* lisp/buff-menu.el: Convert to Tabulated List mode.
[emacs.git] / lisp / emacs-lisp / cl-loaddefs.el
blob06c8fe8dba740383b42903349eb219799fabc768
1 ;;; cl-loaddefs.el --- automatically extracted autoloads
2 ;;
3 ;;; Code:
5 \f
6 ;;;### (autoloads (cl-prettyexpand cl-macroexpand-all cl-remprop
7 ;;;;;; cl-do-remf cl-set-getf getf get* tailp list-length nreconc
8 ;;;;;; revappend concatenate subseq cl-float-limits random-state-p
9 ;;;;;; make-random-state random* signum rem* mod* round* truncate*
10 ;;;;;; ceiling* floor* isqrt lcm gcd cl-progv-before cl-set-frame-visible-p
11 ;;;;;; cl-map-overlays cl-map-intervals cl-map-keymap-recursively
12 ;;;;;; notevery notany every some mapcon mapcan mapl maplist map
13 ;;;;;; cl-mapcar-many equalp coerce) "cl-extra" "cl-extra.el" "5a8a7f7ec2dc453113b8cbda577f2acb")
14 ;;; Generated autoloads from cl-extra.el
16 (autoload 'coerce "cl-extra" "\
17 Coerce OBJECT to type TYPE.
18 TYPE is a Common Lisp type specifier.
20 \(fn OBJECT TYPE)" nil nil)
22 (autoload 'equalp "cl-extra" "\
23 Return t if two Lisp objects have similar structures and contents.
24 This is like `equal', except that it accepts numerically equal
25 numbers of different types (float vs. integer), and also compares
26 strings case-insensitively.
28 \(fn X Y)" nil nil)
30 (autoload 'cl-mapcar-many "cl-extra" "\
33 \(fn CL-FUNC CL-SEQS)" nil nil)
35 (autoload 'map "cl-extra" "\
36 Map a FUNCTION across one or more SEQUENCEs, returning a sequence.
37 TYPE is the sequence type to return.
39 \(fn TYPE FUNCTION SEQUENCE...)" nil nil)
41 (autoload 'maplist "cl-extra" "\
42 Map FUNCTION to each sublist of LIST or LISTs.
43 Like `mapcar', except applies to lists and their cdr's rather than to
44 the elements themselves.
46 \(fn FUNCTION LIST...)" nil nil)
48 (autoload 'mapl "cl-extra" "\
49 Like `maplist', but does not accumulate values returned by the function.
51 \(fn FUNCTION LIST...)" nil nil)
53 (autoload 'mapcan "cl-extra" "\
54 Like `mapcar', but nconc's together the values returned by the function.
56 \(fn FUNCTION SEQUENCE...)" nil nil)
58 (autoload 'mapcon "cl-extra" "\
59 Like `maplist', but nconc's together the values returned by the function.
61 \(fn FUNCTION LIST...)" nil nil)
63 (autoload 'some "cl-extra" "\
64 Return true if PREDICATE is true of any element of SEQ or SEQs.
65 If so, return the true (non-nil) value returned by PREDICATE.
67 \(fn PREDICATE SEQ...)" nil nil)
69 (autoload 'every "cl-extra" "\
70 Return true if PREDICATE is true of every element of SEQ or SEQs.
72 \(fn PREDICATE SEQ...)" nil nil)
74 (autoload 'notany "cl-extra" "\
75 Return true if PREDICATE is false of every element of SEQ or SEQs.
77 \(fn PREDICATE SEQ...)" nil nil)
79 (autoload 'notevery "cl-extra" "\
80 Return true if PREDICATE is false of some element of SEQ or SEQs.
82 \(fn PREDICATE SEQ...)" nil nil)
84 (defalias 'cl-map-keymap 'map-keymap)
86 (autoload 'cl-map-keymap-recursively "cl-extra" "\
89 \(fn CL-FUNC-REC CL-MAP &optional CL-BASE)" nil nil)
91 (autoload 'cl-map-intervals "cl-extra" "\
94 \(fn CL-FUNC &optional CL-WHAT CL-PROP CL-START CL-END)" nil nil)
96 (autoload 'cl-map-overlays "cl-extra" "\
99 \(fn CL-FUNC &optional CL-BUFFER CL-START CL-END CL-ARG)" nil nil)
101 (autoload 'cl-set-frame-visible-p "cl-extra" "\
104 \(fn FRAME VAL)" nil nil)
106 (autoload 'cl-progv-before "cl-extra" "\
109 \(fn SYMS VALUES)" nil nil)
111 (autoload 'gcd "cl-extra" "\
112 Return the greatest common divisor of the arguments.
114 \(fn &rest ARGS)" nil nil)
116 (autoload 'lcm "cl-extra" "\
117 Return the least common multiple of the arguments.
119 \(fn &rest ARGS)" nil nil)
121 (autoload 'isqrt "cl-extra" "\
122 Return the integer square root of the argument.
124 \(fn X)" nil nil)
126 (autoload 'floor* "cl-extra" "\
127 Return a list of the floor of X and the fractional part of X.
128 With two arguments, return floor and remainder of their quotient.
130 \(fn X &optional Y)" nil nil)
132 (autoload 'ceiling* "cl-extra" "\
133 Return a list of the ceiling of X and the fractional part of X.
134 With two arguments, return ceiling and remainder of their quotient.
136 \(fn X &optional Y)" nil nil)
138 (autoload 'truncate* "cl-extra" "\
139 Return a list of the integer part of X and the fractional part of X.
140 With two arguments, return truncation and remainder of their quotient.
142 \(fn X &optional Y)" nil nil)
144 (autoload 'round* "cl-extra" "\
145 Return a list of X rounded to the nearest integer and the remainder.
146 With two arguments, return rounding and remainder of their quotient.
148 \(fn X &optional Y)" nil nil)
150 (autoload 'mod* "cl-extra" "\
151 The remainder of X divided by Y, with the same sign as Y.
153 \(fn X Y)" nil nil)
155 (autoload 'rem* "cl-extra" "\
156 The remainder of X divided by Y, with the same sign as X.
158 \(fn X Y)" nil nil)
160 (autoload 'signum "cl-extra" "\
161 Return 1 if X is positive, -1 if negative, 0 if zero.
163 \(fn X)" nil nil)
165 (autoload 'random* "cl-extra" "\
166 Return a random nonnegative number less than LIM, an integer or float.
167 Optional second arg STATE is a random-state object.
169 \(fn LIM &optional STATE)" nil nil)
171 (autoload 'make-random-state "cl-extra" "\
172 Return a copy of random-state STATE, or of `*random-state*' if omitted.
173 If STATE is t, return a new state object seeded from the time of day.
175 \(fn &optional STATE)" nil nil)
177 (autoload 'random-state-p "cl-extra" "\
178 Return t if OBJECT is a random-state object.
180 \(fn OBJECT)" nil nil)
182 (autoload 'cl-float-limits "cl-extra" "\
183 Initialize the Common Lisp floating-point parameters.
184 This sets the values of: `most-positive-float', `most-negative-float',
185 `least-positive-float', `least-negative-float', `float-epsilon',
186 `float-negative-epsilon', `least-positive-normalized-float', and
187 `least-negative-normalized-float'.
189 \(fn)" nil nil)
191 (autoload 'subseq "cl-extra" "\
192 Return the subsequence of SEQ from START to END.
193 If END is omitted, it defaults to the length of the sequence.
194 If START or END is negative, it counts from the end.
196 \(fn SEQ START &optional END)" nil nil)
198 (autoload 'concatenate "cl-extra" "\
199 Concatenate, into a sequence of type TYPE, the argument SEQUENCEs.
201 \(fn TYPE SEQUENCE...)" nil nil)
203 (autoload 'revappend "cl-extra" "\
204 Equivalent to (append (reverse X) Y).
206 \(fn X Y)" nil nil)
208 (autoload 'nreconc "cl-extra" "\
209 Equivalent to (nconc (nreverse X) Y).
211 \(fn X Y)" nil nil)
213 (autoload 'list-length "cl-extra" "\
214 Return the length of list X. Return nil if list is circular.
216 \(fn X)" nil nil)
218 (autoload 'tailp "cl-extra" "\
219 Return true if SUBLIST is a tail of LIST.
221 \(fn SUBLIST LIST)" nil nil)
223 (autoload 'get* "cl-extra" "\
224 Return the value of SYMBOL's PROPNAME property, or DEFAULT if none.
226 \(fn SYMBOL PROPNAME &optional DEFAULT)" nil nil)
228 (autoload 'getf "cl-extra" "\
229 Search PROPLIST for property PROPNAME; return its value or DEFAULT.
230 PROPLIST is a list of the sort returned by `symbol-plist'.
232 \(fn PROPLIST PROPNAME &optional DEFAULT)" nil nil)
234 (autoload 'cl-set-getf "cl-extra" "\
237 \(fn PLIST TAG VAL)" nil nil)
239 (autoload 'cl-do-remf "cl-extra" "\
242 \(fn PLIST TAG)" nil nil)
244 (autoload 'cl-remprop "cl-extra" "\
245 Remove from SYMBOL's plist the property PROPNAME and its value.
247 \(fn SYMBOL PROPNAME)" nil nil)
249 (defalias 'remprop 'cl-remprop)
251 (defalias 'cl-gethash 'gethash)
253 (defalias 'cl-puthash 'puthash)
255 (defalias 'cl-remhash 'remhash)
257 (defalias 'cl-clrhash 'clrhash)
259 (defalias 'cl-maphash 'maphash)
261 (defalias 'cl-make-hash-table 'make-hash-table)
263 (defalias 'cl-hash-table-p 'hash-table-p)
265 (defalias 'cl-hash-table-count 'hash-table-count)
267 (autoload 'cl-macroexpand-all "cl-extra" "\
268 Expand all macro calls through a Lisp FORM.
269 This also does some trivial optimizations to make the form prettier.
271 \(fn FORM &optional ENV)" nil nil)
273 (autoload 'cl-prettyexpand "cl-extra" "\
276 \(fn FORM &optional FULL)" nil nil)
278 ;;;***
280 ;;;### (autoloads (defsubst* compiler-macroexpand define-compiler-macro
281 ;;;;;; assert check-type typep deftype cl-struct-setf-expander defstruct
282 ;;;;;; define-modify-macro callf2 callf letf* letf rotatef shiftf
283 ;;;;;; remf cl-do-pop psetf setf get-setf-method defsetf define-setf-method
284 ;;;;;; declare the locally multiple-value-setq multiple-value-bind
285 ;;;;;; lexical-let* lexical-let symbol-macrolet macrolet labels
286 ;;;;;; flet progv psetq do-all-symbols do-symbols dotimes dolist
287 ;;;;;; do* do loop return-from return block etypecase typecase ecase
288 ;;;;;; case load-time-value eval-when destructuring-bind function*
289 ;;;;;; defmacro* defun* gentemp gensym) "cl-macs" "cl-macs.el" "e10ebd95224fcfbe6a5edc59f40d695a")
290 ;;; Generated autoloads from cl-macs.el
292 (autoload 'gensym "cl-macs" "\
293 Generate a new uninterned symbol.
294 The name is made by appending a number to PREFIX, default \"G\".
296 \(fn &optional PREFIX)" nil nil)
298 (autoload 'gentemp "cl-macs" "\
299 Generate a new interned symbol with a unique name.
300 The name is made by appending a number to PREFIX, default \"G\".
302 \(fn &optional PREFIX)" nil nil)
304 (autoload 'defun* "cl-macs" "\
305 Define NAME as a function.
306 Like normal `defun', except ARGLIST allows full Common Lisp conventions,
307 and BODY is implicitly surrounded by (block NAME ...).
309 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil (quote macro))
311 (autoload 'defmacro* "cl-macs" "\
312 Define NAME as a macro.
313 Like normal `defmacro', except ARGLIST allows full Common Lisp conventions,
314 and BODY is implicitly surrounded by (block NAME ...).
316 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil (quote macro))
318 (autoload 'function* "cl-macs" "\
319 Introduce a function.
320 Like normal `function', except that if argument is a lambda form,
321 its argument list allows full Common Lisp conventions.
323 \(fn FUNC)" nil (quote macro))
325 (autoload 'destructuring-bind "cl-macs" "\
328 \(fn ARGS EXPR &rest BODY)" nil (quote macro))
330 (autoload 'eval-when "cl-macs" "\
331 Control when BODY is evaluated.
332 If `compile' is in WHEN, BODY is evaluated when compiled at top-level.
333 If `load' is in WHEN, BODY is evaluated when loaded after top-level compile.
334 If `eval' is in WHEN, BODY is evaluated when interpreted or at non-top-level.
336 \(fn (WHEN...) BODY...)" nil (quote macro))
338 (autoload 'load-time-value "cl-macs" "\
339 Like `progn', but evaluates the body at load time.
340 The result of the body appears to the compiler as a quoted constant.
342 \(fn FORM &optional READ-ONLY)" nil (quote macro))
344 (autoload 'case "cl-macs" "\
345 Eval EXPR and choose among clauses on that value.
346 Each clause looks like (KEYLIST BODY...). EXPR is evaluated and compared
347 against each key in each KEYLIST; the corresponding BODY is evaluated.
348 If no clause succeeds, case returns nil. A single atom may be used in
349 place of a KEYLIST of one atom. A KEYLIST of t or `otherwise' is
350 allowed only in the final clause, and matches if no other keys match.
351 Key values are compared by `eql'.
353 \(fn EXPR (KEYLIST BODY...)...)" nil (quote macro))
355 (autoload 'ecase "cl-macs" "\
356 Like `case', but error if no case fits.
357 `otherwise'-clauses are not allowed.
359 \(fn EXPR (KEYLIST BODY...)...)" nil (quote macro))
361 (autoload 'typecase "cl-macs" "\
362 Evals EXPR, chooses among clauses on that value.
363 Each clause looks like (TYPE BODY...). EXPR is evaluated and, if it
364 satisfies TYPE, the corresponding BODY is evaluated. If no clause succeeds,
365 typecase returns nil. A TYPE of t or `otherwise' is allowed only in the
366 final clause, and matches if no other keys match.
368 \(fn EXPR (TYPE BODY...)...)" nil (quote macro))
370 (autoload 'etypecase "cl-macs" "\
371 Like `typecase', but error if no case fits.
372 `otherwise'-clauses are not allowed.
374 \(fn EXPR (TYPE BODY...)...)" nil (quote macro))
376 (autoload 'block "cl-macs" "\
377 Define a lexically-scoped block named NAME.
378 NAME may be any symbol. Code inside the BODY forms can call `return-from'
379 to jump prematurely out of the block. This differs from `catch' and `throw'
380 in two respects: First, the NAME is an unevaluated symbol rather than a
381 quoted symbol or other form; and second, NAME is lexically rather than
382 dynamically scoped: Only references to it within BODY will work. These
383 references may appear inside macro expansions, but not inside functions
384 called from BODY.
386 \(fn NAME &rest BODY)" nil (quote macro))
388 (autoload 'return "cl-macs" "\
389 Return from the block named nil.
390 This is equivalent to `(return-from nil RESULT)'.
392 \(fn &optional RESULT)" nil (quote macro))
394 (autoload 'return-from "cl-macs" "\
395 Return from the block named NAME.
396 This jumps out to the innermost enclosing `(block NAME ...)' form,
397 returning RESULT from that form (or nil if RESULT is omitted).
398 This is compatible with Common Lisp, but note that `defun' and
399 `defmacro' do not create implicit blocks as they do in Common Lisp.
401 \(fn NAME &optional RESULT)" nil (quote macro))
403 (autoload 'loop "cl-macs" "\
404 The Common Lisp `loop' macro.
405 Valid clauses are:
406 for VAR from/upfrom/downfrom NUM to/upto/downto/above/below NUM by NUM,
407 for VAR in LIST by FUNC, for VAR on LIST by FUNC, for VAR = INIT then EXPR,
408 for VAR across ARRAY, repeat NUM, with VAR = INIT, while COND, until COND,
409 always COND, never COND, thereis COND, collect EXPR into VAR,
410 append EXPR into VAR, nconc EXPR into VAR, sum EXPR into VAR,
411 count EXPR into VAR, maximize EXPR into VAR, minimize EXPR into VAR,
412 if COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
413 unless COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
414 do EXPRS..., initially EXPRS..., finally EXPRS..., return EXPR,
415 finally return EXPR, named NAME.
417 \(fn CLAUSE...)" nil (quote macro))
419 (autoload 'do "cl-macs" "\
420 The Common Lisp `do' loop.
422 \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil (quote macro))
424 (autoload 'do* "cl-macs" "\
425 The Common Lisp `do*' loop.
427 \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil (quote macro))
429 (autoload 'dolist "cl-macs" "\
430 Loop over a list.
431 Evaluate BODY with VAR bound to each `car' from LIST, in turn.
432 Then evaluate RESULT to get return value, default nil.
433 An implicit nil block is established around the loop.
435 \(fn (VAR LIST [RESULT]) BODY...)" nil (quote macro))
437 (autoload 'dotimes "cl-macs" "\
438 Loop a certain number of times.
439 Evaluate BODY with VAR bound to successive integers from 0, inclusive,
440 to COUNT, exclusive. Then evaluate RESULT to get return value, default
441 nil.
443 \(fn (VAR COUNT [RESULT]) BODY...)" nil (quote macro))
445 (autoload 'do-symbols "cl-macs" "\
446 Loop over all symbols.
447 Evaluate BODY with VAR bound to each interned symbol, or to each symbol
448 from OBARRAY.
450 \(fn (VAR [OBARRAY [RESULT]]) BODY...)" nil (quote macro))
452 (autoload 'do-all-symbols "cl-macs" "\
455 \(fn SPEC &rest BODY)" nil (quote macro))
457 (autoload 'psetq "cl-macs" "\
458 Set SYMs to the values VALs in parallel.
459 This is like `setq', except that all VAL forms are evaluated (in order)
460 before assigning any symbols SYM to the corresponding values.
462 \(fn SYM VAL SYM VAL ...)" nil (quote macro))
464 (autoload 'progv "cl-macs" "\
465 Bind SYMBOLS to VALUES dynamically in BODY.
466 The forms SYMBOLS and VALUES are evaluated, and must evaluate to lists.
467 Each symbol in the first list is bound to the corresponding value in the
468 second list (or made unbound if VALUES is shorter than SYMBOLS); then the
469 BODY forms are executed and their result is returned. This is much like
470 a `let' form, except that the list of symbols can be computed at run-time.
472 \(fn SYMBOLS VALUES &rest BODY)" nil (quote macro))
474 (autoload 'flet "cl-macs" "\
475 Make temporary function definitions.
476 This is an analogue of `let' that operates on the function cell of FUNC
477 rather than its value cell. The FORMs are evaluated with the specified
478 function definitions in place, then the definitions are undone (the FUNCs
479 go back to their previous definitions, or lack thereof).
481 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil (quote macro))
483 (autoload 'labels "cl-macs" "\
484 Make temporary function bindings.
485 This is like `flet', except the bindings are lexical instead of dynamic.
486 Unlike `flet', this macro is fully compliant with the Common Lisp standard.
488 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil (quote macro))
490 (autoload 'macrolet "cl-macs" "\
491 Make temporary macro definitions.
492 This is like `flet', but for macros instead of functions.
494 \(fn ((NAME ARGLIST BODY...) ...) FORM...)" nil (quote macro))
496 (autoload 'symbol-macrolet "cl-macs" "\
497 Make symbol macro definitions.
498 Within the body FORMs, references to the variable NAME will be replaced
499 by EXPANSION, and (setq NAME ...) will act like (setf EXPANSION ...).
501 \(fn ((NAME EXPANSION) ...) FORM...)" nil (quote macro))
503 (autoload 'lexical-let "cl-macs" "\
504 Like `let', but lexically scoped.
505 The main visible difference is that lambdas inside BODY will create
506 lexical closures as in Common Lisp.
508 \(fn BINDINGS BODY)" nil (quote macro))
510 (autoload 'lexical-let* "cl-macs" "\
511 Like `let*', but lexically scoped.
512 The main visible difference is that lambdas inside BODY, and in
513 successive bindings within BINDINGS, will create lexical closures
514 as in Common Lisp. This is similar to the behavior of `let*' in
515 Common Lisp.
517 \(fn BINDINGS BODY)" nil (quote macro))
519 (autoload 'multiple-value-bind "cl-macs" "\
520 Collect multiple return values.
521 FORM must return a list; the BODY is then executed with the first N elements
522 of this list bound (`let'-style) to each of the symbols SYM in turn. This
523 is analogous to the Common Lisp `multiple-value-bind' macro, using lists to
524 simulate true multiple return values. For compatibility, (values A B C) is
525 a synonym for (list A B C).
527 \(fn (SYM...) FORM BODY)" nil (quote macro))
529 (autoload 'multiple-value-setq "cl-macs" "\
530 Collect multiple return values.
531 FORM must return a list; the first N elements of this list are stored in
532 each of the symbols SYM in turn. This is analogous to the Common Lisp
533 `multiple-value-setq' macro, using lists to simulate true multiple return
534 values. For compatibility, (values A B C) is a synonym for (list A B C).
536 \(fn (SYM...) FORM)" nil (quote macro))
538 (autoload 'locally "cl-macs" "\
541 \(fn &rest BODY)" nil (quote macro))
543 (autoload 'the "cl-macs" "\
546 \(fn TYPE FORM)" nil (quote macro))
548 (autoload 'declare "cl-macs" "\
549 Declare SPECS about the current function while compiling.
550 For instance
552 (declare (warn 0))
554 will turn off byte-compile warnings in the function.
555 See Info node `(cl)Declarations' for details.
557 \(fn &rest SPECS)" nil (quote macro))
559 (autoload 'define-setf-method "cl-macs" "\
560 Define a `setf' method.
561 This method shows how to handle `setf's to places of the form (NAME ARGS...).
562 The argument forms ARGS are bound according to ARGLIST, as if NAME were
563 going to be expanded as a macro, then the BODY forms are executed and must
564 return a list of five elements: a temporary-variables list, a value-forms
565 list, a store-variables list (of length one), a store-form, and an access-
566 form. See `defsetf' for a simpler way to define most setf-methods.
568 \(fn NAME ARGLIST BODY...)" nil (quote macro))
570 (autoload 'defsetf "cl-macs" "\
571 Define a `setf' method.
572 This macro is an easy-to-use substitute for `define-setf-method' that works
573 well for simple place forms. In the simple `defsetf' form, `setf's of
574 the form (setf (NAME ARGS...) VAL) are transformed to function or macro
575 calls of the form (FUNC ARGS... VAL). Example:
577 (defsetf aref aset)
579 Alternate form: (defsetf NAME ARGLIST (STORE) BODY...).
580 Here, the above `setf' call is expanded by binding the argument forms ARGS
581 according to ARGLIST, binding the value form VAL to STORE, then executing
582 BODY, which must return a Lisp form that does the necessary `setf' operation.
583 Actually, ARGLIST and STORE may be bound to temporary variables which are
584 introduced automatically to preserve proper execution order of the arguments.
585 Example:
587 (defsetf nth (n x) (v) (list 'setcar (list 'nthcdr n x) v))
589 \(fn NAME [FUNC | ARGLIST (STORE) BODY...])" nil (quote macro))
591 (autoload 'get-setf-method "cl-macs" "\
592 Return a list of five values describing the setf-method for PLACE.
593 PLACE may be any Lisp form which can appear as the PLACE argument to
594 a macro like `setf' or `incf'.
596 \(fn PLACE &optional ENV)" nil nil)
598 (autoload 'setf "cl-macs" "\
599 Set each PLACE to the value of its VAL.
600 This is a generalized version of `setq'; the PLACEs may be symbolic
601 references such as (car x) or (aref x i), as well as plain symbols.
602 For example, (setf (cadar x) y) is equivalent to (setcar (cdar x) y).
603 The return value is the last VAL in the list.
605 \(fn PLACE VAL PLACE VAL ...)" nil (quote macro))
607 (autoload 'psetf "cl-macs" "\
608 Set PLACEs to the values VALs in parallel.
609 This is like `setf', except that all VAL forms are evaluated (in order)
610 before assigning any PLACEs to the corresponding values.
612 \(fn PLACE VAL PLACE VAL ...)" nil (quote macro))
614 (autoload 'cl-do-pop "cl-macs" "\
617 \(fn PLACE)" nil nil)
619 (autoload 'remf "cl-macs" "\
620 Remove TAG from property list PLACE.
621 PLACE may be a symbol, or any generalized variable allowed by `setf'.
622 The form returns true if TAG was found and removed, nil otherwise.
624 \(fn PLACE TAG)" nil (quote macro))
626 (autoload 'shiftf "cl-macs" "\
627 Shift left among PLACEs.
628 Example: (shiftf A B C) sets A to B, B to C, and returns the old A.
629 Each PLACE may be a symbol, or any generalized variable allowed by `setf'.
631 \(fn PLACE... VAL)" nil (quote macro))
633 (autoload 'rotatef "cl-macs" "\
634 Rotate left among PLACEs.
635 Example: (rotatef A B C) sets A to B, B to C, and C to A. It returns nil.
636 Each PLACE may be a symbol, or any generalized variable allowed by `setf'.
638 \(fn PLACE...)" nil (quote macro))
640 (autoload 'letf "cl-macs" "\
641 Temporarily bind to PLACEs.
642 This is the analogue of `let', but with generalized variables (in the
643 sense of `setf') for the PLACEs. Each PLACE is set to the corresponding
644 VALUE, then the BODY forms are executed. On exit, either normally or
645 because of a `throw' or error, the PLACEs are set back to their original
646 values. Note that this macro is *not* available in Common Lisp.
647 As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
648 the PLACE is not modified before executing BODY.
650 \(fn ((PLACE VALUE) ...) BODY...)" nil (quote macro))
652 (autoload 'letf* "cl-macs" "\
653 Temporarily bind to PLACEs.
654 This is the analogue of `let*', but with generalized variables (in the
655 sense of `setf') for the PLACEs. Each PLACE is set to the corresponding
656 VALUE, then the BODY forms are executed. On exit, either normally or
657 because of a `throw' or error, the PLACEs are set back to their original
658 values. Note that this macro is *not* available in Common Lisp.
659 As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
660 the PLACE is not modified before executing BODY.
662 \(fn ((PLACE VALUE) ...) BODY...)" nil (quote macro))
664 (autoload 'callf "cl-macs" "\
665 Set PLACE to (FUNC PLACE ARGS...).
666 FUNC should be an unquoted function name. PLACE may be a symbol,
667 or any generalized variable allowed by `setf'.
669 \(fn FUNC PLACE ARGS...)" nil (quote macro))
671 (autoload 'callf2 "cl-macs" "\
672 Set PLACE to (FUNC ARG1 PLACE ARGS...).
673 Like `callf', but PLACE is the second argument of FUNC, not the first.
675 \(fn FUNC ARG1 PLACE ARGS...)" nil (quote macro))
677 (autoload 'define-modify-macro "cl-macs" "\
678 Define a `setf'-like modify macro.
679 If NAME is called, it combines its PLACE argument with the other arguments
680 from ARGLIST using FUNC: (define-modify-macro incf (&optional (n 1)) +)
682 \(fn NAME ARGLIST FUNC &optional DOC)" nil (quote macro))
684 (autoload 'defstruct "cl-macs" "\
685 Define a struct type.
686 This macro defines a new data type called NAME that stores data
687 in SLOTs. It defines a `make-NAME' constructor, a `copy-NAME'
688 copier, a `NAME-p' predicate, and slot accessors named `NAME-SLOT'.
689 You can use the accessors to set the corresponding slots, via `setf'.
691 NAME may instead take the form (NAME OPTIONS...), where each
692 OPTION is either a single keyword or (KEYWORD VALUE).
693 See Info node `(cl)Structures' for a list of valid keywords.
695 Each SLOT may instead take the form (SLOT SLOT-OPTS...), where
696 SLOT-OPTS are keyword-value pairs for that slot. Currently, only
697 one keyword is supported, `:read-only'. If this has a non-nil
698 value, that slot cannot be set via `setf'.
700 \(fn NAME SLOTS...)" nil (quote macro))
702 (autoload 'cl-struct-setf-expander "cl-macs" "\
705 \(fn X NAME ACCESSOR PRED-FORM POS)" nil nil)
707 (autoload 'deftype "cl-macs" "\
708 Define NAME as a new data type.
709 The type name can then be used in `typecase', `check-type', etc.
711 \(fn NAME ARGLIST &rest BODY)" nil (quote macro))
713 (autoload 'typep "cl-macs" "\
714 Check that OBJECT is of type TYPE.
715 TYPE is a Common Lisp-style type specifier.
717 \(fn OBJECT TYPE)" nil nil)
719 (autoload 'check-type "cl-macs" "\
720 Verify that FORM is of type TYPE; signal an error if not.
721 STRING is an optional description of the desired type.
723 \(fn FORM TYPE &optional STRING)" nil (quote macro))
725 (autoload 'assert "cl-macs" "\
726 Verify that FORM returns non-nil; signal an error if not.
727 Second arg SHOW-ARGS means to include arguments of FORM in message.
728 Other args STRING and ARGS... are arguments to be passed to `error'.
729 They are not evaluated unless the assertion fails. If STRING is
730 omitted, a default message listing FORM itself is used.
732 \(fn FORM &optional SHOW-ARGS STRING &rest ARGS)" nil (quote macro))
734 (autoload 'define-compiler-macro "cl-macs" "\
735 Define a compiler-only macro.
736 This is like `defmacro', but macro expansion occurs only if the call to
737 FUNC is compiled (i.e., not interpreted). Compiler macros should be used
738 for optimizing the way calls to FUNC are compiled; the form returned by
739 BODY should do the same thing as a call to the normal function called
740 FUNC, though possibly more efficiently. Note that, like regular macros,
741 compiler macros are expanded repeatedly until no further expansions are
742 possible. Unlike regular macros, BODY can decide to \"punt\" and leave the
743 original function call alone by declaring an initial `&whole foo' parameter
744 and then returning foo.
746 \(fn FUNC ARGS &rest BODY)" nil (quote macro))
748 (autoload 'compiler-macroexpand "cl-macs" "\
751 \(fn FORM)" nil nil)
753 (autoload 'defsubst* "cl-macs" "\
754 Define NAME as a function.
755 Like `defun', except the function is automatically declared `inline',
756 ARGLIST allows full Common Lisp conventions, and BODY is implicitly
757 surrounded by (block NAME ...).
759 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil (quote macro))
761 ;;;***
763 ;;;### (autoloads (tree-equal nsublis sublis nsubst-if-not nsubst-if
764 ;;;;;; nsubst subst-if-not subst-if subsetp nset-exclusive-or set-exclusive-or
765 ;;;;;; nset-difference set-difference nintersection intersection
766 ;;;;;; nunion union rassoc-if-not rassoc-if rassoc* assoc-if-not
767 ;;;;;; assoc-if assoc* cl-adjoin member-if-not member-if member*
768 ;;;;;; merge stable-sort sort* search mismatch count-if-not count-if
769 ;;;;;; count position-if-not position-if position find-if-not find-if
770 ;;;;;; find nsubstitute-if-not nsubstitute-if nsubstitute substitute-if-not
771 ;;;;;; substitute-if substitute delete-duplicates remove-duplicates
772 ;;;;;; delete-if-not delete-if delete* remove-if-not remove-if remove*
773 ;;;;;; replace fill reduce) "cl-seq" "cl-seq.el" "99095e49c83af1c8bec0fdcf517b3f95")
774 ;;; Generated autoloads from cl-seq.el
776 (autoload 'reduce "cl-seq" "\
777 Reduce two-argument FUNCTION across SEQ.
779 Keywords supported: :start :end :from-end :initial-value :key
781 \(fn FUNCTION SEQ [KEYWORD VALUE]...)" nil nil)
783 (autoload 'fill "cl-seq" "\
784 Fill the elements of SEQ with ITEM.
786 Keywords supported: :start :end
788 \(fn SEQ ITEM [KEYWORD VALUE]...)" nil nil)
790 (autoload 'replace "cl-seq" "\
791 Replace the elements of SEQ1 with the elements of SEQ2.
792 SEQ1 is destructively modified, then returned.
794 Keywords supported: :start1 :end1 :start2 :end2
796 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
798 (autoload 'remove* "cl-seq" "\
799 Remove all occurrences of ITEM in SEQ.
800 This is a non-destructive function; it makes a copy of SEQ if necessary
801 to avoid corrupting the original SEQ.
803 Keywords supported: :test :test-not :key :count :start :end :from-end
805 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
807 (autoload 'remove-if "cl-seq" "\
808 Remove all items satisfying PREDICATE in SEQ.
809 This is a non-destructive function; it makes a copy of SEQ if necessary
810 to avoid corrupting the original SEQ.
812 Keywords supported: :key :count :start :end :from-end
814 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
816 (autoload 'remove-if-not "cl-seq" "\
817 Remove all items not satisfying PREDICATE in SEQ.
818 This is a non-destructive function; it makes a copy of SEQ if necessary
819 to avoid corrupting the original SEQ.
821 Keywords supported: :key :count :start :end :from-end
823 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
825 (autoload 'delete* "cl-seq" "\
826 Remove all occurrences of ITEM in SEQ.
827 This is a destructive function; it reuses the storage of SEQ whenever possible.
829 Keywords supported: :test :test-not :key :count :start :end :from-end
831 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
833 (autoload 'delete-if "cl-seq" "\
834 Remove all items satisfying PREDICATE in SEQ.
835 This is a destructive function; it reuses the storage of SEQ whenever possible.
837 Keywords supported: :key :count :start :end :from-end
839 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
841 (autoload 'delete-if-not "cl-seq" "\
842 Remove all items not satisfying PREDICATE in SEQ.
843 This is a destructive function; it reuses the storage of SEQ whenever possible.
845 Keywords supported: :key :count :start :end :from-end
847 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
849 (autoload 'remove-duplicates "cl-seq" "\
850 Return a copy of SEQ with all duplicate elements removed.
852 Keywords supported: :test :test-not :key :start :end :from-end
854 \(fn SEQ [KEYWORD VALUE]...)" nil nil)
856 (autoload 'delete-duplicates "cl-seq" "\
857 Remove all duplicate elements from SEQ (destructively).
859 Keywords supported: :test :test-not :key :start :end :from-end
861 \(fn SEQ [KEYWORD VALUE]...)" nil nil)
863 (autoload 'substitute "cl-seq" "\
864 Substitute NEW for OLD in SEQ.
865 This is a non-destructive function; it makes a copy of SEQ if necessary
866 to avoid corrupting the original SEQ.
868 Keywords supported: :test :test-not :key :count :start :end :from-end
870 \(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)
872 (autoload 'substitute-if "cl-seq" "\
873 Substitute NEW for all items satisfying PREDICATE in SEQ.
874 This is a non-destructive function; it makes a copy of SEQ if necessary
875 to avoid corrupting the original SEQ.
877 Keywords supported: :key :count :start :end :from-end
879 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
881 (autoload 'substitute-if-not "cl-seq" "\
882 Substitute NEW for all items not satisfying PREDICATE in SEQ.
883 This is a non-destructive function; it makes a copy of SEQ if necessary
884 to avoid corrupting the original SEQ.
886 Keywords supported: :key :count :start :end :from-end
888 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
890 (autoload 'nsubstitute "cl-seq" "\
891 Substitute NEW for OLD in SEQ.
892 This is a destructive function; it reuses the storage of SEQ whenever possible.
894 Keywords supported: :test :test-not :key :count :start :end :from-end
896 \(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)
898 (autoload 'nsubstitute-if "cl-seq" "\
899 Substitute NEW for all items satisfying PREDICATE in SEQ.
900 This is a destructive function; it reuses the storage of SEQ whenever possible.
902 Keywords supported: :key :count :start :end :from-end
904 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
906 (autoload 'nsubstitute-if-not "cl-seq" "\
907 Substitute NEW for all items not satisfying PREDICATE in SEQ.
908 This is a destructive function; it reuses the storage of SEQ whenever possible.
910 Keywords supported: :key :count :start :end :from-end
912 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
914 (autoload 'find "cl-seq" "\
915 Find the first occurrence of ITEM in SEQ.
916 Return the matching ITEM, or nil if not found.
918 Keywords supported: :test :test-not :key :start :end :from-end
920 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
922 (autoload 'find-if "cl-seq" "\
923 Find the first item satisfying PREDICATE in SEQ.
924 Return the matching item, or nil if not found.
926 Keywords supported: :key :start :end :from-end
928 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
930 (autoload 'find-if-not "cl-seq" "\
931 Find the first item not satisfying PREDICATE in SEQ.
932 Return the matching item, or nil if not found.
934 Keywords supported: :key :start :end :from-end
936 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
938 (autoload 'position "cl-seq" "\
939 Find the first occurrence of ITEM in SEQ.
940 Return the index of the matching item, or nil if not found.
942 Keywords supported: :test :test-not :key :start :end :from-end
944 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
946 (autoload 'position-if "cl-seq" "\
947 Find the first item satisfying PREDICATE in SEQ.
948 Return the index of the matching item, or nil if not found.
950 Keywords supported: :key :start :end :from-end
952 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
954 (autoload 'position-if-not "cl-seq" "\
955 Find the first item not satisfying PREDICATE in SEQ.
956 Return the index of the matching item, or nil if not found.
958 Keywords supported: :key :start :end :from-end
960 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
962 (autoload 'count "cl-seq" "\
963 Count the number of occurrences of ITEM in SEQ.
965 Keywords supported: :test :test-not :key :start :end
967 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
969 (autoload 'count-if "cl-seq" "\
970 Count the number of items satisfying PREDICATE in SEQ.
972 Keywords supported: :key :start :end
974 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
976 (autoload 'count-if-not "cl-seq" "\
977 Count the number of items not satisfying PREDICATE in SEQ.
979 Keywords supported: :key :start :end
981 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
983 (autoload 'mismatch "cl-seq" "\
984 Compare SEQ1 with SEQ2, return index of first mismatching element.
985 Return nil if the sequences match. If one sequence is a prefix of the
986 other, the return value indicates the end of the shorter sequence.
988 Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
990 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
992 (autoload 'search "cl-seq" "\
993 Search for SEQ1 as a subsequence of SEQ2.
994 Return the index of the leftmost element of the first match found;
995 return nil if there are no matches.
997 Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
999 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
1001 (autoload 'sort* "cl-seq" "\
1002 Sort the argument SEQ according to PREDICATE.
1003 This is a destructive function; it reuses the storage of SEQ if possible.
1005 Keywords supported: :key
1007 \(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)
1009 (autoload 'stable-sort "cl-seq" "\
1010 Sort the argument SEQ stably according to PREDICATE.
1011 This is a destructive function; it reuses the storage of SEQ if possible.
1013 Keywords supported: :key
1015 \(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)
1017 (autoload 'merge "cl-seq" "\
1018 Destructively merge the two sequences to produce a new sequence.
1019 TYPE is the sequence type to return, SEQ1 and SEQ2 are the two argument
1020 sequences, and PREDICATE is a `less-than' predicate on the elements.
1022 Keywords supported: :key
1024 \(fn TYPE SEQ1 SEQ2 PREDICATE [KEYWORD VALUE]...)" nil nil)
1026 (autoload 'member* "cl-seq" "\
1027 Find the first occurrence of ITEM in LIST.
1028 Return the sublist of LIST whose car is ITEM.
1030 Keywords supported: :test :test-not :key
1032 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1034 (autoload 'member-if "cl-seq" "\
1035 Find the first item satisfying PREDICATE in LIST.
1036 Return the sublist of LIST whose car matches.
1038 Keywords supported: :key
1040 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1042 (autoload 'member-if-not "cl-seq" "\
1043 Find the first item not satisfying PREDICATE in LIST.
1044 Return the sublist of LIST whose car matches.
1046 Keywords supported: :key
1048 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1050 (autoload 'cl-adjoin "cl-seq" "\
1053 \(fn CL-ITEM CL-LIST &rest CL-KEYS)" nil nil)
1055 (autoload 'assoc* "cl-seq" "\
1056 Find the first item whose car matches ITEM in LIST.
1058 Keywords supported: :test :test-not :key
1060 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1062 (autoload 'assoc-if "cl-seq" "\
1063 Find the first item whose car satisfies PREDICATE in LIST.
1065 Keywords supported: :key
1067 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1069 (autoload 'assoc-if-not "cl-seq" "\
1070 Find the first item whose car does not satisfy PREDICATE in LIST.
1072 Keywords supported: :key
1074 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1076 (autoload 'rassoc* "cl-seq" "\
1077 Find the first item whose cdr matches ITEM in LIST.
1079 Keywords supported: :test :test-not :key
1081 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1083 (autoload 'rassoc-if "cl-seq" "\
1084 Find the first item whose cdr satisfies PREDICATE in LIST.
1086 Keywords supported: :key
1088 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1090 (autoload 'rassoc-if-not "cl-seq" "\
1091 Find the first item whose cdr does not satisfy PREDICATE in LIST.
1093 Keywords supported: :key
1095 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1097 (autoload 'union "cl-seq" "\
1098 Combine LIST1 and LIST2 using a set-union operation.
1099 The resulting list contains all items that appear in either LIST1 or LIST2.
1100 This is a non-destructive function; it makes a copy of the data if necessary
1101 to avoid corrupting the original LIST1 and LIST2.
1103 Keywords supported: :test :test-not :key
1105 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1107 (autoload 'nunion "cl-seq" "\
1108 Combine LIST1 and LIST2 using a set-union operation.
1109 The resulting list contains all items that appear in either LIST1 or LIST2.
1110 This is a destructive function; it reuses the storage of LIST1 and LIST2
1111 whenever possible.
1113 Keywords supported: :test :test-not :key
1115 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1117 (autoload 'intersection "cl-seq" "\
1118 Combine LIST1 and LIST2 using a set-intersection operation.
1119 The resulting list contains all items that appear in both LIST1 and LIST2.
1120 This is a non-destructive function; it makes a copy of the data if necessary
1121 to avoid corrupting the original LIST1 and LIST2.
1123 Keywords supported: :test :test-not :key
1125 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1127 (autoload 'nintersection "cl-seq" "\
1128 Combine LIST1 and LIST2 using a set-intersection operation.
1129 The resulting list contains all items that appear in both LIST1 and LIST2.
1130 This is a destructive function; it reuses the storage of LIST1 and LIST2
1131 whenever possible.
1133 Keywords supported: :test :test-not :key
1135 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1137 (autoload 'set-difference "cl-seq" "\
1138 Combine LIST1 and LIST2 using a set-difference operation.
1139 The resulting list contains all items that appear in LIST1 but not LIST2.
1140 This is a non-destructive function; it makes a copy of the data if necessary
1141 to avoid corrupting the original LIST1 and LIST2.
1143 Keywords supported: :test :test-not :key
1145 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1147 (autoload 'nset-difference "cl-seq" "\
1148 Combine LIST1 and LIST2 using a set-difference operation.
1149 The resulting list contains all items that appear in LIST1 but not LIST2.
1150 This is a destructive function; it reuses the storage of LIST1 and LIST2
1151 whenever possible.
1153 Keywords supported: :test :test-not :key
1155 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1157 (autoload 'set-exclusive-or "cl-seq" "\
1158 Combine LIST1 and LIST2 using a set-exclusive-or operation.
1159 The resulting list contains all items appearing in exactly one of LIST1, LIST2.
1160 This is a non-destructive function; it makes a copy of the data if necessary
1161 to avoid corrupting the original LIST1 and LIST2.
1163 Keywords supported: :test :test-not :key
1165 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1167 (autoload 'nset-exclusive-or "cl-seq" "\
1168 Combine LIST1 and LIST2 using a set-exclusive-or operation.
1169 The resulting list contains all items appearing in exactly one of LIST1, LIST2.
1170 This is a destructive function; it reuses the storage of LIST1 and LIST2
1171 whenever possible.
1173 Keywords supported: :test :test-not :key
1175 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1177 (autoload 'subsetp "cl-seq" "\
1178 Return true if LIST1 is a subset of LIST2.
1179 I.e., if every element of LIST1 also appears in LIST2.
1181 Keywords supported: :test :test-not :key
1183 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1185 (autoload 'subst-if "cl-seq" "\
1186 Substitute NEW for elements matching PREDICATE in TREE (non-destructively).
1187 Return a copy of TREE with all matching elements replaced by NEW.
1189 Keywords supported: :key
1191 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1193 (autoload 'subst-if-not "cl-seq" "\
1194 Substitute NEW for elts not matching PREDICATE in TREE (non-destructively).
1195 Return a copy of TREE with all non-matching elements replaced by NEW.
1197 Keywords supported: :key
1199 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1201 (autoload 'nsubst "cl-seq" "\
1202 Substitute NEW for OLD everywhere in TREE (destructively).
1203 Any element of TREE which is `eql' to OLD is changed to NEW (via a call
1204 to `setcar').
1206 Keywords supported: :test :test-not :key
1208 \(fn NEW OLD TREE [KEYWORD VALUE]...)" nil nil)
1210 (autoload 'nsubst-if "cl-seq" "\
1211 Substitute NEW for elements matching PREDICATE in TREE (destructively).
1212 Any element of TREE which matches is changed to NEW (via a call to `setcar').
1214 Keywords supported: :key
1216 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1218 (autoload 'nsubst-if-not "cl-seq" "\
1219 Substitute NEW for elements not matching PREDICATE in TREE (destructively).
1220 Any element of TREE which matches is changed to NEW (via a call to `setcar').
1222 Keywords supported: :key
1224 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1226 (autoload 'sublis "cl-seq" "\
1227 Perform substitutions indicated by ALIST in TREE (non-destructively).
1228 Return a copy of TREE with all matching elements replaced.
1230 Keywords supported: :test :test-not :key
1232 \(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)
1234 (autoload 'nsublis "cl-seq" "\
1235 Perform substitutions indicated by ALIST in TREE (destructively).
1236 Any matching element of TREE is changed via a call to `setcar'.
1238 Keywords supported: :test :test-not :key
1240 \(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)
1242 (autoload 'tree-equal "cl-seq" "\
1243 Return t if trees TREE1 and TREE2 have `eql' leaves.
1244 Atoms are compared by `eql'; cons cells are compared recursively.
1246 Keywords supported: :test :test-not :key
1248 \(fn TREE1 TREE2 [KEYWORD VALUE]...)" nil nil)
1250 ;;;***
1252 ;; Local Variables:
1253 ;; version-control: never
1254 ;; no-byte-compile: t
1255 ;; no-update-autoloads: t
1256 ;; coding: utf-8
1257 ;; End:
1258 ;;; cl-loaddefs.el ends here