*** empty log message ***
[emacs.git] / lisp / emacs-lisp / float.el
blob85d9b4db78c358f44d400c76cfe5bfff947bc6e0
1 ;;; float.el --- floating point arithmetic package.
3 ;; Author: Bill Rosenblatt
4 ;; Maintainer: FSF
5 ;; Last-Modified: 16 Mar 1992
7 ;; Copyright (C) 1986 Free Software Foundation, Inc.
9 ;; This file is part of GNU Emacs.
11 ;; GNU Emacs is free software; you can redistribute it and/or modify
12 ;; it under the terms of the GNU General Public License as published by
13 ;; the Free Software Foundation; either version 2, or (at your option)
14 ;; any later version.
16 ;; GNU Emacs is distributed in the hope that it will be useful,
17 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
18 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 ;; GNU General Public License for more details.
21 ;; You should have received a copy of the GNU General Public License
22 ;; along with GNU Emacs; see the file COPYING. If not, write to
23 ;; the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 ;;; Commentary:
27 ;; Floating point numbers are represented by dot-pairs (mant . exp)
28 ;; where mant is the 24-bit signed integral mantissa and exp is the
29 ;; base 2 exponent.
31 ;; Emacs LISP supports a 24-bit signed integer data type, which has a
32 ;; range of -(2**23) to +(2**23)-1, or -8388608 to 8388607 decimal.
33 ;; This gives six significant decimal digit accuracy. Exponents can
34 ;; be anything in the range -(2**23) to +(2**23)-1.
36 ;; User interface:
37 ;; function f converts from integer to floating point
38 ;; function string-to-float converts from string to floating point
39 ;; function fint converts a floating point to integer (with truncation)
40 ;; function float-to-string converts from floating point to string
41 ;;
42 ;; Caveats:
43 ;; - Exponents outside of the range of +/-100 or so will cause certain
44 ;; functions (especially conversion routines) to take forever.
45 ;; - Very little checking is done for fixed point overflow/underflow.
46 ;; - No checking is done for over/underflow of the exponent
47 ;; (hardly necessary when exponent can be 2**23).
48 ;;
50 ;; Bill Rosenblatt
51 ;; June 20, 1986
54 ;;; Code:
56 ;; fundamental implementation constants
57 (defconst exp-base 2
58 "Base of exponent in this floating point representation.")
60 (defconst mantissa-bits 24
61 "Number of significant bits in this floating point representation.")
63 (defconst decimal-digits 6
64 "Number of decimal digits expected to be accurate.")
66 (defconst expt-digits 2
67 "Maximum permitted digits in a scientific notation exponent.")
69 ;; other constants
70 (defconst maxbit (1- mantissa-bits)
71 "Number of highest bit")
73 (defconst mantissa-maxval (1- (ash 1 maxbit))
74 "Maximum permissable value of mantissa")
76 (defconst mantissa-minval (ash 1 maxbit)
77 "Minimum permissable value of mantissa")
79 (defconst floating-point-regexp
80 "^[ \t]*\\(-?\\)\\([0-9]*\\)\
81 \\(\\.\\([0-9]*\\)\\|\\)\
82 \\(\\(\\([Ee]\\)\\(-?\\)\\([0-9][0-9]*\\)\\)\\|\\)[ \t]*$"
83 "Regular expression to match floating point numbers. Extract matches:
84 1 - minus sign
85 2 - integer part
86 4 - fractional part
87 8 - minus sign for power of ten
88 9 - power of ten
91 (defconst high-bit-mask (ash 1 maxbit)
92 "Masks all bits except the high-order (sign) bit.")
94 (defconst second-bit-mask (ash 1 (1- maxbit))
95 "Masks all bits except the highest-order magnitude bit")
97 ;; various useful floating point constants
98 (setq _f0 '(0 . 1))
100 (setq _f1/2 '(4194304 . -23))
102 (setq _f1 '(4194304 . -22))
104 (setq _f10 '(5242880 . -19))
106 ;; support for decimal conversion routines
107 (setq powers-of-10 (make-vector (1+ decimal-digits) _f1))
108 (aset powers-of-10 1 _f10)
109 (aset powers-of-10 2 '(6553600 . -16))
110 (aset powers-of-10 3 '(8192000 . -13))
111 (aset powers-of-10 4 '(5120000 . -9))
112 (aset powers-of-10 5 '(6400000 . -6))
113 (aset powers-of-10 6 '(8000000 . -3))
115 (setq all-decimal-digs-minval (aref powers-of-10 (1- decimal-digits))
116 highest-power-of-10 (aref powers-of-10 decimal-digits))
118 (defun fashl (fnum) ; floating-point arithmetic shift left
119 (cons (ash (car fnum) 1) (1- (cdr fnum))))
121 (defun fashr (fnum) ; floating point arithmetic shift right
122 (cons (ash (car fnum) -1) (1+ (cdr fnum))))
124 (defun normalize (fnum)
125 (if (> (car fnum) 0) ; make sure next-to-highest bit is set
126 (while (zerop (logand (car fnum) second-bit-mask))
127 (setq fnum (fashl fnum)))
128 (if (< (car fnum) 0) ; make sure highest bit is set
129 (while (zerop (logand (car fnum) high-bit-mask))
130 (setq fnum (fashl fnum)))
131 (setq fnum _f0))) ; "standard 0"
132 fnum)
134 (defun abs (n) ; integer absolute value
135 (if (>= n 0) n (- n)))
137 (defun fabs (fnum) ; re-normalize after taking abs value
138 (normalize (cons (abs (car fnum)) (cdr fnum))))
140 (defun xor (a b) ; logical exclusive or
141 (and (or a b) (not (and a b))))
143 (defun same-sign (a b) ; two f-p numbers have same sign?
144 (not (xor (natnump (car a)) (natnump (car b)))))
146 (defun extract-match (str i) ; used after string-match
147 (condition-case ()
148 (substring str (match-beginning i) (match-end i))
149 (error "")))
151 ;; support for the multiplication function
152 (setq halfword-bits (/ mantissa-bits 2) ; bits in a halfword
153 masklo (1- (ash 1 halfword-bits)) ; isolate the lower halfword
154 maskhi (lognot masklo) ; isolate the upper halfword
155 round-limit (ash 1 (/ halfword-bits 2)))
157 (defun hihalf (n) ; return high halfword, shifted down
158 (ash (logand n maskhi) (- halfword-bits)))
160 (defun lohalf (n) ; return low halfword
161 (logand n masklo))
163 ;; Visible functions
165 ;; Arithmetic functions
166 (defun f+ (a1 a2)
167 "Returns the sum of two floating point numbers."
168 (let ((f1 (fmax a1 a2))
169 (f2 (fmin a1 a2)))
170 (if (same-sign a1 a2)
171 (setq f1 (fashr f1) ; shift right to avoid overflow
172 f2 (fashr f2)))
173 (normalize
174 (cons (+ (car f1) (ash (car f2) (- (cdr f2) (cdr f1))))
175 (cdr f1)))))
177 (defun f- (a1 &optional a2) ; unary or binary minus
178 "Returns the difference of two floating point numbers."
179 (if a2
180 (f+ a1 (f- a2))
181 (normalize (cons (- (car a1)) (cdr a1)))))
183 (defun f* (a1 a2) ; multiply in halfword chunks
184 "Returns the product of two floating point numbers."
185 (let* ((i1 (car (fabs a1)))
186 (i2 (car (fabs a2)))
187 (sign (not (same-sign a1 a2)))
188 (prodlo (+ (hihalf (* (lohalf i1) (lohalf i2)))
189 (lohalf (* (hihalf i1) (lohalf i2)))
190 (lohalf (* (lohalf i1) (hihalf i2)))))
191 (prodhi (+ (* (hihalf i1) (hihalf i2))
192 (hihalf (* (hihalf i1) (lohalf i2)))
193 (hihalf (* (lohalf i1) (hihalf i2)))
194 (hihalf prodlo))))
195 (if (> (lohalf prodlo) round-limit)
196 (setq prodhi (1+ prodhi))) ; round off truncated bits
197 (normalize
198 (cons (if sign (- prodhi) prodhi)
199 (+ (cdr (fabs a1)) (cdr (fabs a2)) mantissa-bits)))))
201 (defun f/ (a1 a2) ; SLOW subtract-and-shift algorithm
202 "Returns the quotient of two floating point numbers."
203 (if (zerop (car a2)) ; if divide by 0
204 (signal 'arith-error (list "attempt to divide by zero" a1 a2))
205 (let ((bits (1- maxbit))
206 (quotient 0)
207 (dividend (car (fabs a1)))
208 (divisor (car (fabs a2)))
209 (sign (not (same-sign a1 a2))))
210 (while (natnump bits)
211 (if (< (- dividend divisor) 0)
212 (setq quotient (ash quotient 1))
213 (setq quotient (1+ (ash quotient 1))
214 dividend (- dividend divisor)))
215 (setq dividend (ash dividend 1)
216 bits (1- bits)))
217 (normalize
218 (cons (if sign (- quotient) quotient)
219 (- (cdr (fabs a1)) (cdr (fabs a2)) (1- maxbit)))))))
221 (defun f% (a1 a2)
222 "Returns the remainder of first floating point number divided by second."
223 (f- a1 (f* (ftrunc (f/ a1 a2)) a2)))
226 ;; Comparison functions
227 (defun f= (a1 a2)
228 "Returns t if two floating point numbers are equal, nil otherwise."
229 (equal a1 a2))
231 (defun f> (a1 a2)
232 "Returns t if first floating point number is greater than second,
233 nil otherwise."
234 (cond ((and (natnump (car a1)) (< (car a2) 0))
235 t) ; a1 nonnegative, a2 negative
236 ((and (> (car a1) 0) (<= (car a2) 0))
237 t) ; a1 positive, a2 nonpositive
238 ((and (<= (car a1) 0) (natnump (car a2)))
239 nil) ; a1 nonpos, a2 nonneg
240 ((/= (cdr a1) (cdr a2)) ; same signs. exponents differ
241 (> (cdr a1) (cdr a2))) ; compare the mantissas.
243 (> (car a1) (car a2))))) ; same exponents.
245 (defun f>= (a1 a2)
246 "Returns t if first floating point number is greater than or equal to
247 second, nil otherwise."
248 (or (f> a1 a2) (f= a1 a2)))
250 (defun f< (a1 a2)
251 "Returns t if first floating point number is less than second,
252 nil otherwise."
253 (not (f>= a1 a2)))
255 (defun f<= (a1 a2)
256 "Returns t if first floating point number is less than or equal to
257 second, nil otherwise."
258 (not (f> a1 a2)))
260 (defun f/= (a1 a2)
261 "Returns t if first floating point number is not equal to second,
262 nil otherwise."
263 (not (f= a1 a2)))
265 (defun fmin (a1 a2)
266 "Returns the minimum of two floating point numbers."
267 (if (f< a1 a2) a1 a2))
269 (defun fmax (a1 a2)
270 "Returns the maximum of two floating point numbers."
271 (if (f> a1 a2) a1 a2))
273 (defun fzerop (fnum)
274 "Returns t if the floating point number is zero, nil otherwise."
275 (= (car fnum) 0))
277 (defun floatp (fnum)
278 "Returns t if the arg is a floating point number, nil otherwise."
279 (and (consp fnum) (integerp (car fnum)) (integerp (cdr fnum))))
281 ;; Conversion routines
282 (defun f (int)
283 "Convert the integer argument to floating point, like a C cast operator."
284 (normalize (cons int '0)))
286 (defun int-to-hex-string (int)
287 "Convert the integer argument to a C-style hexadecimal string."
288 (let ((shiftval -20)
289 (str "0x")
290 (hex-chars "0123456789ABCDEF"))
291 (while (<= shiftval 0)
292 (setq str (concat str (char-to-string
293 (aref hex-chars
294 (logand (lsh int shiftval) 15))))
295 shiftval (+ shiftval 4)))
296 str))
298 (defun ftrunc (fnum) ; truncate fractional part
299 "Truncate the fractional part of a floating point number."
300 (cond ((natnump (cdr fnum)) ; it's all integer, return number as is
301 fnum)
302 ((<= (cdr fnum) (- maxbit)) ; it's all fractional, return 0
303 '(0 . 1))
304 (t ; otherwise mask out fractional bits
305 (let ((mant (car fnum)) (exp (cdr fnum)))
306 (normalize
307 (cons (if (natnump mant) ; if negative, use absolute value
308 (ash (ash mant exp) (- exp))
309 (- (ash (ash (- mant) exp) (- exp))))
310 exp))))))
312 (defun fint (fnum) ; truncate and convert to integer
313 "Convert the floating point number to integer, with truncation,
314 like a C cast operator."
315 (let* ((tf (ftrunc fnum)) (tint (car tf)) (texp (cdr tf)))
316 (cond ((>= texp mantissa-bits) ; too high, return "maxint"
317 mantissa-maxval)
318 ((<= texp (- mantissa-bits)) ; too low, return "minint"
319 mantissa-minval)
320 (t ; in range
321 (ash tint texp))))) ; shift so that exponent is 0
323 (defun float-to-string (fnum &optional sci)
324 "Convert the floating point number to a decimal string.
325 Optional second argument non-nil means use scientific notation."
326 (let* ((value (fabs fnum)) (sign (< (car fnum) 0))
327 (power 0) (result 0) (str "")
328 (temp 0) (pow10 _f1))
330 (if (f= fnum _f0)
332 (if (f>= value _f1) ; find largest power of 10 <= value
333 (progn ; value >= 1, power is positive
334 (while (f<= (setq temp (f* pow10 highest-power-of-10)) value)
335 (setq pow10 temp
336 power (+ power decimal-digits)))
337 (while (f<= (setq temp (f* pow10 _f10)) value)
338 (setq pow10 temp
339 power (1+ power))))
340 (progn ; value < 1, power is negative
341 (while (f> (setq temp (f/ pow10 highest-power-of-10)) value)
342 (setq pow10 temp
343 power (- power decimal-digits)))
344 (while (f> pow10 value)
345 (setq pow10 (f/ pow10 _f10)
346 power (1- power)))))
347 ; get value in range 100000 to 999999
348 (setq value (f* (f/ value pow10) all-decimal-digs-minval)
349 result (ftrunc value))
350 (let (int)
351 (if (f> (f- value result) _f1/2) ; round up if remainder > 0.5
352 (setq int (1+ (fint result)))
353 (setq int (fint result)))
354 (setq str (int-to-string int))
355 (if (>= int 1000000)
356 (setq power (1+ power))))
358 (if sci ; scientific notation
359 (setq str (concat (substring str 0 1) "." (substring str 1)
360 "E" (int-to-string power)))
362 ; regular decimal string
363 (cond ((>= power (1- decimal-digits))
364 ; large power, append zeroes
365 (let ((zeroes (- power decimal-digits)))
366 (while (natnump zeroes)
367 (setq str (concat str "0")
368 zeroes (1- zeroes)))))
370 ; negative power, prepend decimal
371 ((< power 0) ; point and zeroes
372 (let ((zeroes (- (- power) 2)))
373 (while (natnump zeroes)
374 (setq str (concat "0" str)
375 zeroes (1- zeroes)))
376 (setq str (concat "0." str))))
378 (t ; in range, insert decimal point
379 (setq str (concat
380 (substring str 0 (1+ power))
382 (substring str (1+ power)))))))
384 (if sign ; if negative, prepend minus sign
385 (concat "-" str)
386 str))))
389 ;; string to float conversion.
390 ;; accepts scientific notation, but ignores anything after the first two
391 ;; digits of the exponent.
392 (defun string-to-float (str)
393 "Convert the string to a floating point number.
394 Accepts a decimal string in scientific notation, with exponent preceded
395 by either E or e. Only the six most significant digits of the integer
396 and fractional parts are used; only the first two digits of the exponent
397 are used. Negative signs preceding both the decimal number and the exponent
398 are recognized."
400 (if (string-match floating-point-regexp str 0)
401 (let (power)
403 ; calculate the mantissa
404 (let* ((int-subst (extract-match str 2))
405 (fract-subst (extract-match str 4))
406 (digit-string (concat int-subst fract-subst))
407 (mant-sign (equal (extract-match str 1) "-"))
408 (leading-0s 0) (round-up nil))
410 ; get rid of leading 0's
411 (setq power (- (length int-subst) decimal-digits))
412 (while (and (< leading-0s (length digit-string))
413 (= (aref digit-string leading-0s) ?0))
414 (setq leading-0s (1+ leading-0s)))
415 (setq power (- power leading-0s)
416 digit-string (substring digit-string leading-0s))
418 ; if more than 6 digits, round off
419 (if (> (length digit-string) decimal-digits)
420 (setq round-up (>= (aref digit-string decimal-digits) ?5)
421 digit-string (substring digit-string 0 decimal-digits))
422 (setq power (+ power (- decimal-digits (length digit-string)))))
424 ; round up and add minus sign, if necessary
425 (f (* (+ (string-to-int digit-string)
426 (if round-up 1 0))
427 (if mant-sign -1 1))))
429 ; calculate the exponent (power of ten)
430 (let* ((expt-subst (extract-match str 9))
431 (expt-sign (equal (extract-match str 8) "-"))
432 (expt 0) (chunks 0) (tens 0) (exponent _f1)
433 (func 'f*))
435 (setq expt (+ (* (string-to-int
436 (substring expt-subst 0
437 (min expt-digits (length expt-subst))))
438 (if expt-sign -1 1))
439 power))
440 (if (< expt 0) ; if power of 10 negative
441 (setq expt (- expt) ; take abs val of exponent
442 func 'f/)) ; and set up to divide, not multiply
444 (setq chunks (/ expt decimal-digits)
445 tens (% expt decimal-digits))
446 ; divide or multiply by "chunks" of 10**6
447 (while (> chunks 0)
448 (setq exponent (funcall func exponent highest-power-of-10)
449 chunks (1- chunks)))
450 ; divide or multiply by remaining power of ten
451 (funcall func exponent (aref powers-of-10 tens)))))
453 _f0)) ; if invalid, return 0
455 (provide 'float)
457 ;;; float.el ends here