocator, treat this like any other failing
546 malloc. */
548 #ifndef REL_ALLOC
549 memory_full ();
550 #endif
552 /* This used to call error, but if we've run out of memory, we could
553 get infinite recursion trying to build the string. */
554 xsignal (Qnil, Vmemory_signal_data);
558 #ifdef XMALLOC_OVERRUN_CHECK
560 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
561 and a 16 byte trailer around each block.
563 The header consists of 12 fixed bytes + a 4 byte integer contaning the
564 original block size, while the trailer consists of 16 fixed bytes.
566 The header is used to detect whether this block has been allocated
567 through these functions -- as it seems that some low-level libc
568 functions may bypass the malloc hooks.
572 #define XMALLOC_OVERRUN_CHECK_SIZE 16
574 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
575 { 0x9a, 0x9b, 0xae, 0xaf,
576 0xbf, 0xbe, 0xce, 0xcf,
577 0xea, 0xeb, 0xec, 0xed };
579 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
580 { 0xaa, 0xab, 0xac, 0xad,
581 0xba, 0xbb, 0xbc, 0xbd,
582 0xca, 0xcb, 0xcc, 0xcd,
583 0xda, 0xdb, 0xdc, 0xdd };
585 /* Macros to insert and extract the block size in the header. */
587 #define XMALLOC_PUT_SIZE(ptr, size) \
588 (ptr[-1] = (size & 0xff), \
589 ptr[-2] = ((size >> 8) & 0xff), \
590 ptr[-3] = ((size >> 16) & 0xff), \
591 ptr[-4] = ((size >> 24) & 0xff))
593 #define XMALLOC_GET_SIZE(ptr) \
594 (size_t)((unsigned)(ptr[-1]) | \
595 ((unsigned)(ptr[-2]) << 8) | \
596 ((unsigned)(ptr[-3]) << 16) | \
597 ((unsigned)(ptr[-4]) << 24))
600 /* The call depth in overrun_check functions. For example, this might happen:
601 xmalloc()
602 overrun_check_malloc()
603 -> malloc -> (via hook)_-> emacs_blocked_malloc
604 -> overrun_check_malloc
605 call malloc (hooks are NULL, so real malloc is called).
606 malloc returns 10000.
607 add overhead, return 10016.
608 <- (back in overrun_check_malloc)
609 add overhead again, return 10032
610 xmalloc returns 10032.
612 (time passes).
614 xfree(10032)
615 overrun_check_free(10032)
616 decrease overhed
617 free(10016) <- crash, because 10000 is the original pointer. */
619 static int check_depth;
621 /* Like malloc, but wraps allocated block with header and trailer. */
623 POINTER_TYPE *
624 overrun_check_malloc (size)
625 size_t size;
627 register unsigned char *val;
628 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
630 val = (unsigned char *) malloc (size + overhead);
631 if (val && check_depth == 1)
633 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
634 val += XMALLOC_OVERRUN_CHECK_SIZE;
635 XMALLOC_PUT_SIZE(val, size);
636 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
638 --check_depth;
639 return (POINTER_TYPE *)val;
643 /* Like realloc, but checks old block for overrun, and wraps new block
644 with header and trailer. */
646 POINTER_TYPE *
647 overrun_check_realloc (block, size)
648 POINTER_TYPE *block;
649 size_t size;
651 register unsigned char *val = (unsigned char *)block;
652 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
654 if (val
655 && check_depth == 1
656 && bcmp (xmalloc_overrun_check_header,
657 val - XMALLOC_OVERRUN_CHECK_SIZE,
658 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
660 size_t osize = XMALLOC_GET_SIZE (val);
661 if (bcmp (xmalloc_overrun_check_trailer,
662 val + osize,
663 XMALLOC_OVERRUN_CHECK_SIZE))
664 abort ();
665 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
666 val -= XMALLOC_OVERRUN_CHECK_SIZE;
667 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
670 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
672 if (val && check_depth == 1)
674 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
675 val += XMALLOC_OVERRUN_CHECK_SIZE;
676 XMALLOC_PUT_SIZE(val, size);
677 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
679 --check_depth;
680 return (POINTER_TYPE *)val;
683 /* Like free, but checks block for overrun. */
685 void
686 overrun_check_free (block)
687 POINTER_TYPE *block;
689 unsigned char *val = (unsigned char *)block;
691 ++check_depth;
692 if (val
693 && check_depth == 1
694 && bcmp (xmalloc_overrun_check_header,
695 val - XMALLOC_OVERRUN_CHECK_SIZE,
696 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
698 size_t osize = XMALLOC_GET_SIZE (val);
699 if (bcmp (xmalloc_overrun_check_trailer,
700 val + osize,
701 XMALLOC_OVERRUN_CHECK_SIZE))
702 abort ();
703 #ifdef XMALLOC_CLEAR_FREE_MEMORY
704 val -= XMALLOC_OVERRUN_CHECK_SIZE;
705 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
706 #else
707 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
708 val -= XMALLOC_OVERRUN_CHECK_SIZE;
709 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
710 #endif
713 free (val);
714 --check_depth;
717 #undef malloc
718 #undef realloc
719 #undef free
720 #define malloc overrun_check_malloc
721 #define realloc overrun_check_realloc
722 #define free overrun_check_free
723 #endif
725 #ifdef SYNC_INPUT
726 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
727 there's no need to block input around malloc. */
728 #define MALLOC_BLOCK_INPUT ((void)0)
729 #define MALLOC_UNBLOCK_INPUT ((void)0)
730 #else
731 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
732 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
733 #endif
735 /* Like malloc but check for no memory and block interrupt input.. */
737 POINTER_TYPE *
738 xmalloc (size)
739 size_t size;
741 register POINTER_TYPE *val;
743 MALLOC_BLOCK_INPUT;
744 val = (POINTER_TYPE *) malloc (size);
745 MALLOC_UNBLOCK_INPUT;
747 if (!val && size)
748 memory_full ();
749 return val;
753 /* Like realloc but check for no memory and block interrupt input.. */
755 POINTER_TYPE *
756 xrealloc (block, size)
757 POINTER_TYPE *block;
758 size_t size;
760 register POINTER_TYPE *val;
762 MALLOC_BLOCK_INPUT;
763 /* We must call malloc explicitly when BLOCK is 0, since some
764 reallocs don't do this. */
765 if (! block)
766 val = (POINTER_TYPE *) malloc (size);
767 else
768 val = (POINTER_TYPE *) realloc (block, size);
769 MALLOC_UNBLOCK_INPUT;
771 if (!val && size) memory_full ();
772 return val;
776 /* Like free but block interrupt input. */
778 void
779 xfree (block)
780 POINTER_TYPE *block;
782 if (!block)
783 return;
784 MALLOC_BLOCK_INPUT;
785 free (block);
786 MALLOC_UNBLOCK_INPUT;
787 /* We don't call refill_memory_reserve here
788 because that duplicates doing so in emacs_blocked_free
789 and the criterion should go there. */
793 /* Like strdup, but uses xmalloc. */
795 char *
796 xstrdup (s)
797 const char *s;
799 size_t len = strlen (s) + 1;
800 char *p = (char *) xmalloc (len);
801 bcopy (s, p, len);
802 return p;
806 /* Unwind for SAFE_ALLOCA */
808 Lisp_Object
809 safe_alloca_unwind (arg)
810 Lisp_Object arg;
812 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
814 p->dogc = 0;
815 xfree (p->pointer);
816 p->pointer = 0;
817 free_misc (arg);
818 return Qnil;
822 /* Like malloc but used for allocating Lisp data. NBYTES is the
823 number of bytes to allocate, TYPE describes the intended use of the
824 allcated memory block (for strings, for conses, ...). */
826 #ifndef USE_LSB_TAG
827 static void *lisp_malloc_loser;
828 #endif
830 static POINTER_TYPE *
831 lisp_malloc (nbytes, type)
832 size_t nbytes;
833 enum mem_type type;
835 register void *val;
837 MALLOC_BLOCK_INPUT;
839 #ifdef GC_MALLOC_CHECK
840 allocated_mem_type = type;
841 #endif
843 val = (void *) malloc (nbytes);
845 #ifndef USE_LSB_TAG
846 /* If the memory just allocated cannot be addressed thru a Lisp
847 object's pointer, and it needs to be,
848 that's equivalent to running out of memory. */
849 if (val && type != MEM_TYPE_NON_LISP)
851 Lisp_Object tem;
852 XSETCONS (tem, (char *) val + nbytes - 1);
853 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
855 lisp_malloc_loser = val;
856 free (val);
857 val = 0;
860 #endif
862 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
863 if (val && type != MEM_TYPE_NON_LISP)
864 mem_insert (val, (char *) val + nbytes, type);
865 #endif
867 MALLOC_UNBLOCK_INPUT;
868 if (!val && nbytes)
869 memory_full ();
870 return val;
873 /* Free BLOCK. This must be called to free memory allocated with a
874 call to lisp_malloc. */
876 static void
877 lisp_free (block)
878 POINTER_TYPE *block;
880 MALLOC_BLOCK_INPUT;
881 free (block);
882 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
883 mem_delete (mem_find (block));
884 #endif
885 MALLOC_UNBLOCK_INPUT;
888 /* Allocation of aligned blocks of memory to store Lisp data. */
889 /* The entry point is lisp_align_malloc which returns blocks of at most */
890 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
892 /* Use posix_memalloc if the system has it and we're using the system's
893 malloc (because our gmalloc.c routines don't have posix_memalign although
894 its memalloc could be used). */
895 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
896 #define USE_POSIX_MEMALIGN 1
897 #endif
899 /* BLOCK_ALIGN has to be a power of 2. */
900 #define BLOCK_ALIGN (1 << 10)
902 /* Padding to leave at the end of a malloc'd block. This is to give
903 malloc a chance to minimize the amount of memory wasted to alignment.
904 It should be tuned to the particular malloc library used.
905 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
906 posix_memalign on the other hand would ideally prefer a value of 4
907 because otherwise, there's 1020 bytes wasted between each ablocks.
908 In Emacs, testing shows that those 1020 can most of the time be
909 efficiently used by malloc to place other objects, so a value of 0 can
910 still preferable unless you have a lot of aligned blocks and virtually
911 nothing else. */
912 #define BLOCK_PADDING 0
913 #define BLOCK_BYTES \
914 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
916 /* Internal data structures and constants. */
918 #define ABLOCKS_SIZE 16
920 /* An aligned block of memory. */
921 struct ablock
923 union
925 char payload[BLOCK_BYTES];
926 struct ablock *next_free;
927 } x;
928 /* `abase' is the aligned base of the ablocks. */
929 /* It is overloaded to hold the virtual `busy' field that counts
930 the number of used ablock in the parent ablocks.
931 The first ablock has the `busy' field, the others have the `abase'
932 field. To tell the difference, we assume that pointers will have
933 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
934 is used to tell whether the real base of the parent ablocks is `abase'
935 (if not, the word before the first ablock holds a pointer to the
936 real base). */
937 struct ablocks *abase;
938 /* The padding of all but the last ablock is unused. The padding of
939 the last ablock in an ablocks is not allocated. */
940 #if BLOCK_PADDING
941 char padding[BLOCK_PADDING];
942 #endif
945 /* A bunch of consecutive aligned blocks. */
946 struct ablocks
948 struct ablock blocks[ABLOCKS_SIZE];
951 /* Size of the block requested from malloc or memalign. */
952 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
954 #define ABLOCK_ABASE(block) \
955 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
956 ? (struct ablocks *)(block) \
957 : (block)->abase)
959 /* Virtual `busy' field. */
960 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
962 /* Pointer to the (not necessarily aligned) malloc block. */
963 #ifdef USE_POSIX_MEMALIGN
964 #define ABLOCKS_BASE(abase) (abase)
965 #else
966 #define ABLOCKS_BASE(abase) \
967 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
968 #endif
970 /* The list of free ablock. */
971 static struct ablock *free_ablock;
973 /* Allocate an aligned block of nbytes.
974 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
975 smaller or equal to BLOCK_BYTES. */
976 static POINTER_TYPE *
977 lisp_align_malloc (nbytes, type)
978 size_t nbytes;
979 enum mem_type type;
981 void *base, *val;
982 struct ablocks *abase;
984 eassert (nbytes <= BLOCK_BYTES);
986 MALLOC_BLOCK_INPUT;
988 #ifdef GC_MALLOC_CHECK
989 allocated_mem_type = type;
990 #endif
992 if (!free_ablock)
994 int i;
995 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
997 #ifdef DOUG_LEA_MALLOC
998 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
999 because mapped region contents are not preserved in
1000 a dumped Emacs. */
1001 mallopt (M_MMAP_MAX, 0);
1002 #endif
1004 #ifdef USE_POSIX_MEMALIGN
1006 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1007 if (err)
1008 base = NULL;
1009 abase = base;
1011 #else
1012 base = malloc (ABLOCKS_BYTES);
1013 abase = ALIGN (base, BLOCK_ALIGN);
1014 #endif
1016 if (base == 0)
1018 MALLOC_UNBLOCK_INPUT;
1019 memory_full ();
1022 aligned = (base == abase);
1023 if (!aligned)
1024 ((void**)abase)[-1] = base;
1026 #ifdef DOUG_LEA_MALLOC
1027 /* Back to a reasonable maximum of mmap'ed areas. */
1028 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1029 #endif
1031 #ifndef USE_LSB_TAG
1032 /* If the memory just allocated cannot be addressed thru a Lisp
1033 object's pointer, and it needs to be, that's equivalent to
1034 running out of memory. */
1035 if (type != MEM_TYPE_NON_LISP)
1037 Lisp_Object tem;
1038 char *end = (char *) base + ABLOCKS_BYTES - 1;
1039 XSETCONS (tem, end);
1040 if ((char *) XCONS (tem) != end)
1042 lisp_malloc_loser = base;
1043 free (base);
1044 MALLOC_UNBLOCK_INPUT;
1045 memory_full ();
1048 #endif
1050 /* Initialize the blocks and put them on the free list.
1051 Is `base' was not properly aligned, we can't use the last block. */
1052 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1054 abase->blocks[i].abase = abase;
1055 abase->blocks[i].x.next_free = free_ablock;
1056 free_ablock = &abase->blocks[i];
1058 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
1060 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
1061 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1062 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1063 eassert (ABLOCKS_BASE (abase) == base);
1064 eassert (aligned == (long) ABLOCKS_BUSY (abase));
1067 abase = ABLOCK_ABASE (free_ablock);
1068 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1069 val = free_ablock;
1070 free_ablock = free_ablock->x.next_free;
1072 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1073 if (val && type != MEM_TYPE_NON_LISP)
1074 mem_insert (val, (char *) val + nbytes, type);
1075 #endif
1077 MALLOC_UNBLOCK_INPUT;
1078 if (!val && nbytes)
1079 memory_full ();
1081 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1082 return val;
1085 static void
1086 lisp_align_free (block)
1087 POINTER_TYPE *block;
1089 struct ablock *ablock = block;
1090 struct ablocks *abase = ABLOCK_ABASE (ablock);
1092 MALLOC_BLOCK_INPUT;
1093 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1094 mem_delete (mem_find (block));
1095 #endif
1096 /* Put on free list. */
1097 ablock->x.next_free = free_ablock;
1098 free_ablock = ablock;
1099 /* Update busy count. */
1100 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1102 if (2 > (long) ABLOCKS_BUSY (abase))
1103 { /* All the blocks are free. */
1104 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1105 struct ablock **tem = &free_ablock;
1106 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1108 while (*tem)
1110 if (*tem >= (struct ablock *) abase && *tem < atop)
1112 i++;
1113 *tem = (*tem)->x.next_free;
1115 else
1116 tem = &(*tem)->x.next_free;
1118 eassert ((aligned & 1) == aligned);
1119 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1120 #ifdef USE_POSIX_MEMALIGN
1121 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1122 #endif
1123 free (ABLOCKS_BASE (abase));
1125 MALLOC_UNBLOCK_INPUT;
1128 /* Return a new buffer structure allocated from the heap with
1129 a call to lisp_malloc. */
1131 struct buffer *
1132 allocate_buffer ()
1134 struct buffer *b
1135 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1136 MEM_TYPE_BUFFER);
1137 b->size = sizeof (struct buffer) / sizeof (EMACS_INT);
1138 XSETPVECTYPE (b, PVEC_BUFFER);
1139 return b;
1143 #ifndef SYSTEM_MALLOC
1145 /* Arranging to disable input signals while we're in malloc.
1147 This only works with GNU malloc. To help out systems which can't
1148 use GNU malloc, all the calls to malloc, realloc, and free
1149 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1150 pair; unfortunately, we have no idea what C library functions
1151 might call malloc, so we can't really protect them unless you're
1152 using GNU malloc. Fortunately, most of the major operating systems
1153 can use GNU malloc. */
1155 #ifndef SYNC_INPUT
1156 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1157 there's no need to block input around malloc. */
1159 #ifndef DOUG_LEA_MALLOC
1160 extern void * (*__malloc_hook) P_ ((size_t, const void *));
1161 extern void * (*__realloc_hook) P_ ((void *, size_t, const void *));
1162 extern void (*__free_hook) P_ ((void *, const void *));
1163 /* Else declared in malloc.h, perhaps with an extra arg. */
1164 #endif /* DOUG_LEA_MALLOC */
1165 static void * (*old_malloc_hook) P_ ((size_t, const void *));
1166 static void * (*old_realloc_hook) P_ ((void *, size_t, const void*));
1167 static void (*old_free_hook) P_ ((void*, const void*));
1169 /* This function is used as the hook for free to call. */
1171 static void
1172 emacs_blocked_free (ptr, ptr2)
1173 void *ptr;
1174 const void *ptr2;
1176 BLOCK_INPUT_ALLOC;
1178 #ifdef GC_MALLOC_CHECK
1179 if (ptr)
1181 struct mem_node *m;
1183 m = mem_find (ptr);
1184 if (m == MEM_NIL || m->start != ptr)
1186 fprintf (stderr,
1187 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1188 abort ();
1190 else
1192 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1193 mem_delete (m);
1196 #endif /* GC_MALLOC_CHECK */
1198 __free_hook = old_free_hook;
1199 free (ptr);
1201 /* If we released our reserve (due to running out of memory),
1202 and we have a fair amount free once again,
1203 try to set aside another reserve in case we run out once more. */
1204 if (! NILP (Vmemory_full)
1205 /* Verify there is enough space that even with the malloc
1206 hysteresis this call won't run out again.
1207 The code here is correct as long as SPARE_MEMORY
1208 is substantially larger than the block size malloc uses. */
1209 && (bytes_used_when_full
1210 > ((bytes_used_when_reconsidered = BYTES_USED)
1211 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1212 refill_memory_reserve ();
1214 __free_hook = emacs_blocked_free;
1215 UNBLOCK_INPUT_ALLOC;
1219 /* This function is the malloc hook that Emacs uses. */
1221 static void *
1222 emacs_blocked_malloc (size, ptr)
1223 size_t size;
1224 const void *ptr;
1226 void *value;
1228 BLOCK_INPUT_ALLOC;
1229 __malloc_hook = old_malloc_hook;
1230 #ifdef DOUG_LEA_MALLOC
1231 /* Segfaults on my system. --lorentey */
1232 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1233 #else
1234 __malloc_extra_blocks = malloc_hysteresis;
1235 #endif
1237 value = (void *) malloc (size);
1239 #ifdef GC_MALLOC_CHECK
1241 struct mem_node *m = mem_find (value);
1242 if (m != MEM_NIL)
1244 fprintf (stderr, "Malloc returned %p which is already in use\n",
1245 value);
1246 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1247 m->start, m->end, (char *) m->end - (char *) m->start,
1248 m->type);
1249 abort ();
1252 if (!dont_register_blocks)
1254 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1255 allocated_mem_type = MEM_TYPE_NON_LISP;
1258 #endif /* GC_MALLOC_CHECK */
1260 __malloc_hook = emacs_blocked_malloc;
1261 UNBLOCK_INPUT_ALLOC;
1263 /* fprintf (stderr, "%p malloc\n", value); */
1264 return value;
1268 /* This function is the realloc hook that Emacs uses. */
1270 static void *
1271 emacs_blocked_realloc (ptr, size, ptr2)
1272 void *ptr;
1273 size_t size;
1274 const void *ptr2;
1276 void *value;
1278 BLOCK_INPUT_ALLOC;
1279 __realloc_hook = old_realloc_hook;
1281 #ifdef GC_MALLOC_CHECK
1282 if (ptr)
1284 struct mem_node *m = mem_find (ptr);
1285 if (m == MEM_NIL || m->start != ptr)
1287 fprintf (stderr,
1288 "Realloc of %p which wasn't allocated with malloc\n",
1289 ptr);
1290 abort ();
1293 mem_delete (m);
1296 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1298 /* Prevent malloc from registering blocks. */
1299 dont_register_blocks = 1;
1300 #endif /* GC_MALLOC_CHECK */
1302 value = (void *) realloc (ptr, size);
1304 #ifdef GC_MALLOC_CHECK
1305 dont_register_blocks = 0;
1308 struct mem_node *m = mem_find (value);
1309 if (m != MEM_NIL)
1311 fprintf (stderr, "Realloc returns memory that is already in use\n");
1312 abort ();
1315 /* Can't handle zero size regions in the red-black tree. */
1316 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1319 /* fprintf (stderr, "%p <- realloc\n", value); */
1320 #endif /* GC_MALLOC_CHECK */
1322 __realloc_hook = emacs_blocked_realloc;
1323 UNBLOCK_INPUT_ALLOC;
1325 return value;
1329 #ifdef HAVE_GTK_AND_PTHREAD
1330 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1331 normal malloc. Some thread implementations need this as they call
1332 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1333 calls malloc because it is the first call, and we have an endless loop. */
1335 void
1336 reset_malloc_hooks ()
1338 __free_hook = old_free_hook;
1339 __malloc_hook = old_malloc_hook;
1340 __realloc_hook = old_realloc_hook;
1342 #endif /* HAVE_GTK_AND_PTHREAD */
1345 /* Called from main to set up malloc to use our hooks. */
1347 void
1348 uninterrupt_malloc ()
1350 #ifdef HAVE_GTK_AND_PTHREAD
1351 #ifdef DOUG_LEA_MALLOC
1352 pthread_mutexattr_t attr;
1354 /* GLIBC has a faster way to do this, but lets keep it portable.
1355 This is according to the Single UNIX Specification. */
1356 pthread_mutexattr_init (&attr);
1357 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1358 pthread_mutex_init (&alloc_mutex, &attr);
1359 #else /* !DOUG_LEA_MALLOC */
1360 /* Some systems such as Solaris 2.6 doesn't have a recursive mutex,
1361 and the bundled gmalloc.c doesn't require it. */
1362 pthread_mutex_init (&alloc_mutex, NULL);
1363 #endif /* !DOUG_LEA_MALLOC */
1364 #endif /* HAVE_GTK_AND_PTHREAD */
1366 if (__free_hook != emacs_blocked_free)
1367 old_free_hook = __free_hook;
1368 __free_hook = emacs_blocked_free;
1370 if (__malloc_hook != emacs_blocked_malloc)
1371 old_malloc_hook = __malloc_hook;
1372 __malloc_hook = emacs_blocked_malloc;
1374 if (__realloc_hook != emacs_blocked_realloc)
1375 old_realloc_hook = __realloc_hook;
1376 __realloc_hook = emacs_blocked_realloc;
1379 #endif /* not SYNC_INPUT */
1380 #endif /* not SYSTEM_MALLOC */
1384 /***********************************************************************
1385 Interval Allocation
1386 ***********************************************************************/
1388 /* Number of intervals allocated in an interval_block structure.
1389 The 1020 is 1024 minus malloc overhead. */
1391 #define INTERVAL_BLOCK_SIZE \
1392 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1394 /* Intervals are allocated in chunks in form of an interval_block
1395 structure. */
1397 struct interval_block
1399 /* Place `intervals' first, to preserve alignment. */
1400 struct interval intervals[INTERVAL_BLOCK_SIZE];
1401 struct interval_block *next;
1404 /* Current interval block. Its `next' pointer points to older
1405 blocks. */
1407 static struct interval_block *interval_block;
1409 /* Index in interval_block above of the next unused interval
1410 structure. */
1412 static int interval_block_index;
1414 /* Number of free and live intervals. */
1416 static int total_free_intervals, total_intervals;
1418 /* List of free intervals. */
1420 INTERVAL interval_free_list;
1422 /* Total number of interval blocks now in use. */
1424 static int n_interval_blocks;
1427 /* Initialize interval allocation. */
1429 static void
1430 init_intervals ()
1432 interval_block = NULL;
1433 interval_block_index = INTERVAL_BLOCK_SIZE;
1434 interval_free_list = 0;
1435 n_interval_blocks = 0;
1439 /* Return a new interval. */
1441 INTERVAL
1442 make_interval ()
1444 INTERVAL val;
1446 /* eassert (!handling_signal); */
1448 MALLOC_BLOCK_INPUT;
1450 if (interval_free_list)
1452 val = interval_free_list;
1453 interval_free_list = INTERVAL_PARENT (interval_free_list);
1455 else
1457 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1459 register struct interval_block *newi;
1461 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1462 MEM_TYPE_NON_LISP);
1464 newi->next = interval_block;
1465 interval_block = newi;
1466 interval_block_index = 0;
1467 n_interval_blocks++;
1469 val = &interval_block->intervals[interval_block_index++];
1472 MALLOC_UNBLOCK_INPUT;
1474 consing_since_gc += sizeof (struct interval);
1475 intervals_consed++;
1476 RESET_INTERVAL (val);
1477 val->gcmarkbit = 0;
1478 return val;
1482 /* Mark Lisp objects in interval I. */
1484 static void
1485 mark_interval (i, dummy)
1486 register INTERVAL i;
1487 Lisp_Object dummy;
1489 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1490 i->gcmarkbit = 1;
1491 mark_object (i->plist);
1495 /* Mark the interval tree rooted in TREE. Don't call this directly;
1496 use the macro MARK_INTERVAL_TREE instead. */
1498 static void
1499 mark_interval_tree (tree)
1500 register INTERVAL tree;
1502 /* No need to test if this tree has been marked already; this
1503 function is always called through the MARK_INTERVAL_TREE macro,
1504 which takes care of that. */
1506 traverse_intervals_noorder (tree, mark_interval, Qnil);
1510 /* Mark the interval tree rooted in I. */
1512 #define MARK_INTERVAL_TREE(i) \
1513 do { \
1514 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1515 mark_interval_tree (i); \
1516 } while (0)
1519 #define UNMARK_BALANCE_INTERVALS(i) \
1520 do { \
1521 if (! NULL_INTERVAL_P (i)) \
1522 (i) = balance_intervals (i); \
1523 } while (0)
1526 /* Number support. If USE_LISP_UNION_TYPE is in effect, we
1527 can't create number objects in macros. */
1528 #ifndef make_number
1529 Lisp_Object
1530 make_number (n)
1531 EMACS_INT n;
1533 Lisp_Object obj;
1534 obj.s.val = n;
1535 obj.s.type = Lisp_Int;
1536 return obj;
1538 #endif
1540 /***********************************************************************
1541 String Allocation
1542 ***********************************************************************/
1544 /* Lisp_Strings are allocated in string_block structures. When a new
1545 string_block is allocated, all the Lisp_Strings it contains are
1546 added to a free-list string_free_list. When a new Lisp_String is
1547 needed, it is taken from that list. During the sweep phase of GC,
1548 string_blocks that are entirely free are freed, except two which
1549 we keep.
1551 String data is allocated from sblock structures. Strings larger
1552 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1553 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1555 Sblocks consist internally of sdata structures, one for each
1556 Lisp_String. The sdata structure points to the Lisp_String it
1557 belongs to. The Lisp_String points back to the `u.data' member of
1558 its sdata structure.
1560 When a Lisp_String is freed during GC, it is put back on
1561 string_free_list, and its `data' member and its sdata's `string'
1562 pointer is set to null. The size of the string is recorded in the
1563 `u.nbytes' member of the sdata. So, sdata structures that are no
1564 longer used, can be easily recognized, and it's easy to compact the
1565 sblocks of small strings which we do in compact_small_strings. */
1567 /* Size in bytes of an sblock structure used for small strings. This
1568 is 8192 minus malloc overhead. */
1570 #define SBLOCK_SIZE 8188
1572 /* Strings larger than this are considered large strings. String data
1573 for large strings is allocated from individual sblocks. */
1575 #define LARGE_STRING_BYTES 1024
1577 /* Structure describing string memory sub-allocated from an sblock.
1578 This is where the contents of Lisp strings are stored. */
1580 struct sdata
1582 /* Back-pointer to the string this sdata belongs to. If null, this
1583 structure is free, and the NBYTES member of the union below
1584 contains the string's byte size (the same value that STRING_BYTES
1585 would return if STRING were non-null). If non-null, STRING_BYTES
1586 (STRING) is the size of the data, and DATA contains the string's
1587 contents. */
1588 struct Lisp_String *string;
1590 #ifdef GC_CHECK_STRING_BYTES
1592 EMACS_INT nbytes;
1593 unsigned char data[1];
1595 #define SDATA_NBYTES(S) (S)->nbytes
1596 #define SDATA_DATA(S) (S)->data
1598 #else /* not GC_CHECK_STRING_BYTES */
1600 union
1602 /* When STRING in non-null. */
1603 unsigned char data[1];
1605 /* When STRING is null. */
1606 EMACS_INT nbytes;
1607 } u;
1610 #define SDATA_NBYTES(S) (S)->u.nbytes
1611 #define SDATA_DATA(S) (S)->u.data
1613 #endif /* not GC_CHECK_STRING_BYTES */
1617 /* Structure describing a block of memory which is sub-allocated to
1618 obtain string data memory for strings. Blocks for small strings
1619 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1620 as large as needed. */
1622 struct sblock
1624 /* Next in list. */
1625 struct sblock *next;
1627 /* Pointer to the next free sdata block. This points past the end
1628 of the sblock if there isn't any space left in this block. */
1629 struct sdata *next_free;
1631 /* Start of data. */
1632 struct sdata first_data;
1635 /* Number of Lisp strings in a string_block structure. The 1020 is
1636 1024 minus malloc overhead. */
1638 #define STRING_BLOCK_SIZE \
1639 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1641 /* Structure describing a block from which Lisp_String structures
1642 are allocated. */
1644 struct string_block
1646 /* Place `strings' first, to preserve alignment. */
1647 struct Lisp_String strings[STRING_BLOCK_SIZE];
1648 struct string_block *next;
1651 /* Head and tail of the list of sblock structures holding Lisp string
1652 data. We always allocate from current_sblock. The NEXT pointers
1653 in the sblock structures go from oldest_sblock to current_sblock. */
1655 static struct sblock *oldest_sblock, *current_sblock;
1657 /* List of sblocks for large strings. */
1659 static struct sblock *large_sblocks;
1661 /* List of string_block structures, and how many there are. */
1663 static struct string_block *string_blocks;
1664 static int n_string_blocks;
1666 /* Free-list of Lisp_Strings. */
1668 static struct Lisp_String *string_free_list;
1670 /* Number of live and free Lisp_Strings. */
1672 static int total_strings, total_free_strings;
1674 /* Number of bytes used by live strings. */
1676 static int total_string_size;
1678 /* Given a pointer to a Lisp_String S which is on the free-list
1679 string_free_list, return a pointer to its successor in the
1680 free-list. */
1682 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1684 /* Return a pointer to the sdata structure belonging to Lisp string S.
1685 S must be live, i.e. S->data must not be null. S->data is actually
1686 a pointer to the `u.data' member of its sdata structure; the
1687 structure starts at a constant offset in front of that. */
1689 #ifdef GC_CHECK_STRING_BYTES
1691 #define SDATA_OF_STRING(S) \
1692 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1693 - sizeof (EMACS_INT)))
1695 #else /* not GC_CHECK_STRING_BYTES */
1697 #define SDATA_OF_STRING(S) \
1698 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1700 #endif /* not GC_CHECK_STRING_BYTES */
1703 #ifdef GC_CHECK_STRING_OVERRUN
1705 /* We check for overrun in string data blocks by appending a small
1706 "cookie" after each allocated string data block, and check for the
1707 presence of this cookie during GC. */
1709 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1710 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1711 { 0xde, 0xad, 0xbe, 0xef };
1713 #else
1714 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1715 #endif
1717 /* Value is the size of an sdata structure large enough to hold NBYTES
1718 bytes of string data. The value returned includes a terminating
1719 NUL byte, the size of the sdata structure, and padding. */
1721 #ifdef GC_CHECK_STRING_BYTES
1723 #define SDATA_SIZE(NBYTES) \
1724 ((sizeof (struct Lisp_String *) \
1725 + (NBYTES) + 1 \
1726 + sizeof (EMACS_INT) \
1727 + sizeof (EMACS_INT) - 1) \
1728 & ~(sizeof (EMACS_INT) - 1))
1730 #else /* not GC_CHECK_STRING_BYTES */
1732 #define SDATA_SIZE(NBYTES) \
1733 ((sizeof (struct Lisp_String *) \
1734 + (NBYTES) + 1 \
1735 + sizeof (EMACS_INT) - 1) \
1736 & ~(sizeof (EMACS_INT) - 1))
1738 #endif /* not GC_CHECK_STRING_BYTES */
1740 /* Extra bytes to allocate for each string. */
1742 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1744 /* Initialize string allocation. Called from init_alloc_once. */
1746 static void
1747 init_strings ()
1749 total_strings = total_free_strings = total_string_size = 0;
1750 oldest_sblock = current_sblock = large_sblocks = NULL;
1751 string_blocks = NULL;
1752 n_string_blocks = 0;
1753 string_free_list = NULL;
1754 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1755 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1759 #ifdef GC_CHECK_STRING_BYTES
1761 static int check_string_bytes_count;
1763 static void check_string_bytes P_ ((int));
1764 static void check_sblock P_ ((struct sblock *));
1766 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1769 /* Like GC_STRING_BYTES, but with debugging check. */
1772 string_bytes (s)
1773 struct Lisp_String *s;
1775 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1776 if (!PURE_POINTER_P (s)
1777 && s->data
1778 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1779 abort ();
1780 return nbytes;
1783 /* Check validity of Lisp strings' string_bytes member in B. */
1785 static void
1786 check_sblock (b)
1787 struct sblock *b;
1789 struct sdata *from, *end, *from_end;
1791 end = b->next_free;
1793 for (from = &b->first_data; from < end; from = from_end)
1795 /* Compute the next FROM here because copying below may
1796 overwrite data we need to compute it. */
1797 int nbytes;
1799 /* Check that the string size recorded in the string is the
1800 same as the one recorded in the sdata structure. */
1801 if (from->string)
1802 CHECK_STRING_BYTES (from->string);
1804 if (from->string)
1805 nbytes = GC_STRING_BYTES (from->string);
1806 else
1807 nbytes = SDATA_NBYTES (from);
1809 nbytes = SDATA_SIZE (nbytes);
1810 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1815 /* Check validity of Lisp strings' string_bytes member. ALL_P
1816 non-zero means check all strings, otherwise check only most
1817 recently allocated strings. Used for hunting a bug. */
1819 static void
1820 check_string_bytes (all_p)
1821 int all_p;
1823 if (all_p)
1825 struct sblock *b;
1827 for (b = large_sblocks; b; b = b->next)
1829 struct Lisp_String *s = b->first_data.string;
1830 if (s)
1831 CHECK_STRING_BYTES (s);
1834 for (b = oldest_sblock; b; b = b->next)
1835 check_sblock (b);
1837 else
1838 check_sblock (current_sblock);
1841 #endif /* GC_CHECK_STRING_BYTES */
1843 #ifdef GC_CHECK_STRING_FREE_LIST
1845 /* Walk through the string free list looking for bogus next pointers.
1846 This may catch buffer overrun from a previous string. */
1848 static void
1849 check_string_free_list ()
1851 struct Lisp_String *s;
1853 /* Pop a Lisp_String off the free-list. */
1854 s = string_free_list;
1855 while (s != NULL)
1857 if ((unsigned)s < 1024)
1858 abort();
1859 s = NEXT_FREE_LISP_STRING (s);
1862 #else
1863 #define check_string_free_list()
1864 #endif
1866 /* Return a new Lisp_String. */
1868 static struct Lisp_String *
1869 allocate_string ()
1871 struct Lisp_String *s;
1873 /* eassert (!handling_signal); */
1875 MALLOC_BLOCK_INPUT;
1877 /* If the free-list is empty, allocate a new string_block, and
1878 add all the Lisp_Strings in it to the free-list. */
1879 if (string_free_list == NULL)
1881 struct string_block *b;
1882 int i;
1884 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1885 bzero (b, sizeof *b);
1886 b->next = string_blocks;
1887 string_blocks = b;
1888 ++n_string_blocks;
1890 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1892 s = b->strings + i;
1893 NEXT_FREE_LISP_STRING (s) = string_free_list;
1894 string_free_list = s;
1897 total_free_strings += STRING_BLOCK_SIZE;
1900 check_string_free_list ();
1902 /* Pop a Lisp_String off the free-list. */
1903 s = string_free_list;
1904 string_free_list = NEXT_FREE_LISP_STRING (s);
1906 MALLOC_UNBLOCK_INPUT;
1908 /* Probably not strictly necessary, but play it safe. */
1909 bzero (s, sizeof *s);
1911 --total_free_strings;
1912 ++total_strings;
1913 ++strings_consed;
1914 consing_since_gc += sizeof *s;
1916 #ifdef GC_CHECK_STRING_BYTES
1917 if (!noninteractive)
1919 if (++check_string_bytes_count == 200)
1921 check_string_bytes_count = 0;
1922 check_string_bytes (1);
1924 else
1925 check_string_bytes (0);
1927 #endif /* GC_CHECK_STRING_BYTES */
1929 return s;
1933 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1934 plus a NUL byte at the end. Allocate an sdata structure for S, and
1935 set S->data to its `u.data' member. Store a NUL byte at the end of
1936 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1937 S->data if it was initially non-null. */
1939 void
1940 allocate_string_data (s, nchars, nbytes)
1941 struct Lisp_String *s;
1942 int nchars, nbytes;
1944 struct sdata *data, *old_data;
1945 struct sblock *b;
1946 int needed, old_nbytes;
1948 /* Determine the number of bytes needed to store NBYTES bytes
1949 of string data. */
1950 needed = SDATA_SIZE (nbytes);
1951 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1952 old_nbytes = GC_STRING_BYTES (s);
1954 MALLOC_BLOCK_INPUT;
1956 if (nbytes > LARGE_STRING_BYTES)
1958 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1960 #ifdef DOUG_LEA_MALLOC
1961 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1962 because mapped region contents are not preserved in
1963 a dumped Emacs.
1965 In case you think of allowing it in a dumped Emacs at the
1966 cost of not being able to re-dump, there's another reason:
1967 mmap'ed data typically have an address towards the top of the
1968 address space, which won't fit into an EMACS_INT (at least on
1969 32-bit systems with the current tagging scheme). --fx */
1970 mallopt (M_MMAP_MAX, 0);
1971 #endif
1973 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1975 #ifdef DOUG_LEA_MALLOC
1976 /* Back to a reasonable maximum of mmap'ed areas. */
1977 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1978 #endif
1980 b->next_free = &b->first_data;
1981 b->first_data.string = NULL;
1982 b->next = large_sblocks;
1983 large_sblocks = b;
1985 else if (current_sblock == NULL
1986 || (((char *) current_sblock + SBLOCK_SIZE
1987 - (char *) current_sblock->next_free)
1988 < (needed + GC_STRING_EXTRA)))
1990 /* Not enough room in the current sblock. */
1991 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1992 b->next_free = &b->first_data;
1993 b->first_data.string = NULL;
1994 b->next = NULL;
1996 if (current_sblock)
1997 current_sblock->next = b;
1998 else
1999 oldest_sblock = b;
2000 current_sblock = b;
2002 else
2003 b = current_sblock;
2005 data = b->next_free;
2006 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2008 MALLOC_UNBLOCK_INPUT;
2010 data->string = s;
2011 s->data = SDATA_DATA (data);
2012 #ifdef GC_CHECK_STRING_BYTES
2013 SDATA_NBYTES (data) = nbytes;
2014 #endif
2015 s->size = nchars;
2016 s->size_byte = nbytes;
2017 s->data[nbytes] = '\0';
2018 #ifdef GC_CHECK_STRING_OVERRUN
2019 bcopy (string_overrun_cookie, (char *) data + needed,
2020 GC_STRING_OVERRUN_COOKIE_SIZE);
2021 #endif
2023 /* If S had already data assigned, mark that as free by setting its
2024 string back-pointer to null, and recording the size of the data
2025 in it. */
2026 if (old_data)
2028 SDATA_NBYTES (old_data) = old_nbytes;
2029 old_data->string = NULL;
2032 consing_since_gc += needed;
2036 /* Sweep and compact strings. */
2038 static void
2039 sweep_strings ()
2041 struct string_block *b, *next;
2042 struct string_block *live_blocks = NULL;
2044 string_free_list = NULL;
2045 total_strings = total_free_strings = 0;
2046 total_string_size = 0;
2048 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2049 for (b = string_blocks; b; b = next)
2051 int i, nfree = 0;
2052 struct Lisp_String *free_list_before = string_free_list;
2054 next = b->next;
2056 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2058 struct Lisp_String *s = b->strings + i;
2060 if (s->data)
2062 /* String was not on free-list before. */
2063 if (STRING_MARKED_P (s))
2065 /* String is live; unmark it and its intervals. */
2066 UNMARK_STRING (s);
2068 if (!NULL_INTERVAL_P (s->intervals))
2069 UNMARK_BALANCE_INTERVALS (s->intervals);
2071 ++total_strings;
2072 total_string_size += STRING_BYTES (s);
2074 else
2076 /* String is dead. Put it on the free-list. */
2077 struct sdata *data = SDATA_OF_STRING (s);
2079 /* Save the size of S in its sdata so that we know
2080 how large that is. Reset the sdata's string
2081 back-pointer so that we know it's free. */
2082 #ifdef GC_CHECK_STRING_BYTES
2083 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2084 abort ();
2085 #else
2086 data->u.nbytes = GC_STRING_BYTES (s);
2087 #endif
2088 data->string = NULL;
2090 /* Reset the strings's `data' member so that we
2091 know it's free. */
2092 s->data = NULL;
2094 /* Put the string on the free-list. */
2095 NEXT_FREE_LISP_STRING (s) = string_free_list;
2096 string_free_list = s;
2097 ++nfree;
2100 else
2102 /* S was on the free-list before. Put it there again. */
2103 NEXT_FREE_LISP_STRING (s) = string_free_list;
2104 string_free_list = s;
2105 ++nfree;
2109 /* Free blocks that contain free Lisp_Strings only, except
2110 the first two of them. */
2111 if (nfree == STRING_BLOCK_SIZE
2112 && total_free_strings > STRING_BLOCK_SIZE)
2114 lisp_free (b);
2115 --n_string_blocks;
2116 string_free_list = free_list_before;
2118 else
2120 total_free_strings += nfree;
2121 b->next = live_blocks;
2122 live_blocks = b;
2126 check_string_free_list ();
2128 string_blocks = live_blocks;
2129 free_large_strings ();
2130 compact_small_strings ();
2132 check_string_free_list ();
2136 /* Free dead large strings. */
2138 static void
2139 free_large_strings ()
2141 struct sblock *b, *next;
2142 struct sblock *live_blocks = NULL;
2144 for (b = large_sblocks; b; b = next)
2146 next = b->next;
2148 if (b->first_data.string == NULL)
2149 lisp_free (b);
2150 else
2152 b->next = live_blocks;
2153 live_blocks = b;
2157 large_sblocks = live_blocks;
2161 /* Compact data of small strings. Free sblocks that don't contain
2162 data of live strings after compaction. */
2164 static void
2165 compact_small_strings ()
2167 struct sblock *b, *tb, *next;
2168 struct sdata *from, *to, *end, *tb_end;
2169 struct sdata *to_end, *from_end;
2171 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2172 to, and TB_END is the end of TB. */
2173 tb = oldest_sblock;
2174 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2175 to = &tb->first_data;
2177 /* Step through the blocks from the oldest to the youngest. We
2178 expect that old blocks will stabilize over time, so that less
2179 copying will happen this way. */
2180 for (b = oldest_sblock; b; b = b->next)
2182 end = b->next_free;
2183 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2185 for (from = &b->first_data; from < end; from = from_end)
2187 /* Compute the next FROM here because copying below may
2188 overwrite data we need to compute it. */
2189 int nbytes;
2191 #ifdef GC_CHECK_STRING_BYTES
2192 /* Check that the string size recorded in the string is the
2193 same as the one recorded in the sdata structure. */
2194 if (from->string
2195 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2196 abort ();
2197 #endif /* GC_CHECK_STRING_BYTES */
2199 if (from->string)
2200 nbytes = GC_STRING_BYTES (from->string);
2201 else
2202 nbytes = SDATA_NBYTES (from);
2204 if (nbytes > LARGE_STRING_BYTES)
2205 abort ();
2207 nbytes = SDATA_SIZE (nbytes);
2208 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2210 #ifdef GC_CHECK_STRING_OVERRUN
2211 if (bcmp (string_overrun_cookie,
2212 ((char *) from_end) - GC_STRING_OVERRUN_COOKIE_SIZE,
2213 GC_STRING_OVERRUN_COOKIE_SIZE))
2214 abort ();
2215 #endif
2217 /* FROM->string non-null means it's alive. Copy its data. */
2218 if (from->string)
2220 /* If TB is full, proceed with the next sblock. */
2221 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2222 if (to_end > tb_end)
2224 tb->next_free = to;
2225 tb = tb->next;
2226 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2227 to = &tb->first_data;
2228 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2231 /* Copy, and update the string's `data' pointer. */
2232 if (from != to)
2234 xassert (tb != b || to <= from);
2235 safe_bcopy ((char *) from, (char *) to, nbytes + GC_STRING_EXTRA);
2236 to->string->data = SDATA_DATA (to);
2239 /* Advance past the sdata we copied to. */
2240 to = to_end;
2245 /* The rest of the sblocks following TB don't contain live data, so
2246 we can free them. */
2247 for (b = tb->next; b; b = next)
2249 next = b->next;
2250 lisp_free (b);
2253 tb->next_free = to;
2254 tb->next = NULL;
2255 current_sblock = tb;
2259 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2260 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2261 LENGTH must be an integer.
2262 INIT must be an integer that represents a character. */)
2263 (length, init)
2264 Lisp_Object length, init;
2266 register Lisp_Object val;
2267 register unsigned char *p, *end;
2268 int c, nbytes;
2270 CHECK_NATNUM (length);
2271 CHECK_NUMBER (init);
2273 c = XINT (init);
2274 if (ASCII_CHAR_P (c))
2276 nbytes = XINT (length);
2277 val = make_uninit_string (nbytes);
2278 p = SDATA (val);
2279 end = p + SCHARS (val);
2280 while (p != end)
2281 *p++ = c;
2283 else
2285 unsigned char str[MAX_MULTIBYTE_LENGTH];
2286 int len = CHAR_STRING (c, str);
2288 nbytes = len * XINT (length);
2289 val = make_uninit_multibyte_string (XINT (length), nbytes);
2290 p = SDATA (val);
2291 end = p + nbytes;
2292 while (p != end)
2294 bcopy (str, p, len);
2295 p += len;
2299 *p = 0;
2300 return val;
2304 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2305 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2306 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2307 (length, init)
2308 Lisp_Object length, init;
2310 register Lisp_Object val;
2311 struct Lisp_Bool_Vector *p;
2312 int real_init, i;
2313 int length_in_chars, length_in_elts, bits_per_value;
2315 CHECK_NATNUM (length);
2317 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2319 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2320 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2321 / BOOL_VECTOR_BITS_PER_CHAR);
2323 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2324 slot `size' of the struct Lisp_Bool_Vector. */
2325 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2327 /* Get rid of any bits that would cause confusion. */
2328 XVECTOR (val)->size = 0; /* No Lisp_Object to trace in there. */
2329 /* Use XVECTOR (val) rather than `p' because p->size is not TRT. */
2330 XSETPVECTYPE (XVECTOR (val), PVEC_BOOL_VECTOR);
2332 p = XBOOL_VECTOR (val);
2333 p->size = XFASTINT (length);
2335 real_init = (NILP (init) ? 0 : -1);
2336 for (i = 0; i < length_in_chars ; i++)
2337 p->data[i] = real_init;
2339 /* Clear the extraneous bits in the last byte. */
2340 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2341 p->data[length_in_chars - 1]
2342 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2344 return val;
2348 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2349 of characters from the contents. This string may be unibyte or
2350 multibyte, depending on the contents. */
2352 Lisp_Object
2353 make_string (contents, nbytes)
2354 const char *contents;
2355 int nbytes;
2357 register Lisp_Object val;
2358 int nchars, multibyte_nbytes;
2360 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2361 if (nbytes == nchars || nbytes != multibyte_nbytes)
2362 /* CONTENTS contains no multibyte sequences or contains an invalid
2363 multibyte sequence. We must make unibyte string. */
2364 val = make_unibyte_string (contents, nbytes);
2365 else
2366 val = make_multibyte_string (contents, nchars, nbytes);
2367 return val;
2371 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2373 Lisp_Object
2374 make_unibyte_string (contents, length)
2375 const char *contents;
2376 int length;
2378 register Lisp_Object val;
2379 val = make_uninit_string (length);
2380 bcopy (contents, SDATA (val), length);
2381 STRING_SET_UNIBYTE (val);
2382 return val;
2386 /* Make a multibyte string from NCHARS characters occupying NBYTES
2387 bytes at CONTENTS. */
2389 Lisp_Object
2390 make_multibyte_string (contents, nchars, nbytes)
2391 const char *contents;
2392 int nchars, nbytes;
2394 register Lisp_Object val;
2395 val = make_uninit_multibyte_string (nchars, nbytes);
2396 bcopy (contents, SDATA (val), nbytes);
2397 return val;
2401 /* Make a string from NCHARS characters occupying NBYTES bytes at
2402 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2404 Lisp_Object
2405 make_string_from_bytes (contents, nchars, nbytes)
2406 const char *contents;
2407 int nchars, nbytes;
2409 register Lisp_Object val;
2410 val = make_uninit_multibyte_string (nchars, nbytes);
2411 bcopy (contents, SDATA (val), nbytes);
2412 if (SBYTES (val) == SCHARS (val))
2413 STRING_SET_UNIBYTE (val);
2414 return val;
2418 /* Make a string from NCHARS characters occupying NBYTES bytes at
2419 CONTENTS. The argument MULTIBYTE controls whether to label the
2420 string as multibyte. If NCHARS is negative, it counts the number of
2421 characters by itself. */
2423 Lisp_Object
2424 make_specified_string (contents, nchars, nbytes, multibyte)
2425 const char *contents;
2426 int nchars, nbytes;
2427 int multibyte;
2429 register Lisp_Object val;
2431 if (nchars < 0)
2433 if (multibyte)
2434 nchars = multibyte_chars_in_text (contents, nbytes);
2435 else
2436 nchars = nbytes;
2438 val = make_uninit_multibyte_string (nchars, nbytes);
2439 bcopy (contents, SDATA (val), nbytes);
2440 if (!multibyte)
2441 STRING_SET_UNIBYTE (val);
2442 return val;
2446 /* Make a string from the data at STR, treating it as multibyte if the
2447 data warrants. */
2449 Lisp_Object
2450 build_string (str)
2451 const char *str;
2453 return make_string (str, strlen (str));
2457 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2458 occupying LENGTH bytes. */
2460 Lisp_Object
2461 make_uninit_string (length)
2462 int length;
2464 Lisp_Object val;
2466 if (!length)
2467 return empty_unibyte_string;
2468 val = make_uninit_multibyte_string (length, length);
2469 STRING_SET_UNIBYTE (val);
2470 return val;
2474 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2475 which occupy NBYTES bytes. */
2477 Lisp_Object
2478 make_uninit_multibyte_string (nchars, nbytes)
2479 int nchars, nbytes;
2481 Lisp_Object string;
2482 struct Lisp_String *s;
2484 if (nchars < 0)
2485 abort ();
2486 if (!nbytes)
2487 return empty_multibyte_string;
2489 s = allocate_string ();
2490 allocate_string_data (s, nchars, nbytes);
2491 XSETSTRING (string, s);
2492 string_chars_consed += nbytes;
2493 return string;
2498 /***********************************************************************
2499 Float Allocation
2500 ***********************************************************************/
2502 /* We store float cells inside of float_blocks, allocating a new
2503 float_block with malloc whenever necessary. Float cells reclaimed
2504 by GC are put on a free list to be reallocated before allocating
2505 any new float cells from the latest float_block. */
2507 #define FLOAT_BLOCK_SIZE \
2508 (((BLOCK_BYTES - sizeof (struct float_block *) \
2509 /* The compiler might add padding at the end. */ \
2510 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2511 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2513 #define GETMARKBIT(block,n) \
2514 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2515 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2516 & 1)
2518 #define SETMARKBIT(block,n) \
2519 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2520 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2522 #define UNSETMARKBIT(block,n) \
2523 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2524 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2526 #define FLOAT_BLOCK(fptr) \
2527 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2529 #define FLOAT_INDEX(fptr) \
2530 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2532 struct float_block
2534 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2535 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2536 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2537 struct float_block *next;
2540 #define FLOAT_MARKED_P(fptr) \
2541 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2543 #define FLOAT_MARK(fptr) \
2544 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2546 #define FLOAT_UNMARK(fptr) \
2547 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2549 /* Current float_block. */
2551 struct float_block *float_block;
2553 /* Index of first unused Lisp_Float in the current float_block. */
2555 int float_block_index;
2557 /* Total number of float blocks now in use. */
2559 int n_float_blocks;
2561 /* Free-list of Lisp_Floats. */
2563 struct Lisp_Float *float_free_list;
2566 /* Initialize float allocation. */
2568 static void
2569 init_float ()
2571 float_block = NULL;
2572 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2573 float_free_list = 0;
2574 n_float_blocks = 0;
2578 /* Explicitly free a float cell by putting it on the free-list. */
2580 static void
2581 free_float (ptr)
2582 struct Lisp_Float *ptr;
2584 ptr->u.chain = float_free_list;
2585 float_free_list = ptr;
2589 /* Return a new float object with value FLOAT_VALUE. */
2591 Lisp_Object
2592 make_float (float_value)
2593 double float_value;
2595 register Lisp_Object val;
2597 /* eassert (!handling_signal); */
2599 MALLOC_BLOCK_INPUT;
2601 if (float_free_list)
2603 /* We use the data field for chaining the free list
2604 so that we won't use the same field that has the mark bit. */
2605 XSETFLOAT (val, float_free_list);
2606 float_free_list = float_free_list->u.chain;
2608 else
2610 if (float_block_index == FLOAT_BLOCK_SIZE)
2612 register struct float_block *new;
2614 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2615 MEM_TYPE_FLOAT);
2616 new->next = float_block;
2617 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2618 float_block = new;
2619 float_block_index = 0;
2620 n_float_blocks++;
2622 XSETFLOAT (val, &float_block->floats[float_block_index]);
2623 float_block_index++;
2626 MALLOC_UNBLOCK_INPUT;
2628 XFLOAT_INIT (val, float_value);
2629 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2630 consing_since_gc += sizeof (struct Lisp_Float);
2631 floats_consed++;
2632 return val;
2637 /***********************************************************************
2638 Cons Allocation
2639 ***********************************************************************/
2641 /* We store cons cells inside of cons_blocks, allocating a new
2642 cons_block with malloc whenever necessary. Cons cells reclaimed by
2643 GC are put on a free list to be reallocated before allocating
2644 any new cons cells from the latest cons_block. */
2646 #define CONS_BLOCK_SIZE \
2647 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2648 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2650 #define CONS_BLOCK(fptr) \
2651 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2653 #define CONS_INDEX(fptr) \
2654 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2656 struct cons_block
2658 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2659 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2660 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2661 struct cons_block *next;
2664 #define CONS_MARKED_P(fptr) \
2665 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2667 #define CONS_MARK(fptr) \
2668 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2670 #define CONS_UNMARK(fptr) \
2671 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2673 /* Current cons_block. */
2675 struct cons_block *cons_block;
2677 /* Index of first unused Lisp_Cons in the current block. */
2679 int cons_block_index;
2681 /* Free-list of Lisp_Cons structures. */
2683 struct Lisp_Cons *cons_free_list;
2685 /* Total number of cons blocks now in use. */
2687 static int n_cons_blocks;
2690 /* Initialize cons allocation. */
2692 static void
2693 init_cons ()
2695 cons_block = NULL;
2696 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2697 cons_free_list = 0;
2698 n_cons_blocks = 0;
2702 /* Explicitly free a cons cell by putting it on the free-list. */
2704 void
2705 free_cons (ptr)
2706 struct Lisp_Cons *ptr;
2708 ptr->u.chain = cons_free_list;
2709 #if GC_MARK_STACK
2710 ptr->car = Vdead;
2711 #endif
2712 cons_free_list = ptr;
2715 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2716 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2717 (car, cdr)
2718 Lisp_Object car, cdr;
2720 register Lisp_Object val;
2722 /* eassert (!handling_signal); */
2724 MALLOC_BLOCK_INPUT;
2726 if (cons_free_list)
2728 /* We use the cdr for chaining the free list
2729 so that we won't use the same field that has the mark bit. */
2730 XSETCONS (val, cons_free_list);
2731 cons_free_list = cons_free_list->u.chain;
2733 else
2735 if (cons_block_index == CONS_BLOCK_SIZE)
2737 register struct cons_block *new;
2738 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2739 MEM_TYPE_CONS);
2740 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2741 new->next = cons_block;
2742 cons_block = new;
2743 cons_block_index = 0;
2744 n_cons_blocks++;
2746 XSETCONS (val, &cons_block->conses[cons_block_index]);
2747 cons_block_index++;
2750 MALLOC_UNBLOCK_INPUT;
2752 XSETCAR (val, car);
2753 XSETCDR (val, cdr);
2754 eassert (!CONS_MARKED_P (XCONS (val)));
2755 consing_since_gc += sizeof (struct Lisp_Cons);
2756 cons_cells_consed++;
2757 return val;
2760 /* Get an error now if there's any junk in the cons free list. */
2761 void
2762 check_cons_list ()
2764 #ifdef GC_CHECK_CONS_LIST
2765 struct Lisp_Cons *tail = cons_free_list;
2767 while (tail)
2768 tail = tail->u.chain;
2769 #endif
2772 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2774 Lisp_Object
2775 list1 (arg1)
2776 Lisp_Object arg1;
2778 return Fcons (arg1, Qnil);
2781 Lisp_Object
2782 list2 (arg1, arg2)
2783 Lisp_Object arg1, arg2;
2785 return Fcons (arg1, Fcons (arg2, Qnil));
2789 Lisp_Object
2790 list3 (arg1, arg2, arg3)
2791 Lisp_Object arg1, arg2, arg3;
2793 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2797 Lisp_Object
2798 list4 (arg1, arg2, arg3, arg4)
2799 Lisp_Object arg1, arg2, arg3, arg4;
2801 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2805 Lisp_Object
2806 list5 (arg1, arg2, arg3, arg4, arg5)
2807 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2809 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2810 Fcons (arg5, Qnil)))));
2814 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2815 doc: /* Return a newly created list with specified arguments as elements.
2816 Any number of arguments, even zero arguments, are allowed.
2817 usage: (list &rest OBJECTS) */)
2818 (nargs, args)
2819 int nargs;
2820 register Lisp_Object *args;
2822 register Lisp_Object val;
2823 val = Qnil;
2825 while (nargs > 0)
2827 nargs--;
2828 val = Fcons (args[nargs], val);
2830 return val;
2834 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2835 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2836 (length, init)
2837 register Lisp_Object length, init;
2839 register Lisp_Object val;
2840 register int size;
2842 CHECK_NATNUM (length);
2843 size = XFASTINT (length);
2845 val = Qnil;
2846 while (size > 0)
2848 val = Fcons (init, val);
2849 --size;
2851 if (size > 0)
2853 val = Fcons (init, val);
2854 --size;
2856 if (size > 0)
2858 val = Fcons (init, val);
2859 --size;
2861 if (size > 0)
2863 val = Fcons (init, val);
2864 --size;
2866 if (size > 0)
2868 val = Fcons (init, val);
2869 --size;
2875 QUIT;
2878 return val;
2883 /***********************************************************************
2884 Vector Allocation
2885 ***********************************************************************/
2887 /* Singly-linked list of all vectors. */
2889 static struct Lisp_Vector *all_vectors;
2891 /* Total number of vector-like objects now in use. */
2893 static int n_vectors;
2896 /* Value is a pointer to a newly allocated Lisp_Vector structure
2897 with room for LEN Lisp_Objects. */
2899 static struct Lisp_Vector *
2900 allocate_vectorlike (len)
2901 EMACS_INT len;
2903 struct Lisp_Vector *p;
2904 size_t nbytes;
2906 MALLOC_BLOCK_INPUT;
2908 #ifdef DOUG_LEA_MALLOC
2909 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2910 because mapped region contents are not preserved in
2911 a dumped Emacs. */
2912 mallopt (M_MMAP_MAX, 0);
2913 #endif
2915 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2916 /* eassert (!handling_signal); */
2918 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2919 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2921 #ifdef DOUG_LEA_MALLOC
2922 /* Back to a reasonable maximum of mmap'ed areas. */
2923 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2924 #endif
2926 consing_since_gc += nbytes;
2927 vector_cells_consed += len;
2929 p->next = all_vectors;
2930 all_vectors = p;
2932 MALLOC_UNBLOCK_INPUT;
2934 ++n_vectors;
2935 return p;
2939 /* Allocate a vector with NSLOTS slots. */
2941 struct Lisp_Vector *
2942 allocate_vector (nslots)
2943 EMACS_INT nslots;
2945 struct Lisp_Vector *v = allocate_vectorlike (nslots);
2946 v->size = nslots;
2947 return v;
2951 /* Allocate other vector-like structures. */
2953 struct Lisp_Vector *
2954 allocate_pseudovector (memlen, lisplen, tag)
2955 int memlen, lisplen;
2956 EMACS_INT tag;
2958 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2959 EMACS_INT i;
2961 /* Only the first lisplen slots will be traced normally by the GC. */
2962 v->size = lisplen;
2963 for (i = 0; i < lisplen; ++i)
2964 v->contents[i] = Qnil;
2966 XSETPVECTYPE (v, tag); /* Add the appropriate tag. */
2967 return v;
2970 struct Lisp_Hash_Table *
2971 allocate_hash_table (void)
2973 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2977 struct window *
2978 allocate_window ()
2980 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
2984 struct terminal *
2985 allocate_terminal ()
2987 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
2988 next_terminal, PVEC_TERMINAL);
2989 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2990 bzero (&(t->next_terminal),
2991 ((char*)(t+1)) - ((char*)&(t->next_terminal)));
2993 return t;
2996 struct frame *
2997 allocate_frame ()
2999 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
3000 face_cache, PVEC_FRAME);
3001 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3002 bzero (&(f->face_cache),
3003 ((char*)(f+1)) - ((char*)&(f->face_cache)));
3004 return f;
3008 struct Lisp_Process *
3009 allocate_process ()
3011 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3014 struct Lisp_Mutex *
3015 allocate_mutex ()
3017 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Mutex, owner, PVEC_MUTEX);
3021 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3022 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3023 See also the function `vector'. */)
3024 (length, init)
3025 register Lisp_Object length, init;
3027 Lisp_Object vector;
3028 register EMACS_INT sizei;
3029 register int index;
3030 register struct Lisp_Vector *p;
3032 CHECK_NATNUM (length);
3033 sizei = XFASTINT (length);
3035 p = allocate_vector (sizei);
3036 for (index = 0; index < sizei; index++)
3037 p->contents[index] = init;
3039 XSETVECTOR (vector, p);
3040 return vector;
3044 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3045 doc: /* Return a newly created vector with specified arguments as elements.
3046 Any number of arguments, even zero arguments, are allowed.
3047 usage: (vector &rest OBJECTS) */)
3048 (nargs, args)
3049 register int nargs;
3050 Lisp_Object *args;
3052 register Lisp_Object len, val;
3053 register int index;
3054 register struct Lisp_Vector *p;
3056 XSETFASTINT (len, nargs);
3057 val = Fmake_vector (len, Qnil);
3058 p = XVECTOR (val);
3059 for (index = 0; index < nargs; index++)
3060 p->contents[index] = args[index];
3061 return val;
3065 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3066 doc: /* Create a byte-code object with specified arguments as elements.
3067 The arguments should be the arglist, bytecode-string, constant vector,
3068 stack size, (optional) doc string, and (optional) interactive spec.
3069 The first four arguments are required; at most six have any
3070 significance.
3071 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3072 (nargs, args)
3073 register int nargs;
3074 Lisp_Object *args;
3076 register Lisp_Object len, val;
3077 register int index;
3078 register struct Lisp_Vector *p;
3080 XSETFASTINT (len, nargs);
3081 if (!NILP (Vpurify_flag))
3082 val = make_pure_vector ((EMACS_INT) nargs);
3083 else
3084 val = Fmake_vector (len, Qnil);
3086 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3087 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3088 earlier because they produced a raw 8-bit string for byte-code
3089 and now such a byte-code string is loaded as multibyte while
3090 raw 8-bit characters converted to multibyte form. Thus, now we
3091 must convert them back to the original unibyte form. */
3092 args[1] = Fstring_as_unibyte (args[1]);
3094 p = XVECTOR (val);
3095 for (index = 0; index < nargs; index++)
3097 if (!NILP (Vpurify_flag))
3098 args[index] = Fpurecopy (args[index]);
3099 p->contents[index] = args[index];
3101 XSETPVECTYPE (p, PVEC_COMPILED);
3102 XSETCOMPILED (val, p);
3103 return val;
3108 /***********************************************************************
3109 Symbol Allocation
3110 ***********************************************************************/
3112 /* Each symbol_block is just under 1020 bytes long, since malloc
3113 really allocates in units of powers of two and uses 4 bytes for its
3114 own overhead. */
3116 #define SYMBOL_BLOCK_SIZE \
3117 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3119 struct symbol_block
3121 /* Place `symbols' first, to preserve alignment. */
3122 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3123 struct symbol_block *next;
3126 /* Current symbol block and index of first unused Lisp_Symbol
3127 structure in it. */
3129 static struct symbol_block *symbol_block;
3130 static int symbol_block_index;
3132 /* List of free symbols. */
3134 static struct Lisp_Symbol *symbol_free_list;
3136 /* Total number of symbol blocks now in use. */
3138 static int n_symbol_blocks;
3141 /* Initialize symbol allocation. */
3143 static void
3144 init_symbol ()
3146 symbol_block = NULL;
3147 symbol_block_index = SYMBOL_BLOCK_SIZE;
3148 symbol_free_list = 0;
3149 n_symbol_blocks = 0;
3153 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3154 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3155 Its value and function definition are void, and its property list is nil. */)
3156 (name)
3157 Lisp_Object name;
3159 register Lisp_Object val;
3160 register struct Lisp_Symbol *p;
3162 CHECK_STRING (name);
3164 /* eassert (!handling_signal); */
3166 MALLOC_BLOCK_INPUT;
3168 if (symbol_free_list)
3170 XSETSYMBOL (val, symbol_free_list);
3171 symbol_free_list = symbol_free_list->next;
3173 else
3175 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3177 struct symbol_block *new;
3178 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3179 MEM_TYPE_SYMBOL);
3180 new->next = symbol_block;
3181 symbol_block = new;
3182 symbol_block_index = 0;
3183 n_symbol_blocks++;
3185 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3186 symbol_block_index++;
3189 MALLOC_UNBLOCK_INPUT;
3191 p = XSYMBOL (val);
3192 p->xname = name;
3193 p->plist = Qnil;
3194 p->value = Qunbound;
3195 p->function = Qunbound;
3196 p->next = NULL;
3197 p->gcmarkbit = 0;
3198 p->interned = SYMBOL_UNINTERNED;
3199 p->constant = 0;
3200 p->indirect_variable = 0;
3201 consing_since_gc += sizeof (struct Lisp_Symbol);
3202 symbols_consed++;
3203 return val;
3208 /***********************************************************************
3209 Marker (Misc) Allocation
3210 ***********************************************************************/
3212 /* Allocation of markers and other objects that share that structure.
3213 Works like allocation of conses. */
3215 #define MARKER_BLOCK_SIZE \
3216 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3218 struct marker_block
3220 /* Place `markers' first, to preserve alignment. */
3221 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3222 struct marker_block *next;
3225 static struct marker_block *marker_block;
3226 static int marker_block_index;
3228 static union Lisp_Misc *marker_free_list;
3230 /* Total number of marker blocks now in use. */
3232 static int n_marker_blocks;
3234 static void
3235 init_marker ()
3237 marker_block = NULL;
3238 marker_block_index = MARKER_BLOCK_SIZE;
3239 marker_free_list = 0;
3240 n_marker_blocks = 0;
3243 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3245 Lisp_Object
3246 allocate_misc ()
3248 Lisp_Object val;
3250 /* eassert (!handling_signal); */
3252 MALLOC_BLOCK_INPUT;
3254 if (marker_free_list)
3256 XSETMISC (val, marker_free_list);
3257 marker_free_list = marker_free_list->u_free.chain;
3259 else
3261 if (marker_block_index == MARKER_BLOCK_SIZE)
3263 struct marker_block *new;
3264 new = (struct marker_block *) lisp_malloc (sizeof *new,
3265 MEM_TYPE_MISC);
3266 new->next = marker_block;
3267 marker_block = new;
3268 marker_block_index = 0;
3269 n_marker_blocks++;
3270 total_free_markers += MARKER_BLOCK_SIZE;
3272 XSETMISC (val, &marker_block->markers[marker_block_index]);
3273 marker_block_index++;
3276 MALLOC_UNBLOCK_INPUT;
3278 --total_free_markers;
3279 consing_since_gc += sizeof (union Lisp_Misc);
3280 misc_objects_consed++;
3281 XMISCANY (val)->gcmarkbit = 0;
3282 return val;
3285 /* Free a Lisp_Misc object */
3287 void
3288 free_misc (misc)
3289 Lisp_Object misc;
3291 XMISCTYPE (misc) = Lisp_Misc_Free;
3292 XMISC (misc)->u_free.chain = marker_free_list;
3293 marker_free_list = XMISC (misc);
3295 total_free_markers++;
3298 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3299 INTEGER. This is used to package C values to call record_unwind_protect.
3300 The unwind function can get the C values back using XSAVE_VALUE. */
3302 Lisp_Object
3303 make_save_value (pointer, integer)
3304 void *pointer;
3305 int integer;
3307 register Lisp_Object val;
3308 register struct Lisp_Save_Value *p;
3310 val = allocate_misc ();
3311 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3312 p = XSAVE_VALUE (val);
3313 p->pointer = pointer;
3314 p->integer = integer;
3315 p->dogc = 0;
3316 return val;
3319 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3320 doc: /* Return a newly allocated marker which does not point at any place. */)
3323 register Lisp_Object val;
3324 register struct Lisp_Marker *p;
3326 val = allocate_misc ();
3327 XMISCTYPE (val) = Lisp_Misc_Marker;
3328 p = XMARKER (val);
3329 p->buffer = 0;
3330 p->bytepos = 0;
3331 p->charpos = 0;
3332 p->next = NULL;
3333 p->insertion_type = 0;
3334 return val;
3337 /* Put MARKER back on the free list after using it temporarily. */
3339 void
3340 free_marker (marker)
3341 Lisp_Object marker;
3343 unchain_marker (XMARKER (marker));
3344 free_misc (marker);
3348 /* Return a newly created vector or string with specified arguments as
3349 elements. If all the arguments are characters that can fit
3350 in a string of events, make a string; otherwise, make a vector.
3352 Any number of arguments, even zero arguments, are allowed. */
3354 Lisp_Object
3355 make_event_array (nargs, args)
3356 register int nargs;
3357 Lisp_Object *args;
3359 int i;
3361 for (i = 0; i < nargs; i++)
3362 /* The things that fit in a string
3363 are characters that are in 0...127,
3364 after discarding the meta bit and all the bits above it. */
3365 if (!INTEGERP (args[i])
3366 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3367 return Fvector (nargs, args);
3369 /* Since the loop exited, we know that all the things in it are
3370 characters, so we can make a string. */
3372 Lisp_Object result;
3374 result = Fmake_string (make_number (nargs), make_number (0));
3375 for (i = 0; i < nargs; i++)
3377 SSET (result, i, XINT (args[i]));
3378 /* Move the meta bit to the right place for a string char. */
3379 if (XINT (args[i]) & CHAR_META)
3380 SSET (result, i, SREF (result, i) | 0x80);
3383 return result;
3389 /************************************************************************
3390 Memory Full Handling
3391 ************************************************************************/
3394 /* Called if malloc returns zero. */
3396 void
3397 memory_full ()
3399 int i;
3401 Vmemory_full = Qt;
3403 memory_full_cons_threshold = sizeof (struct cons_block);
3405 /* The first time we get here, free the spare memory. */
3406 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3407 if (spare_memory[i])
3409 if (i == 0)
3410 free (spare_memory[i]);
3411 else if (i >= 1 && i <= 4)
3412 lisp_align_free (spare_memory[i]);
3413 else
3414 lisp_free (spare_memory[i]);
3415 spare_memory[i] = 0;
3418 /* Record the space now used. When it decreases substantially,
3419 we can refill the memory reserve. */
3420 #ifndef SYSTEM_MALLOC
3421 bytes_used_when_full = BYTES_USED;
3422 #endif
3424 /* This used to call error, but if we've run out of memory, we could
3425 get infinite recursion trying to build the string. */
3426 xsignal (Qnil, Vmemory_signal_data);
3429 /* If we released our reserve (due to running out of memory),
3430 and we have a fair amount free once again,
3431 try to set aside another reserve in case we run out once more.
3433 This is called when a relocatable block is freed in ralloc.c,
3434 and also directly from this file, in case we're not using ralloc.c. */
3436 void
3437 refill_memory_reserve ()
3439 #ifndef SYSTEM_MALLOC
3440 if (spare_memory[0] == 0)
3441 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3442 if (spare_memory[1] == 0)
3443 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3444 MEM_TYPE_CONS);
3445 if (spare_memory[2] == 0)
3446 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3447 MEM_TYPE_CONS);
3448 if (spare_memory[3] == 0)
3449 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3450 MEM_TYPE_CONS);
3451 if (spare_memory[4] == 0)
3452 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3453 MEM_TYPE_CONS);
3454 if (spare_memory[5] == 0)
3455 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3456 MEM_TYPE_STRING);
3457 if (spare_memory[6] == 0)
3458 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3459 MEM_TYPE_STRING);
3460 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3461 Vmemory_full = Qnil;
3462 #endif
3465 /************************************************************************
3466 C Stack Marking
3467 ************************************************************************/
3469 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3471 /* Conservative C stack marking requires a method to identify possibly
3472 live Lisp objects given a pointer value. We do this by keeping
3473 track of blocks of Lisp data that are allocated in a red-black tree
3474 (see also the comment of mem_node which is the type of nodes in
3475 that tree). Function lisp_malloc adds information for an allocated
3476 block to the red-black tree with calls to mem_insert, and function
3477 lisp_free removes it with mem_delete. Functions live_string_p etc
3478 call mem_find to lookup information about a given pointer in the
3479 tree, and use that to determine if the pointer points to a Lisp
3480 object or not. */
3482 /* Initialize this part of alloc.c. */
3484 static void
3485 mem_init ()
3487 mem_z.left = mem_z.right = MEM_NIL;
3488 mem_z.parent = NULL;
3489 mem_z.color = MEM_BLACK;
3490 mem_z.start = mem_z.end = NULL;
3491 mem_root = MEM_NIL;
3495 /* Value is a pointer to the mem_node containing START. Value is
3496 MEM_NIL if there is no node in the tree containing START. */
3498 static INLINE struct mem_node *
3499 mem_find (start)
3500 void *start;
3502 struct mem_node *p;
3504 if (start < min_heap_address || start > max_heap_address)
3505 return MEM_NIL;
3507 /* Make the search always successful to speed up the loop below. */
3508 mem_z.start = start;
3509 mem_z.end = (char *) start + 1;
3511 p = mem_root;
3512 while (start < p->start || start >= p->end)
3513 p = start < p->start ? p->left : p->right;
3514 return p;
3518 /* Insert a new node into the tree for a block of memory with start
3519 address START, end address END, and type TYPE. Value is a
3520 pointer to the node that was inserted. */
3522 static struct mem_node *
3523 mem_insert (start, end, type)
3524 void *start, *end;
3525 enum mem_type type;
3527 struct mem_node *c, *parent, *x;
3529 if (min_heap_address == NULL || start < min_heap_address)
3530 min_heap_address = start;
3531 if (max_heap_address == NULL || end > max_heap_address)
3532 max_heap_address = end;
3534 /* See where in the tree a node for START belongs. In this
3535 particular application, it shouldn't happen that a node is already
3536 present. For debugging purposes, let's check that. */
3537 c = mem_root;
3538 parent = NULL;
3540 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3542 while (c != MEM_NIL)
3544 if (start >= c->start && start < c->end)
3545 abort ();
3546 parent = c;
3547 c = start < c->start ? c->left : c->right;
3550 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3552 while (c != MEM_NIL)
3554 parent = c;
3555 c = start < c->start ? c->left : c->right;
3558 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3560 /* Create a new node. */
3561 #ifdef GC_MALLOC_CHECK
3562 x = (struct mem_node *) _malloc_internal (sizeof *x);
3563 if (x == NULL)
3564 abort ();
3565 #else
3566 x = (struct mem_node *) xmalloc (sizeof *x);
3567 #endif
3568 x->start = start;
3569 x->end = end;
3570 x->type = type;
3571 x->parent = parent;
3572 x->left = x->right = MEM_NIL;
3573 x->color = MEM_RED;
3575 /* Insert it as child of PARENT or install it as root. */
3576 if (parent)
3578 if (start < parent->start)
3579 parent->left = x;
3580 else
3581 parent->right = x;
3583 else
3584 mem_root = x;
3586 /* Re-establish red-black tree properties. */
3587 mem_insert_fixup (x);
3589 return x;
3593 /* Re-establish the red-black properties of the tree, and thereby
3594 balance the tree, after node X has been inserted; X is always red. */
3596 static void
3597 mem_insert_fixup (x)
3598 struct mem_node *x;
3600 while (x != mem_root && x->parent->color == MEM_RED)
3602 /* X is red and its parent is red. This is a violation of
3603 red-black tree property #3. */
3605 if (x->parent == x->parent->parent->left)
3607 /* We're on the left side of our grandparent, and Y is our
3608 "uncle". */
3609 struct mem_node *y = x->parent->parent->right;
3611 if (y->color == MEM_RED)
3613 /* Uncle and parent are red but should be black because
3614 X is red. Change the colors accordingly and proceed
3615 with the grandparent. */
3616 x->parent->color = MEM_BLACK;
3617 y->color = MEM_BLACK;
3618 x->parent->parent->color = MEM_RED;
3619 x = x->parent->parent;
3621 else
3623 /* Parent and uncle have different colors; parent is
3624 red, uncle is black. */
3625 if (x == x->parent->right)
3627 x = x->parent;
3628 mem_rotate_left (x);
3631 x->parent->color = MEM_BLACK;
3632 x->parent->parent->color = MEM_RED;
3633 mem_rotate_right (x->parent->parent);
3636 else
3638 /* This is the symmetrical case of above. */
3639 struct mem_node *y = x->parent->parent->left;
3641 if (y->color == MEM_RED)
3643 x->parent->color = MEM_BLACK;
3644 y->color = MEM_BLACK;
3645 x->parent->parent->color = MEM_RED;
3646 x = x->parent->parent;
3648 else
3650 if (x == x->parent->left)
3652 x = x->parent;
3653 mem_rotate_right (x);
3656 x->parent->color = MEM_BLACK;
3657 x->parent->parent->color = MEM_RED;
3658 mem_rotate_left (x->parent->parent);
3663 /* The root may have been changed to red due to the algorithm. Set
3664 it to black so that property #5 is satisfied. */
3665 mem_root->color = MEM_BLACK;
3669 /* (x) (y)
3670 / \ / \
3671 a (y) ===> (x) c
3672 / \ / \
3673 b c a b */
3675 static void
3676 mem_rotate_left (x)
3677 struct mem_node *x;
3679 struct mem_node *y;
3681 /* Turn y's left sub-tree into x's right sub-tree. */
3682 y = x->right;
3683 x->right = y->left;
3684 if (y->left != MEM_NIL)
3685 y->left->parent = x;
3687 /* Y's parent was x's parent. */
3688 if (y != MEM_NIL)
3689 y->parent = x->parent;
3691 /* Get the parent to point to y instead of x. */
3692 if (x->parent)
3694 if (x == x->parent->left)
3695 x->parent->left = y;
3696 else
3697 x->parent->right = y;
3699 else
3700 mem_root = y;
3702 /* Put x on y's left. */
3703 y->left = x;
3704 if (x != MEM_NIL)
3705 x->parent = y;
3709 /* (x) (Y)
3710 / \ / \
3711 (y) c ===> a (x)
3712 / \ / \
3713 a b b c */
3715 static void
3716 mem_rotate_right (x)
3717 struct mem_node *x;
3719 struct mem_node *y = x->left;
3721 x->left = y->right;
3722 if (y->right != MEM_NIL)
3723 y->right->parent = x;
3725 if (y != MEM_NIL)
3726 y->parent = x->parent;
3727 if (x->parent)
3729 if (x == x->parent->right)
3730 x->parent->right = y;
3731 else
3732 x->parent->left = y;
3734 else
3735 mem_root = y;
3737 y->right = x;
3738 if (x != MEM_NIL)
3739 x->parent = y;
3743 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3745 static void
3746 mem_delete (z)
3747 struct mem_node *z;
3749 struct mem_node *x, *y;
3751 if (!z || z == MEM_NIL)
3752 return;
3754 if (z->left == MEM_NIL || z->right == MEM_NIL)
3755 y = z;
3756 else
3758 y = z->right;
3759 while (y->left != MEM_NIL)
3760 y = y->left;
3763 if (y->left != MEM_NIL)
3764 x = y->left;
3765 else
3766 x = y->right;
3768 x->parent = y->parent;
3769 if (y->parent)
3771 if (y == y->parent->left)
3772 y->parent->left = x;
3773 else
3774 y->parent->right = x;
3776 else
3777 mem_root = x;
3779 if (y != z)
3781 z->start = y->start;
3782 z->end = y->end;
3783 z->type = y->type;
3786 if (y->color == MEM_BLACK)
3787 mem_delete_fixup (x);
3789 #ifdef GC_MALLOC_CHECK
3790 _free_internal (y);
3791 #else
3792 xfree (y);
3793 #endif
3797 /* Re-establish the red-black properties of the tree, after a
3798 deletion. */
3800 static void
3801 mem_delete_fixup (x)
3802 struct mem_node *x;
3804 while (x != mem_root && x->color == MEM_BLACK)
3806 if (x == x->parent->left)
3808 struct mem_node *w = x->parent->right;
3810 if (w->color == MEM_RED)
3812 w->color = MEM_BLACK;
3813 x->parent->color = MEM_RED;
3814 mem_rotate_left (x->parent);
3815 w = x->parent->right;
3818 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3820 w->color = MEM_RED;
3821 x = x->parent;
3823 else
3825 if (w->right->color == MEM_BLACK)
3827 w->left->color = MEM_BLACK;
3828 w->color = MEM_RED;
3829 mem_rotate_right (w);
3830 w = x->parent->right;
3832 w->color = x->parent->color;
3833 x->parent->color = MEM_BLACK;
3834 w->right->color = MEM_BLACK;
3835 mem_rotate_left (x->parent);
3836 x = mem_root;
3839 else
3841 struct mem_node *w = x->parent->left;
3843 if (w->color == MEM_RED)
3845 w->color = MEM_BLACK;
3846 x->parent->color = MEM_RED;
3847 mem_rotate_right (x->parent);
3848 w = x->parent->left;
3851 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3853 w->color = MEM_RED;
3854 x = x->parent;
3856 else
3858 if (w->left->color == MEM_BLACK)
3860 w->right->color = MEM_BLACK;
3861 w->color = MEM_RED;
3862 mem_rotate_left (w);
3863 w = x->parent->left;
3866 w->color = x->parent->color;
3867 x->parent->color = MEM_BLACK;
3868 w->left->color = MEM_BLACK;
3869 mem_rotate_right (x->parent);
3870 x = mem_root;
3875 x->color = MEM_BLACK;
3879 /* Value is non-zero if P is a pointer to a live Lisp string on
3880 the heap. M is a pointer to the mem_block for P. */
3882 static INLINE int
3883 live_string_p (m, p)
3884 struct mem_node *m;
3885 void *p;
3887 if (m->type == MEM_TYPE_STRING)
3889 struct string_block *b = (struct string_block *) m->start;
3890 int offset = (char *) p - (char *) &b->strings[0];
3892 /* P must point to the start of a Lisp_String structure, and it
3893 must not be on the free-list. */
3894 return (offset >= 0
3895 && offset % sizeof b->strings[0] == 0
3896 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3897 && ((struct Lisp_String *) p)->data != NULL);
3899 else
3900 return 0;
3904 /* Value is non-zero if P is a pointer to a live Lisp cons on
3905 the heap. M is a pointer to the mem_block for P. */
3907 static INLINE int
3908 live_cons_p (m, p)
3909 struct mem_node *m;
3910 void *p;
3912 if (m->type == MEM_TYPE_CONS)
3914 struct cons_block *b = (struct cons_block *) m->start;
3915 int offset = (char *) p - (char *) &b->conses[0];
3917 /* P must point to the start of a Lisp_Cons, not be
3918 one of the unused cells in the current cons block,
3919 and not be on the free-list. */
3920 return (offset >= 0
3921 && offset % sizeof b->conses[0] == 0
3922 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3923 && (b != cons_block
3924 || offset / sizeof b->conses[0] < cons_block_index)
3925 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3927 else
3928 return 0;
3932 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3933 the heap. M is a pointer to the mem_block for P. */
3935 static INLINE int
3936 live_symbol_p (m, p)
3937 struct mem_node *m;
3938 void *p;
3940 if (m->type == MEM_TYPE_SYMBOL)
3942 struct symbol_block *b = (struct symbol_block *) m->start;
3943 int offset = (char *) p - (char *) &b->symbols[0];
3945 /* P must point to the start of a Lisp_Symbol, not be
3946 one of the unused cells in the current symbol block,
3947 and not be on the free-list. */
3948 return (offset >= 0
3949 && offset % sizeof b->symbols[0] == 0
3950 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3951 && (b != symbol_block
3952 || offset / sizeof b->symbols[0] < symbol_block_index)
3953 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3955 else
3956 return 0;
3960 /* Value is non-zero if P is a pointer to a live Lisp float on
3961 the heap. M is a pointer to the mem_block for P. */
3963 static INLINE int
3964 live_float_p (m, p)
3965 struct mem_node *m;
3966 void *p;
3968 if (m->type == MEM_TYPE_FLOAT)
3970 struct float_block *b = (struct float_block *) m->start;
3971 int offset = (char *) p - (char *) &b->floats[0];
3973 /* P must point to the start of a Lisp_Float and not be
3974 one of the unused cells in the current float block. */
3975 return (offset >= 0
3976 && offset % sizeof b->floats[0] == 0
3977 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3978 && (b != float_block
3979 || offset / sizeof b->floats[0] < float_block_index));
3981 else
3982 return 0;
3986 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3987 the heap. M is a pointer to the mem_block for P. */
3989 static INLINE int
3990 live_misc_p (m, p)
3991 struct mem_node *m;
3992 void *p;
3994 if (m->type == MEM_TYPE_MISC)
3996 struct marker_block *b = (struct marker_block *) m->start;
3997 int offset = (char *) p - (char *) &b->markers[0];
3999 /* P must point to the start of a Lisp_Misc, not be
4000 one of the unused cells in the current misc block,
4001 and not be on the free-list. */
4002 return (offset >= 0
4003 && offset % sizeof b->markers[0] == 0
4004 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4005 && (b != marker_block
4006 || offset / sizeof b->markers[0] < marker_block_index)
4007 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4009 else
4010 return 0;
4014 /* Value is non-zero if P is a pointer to a live vector-like object.
4015 M is a pointer to the mem_block for P. */
4017 static INLINE int
4018 live_vector_p (m, p)
4019 struct mem_node *m;
4020 void *p;
4022 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
4026 /* Value is non-zero if P is a pointer to a live buffer. M is a
4027 pointer to the mem_block for P. */
4029 static INLINE int
4030 live_buffer_p (m, p)
4031 struct mem_node *m;
4032 void *p;
4034 /* P must point to the start of the block, and the buffer
4035 must not have been killed. */
4036 return (m->type == MEM_TYPE_BUFFER
4037 && p == m->start
4038 && !NILP (BUF_NAME (((struct buffer *) p))));
4041 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4043 #if GC_MARK_STACK
4045 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4047 /* Array of objects that are kept alive because the C stack contains
4048 a pattern that looks like a reference to them . */
4050 #define MAX_ZOMBIES 10
4051 static Lisp_Object zombies[MAX_ZOMBIES];
4053 /* Number of zombie objects. */
4055 static int nzombies;
4057 /* Number of garbage collections. */
4059 static int ngcs;
4061 /* Average percentage of zombies per collection. */
4063 static double avg_zombies;
4065 /* Max. number of live and zombie objects. */
4067 static int max_live, max_zombies;
4069 /* Average number of live objects per GC. */
4071 static double avg_live;
4073 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4074 doc: /* Show information about live and zombie objects. */)
4077 Lisp_Object args[8], zombie_list = Qnil;
4078 int i;
4079 for (i = 0; i < nzombies; i++)
4080 zombie_list = Fcons (zombies[i], zombie_list);
4081 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4082 args[1] = make_number (ngcs);
4083 args[2] = make_float (avg_live);
4084 args[3] = make_float (avg_zombies);
4085 args[4] = make_float (avg_zombies / avg_live / 100);
4086 args[5] = make_number (max_live);
4087 args[6] = make_number (max_zombies);
4088 args[7] = zombie_list;
4089 return Fmessage (8, args);
4092 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4095 /* Mark OBJ if we can prove it's a Lisp_Object. */
4097 static INLINE void
4098 mark_maybe_object (obj)
4099 Lisp_Object obj;
4101 void *po = (void *) XPNTR (obj);
4102 struct mem_node *m = mem_find (po);
4104 if (m != MEM_NIL)
4106 int mark_p = 0;
4108 switch (XTYPE (obj))
4110 case Lisp_String:
4111 mark_p = (live_string_p (m, po)
4112 && !STRING_MARKED_P ((struct Lisp_String *) po));
4113 break;
4115 case Lisp_Cons:
4116 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4117 break;
4119 case Lisp_Symbol:
4120 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4121 break;
4123 case Lisp_Float:
4124 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4125 break;
4127 case Lisp_Vectorlike:
4128 /* Note: can't check BUFFERP before we know it's a
4129 buffer because checking that dereferences the pointer
4130 PO which might point anywhere. */
4131 if (live_vector_p (m, po))
4132 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4133 else if (live_buffer_p (m, po))
4134 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4135 break;
4137 case Lisp_Misc:
4138 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4139 break;
4141 default:
4142 break;
4145 if (mark_p)
4147 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4148 if (nzombies < MAX_ZOMBIES)
4149 zombies[nzombies] = obj;
4150 ++nzombies;
4151 #endif
4152 mark_object (obj);
4158 /* If P points to Lisp data, mark that as live if it isn't already
4159 marked. */
4161 static INLINE void
4162 mark_maybe_pointer (p)
4163 void *p;
4165 struct mem_node *m;
4167 /* Quickly rule out some values which can't point to Lisp data. */
4168 if ((EMACS_INT) p %
4169 #ifdef USE_LSB_TAG
4170 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4171 #else
4172 2 /* We assume that Lisp data is aligned on even addresses. */
4173 #endif
4175 return;
4177 m = mem_find (p);
4178 if (m != MEM_NIL)
4180 Lisp_Object obj = Qnil;
4182 switch (m->type)
4184 case MEM_TYPE_NON_LISP:
4185 /* Nothing to do; not a pointer to Lisp memory. */
4186 break;
4188 case MEM_TYPE_BUFFER:
4189 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4190 XSETVECTOR (obj, p);
4191 break;
4193 case MEM_TYPE_CONS:
4194 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4195 XSETCONS (obj, p);
4196 break;
4198 case MEM_TYPE_STRING:
4199 if (live_string_p (m, p)
4200 && !STRING_MARKED_P ((struct Lisp_String *) p))
4201 XSETSTRING (obj, p);
4202 break;
4204 case MEM_TYPE_MISC:
4205 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4206 XSETMISC (obj, p);
4207 break;
4209 case MEM_TYPE_SYMBOL:
4210 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4211 XSETSYMBOL (obj, p);
4212 break;
4214 case MEM_TYPE_FLOAT:
4215 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4216 XSETFLOAT (obj, p);
4217 break;
4219 case MEM_TYPE_VECTORLIKE:
4220 if (live_vector_p (m, p))
4222 Lisp_Object tem;
4223 XSETVECTOR (tem, p);
4224 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4225 obj = tem;
4227 break;
4229 default:
4230 abort ();
4233 if (!NILP (obj))
4234 mark_object (obj);
4239 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4240 or END+OFFSET..START. */
4242 static void
4243 mark_memory (start, end, offset)
4244 void *start, *end;
4245 int offset;
4247 Lisp_Object *p;
4248 void **pp;
4250 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4251 nzombies = 0;
4252 #endif
4254 /* Make START the pointer to the start of the memory region,
4255 if it isn't already. */
4256 if (end < start)
4258 void *tem = start;
4259 start = end;
4260 end = tem;
4263 /* Mark Lisp_Objects. */
4264 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4265 mark_maybe_object (*p);
4267 /* Mark Lisp data pointed to. This is necessary because, in some
4268 situations, the C compiler optimizes Lisp objects away, so that
4269 only a pointer to them remains. Example:
4271 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4274 Lisp_Object obj = build_string ("test");
4275 struct Lisp_String *s = XSTRING (obj);
4276 Fgarbage_collect ();
4277 fprintf (stderr, "test `%s'\n", s->data);
4278 return Qnil;
4281 Here, `obj' isn't really used, and the compiler optimizes it
4282 away. The only reference to the life string is through the
4283 pointer `s'. */
4285 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4286 mark_maybe_pointer (*pp);
4289 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4290 the GCC system configuration. In gcc 3.2, the only systems for
4291 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4292 by others?) and ns32k-pc532-min. */
4294 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4296 static int setjmp_tested_p, longjmps_done;
4298 #define SETJMP_WILL_LIKELY_WORK "\
4300 Emacs garbage collector has been changed to use conservative stack\n\
4301 marking. Emacs has determined that the method it uses to do the\n\
4302 marking will likely work on your system, but this isn't sure.\n\
4304 If you are a system-programmer, or can get the help of a local wizard\n\
4305 who is, please take a look at the function mark_stack in alloc.c, and\n\
4306 verify that the methods used are appropriate for your system.\n\
4308 Please mail the result to <emacs-devel@gnu.org>.\n\
4311 #define SETJMP_WILL_NOT_WORK "\
4313 Emacs garbage collector has been changed to use conservative stack\n\
4314 marking. Emacs has determined that the default method it uses to do the\n\
4315 marking will not work on your system. We will need a system-dependent\n\
4316 solution for your system.\n\
4318 Please take a look at the function mark_stack in alloc.c, and\n\
4319 try to find a way to make it work on your system.\n\
4321 Note that you may get false negatives, depending on the compiler.\n\
4322 In particular, you need to use -O with GCC for this test.\n\
4324 Please mail the result to <emacs-devel@gnu.org>.\n\
4328 /* Perform a quick check if it looks like setjmp saves registers in a
4329 jmp_buf. Print a message to stderr saying so. When this test
4330 succeeds, this is _not_ a proof that setjmp is sufficient for
4331 conservative stack marking. Only the sources or a disassembly
4332 can prove that. */
4334 static void
4335 test_setjmp ()
4337 char buf[10];
4338 register int x;
4339 jmp_buf jbuf;
4340 int result = 0;
4342 /* Arrange for X to be put in a register. */
4343 sprintf (buf, "1");
4344 x = strlen (buf);
4345 x = 2 * x - 1;
4347 setjmp (jbuf);
4348 if (longjmps_done == 1)
4350 /* Came here after the longjmp at the end of the function.
4352 If x == 1, the longjmp has restored the register to its
4353 value before the setjmp, and we can hope that setjmp
4354 saves all such registers in the jmp_buf, although that
4355 isn't sure.
4357 For other values of X, either something really strange is
4358 taking place, or the setjmp just didn't save the register. */
4360 if (x == 1)
4361 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4362 else
4364 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4365 exit (1);
4369 ++longjmps_done;
4370 x = 2;
4371 if (longjmps_done == 1)
4372 longjmp (jbuf, 1);
4375 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4378 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4380 /* Abort if anything GCPRO'd doesn't survive the GC. */
4382 static void
4383 check_gcpros ()
4385 struct gcpro *p;
4386 int i;
4388 for (p = gcprolist; p; p = p->next)
4389 for (i = 0; i < p->nvars; ++i)
4390 if (!survives_gc_p (p->var[i]))
4391 /* FIXME: It's not necessarily a bug. It might just be that the
4392 GCPRO is unnecessary or should release the object sooner. */
4393 abort ();
4396 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4398 static void
4399 dump_zombies ()
4401 int i;
4403 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4404 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4406 fprintf (stderr, " %d = ", i);
4407 debug_print (zombies[i]);
4411 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4414 /* Mark live Lisp objects on the C stack.
4416 There are several system-dependent problems to consider when
4417 porting this to new architectures:
4419 Processor Registers
4421 We have to mark Lisp objects in CPU registers that can hold local
4422 variables or are used to pass parameters.
4424 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4425 something that either saves relevant registers on the stack, or
4426 calls mark_maybe_object passing it each register's contents.
4428 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4429 implementation assumes that calling setjmp saves registers we need
4430 to see in a jmp_buf which itself lies on the stack. This doesn't
4431 have to be true! It must be verified for each system, possibly
4432 by taking a look at the source code of setjmp.
4434 Stack Layout
4436 Architectures differ in the way their processor stack is organized.
4437 For example, the stack might look like this
4439 +----------------+
4440 | Lisp_Object | size = 4
4441 +----------------+
4442 | something else | size = 2
4443 +----------------+
4444 | Lisp_Object | size = 4
4445 +----------------+
4446 | ... |
4448 In such a case, not every Lisp_Object will be aligned equally. To
4449 find all Lisp_Object on the stack it won't be sufficient to walk
4450 the stack in steps of 4 bytes. Instead, two passes will be
4451 necessary, one starting at the start of the stack, and a second
4452 pass starting at the start of the stack + 2. Likewise, if the
4453 minimal alignment of Lisp_Objects on the stack is 1, four passes
4454 would be necessary, each one starting with one byte more offset
4455 from the stack start.
4457 The current code assumes by default that Lisp_Objects are aligned
4458 equally on the stack. */
4460 void
4461 mark_stack (bottom, end)
4462 char *bottom;
4463 char *end;
4465 int i;
4467 /* This assumes that the stack is a contiguous region in memory. If
4468 that's not the case, something has to be done here to iterate
4469 over the stack segments. */
4470 #ifndef GC_LISP_OBJECT_ALIGNMENT
4471 #ifdef __GNUC__
4472 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4473 #else
4474 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4475 #endif
4476 #endif
4477 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4478 mark_memory (bottom, end, i);
4479 /* Allow for marking a secondary stack, like the register stack on the
4480 ia64. */
4481 #ifdef GC_MARK_SECONDARY_STACK
4482 GC_MARK_SECONDARY_STACK ();
4483 #endif
4485 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4486 check_gcpros ();
4487 #endif
4490 #endif /* GC_MARK_STACK != 0 */
4492 void
4493 flush_stack_call_func (func, arg)
4494 void (*func) P_ ((char *end, void *arg));
4495 void *arg;
4497 #if GC_MARK_STACK
4498 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4499 union aligned_jmpbuf {
4500 Lisp_Object o;
4501 jmp_buf j;
4502 } j;
4503 volatile int stack_grows_down_p = (char *) &j > (char *) current_thread->stack_bottom;
4504 void *end;
4506 /* This trick flushes the register windows so that all the state of
4507 the process is contained in the stack. */
4508 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4509 needed on ia64 too. See mach_dep.c, where it also says inline
4510 assembler doesn't work with relevant proprietary compilers. */
4511 #ifdef __sparc__
4512 #if defined (__sparc64__) && defined (__FreeBSD__)
4513 /* FreeBSD does not have a ta 3 handler. */
4514 asm ("flushw");
4515 #else
4516 asm ("ta 3");
4517 #endif
4518 #endif
4520 /* Save registers that we need to see on the stack. We need to see
4521 registers used to hold register variables and registers used to
4522 pass parameters. */
4523 #ifdef GC_SAVE_REGISTERS_ON_STACK
4524 GC_SAVE_REGISTERS_ON_STACK (end);
4525 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4527 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4528 setjmp will definitely work, test it
4529 and print a message with the result
4530 of the test. */
4531 if (!setjmp_tested_p)
4533 setjmp_tested_p = 1;
4534 test_setjmp ();
4536 #endif /* GC_SETJMP_WORKS */
4538 setjmp (j.j);
4539 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4540 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4541 #endif /* GC_MARK_STACK != 0 */
4543 (*func) (end, arg);
4547 /* Determine whether it is safe to access memory at address P. */
4548 static int
4549 valid_pointer_p (p)
4550 void *p;
4552 #ifdef WINDOWSNT
4553 return w32_valid_pointer_p (p, 16);
4554 #else
4555 int fd;
4557 /* Obviously, we cannot just access it (we would SEGV trying), so we
4558 trick the o/s to tell us whether p is a valid pointer.
4559 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4560 not validate p in that case. */
4562 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4564 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4565 emacs_close (fd);
4566 unlink ("__Valid__Lisp__Object__");
4567 return valid;
4570 return -1;
4571 #endif
4574 /* Return 1 if OBJ is a valid lisp object.
4575 Return 0 if OBJ is NOT a valid lisp object.
4576 Return -1 if we cannot validate OBJ.
4577 This function can be quite slow,
4578 so it should only be used in code for manual debugging. */
4581 valid_lisp_object_p (obj)
4582 Lisp_Object obj;
4584 void *p;
4585 #if GC_MARK_STACK
4586 struct mem_node *m;
4587 #endif
4589 if (INTEGERP (obj))
4590 return 1;
4592 p = (void *) XPNTR (obj);
4593 if (PURE_POINTER_P (p))
4594 return 1;
4596 #if !GC_MARK_STACK
4597 return valid_pointer_p (p);
4598 #else
4600 m = mem_find (p);
4602 if (m == MEM_NIL)
4604 int valid = valid_pointer_p (p);
4605 if (valid <= 0)
4606 return valid;
4608 if (SUBRP (obj))
4609 return 1;
4611 return 0;
4614 switch (m->type)
4616 case MEM_TYPE_NON_LISP:
4617 return 0;
4619 case MEM_TYPE_BUFFER:
4620 return live_buffer_p (m, p);
4622 case MEM_TYPE_CONS:
4623 return live_cons_p (m, p);
4625 case MEM_TYPE_STRING:
4626 return live_string_p (m, p);
4628 case MEM_TYPE_MISC:
4629 return live_misc_p (m, p);
4631 case MEM_TYPE_SYMBOL:
4632 return live_symbol_p (m, p);
4634 case MEM_TYPE_FLOAT:
4635 return live_float_p (m, p);
4637 case MEM_TYPE_VECTORLIKE:
4638 return live_vector_p (m, p);
4640 default:
4641 break;
4644 return 0;
4645 #endif
4651 /***********************************************************************
4652 Pure Storage Management
4653 ***********************************************************************/
4655 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4656 pointer to it. TYPE is the Lisp type for which the memory is
4657 allocated. TYPE < 0 means it's not used for a Lisp object. */
4659 static POINTER_TYPE *
4660 pure_alloc (size, type)
4661 size_t size;
4662 int type;
4664 POINTER_TYPE *result;
4665 #ifdef USE_LSB_TAG
4666 size_t alignment = (1 << GCTYPEBITS);
4667 #else
4668 size_t alignment = sizeof (EMACS_INT);
4670 /* Give Lisp_Floats an extra alignment. */
4671 if (type == Lisp_Float)
4673 #if defined __GNUC__ && __GNUC__ >= 2
4674 alignment = __alignof (struct Lisp_Float);
4675 #else
4676 alignment = sizeof (struct Lisp_Float);
4677 #endif
4679 #endif
4681 again:
4682 if (type >= 0)
4684 /* Allocate space for a Lisp object from the beginning of the free
4685 space with taking account of alignment. */
4686 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4687 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4689 else
4691 /* Allocate space for a non-Lisp object from the end of the free
4692 space. */
4693 pure_bytes_used_non_lisp += size;
4694 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4696 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4698 if (pure_bytes_used <= pure_size)
4699 return result;
4701 /* Don't allocate a large amount here,
4702 because it might get mmap'd and then its address
4703 might not be usable. */
4704 purebeg = (char *) xmalloc (10000);
4705 pure_size = 10000;
4706 pure_bytes_used_before_overflow += pure_bytes_used - size;
4707 pure_bytes_used = 0;
4708 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4709 goto again;
4713 /* Print a warning if PURESIZE is too small. */
4715 void
4716 check_pure_size ()
4718 if (pure_bytes_used_before_overflow)
4719 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
4720 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4724 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4725 the non-Lisp data pool of the pure storage, and return its start
4726 address. Return NULL if not found. */
4728 static char *
4729 find_string_data_in_pure (data, nbytes)
4730 const char *data;
4731 int nbytes;
4733 int i, skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4734 const unsigned char *p;
4735 char *non_lisp_beg;
4737 if (pure_bytes_used_non_lisp < nbytes + 1)
4738 return NULL;
4740 /* Set up the Boyer-Moore table. */
4741 skip = nbytes + 1;
4742 for (i = 0; i < 256; i++)
4743 bm_skip[i] = skip;
4745 p = (const unsigned char *) data;
4746 while (--skip > 0)
4747 bm_skip[*p++] = skip;
4749 last_char_skip = bm_skip['\0'];
4751 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4752 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4754 /* See the comments in the function `boyer_moore' (search.c) for the
4755 use of `infinity'. */
4756 infinity = pure_bytes_used_non_lisp + 1;
4757 bm_skip['\0'] = infinity;
4759 p = (const unsigned char *) non_lisp_beg + nbytes;
4760 start = 0;
4763 /* Check the last character (== '\0'). */
4766 start += bm_skip[*(p + start)];
4768 while (start <= start_max);
4770 if (start < infinity)
4771 /* Couldn't find the last character. */
4772 return NULL;
4774 /* No less than `infinity' means we could find the last
4775 character at `p[start - infinity]'. */
4776 start -= infinity;
4778 /* Check the remaining characters. */
4779 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4780 /* Found. */
4781 return non_lisp_beg + start;
4783 start += last_char_skip;
4785 while (start <= start_max);
4787 return NULL;
4791 /* Return a string allocated in pure space. DATA is a buffer holding
4792 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4793 non-zero means make the result string multibyte.
4795 Must get an error if pure storage is full, since if it cannot hold
4796 a large string it may be able to hold conses that point to that
4797 string; then the string is not protected from gc. */
4799 Lisp_Object
4800 make_pure_string (data, nchars, nbytes, multibyte)
4801 const char *data;
4802 int nchars, nbytes;
4803 int multibyte;
4805 Lisp_Object string;
4806 struct Lisp_String *s;
4808 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4809 s->data = find_string_data_in_pure (data, nbytes);
4810 if (s->data == NULL)
4812 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4813 bcopy (data, s->data, nbytes);
4814 s->data[nbytes] = '\0';
4816 s->size = nchars;
4817 s->size_byte = multibyte ? nbytes : -1;
4818 s->intervals = NULL_INTERVAL;
4819 XSETSTRING (string, s);
4820 return string;
4823 /* Return a string a string allocated in pure space. Do not allocate
4824 the string data, just point to DATA. */
4826 Lisp_Object
4827 make_pure_c_string (const char *data)
4829 Lisp_Object string;
4830 struct Lisp_String *s;
4831 int nchars = strlen (data);
4833 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4834 s->size = nchars;
4835 s->size_byte = -1;
4836 s->data = (unsigned char *) data;
4837 s->intervals = NULL_INTERVAL;
4838 XSETSTRING (string, s);
4839 return string;
4842 /* Return a cons allocated from pure space. Give it pure copies
4843 of CAR as car and CDR as cdr. */
4845 Lisp_Object
4846 pure_cons (car, cdr)
4847 Lisp_Object car, cdr;
4849 register Lisp_Object new;
4850 struct Lisp_Cons *p;
4852 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4853 XSETCONS (new, p);
4854 XSETCAR (new, Fpurecopy (car));
4855 XSETCDR (new, Fpurecopy (cdr));
4856 return new;
4860 /* Value is a float object with value NUM allocated from pure space. */
4862 static Lisp_Object
4863 make_pure_float (num)
4864 double num;
4866 register Lisp_Object new;
4867 struct Lisp_Float *p;
4869 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4870 XSETFLOAT (new, p);
4871 XFLOAT_INIT (new, num);
4872 return new;
4876 /* Return a vector with room for LEN Lisp_Objects allocated from
4877 pure space. */
4879 Lisp_Object
4880 make_pure_vector (len)
4881 EMACS_INT len;
4883 Lisp_Object new;
4884 struct Lisp_Vector *p;
4885 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4887 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4888 XSETVECTOR (new, p);
4889 XVECTOR (new)->size = len;
4890 return new;
4894 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4895 doc: /* Make a copy of object OBJ in pure storage.
4896 Recursively copies contents of vectors and cons cells.
4897 Does not copy symbols. Copies strings without text properties. */)
4898 (obj)
4899 register Lisp_Object obj;
4901 if (NILP (Vpurify_flag))
4902 return obj;
4904 if (PURE_POINTER_P (XPNTR (obj)))
4905 return obj;
4907 if (CONSP (obj))
4908 return pure_cons (XCAR (obj), XCDR (obj));
4909 else if (FLOATP (obj))
4910 return make_pure_float (XFLOAT_DATA (obj));
4911 else if (STRINGP (obj))
4912 return make_pure_string (SDATA (obj), SCHARS (obj),
4913 SBYTES (obj),
4914 STRING_MULTIBYTE (obj));
4915 else if (COMPILEDP (obj) || VECTORP (obj))
4917 register struct Lisp_Vector *vec;
4918 register int i;
4919 EMACS_INT size;
4921 size = XVECTOR (obj)->size;
4922 if (size & PSEUDOVECTOR_FLAG)
4923 size &= PSEUDOVECTOR_SIZE_MASK;
4924 vec = XVECTOR (make_pure_vector (size));
4925 for (i = 0; i < size; i++)
4926 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4927 if (COMPILEDP (obj))
4929 XSETPVECTYPE (vec, PVEC_COMPILED);
4930 XSETCOMPILED (obj, vec);
4932 else
4933 XSETVECTOR (obj, vec);
4934 return obj;
4936 else if (MARKERP (obj))
4937 error ("Attempt to copy a marker to pure storage");
4939 return obj;
4944 /***********************************************************************
4945 Protection from GC
4946 ***********************************************************************/
4948 /* Put an entry in staticvec, pointing at the variable with address
4949 VARADDRESS. */
4951 void
4952 staticpro (varaddress)
4953 Lisp_Object *varaddress;
4955 staticvec[staticidx++] = varaddress;
4956 if (staticidx >= NSTATICS)
4957 abort ();
4961 /***********************************************************************
4962 Protection from GC
4963 ***********************************************************************/
4965 /* Temporarily prevent garbage collection. */
4968 inhibit_garbage_collection ()
4970 int count = SPECPDL_INDEX ();
4971 int nbits = min (VALBITS, BITS_PER_INT);
4973 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4974 return count;
4978 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4979 doc: /* Reclaim storage for Lisp objects no longer needed.
4980 Garbage collection happens automatically if you cons more than
4981 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4982 `garbage-collect' normally returns a list with info on amount of space in use:
4983 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4984 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4985 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4986 (USED-STRINGS . FREE-STRINGS))
4987 However, if there was overflow in pure space, `garbage-collect'
4988 returns nil, because real GC can't be done. */)
4991 register struct specbinding *bind;
4992 char stack_top_variable;
4993 register int i;
4994 int message_p;
4995 Lisp_Object total[8];
4996 int count = SPECPDL_INDEX ();
4997 EMACS_TIME t1, t2, t3;
4999 if (abort_on_gc)
5000 abort ();
5002 /* Can't GC if pure storage overflowed because we can't determine
5003 if something is a pure object or not. */
5004 if (pure_bytes_used_before_overflow)
5005 return Qnil;
5007 CHECK_CONS_LIST ();
5009 /* Don't keep undo information around forever.
5010 Do this early on, so it is no problem if the user quits. */
5012 register struct buffer *nextb = all_buffers;
5014 while (nextb)
5016 /* If a buffer's undo list is Qt, that means that undo is
5017 turned off in that buffer. Calling truncate_undo_list on
5018 Qt tends to return NULL, which effectively turns undo back on.
5019 So don't call truncate_undo_list if undo_list is Qt. */
5020 if (! NILP (BUF_NAME (nextb)) && ! EQ (BUF_UNDO_LIST (nextb), Qt))
5021 truncate_undo_list (nextb);
5023 /* Shrink buffer gaps, but skip indirect and dead buffers. */
5024 if (nextb->base_buffer == 0 && !NILP (BUF_NAME (nextb))
5025 && ! nextb->text->inhibit_shrinking)
5027 /* If a buffer's gap size is more than 10% of the buffer
5028 size, or larger than 2000 bytes, then shrink it
5029 accordingly. Keep a minimum size of 20 bytes. */
5030 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
5032 if (nextb->text->gap_size > size)
5034 struct buffer *save_current = current_buffer;
5035 current_buffer = nextb;
5036 make_gap (-(nextb->text->gap_size - size));
5037 current_buffer = save_current;
5041 nextb = nextb->next;
5045 EMACS_GET_TIME (t1);
5047 /* In case user calls debug_print during GC,
5048 don't let that cause a recursive GC. */
5049 consing_since_gc = 0;
5051 /* Save what's currently displayed in the echo area. */
5052 message_p = push_message ();
5053 record_unwind_protect (pop_message_unwind, Qnil);
5055 /* Save a copy of the contents of the stack, for debugging. */
5056 #if MAX_SAVE_STACK > 0
5057 if (NILP (Vpurify_flag))
5059 i = &stack_top_variable - /*FIXME*/current_thread->stack_bottom;
5060 if (i < 0) i = -i;
5061 if (i < MAX_SAVE_STACK)
5063 if (stack_copy == 0)
5064 stack_copy = (char *) xmalloc (stack_copy_size = i);
5065 else if (stack_copy_size < i)
5066 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
5067 if (stack_copy)
5069 if ((EMACS_INT) (&stack_top_variable - /*FIXME*/current_thread->stack_bottom) > 0)
5070 bcopy (/*FIXME*/current_thread->stack_bottom, stack_copy, i);
5071 else
5072 bcopy (&stack_top_variable, stack_copy, i);
5076 #endif /* MAX_SAVE_STACK > 0 */
5078 if (garbage_collection_messages)
5079 message1_nolog ("Garbage collecting...");
5081 BLOCK_INPUT;
5083 shrink_regexp_cache ();
5085 gc_in_progress = 1;
5087 /* clear_marks (); */
5089 /* Mark all the special slots that serve as the roots of accessibility. */
5091 for (i = 0; i < staticidx; i++)
5092 mark_object (*staticvec[i]);
5094 mark_threads ();
5095 mark_terminals ();
5096 mark_kboards ();
5097 mark_ttys ();
5099 #ifdef USE_GTK
5101 extern void xg_mark_data ();
5102 xg_mark_data ();
5104 #endif
5106 #ifdef HAVE_WINDOW_SYSTEM
5107 mark_fringe_data ();
5108 #endif
5110 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5111 FIXME;
5112 mark_stack ();
5113 #endif
5115 /* Everything is now marked, except for the things that require special
5116 finalization, i.e. the undo_list.
5117 Look thru every buffer's undo list
5118 for elements that update markers that were not marked,
5119 and delete them. */
5121 register struct buffer *nextb = all_buffers;
5123 while (nextb)
5125 /* If a buffer's undo list is Qt, that means that undo is
5126 turned off in that buffer. Calling truncate_undo_list on
5127 Qt tends to return NULL, which effectively turns undo back on.
5128 So don't call truncate_undo_list if undo_list is Qt. */
5129 if (! EQ (BUF_UNDO_LIST (nextb), Qt))
5131 Lisp_Object tail, prev;
5132 tail = BUF_UNDO_LIST (nextb);
5133 prev = Qnil;
5134 while (CONSP (tail))
5136 if (CONSP (XCAR (tail))
5137 && MARKERP (XCAR (XCAR (tail)))
5138 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5140 if (NILP (prev))
5141 BUF_UNDO_LIST (nextb) = tail = XCDR (tail);
5142 else
5144 tail = XCDR (tail);
5145 XSETCDR (prev, tail);
5148 else
5150 prev = tail;
5151 tail = XCDR (tail);
5155 /* Now that we have stripped the elements that need not be in the
5156 undo_list any more, we can finally mark the list. */
5157 mark_object (BUF_UNDO_LIST (nextb));
5159 nextb = nextb->next;
5163 gc_sweep ();
5165 /* Clear the mark bits that we set in certain root slots. */
5167 unmark_threads ();
5168 VECTOR_UNMARK (&buffer_defaults);
5169 VECTOR_UNMARK (&buffer_local_symbols);
5171 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5172 dump_zombies ();
5173 #endif
5175 UNBLOCK_INPUT;
5177 CHECK_CONS_LIST ();
5179 /* clear_marks (); */
5180 gc_in_progress = 0;
5182 consing_since_gc = 0;
5183 if (gc_cons_threshold < 10000)
5184 gc_cons_threshold = 10000;
5186 if (FLOATP (Vgc_cons_percentage))
5187 { /* Set gc_cons_combined_threshold. */
5188 EMACS_INT total = 0;
5190 total += total_conses * sizeof (struct Lisp_Cons);
5191 total += total_symbols * sizeof (struct Lisp_Symbol);
5192 total += total_markers * sizeof (union Lisp_Misc);
5193 total += total_string_size;
5194 total += total_vector_size * sizeof (Lisp_Object);
5195 total += total_floats * sizeof (struct Lisp_Float);
5196 total += total_intervals * sizeof (struct interval);
5197 total += total_strings * sizeof (struct Lisp_String);
5199 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
5201 else
5202 gc_relative_threshold = 0;
5204 if (garbage_collection_messages)
5206 if (message_p || minibuf_level > 0)
5207 restore_message ();
5208 else
5209 message1_nolog ("Garbage collecting...done");
5212 unbind_to (count, Qnil);
5214 total[0] = Fcons (make_number (total_conses),
5215 make_number (total_free_conses));
5216 total[1] = Fcons (make_number (total_symbols),
5217 make_number (total_free_symbols));
5218 total[2] = Fcons (make_number (total_markers),
5219 make_number (total_free_markers));
5220 total[3] = make_number (total_string_size);
5221 total[4] = make_number (total_vector_size);
5222 total[5] = Fcons (make_number (total_floats),
5223 make_number (total_free_floats));
5224 total[6] = Fcons (make_number (total_intervals),
5225 make_number (total_free_intervals));
5226 total[7] = Fcons (make_number (total_strings),
5227 make_number (total_free_strings));
5229 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5231 /* Compute average percentage of zombies. */
5232 double nlive = 0;
5234 for (i = 0; i < 7; ++i)
5235 if (CONSP (total[i]))
5236 nlive += XFASTINT (XCAR (total[i]));
5238 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5239 max_live = max (nlive, max_live);
5240 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5241 max_zombies = max (nzombies, max_zombies);
5242 ++ngcs;
5244 #endif
5246 if (!NILP (Vpost_gc_hook))
5248 int count = inhibit_garbage_collection ();
5249 safe_run_hooks (Qpost_gc_hook);
5250 unbind_to (count, Qnil);
5253 /* Accumulate statistics. */
5254 EMACS_GET_TIME (t2);
5255 EMACS_SUB_TIME (t3, t2, t1);
5256 if (FLOATP (Vgc_elapsed))
5257 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5258 EMACS_SECS (t3) +
5259 EMACS_USECS (t3) * 1.0e-6);
5260 gcs_done++;
5262 return Flist (sizeof total / sizeof *total, total);
5266 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5267 only interesting objects referenced from glyphs are strings. */
5269 static void
5270 mark_glyph_matrix (matrix)
5271 struct glyph_matrix *matrix;
5273 struct glyph_row *row = matrix->rows;
5274 struct glyph_row *end = row + matrix->nrows;
5276 for (; row < end; ++row)
5277 if (row->enabled_p)
5279 int area;
5280 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5282 struct glyph *glyph = row->glyphs[area];
5283 struct glyph *end_glyph = glyph + row->used[area];
5285 for (; glyph < end_glyph; ++glyph)
5286 if (STRINGP (glyph->object)
5287 && !STRING_MARKED_P (XSTRING (glyph->object)))
5288 mark_object (glyph->object);
5294 /* Mark Lisp faces in the face cache C. */
5296 static void
5297 mark_face_cache (c)
5298 struct face_cache *c;
5300 if (c)
5302 int i, j;
5303 for (i = 0; i < c->used; ++i)
5305 struct face *face = FACE_FROM_ID (c->f, i);
5307 if (face)
5309 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5310 mark_object (face->lface[j]);
5318 /* Mark reference to a Lisp_Object.
5319 If the object referred to has not been seen yet, recursively mark
5320 all the references contained in it. */
5322 #define LAST_MARKED_SIZE 500
5323 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5324 int last_marked_index;
5326 /* For debugging--call abort when we cdr down this many
5327 links of a list, in mark_object. In debugging,
5328 the call to abort will hit a breakpoint.
5329 Normally this is zero and the check never goes off. */
5330 static int mark_object_loop_halt;
5332 static void
5333 mark_vectorlike (ptr)
5334 struct Lisp_Vector *ptr;
5336 register EMACS_INT size = ptr->size;
5337 register int i;
5339 eassert (!VECTOR_MARKED_P (ptr));
5340 VECTOR_MARK (ptr); /* Else mark it */
5341 if (size & PSEUDOVECTOR_FLAG)
5342 size &= PSEUDOVECTOR_SIZE_MASK;
5344 /* Note that this size is not the memory-footprint size, but only
5345 the number of Lisp_Object fields that we should trace.
5346 The distinction is used e.g. by Lisp_Process which places extra
5347 non-Lisp_Object fields at the end of the structure. */
5348 for (i = 0; i < size; i++) /* and then mark its elements */
5349 mark_object (ptr->contents[i]);
5352 /* Like mark_vectorlike but optimized for char-tables (and
5353 sub-char-tables) assuming that the contents are mostly integers or
5354 symbols. */
5356 static void
5357 mark_char_table (ptr)
5358 struct Lisp_Vector *ptr;
5360 register EMACS_INT size = ptr->size & PSEUDOVECTOR_SIZE_MASK;
5361 register int i;
5363 eassert (!VECTOR_MARKED_P (ptr));
5364 VECTOR_MARK (ptr);
5365 for (i = 0; i < size; i++)
5367 Lisp_Object val = ptr->contents[i];
5369 if (INTEGERP (val) || SYMBOLP (val) && XSYMBOL (val)->gcmarkbit)
5370 continue;
5371 if (SUB_CHAR_TABLE_P (val))
5373 if (! VECTOR_MARKED_P (XVECTOR (val)))
5374 mark_char_table (XVECTOR (val));
5376 else
5377 mark_object (val);
5381 void
5382 mark_object (arg)
5383 Lisp_Object arg;
5385 register Lisp_Object obj = arg;
5386 #ifdef GC_CHECK_MARKED_OBJECTS
5387 void *po;
5388 struct mem_node *m;
5389 #endif
5390 int cdr_count = 0;
5392 loop:
5394 if (PURE_POINTER_P (XPNTR (obj)))
5395 return;
5397 last_marked[last_marked_index++] = obj;
5398 if (last_marked_index == LAST_MARKED_SIZE)
5399 last_marked_index = 0;
5401 /* Perform some sanity checks on the objects marked here. Abort if
5402 we encounter an object we know is bogus. This increases GC time
5403 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5404 #ifdef GC_CHECK_MARKED_OBJECTS
5406 po = (void *) XPNTR (obj);
5408 /* Check that the object pointed to by PO is known to be a Lisp
5409 structure allocated from the heap. */
5410 #define CHECK_ALLOCATED() \
5411 do { \
5412 m = mem_find (po); \
5413 if (m == MEM_NIL) \
5414 abort (); \
5415 } while (0)
5417 /* Check that the object pointed to by PO is live, using predicate
5418 function LIVEP. */
5419 #define CHECK_LIVE(LIVEP) \
5420 do { \
5421 if (!LIVEP (m, po)) \
5422 abort (); \
5423 } while (0)
5425 /* Check both of the above conditions. */
5426 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5427 do { \
5428 CHECK_ALLOCATED (); \
5429 CHECK_LIVE (LIVEP); \
5430 } while (0) \
5432 #else /* not GC_CHECK_MARKED_OBJECTS */
5434 #define CHECK_ALLOCATED() (void) 0
5435 #define CHECK_LIVE(LIVEP) (void) 0
5436 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5438 #endif /* not GC_CHECK_MARKED_OBJECTS */
5440 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5442 case Lisp_String:
5444 register struct Lisp_String *ptr = XSTRING (obj);
5445 if (STRING_MARKED_P (ptr))
5446 break;
5447 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5448 MARK_INTERVAL_TREE (ptr->intervals);
5449 MARK_STRING (ptr);
5450 #ifdef GC_CHECK_STRING_BYTES
5451 /* Check that the string size recorded in the string is the
5452 same as the one recorded in the sdata structure. */
5453 CHECK_STRING_BYTES (ptr);
5454 #endif /* GC_CHECK_STRING_BYTES */
5456 break;
5458 case Lisp_Vectorlike:
5459 if (VECTOR_MARKED_P (XVECTOR (obj)))
5460 break;
5461 #ifdef GC_CHECK_MARKED_OBJECTS
5462 m = mem_find (po);
5463 if (m == MEM_NIL && !SUBRP (obj)
5464 && po != &buffer_defaults
5465 && po != &buffer_local_symbols)
5466 abort ();
5467 #endif /* GC_CHECK_MARKED_OBJECTS */
5469 if (BUFFERP (obj))
5471 #ifdef GC_CHECK_MARKED_OBJECTS
5472 if (po != &buffer_defaults && po != &buffer_local_symbols)
5474 struct buffer *b;
5475 for (b = all_buffers; b && b != po; b = b->next)
5477 if (b == NULL)
5478 abort ();
5480 #endif /* GC_CHECK_MARKED_OBJECTS */
5481 mark_buffer (obj);
5483 else if (SUBRP (obj))
5484 break;
5485 else if (COMPILEDP (obj))
5486 /* We could treat this just like a vector, but it is better to
5487 save the COMPILED_CONSTANTS element for last and avoid
5488 recursion there. */
5490 register struct Lisp_Vector *ptr = XVECTOR (obj);
5491 register EMACS_INT size = ptr->size;
5492 register int i;
5494 CHECK_LIVE (live_vector_p);
5495 VECTOR_MARK (ptr); /* Else mark it */
5496 size &= PSEUDOVECTOR_SIZE_MASK;
5497 for (i = 0; i < size; i++) /* and then mark its elements */
5499 if (i != COMPILED_CONSTANTS)
5500 mark_object (ptr->contents[i]);
5502 obj = ptr->contents[COMPILED_CONSTANTS];
5503 goto loop;
5505 else if (FRAMEP (obj))
5507 register struct frame *ptr = XFRAME (obj);
5508 mark_vectorlike (XVECTOR (obj));
5509 mark_face_cache (ptr->face_cache);
5511 else if (WINDOWP (obj))
5513 register struct Lisp_Vector *ptr = XVECTOR (obj);
5514 struct window *w = XWINDOW (obj);
5515 mark_vectorlike (ptr);
5516 /* Mark glyphs for leaf windows. Marking window matrices is
5517 sufficient because frame matrices use the same glyph
5518 memory. */
5519 if (NILP (w->hchild)
5520 && NILP (w->vchild)
5521 && w->current_matrix)
5523 mark_glyph_matrix (w->current_matrix);
5524 mark_glyph_matrix (w->desired_matrix);
5527 else if (HASH_TABLE_P (obj))
5529 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5530 mark_vectorlike ((struct Lisp_Vector *)h);
5531 /* If hash table is not weak, mark all keys and values.
5532 For weak tables, mark only the vector. */
5533 if (NILP (h->weak))
5534 mark_object (h->key_and_value);
5535 else
5536 VECTOR_MARK (XVECTOR (h->key_and_value));
5538 else if (CHAR_TABLE_P (obj))
5539 mark_char_table (XVECTOR (obj));
5540 else
5541 mark_vectorlike (XVECTOR (obj));
5542 break;
5544 case Lisp_Symbol:
5546 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5547 struct Lisp_Symbol *ptrx;
5549 if (ptr->gcmarkbit)
5550 break;
5551 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5552 ptr->gcmarkbit = 1;
5553 mark_object (ptr->value);
5554 mark_object (ptr->function);
5555 mark_object (ptr->plist);
5557 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5558 MARK_STRING (XSTRING (ptr->xname));
5559 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5561 /* Note that we do not mark the obarray of the symbol.
5562 It is safe not to do so because nothing accesses that
5563 slot except to check whether it is nil. */
5564 ptr = ptr->next;
5565 if (ptr)
5567 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5568 XSETSYMBOL (obj, ptrx);
5569 goto loop;
5572 break;
5574 case Lisp_Misc:
5575 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5576 if (XMISCANY (obj)->gcmarkbit)
5577 break;
5578 XMISCANY (obj)->gcmarkbit = 1;
5580 switch (XMISCTYPE (obj))
5582 case Lisp_Misc_Buffer_Local_Value:
5584 register struct Lisp_Buffer_Local_Value *ptr
5585 = XBUFFER_LOCAL_VALUE (obj);
5586 mark_object (ptr->thread_data);
5587 mark_object (ptr->realvalue);
5588 goto loop;
5591 case Lisp_Misc_Marker:
5592 /* DO NOT mark thru the marker's chain.
5593 The buffer's markers chain does not preserve markers from gc;
5594 instead, markers are removed from the chain when freed by gc. */
5595 break;
5597 case Lisp_Misc_Intfwd:
5598 case Lisp_Misc_Boolfwd:
5599 case Lisp_Misc_Objfwd:
5600 case Lisp_Misc_Buffer_Objfwd:
5601 case Lisp_Misc_Kboard_Objfwd:
5602 /* Don't bother with Lisp_Buffer_Objfwd,
5603 since all markable slots in current buffer marked anyway. */
5604 /* Don't need to do Lisp_Objfwd, since the places they point
5605 are protected with staticpro. */
5606 break;
5608 case Lisp_Misc_Save_Value:
5609 #if GC_MARK_STACK
5611 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5612 /* If DOGC is set, POINTER is the address of a memory
5613 area containing INTEGER potential Lisp_Objects. */
5614 if (ptr->dogc)
5616 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5617 int nelt;
5618 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5619 mark_maybe_object (*p);
5622 #endif
5623 break;
5625 case Lisp_Misc_Overlay:
5627 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5628 mark_object (ptr->start);
5629 mark_object (ptr->end);
5630 mark_object (ptr->plist);
5631 if (ptr->next)
5633 XSETMISC (obj, ptr->next);
5634 goto loop;
5637 break;
5639 case Lisp_Misc_ThreadLocal:
5641 struct Lisp_ThreadLocal *ptr = XTHREADLOCAL (obj);
5642 mark_object (ptr->global);
5643 mark_object (ptr->thread_alist);
5645 break;
5647 default:
5648 abort ();
5650 break;
5652 case Lisp_Cons:
5654 register struct Lisp_Cons *ptr = XCONS (obj);
5655 if (CONS_MARKED_P (ptr))
5656 break;
5657 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5658 CONS_MARK (ptr);
5659 /* If the cdr is nil, avoid recursion for the car. */
5660 if (EQ (ptr->u.cdr, Qnil))
5662 obj = ptr->car;
5663 cdr_count = 0;
5664 goto loop;
5666 mark_object (ptr->car);
5667 obj = ptr->u.cdr;
5668 cdr_count++;
5669 if (cdr_count == mark_object_loop_halt)
5670 abort ();
5671 goto loop;
5674 case Lisp_Float:
5675 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5676 FLOAT_MARK (XFLOAT (obj));
5677 break;
5679 case_Lisp_Int:
5680 break;
5682 default:
5683 abort ();
5686 #undef CHECK_LIVE
5687 #undef CHECK_ALLOCATED
5688 #undef CHECK_ALLOCATED_AND_LIVE
5691 /* Mark the pointers in a buffer structure. */
5693 static void
5694 mark_buffer (buf)
5695 Lisp_Object buf;
5697 register struct buffer *buffer = XBUFFER (buf);
5698 register Lisp_Object *ptr, tmp;
5699 Lisp_Object base_buffer;
5701 eassert (!VECTOR_MARKED_P (buffer));
5702 VECTOR_MARK (buffer);
5704 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5706 /* For now, we just don't mark the undo_list. It's done later in
5707 a special way just before the sweep phase, and after stripping
5708 some of its elements that are not needed any more. */
5710 if (buffer->overlays_before)
5712 XSETMISC (tmp, buffer->overlays_before);
5713 mark_object (tmp);
5715 if (buffer->overlays_after)
5717 XSETMISC (tmp, buffer->overlays_after);
5718 mark_object (tmp);
5721 /* buffer-local Lisp variables start at `undo_list',
5722 tho only the ones from `name' on are GC'd normally. */
5723 for (ptr = &buffer->name_;
5724 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5725 ptr++)
5726 mark_object (*ptr);
5728 /* If this is an indirect buffer, mark its base buffer. */
5729 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5731 XSETBUFFER (base_buffer, buffer->base_buffer);
5732 mark_buffer (base_buffer);
5736 /* Mark the Lisp pointers in the terminal objects.
5737 Called by the Fgarbage_collector. */
5739 static void
5740 mark_terminals (void)
5742 struct terminal *t;
5743 for (t = terminal_list; t; t = t->next_terminal)
5745 eassert (t->name != NULL);
5746 if (!VECTOR_MARKED_P (t))
5748 #ifdef HAVE_WINDOW_SYSTEM
5749 mark_image_cache (t->image_cache);
5750 #endif /* HAVE_WINDOW_SYSTEM */
5751 mark_vectorlike ((struct Lisp_Vector *)t);
5758 /* Value is non-zero if OBJ will survive the current GC because it's
5759 either marked or does not need to be marked to survive. */
5762 survives_gc_p (obj)
5763 Lisp_Object obj;
5765 int survives_p;
5767 switch (XTYPE (obj))
5769 case_Lisp_Int:
5770 survives_p = 1;
5771 break;
5773 case Lisp_Symbol:
5774 survives_p = XSYMBOL (obj)->gcmarkbit;
5775 break;
5777 case Lisp_Misc:
5778 survives_p = XMISCANY (obj)->gcmarkbit;
5779 break;
5781 case Lisp_String:
5782 survives_p = STRING_MARKED_P (XSTRING (obj));
5783 break;
5785 case Lisp_Vectorlike:
5786 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5787 break;
5789 case Lisp_Cons:
5790 survives_p = CONS_MARKED_P (XCONS (obj));
5791 break;
5793 case Lisp_Float:
5794 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5795 break;
5797 default:
5798 abort ();
5801 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5806 /* Sweep: find all structures not marked, and free them. */
5808 static void
5809 gc_sweep ()
5811 /* Remove or mark entries in weak hash tables.
5812 This must be done before any object is unmarked. */
5813 sweep_weak_hash_tables ();
5815 sweep_strings ();
5816 #ifdef GC_CHECK_STRING_BYTES
5817 if (!noninteractive)
5818 check_string_bytes (1);
5819 #endif
5821 /* Put all unmarked conses on free list */
5823 register struct cons_block *cblk;
5824 struct cons_block **cprev = &cons_block;
5825 register int lim = cons_block_index;
5826 register int num_free = 0, num_used = 0;
5828 cons_free_list = 0;
5830 for (cblk = cons_block; cblk; cblk = *cprev)
5832 register int i = 0;
5833 int this_free = 0;
5834 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5836 /* Scan the mark bits an int at a time. */
5837 for (i = 0; i <= ilim; i++)
5839 if (cblk->gcmarkbits[i] == -1)
5841 /* Fast path - all cons cells for this int are marked. */
5842 cblk->gcmarkbits[i] = 0;
5843 num_used += BITS_PER_INT;
5845 else
5847 /* Some cons cells for this int are not marked.
5848 Find which ones, and free them. */
5849 int start, pos, stop;
5851 start = i * BITS_PER_INT;
5852 stop = lim - start;
5853 if (stop > BITS_PER_INT)
5854 stop = BITS_PER_INT;
5855 stop += start;
5857 for (pos = start; pos < stop; pos++)
5859 if (!CONS_MARKED_P (&cblk->conses[pos]))
5861 this_free++;
5862 cblk->conses[pos].u.chain = cons_free_list;
5863 cons_free_list = &cblk->conses[pos];
5864 #if GC_MARK_STACK
5865 cons_free_list->car = Vdead;
5866 #endif
5868 else
5870 num_used++;
5871 CONS_UNMARK (&cblk->conses[pos]);
5877 lim = CONS_BLOCK_SIZE;
5878 /* If this block contains only free conses and we have already
5879 seen more than two blocks worth of free conses then deallocate
5880 this block. */
5881 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5883 *cprev = cblk->next;
5884 /* Unhook from the free list. */
5885 cons_free_list = cblk->conses[0].u.chain;
5886 lisp_align_free (cblk);
5887 n_cons_blocks--;
5889 else
5891 num_free += this_free;
5892 cprev = &cblk->next;
5895 total_conses = num_used;
5896 total_free_conses = num_free;
5899 /* Put all unmarked floats on free list */
5901 register struct float_block *fblk;
5902 struct float_block **fprev = &float_block;
5903 register int lim = float_block_index;
5904 register int num_free = 0, num_used = 0;
5906 float_free_list = 0;
5908 for (fblk = float_block; fblk; fblk = *fprev)
5910 register int i;
5911 int this_free = 0;
5912 for (i = 0; i < lim; i++)
5913 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5915 this_free++;
5916 fblk->floats[i].u.chain = float_free_list;
5917 float_free_list = &fblk->floats[i];
5919 else
5921 num_used++;
5922 FLOAT_UNMARK (&fblk->floats[i]);
5924 lim = FLOAT_BLOCK_SIZE;
5925 /* If this block contains only free floats and we have already
5926 seen more than two blocks worth of free floats then deallocate
5927 this block. */
5928 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5930 *fprev = fblk->next;
5931 /* Unhook from the free list. */
5932 float_free_list = fblk->floats[0].u.chain;
5933 lisp_align_free (fblk);
5934 n_float_blocks--;
5936 else
5938 num_free += this_free;
5939 fprev = &fblk->next;
5942 total_floats = num_used;
5943 total_free_floats = num_free;
5946 /* Put all unmarked intervals on free list */
5948 register struct interval_block *iblk;
5949 struct interval_block **iprev = &interval_block;
5950 register int lim = interval_block_index;
5951 register int num_free = 0, num_used = 0;
5953 interval_free_list = 0;
5955 for (iblk = interval_block; iblk; iblk = *iprev)
5957 register int i;
5958 int this_free = 0;
5960 for (i = 0; i < lim; i++)
5962 if (!iblk->intervals[i].gcmarkbit)
5964 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5965 interval_free_list = &iblk->intervals[i];
5966 this_free++;
5968 else
5970 num_used++;
5971 iblk->intervals[i].gcmarkbit = 0;
5974 lim = INTERVAL_BLOCK_SIZE;
5975 /* If this block contains only free intervals and we have already
5976 seen more than two blocks worth of free intervals then
5977 deallocate this block. */
5978 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5980 *iprev = iblk->next;
5981 /* Unhook from the free list. */
5982 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5983 lisp_free (iblk);
5984 n_interval_blocks--;
5986 else
5988 num_free += this_free;
5989 iprev = &iblk->next;
5992 total_intervals = num_used;
5993 total_free_intervals = num_free;
5996 /* Put all unmarked symbols on free list */
5998 register struct symbol_block *sblk;
5999 struct symbol_block **sprev = &symbol_block;
6000 register int lim = symbol_block_index;
6001 register int num_free = 0, num_used = 0;
6003 symbol_free_list = NULL;
6005 for (sblk = symbol_block; sblk; sblk = *sprev)
6007 int this_free = 0;
6008 struct Lisp_Symbol *sym = sblk->symbols;
6009 struct Lisp_Symbol *end = sym + lim;
6011 for (; sym < end; ++sym)
6013 /* Check if the symbol was created during loadup. In such a case
6014 it might be pointed to by pure bytecode which we don't trace,
6015 so we conservatively assume that it is live. */
6016 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
6018 if (!sym->gcmarkbit && !pure_p)
6020 sym->next = symbol_free_list;
6021 symbol_free_list = sym;
6022 #if GC_MARK_STACK
6023 symbol_free_list->function = Vdead;
6024 #endif
6025 ++this_free;
6027 else
6029 ++num_used;
6030 if (!pure_p)
6031 UNMARK_STRING (XSTRING (sym->xname));
6032 sym->gcmarkbit = 0;
6036 lim = SYMBOL_BLOCK_SIZE;
6037 /* If this block contains only free symbols and we have already
6038 seen more than two blocks worth of free symbols then deallocate
6039 this block. */
6040 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6042 *sprev = sblk->next;
6043 /* Unhook from the free list. */
6044 symbol_free_list = sblk->symbols[0].next;
6045 lisp_free (sblk);
6046 n_symbol_blocks--;
6048 else
6050 num_free += this_free;
6051 sprev = &sblk->next;
6054 total_symbols = num_used;
6055 total_free_symbols = num_free;
6058 /* Put all unmarked misc's on free list.
6059 For a marker, first unchain it from the buffer it points into. */
6061 register struct marker_block *mblk;
6062 struct marker_block **mprev = &marker_block;
6063 register int lim = marker_block_index;
6064 register int num_free = 0, num_used = 0;
6066 marker_free_list = 0;
6068 for (mblk = marker_block; mblk; mblk = *mprev)
6070 register int i;
6071 int this_free = 0;
6073 for (i = 0; i < lim; i++)
6075 if (!mblk->markers[i].u_any.gcmarkbit)
6077 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
6078 unchain_marker (&mblk->markers[i].u_marker);
6079 /* Set the type of the freed object to Lisp_Misc_Free.
6080 We could leave the type alone, since nobody checks it,
6081 but this might catch bugs faster. */
6082 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
6083 mblk->markers[i].u_free.chain = marker_free_list;
6084 marker_free_list = &mblk->markers[i];
6085 this_free++;
6087 else
6089 num_used++;
6090 mblk->markers[i].u_any.gcmarkbit = 0;
6093 lim = MARKER_BLOCK_SIZE;
6094 /* If this block contains only free markers and we have already
6095 seen more than two blocks worth of free markers then deallocate
6096 this block. */
6097 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6099 *mprev = mblk->next;
6100 /* Unhook from the free list. */
6101 marker_free_list = mblk->markers[0].u_free.chain;
6102 lisp_free (mblk);
6103 n_marker_blocks--;
6105 else
6107 num_free += this_free;
6108 mprev = &mblk->next;
6112 total_markers = num_used;
6113 total_free_markers = num_free;
6116 /* Free all unmarked buffers */
6118 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6120 while (buffer)
6121 if (!VECTOR_MARKED_P (buffer))
6123 if (prev)
6124 prev->next = buffer->next;
6125 else
6126 all_buffers = buffer->next;
6127 next = buffer->next;
6128 lisp_free (buffer);
6129 buffer = next;
6131 else
6133 VECTOR_UNMARK (buffer);
6134 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6135 prev = buffer, buffer = buffer->next;
6139 /* Free all unmarked vectors */
6141 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6142 total_vector_size = 0;
6144 while (vector)
6145 if (!VECTOR_MARKED_P (vector))
6147 if (prev)
6148 prev->next = vector->next;
6149 else
6150 all_vectors = vector->next;
6151 next = vector->next;
6152 lisp_free (vector);
6153 n_vectors--;
6154 vector = next;
6157 else
6159 VECTOR_UNMARK (vector);
6160 if (vector->size & PSEUDOVECTOR_FLAG)
6161 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6162 else
6163 total_vector_size += vector->size;
6164 prev = vector, vector = vector->next;
6168 #ifdef GC_CHECK_STRING_BYTES
6169 if (!noninteractive)
6170 check_string_bytes (1);
6171 #endif
6177 /* Debugging aids. */
6179 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6180 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6181 This may be helpful in debugging Emacs's memory usage.
6182 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6185 Lisp_Object end;
6187 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
6189 return end;
6192 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6193 doc: /* Return a list of counters that measure how much consing there has been.
6194 Each of these counters increments for a certain kind of object.
6195 The counters wrap around from the largest positive integer to zero.
6196 Garbage collection does not decrease them.
6197 The elements of the value are as follows:
6198 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6199 All are in units of 1 = one object consed
6200 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6201 objects consed.
6202 MISCS include overlays, markers, and some internal types.
6203 Frames, windows, buffers, and subprocesses count as vectors
6204 (but the contents of a buffer's text do not count here). */)
6207 Lisp_Object consed[8];
6209 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6210 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6211 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6212 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6213 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6214 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6215 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6216 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6218 return Flist (8, consed);
6221 int suppress_checking;
6223 void
6224 die (msg, file, line)
6225 const char *msg;
6226 const char *file;
6227 int line;
6229 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6230 file, line, msg);
6231 abort ();
6234 /* Initialization */
6236 void
6237 init_alloc_once ()
6239 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6240 purebeg = PUREBEG;
6241 pure_size = PURESIZE;
6242 pure_bytes_used = 0;
6243 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6244 pure_bytes_used_before_overflow = 0;
6246 /* Initialize the list of free aligned blocks. */
6247 free_ablock = NULL;
6249 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6250 mem_init ();
6251 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6252 #endif
6254 all_vectors = 0;
6255 ignore_warnings = 1;
6256 #ifdef DOUG_LEA_MALLOC
6257 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6258 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6259 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6260 #endif
6261 init_strings ();
6262 init_cons ();
6263 init_symbol ();
6264 init_marker ();
6265 init_float ();
6266 init_intervals ();
6267 init_weak_hash_tables ();
6269 #ifdef REL_ALLOC
6270 malloc_hysteresis = 32;
6271 #else
6272 malloc_hysteresis = 0;
6273 #endif
6275 refill_memory_reserve ();
6277 ignore_warnings = 0;
6278 gcprolist = 0;
6279 byte_stack_list = 0;
6280 staticidx = 0;
6281 consing_since_gc = 0;
6282 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6283 gc_relative_threshold = 0;
6285 #ifdef VIRT_ADDR_VARIES
6286 malloc_sbrk_unused = 1<<22; /* A large number */
6287 malloc_sbrk_used = 100000; /* as reasonable as any number */
6288 #endif /* VIRT_ADDR_VARIES */
6291 void
6292 init_alloc ()
6294 gcprolist = 0;
6295 byte_stack_list = 0;
6296 #if GC_MARK_STACK
6297 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6298 setjmp_tested_p = longjmps_done = 0;
6299 #endif
6300 #endif
6301 Vgc_elapsed = make_float (0.0);
6302 gcs_done = 0;
6305 void
6306 syms_of_alloc ()
6308 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
6309 doc: /* *Number of bytes of consing between garbage collections.
6310 Garbage collection can happen automatically once this many bytes have been
6311 allocated since the last garbage collection. All data types count.
6313 Garbage collection happens automatically only when `eval' is called.
6315 By binding this temporarily to a large number, you can effectively
6316 prevent garbage collection during a part of the program.
6317 See also `gc-cons-percentage'. */);
6319 DEFVAR_LISP ("gc-cons-percentage", &Vgc_cons_percentage,
6320 doc: /* *Portion of the heap used for allocation.
6321 Garbage collection can happen automatically once this portion of the heap
6322 has been allocated since the last garbage collection.
6323 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6324 Vgc_cons_percentage = make_float (0.1);
6326 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
6327 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6329 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
6330 doc: /* Number of cons cells that have been consed so far. */);
6332 DEFVAR_INT ("floats-consed", &floats_consed,
6333 doc: /* Number of floats that have been consed so far. */);
6335 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
6336 doc: /* Number of vector cells that have been consed so far. */);
6338 DEFVAR_INT ("symbols-consed", &symbols_consed,
6339 doc: /* Number of symbols that have been consed so far. */);
6341 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
6342 doc: /* Number of string characters that have been consed so far. */);
6344 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
6345 doc: /* Number of miscellaneous objects that have been consed so far. */);
6347 DEFVAR_INT ("intervals-consed", &intervals_consed,
6348 doc: /* Number of intervals that have been consed so far. */);
6350 DEFVAR_INT ("strings-consed", &strings_consed,
6351 doc: /* Number of strings that have been consed so far. */);
6353 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
6354 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6355 This means that certain objects should be allocated in shared (pure) space. */);
6357 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
6358 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6359 garbage_collection_messages = 0;
6361 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
6362 doc: /* Hook run after garbage collection has finished. */);
6363 Vpost_gc_hook = Qnil;
6364 Qpost_gc_hook = intern_c_string ("post-gc-hook");
6365 staticpro (&Qpost_gc_hook);
6367 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
6368 doc: /* Precomputed `signal' argument for memory-full error. */);
6369 /* We build this in advance because if we wait until we need it, we might
6370 not be able to allocate the memory to hold it. */
6371 Vmemory_signal_data
6372 = pure_cons (Qerror,
6373 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6375 DEFVAR_LISP ("memory-full", &Vmemory_full,
6376 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6377 Vmemory_full = Qnil;
6379 staticpro (&Qgc_cons_threshold);
6380 Qgc_cons_threshold = intern_c_string ("gc-cons-threshold");
6382 staticpro (&Qchar_table_extra_slots);
6383 Qchar_table_extra_slots = intern_c_string ("char-table-extra-slots");
6385 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
6386 doc: /* Accumulated time elapsed in garbage collections.
6387 The time is in seconds as a floating point value. */);
6388 DEFVAR_INT ("gcs-done", &gcs_done,
6389 doc: /* Accumulated number of garbage collections done. */);
6391 defsubr (&Scons);
6392 defsubr (&Slist);
6393 defsubr (&Svector);
6394 defsubr (&Smake_byte_code);
6395 defsubr (&Smake_list);
6396 defsubr (&Smake_vector);
6397 defsubr (&Smake_string);
6398 defsubr (&Smake_bool_vector);
6399 defsubr (&Smake_symbol);
6400 defsubr (&Smake_marker);
6401 defsubr (&Spurecopy);
6402 defsubr (&Sgarbage_collect);
6403 defsubr (&Smemory_limit);
6404 defsubr (&Smemory_use_counts);
6406 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6407 defsubr (&Sgc_status);
6408 #endif
6411 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6412 (do not change this comment) */