(regex_compile): Substitute whitespace_regexp for spaces, if it is nonzero.
[emacs.git] / src / regex.c
blob459c0ab26b1ccf54e1f577efe678e385b5e0f6b3
1 /* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
3 internationalization features.)
5 Copyright (C) 1993,94,95,96,97,98,99,2000,04 Free Software Foundation, Inc.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
20 USA. */
22 /* TODO:
23 - structure the opcode space into opcode+flag.
24 - merge with glibc's regex.[ch].
25 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
26 need to modify the compiled regexp so that re_match can be reentrant.
27 - get rid of on_failure_jump_smart by doing the optimization in re_comp
28 rather than at run-time, so that re_match can be reentrant.
31 /* AIX requires this to be the first thing in the file. */
32 #if defined _AIX && !defined REGEX_MALLOC
33 #pragma alloca
34 #endif
36 #ifdef HAVE_CONFIG_H
37 # include <config.h>
38 #endif
40 #if defined STDC_HEADERS && !defined emacs
41 # include <stddef.h>
42 #else
43 /* We need this for `regex.h', and perhaps for the Emacs include files. */
44 # include <sys/types.h>
45 #endif
47 /* Whether to use ISO C Amendment 1 wide char functions.
48 Those should not be used for Emacs since it uses its own. */
49 #if defined _LIBC
50 #define WIDE_CHAR_SUPPORT 1
51 #else
52 #define WIDE_CHAR_SUPPORT \
53 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
54 #endif
56 /* For platform which support the ISO C amendement 1 functionality we
57 support user defined character classes. */
58 #if WIDE_CHAR_SUPPORT
59 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
60 # include <wchar.h>
61 # include <wctype.h>
62 #endif
64 #ifdef _LIBC
65 /* We have to keep the namespace clean. */
66 # define regfree(preg) __regfree (preg)
67 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
68 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
69 # define regerror(errcode, preg, errbuf, errbuf_size) \
70 __regerror(errcode, preg, errbuf, errbuf_size)
71 # define re_set_registers(bu, re, nu, st, en) \
72 __re_set_registers (bu, re, nu, st, en)
73 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
74 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
75 # define re_match(bufp, string, size, pos, regs) \
76 __re_match (bufp, string, size, pos, regs)
77 # define re_search(bufp, string, size, startpos, range, regs) \
78 __re_search (bufp, string, size, startpos, range, regs)
79 # define re_compile_pattern(pattern, length, bufp) \
80 __re_compile_pattern (pattern, length, bufp)
81 # define re_set_syntax(syntax) __re_set_syntax (syntax)
82 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
83 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
84 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
86 /* Make sure we call libc's function even if the user overrides them. */
87 # define btowc __btowc
88 # define iswctype __iswctype
89 # define wctype __wctype
91 # define WEAK_ALIAS(a,b) weak_alias (a, b)
93 /* We are also using some library internals. */
94 # include <locale/localeinfo.h>
95 # include <locale/elem-hash.h>
96 # include <langinfo.h>
97 #else
98 # define WEAK_ALIAS(a,b)
99 #endif
101 /* This is for other GNU distributions with internationalized messages. */
102 #if HAVE_LIBINTL_H || defined _LIBC
103 # include <libintl.h>
104 #else
105 # define gettext(msgid) (msgid)
106 #endif
108 #ifndef gettext_noop
109 /* This define is so xgettext can find the internationalizable
110 strings. */
111 # define gettext_noop(String) String
112 #endif
114 /* The `emacs' switch turns on certain matching commands
115 that make sense only in Emacs. */
116 #ifdef emacs
118 # include "lisp.h"
119 # include "buffer.h"
121 /* Make syntax table lookup grant data in gl_state. */
122 # define SYNTAX_ENTRY_VIA_PROPERTY
124 # include "syntax.h"
125 # include "charset.h"
126 # include "category.h"
128 # ifdef malloc
129 # undef malloc
130 # endif
131 # define malloc xmalloc
132 # ifdef realloc
133 # undef realloc
134 # endif
135 # define realloc xrealloc
136 # ifdef free
137 # undef free
138 # endif
139 # define free xfree
141 /* Converts the pointer to the char to BEG-based offset from the start. */
142 # define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
143 # define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
145 # define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
146 # define RE_STRING_CHAR(p, s) \
147 (multibyte ? (STRING_CHAR (p, s)) : (*(p)))
148 # define RE_STRING_CHAR_AND_LENGTH(p, s, len) \
149 (multibyte ? (STRING_CHAR_AND_LENGTH (p, s, len)) : ((len) = 1, *(p)))
151 /* Set C a (possibly multibyte) character before P. P points into a
152 string which is the virtual concatenation of STR1 (which ends at
153 END1) or STR2 (which ends at END2). */
154 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
155 do { \
156 if (multibyte) \
158 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
159 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
160 re_char *d0 = dtemp; \
161 PREV_CHAR_BOUNDARY (d0, dlimit); \
162 c = STRING_CHAR (d0, dtemp - d0); \
164 else \
165 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
166 } while (0)
169 #else /* not emacs */
171 /* If we are not linking with Emacs proper,
172 we can't use the relocating allocator
173 even if config.h says that we can. */
174 # undef REL_ALLOC
176 # if defined STDC_HEADERS || defined _LIBC
177 # include <stdlib.h>
178 # else
179 char *malloc ();
180 char *realloc ();
181 # endif
183 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
184 If nothing else has been done, use the method below. */
185 # ifdef INHIBIT_STRING_HEADER
186 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
187 # if !defined bzero && !defined bcopy
188 # undef INHIBIT_STRING_HEADER
189 # endif
190 # endif
191 # endif
193 /* This is the normal way of making sure we have memcpy, memcmp and bzero.
194 This is used in most programs--a few other programs avoid this
195 by defining INHIBIT_STRING_HEADER. */
196 # ifndef INHIBIT_STRING_HEADER
197 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
198 # include <string.h>
199 # ifndef bzero
200 # ifndef _LIBC
201 # define bzero(s, n) (memset (s, '\0', n), (s))
202 # else
203 # define bzero(s, n) __bzero (s, n)
204 # endif
205 # endif
206 # else
207 # include <strings.h>
208 # ifndef memcmp
209 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
210 # endif
211 # ifndef memcpy
212 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
213 # endif
214 # endif
215 # endif
217 /* Define the syntax stuff for \<, \>, etc. */
219 /* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
220 enum syntaxcode { Swhitespace = 0, Sword = 1, Ssymbol = 2 };
222 # ifdef SWITCH_ENUM_BUG
223 # define SWITCH_ENUM_CAST(x) ((int)(x))
224 # else
225 # define SWITCH_ENUM_CAST(x) (x)
226 # endif
228 /* Dummy macros for non-Emacs environments. */
229 # define BASE_LEADING_CODE_P(c) (0)
230 # define CHAR_CHARSET(c) 0
231 # define CHARSET_LEADING_CODE_BASE(c) 0
232 # define MAX_MULTIBYTE_LENGTH 1
233 # define RE_MULTIBYTE_P(x) 0
234 # define WORD_BOUNDARY_P(c1, c2) (0)
235 # define CHAR_HEAD_P(p) (1)
236 # define SINGLE_BYTE_CHAR_P(c) (1)
237 # define SAME_CHARSET_P(c1, c2) (1)
238 # define MULTIBYTE_FORM_LENGTH(p, s) (1)
239 # define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
240 # define STRING_CHAR(p, s) (*(p))
241 # define RE_STRING_CHAR STRING_CHAR
242 # define CHAR_STRING(c, s) (*(s) = (c), 1)
243 # define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
244 # define RE_STRING_CHAR_AND_LENGTH STRING_CHAR_AND_LENGTH
245 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
246 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
247 # define MAKE_CHAR(charset, c1, c2) (c1)
248 #endif /* not emacs */
250 #ifndef RE_TRANSLATE
251 # define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
252 # define RE_TRANSLATE_P(TBL) (TBL)
253 #endif
255 /* Get the interface, including the syntax bits. */
256 #include "regex.h"
258 /* isalpha etc. are used for the character classes. */
259 #include <ctype.h>
261 #ifdef emacs
263 /* 1 if C is an ASCII character. */
264 # define IS_REAL_ASCII(c) ((c) < 0200)
266 /* 1 if C is a unibyte character. */
267 # define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
269 /* The Emacs definitions should not be directly affected by locales. */
271 /* In Emacs, these are only used for single-byte characters. */
272 # define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
273 # define ISCNTRL(c) ((c) < ' ')
274 # define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
275 || ((c) >= 'a' && (c) <= 'f') \
276 || ((c) >= 'A' && (c) <= 'F'))
278 /* This is only used for single-byte characters. */
279 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
281 /* The rest must handle multibyte characters. */
283 # define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
284 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
285 : 1)
287 # define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
288 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
289 : 1)
291 # define ISALNUM(c) (IS_REAL_ASCII (c) \
292 ? (((c) >= 'a' && (c) <= 'z') \
293 || ((c) >= 'A' && (c) <= 'Z') \
294 || ((c) >= '0' && (c) <= '9')) \
295 : SYNTAX (c) == Sword)
297 # define ISALPHA(c) (IS_REAL_ASCII (c) \
298 ? (((c) >= 'a' && (c) <= 'z') \
299 || ((c) >= 'A' && (c) <= 'Z')) \
300 : SYNTAX (c) == Sword)
302 # define ISLOWER(c) (LOWERCASEP (c))
304 # define ISPUNCT(c) (IS_REAL_ASCII (c) \
305 ? ((c) > ' ' && (c) < 0177 \
306 && !(((c) >= 'a' && (c) <= 'z') \
307 || ((c) >= 'A' && (c) <= 'Z') \
308 || ((c) >= '0' && (c) <= '9'))) \
309 : SYNTAX (c) != Sword)
311 # define ISSPACE(c) (SYNTAX (c) == Swhitespace)
313 # define ISUPPER(c) (UPPERCASEP (c))
315 # define ISWORD(c) (SYNTAX (c) == Sword)
317 #else /* not emacs */
319 /* Jim Meyering writes:
321 "... Some ctype macros are valid only for character codes that
322 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
323 using /bin/cc or gcc but without giving an ansi option). So, all
324 ctype uses should be through macros like ISPRINT... If
325 STDC_HEADERS is defined, then autoconf has verified that the ctype
326 macros don't need to be guarded with references to isascii. ...
327 Defining isascii to 1 should let any compiler worth its salt
328 eliminate the && through constant folding."
329 Solaris defines some of these symbols so we must undefine them first. */
331 # undef ISASCII
332 # if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
333 # define ISASCII(c) 1
334 # else
335 # define ISASCII(c) isascii(c)
336 # endif
338 /* 1 if C is an ASCII character. */
339 # define IS_REAL_ASCII(c) ((c) < 0200)
341 /* This distinction is not meaningful, except in Emacs. */
342 # define ISUNIBYTE(c) 1
344 # ifdef isblank
345 # define ISBLANK(c) (ISASCII (c) && isblank (c))
346 # else
347 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
348 # endif
349 # ifdef isgraph
350 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
351 # else
352 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
353 # endif
355 # undef ISPRINT
356 # define ISPRINT(c) (ISASCII (c) && isprint (c))
357 # define ISDIGIT(c) (ISASCII (c) && isdigit (c))
358 # define ISALNUM(c) (ISASCII (c) && isalnum (c))
359 # define ISALPHA(c) (ISASCII (c) && isalpha (c))
360 # define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
361 # define ISLOWER(c) (ISASCII (c) && islower (c))
362 # define ISPUNCT(c) (ISASCII (c) && ispunct (c))
363 # define ISSPACE(c) (ISASCII (c) && isspace (c))
364 # define ISUPPER(c) (ISASCII (c) && isupper (c))
365 # define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
367 # define ISWORD(c) ISALPHA(c)
369 # ifdef _tolower
370 # define TOLOWER(c) _tolower(c)
371 # else
372 # define TOLOWER(c) tolower(c)
373 # endif
375 /* How many characters in the character set. */
376 # define CHAR_SET_SIZE 256
378 # ifdef SYNTAX_TABLE
380 extern char *re_syntax_table;
382 # else /* not SYNTAX_TABLE */
384 static char re_syntax_table[CHAR_SET_SIZE];
386 static void
387 init_syntax_once ()
389 register int c;
390 static int done = 0;
392 if (done)
393 return;
395 bzero (re_syntax_table, sizeof re_syntax_table);
397 for (c = 0; c < CHAR_SET_SIZE; ++c)
398 if (ISALNUM (c))
399 re_syntax_table[c] = Sword;
401 re_syntax_table['_'] = Ssymbol;
403 done = 1;
406 # endif /* not SYNTAX_TABLE */
408 # define SYNTAX(c) re_syntax_table[(c)]
410 #endif /* not emacs */
412 #ifndef NULL
413 # define NULL (void *)0
414 #endif
416 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
417 since ours (we hope) works properly with all combinations of
418 machines, compilers, `char' and `unsigned char' argument types.
419 (Per Bothner suggested the basic approach.) */
420 #undef SIGN_EXTEND_CHAR
421 #if __STDC__
422 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
423 #else /* not __STDC__ */
424 /* As in Harbison and Steele. */
425 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
426 #endif
428 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
429 use `alloca' instead of `malloc'. This is because using malloc in
430 re_search* or re_match* could cause memory leaks when C-g is used in
431 Emacs; also, malloc is slower and causes storage fragmentation. On
432 the other hand, malloc is more portable, and easier to debug.
434 Because we sometimes use alloca, some routines have to be macros,
435 not functions -- `alloca'-allocated space disappears at the end of the
436 function it is called in. */
438 #ifdef REGEX_MALLOC
440 # define REGEX_ALLOCATE malloc
441 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
442 # define REGEX_FREE free
444 #else /* not REGEX_MALLOC */
446 /* Emacs already defines alloca, sometimes. */
447 # ifndef alloca
449 /* Make alloca work the best possible way. */
450 # ifdef __GNUC__
451 # define alloca __builtin_alloca
452 # else /* not __GNUC__ */
453 # if HAVE_ALLOCA_H
454 # include <alloca.h>
455 # endif /* HAVE_ALLOCA_H */
456 # endif /* not __GNUC__ */
458 # endif /* not alloca */
460 # define REGEX_ALLOCATE alloca
462 /* Assumes a `char *destination' variable. */
463 # define REGEX_REALLOCATE(source, osize, nsize) \
464 (destination = (char *) alloca (nsize), \
465 memcpy (destination, source, osize))
467 /* No need to do anything to free, after alloca. */
468 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
470 #endif /* not REGEX_MALLOC */
472 /* Define how to allocate the failure stack. */
474 #if defined REL_ALLOC && defined REGEX_MALLOC
476 # define REGEX_ALLOCATE_STACK(size) \
477 r_alloc (&failure_stack_ptr, (size))
478 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
479 r_re_alloc (&failure_stack_ptr, (nsize))
480 # define REGEX_FREE_STACK(ptr) \
481 r_alloc_free (&failure_stack_ptr)
483 #else /* not using relocating allocator */
485 # ifdef REGEX_MALLOC
487 # define REGEX_ALLOCATE_STACK malloc
488 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
489 # define REGEX_FREE_STACK free
491 # else /* not REGEX_MALLOC */
493 # define REGEX_ALLOCATE_STACK alloca
495 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
496 REGEX_REALLOCATE (source, osize, nsize)
497 /* No need to explicitly free anything. */
498 # define REGEX_FREE_STACK(arg) ((void)0)
500 # endif /* not REGEX_MALLOC */
501 #endif /* not using relocating allocator */
504 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
505 `string1' or just past its end. This works if PTR is NULL, which is
506 a good thing. */
507 #define FIRST_STRING_P(ptr) \
508 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
510 /* (Re)Allocate N items of type T using malloc, or fail. */
511 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
512 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
513 #define RETALLOC_IF(addr, n, t) \
514 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
515 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
517 #define BYTEWIDTH 8 /* In bits. */
519 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
521 #undef MAX
522 #undef MIN
523 #define MAX(a, b) ((a) > (b) ? (a) : (b))
524 #define MIN(a, b) ((a) < (b) ? (a) : (b))
526 /* Type of source-pattern and string chars. */
527 typedef const unsigned char re_char;
529 typedef char boolean;
530 #define false 0
531 #define true 1
533 static int re_match_2_internal _RE_ARGS ((struct re_pattern_buffer *bufp,
534 re_char *string1, int size1,
535 re_char *string2, int size2,
536 int pos,
537 struct re_registers *regs,
538 int stop));
540 /* These are the command codes that appear in compiled regular
541 expressions. Some opcodes are followed by argument bytes. A
542 command code can specify any interpretation whatsoever for its
543 arguments. Zero bytes may appear in the compiled regular expression. */
545 typedef enum
547 no_op = 0,
549 /* Succeed right away--no more backtracking. */
550 succeed,
552 /* Followed by one byte giving n, then by n literal bytes. */
553 exactn,
555 /* Matches any (more or less) character. */
556 anychar,
558 /* Matches any one char belonging to specified set. First
559 following byte is number of bitmap bytes. Then come bytes
560 for a bitmap saying which chars are in. Bits in each byte
561 are ordered low-bit-first. A character is in the set if its
562 bit is 1. A character too large to have a bit in the map is
563 automatically not in the set.
565 If the length byte has the 0x80 bit set, then that stuff
566 is followed by a range table:
567 2 bytes of flags for character sets (low 8 bits, high 8 bits)
568 See RANGE_TABLE_WORK_BITS below.
569 2 bytes, the number of pairs that follow (upto 32767)
570 pairs, each 2 multibyte characters,
571 each multibyte character represented as 3 bytes. */
572 charset,
574 /* Same parameters as charset, but match any character that is
575 not one of those specified. */
576 charset_not,
578 /* Start remembering the text that is matched, for storing in a
579 register. Followed by one byte with the register number, in
580 the range 0 to one less than the pattern buffer's re_nsub
581 field. */
582 start_memory,
584 /* Stop remembering the text that is matched and store it in a
585 memory register. Followed by one byte with the register
586 number, in the range 0 to one less than `re_nsub' in the
587 pattern buffer. */
588 stop_memory,
590 /* Match a duplicate of something remembered. Followed by one
591 byte containing the register number. */
592 duplicate,
594 /* Fail unless at beginning of line. */
595 begline,
597 /* Fail unless at end of line. */
598 endline,
600 /* Succeeds if at beginning of buffer (if emacs) or at beginning
601 of string to be matched (if not). */
602 begbuf,
604 /* Analogously, for end of buffer/string. */
605 endbuf,
607 /* Followed by two byte relative address to which to jump. */
608 jump,
610 /* Followed by two-byte relative address of place to resume at
611 in case of failure. */
612 on_failure_jump,
614 /* Like on_failure_jump, but pushes a placeholder instead of the
615 current string position when executed. */
616 on_failure_keep_string_jump,
618 /* Just like `on_failure_jump', except that it checks that we
619 don't get stuck in an infinite loop (matching an empty string
620 indefinitely). */
621 on_failure_jump_loop,
623 /* Just like `on_failure_jump_loop', except that it checks for
624 a different kind of loop (the kind that shows up with non-greedy
625 operators). This operation has to be immediately preceded
626 by a `no_op'. */
627 on_failure_jump_nastyloop,
629 /* A smart `on_failure_jump' used for greedy * and + operators.
630 It analyses the loop before which it is put and if the
631 loop does not require backtracking, it changes itself to
632 `on_failure_keep_string_jump' and short-circuits the loop,
633 else it just defaults to changing itself into `on_failure_jump'.
634 It assumes that it is pointing to just past a `jump'. */
635 on_failure_jump_smart,
637 /* Followed by two-byte relative address and two-byte number n.
638 After matching N times, jump to the address upon failure.
639 Does not work if N starts at 0: use on_failure_jump_loop
640 instead. */
641 succeed_n,
643 /* Followed by two-byte relative address, and two-byte number n.
644 Jump to the address N times, then fail. */
645 jump_n,
647 /* Set the following two-byte relative address to the
648 subsequent two-byte number. The address *includes* the two
649 bytes of number. */
650 set_number_at,
652 wordbeg, /* Succeeds if at word beginning. */
653 wordend, /* Succeeds if at word end. */
655 wordbound, /* Succeeds if at a word boundary. */
656 notwordbound, /* Succeeds if not at a word boundary. */
658 symbeg, /* Succeeds if at symbol beginning. */
659 symend, /* Succeeds if at symbol end. */
661 /* Matches any character whose syntax is specified. Followed by
662 a byte which contains a syntax code, e.g., Sword. */
663 syntaxspec,
665 /* Matches any character whose syntax is not that specified. */
666 notsyntaxspec
668 #ifdef emacs
669 ,before_dot, /* Succeeds if before point. */
670 at_dot, /* Succeeds if at point. */
671 after_dot, /* Succeeds if after point. */
673 /* Matches any character whose category-set contains the specified
674 category. The operator is followed by a byte which contains a
675 category code (mnemonic ASCII character). */
676 categoryspec,
678 /* Matches any character whose category-set does not contain the
679 specified category. The operator is followed by a byte which
680 contains the category code (mnemonic ASCII character). */
681 notcategoryspec
682 #endif /* emacs */
683 } re_opcode_t;
685 /* Common operations on the compiled pattern. */
687 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
689 #define STORE_NUMBER(destination, number) \
690 do { \
691 (destination)[0] = (number) & 0377; \
692 (destination)[1] = (number) >> 8; \
693 } while (0)
695 /* Same as STORE_NUMBER, except increment DESTINATION to
696 the byte after where the number is stored. Therefore, DESTINATION
697 must be an lvalue. */
699 #define STORE_NUMBER_AND_INCR(destination, number) \
700 do { \
701 STORE_NUMBER (destination, number); \
702 (destination) += 2; \
703 } while (0)
705 /* Put into DESTINATION a number stored in two contiguous bytes starting
706 at SOURCE. */
708 #define EXTRACT_NUMBER(destination, source) \
709 do { \
710 (destination) = *(source) & 0377; \
711 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
712 } while (0)
714 #ifdef DEBUG
715 static void extract_number _RE_ARGS ((int *dest, re_char *source));
716 static void
717 extract_number (dest, source)
718 int *dest;
719 re_char *source;
721 int temp = SIGN_EXTEND_CHAR (*(source + 1));
722 *dest = *source & 0377;
723 *dest += temp << 8;
726 # ifndef EXTRACT_MACROS /* To debug the macros. */
727 # undef EXTRACT_NUMBER
728 # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
729 # endif /* not EXTRACT_MACROS */
731 #endif /* DEBUG */
733 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
734 SOURCE must be an lvalue. */
736 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
737 do { \
738 EXTRACT_NUMBER (destination, source); \
739 (source) += 2; \
740 } while (0)
742 #ifdef DEBUG
743 static void extract_number_and_incr _RE_ARGS ((int *destination,
744 re_char **source));
745 static void
746 extract_number_and_incr (destination, source)
747 int *destination;
748 re_char **source;
750 extract_number (destination, *source);
751 *source += 2;
754 # ifndef EXTRACT_MACROS
755 # undef EXTRACT_NUMBER_AND_INCR
756 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
757 extract_number_and_incr (&dest, &src)
758 # endif /* not EXTRACT_MACROS */
760 #endif /* DEBUG */
762 /* Store a multibyte character in three contiguous bytes starting
763 DESTINATION, and increment DESTINATION to the byte after where the
764 character is stored. Therefore, DESTINATION must be an lvalue. */
766 #define STORE_CHARACTER_AND_INCR(destination, character) \
767 do { \
768 (destination)[0] = (character) & 0377; \
769 (destination)[1] = ((character) >> 8) & 0377; \
770 (destination)[2] = (character) >> 16; \
771 (destination) += 3; \
772 } while (0)
774 /* Put into DESTINATION a character stored in three contiguous bytes
775 starting at SOURCE. */
777 #define EXTRACT_CHARACTER(destination, source) \
778 do { \
779 (destination) = ((source)[0] \
780 | ((source)[1] << 8) \
781 | ((source)[2] << 16)); \
782 } while (0)
785 /* Macros for charset. */
787 /* Size of bitmap of charset P in bytes. P is a start of charset,
788 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
789 #define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
791 /* Nonzero if charset P has range table. */
792 #define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
794 /* Return the address of range table of charset P. But not the start
795 of table itself, but the before where the number of ranges is
796 stored. `2 +' means to skip re_opcode_t and size of bitmap,
797 and the 2 bytes of flags at the start of the range table. */
798 #define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
800 /* Extract the bit flags that start a range table. */
801 #define CHARSET_RANGE_TABLE_BITS(p) \
802 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
803 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
805 /* Test if C is listed in the bitmap of charset P. */
806 #define CHARSET_LOOKUP_BITMAP(p, c) \
807 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
808 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
810 /* Return the address of end of RANGE_TABLE. COUNT is number of
811 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
812 is start of range and end of range. `* 3' is size of each start
813 and end. */
814 #define CHARSET_RANGE_TABLE_END(range_table, count) \
815 ((range_table) + (count) * 2 * 3)
817 /* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
818 COUNT is number of ranges in RANGE_TABLE. */
819 #define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
820 do \
822 re_wchar_t range_start, range_end; \
823 re_char *p; \
824 re_char *range_table_end \
825 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
827 for (p = (range_table); p < range_table_end; p += 2 * 3) \
829 EXTRACT_CHARACTER (range_start, p); \
830 EXTRACT_CHARACTER (range_end, p + 3); \
832 if (range_start <= (c) && (c) <= range_end) \
834 (not) = !(not); \
835 break; \
839 while (0)
841 /* Test if C is in range table of CHARSET. The flag NOT is negated if
842 C is listed in it. */
843 #define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
844 do \
846 /* Number of ranges in range table. */ \
847 int count; \
848 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
850 EXTRACT_NUMBER_AND_INCR (count, range_table); \
851 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
853 while (0)
855 /* If DEBUG is defined, Regex prints many voluminous messages about what
856 it is doing (if the variable `debug' is nonzero). If linked with the
857 main program in `iregex.c', you can enter patterns and strings
858 interactively. And if linked with the main program in `main.c' and
859 the other test files, you can run the already-written tests. */
861 #ifdef DEBUG
863 /* We use standard I/O for debugging. */
864 # include <stdio.h>
866 /* It is useful to test things that ``must'' be true when debugging. */
867 # include <assert.h>
869 static int debug = -100000;
871 # define DEBUG_STATEMENT(e) e
872 # define DEBUG_PRINT1(x) if (debug > 0) printf (x)
873 # define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
874 # define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
875 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
876 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
877 if (debug > 0) print_partial_compiled_pattern (s, e)
878 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
879 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
882 /* Print the fastmap in human-readable form. */
884 void
885 print_fastmap (fastmap)
886 char *fastmap;
888 unsigned was_a_range = 0;
889 unsigned i = 0;
891 while (i < (1 << BYTEWIDTH))
893 if (fastmap[i++])
895 was_a_range = 0;
896 putchar (i - 1);
897 while (i < (1 << BYTEWIDTH) && fastmap[i])
899 was_a_range = 1;
900 i++;
902 if (was_a_range)
904 printf ("-");
905 putchar (i - 1);
909 putchar ('\n');
913 /* Print a compiled pattern string in human-readable form, starting at
914 the START pointer into it and ending just before the pointer END. */
916 void
917 print_partial_compiled_pattern (start, end)
918 re_char *start;
919 re_char *end;
921 int mcnt, mcnt2;
922 re_char *p = start;
923 re_char *pend = end;
925 if (start == NULL)
927 fprintf (stderr, "(null)\n");
928 return;
931 /* Loop over pattern commands. */
932 while (p < pend)
934 fprintf (stderr, "%d:\t", p - start);
936 switch ((re_opcode_t) *p++)
938 case no_op:
939 fprintf (stderr, "/no_op");
940 break;
942 case succeed:
943 fprintf (stderr, "/succeed");
944 break;
946 case exactn:
947 mcnt = *p++;
948 fprintf (stderr, "/exactn/%d", mcnt);
951 fprintf (stderr, "/%c", *p++);
953 while (--mcnt);
954 break;
956 case start_memory:
957 fprintf (stderr, "/start_memory/%d", *p++);
958 break;
960 case stop_memory:
961 fprintf (stderr, "/stop_memory/%d", *p++);
962 break;
964 case duplicate:
965 fprintf (stderr, "/duplicate/%d", *p++);
966 break;
968 case anychar:
969 fprintf (stderr, "/anychar");
970 break;
972 case charset:
973 case charset_not:
975 register int c, last = -100;
976 register int in_range = 0;
977 int length = CHARSET_BITMAP_SIZE (p - 1);
978 int has_range_table = CHARSET_RANGE_TABLE_EXISTS_P (p - 1);
980 fprintf (stderr, "/charset [%s",
981 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
983 if (p + *p >= pend)
984 fprintf (stderr, " !extends past end of pattern! ");
986 for (c = 0; c < 256; c++)
987 if (c / 8 < length
988 && (p[1 + (c/8)] & (1 << (c % 8))))
990 /* Are we starting a range? */
991 if (last + 1 == c && ! in_range)
993 fprintf (stderr, "-");
994 in_range = 1;
996 /* Have we broken a range? */
997 else if (last + 1 != c && in_range)
999 fprintf (stderr, "%c", last);
1000 in_range = 0;
1003 if (! in_range)
1004 fprintf (stderr, "%c", c);
1006 last = c;
1009 if (in_range)
1010 fprintf (stderr, "%c", last);
1012 fprintf (stderr, "]");
1014 p += 1 + length;
1016 if (has_range_table)
1018 int count;
1019 fprintf (stderr, "has-range-table");
1021 /* ??? Should print the range table; for now, just skip it. */
1022 p += 2; /* skip range table bits */
1023 EXTRACT_NUMBER_AND_INCR (count, p);
1024 p = CHARSET_RANGE_TABLE_END (p, count);
1027 break;
1029 case begline:
1030 fprintf (stderr, "/begline");
1031 break;
1033 case endline:
1034 fprintf (stderr, "/endline");
1035 break;
1037 case on_failure_jump:
1038 extract_number_and_incr (&mcnt, &p);
1039 fprintf (stderr, "/on_failure_jump to %d", p + mcnt - start);
1040 break;
1042 case on_failure_keep_string_jump:
1043 extract_number_and_incr (&mcnt, &p);
1044 fprintf (stderr, "/on_failure_keep_string_jump to %d", p + mcnt - start);
1045 break;
1047 case on_failure_jump_nastyloop:
1048 extract_number_and_incr (&mcnt, &p);
1049 fprintf (stderr, "/on_failure_jump_nastyloop to %d", p + mcnt - start);
1050 break;
1052 case on_failure_jump_loop:
1053 extract_number_and_incr (&mcnt, &p);
1054 fprintf (stderr, "/on_failure_jump_loop to %d", p + mcnt - start);
1055 break;
1057 case on_failure_jump_smart:
1058 extract_number_and_incr (&mcnt, &p);
1059 fprintf (stderr, "/on_failure_jump_smart to %d", p + mcnt - start);
1060 break;
1062 case jump:
1063 extract_number_and_incr (&mcnt, &p);
1064 fprintf (stderr, "/jump to %d", p + mcnt - start);
1065 break;
1067 case succeed_n:
1068 extract_number_and_incr (&mcnt, &p);
1069 extract_number_and_incr (&mcnt2, &p);
1070 fprintf (stderr, "/succeed_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
1071 break;
1073 case jump_n:
1074 extract_number_and_incr (&mcnt, &p);
1075 extract_number_and_incr (&mcnt2, &p);
1076 fprintf (stderr, "/jump_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
1077 break;
1079 case set_number_at:
1080 extract_number_and_incr (&mcnt, &p);
1081 extract_number_and_incr (&mcnt2, &p);
1082 fprintf (stderr, "/set_number_at location %d to %d", p - 2 + mcnt - start, mcnt2);
1083 break;
1085 case wordbound:
1086 fprintf (stderr, "/wordbound");
1087 break;
1089 case notwordbound:
1090 fprintf (stderr, "/notwordbound");
1091 break;
1093 case wordbeg:
1094 fprintf (stderr, "/wordbeg");
1095 break;
1097 case wordend:
1098 fprintf (stderr, "/wordend");
1099 break;
1101 case symbeg:
1102 fprintf (stderr, "/symbeg");
1103 break;
1105 case symend:
1106 fprintf (stderr, "/symend");
1107 break;
1109 case syntaxspec:
1110 fprintf (stderr, "/syntaxspec");
1111 mcnt = *p++;
1112 fprintf (stderr, "/%d", mcnt);
1113 break;
1115 case notsyntaxspec:
1116 fprintf (stderr, "/notsyntaxspec");
1117 mcnt = *p++;
1118 fprintf (stderr, "/%d", mcnt);
1119 break;
1121 # ifdef emacs
1122 case before_dot:
1123 fprintf (stderr, "/before_dot");
1124 break;
1126 case at_dot:
1127 fprintf (stderr, "/at_dot");
1128 break;
1130 case after_dot:
1131 fprintf (stderr, "/after_dot");
1132 break;
1134 case categoryspec:
1135 fprintf (stderr, "/categoryspec");
1136 mcnt = *p++;
1137 fprintf (stderr, "/%d", mcnt);
1138 break;
1140 case notcategoryspec:
1141 fprintf (stderr, "/notcategoryspec");
1142 mcnt = *p++;
1143 fprintf (stderr, "/%d", mcnt);
1144 break;
1145 # endif /* emacs */
1147 case begbuf:
1148 fprintf (stderr, "/begbuf");
1149 break;
1151 case endbuf:
1152 fprintf (stderr, "/endbuf");
1153 break;
1155 default:
1156 fprintf (stderr, "?%d", *(p-1));
1159 fprintf (stderr, "\n");
1162 fprintf (stderr, "%d:\tend of pattern.\n", p - start);
1166 void
1167 print_compiled_pattern (bufp)
1168 struct re_pattern_buffer *bufp;
1170 re_char *buffer = bufp->buffer;
1172 print_partial_compiled_pattern (buffer, buffer + bufp->used);
1173 printf ("%ld bytes used/%ld bytes allocated.\n",
1174 bufp->used, bufp->allocated);
1176 if (bufp->fastmap_accurate && bufp->fastmap)
1178 printf ("fastmap: ");
1179 print_fastmap (bufp->fastmap);
1182 printf ("re_nsub: %d\t", bufp->re_nsub);
1183 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1184 printf ("can_be_null: %d\t", bufp->can_be_null);
1185 printf ("no_sub: %d\t", bufp->no_sub);
1186 printf ("not_bol: %d\t", bufp->not_bol);
1187 printf ("not_eol: %d\t", bufp->not_eol);
1188 printf ("syntax: %lx\n", bufp->syntax);
1189 fflush (stdout);
1190 /* Perhaps we should print the translate table? */
1194 void
1195 print_double_string (where, string1, size1, string2, size2)
1196 re_char *where;
1197 re_char *string1;
1198 re_char *string2;
1199 int size1;
1200 int size2;
1202 int this_char;
1204 if (where == NULL)
1205 printf ("(null)");
1206 else
1208 if (FIRST_STRING_P (where))
1210 for (this_char = where - string1; this_char < size1; this_char++)
1211 putchar (string1[this_char]);
1213 where = string2;
1216 for (this_char = where - string2; this_char < size2; this_char++)
1217 putchar (string2[this_char]);
1221 #else /* not DEBUG */
1223 # undef assert
1224 # define assert(e)
1226 # define DEBUG_STATEMENT(e)
1227 # define DEBUG_PRINT1(x)
1228 # define DEBUG_PRINT2(x1, x2)
1229 # define DEBUG_PRINT3(x1, x2, x3)
1230 # define DEBUG_PRINT4(x1, x2, x3, x4)
1231 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1232 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1234 #endif /* not DEBUG */
1236 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1237 also be assigned to arbitrarily: each pattern buffer stores its own
1238 syntax, so it can be changed between regex compilations. */
1239 /* This has no initializer because initialized variables in Emacs
1240 become read-only after dumping. */
1241 reg_syntax_t re_syntax_options;
1244 /* Specify the precise syntax of regexps for compilation. This provides
1245 for compatibility for various utilities which historically have
1246 different, incompatible syntaxes.
1248 The argument SYNTAX is a bit mask comprised of the various bits
1249 defined in regex.h. We return the old syntax. */
1251 reg_syntax_t
1252 re_set_syntax (syntax)
1253 reg_syntax_t syntax;
1255 reg_syntax_t ret = re_syntax_options;
1257 re_syntax_options = syntax;
1258 return ret;
1260 WEAK_ALIAS (__re_set_syntax, re_set_syntax)
1262 /* Regexp to use to replace spaces, or NULL meaning don't. */
1263 static re_char *whitespace_regexp;
1265 void
1266 re_set_whitespace_regexp (regexp)
1267 re_char *regexp;
1269 whitespace_regexp = regexp;
1271 WEAK_ALIAS (__re_set_syntax, re_set_syntax)
1273 /* This table gives an error message for each of the error codes listed
1274 in regex.h. Obviously the order here has to be same as there.
1275 POSIX doesn't require that we do anything for REG_NOERROR,
1276 but why not be nice? */
1278 static const char *re_error_msgid[] =
1280 gettext_noop ("Success"), /* REG_NOERROR */
1281 gettext_noop ("No match"), /* REG_NOMATCH */
1282 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1283 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1284 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1285 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1286 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1287 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1288 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1289 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1290 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1291 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1292 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1293 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1294 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1295 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1296 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1297 gettext_noop ("Range striding over charsets") /* REG_ERANGEX */
1300 /* Avoiding alloca during matching, to placate r_alloc. */
1302 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1303 searching and matching functions should not call alloca. On some
1304 systems, alloca is implemented in terms of malloc, and if we're
1305 using the relocating allocator routines, then malloc could cause a
1306 relocation, which might (if the strings being searched are in the
1307 ralloc heap) shift the data out from underneath the regexp
1308 routines.
1310 Here's another reason to avoid allocation: Emacs
1311 processes input from X in a signal handler; processing X input may
1312 call malloc; if input arrives while a matching routine is calling
1313 malloc, then we're scrod. But Emacs can't just block input while
1314 calling matching routines; then we don't notice interrupts when
1315 they come in. So, Emacs blocks input around all regexp calls
1316 except the matching calls, which it leaves unprotected, in the
1317 faith that they will not malloc. */
1319 /* Normally, this is fine. */
1320 #define MATCH_MAY_ALLOCATE
1322 /* When using GNU C, we are not REALLY using the C alloca, no matter
1323 what config.h may say. So don't take precautions for it. */
1324 #ifdef __GNUC__
1325 # undef C_ALLOCA
1326 #endif
1328 /* The match routines may not allocate if (1) they would do it with malloc
1329 and (2) it's not safe for them to use malloc.
1330 Note that if REL_ALLOC is defined, matching would not use malloc for the
1331 failure stack, but we would still use it for the register vectors;
1332 so REL_ALLOC should not affect this. */
1333 #if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1334 # undef MATCH_MAY_ALLOCATE
1335 #endif
1338 /* Failure stack declarations and macros; both re_compile_fastmap and
1339 re_match_2 use a failure stack. These have to be macros because of
1340 REGEX_ALLOCATE_STACK. */
1343 /* Approximate number of failure points for which to initially allocate space
1344 when matching. If this number is exceeded, we allocate more
1345 space, so it is not a hard limit. */
1346 #ifndef INIT_FAILURE_ALLOC
1347 # define INIT_FAILURE_ALLOC 20
1348 #endif
1350 /* Roughly the maximum number of failure points on the stack. Would be
1351 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
1352 This is a variable only so users of regex can assign to it; we never
1353 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1354 before using it, so it should probably be a byte-count instead. */
1355 # if defined MATCH_MAY_ALLOCATE
1356 /* Note that 4400 was enough to cause a crash on Alpha OSF/1,
1357 whose default stack limit is 2mb. In order for a larger
1358 value to work reliably, you have to try to make it accord
1359 with the process stack limit. */
1360 size_t re_max_failures = 40000;
1361 # else
1362 size_t re_max_failures = 4000;
1363 # endif
1365 union fail_stack_elt
1367 re_char *pointer;
1368 /* This should be the biggest `int' that's no bigger than a pointer. */
1369 long integer;
1372 typedef union fail_stack_elt fail_stack_elt_t;
1374 typedef struct
1376 fail_stack_elt_t *stack;
1377 size_t size;
1378 size_t avail; /* Offset of next open position. */
1379 size_t frame; /* Offset of the cur constructed frame. */
1380 } fail_stack_type;
1382 #define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
1383 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1386 /* Define macros to initialize and free the failure stack.
1387 Do `return -2' if the alloc fails. */
1389 #ifdef MATCH_MAY_ALLOCATE
1390 # define INIT_FAIL_STACK() \
1391 do { \
1392 fail_stack.stack = (fail_stack_elt_t *) \
1393 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1394 * sizeof (fail_stack_elt_t)); \
1396 if (fail_stack.stack == NULL) \
1397 return -2; \
1399 fail_stack.size = INIT_FAILURE_ALLOC; \
1400 fail_stack.avail = 0; \
1401 fail_stack.frame = 0; \
1402 } while (0)
1404 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1405 #else
1406 # define INIT_FAIL_STACK() \
1407 do { \
1408 fail_stack.avail = 0; \
1409 fail_stack.frame = 0; \
1410 } while (0)
1412 # define RESET_FAIL_STACK() ((void)0)
1413 #endif
1416 /* Double the size of FAIL_STACK, up to a limit
1417 which allows approximately `re_max_failures' items.
1419 Return 1 if succeeds, and 0 if either ran out of memory
1420 allocating space for it or it was already too large.
1422 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1424 /* Factor to increase the failure stack size by
1425 when we increase it.
1426 This used to be 2, but 2 was too wasteful
1427 because the old discarded stacks added up to as much space
1428 were as ultimate, maximum-size stack. */
1429 #define FAIL_STACK_GROWTH_FACTOR 4
1431 #define GROW_FAIL_STACK(fail_stack) \
1432 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1433 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
1434 ? 0 \
1435 : ((fail_stack).stack \
1436 = (fail_stack_elt_t *) \
1437 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1438 (fail_stack).size * sizeof (fail_stack_elt_t), \
1439 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1440 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1441 * FAIL_STACK_GROWTH_FACTOR))), \
1443 (fail_stack).stack == NULL \
1444 ? 0 \
1445 : ((fail_stack).size \
1446 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1447 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1448 * FAIL_STACK_GROWTH_FACTOR)) \
1449 / sizeof (fail_stack_elt_t)), \
1450 1)))
1453 /* Push a pointer value onto the failure stack.
1454 Assumes the variable `fail_stack'. Probably should only
1455 be called from within `PUSH_FAILURE_POINT'. */
1456 #define PUSH_FAILURE_POINTER(item) \
1457 fail_stack.stack[fail_stack.avail++].pointer = (item)
1459 /* This pushes an integer-valued item onto the failure stack.
1460 Assumes the variable `fail_stack'. Probably should only
1461 be called from within `PUSH_FAILURE_POINT'. */
1462 #define PUSH_FAILURE_INT(item) \
1463 fail_stack.stack[fail_stack.avail++].integer = (item)
1465 /* Push a fail_stack_elt_t value onto the failure stack.
1466 Assumes the variable `fail_stack'. Probably should only
1467 be called from within `PUSH_FAILURE_POINT'. */
1468 #define PUSH_FAILURE_ELT(item) \
1469 fail_stack.stack[fail_stack.avail++] = (item)
1471 /* These three POP... operations complement the three PUSH... operations.
1472 All assume that `fail_stack' is nonempty. */
1473 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1474 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1475 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1477 /* Individual items aside from the registers. */
1478 #define NUM_NONREG_ITEMS 3
1480 /* Used to examine the stack (to detect infinite loops). */
1481 #define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
1482 #define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
1483 #define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1484 #define TOP_FAILURE_HANDLE() fail_stack.frame
1487 #define ENSURE_FAIL_STACK(space) \
1488 while (REMAINING_AVAIL_SLOTS <= space) { \
1489 if (!GROW_FAIL_STACK (fail_stack)) \
1490 return -2; \
1491 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1492 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1495 /* Push register NUM onto the stack. */
1496 #define PUSH_FAILURE_REG(num) \
1497 do { \
1498 char *destination; \
1499 ENSURE_FAIL_STACK(3); \
1500 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1501 num, regstart[num], regend[num]); \
1502 PUSH_FAILURE_POINTER (regstart[num]); \
1503 PUSH_FAILURE_POINTER (regend[num]); \
1504 PUSH_FAILURE_INT (num); \
1505 } while (0)
1507 /* Change the counter's value to VAL, but make sure that it will
1508 be reset when backtracking. */
1509 #define PUSH_NUMBER(ptr,val) \
1510 do { \
1511 char *destination; \
1512 int c; \
1513 ENSURE_FAIL_STACK(3); \
1514 EXTRACT_NUMBER (c, ptr); \
1515 DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
1516 PUSH_FAILURE_INT (c); \
1517 PUSH_FAILURE_POINTER (ptr); \
1518 PUSH_FAILURE_INT (-1); \
1519 STORE_NUMBER (ptr, val); \
1520 } while (0)
1522 /* Pop a saved register off the stack. */
1523 #define POP_FAILURE_REG_OR_COUNT() \
1524 do { \
1525 int reg = POP_FAILURE_INT (); \
1526 if (reg == -1) \
1528 /* It's a counter. */ \
1529 /* Here, we discard `const', making re_match non-reentrant. */ \
1530 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
1531 reg = POP_FAILURE_INT (); \
1532 STORE_NUMBER (ptr, reg); \
1533 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, reg); \
1535 else \
1537 regend[reg] = POP_FAILURE_POINTER (); \
1538 regstart[reg] = POP_FAILURE_POINTER (); \
1539 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1540 reg, regstart[reg], regend[reg]); \
1542 } while (0)
1544 /* Check that we are not stuck in an infinite loop. */
1545 #define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1546 do { \
1547 int failure = TOP_FAILURE_HANDLE (); \
1548 /* Check for infinite matching loops */ \
1549 while (failure > 0 \
1550 && (FAILURE_STR (failure) == string_place \
1551 || FAILURE_STR (failure) == NULL)) \
1553 assert (FAILURE_PAT (failure) >= bufp->buffer \
1554 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
1555 if (FAILURE_PAT (failure) == pat_cur) \
1557 cycle = 1; \
1558 break; \
1560 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
1561 failure = NEXT_FAILURE_HANDLE(failure); \
1563 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1564 } while (0)
1566 /* Push the information about the state we will need
1567 if we ever fail back to it.
1569 Requires variables fail_stack, regstart, regend and
1570 num_regs be declared. GROW_FAIL_STACK requires `destination' be
1571 declared.
1573 Does `return FAILURE_CODE' if runs out of memory. */
1575 #define PUSH_FAILURE_POINT(pattern, string_place) \
1576 do { \
1577 char *destination; \
1578 /* Must be int, so when we don't save any registers, the arithmetic \
1579 of 0 + -1 isn't done as unsigned. */ \
1581 DEBUG_STATEMENT (nfailure_points_pushed++); \
1582 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
1583 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1584 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1586 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1588 DEBUG_PRINT1 ("\n"); \
1590 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1591 PUSH_FAILURE_INT (fail_stack.frame); \
1593 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1594 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1595 DEBUG_PRINT1 ("'\n"); \
1596 PUSH_FAILURE_POINTER (string_place); \
1598 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1599 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1600 PUSH_FAILURE_POINTER (pattern); \
1602 /* Close the frame by moving the frame pointer past it. */ \
1603 fail_stack.frame = fail_stack.avail; \
1604 } while (0)
1606 /* Estimate the size of data pushed by a typical failure stack entry.
1607 An estimate is all we need, because all we use this for
1608 is to choose a limit for how big to make the failure stack. */
1609 /* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
1610 #define TYPICAL_FAILURE_SIZE 20
1612 /* How many items can still be added to the stack without overflowing it. */
1613 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1616 /* Pops what PUSH_FAIL_STACK pushes.
1618 We restore into the parameters, all of which should be lvalues:
1619 STR -- the saved data position.
1620 PAT -- the saved pattern position.
1621 REGSTART, REGEND -- arrays of string positions.
1623 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1624 `pend', `string1', `size1', `string2', and `size2'. */
1626 #define POP_FAILURE_POINT(str, pat) \
1627 do { \
1628 assert (!FAIL_STACK_EMPTY ()); \
1630 /* Remove failure points and point to how many regs pushed. */ \
1631 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1632 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1633 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1635 /* Pop the saved registers. */ \
1636 while (fail_stack.frame < fail_stack.avail) \
1637 POP_FAILURE_REG_OR_COUNT (); \
1639 pat = POP_FAILURE_POINTER (); \
1640 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1641 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1643 /* If the saved string location is NULL, it came from an \
1644 on_failure_keep_string_jump opcode, and we want to throw away the \
1645 saved NULL, thus retaining our current position in the string. */ \
1646 str = POP_FAILURE_POINTER (); \
1647 DEBUG_PRINT2 (" Popping string %p: `", str); \
1648 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1649 DEBUG_PRINT1 ("'\n"); \
1651 fail_stack.frame = POP_FAILURE_INT (); \
1652 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
1654 assert (fail_stack.avail >= 0); \
1655 assert (fail_stack.frame <= fail_stack.avail); \
1657 DEBUG_STATEMENT (nfailure_points_popped++); \
1658 } while (0) /* POP_FAILURE_POINT */
1662 /* Registers are set to a sentinel when they haven't yet matched. */
1663 #define REG_UNSET(e) ((e) == NULL)
1665 /* Subroutine declarations and macros for regex_compile. */
1667 static reg_errcode_t regex_compile _RE_ARGS ((re_char *pattern, size_t size,
1668 reg_syntax_t syntax,
1669 struct re_pattern_buffer *bufp));
1670 static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1671 static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1672 int arg1, int arg2));
1673 static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1674 int arg, unsigned char *end));
1675 static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1676 int arg1, int arg2, unsigned char *end));
1677 static boolean at_begline_loc_p _RE_ARGS ((re_char *pattern,
1678 re_char *p,
1679 reg_syntax_t syntax));
1680 static boolean at_endline_loc_p _RE_ARGS ((re_char *p,
1681 re_char *pend,
1682 reg_syntax_t syntax));
1683 static re_char *skip_one_char _RE_ARGS ((re_char *p));
1684 static int analyse_first _RE_ARGS ((re_char *p, re_char *pend,
1685 char *fastmap, const int multibyte));
1687 /* Fetch the next character in the uncompiled pattern, with no
1688 translation. */
1689 #define PATFETCH(c) \
1690 do { \
1691 int len; \
1692 if (p == pend) return REG_EEND; \
1693 c = RE_STRING_CHAR_AND_LENGTH (p, pend - p, len); \
1694 p += len; \
1695 } while (0)
1698 /* If `translate' is non-null, return translate[D], else just D. We
1699 cast the subscript to translate because some data is declared as
1700 `char *', to avoid warnings when a string constant is passed. But
1701 when we use a character as a subscript we must make it unsigned. */
1702 #ifndef TRANSLATE
1703 # define TRANSLATE(d) \
1704 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
1705 #endif
1708 /* Macros for outputting the compiled pattern into `buffer'. */
1710 /* If the buffer isn't allocated when it comes in, use this. */
1711 #define INIT_BUF_SIZE 32
1713 /* Make sure we have at least N more bytes of space in buffer. */
1714 #define GET_BUFFER_SPACE(n) \
1715 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
1716 EXTEND_BUFFER ()
1718 /* Make sure we have one more byte of buffer space and then add C to it. */
1719 #define BUF_PUSH(c) \
1720 do { \
1721 GET_BUFFER_SPACE (1); \
1722 *b++ = (unsigned char) (c); \
1723 } while (0)
1726 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1727 #define BUF_PUSH_2(c1, c2) \
1728 do { \
1729 GET_BUFFER_SPACE (2); \
1730 *b++ = (unsigned char) (c1); \
1731 *b++ = (unsigned char) (c2); \
1732 } while (0)
1735 /* As with BUF_PUSH_2, except for three bytes. */
1736 #define BUF_PUSH_3(c1, c2, c3) \
1737 do { \
1738 GET_BUFFER_SPACE (3); \
1739 *b++ = (unsigned char) (c1); \
1740 *b++ = (unsigned char) (c2); \
1741 *b++ = (unsigned char) (c3); \
1742 } while (0)
1745 /* Store a jump with opcode OP at LOC to location TO. We store a
1746 relative address offset by the three bytes the jump itself occupies. */
1747 #define STORE_JUMP(op, loc, to) \
1748 store_op1 (op, loc, (to) - (loc) - 3)
1750 /* Likewise, for a two-argument jump. */
1751 #define STORE_JUMP2(op, loc, to, arg) \
1752 store_op2 (op, loc, (to) - (loc) - 3, arg)
1754 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1755 #define INSERT_JUMP(op, loc, to) \
1756 insert_op1 (op, loc, (to) - (loc) - 3, b)
1758 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1759 #define INSERT_JUMP2(op, loc, to, arg) \
1760 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1763 /* This is not an arbitrary limit: the arguments which represent offsets
1764 into the pattern are two bytes long. So if 2^15 bytes turns out to
1765 be too small, many things would have to change. */
1766 # define MAX_BUF_SIZE (1L << 15)
1768 #if 0 /* This is when we thought it could be 2^16 bytes. */
1769 /* Any other compiler which, like MSC, has allocation limit below 2^16
1770 bytes will have to use approach similar to what was done below for
1771 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1772 reallocating to 0 bytes. Such thing is not going to work too well.
1773 You have been warned!! */
1774 #if defined _MSC_VER && !defined WIN32
1775 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. */
1776 # define MAX_BUF_SIZE 65500L
1777 #else
1778 # define MAX_BUF_SIZE (1L << 16)
1779 #endif
1780 #endif /* 0 */
1782 /* Extend the buffer by twice its current size via realloc and
1783 reset the pointers that pointed into the old block to point to the
1784 correct places in the new one. If extending the buffer results in it
1785 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1786 #if __BOUNDED_POINTERS__
1787 # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
1788 # define MOVE_BUFFER_POINTER(P) \
1789 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
1790 # define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1791 else \
1793 SET_HIGH_BOUND (b); \
1794 SET_HIGH_BOUND (begalt); \
1795 if (fixup_alt_jump) \
1796 SET_HIGH_BOUND (fixup_alt_jump); \
1797 if (laststart) \
1798 SET_HIGH_BOUND (laststart); \
1799 if (pending_exact) \
1800 SET_HIGH_BOUND (pending_exact); \
1802 #else
1803 # define MOVE_BUFFER_POINTER(P) (P) += incr
1804 # define ELSE_EXTEND_BUFFER_HIGH_BOUND
1805 #endif
1806 #define EXTEND_BUFFER() \
1807 do { \
1808 re_char *old_buffer = bufp->buffer; \
1809 if (bufp->allocated == MAX_BUF_SIZE) \
1810 return REG_ESIZE; \
1811 bufp->allocated <<= 1; \
1812 if (bufp->allocated > MAX_BUF_SIZE) \
1813 bufp->allocated = MAX_BUF_SIZE; \
1814 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
1815 if (bufp->buffer == NULL) \
1816 return REG_ESPACE; \
1817 /* If the buffer moved, move all the pointers into it. */ \
1818 if (old_buffer != bufp->buffer) \
1820 int incr = bufp->buffer - old_buffer; \
1821 MOVE_BUFFER_POINTER (b); \
1822 MOVE_BUFFER_POINTER (begalt); \
1823 if (fixup_alt_jump) \
1824 MOVE_BUFFER_POINTER (fixup_alt_jump); \
1825 if (laststart) \
1826 MOVE_BUFFER_POINTER (laststart); \
1827 if (pending_exact) \
1828 MOVE_BUFFER_POINTER (pending_exact); \
1830 ELSE_EXTEND_BUFFER_HIGH_BOUND \
1831 } while (0)
1834 /* Since we have one byte reserved for the register number argument to
1835 {start,stop}_memory, the maximum number of groups we can report
1836 things about is what fits in that byte. */
1837 #define MAX_REGNUM 255
1839 /* But patterns can have more than `MAX_REGNUM' registers. We just
1840 ignore the excess. */
1841 typedef int regnum_t;
1844 /* Macros for the compile stack. */
1846 /* Since offsets can go either forwards or backwards, this type needs to
1847 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1848 /* int may be not enough when sizeof(int) == 2. */
1849 typedef long pattern_offset_t;
1851 typedef struct
1853 pattern_offset_t begalt_offset;
1854 pattern_offset_t fixup_alt_jump;
1855 pattern_offset_t laststart_offset;
1856 regnum_t regnum;
1857 } compile_stack_elt_t;
1860 typedef struct
1862 compile_stack_elt_t *stack;
1863 unsigned size;
1864 unsigned avail; /* Offset of next open position. */
1865 } compile_stack_type;
1868 #define INIT_COMPILE_STACK_SIZE 32
1870 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1871 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1873 /* The next available element. */
1874 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1876 /* Explicit quit checking is only used on NTemacs. */
1877 #if defined WINDOWSNT && defined emacs && defined QUIT
1878 extern int immediate_quit;
1879 # define IMMEDIATE_QUIT_CHECK \
1880 do { \
1881 if (immediate_quit) QUIT; \
1882 } while (0)
1883 #else
1884 # define IMMEDIATE_QUIT_CHECK ((void)0)
1885 #endif
1887 /* Structure to manage work area for range table. */
1888 struct range_table_work_area
1890 int *table; /* actual work area. */
1891 int allocated; /* allocated size for work area in bytes. */
1892 int used; /* actually used size in words. */
1893 int bits; /* flag to record character classes */
1896 /* Make sure that WORK_AREA can hold more N multibyte characters.
1897 This is used only in set_image_of_range and set_image_of_range_1.
1898 It expects WORK_AREA to be a pointer.
1899 If it can't get the space, it returns from the surrounding function. */
1901 #define EXTEND_RANGE_TABLE(work_area, n) \
1902 do { \
1903 if (((work_area)->used + (n)) * sizeof (int) > (work_area)->allocated) \
1905 extend_range_table_work_area (work_area); \
1906 if ((work_area)->table == 0) \
1907 return (REG_ESPACE); \
1909 } while (0)
1911 #define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1912 (work_area).bits |= (bit)
1914 /* Bits used to implement the multibyte-part of the various character classes
1915 such as [:alnum:] in a charset's range table. */
1916 #define BIT_WORD 0x1
1917 #define BIT_LOWER 0x2
1918 #define BIT_PUNCT 0x4
1919 #define BIT_SPACE 0x8
1920 #define BIT_UPPER 0x10
1921 #define BIT_MULTIBYTE 0x20
1923 /* Set a range START..END to WORK_AREA.
1924 The range is passed through TRANSLATE, so START and END
1925 should be untranslated. */
1926 #define SET_RANGE_TABLE_WORK_AREA(work_area, start, end) \
1927 do { \
1928 int tem; \
1929 tem = set_image_of_range (&work_area, start, end, translate); \
1930 if (tem > 0) \
1931 FREE_STACK_RETURN (tem); \
1932 } while (0)
1934 /* Free allocated memory for WORK_AREA. */
1935 #define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1936 do { \
1937 if ((work_area).table) \
1938 free ((work_area).table); \
1939 } while (0)
1941 #define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
1942 #define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
1943 #define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
1944 #define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
1947 /* Set the bit for character C in a list. */
1948 #define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
1951 /* Get the next unsigned number in the uncompiled pattern. */
1952 #define GET_UNSIGNED_NUMBER(num) \
1953 do { if (p != pend) \
1955 PATFETCH (c); \
1956 if (c == ' ') \
1957 FREE_STACK_RETURN (REG_BADBR); \
1958 while ('0' <= c && c <= '9') \
1960 int prev; \
1961 if (num < 0) \
1962 num = 0; \
1963 prev = num; \
1964 num = num * 10 + c - '0'; \
1965 if (num / 10 != prev) \
1966 FREE_STACK_RETURN (REG_BADBR); \
1967 if (p == pend) \
1968 break; \
1969 PATFETCH (c); \
1971 if (c == ' ') \
1972 FREE_STACK_RETURN (REG_BADBR); \
1974 } while (0)
1976 #if ! WIDE_CHAR_SUPPORT
1978 /* Map a string to the char class it names (if any). */
1979 re_wctype_t
1980 re_wctype (str)
1981 re_char *str;
1983 const char *string = str;
1984 if (STREQ (string, "alnum")) return RECC_ALNUM;
1985 else if (STREQ (string, "alpha")) return RECC_ALPHA;
1986 else if (STREQ (string, "word")) return RECC_WORD;
1987 else if (STREQ (string, "ascii")) return RECC_ASCII;
1988 else if (STREQ (string, "nonascii")) return RECC_NONASCII;
1989 else if (STREQ (string, "graph")) return RECC_GRAPH;
1990 else if (STREQ (string, "lower")) return RECC_LOWER;
1991 else if (STREQ (string, "print")) return RECC_PRINT;
1992 else if (STREQ (string, "punct")) return RECC_PUNCT;
1993 else if (STREQ (string, "space")) return RECC_SPACE;
1994 else if (STREQ (string, "upper")) return RECC_UPPER;
1995 else if (STREQ (string, "unibyte")) return RECC_UNIBYTE;
1996 else if (STREQ (string, "multibyte")) return RECC_MULTIBYTE;
1997 else if (STREQ (string, "digit")) return RECC_DIGIT;
1998 else if (STREQ (string, "xdigit")) return RECC_XDIGIT;
1999 else if (STREQ (string, "cntrl")) return RECC_CNTRL;
2000 else if (STREQ (string, "blank")) return RECC_BLANK;
2001 else return 0;
2004 /* True iff CH is in the char class CC. */
2005 boolean
2006 re_iswctype (ch, cc)
2007 int ch;
2008 re_wctype_t cc;
2010 switch (cc)
2012 case RECC_ALNUM: return ISALNUM (ch);
2013 case RECC_ALPHA: return ISALPHA (ch);
2014 case RECC_BLANK: return ISBLANK (ch);
2015 case RECC_CNTRL: return ISCNTRL (ch);
2016 case RECC_DIGIT: return ISDIGIT (ch);
2017 case RECC_GRAPH: return ISGRAPH (ch);
2018 case RECC_LOWER: return ISLOWER (ch);
2019 case RECC_PRINT: return ISPRINT (ch);
2020 case RECC_PUNCT: return ISPUNCT (ch);
2021 case RECC_SPACE: return ISSPACE (ch);
2022 case RECC_UPPER: return ISUPPER (ch);
2023 case RECC_XDIGIT: return ISXDIGIT (ch);
2024 case RECC_ASCII: return IS_REAL_ASCII (ch);
2025 case RECC_NONASCII: return !IS_REAL_ASCII (ch);
2026 case RECC_UNIBYTE: return ISUNIBYTE (ch);
2027 case RECC_MULTIBYTE: return !ISUNIBYTE (ch);
2028 case RECC_WORD: return ISWORD (ch);
2029 case RECC_ERROR: return false;
2030 default:
2031 abort();
2035 /* Return a bit-pattern to use in the range-table bits to match multibyte
2036 chars of class CC. */
2037 static int
2038 re_wctype_to_bit (cc)
2039 re_wctype_t cc;
2041 switch (cc)
2043 case RECC_NONASCII: case RECC_PRINT: case RECC_GRAPH:
2044 case RECC_MULTIBYTE: return BIT_MULTIBYTE;
2045 case RECC_ALPHA: case RECC_ALNUM: case RECC_WORD: return BIT_WORD;
2046 case RECC_LOWER: return BIT_LOWER;
2047 case RECC_UPPER: return BIT_UPPER;
2048 case RECC_PUNCT: return BIT_PUNCT;
2049 case RECC_SPACE: return BIT_SPACE;
2050 case RECC_ASCII: case RECC_DIGIT: case RECC_XDIGIT: case RECC_CNTRL:
2051 case RECC_BLANK: case RECC_UNIBYTE: case RECC_ERROR: return 0;
2052 default:
2053 abort();
2056 #endif
2058 /* Filling in the work area of a range. */
2060 /* Actually extend the space in WORK_AREA. */
2062 static void
2063 extend_range_table_work_area (work_area)
2064 struct range_table_work_area *work_area;
2066 work_area->allocated += 16 * sizeof (int);
2067 if (work_area->table)
2068 work_area->table
2069 = (int *) realloc (work_area->table, work_area->allocated);
2070 else
2071 work_area->table
2072 = (int *) malloc (work_area->allocated);
2075 #ifdef emacs
2077 /* Carefully find the ranges of codes that are equivalent
2078 under case conversion to the range start..end when passed through
2079 TRANSLATE. Handle the case where non-letters can come in between
2080 two upper-case letters (which happens in Latin-1).
2081 Also handle the case of groups of more than 2 case-equivalent chars.
2083 The basic method is to look at consecutive characters and see
2084 if they can form a run that can be handled as one.
2086 Returns -1 if successful, REG_ESPACE if ran out of space. */
2088 static int
2089 set_image_of_range_1 (work_area, start, end, translate)
2090 RE_TRANSLATE_TYPE translate;
2091 struct range_table_work_area *work_area;
2092 re_wchar_t start, end;
2094 /* `one_case' indicates a character, or a run of characters,
2095 each of which is an isolate (no case-equivalents).
2096 This includes all ASCII non-letters.
2098 `two_case' indicates a character, or a run of characters,
2099 each of which has two case-equivalent forms.
2100 This includes all ASCII letters.
2102 `strange' indicates a character that has more than one
2103 case-equivalent. */
2105 enum case_type {one_case, two_case, strange};
2107 /* Describe the run that is in progress,
2108 which the next character can try to extend.
2109 If run_type is strange, that means there really is no run.
2110 If run_type is one_case, then run_start...run_end is the run.
2111 If run_type is two_case, then the run is run_start...run_end,
2112 and the case-equivalents end at run_eqv_end. */
2114 enum case_type run_type = strange;
2115 int run_start, run_end, run_eqv_end;
2117 Lisp_Object eqv_table;
2119 if (!RE_TRANSLATE_P (translate))
2121 EXTEND_RANGE_TABLE (work_area, 2);
2122 work_area->table[work_area->used++] = (start);
2123 work_area->table[work_area->used++] = (end);
2124 return -1;
2127 eqv_table = XCHAR_TABLE (translate)->extras[2];
2129 for (; start <= end; start++)
2131 enum case_type this_type;
2132 int eqv = RE_TRANSLATE (eqv_table, start);
2133 int minchar, maxchar;
2135 /* Classify this character */
2136 if (eqv == start)
2137 this_type = one_case;
2138 else if (RE_TRANSLATE (eqv_table, eqv) == start)
2139 this_type = two_case;
2140 else
2141 this_type = strange;
2143 if (start < eqv)
2144 minchar = start, maxchar = eqv;
2145 else
2146 minchar = eqv, maxchar = start;
2148 /* Can this character extend the run in progress? */
2149 if (this_type == strange || this_type != run_type
2150 || !(minchar == run_end + 1
2151 && (run_type == two_case
2152 ? maxchar == run_eqv_end + 1 : 1)))
2154 /* No, end the run.
2155 Record each of its equivalent ranges. */
2156 if (run_type == one_case)
2158 EXTEND_RANGE_TABLE (work_area, 2);
2159 work_area->table[work_area->used++] = run_start;
2160 work_area->table[work_area->used++] = run_end;
2162 else if (run_type == two_case)
2164 EXTEND_RANGE_TABLE (work_area, 4);
2165 work_area->table[work_area->used++] = run_start;
2166 work_area->table[work_area->used++] = run_end;
2167 work_area->table[work_area->used++]
2168 = RE_TRANSLATE (eqv_table, run_start);
2169 work_area->table[work_area->used++]
2170 = RE_TRANSLATE (eqv_table, run_end);
2172 run_type = strange;
2175 if (this_type == strange)
2177 /* For a strange character, add each of its equivalents, one
2178 by one. Don't start a range. */
2181 EXTEND_RANGE_TABLE (work_area, 2);
2182 work_area->table[work_area->used++] = eqv;
2183 work_area->table[work_area->used++] = eqv;
2184 eqv = RE_TRANSLATE (eqv_table, eqv);
2186 while (eqv != start);
2189 /* Add this char to the run, or start a new run. */
2190 else if (run_type == strange)
2192 /* Initialize a new range. */
2193 run_type = this_type;
2194 run_start = start;
2195 run_end = start;
2196 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2198 else
2200 /* Extend a running range. */
2201 run_end = minchar;
2202 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2206 /* If a run is still in progress at the end, finish it now
2207 by recording its equivalent ranges. */
2208 if (run_type == one_case)
2210 EXTEND_RANGE_TABLE (work_area, 2);
2211 work_area->table[work_area->used++] = run_start;
2212 work_area->table[work_area->used++] = run_end;
2214 else if (run_type == two_case)
2216 EXTEND_RANGE_TABLE (work_area, 4);
2217 work_area->table[work_area->used++] = run_start;
2218 work_area->table[work_area->used++] = run_end;
2219 work_area->table[work_area->used++]
2220 = RE_TRANSLATE (eqv_table, run_start);
2221 work_area->table[work_area->used++]
2222 = RE_TRANSLATE (eqv_table, run_end);
2225 return -1;
2228 #endif /* emacs */
2230 /* Record the the image of the range start..end when passed through
2231 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2232 and is not even necessarily contiguous.
2233 Normally we approximate it with the smallest contiguous range that contains
2234 all the chars we need. However, for Latin-1 we go to extra effort
2235 to do a better job.
2237 This function is not called for ASCII ranges.
2239 Returns -1 if successful, REG_ESPACE if ran out of space. */
2241 static int
2242 set_image_of_range (work_area, start, end, translate)
2243 RE_TRANSLATE_TYPE translate;
2244 struct range_table_work_area *work_area;
2245 re_wchar_t start, end;
2247 re_wchar_t cmin, cmax;
2249 #ifdef emacs
2250 /* For Latin-1 ranges, use set_image_of_range_1
2251 to get proper handling of ranges that include letters and nonletters.
2252 For a range that includes the whole of Latin-1, this is not necessary.
2253 For other character sets, we don't bother to get this right. */
2254 if (RE_TRANSLATE_P (translate) && start < 04400
2255 && !(start < 04200 && end >= 04377))
2257 int newend;
2258 int tem;
2259 newend = end;
2260 if (newend > 04377)
2261 newend = 04377;
2262 tem = set_image_of_range_1 (work_area, start, newend, translate);
2263 if (tem > 0)
2264 return tem;
2266 start = 04400;
2267 if (end < 04400)
2268 return -1;
2270 #endif
2272 EXTEND_RANGE_TABLE (work_area, 2);
2273 work_area->table[work_area->used++] = (start);
2274 work_area->table[work_area->used++] = (end);
2276 cmin = -1, cmax = -1;
2278 if (RE_TRANSLATE_P (translate))
2280 int ch;
2282 for (ch = start; ch <= end; ch++)
2284 re_wchar_t c = TRANSLATE (ch);
2285 if (! (start <= c && c <= end))
2287 if (cmin == -1)
2288 cmin = c, cmax = c;
2289 else
2291 cmin = MIN (cmin, c);
2292 cmax = MAX (cmax, c);
2297 if (cmin != -1)
2299 EXTEND_RANGE_TABLE (work_area, 2);
2300 work_area->table[work_area->used++] = (cmin);
2301 work_area->table[work_area->used++] = (cmax);
2305 return -1;
2308 #ifndef MATCH_MAY_ALLOCATE
2310 /* If we cannot allocate large objects within re_match_2_internal,
2311 we make the fail stack and register vectors global.
2312 The fail stack, we grow to the maximum size when a regexp
2313 is compiled.
2314 The register vectors, we adjust in size each time we
2315 compile a regexp, according to the number of registers it needs. */
2317 static fail_stack_type fail_stack;
2319 /* Size with which the following vectors are currently allocated.
2320 That is so we can make them bigger as needed,
2321 but never make them smaller. */
2322 static int regs_allocated_size;
2324 static re_char ** regstart, ** regend;
2325 static re_char **best_regstart, **best_regend;
2327 /* Make the register vectors big enough for NUM_REGS registers,
2328 but don't make them smaller. */
2330 static
2331 regex_grow_registers (num_regs)
2332 int num_regs;
2334 if (num_regs > regs_allocated_size)
2336 RETALLOC_IF (regstart, num_regs, re_char *);
2337 RETALLOC_IF (regend, num_regs, re_char *);
2338 RETALLOC_IF (best_regstart, num_regs, re_char *);
2339 RETALLOC_IF (best_regend, num_regs, re_char *);
2341 regs_allocated_size = num_regs;
2345 #endif /* not MATCH_MAY_ALLOCATE */
2347 static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
2348 compile_stack,
2349 regnum_t regnum));
2351 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2352 Returns one of error codes defined in `regex.h', or zero for success.
2354 Assumes the `allocated' (and perhaps `buffer') and `translate'
2355 fields are set in BUFP on entry.
2357 If it succeeds, results are put in BUFP (if it returns an error, the
2358 contents of BUFP are undefined):
2359 `buffer' is the compiled pattern;
2360 `syntax' is set to SYNTAX;
2361 `used' is set to the length of the compiled pattern;
2362 `fastmap_accurate' is zero;
2363 `re_nsub' is the number of subexpressions in PATTERN;
2364 `not_bol' and `not_eol' are zero;
2366 The `fastmap' field is neither examined nor set. */
2368 /* Insert the `jump' from the end of last alternative to "here".
2369 The space for the jump has already been allocated. */
2370 #define FIXUP_ALT_JUMP() \
2371 do { \
2372 if (fixup_alt_jump) \
2373 STORE_JUMP (jump, fixup_alt_jump, b); \
2374 } while (0)
2377 /* Return, freeing storage we allocated. */
2378 #define FREE_STACK_RETURN(value) \
2379 do { \
2380 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2381 free (compile_stack.stack); \
2382 return value; \
2383 } while (0)
2385 static reg_errcode_t
2386 regex_compile (pattern, size, syntax, bufp)
2387 re_char *pattern;
2388 size_t size;
2389 reg_syntax_t syntax;
2390 struct re_pattern_buffer *bufp;
2392 /* We fetch characters from PATTERN here. */
2393 register re_wchar_t c, c1;
2395 /* A random temporary spot in PATTERN. */
2396 re_char *p1;
2398 /* Points to the end of the buffer, where we should append. */
2399 register unsigned char *b;
2401 /* Keeps track of unclosed groups. */
2402 compile_stack_type compile_stack;
2404 /* Points to the current (ending) position in the pattern. */
2405 #ifdef AIX
2406 /* `const' makes AIX compiler fail. */
2407 unsigned char *p = pattern;
2408 #else
2409 re_char *p = pattern;
2410 #endif
2411 re_char *pend = pattern + size;
2413 /* How to translate the characters in the pattern. */
2414 RE_TRANSLATE_TYPE translate = bufp->translate;
2416 /* Address of the count-byte of the most recently inserted `exactn'
2417 command. This makes it possible to tell if a new exact-match
2418 character can be added to that command or if the character requires
2419 a new `exactn' command. */
2420 unsigned char *pending_exact = 0;
2422 /* Address of start of the most recently finished expression.
2423 This tells, e.g., postfix * where to find the start of its
2424 operand. Reset at the beginning of groups and alternatives. */
2425 unsigned char *laststart = 0;
2427 /* Address of beginning of regexp, or inside of last group. */
2428 unsigned char *begalt;
2430 /* Place in the uncompiled pattern (i.e., the {) to
2431 which to go back if the interval is invalid. */
2432 re_char *beg_interval;
2434 /* Address of the place where a forward jump should go to the end of
2435 the containing expression. Each alternative of an `or' -- except the
2436 last -- ends with a forward jump of this sort. */
2437 unsigned char *fixup_alt_jump = 0;
2439 /* Counts open-groups as they are encountered. Remembered for the
2440 matching close-group on the compile stack, so the same register
2441 number is put in the stop_memory as the start_memory. */
2442 regnum_t regnum = 0;
2444 /* Work area for range table of charset. */
2445 struct range_table_work_area range_table_work;
2447 /* If the object matched can contain multibyte characters. */
2448 const boolean multibyte = RE_MULTIBYTE_P (bufp);
2450 /* Nonzero if we have pushed down into a subpattern. */
2451 int in_subpattern = 0;
2453 /* These hold the values of p, pattern, and pend from the main
2454 pattern when we have pushed into a subpattern. */
2455 re_char *main_p;
2456 re_char *main_pattern;
2457 re_char *main_pend;
2459 #ifdef DEBUG
2460 debug++;
2461 DEBUG_PRINT1 ("\nCompiling pattern: ");
2462 if (debug > 0)
2464 unsigned debug_count;
2466 for (debug_count = 0; debug_count < size; debug_count++)
2467 putchar (pattern[debug_count]);
2468 putchar ('\n');
2470 #endif /* DEBUG */
2472 /* Initialize the compile stack. */
2473 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2474 if (compile_stack.stack == NULL)
2475 return REG_ESPACE;
2477 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2478 compile_stack.avail = 0;
2480 range_table_work.table = 0;
2481 range_table_work.allocated = 0;
2483 /* Initialize the pattern buffer. */
2484 bufp->syntax = syntax;
2485 bufp->fastmap_accurate = 0;
2486 bufp->not_bol = bufp->not_eol = 0;
2488 /* Set `used' to zero, so that if we return an error, the pattern
2489 printer (for debugging) will think there's no pattern. We reset it
2490 at the end. */
2491 bufp->used = 0;
2493 /* Always count groups, whether or not bufp->no_sub is set. */
2494 bufp->re_nsub = 0;
2496 #if !defined emacs && !defined SYNTAX_TABLE
2497 /* Initialize the syntax table. */
2498 init_syntax_once ();
2499 #endif
2501 if (bufp->allocated == 0)
2503 if (bufp->buffer)
2504 { /* If zero allocated, but buffer is non-null, try to realloc
2505 enough space. This loses if buffer's address is bogus, but
2506 that is the user's responsibility. */
2507 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
2509 else
2510 { /* Caller did not allocate a buffer. Do it for them. */
2511 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
2513 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
2515 bufp->allocated = INIT_BUF_SIZE;
2518 begalt = b = bufp->buffer;
2520 /* Loop through the uncompiled pattern until we're at the end. */
2521 while (1)
2523 if (p == pend)
2525 /* If this is the end of an included regexp,
2526 pop back to the main regexp and try again. */
2527 if (in_subpattern)
2529 in_subpattern = 0;
2530 pattern = main_pattern;
2531 p = main_p;
2532 pend = main_pend;
2533 continue;
2535 /* If this is the end of the main regexp, we are done. */
2536 break;
2539 PATFETCH (c);
2541 switch (c)
2543 case ' ':
2545 re_char *p1 = p;
2547 /* If there's no special whitespace regexp, treat
2548 spaces normally. */
2549 if (!whitespace_regexp)
2550 goto normal_char;
2552 /* Peek past following spaces. */
2553 while (p1 != pend)
2555 if (*p1 != ' ')
2556 break;
2557 p1++;
2559 /* If the spaces are followed by a repetition op,
2560 treat them normally. */
2561 if (p1 == pend
2562 || (*p1 == '*' || *p1 == '+' || *p1 == '?'
2563 || (*p1 == '\\' && p1 + 1 != pend && p1[1] == '{')))
2564 goto normal_char;
2566 /* Replace the spaces with the whitespace regexp. */
2567 in_subpattern = 1;
2568 main_p = p1;
2569 main_pend = pend;
2570 main_pattern = pattern;
2571 p = pattern = whitespace_regexp;
2572 pend = p + strlen (p);
2573 break;
2576 case '^':
2578 if ( /* If at start of pattern, it's an operator. */
2579 p == pattern + 1
2580 /* If context independent, it's an operator. */
2581 || syntax & RE_CONTEXT_INDEP_ANCHORS
2582 /* Otherwise, depends on what's come before. */
2583 || at_begline_loc_p (pattern, p, syntax))
2584 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? begbuf : begline);
2585 else
2586 goto normal_char;
2588 break;
2591 case '$':
2593 if ( /* If at end of pattern, it's an operator. */
2594 p == pend
2595 /* If context independent, it's an operator. */
2596 || syntax & RE_CONTEXT_INDEP_ANCHORS
2597 /* Otherwise, depends on what's next. */
2598 || at_endline_loc_p (p, pend, syntax))
2599 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? endbuf : endline);
2600 else
2601 goto normal_char;
2603 break;
2606 case '+':
2607 case '?':
2608 if ((syntax & RE_BK_PLUS_QM)
2609 || (syntax & RE_LIMITED_OPS))
2610 goto normal_char;
2611 handle_plus:
2612 case '*':
2613 /* If there is no previous pattern... */
2614 if (!laststart)
2616 if (syntax & RE_CONTEXT_INVALID_OPS)
2617 FREE_STACK_RETURN (REG_BADRPT);
2618 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2619 goto normal_char;
2623 /* 1 means zero (many) matches is allowed. */
2624 boolean zero_times_ok = 0, many_times_ok = 0;
2625 boolean greedy = 1;
2627 /* If there is a sequence of repetition chars, collapse it
2628 down to just one (the right one). We can't combine
2629 interval operators with these because of, e.g., `a{2}*',
2630 which should only match an even number of `a's. */
2632 for (;;)
2634 if ((syntax & RE_FRUGAL)
2635 && c == '?' && (zero_times_ok || many_times_ok))
2636 greedy = 0;
2637 else
2639 zero_times_ok |= c != '+';
2640 many_times_ok |= c != '?';
2643 if (p == pend)
2644 break;
2645 else if (*p == '*'
2646 || (!(syntax & RE_BK_PLUS_QM)
2647 && (*p == '+' || *p == '?')))
2649 else if (syntax & RE_BK_PLUS_QM && *p == '\\')
2651 if (p+1 == pend)
2652 FREE_STACK_RETURN (REG_EESCAPE);
2653 if (p[1] == '+' || p[1] == '?')
2654 PATFETCH (c); /* Gobble up the backslash. */
2655 else
2656 break;
2658 else
2659 break;
2660 /* If we get here, we found another repeat character. */
2661 PATFETCH (c);
2664 /* Star, etc. applied to an empty pattern is equivalent
2665 to an empty pattern. */
2666 if (!laststart || laststart == b)
2667 break;
2669 /* Now we know whether or not zero matches is allowed
2670 and also whether or not two or more matches is allowed. */
2671 if (greedy)
2673 if (many_times_ok)
2675 boolean simple = skip_one_char (laststart) == b;
2676 unsigned int startoffset = 0;
2677 re_opcode_t ofj =
2678 /* Check if the loop can match the empty string. */
2679 (simple || !analyse_first (laststart, b, NULL, 0))
2680 ? on_failure_jump : on_failure_jump_loop;
2681 assert (skip_one_char (laststart) <= b);
2683 if (!zero_times_ok && simple)
2684 { /* Since simple * loops can be made faster by using
2685 on_failure_keep_string_jump, we turn simple P+
2686 into PP* if P is simple. */
2687 unsigned char *p1, *p2;
2688 startoffset = b - laststart;
2689 GET_BUFFER_SPACE (startoffset);
2690 p1 = b; p2 = laststart;
2691 while (p2 < p1)
2692 *b++ = *p2++;
2693 zero_times_ok = 1;
2696 GET_BUFFER_SPACE (6);
2697 if (!zero_times_ok)
2698 /* A + loop. */
2699 STORE_JUMP (ofj, b, b + 6);
2700 else
2701 /* Simple * loops can use on_failure_keep_string_jump
2702 depending on what follows. But since we don't know
2703 that yet, we leave the decision up to
2704 on_failure_jump_smart. */
2705 INSERT_JUMP (simple ? on_failure_jump_smart : ofj,
2706 laststart + startoffset, b + 6);
2707 b += 3;
2708 STORE_JUMP (jump, b, laststart + startoffset);
2709 b += 3;
2711 else
2713 /* A simple ? pattern. */
2714 assert (zero_times_ok);
2715 GET_BUFFER_SPACE (3);
2716 INSERT_JUMP (on_failure_jump, laststart, b + 3);
2717 b += 3;
2720 else /* not greedy */
2721 { /* I wish the greedy and non-greedy cases could be merged. */
2723 GET_BUFFER_SPACE (7); /* We might use less. */
2724 if (many_times_ok)
2726 boolean emptyp = analyse_first (laststart, b, NULL, 0);
2728 /* The non-greedy multiple match looks like
2729 a repeat..until: we only need a conditional jump
2730 at the end of the loop. */
2731 if (emptyp) BUF_PUSH (no_op);
2732 STORE_JUMP (emptyp ? on_failure_jump_nastyloop
2733 : on_failure_jump, b, laststart);
2734 b += 3;
2735 if (zero_times_ok)
2737 /* The repeat...until naturally matches one or more.
2738 To also match zero times, we need to first jump to
2739 the end of the loop (its conditional jump). */
2740 INSERT_JUMP (jump, laststart, b);
2741 b += 3;
2744 else
2746 /* non-greedy a?? */
2747 INSERT_JUMP (jump, laststart, b + 3);
2748 b += 3;
2749 INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
2750 b += 3;
2754 pending_exact = 0;
2755 break;
2758 case '.':
2759 laststart = b;
2760 BUF_PUSH (anychar);
2761 break;
2764 case '[':
2766 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
2768 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2770 /* Ensure that we have enough space to push a charset: the
2771 opcode, the length count, and the bitset; 34 bytes in all. */
2772 GET_BUFFER_SPACE (34);
2774 laststart = b;
2776 /* We test `*p == '^' twice, instead of using an if
2777 statement, so we only need one BUF_PUSH. */
2778 BUF_PUSH (*p == '^' ? charset_not : charset);
2779 if (*p == '^')
2780 p++;
2782 /* Remember the first position in the bracket expression. */
2783 p1 = p;
2785 /* Push the number of bytes in the bitmap. */
2786 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2788 /* Clear the whole map. */
2789 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
2791 /* charset_not matches newline according to a syntax bit. */
2792 if ((re_opcode_t) b[-2] == charset_not
2793 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2794 SET_LIST_BIT ('\n');
2796 /* Read in characters and ranges, setting map bits. */
2797 for (;;)
2799 boolean escaped_char = false;
2800 const unsigned char *p2 = p;
2802 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2804 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2805 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2806 So the translation is done later in a loop. Example:
2807 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
2808 PATFETCH (c);
2810 /* \ might escape characters inside [...] and [^...]. */
2811 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2813 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2815 PATFETCH (c);
2816 escaped_char = true;
2818 else
2820 /* Could be the end of the bracket expression. If it's
2821 not (i.e., when the bracket expression is `[]' so
2822 far), the ']' character bit gets set way below. */
2823 if (c == ']' && p2 != p1)
2824 break;
2827 /* What should we do for the character which is
2828 greater than 0x7F, but not BASE_LEADING_CODE_P?
2829 XXX */
2831 /* See if we're at the beginning of a possible character
2832 class. */
2834 if (!escaped_char &&
2835 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2837 /* Leave room for the null. */
2838 unsigned char str[CHAR_CLASS_MAX_LENGTH + 1];
2839 const unsigned char *class_beg;
2841 PATFETCH (c);
2842 c1 = 0;
2843 class_beg = p;
2845 /* If pattern is `[[:'. */
2846 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2848 for (;;)
2850 PATFETCH (c);
2851 if ((c == ':' && *p == ']') || p == pend)
2852 break;
2853 if (c1 < CHAR_CLASS_MAX_LENGTH)
2854 str[c1++] = c;
2855 else
2856 /* This is in any case an invalid class name. */
2857 str[0] = '\0';
2859 str[c1] = '\0';
2861 /* If isn't a word bracketed by `[:' and `:]':
2862 undo the ending character, the letters, and
2863 leave the leading `:' and `[' (but set bits for
2864 them). */
2865 if (c == ':' && *p == ']')
2867 re_wchar_t ch;
2868 re_wctype_t cc;
2870 cc = re_wctype (str);
2872 if (cc == 0)
2873 FREE_STACK_RETURN (REG_ECTYPE);
2875 /* Throw away the ] at the end of the character
2876 class. */
2877 PATFETCH (c);
2879 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2881 /* Most character classes in a multibyte match
2882 just set a flag. Exceptions are is_blank,
2883 is_digit, is_cntrl, and is_xdigit, since
2884 they can only match ASCII characters. We
2885 don't need to handle them for multibyte.
2886 They are distinguished by a negative wctype. */
2888 if (multibyte)
2889 SET_RANGE_TABLE_WORK_AREA_BIT (range_table_work,
2890 re_wctype_to_bit (cc));
2892 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
2894 int translated = TRANSLATE (ch);
2895 if (re_iswctype (btowc (ch), cc))
2896 SET_LIST_BIT (translated);
2899 /* Repeat the loop. */
2900 continue;
2902 else
2904 /* Go back to right after the "[:". */
2905 p = class_beg;
2906 SET_LIST_BIT ('[');
2908 /* Because the `:' may starts the range, we
2909 can't simply set bit and repeat the loop.
2910 Instead, just set it to C and handle below. */
2911 c = ':';
2915 if (p < pend && p[0] == '-' && p[1] != ']')
2918 /* Discard the `-'. */
2919 PATFETCH (c1);
2921 /* Fetch the character which ends the range. */
2922 PATFETCH (c1);
2924 if (SINGLE_BYTE_CHAR_P (c))
2926 if (! SINGLE_BYTE_CHAR_P (c1))
2928 /* Handle a range starting with a
2929 character of less than 256, and ending
2930 with a character of not less than 256.
2931 Split that into two ranges, the low one
2932 ending at 0377, and the high one
2933 starting at the smallest character in
2934 the charset of C1 and ending at C1. */
2935 int charset = CHAR_CHARSET (c1);
2936 re_wchar_t c2 = MAKE_CHAR (charset, 0, 0);
2938 SET_RANGE_TABLE_WORK_AREA (range_table_work,
2939 c2, c1);
2940 c1 = 0377;
2943 else if (!SAME_CHARSET_P (c, c1))
2944 FREE_STACK_RETURN (REG_ERANGEX);
2946 else
2947 /* Range from C to C. */
2948 c1 = c;
2950 /* Set the range ... */
2951 if (SINGLE_BYTE_CHAR_P (c))
2952 /* ... into bitmap. */
2954 re_wchar_t this_char;
2955 re_wchar_t range_start = c, range_end = c1;
2957 /* If the start is after the end, the range is empty. */
2958 if (range_start > range_end)
2960 if (syntax & RE_NO_EMPTY_RANGES)
2961 FREE_STACK_RETURN (REG_ERANGE);
2962 /* Else, repeat the loop. */
2964 else
2966 for (this_char = range_start; this_char <= range_end;
2967 this_char++)
2968 SET_LIST_BIT (TRANSLATE (this_char));
2971 else
2972 /* ... into range table. */
2973 SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
2976 /* Discard any (non)matching list bytes that are all 0 at the
2977 end of the map. Decrease the map-length byte too. */
2978 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2979 b[-1]--;
2980 b += b[-1];
2982 /* Build real range table from work area. */
2983 if (RANGE_TABLE_WORK_USED (range_table_work)
2984 || RANGE_TABLE_WORK_BITS (range_table_work))
2986 int i;
2987 int used = RANGE_TABLE_WORK_USED (range_table_work);
2989 /* Allocate space for COUNT + RANGE_TABLE. Needs two
2990 bytes for flags, two for COUNT, and three bytes for
2991 each character. */
2992 GET_BUFFER_SPACE (4 + used * 3);
2994 /* Indicate the existence of range table. */
2995 laststart[1] |= 0x80;
2997 /* Store the character class flag bits into the range table.
2998 If not in emacs, these flag bits are always 0. */
2999 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) & 0xff;
3000 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) >> 8;
3002 STORE_NUMBER_AND_INCR (b, used / 2);
3003 for (i = 0; i < used; i++)
3004 STORE_CHARACTER_AND_INCR
3005 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
3008 break;
3011 case '(':
3012 if (syntax & RE_NO_BK_PARENS)
3013 goto handle_open;
3014 else
3015 goto normal_char;
3018 case ')':
3019 if (syntax & RE_NO_BK_PARENS)
3020 goto handle_close;
3021 else
3022 goto normal_char;
3025 case '\n':
3026 if (syntax & RE_NEWLINE_ALT)
3027 goto handle_alt;
3028 else
3029 goto normal_char;
3032 case '|':
3033 if (syntax & RE_NO_BK_VBAR)
3034 goto handle_alt;
3035 else
3036 goto normal_char;
3039 case '{':
3040 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3041 goto handle_interval;
3042 else
3043 goto normal_char;
3046 case '\\':
3047 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3049 /* Do not translate the character after the \, so that we can
3050 distinguish, e.g., \B from \b, even if we normally would
3051 translate, e.g., B to b. */
3052 PATFETCH (c);
3054 switch (c)
3056 case '(':
3057 if (syntax & RE_NO_BK_PARENS)
3058 goto normal_backslash;
3060 handle_open:
3062 int shy = 0;
3063 if (p+1 < pend)
3065 /* Look for a special (?...) construct */
3066 if ((syntax & RE_SHY_GROUPS) && *p == '?')
3068 PATFETCH (c); /* Gobble up the '?'. */
3069 PATFETCH (c);
3070 switch (c)
3072 case ':': shy = 1; break;
3073 default:
3074 /* Only (?:...) is supported right now. */
3075 FREE_STACK_RETURN (REG_BADPAT);
3080 if (!shy)
3082 bufp->re_nsub++;
3083 regnum++;
3086 if (COMPILE_STACK_FULL)
3088 RETALLOC (compile_stack.stack, compile_stack.size << 1,
3089 compile_stack_elt_t);
3090 if (compile_stack.stack == NULL) return REG_ESPACE;
3092 compile_stack.size <<= 1;
3095 /* These are the values to restore when we hit end of this
3096 group. They are all relative offsets, so that if the
3097 whole pattern moves because of realloc, they will still
3098 be valid. */
3099 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
3100 COMPILE_STACK_TOP.fixup_alt_jump
3101 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
3102 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
3103 COMPILE_STACK_TOP.regnum = shy ? -regnum : regnum;
3105 /* Do not push a
3106 start_memory for groups beyond the last one we can
3107 represent in the compiled pattern. */
3108 if (regnum <= MAX_REGNUM && !shy)
3109 BUF_PUSH_2 (start_memory, regnum);
3111 compile_stack.avail++;
3113 fixup_alt_jump = 0;
3114 laststart = 0;
3115 begalt = b;
3116 /* If we've reached MAX_REGNUM groups, then this open
3117 won't actually generate any code, so we'll have to
3118 clear pending_exact explicitly. */
3119 pending_exact = 0;
3120 break;
3123 case ')':
3124 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3126 if (COMPILE_STACK_EMPTY)
3128 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3129 goto normal_backslash;
3130 else
3131 FREE_STACK_RETURN (REG_ERPAREN);
3134 handle_close:
3135 FIXUP_ALT_JUMP ();
3137 /* See similar code for backslashed left paren above. */
3138 if (COMPILE_STACK_EMPTY)
3140 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3141 goto normal_char;
3142 else
3143 FREE_STACK_RETURN (REG_ERPAREN);
3146 /* Since we just checked for an empty stack above, this
3147 ``can't happen''. */
3148 assert (compile_stack.avail != 0);
3150 /* We don't just want to restore into `regnum', because
3151 later groups should continue to be numbered higher,
3152 as in `(ab)c(de)' -- the second group is #2. */
3153 regnum_t this_group_regnum;
3155 compile_stack.avail--;
3156 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
3157 fixup_alt_jump
3158 = COMPILE_STACK_TOP.fixup_alt_jump
3159 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
3160 : 0;
3161 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
3162 this_group_regnum = COMPILE_STACK_TOP.regnum;
3163 /* If we've reached MAX_REGNUM groups, then this open
3164 won't actually generate any code, so we'll have to
3165 clear pending_exact explicitly. */
3166 pending_exact = 0;
3168 /* We're at the end of the group, so now we know how many
3169 groups were inside this one. */
3170 if (this_group_regnum <= MAX_REGNUM && this_group_regnum > 0)
3171 BUF_PUSH_2 (stop_memory, this_group_regnum);
3173 break;
3176 case '|': /* `\|'. */
3177 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3178 goto normal_backslash;
3179 handle_alt:
3180 if (syntax & RE_LIMITED_OPS)
3181 goto normal_char;
3183 /* Insert before the previous alternative a jump which
3184 jumps to this alternative if the former fails. */
3185 GET_BUFFER_SPACE (3);
3186 INSERT_JUMP (on_failure_jump, begalt, b + 6);
3187 pending_exact = 0;
3188 b += 3;
3190 /* The alternative before this one has a jump after it
3191 which gets executed if it gets matched. Adjust that
3192 jump so it will jump to this alternative's analogous
3193 jump (put in below, which in turn will jump to the next
3194 (if any) alternative's such jump, etc.). The last such
3195 jump jumps to the correct final destination. A picture:
3196 _____ _____
3197 | | | |
3198 | v | v
3199 a | b | c
3201 If we are at `b', then fixup_alt_jump right now points to a
3202 three-byte space after `a'. We'll put in the jump, set
3203 fixup_alt_jump to right after `b', and leave behind three
3204 bytes which we'll fill in when we get to after `c'. */
3206 FIXUP_ALT_JUMP ();
3208 /* Mark and leave space for a jump after this alternative,
3209 to be filled in later either by next alternative or
3210 when know we're at the end of a series of alternatives. */
3211 fixup_alt_jump = b;
3212 GET_BUFFER_SPACE (3);
3213 b += 3;
3215 laststart = 0;
3216 begalt = b;
3217 break;
3220 case '{':
3221 /* If \{ is a literal. */
3222 if (!(syntax & RE_INTERVALS)
3223 /* If we're at `\{' and it's not the open-interval
3224 operator. */
3225 || (syntax & RE_NO_BK_BRACES))
3226 goto normal_backslash;
3228 handle_interval:
3230 /* If got here, then the syntax allows intervals. */
3232 /* At least (most) this many matches must be made. */
3233 int lower_bound = 0, upper_bound = -1;
3235 beg_interval = p;
3237 if (p == pend)
3238 FREE_STACK_RETURN (REG_EBRACE);
3240 GET_UNSIGNED_NUMBER (lower_bound);
3242 if (c == ',')
3243 GET_UNSIGNED_NUMBER (upper_bound);
3244 else
3245 /* Interval such as `{1}' => match exactly once. */
3246 upper_bound = lower_bound;
3248 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
3249 || (upper_bound >= 0 && lower_bound > upper_bound))
3250 FREE_STACK_RETURN (REG_BADBR);
3252 if (!(syntax & RE_NO_BK_BRACES))
3254 if (c != '\\')
3255 FREE_STACK_RETURN (REG_BADBR);
3257 PATFETCH (c);
3260 if (c != '}')
3261 FREE_STACK_RETURN (REG_BADBR);
3263 /* We just parsed a valid interval. */
3265 /* If it's invalid to have no preceding re. */
3266 if (!laststart)
3268 if (syntax & RE_CONTEXT_INVALID_OPS)
3269 FREE_STACK_RETURN (REG_BADRPT);
3270 else if (syntax & RE_CONTEXT_INDEP_OPS)
3271 laststart = b;
3272 else
3273 goto unfetch_interval;
3276 if (upper_bound == 0)
3277 /* If the upper bound is zero, just drop the sub pattern
3278 altogether. */
3279 b = laststart;
3280 else if (lower_bound == 1 && upper_bound == 1)
3281 /* Just match it once: nothing to do here. */
3284 /* Otherwise, we have a nontrivial interval. When
3285 we're all done, the pattern will look like:
3286 set_number_at <jump count> <upper bound>
3287 set_number_at <succeed_n count> <lower bound>
3288 succeed_n <after jump addr> <succeed_n count>
3289 <body of loop>
3290 jump_n <succeed_n addr> <jump count>
3291 (The upper bound and `jump_n' are omitted if
3292 `upper_bound' is 1, though.) */
3293 else
3294 { /* If the upper bound is > 1, we need to insert
3295 more at the end of the loop. */
3296 unsigned int nbytes = (upper_bound < 0 ? 3
3297 : upper_bound > 1 ? 5 : 0);
3298 unsigned int startoffset = 0;
3300 GET_BUFFER_SPACE (20); /* We might use less. */
3302 if (lower_bound == 0)
3304 /* A succeed_n that starts with 0 is really a
3305 a simple on_failure_jump_loop. */
3306 INSERT_JUMP (on_failure_jump_loop, laststart,
3307 b + 3 + nbytes);
3308 b += 3;
3310 else
3312 /* Initialize lower bound of the `succeed_n', even
3313 though it will be set during matching by its
3314 attendant `set_number_at' (inserted next),
3315 because `re_compile_fastmap' needs to know.
3316 Jump to the `jump_n' we might insert below. */
3317 INSERT_JUMP2 (succeed_n, laststart,
3318 b + 5 + nbytes,
3319 lower_bound);
3320 b += 5;
3322 /* Code to initialize the lower bound. Insert
3323 before the `succeed_n'. The `5' is the last two
3324 bytes of this `set_number_at', plus 3 bytes of
3325 the following `succeed_n'. */
3326 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
3327 b += 5;
3328 startoffset += 5;
3331 if (upper_bound < 0)
3333 /* A negative upper bound stands for infinity,
3334 in which case it degenerates to a plain jump. */
3335 STORE_JUMP (jump, b, laststart + startoffset);
3336 b += 3;
3338 else if (upper_bound > 1)
3339 { /* More than one repetition is allowed, so
3340 append a backward jump to the `succeed_n'
3341 that starts this interval.
3343 When we've reached this during matching,
3344 we'll have matched the interval once, so
3345 jump back only `upper_bound - 1' times. */
3346 STORE_JUMP2 (jump_n, b, laststart + startoffset,
3347 upper_bound - 1);
3348 b += 5;
3350 /* The location we want to set is the second
3351 parameter of the `jump_n'; that is `b-2' as
3352 an absolute address. `laststart' will be
3353 the `set_number_at' we're about to insert;
3354 `laststart+3' the number to set, the source
3355 for the relative address. But we are
3356 inserting into the middle of the pattern --
3357 so everything is getting moved up by 5.
3358 Conclusion: (b - 2) - (laststart + 3) + 5,
3359 i.e., b - laststart.
3361 We insert this at the beginning of the loop
3362 so that if we fail during matching, we'll
3363 reinitialize the bounds. */
3364 insert_op2 (set_number_at, laststart, b - laststart,
3365 upper_bound - 1, b);
3366 b += 5;
3369 pending_exact = 0;
3370 beg_interval = NULL;
3372 break;
3374 unfetch_interval:
3375 /* If an invalid interval, match the characters as literals. */
3376 assert (beg_interval);
3377 p = beg_interval;
3378 beg_interval = NULL;
3380 /* normal_char and normal_backslash need `c'. */
3381 c = '{';
3383 if (!(syntax & RE_NO_BK_BRACES))
3385 assert (p > pattern && p[-1] == '\\');
3386 goto normal_backslash;
3388 else
3389 goto normal_char;
3391 #ifdef emacs
3392 /* There is no way to specify the before_dot and after_dot
3393 operators. rms says this is ok. --karl */
3394 case '=':
3395 BUF_PUSH (at_dot);
3396 break;
3398 case 's':
3399 laststart = b;
3400 PATFETCH (c);
3401 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3402 break;
3404 case 'S':
3405 laststart = b;
3406 PATFETCH (c);
3407 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
3408 break;
3410 case 'c':
3411 laststart = b;
3412 PATFETCH (c);
3413 BUF_PUSH_2 (categoryspec, c);
3414 break;
3416 case 'C':
3417 laststart = b;
3418 PATFETCH (c);
3419 BUF_PUSH_2 (notcategoryspec, c);
3420 break;
3421 #endif /* emacs */
3424 case 'w':
3425 if (syntax & RE_NO_GNU_OPS)
3426 goto normal_char;
3427 laststart = b;
3428 BUF_PUSH_2 (syntaxspec, Sword);
3429 break;
3432 case 'W':
3433 if (syntax & RE_NO_GNU_OPS)
3434 goto normal_char;
3435 laststart = b;
3436 BUF_PUSH_2 (notsyntaxspec, Sword);
3437 break;
3440 case '<':
3441 if (syntax & RE_NO_GNU_OPS)
3442 goto normal_char;
3443 BUF_PUSH (wordbeg);
3444 break;
3446 case '>':
3447 if (syntax & RE_NO_GNU_OPS)
3448 goto normal_char;
3449 BUF_PUSH (wordend);
3450 break;
3452 case '_':
3453 if (syntax & RE_NO_GNU_OPS)
3454 goto normal_char;
3455 laststart = b;
3456 PATFETCH (c);
3457 if (c == '<')
3458 BUF_PUSH (symbeg);
3459 else if (c == '>')
3460 BUF_PUSH (symend);
3461 else
3462 FREE_STACK_RETURN (REG_BADPAT);
3463 break;
3465 case 'b':
3466 if (syntax & RE_NO_GNU_OPS)
3467 goto normal_char;
3468 BUF_PUSH (wordbound);
3469 break;
3471 case 'B':
3472 if (syntax & RE_NO_GNU_OPS)
3473 goto normal_char;
3474 BUF_PUSH (notwordbound);
3475 break;
3477 case '`':
3478 if (syntax & RE_NO_GNU_OPS)
3479 goto normal_char;
3480 BUF_PUSH (begbuf);
3481 break;
3483 case '\'':
3484 if (syntax & RE_NO_GNU_OPS)
3485 goto normal_char;
3486 BUF_PUSH (endbuf);
3487 break;
3489 case '1': case '2': case '3': case '4': case '5':
3490 case '6': case '7': case '8': case '9':
3492 regnum_t reg;
3494 if (syntax & RE_NO_BK_REFS)
3495 goto normal_backslash;
3497 reg = c - '0';
3499 /* Can't back reference to a subexpression before its end. */
3500 if (reg > regnum || group_in_compile_stack (compile_stack, reg))
3501 FREE_STACK_RETURN (REG_ESUBREG);
3503 laststart = b;
3504 BUF_PUSH_2 (duplicate, reg);
3506 break;
3509 case '+':
3510 case '?':
3511 if (syntax & RE_BK_PLUS_QM)
3512 goto handle_plus;
3513 else
3514 goto normal_backslash;
3516 default:
3517 normal_backslash:
3518 /* You might think it would be useful for \ to mean
3519 not to translate; but if we don't translate it
3520 it will never match anything. */
3521 goto normal_char;
3523 break;
3526 default:
3527 /* Expects the character in `c'. */
3528 normal_char:
3529 /* If no exactn currently being built. */
3530 if (!pending_exact
3532 /* If last exactn not at current position. */
3533 || pending_exact + *pending_exact + 1 != b
3535 /* We have only one byte following the exactn for the count. */
3536 || *pending_exact >= (1 << BYTEWIDTH) - MAX_MULTIBYTE_LENGTH
3538 /* If followed by a repetition operator. */
3539 || (p != pend && (*p == '*' || *p == '^'))
3540 || ((syntax & RE_BK_PLUS_QM)
3541 ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
3542 : p != pend && (*p == '+' || *p == '?'))
3543 || ((syntax & RE_INTERVALS)
3544 && ((syntax & RE_NO_BK_BRACES)
3545 ? p != pend && *p == '{'
3546 : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
3548 /* Start building a new exactn. */
3550 laststart = b;
3552 BUF_PUSH_2 (exactn, 0);
3553 pending_exact = b - 1;
3556 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH);
3558 int len;
3560 c = TRANSLATE (c);
3561 if (multibyte)
3562 len = CHAR_STRING (c, b);
3563 else
3564 *b = c, len = 1;
3565 b += len;
3566 (*pending_exact) += len;
3569 break;
3570 } /* switch (c) */
3571 } /* while p != pend */
3574 /* Through the pattern now. */
3576 FIXUP_ALT_JUMP ();
3578 if (!COMPILE_STACK_EMPTY)
3579 FREE_STACK_RETURN (REG_EPAREN);
3581 /* If we don't want backtracking, force success
3582 the first time we reach the end of the compiled pattern. */
3583 if (syntax & RE_NO_POSIX_BACKTRACKING)
3584 BUF_PUSH (succeed);
3586 /* We have succeeded; set the length of the buffer. */
3587 bufp->used = b - bufp->buffer;
3589 #ifdef DEBUG
3590 if (debug > 0)
3592 re_compile_fastmap (bufp);
3593 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3594 print_compiled_pattern (bufp);
3596 debug--;
3597 #endif /* DEBUG */
3599 #ifndef MATCH_MAY_ALLOCATE
3600 /* Initialize the failure stack to the largest possible stack. This
3601 isn't necessary unless we're trying to avoid calling alloca in
3602 the search and match routines. */
3604 int num_regs = bufp->re_nsub + 1;
3606 if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
3608 fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;
3610 if (! fail_stack.stack)
3611 fail_stack.stack
3612 = (fail_stack_elt_t *) malloc (fail_stack.size
3613 * sizeof (fail_stack_elt_t));
3614 else
3615 fail_stack.stack
3616 = (fail_stack_elt_t *) realloc (fail_stack.stack,
3617 (fail_stack.size
3618 * sizeof (fail_stack_elt_t)));
3621 regex_grow_registers (num_regs);
3623 #endif /* not MATCH_MAY_ALLOCATE */
3625 FREE_STACK_RETURN (REG_NOERROR);
3626 } /* regex_compile */
3628 /* Subroutines for `regex_compile'. */
3630 /* Store OP at LOC followed by two-byte integer parameter ARG. */
3632 static void
3633 store_op1 (op, loc, arg)
3634 re_opcode_t op;
3635 unsigned char *loc;
3636 int arg;
3638 *loc = (unsigned char) op;
3639 STORE_NUMBER (loc + 1, arg);
3643 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3645 static void
3646 store_op2 (op, loc, arg1, arg2)
3647 re_opcode_t op;
3648 unsigned char *loc;
3649 int arg1, arg2;
3651 *loc = (unsigned char) op;
3652 STORE_NUMBER (loc + 1, arg1);
3653 STORE_NUMBER (loc + 3, arg2);
3657 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
3658 for OP followed by two-byte integer parameter ARG. */
3660 static void
3661 insert_op1 (op, loc, arg, end)
3662 re_opcode_t op;
3663 unsigned char *loc;
3664 int arg;
3665 unsigned char *end;
3667 register unsigned char *pfrom = end;
3668 register unsigned char *pto = end + 3;
3670 while (pfrom != loc)
3671 *--pto = *--pfrom;
3673 store_op1 (op, loc, arg);
3677 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3679 static void
3680 insert_op2 (op, loc, arg1, arg2, end)
3681 re_opcode_t op;
3682 unsigned char *loc;
3683 int arg1, arg2;
3684 unsigned char *end;
3686 register unsigned char *pfrom = end;
3687 register unsigned char *pto = end + 5;
3689 while (pfrom != loc)
3690 *--pto = *--pfrom;
3692 store_op2 (op, loc, arg1, arg2);
3696 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
3697 after an alternative or a begin-subexpression. We assume there is at
3698 least one character before the ^. */
3700 static boolean
3701 at_begline_loc_p (pattern, p, syntax)
3702 re_char *pattern, *p;
3703 reg_syntax_t syntax;
3705 re_char *prev = p - 2;
3706 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
3708 return
3709 /* After a subexpression? */
3710 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
3711 /* After an alternative? */
3712 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash))
3713 /* After a shy subexpression? */
3714 || ((syntax & RE_SHY_GROUPS) && prev - 2 >= pattern
3715 && prev[-1] == '?' && prev[-2] == '('
3716 && (syntax & RE_NO_BK_PARENS
3717 || (prev - 3 >= pattern && prev[-3] == '\\')));
3721 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3722 at least one character after the $, i.e., `P < PEND'. */
3724 static boolean
3725 at_endline_loc_p (p, pend, syntax)
3726 re_char *p, *pend;
3727 reg_syntax_t syntax;
3729 re_char *next = p;
3730 boolean next_backslash = *next == '\\';
3731 re_char *next_next = p + 1 < pend ? p + 1 : 0;
3733 return
3734 /* Before a subexpression? */
3735 (syntax & RE_NO_BK_PARENS ? *next == ')'
3736 : next_backslash && next_next && *next_next == ')')
3737 /* Before an alternative? */
3738 || (syntax & RE_NO_BK_VBAR ? *next == '|'
3739 : next_backslash && next_next && *next_next == '|');
3743 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3744 false if it's not. */
3746 static boolean
3747 group_in_compile_stack (compile_stack, regnum)
3748 compile_stack_type compile_stack;
3749 regnum_t regnum;
3751 int this_element;
3753 for (this_element = compile_stack.avail - 1;
3754 this_element >= 0;
3755 this_element--)
3756 if (compile_stack.stack[this_element].regnum == regnum)
3757 return true;
3759 return false;
3762 /* analyse_first.
3763 If fastmap is non-NULL, go through the pattern and fill fastmap
3764 with all the possible leading chars. If fastmap is NULL, don't
3765 bother filling it up (obviously) and only return whether the
3766 pattern could potentially match the empty string.
3768 Return 1 if p..pend might match the empty string.
3769 Return 0 if p..pend matches at least one char.
3770 Return -1 if fastmap was not updated accurately. */
3772 static int
3773 analyse_first (p, pend, fastmap, multibyte)
3774 re_char *p, *pend;
3775 char *fastmap;
3776 const int multibyte;
3778 int j, k;
3779 boolean not;
3781 /* If all elements for base leading-codes in fastmap is set, this
3782 flag is set true. */
3783 boolean match_any_multibyte_characters = false;
3785 assert (p);
3787 /* The loop below works as follows:
3788 - It has a working-list kept in the PATTERN_STACK and which basically
3789 starts by only containing a pointer to the first operation.
3790 - If the opcode we're looking at is a match against some set of
3791 chars, then we add those chars to the fastmap and go on to the
3792 next work element from the worklist (done via `break').
3793 - If the opcode is a control operator on the other hand, we either
3794 ignore it (if it's meaningless at this point, such as `start_memory')
3795 or execute it (if it's a jump). If the jump has several destinations
3796 (i.e. `on_failure_jump'), then we push the other destination onto the
3797 worklist.
3798 We guarantee termination by ignoring backward jumps (more or less),
3799 so that `p' is monotonically increasing. More to the point, we
3800 never set `p' (or push) anything `<= p1'. */
3802 while (p < pend)
3804 /* `p1' is used as a marker of how far back a `on_failure_jump'
3805 can go without being ignored. It is normally equal to `p'
3806 (which prevents any backward `on_failure_jump') except right
3807 after a plain `jump', to allow patterns such as:
3808 0: jump 10
3809 3..9: <body>
3810 10: on_failure_jump 3
3811 as used for the *? operator. */
3812 re_char *p1 = p;
3814 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3816 case succeed:
3817 return 1;
3818 continue;
3820 case duplicate:
3821 /* If the first character has to match a backreference, that means
3822 that the group was empty (since it already matched). Since this
3823 is the only case that interests us here, we can assume that the
3824 backreference must match the empty string. */
3825 p++;
3826 continue;
3829 /* Following are the cases which match a character. These end
3830 with `break'. */
3832 case exactn:
3833 if (fastmap)
3835 int c = RE_STRING_CHAR (p + 1, pend - p);
3837 if (SINGLE_BYTE_CHAR_P (c))
3838 fastmap[c] = 1;
3839 else
3840 fastmap[p[1]] = 1;
3842 break;
3845 case anychar:
3846 /* We could put all the chars except for \n (and maybe \0)
3847 but we don't bother since it is generally not worth it. */
3848 if (!fastmap) break;
3849 return -1;
3852 case charset_not:
3853 /* Chars beyond end of bitmap are possible matches.
3854 All the single-byte codes can occur in multibyte buffers.
3855 So any that are not listed in the charset
3856 are possible matches, even in multibyte buffers. */
3857 if (!fastmap) break;
3858 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
3859 j < (1 << BYTEWIDTH); j++)
3860 fastmap[j] = 1;
3861 /* Fallthrough */
3862 case charset:
3863 if (!fastmap) break;
3864 not = (re_opcode_t) *(p - 1) == charset_not;
3865 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3866 j >= 0; j--)
3867 if (!!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) ^ not)
3868 fastmap[j] = 1;
3870 if ((not && multibyte)
3871 /* Any character set can possibly contain a character
3872 which doesn't match the specified set of characters. */
3873 || (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3874 && CHARSET_RANGE_TABLE_BITS (&p[-2]) != 0))
3875 /* If we can match a character class, we can match
3876 any character set. */
3878 set_fastmap_for_multibyte_characters:
3879 if (match_any_multibyte_characters == false)
3881 for (j = 0x80; j < 0xA0; j++) /* XXX */
3882 if (BASE_LEADING_CODE_P (j))
3883 fastmap[j] = 1;
3884 match_any_multibyte_characters = true;
3888 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3889 && match_any_multibyte_characters == false)
3891 /* Set fastmap[I] 1 where I is a base leading code of each
3892 multibyte character in the range table. */
3893 int c, count;
3895 /* Make P points the range table. `+ 2' is to skip flag
3896 bits for a character class. */
3897 p += CHARSET_BITMAP_SIZE (&p[-2]) + 2;
3899 /* Extract the number of ranges in range table into COUNT. */
3900 EXTRACT_NUMBER_AND_INCR (count, p);
3901 for (; count > 0; count--, p += 2 * 3) /* XXX */
3903 /* Extract the start of each range. */
3904 EXTRACT_CHARACTER (c, p);
3905 j = CHAR_CHARSET (c);
3906 fastmap[CHARSET_LEADING_CODE_BASE (j)] = 1;
3909 break;
3911 case syntaxspec:
3912 case notsyntaxspec:
3913 if (!fastmap) break;
3914 #ifndef emacs
3915 not = (re_opcode_t)p[-1] == notsyntaxspec;
3916 k = *p++;
3917 for (j = 0; j < (1 << BYTEWIDTH); j++)
3918 if ((SYNTAX (j) == (enum syntaxcode) k) ^ not)
3919 fastmap[j] = 1;
3920 break;
3921 #else /* emacs */
3922 /* This match depends on text properties. These end with
3923 aborting optimizations. */
3924 return -1;
3926 case categoryspec:
3927 case notcategoryspec:
3928 if (!fastmap) break;
3929 not = (re_opcode_t)p[-1] == notcategoryspec;
3930 k = *p++;
3931 for (j = 0; j < (1 << BYTEWIDTH); j++)
3932 if ((CHAR_HAS_CATEGORY (j, k)) ^ not)
3933 fastmap[j] = 1;
3935 if (multibyte)
3936 /* Any character set can possibly contain a character
3937 whose category is K (or not). */
3938 goto set_fastmap_for_multibyte_characters;
3939 break;
3941 /* All cases after this match the empty string. These end with
3942 `continue'. */
3944 case before_dot:
3945 case at_dot:
3946 case after_dot:
3947 #endif /* !emacs */
3948 case no_op:
3949 case begline:
3950 case endline:
3951 case begbuf:
3952 case endbuf:
3953 case wordbound:
3954 case notwordbound:
3955 case wordbeg:
3956 case wordend:
3957 case symbeg:
3958 case symend:
3959 continue;
3962 case jump:
3963 EXTRACT_NUMBER_AND_INCR (j, p);
3964 if (j < 0)
3965 /* Backward jumps can only go back to code that we've already
3966 visited. `re_compile' should make sure this is true. */
3967 break;
3968 p += j;
3969 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
3971 case on_failure_jump:
3972 case on_failure_keep_string_jump:
3973 case on_failure_jump_loop:
3974 case on_failure_jump_nastyloop:
3975 case on_failure_jump_smart:
3976 p++;
3977 break;
3978 default:
3979 continue;
3981 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
3982 to jump back to "just after here". */
3983 /* Fallthrough */
3985 case on_failure_jump:
3986 case on_failure_keep_string_jump:
3987 case on_failure_jump_nastyloop:
3988 case on_failure_jump_loop:
3989 case on_failure_jump_smart:
3990 EXTRACT_NUMBER_AND_INCR (j, p);
3991 if (p + j <= p1)
3992 ; /* Backward jump to be ignored. */
3993 else
3994 { /* We have to look down both arms.
3995 We first go down the "straight" path so as to minimize
3996 stack usage when going through alternatives. */
3997 int r = analyse_first (p, pend, fastmap, multibyte);
3998 if (r) return r;
3999 p += j;
4001 continue;
4004 case jump_n:
4005 /* This code simply does not properly handle forward jump_n. */
4006 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p); assert (j < 0));
4007 p += 4;
4008 /* jump_n can either jump or fall through. The (backward) jump
4009 case has already been handled, so we only need to look at the
4010 fallthrough case. */
4011 continue;
4013 case succeed_n:
4014 /* If N == 0, it should be an on_failure_jump_loop instead. */
4015 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p + 2); assert (j > 0));
4016 p += 4;
4017 /* We only care about one iteration of the loop, so we don't
4018 need to consider the case where this behaves like an
4019 on_failure_jump. */
4020 continue;
4023 case set_number_at:
4024 p += 4;
4025 continue;
4028 case start_memory:
4029 case stop_memory:
4030 p += 1;
4031 continue;
4034 default:
4035 abort (); /* We have listed all the cases. */
4036 } /* switch *p++ */
4038 /* Getting here means we have found the possible starting
4039 characters for one path of the pattern -- and that the empty
4040 string does not match. We need not follow this path further. */
4041 return 0;
4042 } /* while p */
4044 /* We reached the end without matching anything. */
4045 return 1;
4047 } /* analyse_first */
4049 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4050 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4051 characters can start a string that matches the pattern. This fastmap
4052 is used by re_search to skip quickly over impossible starting points.
4054 Character codes above (1 << BYTEWIDTH) are not represented in the
4055 fastmap, but the leading codes are represented. Thus, the fastmap
4056 indicates which character sets could start a match.
4058 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4059 area as BUFP->fastmap.
4061 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4062 the pattern buffer.
4064 Returns 0 if we succeed, -2 if an internal error. */
4067 re_compile_fastmap (bufp)
4068 struct re_pattern_buffer *bufp;
4070 char *fastmap = bufp->fastmap;
4071 int analysis;
4073 assert (fastmap && bufp->buffer);
4075 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
4076 bufp->fastmap_accurate = 1; /* It will be when we're done. */
4078 analysis = analyse_first (bufp->buffer, bufp->buffer + bufp->used,
4079 fastmap, RE_MULTIBYTE_P (bufp));
4080 bufp->can_be_null = (analysis != 0);
4081 return 0;
4082 } /* re_compile_fastmap */
4084 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4085 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4086 this memory for recording register information. STARTS and ENDS
4087 must be allocated using the malloc library routine, and must each
4088 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4090 If NUM_REGS == 0, then subsequent matches should allocate their own
4091 register data.
4093 Unless this function is called, the first search or match using
4094 PATTERN_BUFFER will allocate its own register data, without
4095 freeing the old data. */
4097 void
4098 re_set_registers (bufp, regs, num_regs, starts, ends)
4099 struct re_pattern_buffer *bufp;
4100 struct re_registers *regs;
4101 unsigned num_regs;
4102 regoff_t *starts, *ends;
4104 if (num_regs)
4106 bufp->regs_allocated = REGS_REALLOCATE;
4107 regs->num_regs = num_regs;
4108 regs->start = starts;
4109 regs->end = ends;
4111 else
4113 bufp->regs_allocated = REGS_UNALLOCATED;
4114 regs->num_regs = 0;
4115 regs->start = regs->end = (regoff_t *) 0;
4118 WEAK_ALIAS (__re_set_registers, re_set_registers)
4120 /* Searching routines. */
4122 /* Like re_search_2, below, but only one string is specified, and
4123 doesn't let you say where to stop matching. */
4126 re_search (bufp, string, size, startpos, range, regs)
4127 struct re_pattern_buffer *bufp;
4128 const char *string;
4129 int size, startpos, range;
4130 struct re_registers *regs;
4132 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
4133 regs, size);
4135 WEAK_ALIAS (__re_search, re_search)
4137 /* Head address of virtual concatenation of string. */
4138 #define HEAD_ADDR_VSTRING(P) \
4139 (((P) >= size1 ? string2 : string1))
4141 /* End address of virtual concatenation of string. */
4142 #define STOP_ADDR_VSTRING(P) \
4143 (((P) >= size1 ? string2 + size2 : string1 + size1))
4145 /* Address of POS in the concatenation of virtual string. */
4146 #define POS_ADDR_VSTRING(POS) \
4147 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
4149 /* Using the compiled pattern in BUFP->buffer, first tries to match the
4150 virtual concatenation of STRING1 and STRING2, starting first at index
4151 STARTPOS, then at STARTPOS + 1, and so on.
4153 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4155 RANGE is how far to scan while trying to match. RANGE = 0 means try
4156 only at STARTPOS; in general, the last start tried is STARTPOS +
4157 RANGE.
4159 In REGS, return the indices of the virtual concatenation of STRING1
4160 and STRING2 that matched the entire BUFP->buffer and its contained
4161 subexpressions.
4163 Do not consider matching one past the index STOP in the virtual
4164 concatenation of STRING1 and STRING2.
4166 We return either the position in the strings at which the match was
4167 found, -1 if no match, or -2 if error (such as failure
4168 stack overflow). */
4171 re_search_2 (bufp, str1, size1, str2, size2, startpos, range, regs, stop)
4172 struct re_pattern_buffer *bufp;
4173 const char *str1, *str2;
4174 int size1, size2;
4175 int startpos;
4176 int range;
4177 struct re_registers *regs;
4178 int stop;
4180 int val;
4181 re_char *string1 = (re_char*) str1;
4182 re_char *string2 = (re_char*) str2;
4183 register char *fastmap = bufp->fastmap;
4184 register RE_TRANSLATE_TYPE translate = bufp->translate;
4185 int total_size = size1 + size2;
4186 int endpos = startpos + range;
4187 boolean anchored_start;
4189 /* Nonzero if we have to concern multibyte character. */
4190 const boolean multibyte = RE_MULTIBYTE_P (bufp);
4192 /* Check for out-of-range STARTPOS. */
4193 if (startpos < 0 || startpos > total_size)
4194 return -1;
4196 /* Fix up RANGE if it might eventually take us outside
4197 the virtual concatenation of STRING1 and STRING2.
4198 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
4199 if (endpos < 0)
4200 range = 0 - startpos;
4201 else if (endpos > total_size)
4202 range = total_size - startpos;
4204 /* If the search isn't to be a backwards one, don't waste time in a
4205 search for a pattern anchored at beginning of buffer. */
4206 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
4208 if (startpos > 0)
4209 return -1;
4210 else
4211 range = 0;
4214 #ifdef emacs
4215 /* In a forward search for something that starts with \=.
4216 don't keep searching past point. */
4217 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
4219 range = PT_BYTE - BEGV_BYTE - startpos;
4220 if (range < 0)
4221 return -1;
4223 #endif /* emacs */
4225 /* Update the fastmap now if not correct already. */
4226 if (fastmap && !bufp->fastmap_accurate)
4227 re_compile_fastmap (bufp);
4229 /* See whether the pattern is anchored. */
4230 anchored_start = (bufp->buffer[0] == begline);
4232 #ifdef emacs
4233 gl_state.object = re_match_object;
4235 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos));
4237 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4239 #endif
4241 /* Loop through the string, looking for a place to start matching. */
4242 for (;;)
4244 /* If the pattern is anchored,
4245 skip quickly past places we cannot match.
4246 We don't bother to treat startpos == 0 specially
4247 because that case doesn't repeat. */
4248 if (anchored_start && startpos > 0)
4250 if (! ((startpos <= size1 ? string1[startpos - 1]
4251 : string2[startpos - size1 - 1])
4252 == '\n'))
4253 goto advance;
4256 /* If a fastmap is supplied, skip quickly over characters that
4257 cannot be the start of a match. If the pattern can match the
4258 null string, however, we don't need to skip characters; we want
4259 the first null string. */
4260 if (fastmap && startpos < total_size && !bufp->can_be_null)
4262 register re_char *d;
4263 register re_wchar_t buf_ch;
4265 d = POS_ADDR_VSTRING (startpos);
4267 if (range > 0) /* Searching forwards. */
4269 register int lim = 0;
4270 int irange = range;
4272 if (startpos < size1 && startpos + range >= size1)
4273 lim = range - (size1 - startpos);
4275 /* Written out as an if-else to avoid testing `translate'
4276 inside the loop. */
4277 if (RE_TRANSLATE_P (translate))
4279 if (multibyte)
4280 while (range > lim)
4282 int buf_charlen;
4284 buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim,
4285 buf_charlen);
4287 buf_ch = RE_TRANSLATE (translate, buf_ch);
4288 if (buf_ch >= 0400
4289 || fastmap[buf_ch])
4290 break;
4292 range -= buf_charlen;
4293 d += buf_charlen;
4295 else
4296 while (range > lim
4297 && !fastmap[RE_TRANSLATE (translate, *d)])
4299 d++;
4300 range--;
4303 else
4304 while (range > lim && !fastmap[*d])
4306 d++;
4307 range--;
4310 startpos += irange - range;
4312 else /* Searching backwards. */
4314 int room = (startpos >= size1
4315 ? size2 + size1 - startpos
4316 : size1 - startpos);
4317 buf_ch = RE_STRING_CHAR (d, room);
4318 buf_ch = TRANSLATE (buf_ch);
4320 if (! (buf_ch >= 0400
4321 || fastmap[buf_ch]))
4322 goto advance;
4326 /* If can't match the null string, and that's all we have left, fail. */
4327 if (range >= 0 && startpos == total_size && fastmap
4328 && !bufp->can_be_null)
4329 return -1;
4331 val = re_match_2_internal (bufp, string1, size1, string2, size2,
4332 startpos, regs, stop);
4333 #ifndef REGEX_MALLOC
4334 # ifdef C_ALLOCA
4335 alloca (0);
4336 # endif
4337 #endif
4339 if (val >= 0)
4340 return startpos;
4342 if (val == -2)
4343 return -2;
4345 advance:
4346 if (!range)
4347 break;
4348 else if (range > 0)
4350 /* Update STARTPOS to the next character boundary. */
4351 if (multibyte)
4353 re_char *p = POS_ADDR_VSTRING (startpos);
4354 re_char *pend = STOP_ADDR_VSTRING (startpos);
4355 int len = MULTIBYTE_FORM_LENGTH (p, pend - p);
4357 range -= len;
4358 if (range < 0)
4359 break;
4360 startpos += len;
4362 else
4364 range--;
4365 startpos++;
4368 else
4370 range++;
4371 startpos--;
4373 /* Update STARTPOS to the previous character boundary. */
4374 if (multibyte)
4376 re_char *p = POS_ADDR_VSTRING (startpos) + 1;
4377 re_char *p0 = p;
4378 re_char *phead = HEAD_ADDR_VSTRING (startpos);
4380 /* Find the head of multibyte form. */
4381 PREV_CHAR_BOUNDARY (p, phead);
4382 range += p0 - 1 - p;
4383 if (range > 0)
4384 break;
4386 startpos -= p0 - 1 - p;
4390 return -1;
4391 } /* re_search_2 */
4392 WEAK_ALIAS (__re_search_2, re_search_2)
4394 /* Declarations and macros for re_match_2. */
4396 static int bcmp_translate _RE_ARGS((re_char *s1, re_char *s2,
4397 register int len,
4398 RE_TRANSLATE_TYPE translate,
4399 const int multibyte));
4401 /* This converts PTR, a pointer into one of the search strings `string1'
4402 and `string2' into an offset from the beginning of that string. */
4403 #define POINTER_TO_OFFSET(ptr) \
4404 (FIRST_STRING_P (ptr) \
4405 ? ((regoff_t) ((ptr) - string1)) \
4406 : ((regoff_t) ((ptr) - string2 + size1)))
4408 /* Call before fetching a character with *d. This switches over to
4409 string2 if necessary.
4410 Check re_match_2_internal for a discussion of why end_match_2 might
4411 not be within string2 (but be equal to end_match_1 instead). */
4412 #define PREFETCH() \
4413 while (d == dend) \
4415 /* End of string2 => fail. */ \
4416 if (dend == end_match_2) \
4417 goto fail; \
4418 /* End of string1 => advance to string2. */ \
4419 d = string2; \
4420 dend = end_match_2; \
4423 /* Call before fetching a char with *d if you already checked other limits.
4424 This is meant for use in lookahead operations like wordend, etc..
4425 where we might need to look at parts of the string that might be
4426 outside of the LIMITs (i.e past `stop'). */
4427 #define PREFETCH_NOLIMIT() \
4428 if (d == end1) \
4430 d = string2; \
4431 dend = end_match_2; \
4434 /* Test if at very beginning or at very end of the virtual concatenation
4435 of `string1' and `string2'. If only one string, it's `string2'. */
4436 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
4437 #define AT_STRINGS_END(d) ((d) == end2)
4440 /* Test if D points to a character which is word-constituent. We have
4441 two special cases to check for: if past the end of string1, look at
4442 the first character in string2; and if before the beginning of
4443 string2, look at the last character in string1. */
4444 #define WORDCHAR_P(d) \
4445 (SYNTAX ((d) == end1 ? *string2 \
4446 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
4447 == Sword)
4449 /* Disabled due to a compiler bug -- see comment at case wordbound */
4451 /* The comment at case wordbound is following one, but we don't use
4452 AT_WORD_BOUNDARY anymore to support multibyte form.
4454 The DEC Alpha C compiler 3.x generates incorrect code for the
4455 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4456 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4457 macro and introducing temporary variables works around the bug. */
4459 #if 0
4460 /* Test if the character before D and the one at D differ with respect
4461 to being word-constituent. */
4462 #define AT_WORD_BOUNDARY(d) \
4463 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4464 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
4465 #endif
4467 /* Free everything we malloc. */
4468 #ifdef MATCH_MAY_ALLOCATE
4469 # define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
4470 # define FREE_VARIABLES() \
4471 do { \
4472 REGEX_FREE_STACK (fail_stack.stack); \
4473 FREE_VAR (regstart); \
4474 FREE_VAR (regend); \
4475 FREE_VAR (best_regstart); \
4476 FREE_VAR (best_regend); \
4477 } while (0)
4478 #else
4479 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
4480 #endif /* not MATCH_MAY_ALLOCATE */
4483 /* Optimization routines. */
4485 /* If the operation is a match against one or more chars,
4486 return a pointer to the next operation, else return NULL. */
4487 static re_char *
4488 skip_one_char (p)
4489 re_char *p;
4491 switch (SWITCH_ENUM_CAST (*p++))
4493 case anychar:
4494 break;
4496 case exactn:
4497 p += *p + 1;
4498 break;
4500 case charset_not:
4501 case charset:
4502 if (CHARSET_RANGE_TABLE_EXISTS_P (p - 1))
4504 int mcnt;
4505 p = CHARSET_RANGE_TABLE (p - 1);
4506 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4507 p = CHARSET_RANGE_TABLE_END (p, mcnt);
4509 else
4510 p += 1 + CHARSET_BITMAP_SIZE (p - 1);
4511 break;
4513 case syntaxspec:
4514 case notsyntaxspec:
4515 #ifdef emacs
4516 case categoryspec:
4517 case notcategoryspec:
4518 #endif /* emacs */
4519 p++;
4520 break;
4522 default:
4523 p = NULL;
4525 return p;
4529 /* Jump over non-matching operations. */
4530 static re_char *
4531 skip_noops (p, pend)
4532 re_char *p, *pend;
4534 int mcnt;
4535 while (p < pend)
4537 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4539 case start_memory:
4540 case stop_memory:
4541 p += 2; break;
4542 case no_op:
4543 p += 1; break;
4544 case jump:
4545 p += 1;
4546 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4547 p += mcnt;
4548 break;
4549 default:
4550 return p;
4553 assert (p == pend);
4554 return p;
4557 /* Non-zero if "p1 matches something" implies "p2 fails". */
4558 static int
4559 mutually_exclusive_p (bufp, p1, p2)
4560 struct re_pattern_buffer *bufp;
4561 re_char *p1, *p2;
4563 re_opcode_t op2;
4564 const boolean multibyte = RE_MULTIBYTE_P (bufp);
4565 unsigned char *pend = bufp->buffer + bufp->used;
4567 assert (p1 >= bufp->buffer && p1 < pend
4568 && p2 >= bufp->buffer && p2 <= pend);
4570 /* Skip over open/close-group commands.
4571 If what follows this loop is a ...+ construct,
4572 look at what begins its body, since we will have to
4573 match at least one of that. */
4574 p2 = skip_noops (p2, pend);
4575 /* The same skip can be done for p1, except that this function
4576 is only used in the case where p1 is a simple match operator. */
4577 /* p1 = skip_noops (p1, pend); */
4579 assert (p1 >= bufp->buffer && p1 < pend
4580 && p2 >= bufp->buffer && p2 <= pend);
4582 op2 = p2 == pend ? succeed : *p2;
4584 switch (SWITCH_ENUM_CAST (op2))
4586 case succeed:
4587 case endbuf:
4588 /* If we're at the end of the pattern, we can change. */
4589 if (skip_one_char (p1))
4591 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4592 return 1;
4594 break;
4596 case endline:
4597 case exactn:
4599 register re_wchar_t c
4600 = (re_opcode_t) *p2 == endline ? '\n'
4601 : RE_STRING_CHAR (p2 + 2, pend - p2 - 2);
4603 if ((re_opcode_t) *p1 == exactn)
4605 if (c != RE_STRING_CHAR (p1 + 2, pend - p1 - 2))
4607 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c, p1[2]);
4608 return 1;
4612 else if ((re_opcode_t) *p1 == charset
4613 || (re_opcode_t) *p1 == charset_not)
4615 int not = (re_opcode_t) *p1 == charset_not;
4617 /* Test if C is listed in charset (or charset_not)
4618 at `p1'. */
4619 if (SINGLE_BYTE_CHAR_P (c))
4621 if (c < CHARSET_BITMAP_SIZE (p1) * BYTEWIDTH
4622 && p1[2 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4623 not = !not;
4625 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1))
4626 CHARSET_LOOKUP_RANGE_TABLE (not, c, p1);
4628 /* `not' is equal to 1 if c would match, which means
4629 that we can't change to pop_failure_jump. */
4630 if (!not)
4632 DEBUG_PRINT1 (" No match => fast loop.\n");
4633 return 1;
4636 else if ((re_opcode_t) *p1 == anychar
4637 && c == '\n')
4639 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4640 return 1;
4643 break;
4645 case charset:
4647 if ((re_opcode_t) *p1 == exactn)
4648 /* Reuse the code above. */
4649 return mutually_exclusive_p (bufp, p2, p1);
4651 /* It is hard to list up all the character in charset
4652 P2 if it includes multibyte character. Give up in
4653 such case. */
4654 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
4656 /* Now, we are sure that P2 has no range table.
4657 So, for the size of bitmap in P2, `p2[1]' is
4658 enough. But P1 may have range table, so the
4659 size of bitmap table of P1 is extracted by
4660 using macro `CHARSET_BITMAP_SIZE'.
4662 Since we know that all the character listed in
4663 P2 is ASCII, it is enough to test only bitmap
4664 table of P1. */
4666 if ((re_opcode_t) *p1 == charset)
4668 int idx;
4669 /* We win if the charset inside the loop
4670 has no overlap with the one after the loop. */
4671 for (idx = 0;
4672 (idx < (int) p2[1]
4673 && idx < CHARSET_BITMAP_SIZE (p1));
4674 idx++)
4675 if ((p2[2 + idx] & p1[2 + idx]) != 0)
4676 break;
4678 if (idx == p2[1]
4679 || idx == CHARSET_BITMAP_SIZE (p1))
4681 DEBUG_PRINT1 (" No match => fast loop.\n");
4682 return 1;
4685 else if ((re_opcode_t) *p1 == charset_not)
4687 int idx;
4688 /* We win if the charset_not inside the loop lists
4689 every character listed in the charset after. */
4690 for (idx = 0; idx < (int) p2[1]; idx++)
4691 if (! (p2[2 + idx] == 0
4692 || (idx < CHARSET_BITMAP_SIZE (p1)
4693 && ((p2[2 + idx] & ~ p1[2 + idx]) == 0))))
4694 break;
4696 if (idx == p2[1])
4698 DEBUG_PRINT1 (" No match => fast loop.\n");
4699 return 1;
4704 break;
4706 case charset_not:
4707 switch (SWITCH_ENUM_CAST (*p1))
4709 case exactn:
4710 case charset:
4711 /* Reuse the code above. */
4712 return mutually_exclusive_p (bufp, p2, p1);
4713 case charset_not:
4714 /* When we have two charset_not, it's very unlikely that
4715 they don't overlap. The union of the two sets of excluded
4716 chars should cover all possible chars, which, as a matter of
4717 fact, is virtually impossible in multibyte buffers. */
4718 break;
4720 break;
4722 case wordend:
4723 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == Sword);
4724 case symend:
4725 return ((re_opcode_t) *p1 == syntaxspec
4726 && (p1[1] == Ssymbol || p1[1] == Sword));
4727 case notsyntaxspec:
4728 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == p2[1]);
4730 case wordbeg:
4731 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == Sword);
4732 case symbeg:
4733 return ((re_opcode_t) *p1 == notsyntaxspec
4734 && (p1[1] == Ssymbol || p1[1] == Sword));
4735 case syntaxspec:
4736 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == p2[1]);
4738 case wordbound:
4739 return (((re_opcode_t) *p1 == notsyntaxspec
4740 || (re_opcode_t) *p1 == syntaxspec)
4741 && p1[1] == Sword);
4743 #ifdef emacs
4744 case categoryspec:
4745 return ((re_opcode_t) *p1 == notcategoryspec && p1[1] == p2[1]);
4746 case notcategoryspec:
4747 return ((re_opcode_t) *p1 == categoryspec && p1[1] == p2[1]);
4748 #endif /* emacs */
4750 default:
4754 /* Safe default. */
4755 return 0;
4759 /* Matching routines. */
4761 #ifndef emacs /* Emacs never uses this. */
4762 /* re_match is like re_match_2 except it takes only a single string. */
4765 re_match (bufp, string, size, pos, regs)
4766 struct re_pattern_buffer *bufp;
4767 const char *string;
4768 int size, pos;
4769 struct re_registers *regs;
4771 int result = re_match_2_internal (bufp, NULL, 0, (re_char*) string, size,
4772 pos, regs, size);
4773 # if defined C_ALLOCA && !defined REGEX_MALLOC
4774 alloca (0);
4775 # endif
4776 return result;
4778 WEAK_ALIAS (__re_match, re_match)
4779 #endif /* not emacs */
4781 #ifdef emacs
4782 /* In Emacs, this is the string or buffer in which we
4783 are matching. It is used for looking up syntax properties. */
4784 Lisp_Object re_match_object;
4785 #endif
4787 /* re_match_2 matches the compiled pattern in BUFP against the
4788 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4789 and SIZE2, respectively). We start matching at POS, and stop
4790 matching at STOP.
4792 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
4793 store offsets for the substring each group matched in REGS. See the
4794 documentation for exactly how many groups we fill.
4796 We return -1 if no match, -2 if an internal error (such as the
4797 failure stack overflowing). Otherwise, we return the length of the
4798 matched substring. */
4801 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
4802 struct re_pattern_buffer *bufp;
4803 const char *string1, *string2;
4804 int size1, size2;
4805 int pos;
4806 struct re_registers *regs;
4807 int stop;
4809 int result;
4811 #ifdef emacs
4812 int charpos;
4813 gl_state.object = re_match_object;
4814 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos));
4815 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4816 #endif
4818 result = re_match_2_internal (bufp, (re_char*) string1, size1,
4819 (re_char*) string2, size2,
4820 pos, regs, stop);
4821 #if defined C_ALLOCA && !defined REGEX_MALLOC
4822 alloca (0);
4823 #endif
4824 return result;
4826 WEAK_ALIAS (__re_match_2, re_match_2)
4828 /* This is a separate function so that we can force an alloca cleanup
4829 afterwards. */
4830 static int
4831 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
4832 struct re_pattern_buffer *bufp;
4833 re_char *string1, *string2;
4834 int size1, size2;
4835 int pos;
4836 struct re_registers *regs;
4837 int stop;
4839 /* General temporaries. */
4840 int mcnt;
4841 size_t reg;
4842 boolean not;
4844 /* Just past the end of the corresponding string. */
4845 re_char *end1, *end2;
4847 /* Pointers into string1 and string2, just past the last characters in
4848 each to consider matching. */
4849 re_char *end_match_1, *end_match_2;
4851 /* Where we are in the data, and the end of the current string. */
4852 re_char *d, *dend;
4854 /* Used sometimes to remember where we were before starting matching
4855 an operator so that we can go back in case of failure. This "atomic"
4856 behavior of matching opcodes is indispensable to the correctness
4857 of the on_failure_keep_string_jump optimization. */
4858 re_char *dfail;
4860 /* Where we are in the pattern, and the end of the pattern. */
4861 re_char *p = bufp->buffer;
4862 re_char *pend = p + bufp->used;
4864 /* We use this to map every character in the string. */
4865 RE_TRANSLATE_TYPE translate = bufp->translate;
4867 /* Nonzero if we have to concern multibyte character. */
4868 const boolean multibyte = RE_MULTIBYTE_P (bufp);
4870 /* Failure point stack. Each place that can handle a failure further
4871 down the line pushes a failure point on this stack. It consists of
4872 regstart, and regend for all registers corresponding to
4873 the subexpressions we're currently inside, plus the number of such
4874 registers, and, finally, two char *'s. The first char * is where
4875 to resume scanning the pattern; the second one is where to resume
4876 scanning the strings. */
4877 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
4878 fail_stack_type fail_stack;
4879 #endif
4880 #ifdef DEBUG
4881 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
4882 #endif
4884 #if defined REL_ALLOC && defined REGEX_MALLOC
4885 /* This holds the pointer to the failure stack, when
4886 it is allocated relocatably. */
4887 fail_stack_elt_t *failure_stack_ptr;
4888 #endif
4890 /* We fill all the registers internally, independent of what we
4891 return, for use in backreferences. The number here includes
4892 an element for register zero. */
4893 size_t num_regs = bufp->re_nsub + 1;
4895 /* Information on the contents of registers. These are pointers into
4896 the input strings; they record just what was matched (on this
4897 attempt) by a subexpression part of the pattern, that is, the
4898 regnum-th regstart pointer points to where in the pattern we began
4899 matching and the regnum-th regend points to right after where we
4900 stopped matching the regnum-th subexpression. (The zeroth register
4901 keeps track of what the whole pattern matches.) */
4902 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4903 re_char **regstart, **regend;
4904 #endif
4906 /* The following record the register info as found in the above
4907 variables when we find a match better than any we've seen before.
4908 This happens as we backtrack through the failure points, which in
4909 turn happens only if we have not yet matched the entire string. */
4910 unsigned best_regs_set = false;
4911 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4912 re_char **best_regstart, **best_regend;
4913 #endif
4915 /* Logically, this is `best_regend[0]'. But we don't want to have to
4916 allocate space for that if we're not allocating space for anything
4917 else (see below). Also, we never need info about register 0 for
4918 any of the other register vectors, and it seems rather a kludge to
4919 treat `best_regend' differently than the rest. So we keep track of
4920 the end of the best match so far in a separate variable. We
4921 initialize this to NULL so that when we backtrack the first time
4922 and need to test it, it's not garbage. */
4923 re_char *match_end = NULL;
4925 #ifdef DEBUG
4926 /* Counts the total number of registers pushed. */
4927 unsigned num_regs_pushed = 0;
4928 #endif
4930 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
4932 INIT_FAIL_STACK ();
4934 #ifdef MATCH_MAY_ALLOCATE
4935 /* Do not bother to initialize all the register variables if there are
4936 no groups in the pattern, as it takes a fair amount of time. If
4937 there are groups, we include space for register 0 (the whole
4938 pattern), even though we never use it, since it simplifies the
4939 array indexing. We should fix this. */
4940 if (bufp->re_nsub)
4942 regstart = REGEX_TALLOC (num_regs, re_char *);
4943 regend = REGEX_TALLOC (num_regs, re_char *);
4944 best_regstart = REGEX_TALLOC (num_regs, re_char *);
4945 best_regend = REGEX_TALLOC (num_regs, re_char *);
4947 if (!(regstart && regend && best_regstart && best_regend))
4949 FREE_VARIABLES ();
4950 return -2;
4953 else
4955 /* We must initialize all our variables to NULL, so that
4956 `FREE_VARIABLES' doesn't try to free them. */
4957 regstart = regend = best_regstart = best_regend = NULL;
4959 #endif /* MATCH_MAY_ALLOCATE */
4961 /* The starting position is bogus. */
4962 if (pos < 0 || pos > size1 + size2)
4964 FREE_VARIABLES ();
4965 return -1;
4968 /* Initialize subexpression text positions to -1 to mark ones that no
4969 start_memory/stop_memory has been seen for. Also initialize the
4970 register information struct. */
4971 for (reg = 1; reg < num_regs; reg++)
4972 regstart[reg] = regend[reg] = NULL;
4974 /* We move `string1' into `string2' if the latter's empty -- but not if
4975 `string1' is null. */
4976 if (size2 == 0 && string1 != NULL)
4978 string2 = string1;
4979 size2 = size1;
4980 string1 = 0;
4981 size1 = 0;
4983 end1 = string1 + size1;
4984 end2 = string2 + size2;
4986 /* `p' scans through the pattern as `d' scans through the data.
4987 `dend' is the end of the input string that `d' points within. `d'
4988 is advanced into the following input string whenever necessary, but
4989 this happens before fetching; therefore, at the beginning of the
4990 loop, `d' can be pointing at the end of a string, but it cannot
4991 equal `string2'. */
4992 if (pos >= size1)
4994 /* Only match within string2. */
4995 d = string2 + pos - size1;
4996 dend = end_match_2 = string2 + stop - size1;
4997 end_match_1 = end1; /* Just to give it a value. */
4999 else
5001 if (stop < size1)
5003 /* Only match within string1. */
5004 end_match_1 = string1 + stop;
5005 /* BEWARE!
5006 When we reach end_match_1, PREFETCH normally switches to string2.
5007 But in the present case, this means that just doing a PREFETCH
5008 makes us jump from `stop' to `gap' within the string.
5009 What we really want here is for the search to stop as
5010 soon as we hit end_match_1. That's why we set end_match_2
5011 to end_match_1 (since PREFETCH fails as soon as we hit
5012 end_match_2). */
5013 end_match_2 = end_match_1;
5015 else
5016 { /* It's important to use this code when stop == size so that
5017 moving `d' from end1 to string2 will not prevent the d == dend
5018 check from catching the end of string. */
5019 end_match_1 = end1;
5020 end_match_2 = string2 + stop - size1;
5022 d = string1 + pos;
5023 dend = end_match_1;
5026 DEBUG_PRINT1 ("The compiled pattern is: ");
5027 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
5028 DEBUG_PRINT1 ("The string to match is: `");
5029 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
5030 DEBUG_PRINT1 ("'\n");
5032 /* This loops over pattern commands. It exits by returning from the
5033 function if the match is complete, or it drops through if the match
5034 fails at this starting point in the input data. */
5035 for (;;)
5037 DEBUG_PRINT2 ("\n%p: ", p);
5039 if (p == pend)
5040 { /* End of pattern means we might have succeeded. */
5041 DEBUG_PRINT1 ("end of pattern ... ");
5043 /* If we haven't matched the entire string, and we want the
5044 longest match, try backtracking. */
5045 if (d != end_match_2)
5047 /* 1 if this match ends in the same string (string1 or string2)
5048 as the best previous match. */
5049 boolean same_str_p = (FIRST_STRING_P (match_end)
5050 == FIRST_STRING_P (d));
5051 /* 1 if this match is the best seen so far. */
5052 boolean best_match_p;
5054 /* AIX compiler got confused when this was combined
5055 with the previous declaration. */
5056 if (same_str_p)
5057 best_match_p = d > match_end;
5058 else
5059 best_match_p = !FIRST_STRING_P (d);
5061 DEBUG_PRINT1 ("backtracking.\n");
5063 if (!FAIL_STACK_EMPTY ())
5064 { /* More failure points to try. */
5066 /* If exceeds best match so far, save it. */
5067 if (!best_regs_set || best_match_p)
5069 best_regs_set = true;
5070 match_end = d;
5072 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5074 for (reg = 1; reg < num_regs; reg++)
5076 best_regstart[reg] = regstart[reg];
5077 best_regend[reg] = regend[reg];
5080 goto fail;
5083 /* If no failure points, don't restore garbage. And if
5084 last match is real best match, don't restore second
5085 best one. */
5086 else if (best_regs_set && !best_match_p)
5088 restore_best_regs:
5089 /* Restore best match. It may happen that `dend ==
5090 end_match_1' while the restored d is in string2.
5091 For example, the pattern `x.*y.*z' against the
5092 strings `x-' and `y-z-', if the two strings are
5093 not consecutive in memory. */
5094 DEBUG_PRINT1 ("Restoring best registers.\n");
5096 d = match_end;
5097 dend = ((d >= string1 && d <= end1)
5098 ? end_match_1 : end_match_2);
5100 for (reg = 1; reg < num_regs; reg++)
5102 regstart[reg] = best_regstart[reg];
5103 regend[reg] = best_regend[reg];
5106 } /* d != end_match_2 */
5108 succeed_label:
5109 DEBUG_PRINT1 ("Accepting match.\n");
5111 /* If caller wants register contents data back, do it. */
5112 if (regs && !bufp->no_sub)
5114 /* Have the register data arrays been allocated? */
5115 if (bufp->regs_allocated == REGS_UNALLOCATED)
5116 { /* No. So allocate them with malloc. We need one
5117 extra element beyond `num_regs' for the `-1' marker
5118 GNU code uses. */
5119 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
5120 regs->start = TALLOC (regs->num_regs, regoff_t);
5121 regs->end = TALLOC (regs->num_regs, regoff_t);
5122 if (regs->start == NULL || regs->end == NULL)
5124 FREE_VARIABLES ();
5125 return -2;
5127 bufp->regs_allocated = REGS_REALLOCATE;
5129 else if (bufp->regs_allocated == REGS_REALLOCATE)
5130 { /* Yes. If we need more elements than were already
5131 allocated, reallocate them. If we need fewer, just
5132 leave it alone. */
5133 if (regs->num_regs < num_regs + 1)
5135 regs->num_regs = num_regs + 1;
5136 RETALLOC (regs->start, regs->num_regs, regoff_t);
5137 RETALLOC (regs->end, regs->num_regs, regoff_t);
5138 if (regs->start == NULL || regs->end == NULL)
5140 FREE_VARIABLES ();
5141 return -2;
5145 else
5147 /* These braces fend off a "empty body in an else-statement"
5148 warning under GCC when assert expands to nothing. */
5149 assert (bufp->regs_allocated == REGS_FIXED);
5152 /* Convert the pointer data in `regstart' and `regend' to
5153 indices. Register zero has to be set differently,
5154 since we haven't kept track of any info for it. */
5155 if (regs->num_regs > 0)
5157 regs->start[0] = pos;
5158 regs->end[0] = POINTER_TO_OFFSET (d);
5161 /* Go through the first `min (num_regs, regs->num_regs)'
5162 registers, since that is all we initialized. */
5163 for (reg = 1; reg < MIN (num_regs, regs->num_regs); reg++)
5165 if (REG_UNSET (regstart[reg]) || REG_UNSET (regend[reg]))
5166 regs->start[reg] = regs->end[reg] = -1;
5167 else
5169 regs->start[reg]
5170 = (regoff_t) POINTER_TO_OFFSET (regstart[reg]);
5171 regs->end[reg]
5172 = (regoff_t) POINTER_TO_OFFSET (regend[reg]);
5176 /* If the regs structure we return has more elements than
5177 were in the pattern, set the extra elements to -1. If
5178 we (re)allocated the registers, this is the case,
5179 because we always allocate enough to have at least one
5180 -1 at the end. */
5181 for (reg = num_regs; reg < regs->num_regs; reg++)
5182 regs->start[reg] = regs->end[reg] = -1;
5183 } /* regs && !bufp->no_sub */
5185 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
5186 nfailure_points_pushed, nfailure_points_popped,
5187 nfailure_points_pushed - nfailure_points_popped);
5188 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
5190 mcnt = POINTER_TO_OFFSET (d) - pos;
5192 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
5194 FREE_VARIABLES ();
5195 return mcnt;
5198 /* Otherwise match next pattern command. */
5199 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
5201 /* Ignore these. Used to ignore the n of succeed_n's which
5202 currently have n == 0. */
5203 case no_op:
5204 DEBUG_PRINT1 ("EXECUTING no_op.\n");
5205 break;
5207 case succeed:
5208 DEBUG_PRINT1 ("EXECUTING succeed.\n");
5209 goto succeed_label;
5211 /* Match the next n pattern characters exactly. The following
5212 byte in the pattern defines n, and the n bytes after that
5213 are the characters to match. */
5214 case exactn:
5215 mcnt = *p++;
5216 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
5218 /* Remember the start point to rollback upon failure. */
5219 dfail = d;
5221 /* This is written out as an if-else so we don't waste time
5222 testing `translate' inside the loop. */
5223 if (RE_TRANSLATE_P (translate))
5225 if (multibyte)
5228 int pat_charlen, buf_charlen;
5229 unsigned int pat_ch, buf_ch;
5231 PREFETCH ();
5232 pat_ch = STRING_CHAR_AND_LENGTH (p, pend - p, pat_charlen);
5233 buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
5235 if (RE_TRANSLATE (translate, buf_ch)
5236 != pat_ch)
5238 d = dfail;
5239 goto fail;
5242 p += pat_charlen;
5243 d += buf_charlen;
5244 mcnt -= pat_charlen;
5246 while (mcnt > 0);
5247 else
5250 PREFETCH ();
5251 if (RE_TRANSLATE (translate, *d) != *p++)
5253 d = dfail;
5254 goto fail;
5256 d++;
5258 while (--mcnt);
5260 else
5264 PREFETCH ();
5265 if (*d++ != *p++)
5267 d = dfail;
5268 goto fail;
5271 while (--mcnt);
5273 break;
5276 /* Match any character except possibly a newline or a null. */
5277 case anychar:
5279 int buf_charlen;
5280 re_wchar_t buf_ch;
5282 DEBUG_PRINT1 ("EXECUTING anychar.\n");
5284 PREFETCH ();
5285 buf_ch = RE_STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
5286 buf_ch = TRANSLATE (buf_ch);
5288 if ((!(bufp->syntax & RE_DOT_NEWLINE)
5289 && buf_ch == '\n')
5290 || ((bufp->syntax & RE_DOT_NOT_NULL)
5291 && buf_ch == '\000'))
5292 goto fail;
5294 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
5295 d += buf_charlen;
5297 break;
5300 case charset:
5301 case charset_not:
5303 register unsigned int c;
5304 boolean not = (re_opcode_t) *(p - 1) == charset_not;
5305 int len;
5307 /* Start of actual range_table, or end of bitmap if there is no
5308 range table. */
5309 re_char *range_table;
5311 /* Nonzero if there is a range table. */
5312 int range_table_exists;
5314 /* Number of ranges of range table. This is not included
5315 in the initial byte-length of the command. */
5316 int count = 0;
5318 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
5320 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
5322 if (range_table_exists)
5324 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
5325 EXTRACT_NUMBER_AND_INCR (count, range_table);
5328 PREFETCH ();
5329 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
5330 c = TRANSLATE (c); /* The character to match. */
5332 if (SINGLE_BYTE_CHAR_P (c))
5333 { /* Lookup bitmap. */
5334 /* Cast to `unsigned' instead of `unsigned char' in
5335 case the bit list is a full 32 bytes long. */
5336 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
5337 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
5338 not = !not;
5340 #ifdef emacs
5341 else if (range_table_exists)
5343 int class_bits = CHARSET_RANGE_TABLE_BITS (&p[-1]);
5345 if ( (class_bits & BIT_LOWER && ISLOWER (c))
5346 | (class_bits & BIT_MULTIBYTE)
5347 | (class_bits & BIT_PUNCT && ISPUNCT (c))
5348 | (class_bits & BIT_SPACE && ISSPACE (c))
5349 | (class_bits & BIT_UPPER && ISUPPER (c))
5350 | (class_bits & BIT_WORD && ISWORD (c)))
5351 not = !not;
5352 else
5353 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
5355 #endif /* emacs */
5357 if (range_table_exists)
5358 p = CHARSET_RANGE_TABLE_END (range_table, count);
5359 else
5360 p += CHARSET_BITMAP_SIZE (&p[-1]) + 1;
5362 if (!not) goto fail;
5364 d += len;
5365 break;
5369 /* The beginning of a group is represented by start_memory.
5370 The argument is the register number. The text
5371 matched within the group is recorded (in the internal
5372 registers data structure) under the register number. */
5373 case start_memory:
5374 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p);
5376 /* In case we need to undo this operation (via backtracking). */
5377 PUSH_FAILURE_REG ((unsigned int)*p);
5379 regstart[*p] = d;
5380 regend[*p] = NULL; /* probably unnecessary. -sm */
5381 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
5383 /* Move past the register number and inner group count. */
5384 p += 1;
5385 break;
5388 /* The stop_memory opcode represents the end of a group. Its
5389 argument is the same as start_memory's: the register number. */
5390 case stop_memory:
5391 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p);
5393 assert (!REG_UNSET (regstart[*p]));
5394 /* Strictly speaking, there should be code such as:
5396 assert (REG_UNSET (regend[*p]));
5397 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5399 But the only info to be pushed is regend[*p] and it is known to
5400 be UNSET, so there really isn't anything to push.
5401 Not pushing anything, on the other hand deprives us from the
5402 guarantee that regend[*p] is UNSET since undoing this operation
5403 will not reset its value properly. This is not important since
5404 the value will only be read on the next start_memory or at
5405 the very end and both events can only happen if this stop_memory
5406 is *not* undone. */
5408 regend[*p] = d;
5409 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
5411 /* Move past the register number and the inner group count. */
5412 p += 1;
5413 break;
5416 /* \<digit> has been turned into a `duplicate' command which is
5417 followed by the numeric value of <digit> as the register number. */
5418 case duplicate:
5420 register re_char *d2, *dend2;
5421 int regno = *p++; /* Get which register to match against. */
5422 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
5424 /* Can't back reference a group which we've never matched. */
5425 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
5426 goto fail;
5428 /* Where in input to try to start matching. */
5429 d2 = regstart[regno];
5431 /* Remember the start point to rollback upon failure. */
5432 dfail = d;
5434 /* Where to stop matching; if both the place to start and
5435 the place to stop matching are in the same string, then
5436 set to the place to stop, otherwise, for now have to use
5437 the end of the first string. */
5439 dend2 = ((FIRST_STRING_P (regstart[regno])
5440 == FIRST_STRING_P (regend[regno]))
5441 ? regend[regno] : end_match_1);
5442 for (;;)
5444 /* If necessary, advance to next segment in register
5445 contents. */
5446 while (d2 == dend2)
5448 if (dend2 == end_match_2) break;
5449 if (dend2 == regend[regno]) break;
5451 /* End of string1 => advance to string2. */
5452 d2 = string2;
5453 dend2 = regend[regno];
5455 /* At end of register contents => success */
5456 if (d2 == dend2) break;
5458 /* If necessary, advance to next segment in data. */
5459 PREFETCH ();
5461 /* How many characters left in this segment to match. */
5462 mcnt = dend - d;
5464 /* Want how many consecutive characters we can match in
5465 one shot, so, if necessary, adjust the count. */
5466 if (mcnt > dend2 - d2)
5467 mcnt = dend2 - d2;
5469 /* Compare that many; failure if mismatch, else move
5470 past them. */
5471 if (RE_TRANSLATE_P (translate)
5472 ? bcmp_translate (d, d2, mcnt, translate, multibyte)
5473 : memcmp (d, d2, mcnt))
5475 d = dfail;
5476 goto fail;
5478 d += mcnt, d2 += mcnt;
5481 break;
5484 /* begline matches the empty string at the beginning of the string
5485 (unless `not_bol' is set in `bufp'), and after newlines. */
5486 case begline:
5487 DEBUG_PRINT1 ("EXECUTING begline.\n");
5489 if (AT_STRINGS_BEG (d))
5491 if (!bufp->not_bol) break;
5493 else
5495 unsigned char c;
5496 GET_CHAR_BEFORE_2 (c, d, string1, end1, string2, end2);
5497 if (c == '\n')
5498 break;
5500 /* In all other cases, we fail. */
5501 goto fail;
5504 /* endline is the dual of begline. */
5505 case endline:
5506 DEBUG_PRINT1 ("EXECUTING endline.\n");
5508 if (AT_STRINGS_END (d))
5510 if (!bufp->not_eol) break;
5512 else
5514 PREFETCH_NOLIMIT ();
5515 if (*d == '\n')
5516 break;
5518 goto fail;
5521 /* Match at the very beginning of the data. */
5522 case begbuf:
5523 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5524 if (AT_STRINGS_BEG (d))
5525 break;
5526 goto fail;
5529 /* Match at the very end of the data. */
5530 case endbuf:
5531 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
5532 if (AT_STRINGS_END (d))
5533 break;
5534 goto fail;
5537 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5538 pushes NULL as the value for the string on the stack. Then
5539 `POP_FAILURE_POINT' will keep the current value for the
5540 string, instead of restoring it. To see why, consider
5541 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5542 then the . fails against the \n. But the next thing we want
5543 to do is match the \n against the \n; if we restored the
5544 string value, we would be back at the foo.
5546 Because this is used only in specific cases, we don't need to
5547 check all the things that `on_failure_jump' does, to make
5548 sure the right things get saved on the stack. Hence we don't
5549 share its code. The only reason to push anything on the
5550 stack at all is that otherwise we would have to change
5551 `anychar's code to do something besides goto fail in this
5552 case; that seems worse than this. */
5553 case on_failure_keep_string_jump:
5554 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5555 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5556 mcnt, p + mcnt);
5558 PUSH_FAILURE_POINT (p - 3, NULL);
5559 break;
5561 /* A nasty loop is introduced by the non-greedy *? and +?.
5562 With such loops, the stack only ever contains one failure point
5563 at a time, so that a plain on_failure_jump_loop kind of
5564 cycle detection cannot work. Worse yet, such a detection
5565 can not only fail to detect a cycle, but it can also wrongly
5566 detect a cycle (between different instantiations of the same
5567 loop).
5568 So the method used for those nasty loops is a little different:
5569 We use a special cycle-detection-stack-frame which is pushed
5570 when the on_failure_jump_nastyloop failure-point is *popped*.
5571 This special frame thus marks the beginning of one iteration
5572 through the loop and we can hence easily check right here
5573 whether something matched between the beginning and the end of
5574 the loop. */
5575 case on_failure_jump_nastyloop:
5576 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5577 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5578 mcnt, p + mcnt);
5580 assert ((re_opcode_t)p[-4] == no_op);
5582 int cycle = 0;
5583 CHECK_INFINITE_LOOP (p - 4, d);
5584 if (!cycle)
5585 /* If there's a cycle, just continue without pushing
5586 this failure point. The failure point is the "try again"
5587 option, which shouldn't be tried.
5588 We want (x?)*?y\1z to match both xxyz and xxyxz. */
5589 PUSH_FAILURE_POINT (p - 3, d);
5591 break;
5593 /* Simple loop detecting on_failure_jump: just check on the
5594 failure stack if the same spot was already hit earlier. */
5595 case on_failure_jump_loop:
5596 on_failure:
5597 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5598 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5599 mcnt, p + mcnt);
5601 int cycle = 0;
5602 CHECK_INFINITE_LOOP (p - 3, d);
5603 if (cycle)
5604 /* If there's a cycle, get out of the loop, as if the matching
5605 had failed. We used to just `goto fail' here, but that was
5606 aborting the search a bit too early: we want to keep the
5607 empty-loop-match and keep matching after the loop.
5608 We want (x?)*y\1z to match both xxyz and xxyxz. */
5609 p += mcnt;
5610 else
5611 PUSH_FAILURE_POINT (p - 3, d);
5613 break;
5616 /* Uses of on_failure_jump:
5618 Each alternative starts with an on_failure_jump that points
5619 to the beginning of the next alternative. Each alternative
5620 except the last ends with a jump that in effect jumps past
5621 the rest of the alternatives. (They really jump to the
5622 ending jump of the following alternative, because tensioning
5623 these jumps is a hassle.)
5625 Repeats start with an on_failure_jump that points past both
5626 the repetition text and either the following jump or
5627 pop_failure_jump back to this on_failure_jump. */
5628 case on_failure_jump:
5629 IMMEDIATE_QUIT_CHECK;
5630 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5631 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5632 mcnt, p + mcnt);
5634 PUSH_FAILURE_POINT (p -3, d);
5635 break;
5637 /* This operation is used for greedy *.
5638 Compare the beginning of the repeat with what in the
5639 pattern follows its end. If we can establish that there
5640 is nothing that they would both match, i.e., that we
5641 would have to backtrack because of (as in, e.g., `a*a')
5642 then we can use a non-backtracking loop based on
5643 on_failure_keep_string_jump instead of on_failure_jump. */
5644 case on_failure_jump_smart:
5645 IMMEDIATE_QUIT_CHECK;
5646 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5647 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5648 mcnt, p + mcnt);
5650 re_char *p1 = p; /* Next operation. */
5651 /* Here, we discard `const', making re_match non-reentrant. */
5652 unsigned char *p2 = (unsigned char*) p + mcnt; /* Jump dest. */
5653 unsigned char *p3 = (unsigned char*) p - 3; /* opcode location. */
5655 p -= 3; /* Reset so that we will re-execute the
5656 instruction once it's been changed. */
5658 EXTRACT_NUMBER (mcnt, p2 - 2);
5660 /* Ensure this is a indeed the trivial kind of loop
5661 we are expecting. */
5662 assert (skip_one_char (p1) == p2 - 3);
5663 assert ((re_opcode_t) p2[-3] == jump && p2 + mcnt == p);
5664 DEBUG_STATEMENT (debug += 2);
5665 if (mutually_exclusive_p (bufp, p1, p2))
5667 /* Use a fast `on_failure_keep_string_jump' loop. */
5668 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
5669 *p3 = (unsigned char) on_failure_keep_string_jump;
5670 STORE_NUMBER (p2 - 2, mcnt + 3);
5672 else
5674 /* Default to a safe `on_failure_jump' loop. */
5675 DEBUG_PRINT1 (" smart default => slow loop.\n");
5676 *p3 = (unsigned char) on_failure_jump;
5678 DEBUG_STATEMENT (debug -= 2);
5680 break;
5682 /* Unconditionally jump (without popping any failure points). */
5683 case jump:
5684 unconditional_jump:
5685 IMMEDIATE_QUIT_CHECK;
5686 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
5687 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
5688 p += mcnt; /* Do the jump. */
5689 DEBUG_PRINT2 ("(to %p).\n", p);
5690 break;
5693 /* Have to succeed matching what follows at least n times.
5694 After that, handle like `on_failure_jump'. */
5695 case succeed_n:
5696 /* Signedness doesn't matter since we only compare MCNT to 0. */
5697 EXTRACT_NUMBER (mcnt, p + 2);
5698 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5700 /* Originally, mcnt is how many times we HAVE to succeed. */
5701 if (mcnt != 0)
5703 /* Here, we discard `const', making re_match non-reentrant. */
5704 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
5705 mcnt--;
5706 p += 4;
5707 PUSH_NUMBER (p2, mcnt);
5709 else
5710 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
5711 goto on_failure;
5712 break;
5714 case jump_n:
5715 /* Signedness doesn't matter since we only compare MCNT to 0. */
5716 EXTRACT_NUMBER (mcnt, p + 2);
5717 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5719 /* Originally, this is how many times we CAN jump. */
5720 if (mcnt != 0)
5722 /* Here, we discard `const', making re_match non-reentrant. */
5723 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
5724 mcnt--;
5725 PUSH_NUMBER (p2, mcnt);
5726 goto unconditional_jump;
5728 /* If don't have to jump any more, skip over the rest of command. */
5729 else
5730 p += 4;
5731 break;
5733 case set_number_at:
5735 unsigned char *p2; /* Location of the counter. */
5736 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
5738 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5739 /* Here, we discard `const', making re_match non-reentrant. */
5740 p2 = (unsigned char*) p + mcnt;
5741 /* Signedness doesn't matter since we only copy MCNT's bits . */
5742 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5743 DEBUG_PRINT3 (" Setting %p to %d.\n", p2, mcnt);
5744 PUSH_NUMBER (p2, mcnt);
5745 break;
5748 case wordbound:
5749 case notwordbound:
5750 not = (re_opcode_t) *(p - 1) == notwordbound;
5751 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
5753 /* We SUCCEED (or FAIL) in one of the following cases: */
5755 /* Case 1: D is at the beginning or the end of string. */
5756 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5757 not = !not;
5758 else
5760 /* C1 is the character before D, S1 is the syntax of C1, C2
5761 is the character at D, and S2 is the syntax of C2. */
5762 re_wchar_t c1, c2;
5763 int s1, s2;
5764 #ifdef emacs
5765 int offset = PTR_TO_OFFSET (d - 1);
5766 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5767 UPDATE_SYNTAX_TABLE (charpos);
5768 #endif
5769 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5770 s1 = SYNTAX (c1);
5771 #ifdef emacs
5772 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
5773 #endif
5774 PREFETCH_NOLIMIT ();
5775 c2 = RE_STRING_CHAR (d, dend - d);
5776 s2 = SYNTAX (c2);
5778 if (/* Case 2: Only one of S1 and S2 is Sword. */
5779 ((s1 == Sword) != (s2 == Sword))
5780 /* Case 3: Both of S1 and S2 are Sword, and macro
5781 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
5782 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
5783 not = !not;
5785 if (not)
5786 break;
5787 else
5788 goto fail;
5790 case wordbeg:
5791 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5793 /* We FAIL in one of the following cases: */
5795 /* Case 1: D is at the end of string. */
5796 if (AT_STRINGS_END (d))
5797 goto fail;
5798 else
5800 /* C1 is the character before D, S1 is the syntax of C1, C2
5801 is the character at D, and S2 is the syntax of C2. */
5802 re_wchar_t c1, c2;
5803 int s1, s2;
5804 #ifdef emacs
5805 int offset = PTR_TO_OFFSET (d);
5806 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5807 UPDATE_SYNTAX_TABLE (charpos);
5808 #endif
5809 PREFETCH ();
5810 c2 = RE_STRING_CHAR (d, dend - d);
5811 s2 = SYNTAX (c2);
5813 /* Case 2: S2 is not Sword. */
5814 if (s2 != Sword)
5815 goto fail;
5817 /* Case 3: D is not at the beginning of string ... */
5818 if (!AT_STRINGS_BEG (d))
5820 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5821 #ifdef emacs
5822 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
5823 #endif
5824 s1 = SYNTAX (c1);
5826 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
5827 returns 0. */
5828 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5829 goto fail;
5832 break;
5834 case wordend:
5835 DEBUG_PRINT1 ("EXECUTING wordend.\n");
5837 /* We FAIL in one of the following cases: */
5839 /* Case 1: D is at the beginning of string. */
5840 if (AT_STRINGS_BEG (d))
5841 goto fail;
5842 else
5844 /* C1 is the character before D, S1 is the syntax of C1, C2
5845 is the character at D, and S2 is the syntax of C2. */
5846 re_wchar_t c1, c2;
5847 int s1, s2;
5848 #ifdef emacs
5849 int offset = PTR_TO_OFFSET (d) - 1;
5850 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5851 UPDATE_SYNTAX_TABLE (charpos);
5852 #endif
5853 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5854 s1 = SYNTAX (c1);
5856 /* Case 2: S1 is not Sword. */
5857 if (s1 != Sword)
5858 goto fail;
5860 /* Case 3: D is not at the end of string ... */
5861 if (!AT_STRINGS_END (d))
5863 PREFETCH_NOLIMIT ();
5864 c2 = RE_STRING_CHAR (d, dend - d);
5865 #ifdef emacs
5866 UPDATE_SYNTAX_TABLE_FORWARD (charpos);
5867 #endif
5868 s2 = SYNTAX (c2);
5870 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
5871 returns 0. */
5872 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5873 goto fail;
5876 break;
5878 case symbeg:
5879 DEBUG_PRINT1 ("EXECUTING symbeg.\n");
5881 /* We FAIL in one of the following cases: */
5883 /* Case 1: D is at the end of string. */
5884 if (AT_STRINGS_END (d))
5885 goto fail;
5886 else
5888 /* C1 is the character before D, S1 is the syntax of C1, C2
5889 is the character at D, and S2 is the syntax of C2. */
5890 re_wchar_t c1, c2;
5891 int s1, s2;
5892 #ifdef emacs
5893 int offset = PTR_TO_OFFSET (d);
5894 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5895 UPDATE_SYNTAX_TABLE (charpos);
5896 #endif
5897 PREFETCH ();
5898 c2 = RE_STRING_CHAR (d, dend - d);
5899 s2 = SYNTAX (c2);
5901 /* Case 2: S2 is neither Sword nor Ssymbol. */
5902 if (s2 != Sword && s2 != Ssymbol)
5903 goto fail;
5905 /* Case 3: D is not at the beginning of string ... */
5906 if (!AT_STRINGS_BEG (d))
5908 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5909 #ifdef emacs
5910 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
5911 #endif
5912 s1 = SYNTAX (c1);
5914 /* ... and S1 is Sword or Ssymbol. */
5915 if (s1 == Sword || s1 == Ssymbol)
5916 goto fail;
5919 break;
5921 case symend:
5922 DEBUG_PRINT1 ("EXECUTING symend.\n");
5924 /* We FAIL in one of the following cases: */
5926 /* Case 1: D is at the beginning of string. */
5927 if (AT_STRINGS_BEG (d))
5928 goto fail;
5929 else
5931 /* C1 is the character before D, S1 is the syntax of C1, C2
5932 is the character at D, and S2 is the syntax of C2. */
5933 re_wchar_t c1, c2;
5934 int s1, s2;
5935 #ifdef emacs
5936 int offset = PTR_TO_OFFSET (d) - 1;
5937 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5938 UPDATE_SYNTAX_TABLE (charpos);
5939 #endif
5940 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5941 s1 = SYNTAX (c1);
5943 /* Case 2: S1 is neither Ssymbol nor Sword. */
5944 if (s1 != Sword && s1 != Ssymbol)
5945 goto fail;
5947 /* Case 3: D is not at the end of string ... */
5948 if (!AT_STRINGS_END (d))
5950 PREFETCH_NOLIMIT ();
5951 c2 = RE_STRING_CHAR (d, dend - d);
5952 #ifdef emacs
5953 UPDATE_SYNTAX_TABLE_FORWARD (charpos);
5954 #endif
5955 s2 = SYNTAX (c2);
5957 /* ... and S2 is Sword or Ssymbol. */
5958 if (s2 == Sword || s2 == Ssymbol)
5959 goto fail;
5962 break;
5964 case syntaxspec:
5965 case notsyntaxspec:
5966 not = (re_opcode_t) *(p - 1) == notsyntaxspec;
5967 mcnt = *p++;
5968 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt);
5969 PREFETCH ();
5970 #ifdef emacs
5972 int offset = PTR_TO_OFFSET (d);
5973 int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5974 UPDATE_SYNTAX_TABLE (pos1);
5976 #endif
5978 int len;
5979 re_wchar_t c;
5981 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
5983 if ((SYNTAX (c) != (enum syntaxcode) mcnt) ^ not)
5984 goto fail;
5985 d += len;
5987 break;
5989 #ifdef emacs
5990 case before_dot:
5991 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5992 if (PTR_BYTE_POS (d) >= PT_BYTE)
5993 goto fail;
5994 break;
5996 case at_dot:
5997 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5998 if (PTR_BYTE_POS (d) != PT_BYTE)
5999 goto fail;
6000 break;
6002 case after_dot:
6003 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
6004 if (PTR_BYTE_POS (d) <= PT_BYTE)
6005 goto fail;
6006 break;
6008 case categoryspec:
6009 case notcategoryspec:
6010 not = (re_opcode_t) *(p - 1) == notcategoryspec;
6011 mcnt = *p++;
6012 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt);
6013 PREFETCH ();
6015 int len;
6016 re_wchar_t c;
6018 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
6020 if ((!CHAR_HAS_CATEGORY (c, mcnt)) ^ not)
6021 goto fail;
6022 d += len;
6024 break;
6026 #endif /* emacs */
6028 default:
6029 abort ();
6031 continue; /* Successfully executed one pattern command; keep going. */
6034 /* We goto here if a matching operation fails. */
6035 fail:
6036 IMMEDIATE_QUIT_CHECK;
6037 if (!FAIL_STACK_EMPTY ())
6039 re_char *str, *pat;
6040 /* A restart point is known. Restore to that state. */
6041 DEBUG_PRINT1 ("\nFAIL:\n");
6042 POP_FAILURE_POINT (str, pat);
6043 switch (SWITCH_ENUM_CAST ((re_opcode_t) *pat++))
6045 case on_failure_keep_string_jump:
6046 assert (str == NULL);
6047 goto continue_failure_jump;
6049 case on_failure_jump_nastyloop:
6050 assert ((re_opcode_t)pat[-2] == no_op);
6051 PUSH_FAILURE_POINT (pat - 2, str);
6052 /* Fallthrough */
6054 case on_failure_jump_loop:
6055 case on_failure_jump:
6056 case succeed_n:
6057 d = str;
6058 continue_failure_jump:
6059 EXTRACT_NUMBER_AND_INCR (mcnt, pat);
6060 p = pat + mcnt;
6061 break;
6063 case no_op:
6064 /* A special frame used for nastyloops. */
6065 goto fail;
6067 default:
6068 abort();
6071 assert (p >= bufp->buffer && p <= pend);
6073 if (d >= string1 && d <= end1)
6074 dend = end_match_1;
6076 else
6077 break; /* Matching at this starting point really fails. */
6078 } /* for (;;) */
6080 if (best_regs_set)
6081 goto restore_best_regs;
6083 FREE_VARIABLES ();
6085 return -1; /* Failure to match. */
6086 } /* re_match_2 */
6088 /* Subroutine definitions for re_match_2. */
6090 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
6091 bytes; nonzero otherwise. */
6093 static int
6094 bcmp_translate (s1, s2, len, translate, multibyte)
6095 re_char *s1, *s2;
6096 register int len;
6097 RE_TRANSLATE_TYPE translate;
6098 const int multibyte;
6100 register re_char *p1 = s1, *p2 = s2;
6101 re_char *p1_end = s1 + len;
6102 re_char *p2_end = s2 + len;
6104 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
6105 different lengths, but relying on a single `len' would break this. -sm */
6106 while (p1 < p1_end && p2 < p2_end)
6108 int p1_charlen, p2_charlen;
6109 re_wchar_t p1_ch, p2_ch;
6111 p1_ch = RE_STRING_CHAR_AND_LENGTH (p1, p1_end - p1, p1_charlen);
6112 p2_ch = RE_STRING_CHAR_AND_LENGTH (p2, p2_end - p2, p2_charlen);
6114 if (RE_TRANSLATE (translate, p1_ch)
6115 != RE_TRANSLATE (translate, p2_ch))
6116 return 1;
6118 p1 += p1_charlen, p2 += p2_charlen;
6121 if (p1 != p1_end || p2 != p2_end)
6122 return 1;
6124 return 0;
6127 /* Entry points for GNU code. */
6129 /* re_compile_pattern is the GNU regular expression compiler: it
6130 compiles PATTERN (of length SIZE) and puts the result in BUFP.
6131 Returns 0 if the pattern was valid, otherwise an error string.
6133 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
6134 are set in BUFP on entry.
6136 We call regex_compile to do the actual compilation. */
6138 const char *
6139 re_compile_pattern (pattern, length, bufp)
6140 const char *pattern;
6141 size_t length;
6142 struct re_pattern_buffer *bufp;
6144 reg_errcode_t ret;
6146 /* GNU code is written to assume at least RE_NREGS registers will be set
6147 (and at least one extra will be -1). */
6148 bufp->regs_allocated = REGS_UNALLOCATED;
6150 /* And GNU code determines whether or not to get register information
6151 by passing null for the REGS argument to re_match, etc., not by
6152 setting no_sub. */
6153 bufp->no_sub = 0;
6155 ret = regex_compile ((re_char*) pattern, length, re_syntax_options, bufp);
6157 if (!ret)
6158 return NULL;
6159 return gettext (re_error_msgid[(int) ret]);
6161 WEAK_ALIAS (__re_compile_pattern, re_compile_pattern)
6163 /* Entry points compatible with 4.2 BSD regex library. We don't define
6164 them unless specifically requested. */
6166 #if defined _REGEX_RE_COMP || defined _LIBC
6168 /* BSD has one and only one pattern buffer. */
6169 static struct re_pattern_buffer re_comp_buf;
6171 char *
6172 # ifdef _LIBC
6173 /* Make these definitions weak in libc, so POSIX programs can redefine
6174 these names if they don't use our functions, and still use
6175 regcomp/regexec below without link errors. */
6176 weak_function
6177 # endif
6178 re_comp (s)
6179 const char *s;
6181 reg_errcode_t ret;
6183 if (!s)
6185 if (!re_comp_buf.buffer)
6186 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6187 return (char *) gettext ("No previous regular expression");
6188 return 0;
6191 if (!re_comp_buf.buffer)
6193 re_comp_buf.buffer = (unsigned char *) malloc (200);
6194 if (re_comp_buf.buffer == NULL)
6195 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6196 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
6197 re_comp_buf.allocated = 200;
6199 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
6200 if (re_comp_buf.fastmap == NULL)
6201 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6202 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
6205 /* Since `re_exec' always passes NULL for the `regs' argument, we
6206 don't need to initialize the pattern buffer fields which affect it. */
6208 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
6210 if (!ret)
6211 return NULL;
6213 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6214 return (char *) gettext (re_error_msgid[(int) ret]);
6219 # ifdef _LIBC
6220 weak_function
6221 # endif
6222 re_exec (s)
6223 const char *s;
6225 const int len = strlen (s);
6226 return
6227 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
6229 #endif /* _REGEX_RE_COMP */
6231 /* POSIX.2 functions. Don't define these for Emacs. */
6233 #ifndef emacs
6235 /* regcomp takes a regular expression as a string and compiles it.
6237 PREG is a regex_t *. We do not expect any fields to be initialized,
6238 since POSIX says we shouldn't. Thus, we set
6240 `buffer' to the compiled pattern;
6241 `used' to the length of the compiled pattern;
6242 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6243 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6244 RE_SYNTAX_POSIX_BASIC;
6245 `fastmap' to an allocated space for the fastmap;
6246 `fastmap_accurate' to zero;
6247 `re_nsub' to the number of subexpressions in PATTERN.
6249 PATTERN is the address of the pattern string.
6251 CFLAGS is a series of bits which affect compilation.
6253 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6254 use POSIX basic syntax.
6256 If REG_NEWLINE is set, then . and [^...] don't match newline.
6257 Also, regexec will try a match beginning after every newline.
6259 If REG_ICASE is set, then we considers upper- and lowercase
6260 versions of letters to be equivalent when matching.
6262 If REG_NOSUB is set, then when PREG is passed to regexec, that
6263 routine will report only success or failure, and nothing about the
6264 registers.
6266 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
6267 the return codes and their meanings.) */
6270 regcomp (preg, pattern, cflags)
6271 regex_t *__restrict preg;
6272 const char *__restrict pattern;
6273 int cflags;
6275 reg_errcode_t ret;
6276 reg_syntax_t syntax
6277 = (cflags & REG_EXTENDED) ?
6278 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
6280 /* regex_compile will allocate the space for the compiled pattern. */
6281 preg->buffer = 0;
6282 preg->allocated = 0;
6283 preg->used = 0;
6285 /* Try to allocate space for the fastmap. */
6286 preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
6288 if (cflags & REG_ICASE)
6290 unsigned i;
6292 preg->translate
6293 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
6294 * sizeof (*(RE_TRANSLATE_TYPE)0));
6295 if (preg->translate == NULL)
6296 return (int) REG_ESPACE;
6298 /* Map uppercase characters to corresponding lowercase ones. */
6299 for (i = 0; i < CHAR_SET_SIZE; i++)
6300 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
6302 else
6303 preg->translate = NULL;
6305 /* If REG_NEWLINE is set, newlines are treated differently. */
6306 if (cflags & REG_NEWLINE)
6307 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6308 syntax &= ~RE_DOT_NEWLINE;
6309 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
6311 else
6312 syntax |= RE_NO_NEWLINE_ANCHOR;
6314 preg->no_sub = !!(cflags & REG_NOSUB);
6316 /* POSIX says a null character in the pattern terminates it, so we
6317 can use strlen here in compiling the pattern. */
6318 ret = regex_compile ((re_char*) pattern, strlen (pattern), syntax, preg);
6320 /* POSIX doesn't distinguish between an unmatched open-group and an
6321 unmatched close-group: both are REG_EPAREN. */
6322 if (ret == REG_ERPAREN)
6323 ret = REG_EPAREN;
6325 if (ret == REG_NOERROR && preg->fastmap)
6326 { /* Compute the fastmap now, since regexec cannot modify the pattern
6327 buffer. */
6328 re_compile_fastmap (preg);
6329 if (preg->can_be_null)
6330 { /* The fastmap can't be used anyway. */
6331 free (preg->fastmap);
6332 preg->fastmap = NULL;
6335 return (int) ret;
6337 WEAK_ALIAS (__regcomp, regcomp)
6340 /* regexec searches for a given pattern, specified by PREG, in the
6341 string STRING.
6343 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
6344 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
6345 least NMATCH elements, and we set them to the offsets of the
6346 corresponding matched substrings.
6348 EFLAGS specifies `execution flags' which affect matching: if
6349 REG_NOTBOL is set, then ^ does not match at the beginning of the
6350 string; if REG_NOTEOL is set, then $ does not match at the end.
6352 We return 0 if we find a match and REG_NOMATCH if not. */
6355 regexec (preg, string, nmatch, pmatch, eflags)
6356 const regex_t *__restrict preg;
6357 const char *__restrict string;
6358 size_t nmatch;
6359 regmatch_t pmatch[__restrict_arr];
6360 int eflags;
6362 int ret;
6363 struct re_registers regs;
6364 regex_t private_preg;
6365 int len = strlen (string);
6366 boolean want_reg_info = !preg->no_sub && nmatch > 0 && pmatch;
6368 private_preg = *preg;
6370 private_preg.not_bol = !!(eflags & REG_NOTBOL);
6371 private_preg.not_eol = !!(eflags & REG_NOTEOL);
6373 /* The user has told us exactly how many registers to return
6374 information about, via `nmatch'. We have to pass that on to the
6375 matching routines. */
6376 private_preg.regs_allocated = REGS_FIXED;
6378 if (want_reg_info)
6380 regs.num_regs = nmatch;
6381 regs.start = TALLOC (nmatch * 2, regoff_t);
6382 if (regs.start == NULL)
6383 return (int) REG_NOMATCH;
6384 regs.end = regs.start + nmatch;
6387 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6388 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6389 was a little bit longer but still only matching the real part.
6390 This works because the `endline' will check for a '\n' and will find a
6391 '\0', correctly deciding that this is not the end of a line.
6392 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6393 a convenient '\0' there. For all we know, the string could be preceded
6394 by '\n' which would throw things off. */
6396 /* Perform the searching operation. */
6397 ret = re_search (&private_preg, string, len,
6398 /* start: */ 0, /* range: */ len,
6399 want_reg_info ? &regs : (struct re_registers *) 0);
6401 /* Copy the register information to the POSIX structure. */
6402 if (want_reg_info)
6404 if (ret >= 0)
6406 unsigned r;
6408 for (r = 0; r < nmatch; r++)
6410 pmatch[r].rm_so = regs.start[r];
6411 pmatch[r].rm_eo = regs.end[r];
6415 /* If we needed the temporary register info, free the space now. */
6416 free (regs.start);
6419 /* We want zero return to mean success, unlike `re_search'. */
6420 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
6422 WEAK_ALIAS (__regexec, regexec)
6425 /* Returns a message corresponding to an error code, ERRCODE, returned
6426 from either regcomp or regexec. We don't use PREG here. */
6428 size_t
6429 regerror (errcode, preg, errbuf, errbuf_size)
6430 int errcode;
6431 const regex_t *preg;
6432 char *errbuf;
6433 size_t errbuf_size;
6435 const char *msg;
6436 size_t msg_size;
6438 if (errcode < 0
6439 || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
6440 /* Only error codes returned by the rest of the code should be passed
6441 to this routine. If we are given anything else, or if other regex
6442 code generates an invalid error code, then the program has a bug.
6443 Dump core so we can fix it. */
6444 abort ();
6446 msg = gettext (re_error_msgid[errcode]);
6448 msg_size = strlen (msg) + 1; /* Includes the null. */
6450 if (errbuf_size != 0)
6452 if (msg_size > errbuf_size)
6454 strncpy (errbuf, msg, errbuf_size - 1);
6455 errbuf[errbuf_size - 1] = 0;
6457 else
6458 strcpy (errbuf, msg);
6461 return msg_size;
6463 WEAK_ALIAS (__regerror, regerror)
6466 /* Free dynamically allocated space used by PREG. */
6468 void
6469 regfree (preg)
6470 regex_t *preg;
6472 if (preg->buffer != NULL)
6473 free (preg->buffer);
6474 preg->buffer = NULL;
6476 preg->allocated = 0;
6477 preg->used = 0;
6479 if (preg->fastmap != NULL)
6480 free (preg->fastmap);
6481 preg->fastmap = NULL;
6482 preg->fastmap_accurate = 0;
6484 if (preg->translate != NULL)
6485 free (preg->translate);
6486 preg->translate = NULL;
6488 WEAK_ALIAS (__regfree, regfree)
6490 #endif /* not emacs */
6492 /* arch-tag: 4ffd68ba-2a9e-435b-a21a-018990f9eeb2
6493 (do not change this comment) */