Fix comment in css-mode.el
[emacs.git] / src / alloc.c
blob1a6d4e2d565d3600b3533102779fc0d0bf15a56a
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2017 Free Software
4 Foundation, Inc.
6 This file is part of GNU Emacs.
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or (at
11 your option) any later version.
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
21 #include <config.h>
23 #include <errno.h>
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <limits.h> /* For CHAR_BIT. */
27 #include <signal.h> /* For SIGABRT, SIGDANGER. */
29 #ifdef HAVE_PTHREAD
30 #include <pthread.h>
31 #endif
33 #include "lisp.h"
34 #include "dispextern.h"
35 #include "intervals.h"
36 #include "puresize.h"
37 #include "sheap.h"
38 #include "systime.h"
39 #include "character.h"
40 #include "buffer.h"
41 #include "window.h"
42 #include "keyboard.h"
43 #include "frame.h"
44 #include "blockinput.h"
45 #include "termhooks.h" /* For struct terminal. */
46 #ifdef HAVE_WINDOW_SYSTEM
47 #include TERM_HEADER
48 #endif /* HAVE_WINDOW_SYSTEM */
50 #include <flexmember.h>
51 #include <verify.h>
52 #include <execinfo.h> /* For backtrace. */
54 #ifdef HAVE_LINUX_SYSINFO
55 #include <sys/sysinfo.h>
56 #endif
58 #ifdef MSDOS
59 #include "dosfns.h" /* For dos_memory_info. */
60 #endif
62 #ifdef HAVE_MALLOC_H
63 # include <malloc.h>
64 #endif
66 #if (defined ENABLE_CHECKING \
67 && defined HAVE_VALGRIND_VALGRIND_H \
68 && !defined USE_VALGRIND)
69 # define USE_VALGRIND 1
70 #endif
72 #if USE_VALGRIND
73 #include <valgrind/valgrind.h>
74 #include <valgrind/memcheck.h>
75 static bool valgrind_p;
76 #endif
78 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects. */
80 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
81 memory. Can do this only if using gmalloc.c and if not checking
82 marked objects. */
84 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
85 || defined HYBRID_MALLOC || defined GC_CHECK_MARKED_OBJECTS)
86 #undef GC_MALLOC_CHECK
87 #endif
89 #include <unistd.h>
90 #include <fcntl.h>
92 #ifdef USE_GTK
93 # include "gtkutil.h"
94 #endif
95 #ifdef WINDOWSNT
96 #include "w32.h"
97 #include "w32heap.h" /* for sbrk */
98 #endif
100 #ifdef GNU_LINUX
101 /* The address where the heap starts. */
102 void *
103 my_heap_start (void)
105 static void *start;
106 if (! start)
107 start = sbrk (0);
108 return start;
110 #endif
112 #ifdef DOUG_LEA_MALLOC
114 /* Specify maximum number of areas to mmap. It would be nice to use a
115 value that explicitly means "no limit". */
117 #define MMAP_MAX_AREAS 100000000
119 /* A pointer to the memory allocated that copies that static data
120 inside glibc's malloc. */
121 static void *malloc_state_ptr;
123 /* Restore the dumped malloc state. Because malloc can be invoked
124 even before main (e.g. by the dynamic linker), the dumped malloc
125 state must be restored as early as possible using this special hook. */
126 static void
127 malloc_initialize_hook (void)
129 static bool malloc_using_checking;
131 if (! initialized)
133 #ifdef GNU_LINUX
134 my_heap_start ();
135 #endif
136 malloc_using_checking = getenv ("MALLOC_CHECK_") != NULL;
138 else
140 if (!malloc_using_checking)
142 /* Work around a bug in glibc's malloc. MALLOC_CHECK_ must be
143 ignored if the heap to be restored was constructed without
144 malloc checking. Can't use unsetenv, since that calls malloc. */
145 char **p = environ;
146 if (p)
147 for (; *p; p++)
148 if (strncmp (*p, "MALLOC_CHECK_=", 14) == 0)
151 *p = p[1];
152 while (*++p);
154 break;
158 if (malloc_set_state (malloc_state_ptr) != 0)
159 emacs_abort ();
160 # ifndef XMALLOC_OVERRUN_CHECK
161 alloc_unexec_post ();
162 # endif
166 /* Declare the malloc initialization hook, which runs before 'main' starts.
167 EXTERNALLY_VISIBLE works around Bug#22522. */
168 # ifndef __MALLOC_HOOK_VOLATILE
169 # define __MALLOC_HOOK_VOLATILE
170 # endif
171 voidfuncptr __MALLOC_HOOK_VOLATILE __malloc_initialize_hook EXTERNALLY_VISIBLE
172 = malloc_initialize_hook;
174 #endif
176 #if defined DOUG_LEA_MALLOC || !defined CANNOT_DUMP
178 /* Allocator-related actions to do just before and after unexec. */
180 void
181 alloc_unexec_pre (void)
183 # ifdef DOUG_LEA_MALLOC
184 malloc_state_ptr = malloc_get_state ();
185 if (!malloc_state_ptr)
186 fatal ("malloc_get_state: %s", strerror (errno));
187 # endif
188 # ifdef HYBRID_MALLOC
189 bss_sbrk_did_unexec = true;
190 # endif
193 void
194 alloc_unexec_post (void)
196 # ifdef DOUG_LEA_MALLOC
197 free (malloc_state_ptr);
198 # endif
199 # ifdef HYBRID_MALLOC
200 bss_sbrk_did_unexec = false;
201 # endif
203 #endif
205 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
206 to a struct Lisp_String. */
208 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
209 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
210 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
212 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
213 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
214 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
216 /* Default value of gc_cons_threshold (see below). */
218 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
220 /* Global variables. */
221 struct emacs_globals globals;
223 /* Number of bytes of consing done since the last gc. */
225 EMACS_INT consing_since_gc;
227 /* Similar minimum, computed from Vgc_cons_percentage. */
229 EMACS_INT gc_relative_threshold;
231 /* Minimum number of bytes of consing since GC before next GC,
232 when memory is full. */
234 EMACS_INT memory_full_cons_threshold;
236 /* True during GC. */
238 bool gc_in_progress;
240 /* Number of live and free conses etc. */
242 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
243 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
244 static EMACS_INT total_free_floats, total_floats;
246 /* Points to memory space allocated as "spare", to be freed if we run
247 out of memory. We keep one large block, four cons-blocks, and
248 two string blocks. */
250 static char *spare_memory[7];
252 /* Amount of spare memory to keep in large reserve block, or to see
253 whether this much is available when malloc fails on a larger request. */
255 #define SPARE_MEMORY (1 << 14)
257 /* Initialize it to a nonzero value to force it into data space
258 (rather than bss space). That way unexec will remap it into text
259 space (pure), on some systems. We have not implemented the
260 remapping on more recent systems because this is less important
261 nowadays than in the days of small memories and timesharing. */
263 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
264 #define PUREBEG (char *) pure
266 /* Pointer to the pure area, and its size. */
268 static char *purebeg;
269 static ptrdiff_t pure_size;
271 /* Number of bytes of pure storage used before pure storage overflowed.
272 If this is non-zero, this implies that an overflow occurred. */
274 static ptrdiff_t pure_bytes_used_before_overflow;
276 /* Index in pure at which next pure Lisp object will be allocated.. */
278 static ptrdiff_t pure_bytes_used_lisp;
280 /* Number of bytes allocated for non-Lisp objects in pure storage. */
282 static ptrdiff_t pure_bytes_used_non_lisp;
284 /* If nonzero, this is a warning delivered by malloc and not yet
285 displayed. */
287 const char *pending_malloc_warning;
289 #if 0 /* Normally, pointer sanity only on request... */
290 #ifdef ENABLE_CHECKING
291 #define SUSPICIOUS_OBJECT_CHECKING 1
292 #endif
293 #endif
295 /* ... but unconditionally use SUSPICIOUS_OBJECT_CHECKING while the GC
296 bug is unresolved. */
297 #define SUSPICIOUS_OBJECT_CHECKING 1
299 #ifdef SUSPICIOUS_OBJECT_CHECKING
300 struct suspicious_free_record
302 void *suspicious_object;
303 void *backtrace[128];
305 static void *suspicious_objects[32];
306 static int suspicious_object_index;
307 struct suspicious_free_record suspicious_free_history[64] EXTERNALLY_VISIBLE;
308 static int suspicious_free_history_index;
309 /* Find the first currently-monitored suspicious pointer in range
310 [begin,end) or NULL if no such pointer exists. */
311 static void *find_suspicious_object_in_range (void *begin, void *end);
312 static void detect_suspicious_free (void *ptr);
313 #else
314 # define find_suspicious_object_in_range(begin, end) NULL
315 # define detect_suspicious_free(ptr) (void)
316 #endif
318 /* Maximum amount of C stack to save when a GC happens. */
320 #ifndef MAX_SAVE_STACK
321 #define MAX_SAVE_STACK 16000
322 #endif
324 /* Buffer in which we save a copy of the C stack at each GC. */
326 #if MAX_SAVE_STACK > 0
327 static char *stack_copy;
328 static ptrdiff_t stack_copy_size;
330 /* Copy to DEST a block of memory from SRC of size SIZE bytes,
331 avoiding any address sanitization. */
333 static void * ATTRIBUTE_NO_SANITIZE_ADDRESS
334 no_sanitize_memcpy (void *dest, void const *src, size_t size)
336 if (! ADDRESS_SANITIZER)
337 return memcpy (dest, src, size);
338 else
340 size_t i;
341 char *d = dest;
342 char const *s = src;
343 for (i = 0; i < size; i++)
344 d[i] = s[i];
345 return dest;
349 #endif /* MAX_SAVE_STACK > 0 */
351 static void mark_terminals (void);
352 static void gc_sweep (void);
353 static Lisp_Object make_pure_vector (ptrdiff_t);
354 static void mark_buffer (struct buffer *);
356 #if !defined REL_ALLOC || defined SYSTEM_MALLOC || defined HYBRID_MALLOC
357 static void refill_memory_reserve (void);
358 #endif
359 static void compact_small_strings (void);
360 static void free_large_strings (void);
361 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
363 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
364 what memory allocated via lisp_malloc and lisp_align_malloc is intended
365 for what purpose. This enumeration specifies the type of memory. */
367 enum mem_type
369 MEM_TYPE_NON_LISP,
370 MEM_TYPE_BUFFER,
371 MEM_TYPE_CONS,
372 MEM_TYPE_STRING,
373 MEM_TYPE_MISC,
374 MEM_TYPE_SYMBOL,
375 MEM_TYPE_FLOAT,
376 /* Since all non-bool pseudovectors are small enough to be
377 allocated from vector blocks, this memory type denotes
378 large regular vectors and large bool pseudovectors. */
379 MEM_TYPE_VECTORLIKE,
380 /* Special type to denote vector blocks. */
381 MEM_TYPE_VECTOR_BLOCK,
382 /* Special type to denote reserved memory. */
383 MEM_TYPE_SPARE
386 /* A unique object in pure space used to make some Lisp objects
387 on free lists recognizable in O(1). */
389 static Lisp_Object Vdead;
390 #define DEADP(x) EQ (x, Vdead)
392 #ifdef GC_MALLOC_CHECK
394 enum mem_type allocated_mem_type;
396 #endif /* GC_MALLOC_CHECK */
398 /* A node in the red-black tree describing allocated memory containing
399 Lisp data. Each such block is recorded with its start and end
400 address when it is allocated, and removed from the tree when it
401 is freed.
403 A red-black tree is a balanced binary tree with the following
404 properties:
406 1. Every node is either red or black.
407 2. Every leaf is black.
408 3. If a node is red, then both of its children are black.
409 4. Every simple path from a node to a descendant leaf contains
410 the same number of black nodes.
411 5. The root is always black.
413 When nodes are inserted into the tree, or deleted from the tree,
414 the tree is "fixed" so that these properties are always true.
416 A red-black tree with N internal nodes has height at most 2
417 log(N+1). Searches, insertions and deletions are done in O(log N).
418 Please see a text book about data structures for a detailed
419 description of red-black trees. Any book worth its salt should
420 describe them. */
422 struct mem_node
424 /* Children of this node. These pointers are never NULL. When there
425 is no child, the value is MEM_NIL, which points to a dummy node. */
426 struct mem_node *left, *right;
428 /* The parent of this node. In the root node, this is NULL. */
429 struct mem_node *parent;
431 /* Start and end of allocated region. */
432 void *start, *end;
434 /* Node color. */
435 enum {MEM_BLACK, MEM_RED} color;
437 /* Memory type. */
438 enum mem_type type;
441 /* Root of the tree describing allocated Lisp memory. */
443 static struct mem_node *mem_root;
445 /* Lowest and highest known address in the heap. */
447 static void *min_heap_address, *max_heap_address;
449 /* Sentinel node of the tree. */
451 static struct mem_node mem_z;
452 #define MEM_NIL &mem_z
454 static struct mem_node *mem_insert (void *, void *, enum mem_type);
455 static void mem_insert_fixup (struct mem_node *);
456 static void mem_rotate_left (struct mem_node *);
457 static void mem_rotate_right (struct mem_node *);
458 static void mem_delete (struct mem_node *);
459 static void mem_delete_fixup (struct mem_node *);
460 static struct mem_node *mem_find (void *);
462 #ifndef DEADP
463 # define DEADP(x) 0
464 #endif
466 /* Addresses of staticpro'd variables. Initialize it to a nonzero
467 value; otherwise some compilers put it into BSS. */
469 enum { NSTATICS = 2048 };
470 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
472 /* Index of next unused slot in staticvec. */
474 static int staticidx;
476 static void *pure_alloc (size_t, int);
478 /* True if N is a power of 2. N should be positive. */
480 #define POWER_OF_2(n) (((n) & ((n) - 1)) == 0)
482 /* Return X rounded to the next multiple of Y. Y should be positive,
483 and Y - 1 + X should not overflow. Arguments should not have side
484 effects, as they are evaluated more than once. Tune for Y being a
485 power of 2. */
487 #define ROUNDUP(x, y) (POWER_OF_2 (y) \
488 ? ((y) - 1 + (x)) & ~ ((y) - 1) \
489 : ((y) - 1 + (x)) - ((y) - 1 + (x)) % (y))
491 /* Return PTR rounded up to the next multiple of ALIGNMENT. */
493 static void *
494 pointer_align (void *ptr, int alignment)
496 return (void *) ROUNDUP ((uintptr_t) ptr, alignment);
499 /* Extract the pointer hidden within A, if A is not a symbol.
500 If A is a symbol, extract the hidden pointer's offset from lispsym,
501 converted to void *. */
503 #define macro_XPNTR_OR_SYMBOL_OFFSET(a) \
504 ((void *) (intptr_t) (USE_LSB_TAG ? XLI (a) - XTYPE (a) : XLI (a) & VALMASK))
506 /* Extract the pointer hidden within A. */
508 #define macro_XPNTR(a) \
509 ((void *) ((intptr_t) XPNTR_OR_SYMBOL_OFFSET (a) \
510 + (SYMBOLP (a) ? (char *) lispsym : NULL)))
512 /* For pointer access, define XPNTR and XPNTR_OR_SYMBOL_OFFSET as
513 functions, as functions are cleaner and can be used in debuggers.
514 Also, define them as macros if being compiled with GCC without
515 optimization, for performance in that case. The macro_* names are
516 private to this section of code. */
518 static ATTRIBUTE_UNUSED void *
519 XPNTR_OR_SYMBOL_OFFSET (Lisp_Object a)
521 return macro_XPNTR_OR_SYMBOL_OFFSET (a);
523 static ATTRIBUTE_UNUSED void *
524 XPNTR (Lisp_Object a)
526 return macro_XPNTR (a);
529 #if DEFINE_KEY_OPS_AS_MACROS
530 # define XPNTR_OR_SYMBOL_OFFSET(a) macro_XPNTR_OR_SYMBOL_OFFSET (a)
531 # define XPNTR(a) macro_XPNTR (a)
532 #endif
534 static void
535 XFLOAT_INIT (Lisp_Object f, double n)
537 XFLOAT (f)->u.data = n;
540 #ifdef DOUG_LEA_MALLOC
541 static bool
542 pointers_fit_in_lispobj_p (void)
544 return (UINTPTR_MAX <= VAL_MAX) || USE_LSB_TAG;
547 static bool
548 mmap_lisp_allowed_p (void)
550 /* If we can't store all memory addresses in our lisp objects, it's
551 risky to let the heap use mmap and give us addresses from all
552 over our address space. We also can't use mmap for lisp objects
553 if we might dump: unexec doesn't preserve the contents of mmapped
554 regions. */
555 return pointers_fit_in_lispobj_p () && !might_dump;
557 #endif
559 /* Head of a circularly-linked list of extant finalizers. */
560 static struct Lisp_Finalizer finalizers;
562 /* Head of a circularly-linked list of finalizers that must be invoked
563 because we deemed them unreachable. This list must be global, and
564 not a local inside garbage_collect_1, in case we GC again while
565 running finalizers. */
566 static struct Lisp_Finalizer doomed_finalizers;
569 /************************************************************************
570 Malloc
571 ************************************************************************/
573 #if defined SIGDANGER || (!defined SYSTEM_MALLOC && !defined HYBRID_MALLOC)
575 /* Function malloc calls this if it finds we are near exhausting storage. */
577 void
578 malloc_warning (const char *str)
580 pending_malloc_warning = str;
583 #endif
585 /* Display an already-pending malloc warning. */
587 void
588 display_malloc_warning (void)
590 call3 (intern ("display-warning"),
591 intern ("alloc"),
592 build_string (pending_malloc_warning),
593 intern ("emergency"));
594 pending_malloc_warning = 0;
597 /* Called if we can't allocate relocatable space for a buffer. */
599 void
600 buffer_memory_full (ptrdiff_t nbytes)
602 /* If buffers use the relocating allocator, no need to free
603 spare_memory, because we may have plenty of malloc space left
604 that we could get, and if we don't, the malloc that fails will
605 itself cause spare_memory to be freed. If buffers don't use the
606 relocating allocator, treat this like any other failing
607 malloc. */
609 #ifndef REL_ALLOC
610 memory_full (nbytes);
611 #else
612 /* This used to call error, but if we've run out of memory, we could
613 get infinite recursion trying to build the string. */
614 xsignal (Qnil, Vmemory_signal_data);
615 #endif
618 /* A common multiple of the positive integers A and B. Ideally this
619 would be the least common multiple, but there's no way to do that
620 as a constant expression in C, so do the best that we can easily do. */
621 #define COMMON_MULTIPLE(a, b) \
622 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
624 #ifndef XMALLOC_OVERRUN_CHECK
625 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
626 #else
628 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
629 around each block.
631 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
632 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
633 block size in little-endian order. The trailer consists of
634 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
636 The header is used to detect whether this block has been allocated
637 through these functions, as some low-level libc functions may
638 bypass the malloc hooks. */
640 #define XMALLOC_OVERRUN_CHECK_SIZE 16
641 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
642 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
644 #define XMALLOC_BASE_ALIGNMENT alignof (max_align_t)
646 #define XMALLOC_HEADER_ALIGNMENT \
647 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
649 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
650 hold a size_t value and (2) the header size is a multiple of the
651 alignment that Emacs needs for C types and for USE_LSB_TAG. */
652 #define XMALLOC_OVERRUN_SIZE_SIZE \
653 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
654 + XMALLOC_HEADER_ALIGNMENT - 1) \
655 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
656 - XMALLOC_OVERRUN_CHECK_SIZE)
658 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
659 { '\x9a', '\x9b', '\xae', '\xaf',
660 '\xbf', '\xbe', '\xce', '\xcf',
661 '\xea', '\xeb', '\xec', '\xed',
662 '\xdf', '\xde', '\x9c', '\x9d' };
664 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
665 { '\xaa', '\xab', '\xac', '\xad',
666 '\xba', '\xbb', '\xbc', '\xbd',
667 '\xca', '\xcb', '\xcc', '\xcd',
668 '\xda', '\xdb', '\xdc', '\xdd' };
670 /* Insert and extract the block size in the header. */
672 static void
673 xmalloc_put_size (unsigned char *ptr, size_t size)
675 int i;
676 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
678 *--ptr = size & ((1 << CHAR_BIT) - 1);
679 size >>= CHAR_BIT;
683 static size_t
684 xmalloc_get_size (unsigned char *ptr)
686 size_t size = 0;
687 int i;
688 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
689 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
691 size <<= CHAR_BIT;
692 size += *ptr++;
694 return size;
698 /* Like malloc, but wraps allocated block with header and trailer. */
700 static void *
701 overrun_check_malloc (size_t size)
703 register unsigned char *val;
704 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
705 emacs_abort ();
707 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
708 if (val)
710 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
711 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
712 xmalloc_put_size (val, size);
713 memcpy (val + size, xmalloc_overrun_check_trailer,
714 XMALLOC_OVERRUN_CHECK_SIZE);
716 return val;
720 /* Like realloc, but checks old block for overrun, and wraps new block
721 with header and trailer. */
723 static void *
724 overrun_check_realloc (void *block, size_t size)
726 register unsigned char *val = (unsigned char *) block;
727 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
728 emacs_abort ();
730 if (val
731 && memcmp (xmalloc_overrun_check_header,
732 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
733 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
735 size_t osize = xmalloc_get_size (val);
736 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
737 XMALLOC_OVERRUN_CHECK_SIZE))
738 emacs_abort ();
739 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
740 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
741 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
744 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
746 if (val)
748 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
749 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
750 xmalloc_put_size (val, size);
751 memcpy (val + size, xmalloc_overrun_check_trailer,
752 XMALLOC_OVERRUN_CHECK_SIZE);
754 return val;
757 /* Like free, but checks block for overrun. */
759 static void
760 overrun_check_free (void *block)
762 unsigned char *val = (unsigned char *) block;
764 if (val
765 && memcmp (xmalloc_overrun_check_header,
766 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
767 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
769 size_t osize = xmalloc_get_size (val);
770 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
771 XMALLOC_OVERRUN_CHECK_SIZE))
772 emacs_abort ();
773 #ifdef XMALLOC_CLEAR_FREE_MEMORY
774 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
775 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
776 #else
777 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
778 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
779 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
780 #endif
783 free (val);
786 #undef malloc
787 #undef realloc
788 #undef free
789 #define malloc overrun_check_malloc
790 #define realloc overrun_check_realloc
791 #define free overrun_check_free
792 #endif
794 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
795 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
796 If that variable is set, block input while in one of Emacs's memory
797 allocation functions. There should be no need for this debugging
798 option, since signal handlers do not allocate memory, but Emacs
799 formerly allocated memory in signal handlers and this compile-time
800 option remains as a way to help debug the issue should it rear its
801 ugly head again. */
802 #ifdef XMALLOC_BLOCK_INPUT_CHECK
803 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
804 static void
805 malloc_block_input (void)
807 if (block_input_in_memory_allocators)
808 block_input ();
810 static void
811 malloc_unblock_input (void)
813 if (block_input_in_memory_allocators)
814 unblock_input ();
816 # define MALLOC_BLOCK_INPUT malloc_block_input ()
817 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
818 #else
819 # define MALLOC_BLOCK_INPUT ((void) 0)
820 # define MALLOC_UNBLOCK_INPUT ((void) 0)
821 #endif
823 #define MALLOC_PROBE(size) \
824 do { \
825 if (profiler_memory_running) \
826 malloc_probe (size); \
827 } while (0)
829 static void *lmalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
830 static void *lrealloc (void *, size_t);
832 /* Like malloc but check for no memory and block interrupt input. */
834 void *
835 xmalloc (size_t size)
837 void *val;
839 MALLOC_BLOCK_INPUT;
840 val = lmalloc (size);
841 MALLOC_UNBLOCK_INPUT;
843 if (!val && size)
844 memory_full (size);
845 MALLOC_PROBE (size);
846 return val;
849 /* Like the above, but zeroes out the memory just allocated. */
851 void *
852 xzalloc (size_t size)
854 void *val;
856 MALLOC_BLOCK_INPUT;
857 val = lmalloc (size);
858 MALLOC_UNBLOCK_INPUT;
860 if (!val && size)
861 memory_full (size);
862 memset (val, 0, size);
863 MALLOC_PROBE (size);
864 return val;
867 /* Like realloc but check for no memory and block interrupt input.. */
869 void *
870 xrealloc (void *block, size_t size)
872 void *val;
874 MALLOC_BLOCK_INPUT;
875 /* We must call malloc explicitly when BLOCK is 0, since some
876 reallocs don't do this. */
877 if (! block)
878 val = lmalloc (size);
879 else
880 val = lrealloc (block, size);
881 MALLOC_UNBLOCK_INPUT;
883 if (!val && size)
884 memory_full (size);
885 MALLOC_PROBE (size);
886 return val;
890 /* Like free but block interrupt input. */
892 void
893 xfree (void *block)
895 if (!block)
896 return;
897 MALLOC_BLOCK_INPUT;
898 free (block);
899 MALLOC_UNBLOCK_INPUT;
900 /* We don't call refill_memory_reserve here
901 because in practice the call in r_alloc_free seems to suffice. */
905 /* Other parts of Emacs pass large int values to allocator functions
906 expecting ptrdiff_t. This is portable in practice, but check it to
907 be safe. */
908 verify (INT_MAX <= PTRDIFF_MAX);
911 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
912 Signal an error on memory exhaustion, and block interrupt input. */
914 void *
915 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
917 eassert (0 <= nitems && 0 < item_size);
918 ptrdiff_t nbytes;
919 if (INT_MULTIPLY_WRAPV (nitems, item_size, &nbytes) || SIZE_MAX < nbytes)
920 memory_full (SIZE_MAX);
921 return xmalloc (nbytes);
925 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
926 Signal an error on memory exhaustion, and block interrupt input. */
928 void *
929 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
931 eassert (0 <= nitems && 0 < item_size);
932 ptrdiff_t nbytes;
933 if (INT_MULTIPLY_WRAPV (nitems, item_size, &nbytes) || SIZE_MAX < nbytes)
934 memory_full (SIZE_MAX);
935 return xrealloc (pa, nbytes);
939 /* Grow PA, which points to an array of *NITEMS items, and return the
940 location of the reallocated array, updating *NITEMS to reflect its
941 new size. The new array will contain at least NITEMS_INCR_MIN more
942 items, but will not contain more than NITEMS_MAX items total.
943 ITEM_SIZE is the size of each item, in bytes.
945 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
946 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
947 infinity.
949 If PA is null, then allocate a new array instead of reallocating
950 the old one.
952 Block interrupt input as needed. If memory exhaustion occurs, set
953 *NITEMS to zero if PA is null, and signal an error (i.e., do not
954 return).
956 Thus, to grow an array A without saving its old contents, do
957 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
958 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
959 and signals an error, and later this code is reexecuted and
960 attempts to free A. */
962 void *
963 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
964 ptrdiff_t nitems_max, ptrdiff_t item_size)
966 ptrdiff_t n0 = *nitems;
967 eassume (0 < item_size && 0 < nitems_incr_min && 0 <= n0 && -1 <= nitems_max);
969 /* The approximate size to use for initial small allocation
970 requests. This is the largest "small" request for the GNU C
971 library malloc. */
972 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
974 /* If the array is tiny, grow it to about (but no greater than)
975 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%.
976 Adjust the growth according to three constraints: NITEMS_INCR_MIN,
977 NITEMS_MAX, and what the C language can represent safely. */
979 ptrdiff_t n, nbytes;
980 if (INT_ADD_WRAPV (n0, n0 >> 1, &n))
981 n = PTRDIFF_MAX;
982 if (0 <= nitems_max && nitems_max < n)
983 n = nitems_max;
985 ptrdiff_t adjusted_nbytes
986 = ((INT_MULTIPLY_WRAPV (n, item_size, &nbytes) || SIZE_MAX < nbytes)
987 ? min (PTRDIFF_MAX, SIZE_MAX)
988 : nbytes < DEFAULT_MXFAST ? DEFAULT_MXFAST : 0);
989 if (adjusted_nbytes)
991 n = adjusted_nbytes / item_size;
992 nbytes = adjusted_nbytes - adjusted_nbytes % item_size;
995 if (! pa)
996 *nitems = 0;
997 if (n - n0 < nitems_incr_min
998 && (INT_ADD_WRAPV (n0, nitems_incr_min, &n)
999 || (0 <= nitems_max && nitems_max < n)
1000 || INT_MULTIPLY_WRAPV (n, item_size, &nbytes)))
1001 memory_full (SIZE_MAX);
1002 pa = xrealloc (pa, nbytes);
1003 *nitems = n;
1004 return pa;
1008 /* Like strdup, but uses xmalloc. */
1010 char *
1011 xstrdup (const char *s)
1013 ptrdiff_t size;
1014 eassert (s);
1015 size = strlen (s) + 1;
1016 return memcpy (xmalloc (size), s, size);
1019 /* Like above, but duplicates Lisp string to C string. */
1021 char *
1022 xlispstrdup (Lisp_Object string)
1024 ptrdiff_t size = SBYTES (string) + 1;
1025 return memcpy (xmalloc (size), SSDATA (string), size);
1028 /* Assign to *PTR a copy of STRING, freeing any storage *PTR formerly
1029 pointed to. If STRING is null, assign it without copying anything.
1030 Allocate before freeing, to avoid a dangling pointer if allocation
1031 fails. */
1033 void
1034 dupstring (char **ptr, char const *string)
1036 char *old = *ptr;
1037 *ptr = string ? xstrdup (string) : 0;
1038 xfree (old);
1042 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
1043 argument is a const pointer. */
1045 void
1046 xputenv (char const *string)
1048 if (putenv ((char *) string) != 0)
1049 memory_full (0);
1052 /* Return a newly allocated memory block of SIZE bytes, remembering
1053 to free it when unwinding. */
1054 void *
1055 record_xmalloc (size_t size)
1057 void *p = xmalloc (size);
1058 record_unwind_protect_ptr (xfree, p);
1059 return p;
1063 /* Like malloc but used for allocating Lisp data. NBYTES is the
1064 number of bytes to allocate, TYPE describes the intended use of the
1065 allocated memory block (for strings, for conses, ...). */
1067 #if ! USE_LSB_TAG
1068 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
1069 #endif
1071 static void *
1072 lisp_malloc (size_t nbytes, enum mem_type type)
1074 register void *val;
1076 MALLOC_BLOCK_INPUT;
1078 #ifdef GC_MALLOC_CHECK
1079 allocated_mem_type = type;
1080 #endif
1082 val = lmalloc (nbytes);
1084 #if ! USE_LSB_TAG
1085 /* If the memory just allocated cannot be addressed thru a Lisp
1086 object's pointer, and it needs to be,
1087 that's equivalent to running out of memory. */
1088 if (val && type != MEM_TYPE_NON_LISP)
1090 Lisp_Object tem;
1091 XSETCONS (tem, (char *) val + nbytes - 1);
1092 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
1094 lisp_malloc_loser = val;
1095 free (val);
1096 val = 0;
1099 #endif
1101 #ifndef GC_MALLOC_CHECK
1102 if (val && type != MEM_TYPE_NON_LISP)
1103 mem_insert (val, (char *) val + nbytes, type);
1104 #endif
1106 MALLOC_UNBLOCK_INPUT;
1107 if (!val && nbytes)
1108 memory_full (nbytes);
1109 MALLOC_PROBE (nbytes);
1110 return val;
1113 /* Free BLOCK. This must be called to free memory allocated with a
1114 call to lisp_malloc. */
1116 static void
1117 lisp_free (void *block)
1119 MALLOC_BLOCK_INPUT;
1120 free (block);
1121 #ifndef GC_MALLOC_CHECK
1122 mem_delete (mem_find (block));
1123 #endif
1124 MALLOC_UNBLOCK_INPUT;
1127 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
1129 /* The entry point is lisp_align_malloc which returns blocks of at most
1130 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
1132 /* Byte alignment of storage blocks. */
1133 #define BLOCK_ALIGN (1 << 10)
1134 verify (POWER_OF_2 (BLOCK_ALIGN));
1136 /* Use aligned_alloc if it or a simple substitute is available.
1137 Address sanitization breaks aligned allocation, as of gcc 4.8.2 and
1138 clang 3.3 anyway. Aligned allocation is incompatible with
1139 unexmacosx.c, so don't use it on Darwin. */
1141 #if ! ADDRESS_SANITIZER && !defined DARWIN_OS
1142 # if (defined HAVE_ALIGNED_ALLOC \
1143 || (defined HYBRID_MALLOC \
1144 ? defined HAVE_POSIX_MEMALIGN \
1145 : !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC))
1146 # define USE_ALIGNED_ALLOC 1
1147 # elif !defined HYBRID_MALLOC && defined HAVE_POSIX_MEMALIGN
1148 # define USE_ALIGNED_ALLOC 1
1149 # define aligned_alloc my_aligned_alloc /* Avoid collision with lisp.h. */
1150 static void *
1151 aligned_alloc (size_t alignment, size_t size)
1153 /* POSIX says the alignment must be a power-of-2 multiple of sizeof (void *).
1154 Verify this for all arguments this function is given. */
1155 verify (BLOCK_ALIGN % sizeof (void *) == 0
1156 && POWER_OF_2 (BLOCK_ALIGN / sizeof (void *)));
1157 verify (GCALIGNMENT % sizeof (void *) == 0
1158 && POWER_OF_2 (GCALIGNMENT / sizeof (void *)));
1159 eassert (alignment == BLOCK_ALIGN || alignment == GCALIGNMENT);
1161 void *p;
1162 return posix_memalign (&p, alignment, size) == 0 ? p : 0;
1164 # endif
1165 #endif
1167 /* Padding to leave at the end of a malloc'd block. This is to give
1168 malloc a chance to minimize the amount of memory wasted to alignment.
1169 It should be tuned to the particular malloc library used.
1170 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
1171 aligned_alloc on the other hand would ideally prefer a value of 4
1172 because otherwise, there's 1020 bytes wasted between each ablocks.
1173 In Emacs, testing shows that those 1020 can most of the time be
1174 efficiently used by malloc to place other objects, so a value of 0 can
1175 still preferable unless you have a lot of aligned blocks and virtually
1176 nothing else. */
1177 #define BLOCK_PADDING 0
1178 #define BLOCK_BYTES \
1179 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
1181 /* Internal data structures and constants. */
1183 #define ABLOCKS_SIZE 16
1185 /* An aligned block of memory. */
1186 struct ablock
1188 union
1190 char payload[BLOCK_BYTES];
1191 struct ablock *next_free;
1192 } x;
1194 /* ABASE is the aligned base of the ablocks. It is overloaded to
1195 hold a virtual "busy" field that counts twice the number of used
1196 ablock values in the parent ablocks, plus one if the real base of
1197 the parent ablocks is ABASE (if the "busy" field is even, the
1198 word before the first ablock holds a pointer to the real base).
1199 The first ablock has a "busy" ABASE, and the others have an
1200 ordinary pointer ABASE. To tell the difference, the code assumes
1201 that pointers, when cast to uintptr_t, are at least 2 *
1202 ABLOCKS_SIZE + 1. */
1203 struct ablocks *abase;
1205 /* The padding of all but the last ablock is unused. The padding of
1206 the last ablock in an ablocks is not allocated. */
1207 #if BLOCK_PADDING
1208 char padding[BLOCK_PADDING];
1209 #endif
1212 /* A bunch of consecutive aligned blocks. */
1213 struct ablocks
1215 struct ablock blocks[ABLOCKS_SIZE];
1218 /* Size of the block requested from malloc or aligned_alloc. */
1219 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1221 #define ABLOCK_ABASE(block) \
1222 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1223 ? (struct ablocks *) (block) \
1224 : (block)->abase)
1226 /* Virtual `busy' field. */
1227 #define ABLOCKS_BUSY(a_base) ((a_base)->blocks[0].abase)
1229 /* Pointer to the (not necessarily aligned) malloc block. */
1230 #ifdef USE_ALIGNED_ALLOC
1231 #define ABLOCKS_BASE(abase) (abase)
1232 #else
1233 #define ABLOCKS_BASE(abase) \
1234 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **) (abase))[-1])
1235 #endif
1237 /* The list of free ablock. */
1238 static struct ablock *free_ablock;
1240 /* Allocate an aligned block of nbytes.
1241 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1242 smaller or equal to BLOCK_BYTES. */
1243 static void *
1244 lisp_align_malloc (size_t nbytes, enum mem_type type)
1246 void *base, *val;
1247 struct ablocks *abase;
1249 eassert (nbytes <= BLOCK_BYTES);
1251 MALLOC_BLOCK_INPUT;
1253 #ifdef GC_MALLOC_CHECK
1254 allocated_mem_type = type;
1255 #endif
1257 if (!free_ablock)
1259 int i;
1260 bool aligned;
1262 #ifdef DOUG_LEA_MALLOC
1263 if (!mmap_lisp_allowed_p ())
1264 mallopt (M_MMAP_MAX, 0);
1265 #endif
1267 #ifdef USE_ALIGNED_ALLOC
1268 verify (ABLOCKS_BYTES % BLOCK_ALIGN == 0);
1269 abase = base = aligned_alloc (BLOCK_ALIGN, ABLOCKS_BYTES);
1270 #else
1271 base = malloc (ABLOCKS_BYTES);
1272 abase = pointer_align (base, BLOCK_ALIGN);
1273 #endif
1275 if (base == 0)
1277 MALLOC_UNBLOCK_INPUT;
1278 memory_full (ABLOCKS_BYTES);
1281 aligned = (base == abase);
1282 if (!aligned)
1283 ((void **) abase)[-1] = base;
1285 #ifdef DOUG_LEA_MALLOC
1286 if (!mmap_lisp_allowed_p ())
1287 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1288 #endif
1290 #if ! USE_LSB_TAG
1291 /* If the memory just allocated cannot be addressed thru a Lisp
1292 object's pointer, and it needs to be, that's equivalent to
1293 running out of memory. */
1294 if (type != MEM_TYPE_NON_LISP)
1296 Lisp_Object tem;
1297 char *end = (char *) base + ABLOCKS_BYTES - 1;
1298 XSETCONS (tem, end);
1299 if ((char *) XCONS (tem) != end)
1301 lisp_malloc_loser = base;
1302 free (base);
1303 MALLOC_UNBLOCK_INPUT;
1304 memory_full (SIZE_MAX);
1307 #endif
1309 /* Initialize the blocks and put them on the free list.
1310 If `base' was not properly aligned, we can't use the last block. */
1311 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1313 abase->blocks[i].abase = abase;
1314 abase->blocks[i].x.next_free = free_ablock;
1315 free_ablock = &abase->blocks[i];
1317 intptr_t ialigned = aligned;
1318 ABLOCKS_BUSY (abase) = (struct ablocks *) ialigned;
1320 eassert ((uintptr_t) abase % BLOCK_ALIGN == 0);
1321 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1322 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1323 eassert (ABLOCKS_BASE (abase) == base);
1324 eassert ((intptr_t) ABLOCKS_BUSY (abase) == aligned);
1327 abase = ABLOCK_ABASE (free_ablock);
1328 ABLOCKS_BUSY (abase)
1329 = (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1330 val = free_ablock;
1331 free_ablock = free_ablock->x.next_free;
1333 #ifndef GC_MALLOC_CHECK
1334 if (type != MEM_TYPE_NON_LISP)
1335 mem_insert (val, (char *) val + nbytes, type);
1336 #endif
1338 MALLOC_UNBLOCK_INPUT;
1340 MALLOC_PROBE (nbytes);
1342 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1343 return val;
1346 static void
1347 lisp_align_free (void *block)
1349 struct ablock *ablock = block;
1350 struct ablocks *abase = ABLOCK_ABASE (ablock);
1352 MALLOC_BLOCK_INPUT;
1353 #ifndef GC_MALLOC_CHECK
1354 mem_delete (mem_find (block));
1355 #endif
1356 /* Put on free list. */
1357 ablock->x.next_free = free_ablock;
1358 free_ablock = ablock;
1359 /* Update busy count. */
1360 intptr_t busy = (intptr_t) ABLOCKS_BUSY (abase) - 2;
1361 eassume (0 <= busy && busy <= 2 * ABLOCKS_SIZE - 1);
1362 ABLOCKS_BUSY (abase) = (struct ablocks *) busy;
1364 if (busy < 2)
1365 { /* All the blocks are free. */
1366 int i = 0;
1367 bool aligned = busy;
1368 struct ablock **tem = &free_ablock;
1369 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1371 while (*tem)
1373 if (*tem >= (struct ablock *) abase && *tem < atop)
1375 i++;
1376 *tem = (*tem)->x.next_free;
1378 else
1379 tem = &(*tem)->x.next_free;
1381 eassert ((aligned & 1) == aligned);
1382 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1383 #ifdef USE_POSIX_MEMALIGN
1384 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1385 #endif
1386 free (ABLOCKS_BASE (abase));
1388 MALLOC_UNBLOCK_INPUT;
1391 #if !defined __GNUC__ && !defined __alignof__
1392 # define __alignof__(type) alignof (type)
1393 #endif
1395 /* True if malloc (N) is known to return a multiple of GCALIGNMENT
1396 whenever N is also a multiple. In practice this is true if
1397 __alignof__ (max_align_t) is a multiple as well, assuming
1398 GCALIGNMENT is 8; other values of GCALIGNMENT have not been looked
1399 into. Use __alignof__ if available, as otherwise
1400 MALLOC_IS_GC_ALIGNED would be false on GCC x86 even though the
1401 alignment is OK there.
1403 This is a macro, not an enum constant, for portability to HP-UX
1404 10.20 cc and AIX 3.2.5 xlc. */
1405 #define MALLOC_IS_GC_ALIGNED \
1406 (GCALIGNMENT == 8 && __alignof__ (max_align_t) % GCALIGNMENT == 0)
1408 /* True if a malloc-returned pointer P is suitably aligned for SIZE,
1409 where Lisp alignment may be needed if SIZE is Lisp-aligned. */
1411 static bool
1412 laligned (void *p, size_t size)
1414 return (MALLOC_IS_GC_ALIGNED || (intptr_t) p % GCALIGNMENT == 0
1415 || size % GCALIGNMENT != 0);
1418 /* Like malloc and realloc except that if SIZE is Lisp-aligned, make
1419 sure the result is too, if necessary by reallocating (typically
1420 with larger and larger sizes) until the allocator returns a
1421 Lisp-aligned pointer. Code that needs to allocate C heap memory
1422 for a Lisp object should use one of these functions to obtain a
1423 pointer P; that way, if T is an enum Lisp_Type value and L ==
1424 make_lisp_ptr (P, T), then XPNTR (L) == P and XTYPE (L) == T.
1426 On typical modern platforms these functions' loops do not iterate.
1427 On now-rare (and perhaps nonexistent) platforms, the loops in
1428 theory could repeat forever. If an infinite loop is possible on a
1429 platform, a build would surely loop and the builder can then send
1430 us a bug report. Adding a counter to try to detect any such loop
1431 would complicate the code (and possibly introduce bugs, in code
1432 that's never really exercised) for little benefit. */
1434 static void *
1435 lmalloc (size_t size)
1437 #if USE_ALIGNED_ALLOC
1438 if (! MALLOC_IS_GC_ALIGNED && size % GCALIGNMENT == 0)
1439 return aligned_alloc (GCALIGNMENT, size);
1440 #endif
1442 while (true)
1444 void *p = malloc (size);
1445 if (laligned (p, size))
1446 return p;
1447 free (p);
1448 size_t bigger = size + GCALIGNMENT;
1449 if (size < bigger)
1450 size = bigger;
1454 static void *
1455 lrealloc (void *p, size_t size)
1457 while (true)
1459 p = realloc (p, size);
1460 if (laligned (p, size))
1461 return p;
1462 size_t bigger = size + GCALIGNMENT;
1463 if (size < bigger)
1464 size = bigger;
1469 /***********************************************************************
1470 Interval Allocation
1471 ***********************************************************************/
1473 /* Number of intervals allocated in an interval_block structure.
1474 The 1020 is 1024 minus malloc overhead. */
1476 #define INTERVAL_BLOCK_SIZE \
1477 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1479 /* Intervals are allocated in chunks in the form of an interval_block
1480 structure. */
1482 struct interval_block
1484 /* Place `intervals' first, to preserve alignment. */
1485 struct interval intervals[INTERVAL_BLOCK_SIZE];
1486 struct interval_block *next;
1489 /* Current interval block. Its `next' pointer points to older
1490 blocks. */
1492 static struct interval_block *interval_block;
1494 /* Index in interval_block above of the next unused interval
1495 structure. */
1497 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1499 /* Number of free and live intervals. */
1501 static EMACS_INT total_free_intervals, total_intervals;
1503 /* List of free intervals. */
1505 static INTERVAL interval_free_list;
1507 /* Return a new interval. */
1509 INTERVAL
1510 make_interval (void)
1512 INTERVAL val;
1514 MALLOC_BLOCK_INPUT;
1516 if (interval_free_list)
1518 val = interval_free_list;
1519 interval_free_list = INTERVAL_PARENT (interval_free_list);
1521 else
1523 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1525 struct interval_block *newi
1526 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1528 newi->next = interval_block;
1529 interval_block = newi;
1530 interval_block_index = 0;
1531 total_free_intervals += INTERVAL_BLOCK_SIZE;
1533 val = &interval_block->intervals[interval_block_index++];
1536 MALLOC_UNBLOCK_INPUT;
1538 consing_since_gc += sizeof (struct interval);
1539 intervals_consed++;
1540 total_free_intervals--;
1541 RESET_INTERVAL (val);
1542 val->gcmarkbit = 0;
1543 return val;
1547 /* Mark Lisp objects in interval I. */
1549 static void
1550 mark_interval (register INTERVAL i, Lisp_Object dummy)
1552 /* Intervals should never be shared. So, if extra internal checking is
1553 enabled, GC aborts if it seems to have visited an interval twice. */
1554 eassert (!i->gcmarkbit);
1555 i->gcmarkbit = 1;
1556 mark_object (i->plist);
1559 /* Mark the interval tree rooted in I. */
1561 #define MARK_INTERVAL_TREE(i) \
1562 do { \
1563 if (i && !i->gcmarkbit) \
1564 traverse_intervals_noorder (i, mark_interval, Qnil); \
1565 } while (0)
1567 /***********************************************************************
1568 String Allocation
1569 ***********************************************************************/
1571 /* Lisp_Strings are allocated in string_block structures. When a new
1572 string_block is allocated, all the Lisp_Strings it contains are
1573 added to a free-list string_free_list. When a new Lisp_String is
1574 needed, it is taken from that list. During the sweep phase of GC,
1575 string_blocks that are entirely free are freed, except two which
1576 we keep.
1578 String data is allocated from sblock structures. Strings larger
1579 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1580 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1582 Sblocks consist internally of sdata structures, one for each
1583 Lisp_String. The sdata structure points to the Lisp_String it
1584 belongs to. The Lisp_String points back to the `u.data' member of
1585 its sdata structure.
1587 When a Lisp_String is freed during GC, it is put back on
1588 string_free_list, and its `data' member and its sdata's `string'
1589 pointer is set to null. The size of the string is recorded in the
1590 `n.nbytes' member of the sdata. So, sdata structures that are no
1591 longer used, can be easily recognized, and it's easy to compact the
1592 sblocks of small strings which we do in compact_small_strings. */
1594 /* Size in bytes of an sblock structure used for small strings. This
1595 is 8192 minus malloc overhead. */
1597 #define SBLOCK_SIZE 8188
1599 /* Strings larger than this are considered large strings. String data
1600 for large strings is allocated from individual sblocks. */
1602 #define LARGE_STRING_BYTES 1024
1604 /* The SDATA typedef is a struct or union describing string memory
1605 sub-allocated from an sblock. This is where the contents of Lisp
1606 strings are stored. */
1608 struct sdata
1610 /* Back-pointer to the string this sdata belongs to. If null, this
1611 structure is free, and NBYTES (in this structure or in the union below)
1612 contains the string's byte size (the same value that STRING_BYTES
1613 would return if STRING were non-null). If non-null, STRING_BYTES
1614 (STRING) is the size of the data, and DATA contains the string's
1615 contents. */
1616 struct Lisp_String *string;
1618 #ifdef GC_CHECK_STRING_BYTES
1619 ptrdiff_t nbytes;
1620 #endif
1622 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1625 #ifdef GC_CHECK_STRING_BYTES
1627 typedef struct sdata sdata;
1628 #define SDATA_NBYTES(S) (S)->nbytes
1629 #define SDATA_DATA(S) (S)->data
1631 #else
1633 typedef union
1635 struct Lisp_String *string;
1637 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1638 which has a flexible array member. However, if implemented by
1639 giving this union a member of type 'struct sdata', the union
1640 could not be the last (flexible) member of 'struct sblock',
1641 because C99 prohibits a flexible array member from having a type
1642 that is itself a flexible array. So, comment this member out here,
1643 but remember that the option's there when using this union. */
1644 #if 0
1645 struct sdata u;
1646 #endif
1648 /* When STRING is null. */
1649 struct
1651 struct Lisp_String *string;
1652 ptrdiff_t nbytes;
1653 } n;
1654 } sdata;
1656 #define SDATA_NBYTES(S) (S)->n.nbytes
1657 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1659 #endif /* not GC_CHECK_STRING_BYTES */
1661 enum { SDATA_DATA_OFFSET = offsetof (struct sdata, data) };
1663 /* Structure describing a block of memory which is sub-allocated to
1664 obtain string data memory for strings. Blocks for small strings
1665 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1666 as large as needed. */
1668 struct sblock
1670 /* Next in list. */
1671 struct sblock *next;
1673 /* Pointer to the next free sdata block. This points past the end
1674 of the sblock if there isn't any space left in this block. */
1675 sdata *next_free;
1677 /* String data. */
1678 sdata data[FLEXIBLE_ARRAY_MEMBER];
1681 /* Number of Lisp strings in a string_block structure. The 1020 is
1682 1024 minus malloc overhead. */
1684 #define STRING_BLOCK_SIZE \
1685 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1687 /* Structure describing a block from which Lisp_String structures
1688 are allocated. */
1690 struct string_block
1692 /* Place `strings' first, to preserve alignment. */
1693 struct Lisp_String strings[STRING_BLOCK_SIZE];
1694 struct string_block *next;
1697 /* Head and tail of the list of sblock structures holding Lisp string
1698 data. We always allocate from current_sblock. The NEXT pointers
1699 in the sblock structures go from oldest_sblock to current_sblock. */
1701 static struct sblock *oldest_sblock, *current_sblock;
1703 /* List of sblocks for large strings. */
1705 static struct sblock *large_sblocks;
1707 /* List of string_block structures. */
1709 static struct string_block *string_blocks;
1711 /* Free-list of Lisp_Strings. */
1713 static struct Lisp_String *string_free_list;
1715 /* Number of live and free Lisp_Strings. */
1717 static EMACS_INT total_strings, total_free_strings;
1719 /* Number of bytes used by live strings. */
1721 static EMACS_INT total_string_bytes;
1723 /* Given a pointer to a Lisp_String S which is on the free-list
1724 string_free_list, return a pointer to its successor in the
1725 free-list. */
1727 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1729 /* Return a pointer to the sdata structure belonging to Lisp string S.
1730 S must be live, i.e. S->data must not be null. S->data is actually
1731 a pointer to the `u.data' member of its sdata structure; the
1732 structure starts at a constant offset in front of that. */
1734 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1737 #ifdef GC_CHECK_STRING_OVERRUN
1739 /* We check for overrun in string data blocks by appending a small
1740 "cookie" after each allocated string data block, and check for the
1741 presence of this cookie during GC. */
1743 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1744 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1745 { '\xde', '\xad', '\xbe', '\xef' };
1747 #else
1748 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1749 #endif
1751 /* Value is the size of an sdata structure large enough to hold NBYTES
1752 bytes of string data. The value returned includes a terminating
1753 NUL byte, the size of the sdata structure, and padding. */
1755 #ifdef GC_CHECK_STRING_BYTES
1757 #define SDATA_SIZE(NBYTES) FLEXSIZEOF (struct sdata, data, NBYTES)
1759 #else /* not GC_CHECK_STRING_BYTES */
1761 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1762 less than the size of that member. The 'max' is not needed when
1763 SDATA_DATA_OFFSET is a multiple of FLEXALIGNOF (struct sdata),
1764 because then the alignment code reserves enough space. */
1766 #define SDATA_SIZE(NBYTES) \
1767 ((SDATA_DATA_OFFSET \
1768 + (SDATA_DATA_OFFSET % FLEXALIGNOF (struct sdata) == 0 \
1769 ? NBYTES \
1770 : max (NBYTES, FLEXALIGNOF (struct sdata) - 1)) \
1771 + 1 \
1772 + FLEXALIGNOF (struct sdata) - 1) \
1773 & ~(FLEXALIGNOF (struct sdata) - 1))
1775 #endif /* not GC_CHECK_STRING_BYTES */
1777 /* Extra bytes to allocate for each string. */
1779 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1781 /* Exact bound on the number of bytes in a string, not counting the
1782 terminating null. A string cannot contain more bytes than
1783 STRING_BYTES_BOUND, nor can it be so long that the size_t
1784 arithmetic in allocate_string_data would overflow while it is
1785 calculating a value to be passed to malloc. */
1786 static ptrdiff_t const STRING_BYTES_MAX =
1787 min (STRING_BYTES_BOUND,
1788 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1789 - GC_STRING_EXTRA
1790 - offsetof (struct sblock, data)
1791 - SDATA_DATA_OFFSET)
1792 & ~(sizeof (EMACS_INT) - 1)));
1794 /* Initialize string allocation. Called from init_alloc_once. */
1796 static void
1797 init_strings (void)
1799 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1800 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1804 #ifdef GC_CHECK_STRING_BYTES
1806 static int check_string_bytes_count;
1808 /* Like STRING_BYTES, but with debugging check. Can be
1809 called during GC, so pay attention to the mark bit. */
1811 ptrdiff_t
1812 string_bytes (struct Lisp_String *s)
1814 ptrdiff_t nbytes =
1815 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1817 if (!PURE_P (s) && s->data && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1818 emacs_abort ();
1819 return nbytes;
1822 /* Check validity of Lisp strings' string_bytes member in B. */
1824 static void
1825 check_sblock (struct sblock *b)
1827 sdata *from, *end, *from_end;
1829 end = b->next_free;
1831 for (from = b->data; from < end; from = from_end)
1833 /* Compute the next FROM here because copying below may
1834 overwrite data we need to compute it. */
1835 ptrdiff_t nbytes;
1837 /* Check that the string size recorded in the string is the
1838 same as the one recorded in the sdata structure. */
1839 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1840 : SDATA_NBYTES (from));
1841 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1846 /* Check validity of Lisp strings' string_bytes member. ALL_P
1847 means check all strings, otherwise check only most
1848 recently allocated strings. Used for hunting a bug. */
1850 static void
1851 check_string_bytes (bool all_p)
1853 if (all_p)
1855 struct sblock *b;
1857 for (b = large_sblocks; b; b = b->next)
1859 struct Lisp_String *s = b->data[0].string;
1860 if (s)
1861 string_bytes (s);
1864 for (b = oldest_sblock; b; b = b->next)
1865 check_sblock (b);
1867 else if (current_sblock)
1868 check_sblock (current_sblock);
1871 #else /* not GC_CHECK_STRING_BYTES */
1873 #define check_string_bytes(all) ((void) 0)
1875 #endif /* GC_CHECK_STRING_BYTES */
1877 #ifdef GC_CHECK_STRING_FREE_LIST
1879 /* Walk through the string free list looking for bogus next pointers.
1880 This may catch buffer overrun from a previous string. */
1882 static void
1883 check_string_free_list (void)
1885 struct Lisp_String *s;
1887 /* Pop a Lisp_String off the free-list. */
1888 s = string_free_list;
1889 while (s != NULL)
1891 if ((uintptr_t) s < 1024)
1892 emacs_abort ();
1893 s = NEXT_FREE_LISP_STRING (s);
1896 #else
1897 #define check_string_free_list()
1898 #endif
1900 /* Return a new Lisp_String. */
1902 static struct Lisp_String *
1903 allocate_string (void)
1905 struct Lisp_String *s;
1907 MALLOC_BLOCK_INPUT;
1909 /* If the free-list is empty, allocate a new string_block, and
1910 add all the Lisp_Strings in it to the free-list. */
1911 if (string_free_list == NULL)
1913 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1914 int i;
1916 b->next = string_blocks;
1917 string_blocks = b;
1919 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1921 s = b->strings + i;
1922 /* Every string on a free list should have NULL data pointer. */
1923 s->data = NULL;
1924 NEXT_FREE_LISP_STRING (s) = string_free_list;
1925 string_free_list = s;
1928 total_free_strings += STRING_BLOCK_SIZE;
1931 check_string_free_list ();
1933 /* Pop a Lisp_String off the free-list. */
1934 s = string_free_list;
1935 string_free_list = NEXT_FREE_LISP_STRING (s);
1937 MALLOC_UNBLOCK_INPUT;
1939 --total_free_strings;
1940 ++total_strings;
1941 ++strings_consed;
1942 consing_since_gc += sizeof *s;
1944 #ifdef GC_CHECK_STRING_BYTES
1945 if (!noninteractive)
1947 if (++check_string_bytes_count == 200)
1949 check_string_bytes_count = 0;
1950 check_string_bytes (1);
1952 else
1953 check_string_bytes (0);
1955 #endif /* GC_CHECK_STRING_BYTES */
1957 return s;
1961 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1962 plus a NUL byte at the end. Allocate an sdata structure for S, and
1963 set S->data to its `u.data' member. Store a NUL byte at the end of
1964 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1965 S->data if it was initially non-null. */
1967 void
1968 allocate_string_data (struct Lisp_String *s,
1969 EMACS_INT nchars, EMACS_INT nbytes)
1971 sdata *data, *old_data;
1972 struct sblock *b;
1973 ptrdiff_t needed, old_nbytes;
1975 if (STRING_BYTES_MAX < nbytes)
1976 string_overflow ();
1978 /* Determine the number of bytes needed to store NBYTES bytes
1979 of string data. */
1980 needed = SDATA_SIZE (nbytes);
1981 if (s->data)
1983 old_data = SDATA_OF_STRING (s);
1984 old_nbytes = STRING_BYTES (s);
1986 else
1987 old_data = NULL;
1989 MALLOC_BLOCK_INPUT;
1991 if (nbytes > LARGE_STRING_BYTES)
1993 size_t size = FLEXSIZEOF (struct sblock, data, needed);
1995 #ifdef DOUG_LEA_MALLOC
1996 if (!mmap_lisp_allowed_p ())
1997 mallopt (M_MMAP_MAX, 0);
1998 #endif
2000 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
2002 #ifdef DOUG_LEA_MALLOC
2003 if (!mmap_lisp_allowed_p ())
2004 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2005 #endif
2007 data = b->data;
2008 b->next = large_sblocks;
2009 b->next_free = data;
2010 large_sblocks = b;
2012 else if (current_sblock == NULL
2013 || (((char *) current_sblock + SBLOCK_SIZE
2014 - (char *) current_sblock->next_free)
2015 < (needed + GC_STRING_EXTRA)))
2017 /* Not enough room in the current sblock. */
2018 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2019 data = b->data;
2020 b->next = NULL;
2021 b->next_free = data;
2023 if (current_sblock)
2024 current_sblock->next = b;
2025 else
2026 oldest_sblock = b;
2027 current_sblock = b;
2029 else
2031 b = current_sblock;
2032 data = b->next_free;
2035 data->string = s;
2036 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2038 MALLOC_UNBLOCK_INPUT;
2040 s->data = SDATA_DATA (data);
2041 #ifdef GC_CHECK_STRING_BYTES
2042 SDATA_NBYTES (data) = nbytes;
2043 #endif
2044 s->size = nchars;
2045 s->size_byte = nbytes;
2046 s->data[nbytes] = '\0';
2047 #ifdef GC_CHECK_STRING_OVERRUN
2048 memcpy ((char *) data + needed, string_overrun_cookie,
2049 GC_STRING_OVERRUN_COOKIE_SIZE);
2050 #endif
2052 /* Note that Faset may call to this function when S has already data
2053 assigned. In this case, mark data as free by setting it's string
2054 back-pointer to null, and record the size of the data in it. */
2055 if (old_data)
2057 SDATA_NBYTES (old_data) = old_nbytes;
2058 old_data->string = NULL;
2061 consing_since_gc += needed;
2065 /* Sweep and compact strings. */
2067 NO_INLINE /* For better stack traces */
2068 static void
2069 sweep_strings (void)
2071 struct string_block *b, *next;
2072 struct string_block *live_blocks = NULL;
2074 string_free_list = NULL;
2075 total_strings = total_free_strings = 0;
2076 total_string_bytes = 0;
2078 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2079 for (b = string_blocks; b; b = next)
2081 int i, nfree = 0;
2082 struct Lisp_String *free_list_before = string_free_list;
2084 next = b->next;
2086 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2088 struct Lisp_String *s = b->strings + i;
2090 if (s->data)
2092 /* String was not on free-list before. */
2093 if (STRING_MARKED_P (s))
2095 /* String is live; unmark it and its intervals. */
2096 UNMARK_STRING (s);
2098 /* Do not use string_(set|get)_intervals here. */
2099 s->intervals = balance_intervals (s->intervals);
2101 ++total_strings;
2102 total_string_bytes += STRING_BYTES (s);
2104 else
2106 /* String is dead. Put it on the free-list. */
2107 sdata *data = SDATA_OF_STRING (s);
2109 /* Save the size of S in its sdata so that we know
2110 how large that is. Reset the sdata's string
2111 back-pointer so that we know it's free. */
2112 #ifdef GC_CHECK_STRING_BYTES
2113 if (string_bytes (s) != SDATA_NBYTES (data))
2114 emacs_abort ();
2115 #else
2116 data->n.nbytes = STRING_BYTES (s);
2117 #endif
2118 data->string = NULL;
2120 /* Reset the strings's `data' member so that we
2121 know it's free. */
2122 s->data = NULL;
2124 /* Put the string on the free-list. */
2125 NEXT_FREE_LISP_STRING (s) = string_free_list;
2126 string_free_list = s;
2127 ++nfree;
2130 else
2132 /* S was on the free-list before. Put it there again. */
2133 NEXT_FREE_LISP_STRING (s) = string_free_list;
2134 string_free_list = s;
2135 ++nfree;
2139 /* Free blocks that contain free Lisp_Strings only, except
2140 the first two of them. */
2141 if (nfree == STRING_BLOCK_SIZE
2142 && total_free_strings > STRING_BLOCK_SIZE)
2144 lisp_free (b);
2145 string_free_list = free_list_before;
2147 else
2149 total_free_strings += nfree;
2150 b->next = live_blocks;
2151 live_blocks = b;
2155 check_string_free_list ();
2157 string_blocks = live_blocks;
2158 free_large_strings ();
2159 compact_small_strings ();
2161 check_string_free_list ();
2165 /* Free dead large strings. */
2167 static void
2168 free_large_strings (void)
2170 struct sblock *b, *next;
2171 struct sblock *live_blocks = NULL;
2173 for (b = large_sblocks; b; b = next)
2175 next = b->next;
2177 if (b->data[0].string == NULL)
2178 lisp_free (b);
2179 else
2181 b->next = live_blocks;
2182 live_blocks = b;
2186 large_sblocks = live_blocks;
2190 /* Compact data of small strings. Free sblocks that don't contain
2191 data of live strings after compaction. */
2193 static void
2194 compact_small_strings (void)
2196 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2197 to, and TB_END is the end of TB. */
2198 struct sblock *tb = oldest_sblock;
2199 if (tb)
2201 sdata *tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2202 sdata *to = tb->data;
2204 /* Step through the blocks from the oldest to the youngest. We
2205 expect that old blocks will stabilize over time, so that less
2206 copying will happen this way. */
2207 struct sblock *b = tb;
2210 sdata *end = b->next_free;
2211 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2213 for (sdata *from = b->data; from < end; )
2215 /* Compute the next FROM here because copying below may
2216 overwrite data we need to compute it. */
2217 ptrdiff_t nbytes;
2218 struct Lisp_String *s = from->string;
2220 #ifdef GC_CHECK_STRING_BYTES
2221 /* Check that the string size recorded in the string is the
2222 same as the one recorded in the sdata structure. */
2223 if (s && string_bytes (s) != SDATA_NBYTES (from))
2224 emacs_abort ();
2225 #endif /* GC_CHECK_STRING_BYTES */
2227 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
2228 eassert (nbytes <= LARGE_STRING_BYTES);
2230 nbytes = SDATA_SIZE (nbytes);
2231 sdata *from_end = (sdata *) ((char *) from
2232 + nbytes + GC_STRING_EXTRA);
2234 #ifdef GC_CHECK_STRING_OVERRUN
2235 if (memcmp (string_overrun_cookie,
2236 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2237 GC_STRING_OVERRUN_COOKIE_SIZE))
2238 emacs_abort ();
2239 #endif
2241 /* Non-NULL S means it's alive. Copy its data. */
2242 if (s)
2244 /* If TB is full, proceed with the next sblock. */
2245 sdata *to_end = (sdata *) ((char *) to
2246 + nbytes + GC_STRING_EXTRA);
2247 if (to_end > tb_end)
2249 tb->next_free = to;
2250 tb = tb->next;
2251 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2252 to = tb->data;
2253 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2256 /* Copy, and update the string's `data' pointer. */
2257 if (from != to)
2259 eassert (tb != b || to < from);
2260 memmove (to, from, nbytes + GC_STRING_EXTRA);
2261 to->string->data = SDATA_DATA (to);
2264 /* Advance past the sdata we copied to. */
2265 to = to_end;
2267 from = from_end;
2269 b = b->next;
2271 while (b);
2273 /* The rest of the sblocks following TB don't contain live data, so
2274 we can free them. */
2275 for (b = tb->next; b; )
2277 struct sblock *next = b->next;
2278 lisp_free (b);
2279 b = next;
2282 tb->next_free = to;
2283 tb->next = NULL;
2286 current_sblock = tb;
2289 void
2290 string_overflow (void)
2292 error ("Maximum string size exceeded");
2295 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2296 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2297 LENGTH must be an integer.
2298 INIT must be an integer that represents a character. */)
2299 (Lisp_Object length, Lisp_Object init)
2301 register Lisp_Object val;
2302 int c;
2303 EMACS_INT nbytes;
2305 CHECK_NATNUM (length);
2306 CHECK_CHARACTER (init);
2308 c = XFASTINT (init);
2309 if (ASCII_CHAR_P (c))
2311 nbytes = XINT (length);
2312 val = make_uninit_string (nbytes);
2313 if (nbytes)
2315 memset (SDATA (val), c, nbytes);
2316 SDATA (val)[nbytes] = 0;
2319 else
2321 unsigned char str[MAX_MULTIBYTE_LENGTH];
2322 ptrdiff_t len = CHAR_STRING (c, str);
2323 EMACS_INT string_len = XINT (length);
2324 unsigned char *p, *beg, *end;
2326 if (INT_MULTIPLY_WRAPV (len, string_len, &nbytes))
2327 string_overflow ();
2328 val = make_uninit_multibyte_string (string_len, nbytes);
2329 for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
2331 /* First time we just copy `str' to the data of `val'. */
2332 if (p == beg)
2333 memcpy (p, str, len);
2334 else
2336 /* Next time we copy largest possible chunk from
2337 initialized to uninitialized part of `val'. */
2338 len = min (p - beg, end - p);
2339 memcpy (p, beg, len);
2342 if (nbytes)
2343 *p = 0;
2346 return val;
2349 /* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
2350 Return A. */
2352 Lisp_Object
2353 bool_vector_fill (Lisp_Object a, Lisp_Object init)
2355 EMACS_INT nbits = bool_vector_size (a);
2356 if (0 < nbits)
2358 unsigned char *data = bool_vector_uchar_data (a);
2359 int pattern = NILP (init) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR) - 1;
2360 ptrdiff_t nbytes = bool_vector_bytes (nbits);
2361 int last_mask = ~ (~0u << ((nbits - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1));
2362 memset (data, pattern, nbytes - 1);
2363 data[nbytes - 1] = pattern & last_mask;
2365 return a;
2368 /* Return a newly allocated, uninitialized bool vector of size NBITS. */
2370 Lisp_Object
2371 make_uninit_bool_vector (EMACS_INT nbits)
2373 Lisp_Object val;
2374 EMACS_INT words = bool_vector_words (nbits);
2375 EMACS_INT word_bytes = words * sizeof (bits_word);
2376 EMACS_INT needed_elements = ((bool_header_size - header_size + word_bytes
2377 + word_size - 1)
2378 / word_size);
2379 struct Lisp_Bool_Vector *p
2380 = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2381 XSETVECTOR (val, p);
2382 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2383 p->size = nbits;
2385 /* Clear padding at the end. */
2386 if (words)
2387 p->data[words - 1] = 0;
2389 return val;
2392 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2393 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2394 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2395 (Lisp_Object length, Lisp_Object init)
2397 Lisp_Object val;
2399 CHECK_NATNUM (length);
2400 val = make_uninit_bool_vector (XFASTINT (length));
2401 return bool_vector_fill (val, init);
2404 DEFUN ("bool-vector", Fbool_vector, Sbool_vector, 0, MANY, 0,
2405 doc: /* Return a new bool-vector with specified arguments as elements.
2406 Any number of arguments, even zero arguments, are allowed.
2407 usage: (bool-vector &rest OBJECTS) */)
2408 (ptrdiff_t nargs, Lisp_Object *args)
2410 ptrdiff_t i;
2411 Lisp_Object vector;
2413 vector = make_uninit_bool_vector (nargs);
2414 for (i = 0; i < nargs; i++)
2415 bool_vector_set (vector, i, !NILP (args[i]));
2417 return vector;
2420 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2421 of characters from the contents. This string may be unibyte or
2422 multibyte, depending on the contents. */
2424 Lisp_Object
2425 make_string (const char *contents, ptrdiff_t nbytes)
2427 register Lisp_Object val;
2428 ptrdiff_t nchars, multibyte_nbytes;
2430 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2431 &nchars, &multibyte_nbytes);
2432 if (nbytes == nchars || nbytes != multibyte_nbytes)
2433 /* CONTENTS contains no multibyte sequences or contains an invalid
2434 multibyte sequence. We must make unibyte string. */
2435 val = make_unibyte_string (contents, nbytes);
2436 else
2437 val = make_multibyte_string (contents, nchars, nbytes);
2438 return val;
2441 /* Make a unibyte string from LENGTH bytes at CONTENTS. */
2443 Lisp_Object
2444 make_unibyte_string (const char *contents, ptrdiff_t length)
2446 register Lisp_Object val;
2447 val = make_uninit_string (length);
2448 memcpy (SDATA (val), contents, length);
2449 return val;
2453 /* Make a multibyte string from NCHARS characters occupying NBYTES
2454 bytes at CONTENTS. */
2456 Lisp_Object
2457 make_multibyte_string (const char *contents,
2458 ptrdiff_t nchars, ptrdiff_t nbytes)
2460 register Lisp_Object val;
2461 val = make_uninit_multibyte_string (nchars, nbytes);
2462 memcpy (SDATA (val), contents, nbytes);
2463 return val;
2467 /* Make a string from NCHARS characters occupying NBYTES bytes at
2468 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2470 Lisp_Object
2471 make_string_from_bytes (const char *contents,
2472 ptrdiff_t nchars, ptrdiff_t nbytes)
2474 register Lisp_Object val;
2475 val = make_uninit_multibyte_string (nchars, nbytes);
2476 memcpy (SDATA (val), contents, nbytes);
2477 if (SBYTES (val) == SCHARS (val))
2478 STRING_SET_UNIBYTE (val);
2479 return val;
2483 /* Make a string from NCHARS characters occupying NBYTES bytes at
2484 CONTENTS. The argument MULTIBYTE controls whether to label the
2485 string as multibyte. If NCHARS is negative, it counts the number of
2486 characters by itself. */
2488 Lisp_Object
2489 make_specified_string (const char *contents,
2490 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2492 Lisp_Object val;
2494 if (nchars < 0)
2496 if (multibyte)
2497 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2498 nbytes);
2499 else
2500 nchars = nbytes;
2502 val = make_uninit_multibyte_string (nchars, nbytes);
2503 memcpy (SDATA (val), contents, nbytes);
2504 if (!multibyte)
2505 STRING_SET_UNIBYTE (val);
2506 return val;
2510 /* Return a unibyte Lisp_String set up to hold LENGTH characters
2511 occupying LENGTH bytes. */
2513 Lisp_Object
2514 make_uninit_string (EMACS_INT length)
2516 Lisp_Object val;
2518 if (!length)
2519 return empty_unibyte_string;
2520 val = make_uninit_multibyte_string (length, length);
2521 STRING_SET_UNIBYTE (val);
2522 return val;
2526 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2527 which occupy NBYTES bytes. */
2529 Lisp_Object
2530 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2532 Lisp_Object string;
2533 struct Lisp_String *s;
2535 if (nchars < 0)
2536 emacs_abort ();
2537 if (!nbytes)
2538 return empty_multibyte_string;
2540 s = allocate_string ();
2541 s->intervals = NULL;
2542 allocate_string_data (s, nchars, nbytes);
2543 XSETSTRING (string, s);
2544 string_chars_consed += nbytes;
2545 return string;
2548 /* Print arguments to BUF according to a FORMAT, then return
2549 a Lisp_String initialized with the data from BUF. */
2551 Lisp_Object
2552 make_formatted_string (char *buf, const char *format, ...)
2554 va_list ap;
2555 int length;
2557 va_start (ap, format);
2558 length = vsprintf (buf, format, ap);
2559 va_end (ap);
2560 return make_string (buf, length);
2564 /***********************************************************************
2565 Float Allocation
2566 ***********************************************************************/
2568 /* We store float cells inside of float_blocks, allocating a new
2569 float_block with malloc whenever necessary. Float cells reclaimed
2570 by GC are put on a free list to be reallocated before allocating
2571 any new float cells from the latest float_block. */
2573 #define FLOAT_BLOCK_SIZE \
2574 (((BLOCK_BYTES - sizeof (struct float_block *) \
2575 /* The compiler might add padding at the end. */ \
2576 - (sizeof (struct Lisp_Float) - sizeof (bits_word))) * CHAR_BIT) \
2577 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2579 #define GETMARKBIT(block,n) \
2580 (((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2581 >> ((n) % BITS_PER_BITS_WORD)) \
2582 & 1)
2584 #define SETMARKBIT(block,n) \
2585 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2586 |= (bits_word) 1 << ((n) % BITS_PER_BITS_WORD))
2588 #define UNSETMARKBIT(block,n) \
2589 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2590 &= ~((bits_word) 1 << ((n) % BITS_PER_BITS_WORD)))
2592 #define FLOAT_BLOCK(fptr) \
2593 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2595 #define FLOAT_INDEX(fptr) \
2596 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2598 struct float_block
2600 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2601 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2602 bits_word gcmarkbits[1 + FLOAT_BLOCK_SIZE / BITS_PER_BITS_WORD];
2603 struct float_block *next;
2606 #define FLOAT_MARKED_P(fptr) \
2607 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2609 #define FLOAT_MARK(fptr) \
2610 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2612 #define FLOAT_UNMARK(fptr) \
2613 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2615 /* Current float_block. */
2617 static struct float_block *float_block;
2619 /* Index of first unused Lisp_Float in the current float_block. */
2621 static int float_block_index = FLOAT_BLOCK_SIZE;
2623 /* Free-list of Lisp_Floats. */
2625 static struct Lisp_Float *float_free_list;
2627 /* Return a new float object with value FLOAT_VALUE. */
2629 Lisp_Object
2630 make_float (double float_value)
2632 register Lisp_Object val;
2634 MALLOC_BLOCK_INPUT;
2636 if (float_free_list)
2638 /* We use the data field for chaining the free list
2639 so that we won't use the same field that has the mark bit. */
2640 XSETFLOAT (val, float_free_list);
2641 float_free_list = float_free_list->u.chain;
2643 else
2645 if (float_block_index == FLOAT_BLOCK_SIZE)
2647 struct float_block *new
2648 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2649 new->next = float_block;
2650 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2651 float_block = new;
2652 float_block_index = 0;
2653 total_free_floats += FLOAT_BLOCK_SIZE;
2655 XSETFLOAT (val, &float_block->floats[float_block_index]);
2656 float_block_index++;
2659 MALLOC_UNBLOCK_INPUT;
2661 XFLOAT_INIT (val, float_value);
2662 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2663 consing_since_gc += sizeof (struct Lisp_Float);
2664 floats_consed++;
2665 total_free_floats--;
2666 return val;
2671 /***********************************************************************
2672 Cons Allocation
2673 ***********************************************************************/
2675 /* We store cons cells inside of cons_blocks, allocating a new
2676 cons_block with malloc whenever necessary. Cons cells reclaimed by
2677 GC are put on a free list to be reallocated before allocating
2678 any new cons cells from the latest cons_block. */
2680 #define CONS_BLOCK_SIZE \
2681 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2682 /* The compiler might add padding at the end. */ \
2683 - (sizeof (struct Lisp_Cons) - sizeof (bits_word))) * CHAR_BIT) \
2684 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2686 #define CONS_BLOCK(fptr) \
2687 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2689 #define CONS_INDEX(fptr) \
2690 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2692 struct cons_block
2694 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2695 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2696 bits_word gcmarkbits[1 + CONS_BLOCK_SIZE / BITS_PER_BITS_WORD];
2697 struct cons_block *next;
2700 #define CONS_MARKED_P(fptr) \
2701 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2703 #define CONS_MARK(fptr) \
2704 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2706 #define CONS_UNMARK(fptr) \
2707 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2709 /* Current cons_block. */
2711 static struct cons_block *cons_block;
2713 /* Index of first unused Lisp_Cons in the current block. */
2715 static int cons_block_index = CONS_BLOCK_SIZE;
2717 /* Free-list of Lisp_Cons structures. */
2719 static struct Lisp_Cons *cons_free_list;
2721 /* Explicitly free a cons cell by putting it on the free-list. */
2723 void
2724 free_cons (struct Lisp_Cons *ptr)
2726 ptr->u.chain = cons_free_list;
2727 ptr->car = Vdead;
2728 cons_free_list = ptr;
2729 consing_since_gc -= sizeof *ptr;
2730 total_free_conses++;
2733 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2734 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2735 (Lisp_Object car, Lisp_Object cdr)
2737 register Lisp_Object val;
2739 MALLOC_BLOCK_INPUT;
2741 if (cons_free_list)
2743 /* We use the cdr for chaining the free list
2744 so that we won't use the same field that has the mark bit. */
2745 XSETCONS (val, cons_free_list);
2746 cons_free_list = cons_free_list->u.chain;
2748 else
2750 if (cons_block_index == CONS_BLOCK_SIZE)
2752 struct cons_block *new
2753 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2754 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2755 new->next = cons_block;
2756 cons_block = new;
2757 cons_block_index = 0;
2758 total_free_conses += CONS_BLOCK_SIZE;
2760 XSETCONS (val, &cons_block->conses[cons_block_index]);
2761 cons_block_index++;
2764 MALLOC_UNBLOCK_INPUT;
2766 XSETCAR (val, car);
2767 XSETCDR (val, cdr);
2768 eassert (!CONS_MARKED_P (XCONS (val)));
2769 consing_since_gc += sizeof (struct Lisp_Cons);
2770 total_free_conses--;
2771 cons_cells_consed++;
2772 return val;
2775 #ifdef GC_CHECK_CONS_LIST
2776 /* Get an error now if there's any junk in the cons free list. */
2777 void
2778 check_cons_list (void)
2780 struct Lisp_Cons *tail = cons_free_list;
2782 while (tail)
2783 tail = tail->u.chain;
2785 #endif
2787 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2789 Lisp_Object
2790 list1 (Lisp_Object arg1)
2792 return Fcons (arg1, Qnil);
2795 Lisp_Object
2796 list2 (Lisp_Object arg1, Lisp_Object arg2)
2798 return Fcons (arg1, Fcons (arg2, Qnil));
2802 Lisp_Object
2803 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2805 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2809 Lisp_Object
2810 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2812 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2816 Lisp_Object
2817 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2819 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2820 Fcons (arg5, Qnil)))));
2823 /* Make a list of COUNT Lisp_Objects, where ARG is the
2824 first one. Allocate conses from pure space if TYPE
2825 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2827 Lisp_Object
2828 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2830 Lisp_Object (*cons) (Lisp_Object, Lisp_Object);
2831 switch (type)
2833 case CONSTYPE_PURE: cons = pure_cons; break;
2834 case CONSTYPE_HEAP: cons = Fcons; break;
2835 default: emacs_abort ();
2838 eassume (0 < count);
2839 Lisp_Object val = cons (arg, Qnil);
2840 Lisp_Object tail = val;
2842 va_list ap;
2843 va_start (ap, arg);
2844 for (ptrdiff_t i = 1; i < count; i++)
2846 Lisp_Object elem = cons (va_arg (ap, Lisp_Object), Qnil);
2847 XSETCDR (tail, elem);
2848 tail = elem;
2850 va_end (ap);
2852 return val;
2855 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2856 doc: /* Return a newly created list with specified arguments as elements.
2857 Any number of arguments, even zero arguments, are allowed.
2858 usage: (list &rest OBJECTS) */)
2859 (ptrdiff_t nargs, Lisp_Object *args)
2861 register Lisp_Object val;
2862 val = Qnil;
2864 while (nargs > 0)
2866 nargs--;
2867 val = Fcons (args[nargs], val);
2869 return val;
2873 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2874 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2875 (register Lisp_Object length, Lisp_Object init)
2877 register Lisp_Object val;
2878 register EMACS_INT size;
2880 CHECK_NATNUM (length);
2881 size = XFASTINT (length);
2883 val = Qnil;
2884 while (size > 0)
2886 val = Fcons (init, val);
2887 --size;
2889 if (size > 0)
2891 val = Fcons (init, val);
2892 --size;
2894 if (size > 0)
2896 val = Fcons (init, val);
2897 --size;
2899 if (size > 0)
2901 val = Fcons (init, val);
2902 --size;
2904 if (size > 0)
2906 val = Fcons (init, val);
2907 --size;
2913 QUIT;
2916 return val;
2921 /***********************************************************************
2922 Vector Allocation
2923 ***********************************************************************/
2925 /* Sometimes a vector's contents are merely a pointer internally used
2926 in vector allocation code. On the rare platforms where a null
2927 pointer cannot be tagged, represent it with a Lisp 0.
2928 Usually you don't want to touch this. */
2930 static struct Lisp_Vector *
2931 next_vector (struct Lisp_Vector *v)
2933 return XUNTAG (v->contents[0], Lisp_Int0);
2936 static void
2937 set_next_vector (struct Lisp_Vector *v, struct Lisp_Vector *p)
2939 v->contents[0] = make_lisp_ptr (p, Lisp_Int0);
2942 /* This value is balanced well enough to avoid too much internal overhead
2943 for the most common cases; it's not required to be a power of two, but
2944 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2946 #define VECTOR_BLOCK_SIZE 4096
2948 enum
2950 /* Alignment of struct Lisp_Vector objects. */
2951 vector_alignment = COMMON_MULTIPLE (FLEXALIGNOF (struct Lisp_Vector),
2952 GCALIGNMENT),
2954 /* Vector size requests are a multiple of this. */
2955 roundup_size = COMMON_MULTIPLE (vector_alignment, word_size)
2958 /* Verify assumptions described above. */
2959 verify (VECTOR_BLOCK_SIZE % roundup_size == 0);
2960 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2962 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2963 #define vroundup_ct(x) ROUNDUP (x, roundup_size)
2964 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2965 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2967 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2969 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2971 /* Size of the minimal vector allocated from block. */
2973 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2975 /* Size of the largest vector allocated from block. */
2977 #define VBLOCK_BYTES_MAX \
2978 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2980 /* We maintain one free list for each possible block-allocated
2981 vector size, and this is the number of free lists we have. */
2983 #define VECTOR_MAX_FREE_LIST_INDEX \
2984 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2986 /* Common shortcut to advance vector pointer over a block data. */
2988 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2990 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2992 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2994 /* Common shortcut to setup vector on a free list. */
2996 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2997 do { \
2998 (tmp) = ((nbytes - header_size) / word_size); \
2999 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
3000 eassert ((nbytes) % roundup_size == 0); \
3001 (tmp) = VINDEX (nbytes); \
3002 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
3003 set_next_vector (v, vector_free_lists[tmp]); \
3004 vector_free_lists[tmp] = (v); \
3005 total_free_vector_slots += (nbytes) / word_size; \
3006 } while (0)
3008 /* This internal type is used to maintain the list of large vectors
3009 which are allocated at their own, e.g. outside of vector blocks.
3011 struct large_vector itself cannot contain a struct Lisp_Vector, as
3012 the latter contains a flexible array member and C99 does not allow
3013 such structs to be nested. Instead, each struct large_vector
3014 object LV is followed by a struct Lisp_Vector, which is at offset
3015 large_vector_offset from LV, and whose address is therefore
3016 large_vector_vec (&LV). */
3018 struct large_vector
3020 struct large_vector *next;
3023 enum
3025 large_vector_offset = ROUNDUP (sizeof (struct large_vector), vector_alignment)
3028 static struct Lisp_Vector *
3029 large_vector_vec (struct large_vector *p)
3031 return (struct Lisp_Vector *) ((char *) p + large_vector_offset);
3034 /* This internal type is used to maintain an underlying storage
3035 for small vectors. */
3037 struct vector_block
3039 char data[VECTOR_BLOCK_BYTES];
3040 struct vector_block *next;
3043 /* Chain of vector blocks. */
3045 static struct vector_block *vector_blocks;
3047 /* Vector free lists, where NTH item points to a chain of free
3048 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
3050 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
3052 /* Singly-linked list of large vectors. */
3054 static struct large_vector *large_vectors;
3056 /* The only vector with 0 slots, allocated from pure space. */
3058 Lisp_Object zero_vector;
3060 /* Number of live vectors. */
3062 static EMACS_INT total_vectors;
3064 /* Total size of live and free vectors, in Lisp_Object units. */
3066 static EMACS_INT total_vector_slots, total_free_vector_slots;
3068 /* Get a new vector block. */
3070 static struct vector_block *
3071 allocate_vector_block (void)
3073 struct vector_block *block = xmalloc (sizeof *block);
3075 #ifndef GC_MALLOC_CHECK
3076 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
3077 MEM_TYPE_VECTOR_BLOCK);
3078 #endif
3080 block->next = vector_blocks;
3081 vector_blocks = block;
3082 return block;
3085 /* Called once to initialize vector allocation. */
3087 static void
3088 init_vectors (void)
3090 zero_vector = make_pure_vector (0);
3093 /* Allocate vector from a vector block. */
3095 static struct Lisp_Vector *
3096 allocate_vector_from_block (size_t nbytes)
3098 struct Lisp_Vector *vector;
3099 struct vector_block *block;
3100 size_t index, restbytes;
3102 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
3103 eassert (nbytes % roundup_size == 0);
3105 /* First, try to allocate from a free list
3106 containing vectors of the requested size. */
3107 index = VINDEX (nbytes);
3108 if (vector_free_lists[index])
3110 vector = vector_free_lists[index];
3111 vector_free_lists[index] = next_vector (vector);
3112 total_free_vector_slots -= nbytes / word_size;
3113 return vector;
3116 /* Next, check free lists containing larger vectors. Since
3117 we will split the result, we should have remaining space
3118 large enough to use for one-slot vector at least. */
3119 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
3120 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
3121 if (vector_free_lists[index])
3123 /* This vector is larger than requested. */
3124 vector = vector_free_lists[index];
3125 vector_free_lists[index] = next_vector (vector);
3126 total_free_vector_slots -= nbytes / word_size;
3128 /* Excess bytes are used for the smaller vector,
3129 which should be set on an appropriate free list. */
3130 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
3131 eassert (restbytes % roundup_size == 0);
3132 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
3133 return vector;
3136 /* Finally, need a new vector block. */
3137 block = allocate_vector_block ();
3139 /* New vector will be at the beginning of this block. */
3140 vector = (struct Lisp_Vector *) block->data;
3142 /* If the rest of space from this block is large enough
3143 for one-slot vector at least, set up it on a free list. */
3144 restbytes = VECTOR_BLOCK_BYTES - nbytes;
3145 if (restbytes >= VBLOCK_BYTES_MIN)
3147 eassert (restbytes % roundup_size == 0);
3148 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
3150 return vector;
3153 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
3155 #define VECTOR_IN_BLOCK(vector, block) \
3156 ((char *) (vector) <= (block)->data \
3157 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
3159 /* Return the memory footprint of V in bytes. */
3161 static ptrdiff_t
3162 vector_nbytes (struct Lisp_Vector *v)
3164 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
3165 ptrdiff_t nwords;
3167 if (size & PSEUDOVECTOR_FLAG)
3169 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
3171 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
3172 ptrdiff_t word_bytes = (bool_vector_words (bv->size)
3173 * sizeof (bits_word));
3174 ptrdiff_t boolvec_bytes = bool_header_size + word_bytes;
3175 verify (header_size <= bool_header_size);
3176 nwords = (boolvec_bytes - header_size + word_size - 1) / word_size;
3178 else
3179 nwords = ((size & PSEUDOVECTOR_SIZE_MASK)
3180 + ((size & PSEUDOVECTOR_REST_MASK)
3181 >> PSEUDOVECTOR_SIZE_BITS));
3183 else
3184 nwords = size;
3185 return vroundup (header_size + word_size * nwords);
3188 /* Release extra resources still in use by VECTOR, which may be any
3189 vector-like object. */
3191 static void
3192 cleanup_vector (struct Lisp_Vector *vector)
3194 detect_suspicious_free (vector);
3195 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FONT)
3196 && ((vector->header.size & PSEUDOVECTOR_SIZE_MASK)
3197 == FONT_OBJECT_MAX))
3199 struct font_driver const *drv = ((struct font *) vector)->driver;
3201 /* The font driver might sometimes be NULL, e.g. if Emacs was
3202 interrupted before it had time to set it up. */
3203 if (drv)
3205 /* Attempt to catch subtle bugs like Bug#16140. */
3206 eassert (valid_font_driver (drv));
3207 drv->close ((struct font *) vector);
3211 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_THREAD))
3212 finalize_one_thread ((struct thread_state *) vector);
3213 else if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_MUTEX))
3214 finalize_one_mutex ((struct Lisp_Mutex *) vector);
3215 else if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_CONDVAR))
3216 finalize_one_condvar ((struct Lisp_CondVar *) vector);
3219 /* Reclaim space used by unmarked vectors. */
3221 NO_INLINE /* For better stack traces */
3222 static void
3223 sweep_vectors (void)
3225 struct vector_block *block, **bprev = &vector_blocks;
3226 struct large_vector *lv, **lvprev = &large_vectors;
3227 struct Lisp_Vector *vector, *next;
3229 total_vectors = total_vector_slots = total_free_vector_slots = 0;
3230 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3232 /* Looking through vector blocks. */
3234 for (block = vector_blocks; block; block = *bprev)
3236 bool free_this_block = 0;
3237 ptrdiff_t nbytes;
3239 for (vector = (struct Lisp_Vector *) block->data;
3240 VECTOR_IN_BLOCK (vector, block); vector = next)
3242 if (VECTOR_MARKED_P (vector))
3244 VECTOR_UNMARK (vector);
3245 total_vectors++;
3246 nbytes = vector_nbytes (vector);
3247 total_vector_slots += nbytes / word_size;
3248 next = ADVANCE (vector, nbytes);
3250 else
3252 ptrdiff_t total_bytes;
3254 cleanup_vector (vector);
3255 nbytes = vector_nbytes (vector);
3256 total_bytes = nbytes;
3257 next = ADVANCE (vector, nbytes);
3259 /* While NEXT is not marked, try to coalesce with VECTOR,
3260 thus making VECTOR of the largest possible size. */
3262 while (VECTOR_IN_BLOCK (next, block))
3264 if (VECTOR_MARKED_P (next))
3265 break;
3266 cleanup_vector (next);
3267 nbytes = vector_nbytes (next);
3268 total_bytes += nbytes;
3269 next = ADVANCE (next, nbytes);
3272 eassert (total_bytes % roundup_size == 0);
3274 if (vector == (struct Lisp_Vector *) block->data
3275 && !VECTOR_IN_BLOCK (next, block))
3276 /* This block should be freed because all of its
3277 space was coalesced into the only free vector. */
3278 free_this_block = 1;
3279 else
3281 size_t tmp;
3282 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
3287 if (free_this_block)
3289 *bprev = block->next;
3290 #ifndef GC_MALLOC_CHECK
3291 mem_delete (mem_find (block->data));
3292 #endif
3293 xfree (block);
3295 else
3296 bprev = &block->next;
3299 /* Sweep large vectors. */
3301 for (lv = large_vectors; lv; lv = *lvprev)
3303 vector = large_vector_vec (lv);
3304 if (VECTOR_MARKED_P (vector))
3306 VECTOR_UNMARK (vector);
3307 total_vectors++;
3308 if (vector->header.size & PSEUDOVECTOR_FLAG)
3310 /* All non-bool pseudovectors are small enough to be allocated
3311 from vector blocks. This code should be redesigned if some
3312 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
3313 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
3314 total_vector_slots += vector_nbytes (vector) / word_size;
3316 else
3317 total_vector_slots
3318 += header_size / word_size + vector->header.size;
3319 lvprev = &lv->next;
3321 else
3323 *lvprev = lv->next;
3324 lisp_free (lv);
3329 /* Value is a pointer to a newly allocated Lisp_Vector structure
3330 with room for LEN Lisp_Objects. */
3332 static struct Lisp_Vector *
3333 allocate_vectorlike (ptrdiff_t len)
3335 struct Lisp_Vector *p;
3337 MALLOC_BLOCK_INPUT;
3339 if (len == 0)
3340 p = XVECTOR (zero_vector);
3341 else
3343 size_t nbytes = header_size + len * word_size;
3345 #ifdef DOUG_LEA_MALLOC
3346 if (!mmap_lisp_allowed_p ())
3347 mallopt (M_MMAP_MAX, 0);
3348 #endif
3350 if (nbytes <= VBLOCK_BYTES_MAX)
3351 p = allocate_vector_from_block (vroundup (nbytes));
3352 else
3354 struct large_vector *lv
3355 = lisp_malloc ((large_vector_offset + header_size
3356 + len * word_size),
3357 MEM_TYPE_VECTORLIKE);
3358 lv->next = large_vectors;
3359 large_vectors = lv;
3360 p = large_vector_vec (lv);
3363 #ifdef DOUG_LEA_MALLOC
3364 if (!mmap_lisp_allowed_p ())
3365 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3366 #endif
3368 if (find_suspicious_object_in_range (p, (char *) p + nbytes))
3369 emacs_abort ();
3371 consing_since_gc += nbytes;
3372 vector_cells_consed += len;
3375 MALLOC_UNBLOCK_INPUT;
3377 return p;
3381 /* Allocate a vector with LEN slots. */
3383 struct Lisp_Vector *
3384 allocate_vector (EMACS_INT len)
3386 struct Lisp_Vector *v;
3387 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3389 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3390 memory_full (SIZE_MAX);
3391 v = allocate_vectorlike (len);
3392 if (len)
3393 v->header.size = len;
3394 return v;
3398 /* Allocate other vector-like structures. */
3400 struct Lisp_Vector *
3401 allocate_pseudovector (int memlen, int lisplen,
3402 int zerolen, enum pvec_type tag)
3404 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3406 /* Catch bogus values. */
3407 eassert (0 <= tag && tag <= PVEC_FONT);
3408 eassert (0 <= lisplen && lisplen <= zerolen && zerolen <= memlen);
3409 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3410 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3412 /* Only the first LISPLEN slots will be traced normally by the GC. */
3413 memclear (v->contents, zerolen * word_size);
3414 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3415 return v;
3418 struct buffer *
3419 allocate_buffer (void)
3421 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3423 BUFFER_PVEC_INIT (b);
3424 /* Put B on the chain of all buffers including killed ones. */
3425 b->next = all_buffers;
3426 all_buffers = b;
3427 /* Note that the rest fields of B are not initialized. */
3428 return b;
3431 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3432 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3433 See also the function `vector'. */)
3434 (Lisp_Object length, Lisp_Object init)
3436 CHECK_NATNUM (length);
3437 struct Lisp_Vector *p = allocate_vector (XFASTINT (length));
3438 for (ptrdiff_t i = 0; i < XFASTINT (length); i++)
3439 p->contents[i] = init;
3440 return make_lisp_ptr (p, Lisp_Vectorlike);
3443 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3444 doc: /* Return a newly created vector with specified arguments as elements.
3445 Any number of arguments, even zero arguments, are allowed.
3446 usage: (vector &rest OBJECTS) */)
3447 (ptrdiff_t nargs, Lisp_Object *args)
3449 Lisp_Object val = make_uninit_vector (nargs);
3450 struct Lisp_Vector *p = XVECTOR (val);
3451 memcpy (p->contents, args, nargs * sizeof *args);
3452 return val;
3455 void
3456 make_byte_code (struct Lisp_Vector *v)
3458 /* Don't allow the global zero_vector to become a byte code object. */
3459 eassert (0 < v->header.size);
3461 if (v->header.size > 1 && STRINGP (v->contents[1])
3462 && STRING_MULTIBYTE (v->contents[1]))
3463 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3464 earlier because they produced a raw 8-bit string for byte-code
3465 and now such a byte-code string is loaded as multibyte while
3466 raw 8-bit characters converted to multibyte form. Thus, now we
3467 must convert them back to the original unibyte form. */
3468 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3469 XSETPVECTYPE (v, PVEC_COMPILED);
3472 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3473 doc: /* Create a byte-code object with specified arguments as elements.
3474 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3475 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3476 and (optional) INTERACTIVE-SPEC.
3477 The first four arguments are required; at most six have any
3478 significance.
3479 The ARGLIST can be either like the one of `lambda', in which case the arguments
3480 will be dynamically bound before executing the byte code, or it can be an
3481 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3482 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3483 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3484 argument to catch the left-over arguments. If such an integer is used, the
3485 arguments will not be dynamically bound but will be instead pushed on the
3486 stack before executing the byte-code.
3487 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3488 (ptrdiff_t nargs, Lisp_Object *args)
3490 Lisp_Object val = make_uninit_vector (nargs);
3491 struct Lisp_Vector *p = XVECTOR (val);
3493 /* We used to purecopy everything here, if purify-flag was set. This worked
3494 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3495 dangerous, since make-byte-code is used during execution to build
3496 closures, so any closure built during the preload phase would end up
3497 copied into pure space, including its free variables, which is sometimes
3498 just wasteful and other times plainly wrong (e.g. those free vars may want
3499 to be setcar'd). */
3501 memcpy (p->contents, args, nargs * sizeof *args);
3502 make_byte_code (p);
3503 XSETCOMPILED (val, p);
3504 return val;
3509 /***********************************************************************
3510 Symbol Allocation
3511 ***********************************************************************/
3513 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3514 of the required alignment. */
3516 union aligned_Lisp_Symbol
3518 struct Lisp_Symbol s;
3519 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3520 & -GCALIGNMENT];
3523 /* Each symbol_block is just under 1020 bytes long, since malloc
3524 really allocates in units of powers of two and uses 4 bytes for its
3525 own overhead. */
3527 #define SYMBOL_BLOCK_SIZE \
3528 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3530 struct symbol_block
3532 /* Place `symbols' first, to preserve alignment. */
3533 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3534 struct symbol_block *next;
3537 /* Current symbol block and index of first unused Lisp_Symbol
3538 structure in it. */
3540 static struct symbol_block *symbol_block;
3541 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3542 /* Pointer to the first symbol_block that contains pinned symbols.
3543 Tests for 24.4 showed that at dump-time, Emacs contains about 15K symbols,
3544 10K of which are pinned (and all but 250 of them are interned in obarray),
3545 whereas a "typical session" has in the order of 30K symbols.
3546 `symbol_block_pinned' lets mark_pinned_symbols scan only 15K symbols rather
3547 than 30K to find the 10K symbols we need to mark. */
3548 static struct symbol_block *symbol_block_pinned;
3550 /* List of free symbols. */
3552 static struct Lisp_Symbol *symbol_free_list;
3554 static void
3555 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3557 XSYMBOL (sym)->name = name;
3560 void
3561 init_symbol (Lisp_Object val, Lisp_Object name)
3563 struct Lisp_Symbol *p = XSYMBOL (val);
3564 set_symbol_name (val, name);
3565 set_symbol_plist (val, Qnil);
3566 p->redirect = SYMBOL_PLAINVAL;
3567 SET_SYMBOL_VAL (p, Qunbound);
3568 set_symbol_function (val, Qnil);
3569 set_symbol_next (val, NULL);
3570 p->gcmarkbit = false;
3571 p->interned = SYMBOL_UNINTERNED;
3572 p->trapped_write = SYMBOL_UNTRAPPED_WRITE;
3573 p->declared_special = false;
3574 p->pinned = false;
3577 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3578 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3579 Its value is void, and its function definition and property list are nil. */)
3580 (Lisp_Object name)
3582 Lisp_Object val;
3584 CHECK_STRING (name);
3586 MALLOC_BLOCK_INPUT;
3588 if (symbol_free_list)
3590 XSETSYMBOL (val, symbol_free_list);
3591 symbol_free_list = symbol_free_list->next;
3593 else
3595 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3597 struct symbol_block *new
3598 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3599 new->next = symbol_block;
3600 symbol_block = new;
3601 symbol_block_index = 0;
3602 total_free_symbols += SYMBOL_BLOCK_SIZE;
3604 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3605 symbol_block_index++;
3608 MALLOC_UNBLOCK_INPUT;
3610 init_symbol (val, name);
3611 consing_since_gc += sizeof (struct Lisp_Symbol);
3612 symbols_consed++;
3613 total_free_symbols--;
3614 return val;
3619 /***********************************************************************
3620 Marker (Misc) Allocation
3621 ***********************************************************************/
3623 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3624 the required alignment. */
3626 union aligned_Lisp_Misc
3628 union Lisp_Misc m;
3629 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3630 & -GCALIGNMENT];
3633 /* Allocation of markers and other objects that share that structure.
3634 Works like allocation of conses. */
3636 #define MARKER_BLOCK_SIZE \
3637 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3639 struct marker_block
3641 /* Place `markers' first, to preserve alignment. */
3642 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3643 struct marker_block *next;
3646 static struct marker_block *marker_block;
3647 static int marker_block_index = MARKER_BLOCK_SIZE;
3649 static union Lisp_Misc *marker_free_list;
3651 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3653 static Lisp_Object
3654 allocate_misc (enum Lisp_Misc_Type type)
3656 Lisp_Object val;
3658 MALLOC_BLOCK_INPUT;
3660 if (marker_free_list)
3662 XSETMISC (val, marker_free_list);
3663 marker_free_list = marker_free_list->u_free.chain;
3665 else
3667 if (marker_block_index == MARKER_BLOCK_SIZE)
3669 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3670 new->next = marker_block;
3671 marker_block = new;
3672 marker_block_index = 0;
3673 total_free_markers += MARKER_BLOCK_SIZE;
3675 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3676 marker_block_index++;
3679 MALLOC_UNBLOCK_INPUT;
3681 --total_free_markers;
3682 consing_since_gc += sizeof (union Lisp_Misc);
3683 misc_objects_consed++;
3684 XMISCANY (val)->type = type;
3685 XMISCANY (val)->gcmarkbit = 0;
3686 return val;
3689 /* Free a Lisp_Misc object. */
3691 void
3692 free_misc (Lisp_Object misc)
3694 XMISCANY (misc)->type = Lisp_Misc_Free;
3695 XMISC (misc)->u_free.chain = marker_free_list;
3696 marker_free_list = XMISC (misc);
3697 consing_since_gc -= sizeof (union Lisp_Misc);
3698 total_free_markers++;
3701 /* Verify properties of Lisp_Save_Value's representation
3702 that are assumed here and elsewhere. */
3704 verify (SAVE_UNUSED == 0);
3705 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3706 >> SAVE_SLOT_BITS)
3707 == 0);
3709 /* Return Lisp_Save_Value objects for the various combinations
3710 that callers need. */
3712 Lisp_Object
3713 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3715 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3716 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3717 p->save_type = SAVE_TYPE_INT_INT_INT;
3718 p->data[0].integer = a;
3719 p->data[1].integer = b;
3720 p->data[2].integer = c;
3721 return val;
3724 Lisp_Object
3725 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3726 Lisp_Object d)
3728 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3729 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3730 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3731 p->data[0].object = a;
3732 p->data[1].object = b;
3733 p->data[2].object = c;
3734 p->data[3].object = d;
3735 return val;
3738 Lisp_Object
3739 make_save_ptr (void *a)
3741 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3742 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3743 p->save_type = SAVE_POINTER;
3744 p->data[0].pointer = a;
3745 return val;
3748 Lisp_Object
3749 make_save_ptr_int (void *a, ptrdiff_t b)
3751 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3752 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3753 p->save_type = SAVE_TYPE_PTR_INT;
3754 p->data[0].pointer = a;
3755 p->data[1].integer = b;
3756 return val;
3759 Lisp_Object
3760 make_save_ptr_ptr (void *a, void *b)
3762 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3763 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3764 p->save_type = SAVE_TYPE_PTR_PTR;
3765 p->data[0].pointer = a;
3766 p->data[1].pointer = b;
3767 return val;
3770 Lisp_Object
3771 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3773 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3774 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3775 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3776 p->data[0].funcpointer = a;
3777 p->data[1].pointer = b;
3778 p->data[2].object = c;
3779 return val;
3782 /* Return a Lisp_Save_Value object that represents an array A
3783 of N Lisp objects. */
3785 Lisp_Object
3786 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3788 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3789 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3790 p->save_type = SAVE_TYPE_MEMORY;
3791 p->data[0].pointer = a;
3792 p->data[1].integer = n;
3793 return val;
3796 /* Free a Lisp_Save_Value object. Do not use this function
3797 if SAVE contains pointer other than returned by xmalloc. */
3799 void
3800 free_save_value (Lisp_Object save)
3802 xfree (XSAVE_POINTER (save, 0));
3803 free_misc (save);
3806 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3808 Lisp_Object
3809 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3811 register Lisp_Object overlay;
3813 overlay = allocate_misc (Lisp_Misc_Overlay);
3814 OVERLAY_START (overlay) = start;
3815 OVERLAY_END (overlay) = end;
3816 set_overlay_plist (overlay, plist);
3817 XOVERLAY (overlay)->next = NULL;
3818 return overlay;
3821 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3822 doc: /* Return a newly allocated marker which does not point at any place. */)
3823 (void)
3825 register Lisp_Object val;
3826 register struct Lisp_Marker *p;
3828 val = allocate_misc (Lisp_Misc_Marker);
3829 p = XMARKER (val);
3830 p->buffer = 0;
3831 p->bytepos = 0;
3832 p->charpos = 0;
3833 p->next = NULL;
3834 p->insertion_type = 0;
3835 p->need_adjustment = 0;
3836 return val;
3839 /* Return a newly allocated marker which points into BUF
3840 at character position CHARPOS and byte position BYTEPOS. */
3842 Lisp_Object
3843 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3845 Lisp_Object obj;
3846 struct Lisp_Marker *m;
3848 /* No dead buffers here. */
3849 eassert (BUFFER_LIVE_P (buf));
3851 /* Every character is at least one byte. */
3852 eassert (charpos <= bytepos);
3854 obj = allocate_misc (Lisp_Misc_Marker);
3855 m = XMARKER (obj);
3856 m->buffer = buf;
3857 m->charpos = charpos;
3858 m->bytepos = bytepos;
3859 m->insertion_type = 0;
3860 m->need_adjustment = 0;
3861 m->next = BUF_MARKERS (buf);
3862 BUF_MARKERS (buf) = m;
3863 return obj;
3866 /* Put MARKER back on the free list after using it temporarily. */
3868 void
3869 free_marker (Lisp_Object marker)
3871 unchain_marker (XMARKER (marker));
3872 free_misc (marker);
3876 /* Return a newly created vector or string with specified arguments as
3877 elements. If all the arguments are characters that can fit
3878 in a string of events, make a string; otherwise, make a vector.
3880 Any number of arguments, even zero arguments, are allowed. */
3882 Lisp_Object
3883 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3885 ptrdiff_t i;
3887 for (i = 0; i < nargs; i++)
3888 /* The things that fit in a string
3889 are characters that are in 0...127,
3890 after discarding the meta bit and all the bits above it. */
3891 if (!INTEGERP (args[i])
3892 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3893 return Fvector (nargs, args);
3895 /* Since the loop exited, we know that all the things in it are
3896 characters, so we can make a string. */
3898 Lisp_Object result;
3900 result = Fmake_string (make_number (nargs), make_number (0));
3901 for (i = 0; i < nargs; i++)
3903 SSET (result, i, XINT (args[i]));
3904 /* Move the meta bit to the right place for a string char. */
3905 if (XINT (args[i]) & CHAR_META)
3906 SSET (result, i, SREF (result, i) | 0x80);
3909 return result;
3913 #ifdef HAVE_MODULES
3914 /* Create a new module user ptr object. */
3915 Lisp_Object
3916 make_user_ptr (void (*finalizer) (void *), void *p)
3918 Lisp_Object obj;
3919 struct Lisp_User_Ptr *uptr;
3921 obj = allocate_misc (Lisp_Misc_User_Ptr);
3922 uptr = XUSER_PTR (obj);
3923 uptr->finalizer = finalizer;
3924 uptr->p = p;
3925 return obj;
3928 #endif
3930 static void
3931 init_finalizer_list (struct Lisp_Finalizer *head)
3933 head->prev = head->next = head;
3936 /* Insert FINALIZER before ELEMENT. */
3938 static void
3939 finalizer_insert (struct Lisp_Finalizer *element,
3940 struct Lisp_Finalizer *finalizer)
3942 eassert (finalizer->prev == NULL);
3943 eassert (finalizer->next == NULL);
3944 finalizer->next = element;
3945 finalizer->prev = element->prev;
3946 finalizer->prev->next = finalizer;
3947 element->prev = finalizer;
3950 static void
3951 unchain_finalizer (struct Lisp_Finalizer *finalizer)
3953 if (finalizer->prev != NULL)
3955 eassert (finalizer->next != NULL);
3956 finalizer->prev->next = finalizer->next;
3957 finalizer->next->prev = finalizer->prev;
3958 finalizer->prev = finalizer->next = NULL;
3962 static void
3963 mark_finalizer_list (struct Lisp_Finalizer *head)
3965 for (struct Lisp_Finalizer *finalizer = head->next;
3966 finalizer != head;
3967 finalizer = finalizer->next)
3969 finalizer->base.gcmarkbit = true;
3970 mark_object (finalizer->function);
3974 /* Move doomed finalizers to list DEST from list SRC. A doomed
3975 finalizer is one that is not GC-reachable and whose
3976 finalizer->function is non-nil. */
3978 static void
3979 queue_doomed_finalizers (struct Lisp_Finalizer *dest,
3980 struct Lisp_Finalizer *src)
3982 struct Lisp_Finalizer *finalizer = src->next;
3983 while (finalizer != src)
3985 struct Lisp_Finalizer *next = finalizer->next;
3986 if (!finalizer->base.gcmarkbit && !NILP (finalizer->function))
3988 unchain_finalizer (finalizer);
3989 finalizer_insert (dest, finalizer);
3992 finalizer = next;
3996 static Lisp_Object
3997 run_finalizer_handler (Lisp_Object args)
3999 add_to_log ("finalizer failed: %S", args);
4000 return Qnil;
4003 static void
4004 run_finalizer_function (Lisp_Object function)
4006 ptrdiff_t count = SPECPDL_INDEX ();
4008 specbind (Qinhibit_quit, Qt);
4009 internal_condition_case_1 (call0, function, Qt, run_finalizer_handler);
4010 unbind_to (count, Qnil);
4013 static void
4014 run_finalizers (struct Lisp_Finalizer *finalizers)
4016 struct Lisp_Finalizer *finalizer;
4017 Lisp_Object function;
4019 while (finalizers->next != finalizers)
4021 finalizer = finalizers->next;
4022 eassert (finalizer->base.type == Lisp_Misc_Finalizer);
4023 unchain_finalizer (finalizer);
4024 function = finalizer->function;
4025 if (!NILP (function))
4027 finalizer->function = Qnil;
4028 run_finalizer_function (function);
4033 DEFUN ("make-finalizer", Fmake_finalizer, Smake_finalizer, 1, 1, 0,
4034 doc: /* Make a finalizer that will run FUNCTION.
4035 FUNCTION will be called after garbage collection when the returned
4036 finalizer object becomes unreachable. If the finalizer object is
4037 reachable only through references from finalizer objects, it does not
4038 count as reachable for the purpose of deciding whether to run
4039 FUNCTION. FUNCTION will be run once per finalizer object. */)
4040 (Lisp_Object function)
4042 Lisp_Object val = allocate_misc (Lisp_Misc_Finalizer);
4043 struct Lisp_Finalizer *finalizer = XFINALIZER (val);
4044 finalizer->function = function;
4045 finalizer->prev = finalizer->next = NULL;
4046 finalizer_insert (&finalizers, finalizer);
4047 return val;
4051 /************************************************************************
4052 Memory Full Handling
4053 ************************************************************************/
4056 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
4057 there may have been size_t overflow so that malloc was never
4058 called, or perhaps malloc was invoked successfully but the
4059 resulting pointer had problems fitting into a tagged EMACS_INT. In
4060 either case this counts as memory being full even though malloc did
4061 not fail. */
4063 void
4064 memory_full (size_t nbytes)
4066 /* Do not go into hysterics merely because a large request failed. */
4067 bool enough_free_memory = 0;
4068 if (SPARE_MEMORY < nbytes)
4070 void *p;
4072 MALLOC_BLOCK_INPUT;
4073 p = malloc (SPARE_MEMORY);
4074 if (p)
4076 free (p);
4077 enough_free_memory = 1;
4079 MALLOC_UNBLOCK_INPUT;
4082 if (! enough_free_memory)
4084 int i;
4086 Vmemory_full = Qt;
4088 memory_full_cons_threshold = sizeof (struct cons_block);
4090 /* The first time we get here, free the spare memory. */
4091 for (i = 0; i < ARRAYELTS (spare_memory); i++)
4092 if (spare_memory[i])
4094 if (i == 0)
4095 free (spare_memory[i]);
4096 else if (i >= 1 && i <= 4)
4097 lisp_align_free (spare_memory[i]);
4098 else
4099 lisp_free (spare_memory[i]);
4100 spare_memory[i] = 0;
4104 /* This used to call error, but if we've run out of memory, we could
4105 get infinite recursion trying to build the string. */
4106 xsignal (Qnil, Vmemory_signal_data);
4109 /* If we released our reserve (due to running out of memory),
4110 and we have a fair amount free once again,
4111 try to set aside another reserve in case we run out once more.
4113 This is called when a relocatable block is freed in ralloc.c,
4114 and also directly from this file, in case we're not using ralloc.c. */
4116 void
4117 refill_memory_reserve (void)
4119 #if !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
4120 if (spare_memory[0] == 0)
4121 spare_memory[0] = malloc (SPARE_MEMORY);
4122 if (spare_memory[1] == 0)
4123 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
4124 MEM_TYPE_SPARE);
4125 if (spare_memory[2] == 0)
4126 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
4127 MEM_TYPE_SPARE);
4128 if (spare_memory[3] == 0)
4129 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
4130 MEM_TYPE_SPARE);
4131 if (spare_memory[4] == 0)
4132 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
4133 MEM_TYPE_SPARE);
4134 if (spare_memory[5] == 0)
4135 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
4136 MEM_TYPE_SPARE);
4137 if (spare_memory[6] == 0)
4138 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
4139 MEM_TYPE_SPARE);
4140 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
4141 Vmemory_full = Qnil;
4142 #endif
4145 /************************************************************************
4146 C Stack Marking
4147 ************************************************************************/
4149 /* Conservative C stack marking requires a method to identify possibly
4150 live Lisp objects given a pointer value. We do this by keeping
4151 track of blocks of Lisp data that are allocated in a red-black tree
4152 (see also the comment of mem_node which is the type of nodes in
4153 that tree). Function lisp_malloc adds information for an allocated
4154 block to the red-black tree with calls to mem_insert, and function
4155 lisp_free removes it with mem_delete. Functions live_string_p etc
4156 call mem_find to lookup information about a given pointer in the
4157 tree, and use that to determine if the pointer points to a Lisp
4158 object or not. */
4160 /* Initialize this part of alloc.c. */
4162 static void
4163 mem_init (void)
4165 mem_z.left = mem_z.right = MEM_NIL;
4166 mem_z.parent = NULL;
4167 mem_z.color = MEM_BLACK;
4168 mem_z.start = mem_z.end = NULL;
4169 mem_root = MEM_NIL;
4173 /* Value is a pointer to the mem_node containing START. Value is
4174 MEM_NIL if there is no node in the tree containing START. */
4176 static struct mem_node *
4177 mem_find (void *start)
4179 struct mem_node *p;
4181 if (start < min_heap_address || start > max_heap_address)
4182 return MEM_NIL;
4184 /* Make the search always successful to speed up the loop below. */
4185 mem_z.start = start;
4186 mem_z.end = (char *) start + 1;
4188 p = mem_root;
4189 while (start < p->start || start >= p->end)
4190 p = start < p->start ? p->left : p->right;
4191 return p;
4195 /* Insert a new node into the tree for a block of memory with start
4196 address START, end address END, and type TYPE. Value is a
4197 pointer to the node that was inserted. */
4199 static struct mem_node *
4200 mem_insert (void *start, void *end, enum mem_type type)
4202 struct mem_node *c, *parent, *x;
4204 if (min_heap_address == NULL || start < min_heap_address)
4205 min_heap_address = start;
4206 if (max_heap_address == NULL || end > max_heap_address)
4207 max_heap_address = end;
4209 /* See where in the tree a node for START belongs. In this
4210 particular application, it shouldn't happen that a node is already
4211 present. For debugging purposes, let's check that. */
4212 c = mem_root;
4213 parent = NULL;
4215 while (c != MEM_NIL)
4217 parent = c;
4218 c = start < c->start ? c->left : c->right;
4221 /* Create a new node. */
4222 #ifdef GC_MALLOC_CHECK
4223 x = malloc (sizeof *x);
4224 if (x == NULL)
4225 emacs_abort ();
4226 #else
4227 x = xmalloc (sizeof *x);
4228 #endif
4229 x->start = start;
4230 x->end = end;
4231 x->type = type;
4232 x->parent = parent;
4233 x->left = x->right = MEM_NIL;
4234 x->color = MEM_RED;
4236 /* Insert it as child of PARENT or install it as root. */
4237 if (parent)
4239 if (start < parent->start)
4240 parent->left = x;
4241 else
4242 parent->right = x;
4244 else
4245 mem_root = x;
4247 /* Re-establish red-black tree properties. */
4248 mem_insert_fixup (x);
4250 return x;
4254 /* Re-establish the red-black properties of the tree, and thereby
4255 balance the tree, after node X has been inserted; X is always red. */
4257 static void
4258 mem_insert_fixup (struct mem_node *x)
4260 while (x != mem_root && x->parent->color == MEM_RED)
4262 /* X is red and its parent is red. This is a violation of
4263 red-black tree property #3. */
4265 if (x->parent == x->parent->parent->left)
4267 /* We're on the left side of our grandparent, and Y is our
4268 "uncle". */
4269 struct mem_node *y = x->parent->parent->right;
4271 if (y->color == MEM_RED)
4273 /* Uncle and parent are red but should be black because
4274 X is red. Change the colors accordingly and proceed
4275 with the grandparent. */
4276 x->parent->color = MEM_BLACK;
4277 y->color = MEM_BLACK;
4278 x->parent->parent->color = MEM_RED;
4279 x = x->parent->parent;
4281 else
4283 /* Parent and uncle have different colors; parent is
4284 red, uncle is black. */
4285 if (x == x->parent->right)
4287 x = x->parent;
4288 mem_rotate_left (x);
4291 x->parent->color = MEM_BLACK;
4292 x->parent->parent->color = MEM_RED;
4293 mem_rotate_right (x->parent->parent);
4296 else
4298 /* This is the symmetrical case of above. */
4299 struct mem_node *y = x->parent->parent->left;
4301 if (y->color == MEM_RED)
4303 x->parent->color = MEM_BLACK;
4304 y->color = MEM_BLACK;
4305 x->parent->parent->color = MEM_RED;
4306 x = x->parent->parent;
4308 else
4310 if (x == x->parent->left)
4312 x = x->parent;
4313 mem_rotate_right (x);
4316 x->parent->color = MEM_BLACK;
4317 x->parent->parent->color = MEM_RED;
4318 mem_rotate_left (x->parent->parent);
4323 /* The root may have been changed to red due to the algorithm. Set
4324 it to black so that property #5 is satisfied. */
4325 mem_root->color = MEM_BLACK;
4329 /* (x) (y)
4330 / \ / \
4331 a (y) ===> (x) c
4332 / \ / \
4333 b c a b */
4335 static void
4336 mem_rotate_left (struct mem_node *x)
4338 struct mem_node *y;
4340 /* Turn y's left sub-tree into x's right sub-tree. */
4341 y = x->right;
4342 x->right = y->left;
4343 if (y->left != MEM_NIL)
4344 y->left->parent = x;
4346 /* Y's parent was x's parent. */
4347 if (y != MEM_NIL)
4348 y->parent = x->parent;
4350 /* Get the parent to point to y instead of x. */
4351 if (x->parent)
4353 if (x == x->parent->left)
4354 x->parent->left = y;
4355 else
4356 x->parent->right = y;
4358 else
4359 mem_root = y;
4361 /* Put x on y's left. */
4362 y->left = x;
4363 if (x != MEM_NIL)
4364 x->parent = y;
4368 /* (x) (Y)
4369 / \ / \
4370 (y) c ===> a (x)
4371 / \ / \
4372 a b b c */
4374 static void
4375 mem_rotate_right (struct mem_node *x)
4377 struct mem_node *y = x->left;
4379 x->left = y->right;
4380 if (y->right != MEM_NIL)
4381 y->right->parent = x;
4383 if (y != MEM_NIL)
4384 y->parent = x->parent;
4385 if (x->parent)
4387 if (x == x->parent->right)
4388 x->parent->right = y;
4389 else
4390 x->parent->left = y;
4392 else
4393 mem_root = y;
4395 y->right = x;
4396 if (x != MEM_NIL)
4397 x->parent = y;
4401 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4403 static void
4404 mem_delete (struct mem_node *z)
4406 struct mem_node *x, *y;
4408 if (!z || z == MEM_NIL)
4409 return;
4411 if (z->left == MEM_NIL || z->right == MEM_NIL)
4412 y = z;
4413 else
4415 y = z->right;
4416 while (y->left != MEM_NIL)
4417 y = y->left;
4420 if (y->left != MEM_NIL)
4421 x = y->left;
4422 else
4423 x = y->right;
4425 x->parent = y->parent;
4426 if (y->parent)
4428 if (y == y->parent->left)
4429 y->parent->left = x;
4430 else
4431 y->parent->right = x;
4433 else
4434 mem_root = x;
4436 if (y != z)
4438 z->start = y->start;
4439 z->end = y->end;
4440 z->type = y->type;
4443 if (y->color == MEM_BLACK)
4444 mem_delete_fixup (x);
4446 #ifdef GC_MALLOC_CHECK
4447 free (y);
4448 #else
4449 xfree (y);
4450 #endif
4454 /* Re-establish the red-black properties of the tree, after a
4455 deletion. */
4457 static void
4458 mem_delete_fixup (struct mem_node *x)
4460 while (x != mem_root && x->color == MEM_BLACK)
4462 if (x == x->parent->left)
4464 struct mem_node *w = x->parent->right;
4466 if (w->color == MEM_RED)
4468 w->color = MEM_BLACK;
4469 x->parent->color = MEM_RED;
4470 mem_rotate_left (x->parent);
4471 w = x->parent->right;
4474 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4476 w->color = MEM_RED;
4477 x = x->parent;
4479 else
4481 if (w->right->color == MEM_BLACK)
4483 w->left->color = MEM_BLACK;
4484 w->color = MEM_RED;
4485 mem_rotate_right (w);
4486 w = x->parent->right;
4488 w->color = x->parent->color;
4489 x->parent->color = MEM_BLACK;
4490 w->right->color = MEM_BLACK;
4491 mem_rotate_left (x->parent);
4492 x = mem_root;
4495 else
4497 struct mem_node *w = x->parent->left;
4499 if (w->color == MEM_RED)
4501 w->color = MEM_BLACK;
4502 x->parent->color = MEM_RED;
4503 mem_rotate_right (x->parent);
4504 w = x->parent->left;
4507 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4509 w->color = MEM_RED;
4510 x = x->parent;
4512 else
4514 if (w->left->color == MEM_BLACK)
4516 w->right->color = MEM_BLACK;
4517 w->color = MEM_RED;
4518 mem_rotate_left (w);
4519 w = x->parent->left;
4522 w->color = x->parent->color;
4523 x->parent->color = MEM_BLACK;
4524 w->left->color = MEM_BLACK;
4525 mem_rotate_right (x->parent);
4526 x = mem_root;
4531 x->color = MEM_BLACK;
4535 /* Value is non-zero if P is a pointer to a live Lisp string on
4536 the heap. M is a pointer to the mem_block for P. */
4538 static bool
4539 live_string_p (struct mem_node *m, void *p)
4541 if (m->type == MEM_TYPE_STRING)
4543 struct string_block *b = m->start;
4544 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4546 /* P must point to the start of a Lisp_String structure, and it
4547 must not be on the free-list. */
4548 return (offset >= 0
4549 && offset % sizeof b->strings[0] == 0
4550 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4551 && ((struct Lisp_String *) p)->data != NULL);
4553 else
4554 return 0;
4558 /* Value is non-zero if P is a pointer to a live Lisp cons on
4559 the heap. M is a pointer to the mem_block for P. */
4561 static bool
4562 live_cons_p (struct mem_node *m, void *p)
4564 if (m->type == MEM_TYPE_CONS)
4566 struct cons_block *b = m->start;
4567 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4569 /* P must point to the start of a Lisp_Cons, not be
4570 one of the unused cells in the current cons block,
4571 and not be on the free-list. */
4572 return (offset >= 0
4573 && offset % sizeof b->conses[0] == 0
4574 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4575 && (b != cons_block
4576 || offset / sizeof b->conses[0] < cons_block_index)
4577 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4579 else
4580 return 0;
4584 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4585 the heap. M is a pointer to the mem_block for P. */
4587 static bool
4588 live_symbol_p (struct mem_node *m, void *p)
4590 if (m->type == MEM_TYPE_SYMBOL)
4592 struct symbol_block *b = m->start;
4593 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4595 /* P must point to the start of a Lisp_Symbol, not be
4596 one of the unused cells in the current symbol block,
4597 and not be on the free-list. */
4598 return (offset >= 0
4599 && offset % sizeof b->symbols[0] == 0
4600 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4601 && (b != symbol_block
4602 || offset / sizeof b->symbols[0] < symbol_block_index)
4603 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4605 else
4606 return 0;
4610 /* Value is non-zero if P is a pointer to a live Lisp float on
4611 the heap. M is a pointer to the mem_block for P. */
4613 static bool
4614 live_float_p (struct mem_node *m, void *p)
4616 if (m->type == MEM_TYPE_FLOAT)
4618 struct float_block *b = m->start;
4619 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4621 /* P must point to the start of a Lisp_Float and not be
4622 one of the unused cells in the current float block. */
4623 return (offset >= 0
4624 && offset % sizeof b->floats[0] == 0
4625 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4626 && (b != float_block
4627 || offset / sizeof b->floats[0] < float_block_index));
4629 else
4630 return 0;
4634 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4635 the heap. M is a pointer to the mem_block for P. */
4637 static bool
4638 live_misc_p (struct mem_node *m, void *p)
4640 if (m->type == MEM_TYPE_MISC)
4642 struct marker_block *b = m->start;
4643 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4645 /* P must point to the start of a Lisp_Misc, not be
4646 one of the unused cells in the current misc block,
4647 and not be on the free-list. */
4648 return (offset >= 0
4649 && offset % sizeof b->markers[0] == 0
4650 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4651 && (b != marker_block
4652 || offset / sizeof b->markers[0] < marker_block_index)
4653 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4655 else
4656 return 0;
4660 /* Value is non-zero if P is a pointer to a live vector-like object.
4661 M is a pointer to the mem_block for P. */
4663 static bool
4664 live_vector_p (struct mem_node *m, void *p)
4666 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4668 /* This memory node corresponds to a vector block. */
4669 struct vector_block *block = m->start;
4670 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4672 /* P is in the block's allocation range. Scan the block
4673 up to P and see whether P points to the start of some
4674 vector which is not on a free list. FIXME: check whether
4675 some allocation patterns (probably a lot of short vectors)
4676 may cause a substantial overhead of this loop. */
4677 while (VECTOR_IN_BLOCK (vector, block)
4678 && vector <= (struct Lisp_Vector *) p)
4680 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4681 return 1;
4682 else
4683 vector = ADVANCE (vector, vector_nbytes (vector));
4686 else if (m->type == MEM_TYPE_VECTORLIKE && p == large_vector_vec (m->start))
4687 /* This memory node corresponds to a large vector. */
4688 return 1;
4689 return 0;
4693 /* Value is non-zero if P is a pointer to a live buffer. M is a
4694 pointer to the mem_block for P. */
4696 static bool
4697 live_buffer_p (struct mem_node *m, void *p)
4699 /* P must point to the start of the block, and the buffer
4700 must not have been killed. */
4701 return (m->type == MEM_TYPE_BUFFER
4702 && p == m->start
4703 && !NILP (((struct buffer *) p)->name_));
4706 /* Mark OBJ if we can prove it's a Lisp_Object. */
4708 static void
4709 mark_maybe_object (Lisp_Object obj)
4711 #if USE_VALGRIND
4712 if (valgrind_p)
4713 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4714 #endif
4716 if (INTEGERP (obj))
4717 return;
4719 void *po = XPNTR (obj);
4720 struct mem_node *m = mem_find (po);
4722 if (m != MEM_NIL)
4724 bool mark_p = false;
4726 switch (XTYPE (obj))
4728 case Lisp_String:
4729 mark_p = (live_string_p (m, po)
4730 && !STRING_MARKED_P ((struct Lisp_String *) po));
4731 break;
4733 case Lisp_Cons:
4734 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4735 break;
4737 case Lisp_Symbol:
4738 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4739 break;
4741 case Lisp_Float:
4742 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4743 break;
4745 case Lisp_Vectorlike:
4746 /* Note: can't check BUFFERP before we know it's a
4747 buffer because checking that dereferences the pointer
4748 PO which might point anywhere. */
4749 if (live_vector_p (m, po))
4750 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4751 else if (live_buffer_p (m, po))
4752 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4753 break;
4755 case Lisp_Misc:
4756 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4757 break;
4759 default:
4760 break;
4763 if (mark_p)
4764 mark_object (obj);
4768 /* Return true if P can point to Lisp data, and false otherwise.
4769 Symbols are implemented via offsets not pointers, but the offsets
4770 are also multiples of GCALIGNMENT. */
4772 static bool
4773 maybe_lisp_pointer (void *p)
4775 return (uintptr_t) p % GCALIGNMENT == 0;
4778 #ifndef HAVE_MODULES
4779 enum { HAVE_MODULES = false };
4780 #endif
4782 /* If P points to Lisp data, mark that as live if it isn't already
4783 marked. */
4785 static void
4786 mark_maybe_pointer (void *p)
4788 struct mem_node *m;
4790 #if USE_VALGRIND
4791 if (valgrind_p)
4792 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4793 #endif
4795 if (sizeof (Lisp_Object) == sizeof (void *) || !HAVE_MODULES)
4797 if (!maybe_lisp_pointer (p))
4798 return;
4800 else
4802 /* For the wide-int case, also mark emacs_value tagged pointers,
4803 which can be generated by emacs-module.c's value_to_lisp. */
4804 p = (void *) ((uintptr_t) p & ~(GCALIGNMENT - 1));
4807 m = mem_find (p);
4808 if (m != MEM_NIL)
4810 Lisp_Object obj = Qnil;
4812 switch (m->type)
4814 case MEM_TYPE_NON_LISP:
4815 case MEM_TYPE_SPARE:
4816 /* Nothing to do; not a pointer to Lisp memory. */
4817 break;
4819 case MEM_TYPE_BUFFER:
4820 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4821 XSETVECTOR (obj, p);
4822 break;
4824 case MEM_TYPE_CONS:
4825 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4826 XSETCONS (obj, p);
4827 break;
4829 case MEM_TYPE_STRING:
4830 if (live_string_p (m, p)
4831 && !STRING_MARKED_P ((struct Lisp_String *) p))
4832 XSETSTRING (obj, p);
4833 break;
4835 case MEM_TYPE_MISC:
4836 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4837 XSETMISC (obj, p);
4838 break;
4840 case MEM_TYPE_SYMBOL:
4841 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4842 XSETSYMBOL (obj, p);
4843 break;
4845 case MEM_TYPE_FLOAT:
4846 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4847 XSETFLOAT (obj, p);
4848 break;
4850 case MEM_TYPE_VECTORLIKE:
4851 case MEM_TYPE_VECTOR_BLOCK:
4852 if (live_vector_p (m, p))
4854 Lisp_Object tem;
4855 XSETVECTOR (tem, p);
4856 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4857 obj = tem;
4859 break;
4861 default:
4862 emacs_abort ();
4865 if (!NILP (obj))
4866 mark_object (obj);
4871 /* Alignment of pointer values. Use alignof, as it sometimes returns
4872 a smaller alignment than GCC's __alignof__ and mark_memory might
4873 miss objects if __alignof__ were used. */
4874 #define GC_POINTER_ALIGNMENT alignof (void *)
4876 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4877 or END+OFFSET..START. */
4879 static void ATTRIBUTE_NO_SANITIZE_ADDRESS
4880 mark_memory (void *start, void *end)
4882 char *pp;
4884 /* Make START the pointer to the start of the memory region,
4885 if it isn't already. */
4886 if (end < start)
4888 void *tem = start;
4889 start = end;
4890 end = tem;
4893 eassert (((uintptr_t) start) % GC_POINTER_ALIGNMENT == 0);
4895 /* Mark Lisp data pointed to. This is necessary because, in some
4896 situations, the C compiler optimizes Lisp objects away, so that
4897 only a pointer to them remains. Example:
4899 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4902 Lisp_Object obj = build_string ("test");
4903 struct Lisp_String *s = XSTRING (obj);
4904 Fgarbage_collect ();
4905 fprintf (stderr, "test '%s'\n", s->data);
4906 return Qnil;
4909 Here, `obj' isn't really used, and the compiler optimizes it
4910 away. The only reference to the life string is through the
4911 pointer `s'. */
4913 for (pp = start; (void *) pp < end; pp += GC_POINTER_ALIGNMENT)
4915 mark_maybe_pointer (*(void **) pp);
4916 mark_maybe_object (*(Lisp_Object *) pp);
4920 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4922 static bool setjmp_tested_p;
4923 static int longjmps_done;
4925 #define SETJMP_WILL_LIKELY_WORK "\
4927 Emacs garbage collector has been changed to use conservative stack\n\
4928 marking. Emacs has determined that the method it uses to do the\n\
4929 marking will likely work on your system, but this isn't sure.\n\
4931 If you are a system-programmer, or can get the help of a local wizard\n\
4932 who is, please take a look at the function mark_stack in alloc.c, and\n\
4933 verify that the methods used are appropriate for your system.\n\
4935 Please mail the result to <emacs-devel@gnu.org>.\n\
4938 #define SETJMP_WILL_NOT_WORK "\
4940 Emacs garbage collector has been changed to use conservative stack\n\
4941 marking. Emacs has determined that the default method it uses to do the\n\
4942 marking will not work on your system. We will need a system-dependent\n\
4943 solution for your system.\n\
4945 Please take a look at the function mark_stack in alloc.c, and\n\
4946 try to find a way to make it work on your system.\n\
4948 Note that you may get false negatives, depending on the compiler.\n\
4949 In particular, you need to use -O with GCC for this test.\n\
4951 Please mail the result to <emacs-devel@gnu.org>.\n\
4955 /* Perform a quick check if it looks like setjmp saves registers in a
4956 jmp_buf. Print a message to stderr saying so. When this test
4957 succeeds, this is _not_ a proof that setjmp is sufficient for
4958 conservative stack marking. Only the sources or a disassembly
4959 can prove that. */
4961 static void
4962 test_setjmp (void)
4964 char buf[10];
4965 register int x;
4966 sys_jmp_buf jbuf;
4968 /* Arrange for X to be put in a register. */
4969 sprintf (buf, "1");
4970 x = strlen (buf);
4971 x = 2 * x - 1;
4973 sys_setjmp (jbuf);
4974 if (longjmps_done == 1)
4976 /* Came here after the longjmp at the end of the function.
4978 If x == 1, the longjmp has restored the register to its
4979 value before the setjmp, and we can hope that setjmp
4980 saves all such registers in the jmp_buf, although that
4981 isn't sure.
4983 For other values of X, either something really strange is
4984 taking place, or the setjmp just didn't save the register. */
4986 if (x == 1)
4987 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4988 else
4990 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4991 exit (1);
4995 ++longjmps_done;
4996 x = 2;
4997 if (longjmps_done == 1)
4998 sys_longjmp (jbuf, 1);
5001 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
5004 /* Mark live Lisp objects on the C stack.
5006 There are several system-dependent problems to consider when
5007 porting this to new architectures:
5009 Processor Registers
5011 We have to mark Lisp objects in CPU registers that can hold local
5012 variables or are used to pass parameters.
5014 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
5015 something that either saves relevant registers on the stack, or
5016 calls mark_maybe_object passing it each register's contents.
5018 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
5019 implementation assumes that calling setjmp saves registers we need
5020 to see in a jmp_buf which itself lies on the stack. This doesn't
5021 have to be true! It must be verified for each system, possibly
5022 by taking a look at the source code of setjmp.
5024 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
5025 can use it as a machine independent method to store all registers
5026 to the stack. In this case the macros described in the previous
5027 two paragraphs are not used.
5029 Stack Layout
5031 Architectures differ in the way their processor stack is organized.
5032 For example, the stack might look like this
5034 +----------------+
5035 | Lisp_Object | size = 4
5036 +----------------+
5037 | something else | size = 2
5038 +----------------+
5039 | Lisp_Object | size = 4
5040 +----------------+
5041 | ... |
5043 In such a case, not every Lisp_Object will be aligned equally. To
5044 find all Lisp_Object on the stack it won't be sufficient to walk
5045 the stack in steps of 4 bytes. Instead, two passes will be
5046 necessary, one starting at the start of the stack, and a second
5047 pass starting at the start of the stack + 2. Likewise, if the
5048 minimal alignment of Lisp_Objects on the stack is 1, four passes
5049 would be necessary, each one starting with one byte more offset
5050 from the stack start. */
5052 void
5053 mark_stack (char *bottom, char *end)
5055 /* This assumes that the stack is a contiguous region in memory. If
5056 that's not the case, something has to be done here to iterate
5057 over the stack segments. */
5058 mark_memory (bottom, end);
5060 /* Allow for marking a secondary stack, like the register stack on the
5061 ia64. */
5062 #ifdef GC_MARK_SECONDARY_STACK
5063 GC_MARK_SECONDARY_STACK ();
5064 #endif
5067 /* This is a trampoline function that flushes registers to the stack,
5068 and then calls FUNC. ARG is passed through to FUNC verbatim.
5070 This function must be called whenever Emacs is about to release the
5071 global interpreter lock. This lets the garbage collector easily
5072 find roots in registers on threads that are not actively running
5073 Lisp.
5075 It is invalid to run any Lisp code or to allocate any GC memory
5076 from FUNC. */
5078 void
5079 flush_stack_call_func (void (*func) (void *arg), void *arg)
5081 void *end;
5082 struct thread_state *self = current_thread;
5084 #ifdef HAVE___BUILTIN_UNWIND_INIT
5085 /* Force callee-saved registers and register windows onto the stack.
5086 This is the preferred method if available, obviating the need for
5087 machine dependent methods. */
5088 __builtin_unwind_init ();
5089 end = &end;
5090 #else /* not HAVE___BUILTIN_UNWIND_INIT */
5091 #ifndef GC_SAVE_REGISTERS_ON_STACK
5092 /* jmp_buf may not be aligned enough on darwin-ppc64 */
5093 union aligned_jmpbuf {
5094 Lisp_Object o;
5095 sys_jmp_buf j;
5096 } j;
5097 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_bottom;
5098 #endif
5099 /* This trick flushes the register windows so that all the state of
5100 the process is contained in the stack. */
5101 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
5102 needed on ia64 too. See mach_dep.c, where it also says inline
5103 assembler doesn't work with relevant proprietary compilers. */
5104 #ifdef __sparc__
5105 #if defined (__sparc64__) && defined (__FreeBSD__)
5106 /* FreeBSD does not have a ta 3 handler. */
5107 asm ("flushw");
5108 #else
5109 asm ("ta 3");
5110 #endif
5111 #endif
5113 /* Save registers that we need to see on the stack. We need to see
5114 registers used to hold register variables and registers used to
5115 pass parameters. */
5116 #ifdef GC_SAVE_REGISTERS_ON_STACK
5117 GC_SAVE_REGISTERS_ON_STACK (end);
5118 #else /* not GC_SAVE_REGISTERS_ON_STACK */
5120 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
5121 setjmp will definitely work, test it
5122 and print a message with the result
5123 of the test. */
5124 if (!setjmp_tested_p)
5126 setjmp_tested_p = 1;
5127 test_setjmp ();
5129 #endif /* GC_SETJMP_WORKS */
5131 sys_setjmp (j.j);
5132 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
5133 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
5134 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
5136 self->stack_top = end;
5137 (*func) (arg);
5139 eassert (current_thread == self);
5142 static bool
5143 c_symbol_p (struct Lisp_Symbol *sym)
5145 char *lispsym_ptr = (char *) lispsym;
5146 char *sym_ptr = (char *) sym;
5147 ptrdiff_t lispsym_offset = sym_ptr - lispsym_ptr;
5148 return 0 <= lispsym_offset && lispsym_offset < sizeof lispsym;
5151 /* Determine whether it is safe to access memory at address P. */
5152 static int
5153 valid_pointer_p (void *p)
5155 #ifdef WINDOWSNT
5156 return w32_valid_pointer_p (p, 16);
5157 #else
5159 if (ADDRESS_SANITIZER)
5160 return p ? -1 : 0;
5162 int fd[2];
5164 /* Obviously, we cannot just access it (we would SEGV trying), so we
5165 trick the o/s to tell us whether p is a valid pointer.
5166 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
5167 not validate p in that case. */
5169 if (emacs_pipe (fd) == 0)
5171 bool valid = emacs_write (fd[1], p, 16) == 16;
5172 emacs_close (fd[1]);
5173 emacs_close (fd[0]);
5174 return valid;
5177 return -1;
5178 #endif
5181 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
5182 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
5183 cannot validate OBJ. This function can be quite slow, so its primary
5184 use is the manual debugging. The only exception is print_object, where
5185 we use it to check whether the memory referenced by the pointer of
5186 Lisp_Save_Value object contains valid objects. */
5189 valid_lisp_object_p (Lisp_Object obj)
5191 if (INTEGERP (obj))
5192 return 1;
5194 void *p = XPNTR (obj);
5195 if (PURE_P (p))
5196 return 1;
5198 if (SYMBOLP (obj) && c_symbol_p (p))
5199 return ((char *) p - (char *) lispsym) % sizeof lispsym[0] == 0;
5201 if (p == &buffer_defaults || p == &buffer_local_symbols)
5202 return 2;
5204 struct mem_node *m = mem_find (p);
5206 if (m == MEM_NIL)
5208 int valid = valid_pointer_p (p);
5209 if (valid <= 0)
5210 return valid;
5212 if (SUBRP (obj))
5213 return 1;
5215 return 0;
5218 switch (m->type)
5220 case MEM_TYPE_NON_LISP:
5221 case MEM_TYPE_SPARE:
5222 return 0;
5224 case MEM_TYPE_BUFFER:
5225 return live_buffer_p (m, p) ? 1 : 2;
5227 case MEM_TYPE_CONS:
5228 return live_cons_p (m, p);
5230 case MEM_TYPE_STRING:
5231 return live_string_p (m, p);
5233 case MEM_TYPE_MISC:
5234 return live_misc_p (m, p);
5236 case MEM_TYPE_SYMBOL:
5237 return live_symbol_p (m, p);
5239 case MEM_TYPE_FLOAT:
5240 return live_float_p (m, p);
5242 case MEM_TYPE_VECTORLIKE:
5243 case MEM_TYPE_VECTOR_BLOCK:
5244 return live_vector_p (m, p);
5246 default:
5247 break;
5250 return 0;
5253 /***********************************************************************
5254 Pure Storage Management
5255 ***********************************************************************/
5257 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5258 pointer to it. TYPE is the Lisp type for which the memory is
5259 allocated. TYPE < 0 means it's not used for a Lisp object. */
5261 static void *
5262 pure_alloc (size_t size, int type)
5264 void *result;
5266 again:
5267 if (type >= 0)
5269 /* Allocate space for a Lisp object from the beginning of the free
5270 space with taking account of alignment. */
5271 result = pointer_align (purebeg + pure_bytes_used_lisp, GCALIGNMENT);
5272 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5274 else
5276 /* Allocate space for a non-Lisp object from the end of the free
5277 space. */
5278 pure_bytes_used_non_lisp += size;
5279 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5281 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5283 if (pure_bytes_used <= pure_size)
5284 return result;
5286 /* Don't allocate a large amount here,
5287 because it might get mmap'd and then its address
5288 might not be usable. */
5289 purebeg = xmalloc (10000);
5290 pure_size = 10000;
5291 pure_bytes_used_before_overflow += pure_bytes_used - size;
5292 pure_bytes_used = 0;
5293 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5294 goto again;
5298 #ifndef CANNOT_DUMP
5300 /* Print a warning if PURESIZE is too small. */
5302 void
5303 check_pure_size (void)
5305 if (pure_bytes_used_before_overflow)
5306 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5307 " bytes needed)"),
5308 pure_bytes_used + pure_bytes_used_before_overflow);
5310 #endif
5313 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5314 the non-Lisp data pool of the pure storage, and return its start
5315 address. Return NULL if not found. */
5317 static char *
5318 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5320 int i;
5321 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5322 const unsigned char *p;
5323 char *non_lisp_beg;
5325 if (pure_bytes_used_non_lisp <= nbytes)
5326 return NULL;
5328 /* Set up the Boyer-Moore table. */
5329 skip = nbytes + 1;
5330 for (i = 0; i < 256; i++)
5331 bm_skip[i] = skip;
5333 p = (const unsigned char *) data;
5334 while (--skip > 0)
5335 bm_skip[*p++] = skip;
5337 last_char_skip = bm_skip['\0'];
5339 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5340 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5342 /* See the comments in the function `boyer_moore' (search.c) for the
5343 use of `infinity'. */
5344 infinity = pure_bytes_used_non_lisp + 1;
5345 bm_skip['\0'] = infinity;
5347 p = (const unsigned char *) non_lisp_beg + nbytes;
5348 start = 0;
5351 /* Check the last character (== '\0'). */
5354 start += bm_skip[*(p + start)];
5356 while (start <= start_max);
5358 if (start < infinity)
5359 /* Couldn't find the last character. */
5360 return NULL;
5362 /* No less than `infinity' means we could find the last
5363 character at `p[start - infinity]'. */
5364 start -= infinity;
5366 /* Check the remaining characters. */
5367 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5368 /* Found. */
5369 return non_lisp_beg + start;
5371 start += last_char_skip;
5373 while (start <= start_max);
5375 return NULL;
5379 /* Return a string allocated in pure space. DATA is a buffer holding
5380 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5381 means make the result string multibyte.
5383 Must get an error if pure storage is full, since if it cannot hold
5384 a large string it may be able to hold conses that point to that
5385 string; then the string is not protected from gc. */
5387 Lisp_Object
5388 make_pure_string (const char *data,
5389 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5391 Lisp_Object string;
5392 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5393 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5394 if (s->data == NULL)
5396 s->data = pure_alloc (nbytes + 1, -1);
5397 memcpy (s->data, data, nbytes);
5398 s->data[nbytes] = '\0';
5400 s->size = nchars;
5401 s->size_byte = multibyte ? nbytes : -1;
5402 s->intervals = NULL;
5403 XSETSTRING (string, s);
5404 return string;
5407 /* Return a string allocated in pure space. Do not
5408 allocate the string data, just point to DATA. */
5410 Lisp_Object
5411 make_pure_c_string (const char *data, ptrdiff_t nchars)
5413 Lisp_Object string;
5414 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5415 s->size = nchars;
5416 s->size_byte = -1;
5417 s->data = (unsigned char *) data;
5418 s->intervals = NULL;
5419 XSETSTRING (string, s);
5420 return string;
5423 static Lisp_Object purecopy (Lisp_Object obj);
5425 /* Return a cons allocated from pure space. Give it pure copies
5426 of CAR as car and CDR as cdr. */
5428 Lisp_Object
5429 pure_cons (Lisp_Object car, Lisp_Object cdr)
5431 Lisp_Object new;
5432 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5433 XSETCONS (new, p);
5434 XSETCAR (new, purecopy (car));
5435 XSETCDR (new, purecopy (cdr));
5436 return new;
5440 /* Value is a float object with value NUM allocated from pure space. */
5442 static Lisp_Object
5443 make_pure_float (double num)
5445 Lisp_Object new;
5446 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5447 XSETFLOAT (new, p);
5448 XFLOAT_INIT (new, num);
5449 return new;
5453 /* Return a vector with room for LEN Lisp_Objects allocated from
5454 pure space. */
5456 static Lisp_Object
5457 make_pure_vector (ptrdiff_t len)
5459 Lisp_Object new;
5460 size_t size = header_size + len * word_size;
5461 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5462 XSETVECTOR (new, p);
5463 XVECTOR (new)->header.size = len;
5464 return new;
5467 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5468 doc: /* Make a copy of object OBJ in pure storage.
5469 Recursively copies contents of vectors and cons cells.
5470 Does not copy symbols. Copies strings without text properties. */)
5471 (register Lisp_Object obj)
5473 if (NILP (Vpurify_flag))
5474 return obj;
5475 else if (MARKERP (obj) || OVERLAYP (obj)
5476 || HASH_TABLE_P (obj) || SYMBOLP (obj))
5477 /* Can't purify those. */
5478 return obj;
5479 else
5480 return purecopy (obj);
5483 static Lisp_Object
5484 purecopy (Lisp_Object obj)
5486 if (INTEGERP (obj)
5487 || (! SYMBOLP (obj) && PURE_P (XPNTR_OR_SYMBOL_OFFSET (obj)))
5488 || SUBRP (obj))
5489 return obj; /* Already pure. */
5491 if (STRINGP (obj) && XSTRING (obj)->intervals)
5492 message_with_string ("Dropping text-properties while making string `%s' pure",
5493 obj, true);
5495 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5497 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5498 if (!NILP (tmp))
5499 return tmp;
5502 if (CONSP (obj))
5503 obj = pure_cons (XCAR (obj), XCDR (obj));
5504 else if (FLOATP (obj))
5505 obj = make_pure_float (XFLOAT_DATA (obj));
5506 else if (STRINGP (obj))
5507 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5508 SBYTES (obj),
5509 STRING_MULTIBYTE (obj));
5510 else if (COMPILEDP (obj) || VECTORP (obj) || HASH_TABLE_P (obj))
5512 struct Lisp_Vector *objp = XVECTOR (obj);
5513 ptrdiff_t nbytes = vector_nbytes (objp);
5514 struct Lisp_Vector *vec = pure_alloc (nbytes, Lisp_Vectorlike);
5515 register ptrdiff_t i;
5516 ptrdiff_t size = ASIZE (obj);
5517 if (size & PSEUDOVECTOR_FLAG)
5518 size &= PSEUDOVECTOR_SIZE_MASK;
5519 memcpy (vec, objp, nbytes);
5520 for (i = 0; i < size; i++)
5521 vec->contents[i] = purecopy (vec->contents[i]);
5522 XSETVECTOR (obj, vec);
5524 else if (SYMBOLP (obj))
5526 if (!XSYMBOL (obj)->pinned && !c_symbol_p (XSYMBOL (obj)))
5527 { /* We can't purify them, but they appear in many pure objects.
5528 Mark them as `pinned' so we know to mark them at every GC cycle. */
5529 XSYMBOL (obj)->pinned = true;
5530 symbol_block_pinned = symbol_block;
5532 /* Don't hash-cons it. */
5533 return obj;
5535 else
5537 AUTO_STRING (fmt, "Don't know how to purify: %S");
5538 Fsignal (Qerror, list1 (CALLN (Fformat, fmt, obj)));
5541 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5542 Fputhash (obj, obj, Vpurify_flag);
5544 return obj;
5549 /***********************************************************************
5550 Protection from GC
5551 ***********************************************************************/
5553 /* Put an entry in staticvec, pointing at the variable with address
5554 VARADDRESS. */
5556 void
5557 staticpro (Lisp_Object *varaddress)
5559 if (staticidx >= NSTATICS)
5560 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5561 staticvec[staticidx++] = varaddress;
5565 /***********************************************************************
5566 Protection from GC
5567 ***********************************************************************/
5569 /* Temporarily prevent garbage collection. */
5571 ptrdiff_t
5572 inhibit_garbage_collection (void)
5574 ptrdiff_t count = SPECPDL_INDEX ();
5576 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5577 return count;
5580 /* Used to avoid possible overflows when
5581 converting from C to Lisp integers. */
5583 static Lisp_Object
5584 bounded_number (EMACS_INT number)
5586 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5589 /* Calculate total bytes of live objects. */
5591 static size_t
5592 total_bytes_of_live_objects (void)
5594 size_t tot = 0;
5595 tot += total_conses * sizeof (struct Lisp_Cons);
5596 tot += total_symbols * sizeof (struct Lisp_Symbol);
5597 tot += total_markers * sizeof (union Lisp_Misc);
5598 tot += total_string_bytes;
5599 tot += total_vector_slots * word_size;
5600 tot += total_floats * sizeof (struct Lisp_Float);
5601 tot += total_intervals * sizeof (struct interval);
5602 tot += total_strings * sizeof (struct Lisp_String);
5603 return tot;
5606 #ifdef HAVE_WINDOW_SYSTEM
5608 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5609 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5611 static Lisp_Object
5612 compact_font_cache_entry (Lisp_Object entry)
5614 Lisp_Object tail, *prev = &entry;
5616 for (tail = entry; CONSP (tail); tail = XCDR (tail))
5618 bool drop = 0;
5619 Lisp_Object obj = XCAR (tail);
5621 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5622 if (CONSP (obj) && GC_FONT_SPEC_P (XCAR (obj))
5623 && !VECTOR_MARKED_P (GC_XFONT_SPEC (XCAR (obj)))
5624 /* Don't use VECTORP here, as that calls ASIZE, which could
5625 hit assertion violation during GC. */
5626 && (VECTORLIKEP (XCDR (obj))
5627 && ! (gc_asize (XCDR (obj)) & PSEUDOVECTOR_FLAG)))
5629 ptrdiff_t i, size = gc_asize (XCDR (obj));
5630 Lisp_Object obj_cdr = XCDR (obj);
5632 /* If font-spec is not marked, most likely all font-entities
5633 are not marked too. But we must be sure that nothing is
5634 marked within OBJ before we really drop it. */
5635 for (i = 0; i < size; i++)
5637 Lisp_Object objlist;
5639 if (VECTOR_MARKED_P (GC_XFONT_ENTITY (AREF (obj_cdr, i))))
5640 break;
5642 objlist = AREF (AREF (obj_cdr, i), FONT_OBJLIST_INDEX);
5643 for (; CONSP (objlist); objlist = XCDR (objlist))
5645 Lisp_Object val = XCAR (objlist);
5646 struct font *font = GC_XFONT_OBJECT (val);
5648 if (!NILP (AREF (val, FONT_TYPE_INDEX))
5649 && VECTOR_MARKED_P(font))
5650 break;
5652 if (CONSP (objlist))
5654 /* Found a marked font, bail out. */
5655 break;
5659 if (i == size)
5661 /* No marked fonts were found, so this entire font
5662 entity can be dropped. */
5663 drop = 1;
5666 if (drop)
5667 *prev = XCDR (tail);
5668 else
5669 prev = xcdr_addr (tail);
5671 return entry;
5674 /* Compact font caches on all terminals and mark
5675 everything which is still here after compaction. */
5677 static void
5678 compact_font_caches (void)
5680 struct terminal *t;
5682 for (t = terminal_list; t; t = t->next_terminal)
5684 Lisp_Object cache = TERMINAL_FONT_CACHE (t);
5685 /* Inhibit compacting the caches if the user so wishes. Some of
5686 the users don't mind a larger memory footprint, but do mind
5687 slower redisplay. */
5688 if (!inhibit_compacting_font_caches
5689 && CONSP (cache))
5691 Lisp_Object entry;
5693 for (entry = XCDR (cache); CONSP (entry); entry = XCDR (entry))
5694 XSETCAR (entry, compact_font_cache_entry (XCAR (entry)));
5696 mark_object (cache);
5700 #else /* not HAVE_WINDOW_SYSTEM */
5702 #define compact_font_caches() (void)(0)
5704 #endif /* HAVE_WINDOW_SYSTEM */
5706 /* Remove (MARKER . DATA) entries with unmarked MARKER
5707 from buffer undo LIST and return changed list. */
5709 static Lisp_Object
5710 compact_undo_list (Lisp_Object list)
5712 Lisp_Object tail, *prev = &list;
5714 for (tail = list; CONSP (tail); tail = XCDR (tail))
5716 if (CONSP (XCAR (tail))
5717 && MARKERP (XCAR (XCAR (tail)))
5718 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5719 *prev = XCDR (tail);
5720 else
5721 prev = xcdr_addr (tail);
5723 return list;
5726 static void
5727 mark_pinned_symbols (void)
5729 struct symbol_block *sblk;
5730 int lim = (symbol_block_pinned == symbol_block
5731 ? symbol_block_index : SYMBOL_BLOCK_SIZE);
5733 for (sblk = symbol_block_pinned; sblk; sblk = sblk->next)
5735 union aligned_Lisp_Symbol *sym = sblk->symbols, *end = sym + lim;
5736 for (; sym < end; ++sym)
5737 if (sym->s.pinned)
5738 mark_object (make_lisp_symbol (&sym->s));
5740 lim = SYMBOL_BLOCK_SIZE;
5744 /* Subroutine of Fgarbage_collect that does most of the work. It is a
5745 separate function so that we could limit mark_stack in searching
5746 the stack frames below this function, thus avoiding the rare cases
5747 where mark_stack finds values that look like live Lisp objects on
5748 portions of stack that couldn't possibly contain such live objects.
5749 For more details of this, see the discussion at
5750 http://lists.gnu.org/archive/html/emacs-devel/2014-05/msg00270.html. */
5751 static Lisp_Object
5752 garbage_collect_1 (void *end)
5754 struct buffer *nextb;
5755 char stack_top_variable;
5756 ptrdiff_t i;
5757 bool message_p;
5758 ptrdiff_t count = SPECPDL_INDEX ();
5759 struct timespec start;
5760 Lisp_Object retval = Qnil;
5761 size_t tot_before = 0;
5763 /* Can't GC if pure storage overflowed because we can't determine
5764 if something is a pure object or not. */
5765 if (pure_bytes_used_before_overflow)
5766 return Qnil;
5768 /* Record this function, so it appears on the profiler's backtraces. */
5769 record_in_backtrace (QAutomatic_GC, 0, 0);
5771 check_cons_list ();
5773 /* Don't keep undo information around forever.
5774 Do this early on, so it is no problem if the user quits. */
5775 FOR_EACH_BUFFER (nextb)
5776 compact_buffer (nextb);
5778 if (profiler_memory_running)
5779 tot_before = total_bytes_of_live_objects ();
5781 start = current_timespec ();
5783 /* In case user calls debug_print during GC,
5784 don't let that cause a recursive GC. */
5785 consing_since_gc = 0;
5787 /* Save what's currently displayed in the echo area. Don't do that
5788 if we are GC'ing because we've run out of memory, since
5789 push_message will cons, and we might have no memory for that. */
5790 if (NILP (Vmemory_full))
5792 message_p = push_message ();
5793 record_unwind_protect_void (pop_message_unwind);
5795 else
5796 message_p = false;
5798 /* Save a copy of the contents of the stack, for debugging. */
5799 #if MAX_SAVE_STACK > 0
5800 if (NILP (Vpurify_flag))
5802 char *stack;
5803 ptrdiff_t stack_size;
5804 if (&stack_top_variable < stack_bottom)
5806 stack = &stack_top_variable;
5807 stack_size = stack_bottom - &stack_top_variable;
5809 else
5811 stack = stack_bottom;
5812 stack_size = &stack_top_variable - stack_bottom;
5814 if (stack_size <= MAX_SAVE_STACK)
5816 if (stack_copy_size < stack_size)
5818 stack_copy = xrealloc (stack_copy, stack_size);
5819 stack_copy_size = stack_size;
5821 no_sanitize_memcpy (stack_copy, stack, stack_size);
5824 #endif /* MAX_SAVE_STACK > 0 */
5826 if (garbage_collection_messages)
5827 message1_nolog ("Garbage collecting...");
5829 block_input ();
5831 shrink_regexp_cache ();
5833 gc_in_progress = 1;
5835 /* Mark all the special slots that serve as the roots of accessibility. */
5837 mark_buffer (&buffer_defaults);
5838 mark_buffer (&buffer_local_symbols);
5840 for (i = 0; i < ARRAYELTS (lispsym); i++)
5841 mark_object (builtin_lisp_symbol (i));
5843 for (i = 0; i < staticidx; i++)
5844 mark_object (*staticvec[i]);
5846 mark_pinned_symbols ();
5847 mark_terminals ();
5848 mark_kboards ();
5849 mark_threads ();
5851 #ifdef USE_GTK
5852 xg_mark_data ();
5853 #endif
5855 #ifdef HAVE_WINDOW_SYSTEM
5856 mark_fringe_data ();
5857 #endif
5859 /* Everything is now marked, except for the data in font caches,
5860 undo lists, and finalizers. The first two are compacted by
5861 removing an items which aren't reachable otherwise. */
5863 compact_font_caches ();
5865 FOR_EACH_BUFFER (nextb)
5867 if (!EQ (BVAR (nextb, undo_list), Qt))
5868 bset_undo_list (nextb, compact_undo_list (BVAR (nextb, undo_list)));
5869 /* Now that we have stripped the elements that need not be
5870 in the undo_list any more, we can finally mark the list. */
5871 mark_object (BVAR (nextb, undo_list));
5874 /* Now pre-sweep finalizers. Here, we add any unmarked finalizers
5875 to doomed_finalizers so we can run their associated functions
5876 after GC. It's important to scan finalizers at this stage so
5877 that we can be sure that unmarked finalizers are really
5878 unreachable except for references from their associated functions
5879 and from other finalizers. */
5881 queue_doomed_finalizers (&doomed_finalizers, &finalizers);
5882 mark_finalizer_list (&doomed_finalizers);
5884 gc_sweep ();
5886 /* Clear the mark bits that we set in certain root slots. */
5887 VECTOR_UNMARK (&buffer_defaults);
5888 VECTOR_UNMARK (&buffer_local_symbols);
5890 check_cons_list ();
5892 gc_in_progress = 0;
5894 unblock_input ();
5896 consing_since_gc = 0;
5897 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5898 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5900 gc_relative_threshold = 0;
5901 if (FLOATP (Vgc_cons_percentage))
5902 { /* Set gc_cons_combined_threshold. */
5903 double tot = total_bytes_of_live_objects ();
5905 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5906 if (0 < tot)
5908 if (tot < TYPE_MAXIMUM (EMACS_INT))
5909 gc_relative_threshold = tot;
5910 else
5911 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5915 if (garbage_collection_messages && NILP (Vmemory_full))
5917 if (message_p || minibuf_level > 0)
5918 restore_message ();
5919 else
5920 message1_nolog ("Garbage collecting...done");
5923 unbind_to (count, Qnil);
5925 Lisp_Object total[] = {
5926 list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5927 bounded_number (total_conses),
5928 bounded_number (total_free_conses)),
5929 list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5930 bounded_number (total_symbols),
5931 bounded_number (total_free_symbols)),
5932 list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5933 bounded_number (total_markers),
5934 bounded_number (total_free_markers)),
5935 list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5936 bounded_number (total_strings),
5937 bounded_number (total_free_strings)),
5938 list3 (Qstring_bytes, make_number (1),
5939 bounded_number (total_string_bytes)),
5940 list3 (Qvectors,
5941 make_number (header_size + sizeof (Lisp_Object)),
5942 bounded_number (total_vectors)),
5943 list4 (Qvector_slots, make_number (word_size),
5944 bounded_number (total_vector_slots),
5945 bounded_number (total_free_vector_slots)),
5946 list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5947 bounded_number (total_floats),
5948 bounded_number (total_free_floats)),
5949 list4 (Qintervals, make_number (sizeof (struct interval)),
5950 bounded_number (total_intervals),
5951 bounded_number (total_free_intervals)),
5952 list3 (Qbuffers, make_number (sizeof (struct buffer)),
5953 bounded_number (total_buffers)),
5955 #ifdef DOUG_LEA_MALLOC
5956 list4 (Qheap, make_number (1024),
5957 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5958 bounded_number ((mallinfo ().fordblks + 1023) >> 10)),
5959 #endif
5961 retval = CALLMANY (Flist, total);
5963 /* GC is complete: now we can run our finalizer callbacks. */
5964 run_finalizers (&doomed_finalizers);
5966 if (!NILP (Vpost_gc_hook))
5968 ptrdiff_t gc_count = inhibit_garbage_collection ();
5969 safe_run_hooks (Qpost_gc_hook);
5970 unbind_to (gc_count, Qnil);
5973 /* Accumulate statistics. */
5974 if (FLOATP (Vgc_elapsed))
5976 struct timespec since_start = timespec_sub (current_timespec (), start);
5977 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5978 + timespectod (since_start));
5981 gcs_done++;
5983 /* Collect profiling data. */
5984 if (profiler_memory_running)
5986 size_t swept = 0;
5987 size_t tot_after = total_bytes_of_live_objects ();
5988 if (tot_before > tot_after)
5989 swept = tot_before - tot_after;
5990 malloc_probe (swept);
5993 return retval;
5996 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5997 doc: /* Reclaim storage for Lisp objects no longer needed.
5998 Garbage collection happens automatically if you cons more than
5999 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
6000 `garbage-collect' normally returns a list with info on amount of space in use,
6001 where each entry has the form (NAME SIZE USED FREE), where:
6002 - NAME is a symbol describing the kind of objects this entry represents,
6003 - SIZE is the number of bytes used by each one,
6004 - USED is the number of those objects that were found live in the heap,
6005 - FREE is the number of those objects that are not live but that Emacs
6006 keeps around for future allocations (maybe because it does not know how
6007 to return them to the OS).
6008 However, if there was overflow in pure space, `garbage-collect'
6009 returns nil, because real GC can't be done.
6010 See Info node `(elisp)Garbage Collection'. */)
6011 (void)
6013 void *end;
6015 #ifdef HAVE___BUILTIN_UNWIND_INIT
6016 /* Force callee-saved registers and register windows onto the stack.
6017 This is the preferred method if available, obviating the need for
6018 machine dependent methods. */
6019 __builtin_unwind_init ();
6020 end = &end;
6021 #else /* not HAVE___BUILTIN_UNWIND_INIT */
6022 #ifndef GC_SAVE_REGISTERS_ON_STACK
6023 /* jmp_buf may not be aligned enough on darwin-ppc64 */
6024 union aligned_jmpbuf {
6025 Lisp_Object o;
6026 sys_jmp_buf j;
6027 } j;
6028 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
6029 #endif
6030 /* This trick flushes the register windows so that all the state of
6031 the process is contained in the stack. */
6032 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
6033 needed on ia64 too. See mach_dep.c, where it also says inline
6034 assembler doesn't work with relevant proprietary compilers. */
6035 #ifdef __sparc__
6036 #if defined (__sparc64__) && defined (__FreeBSD__)
6037 /* FreeBSD does not have a ta 3 handler. */
6038 asm ("flushw");
6039 #else
6040 asm ("ta 3");
6041 #endif
6042 #endif
6044 /* Save registers that we need to see on the stack. We need to see
6045 registers used to hold register variables and registers used to
6046 pass parameters. */
6047 #ifdef GC_SAVE_REGISTERS_ON_STACK
6048 GC_SAVE_REGISTERS_ON_STACK (end);
6049 #else /* not GC_SAVE_REGISTERS_ON_STACK */
6051 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
6052 setjmp will definitely work, test it
6053 and print a message with the result
6054 of the test. */
6055 if (!setjmp_tested_p)
6057 setjmp_tested_p = 1;
6058 test_setjmp ();
6060 #endif /* GC_SETJMP_WORKS */
6062 sys_setjmp (j.j);
6063 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
6064 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
6065 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
6066 return garbage_collect_1 (end);
6069 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
6070 only interesting objects referenced from glyphs are strings. */
6072 static void
6073 mark_glyph_matrix (struct glyph_matrix *matrix)
6075 struct glyph_row *row = matrix->rows;
6076 struct glyph_row *end = row + matrix->nrows;
6078 for (; row < end; ++row)
6079 if (row->enabled_p)
6081 int area;
6082 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
6084 struct glyph *glyph = row->glyphs[area];
6085 struct glyph *end_glyph = glyph + row->used[area];
6087 for (; glyph < end_glyph; ++glyph)
6088 if (STRINGP (glyph->object)
6089 && !STRING_MARKED_P (XSTRING (glyph->object)))
6090 mark_object (glyph->object);
6095 /* Mark reference to a Lisp_Object.
6096 If the object referred to has not been seen yet, recursively mark
6097 all the references contained in it. */
6099 #define LAST_MARKED_SIZE 500
6100 Lisp_Object last_marked[LAST_MARKED_SIZE] EXTERNALLY_VISIBLE;
6101 static int last_marked_index;
6103 /* For debugging--call abort when we cdr down this many
6104 links of a list, in mark_object. In debugging,
6105 the call to abort will hit a breakpoint.
6106 Normally this is zero and the check never goes off. */
6107 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
6109 static void
6110 mark_vectorlike (struct Lisp_Vector *ptr)
6112 ptrdiff_t size = ptr->header.size;
6113 ptrdiff_t i;
6115 eassert (!VECTOR_MARKED_P (ptr));
6116 VECTOR_MARK (ptr); /* Else mark it. */
6117 if (size & PSEUDOVECTOR_FLAG)
6118 size &= PSEUDOVECTOR_SIZE_MASK;
6120 /* Note that this size is not the memory-footprint size, but only
6121 the number of Lisp_Object fields that we should trace.
6122 The distinction is used e.g. by Lisp_Process which places extra
6123 non-Lisp_Object fields at the end of the structure... */
6124 for (i = 0; i < size; i++) /* ...and then mark its elements. */
6125 mark_object (ptr->contents[i]);
6128 /* Like mark_vectorlike but optimized for char-tables (and
6129 sub-char-tables) assuming that the contents are mostly integers or
6130 symbols. */
6132 static void
6133 mark_char_table (struct Lisp_Vector *ptr, enum pvec_type pvectype)
6135 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6136 /* Consult the Lisp_Sub_Char_Table layout before changing this. */
6137 int i, idx = (pvectype == PVEC_SUB_CHAR_TABLE ? SUB_CHAR_TABLE_OFFSET : 0);
6139 eassert (!VECTOR_MARKED_P (ptr));
6140 VECTOR_MARK (ptr);
6141 for (i = idx; i < size; i++)
6143 Lisp_Object val = ptr->contents[i];
6145 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
6146 continue;
6147 if (SUB_CHAR_TABLE_P (val))
6149 if (! VECTOR_MARKED_P (XVECTOR (val)))
6150 mark_char_table (XVECTOR (val), PVEC_SUB_CHAR_TABLE);
6152 else
6153 mark_object (val);
6157 NO_INLINE /* To reduce stack depth in mark_object. */
6158 static Lisp_Object
6159 mark_compiled (struct Lisp_Vector *ptr)
6161 int i, size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6163 VECTOR_MARK (ptr);
6164 for (i = 0; i < size; i++)
6165 if (i != COMPILED_CONSTANTS)
6166 mark_object (ptr->contents[i]);
6167 return size > COMPILED_CONSTANTS ? ptr->contents[COMPILED_CONSTANTS] : Qnil;
6170 /* Mark the chain of overlays starting at PTR. */
6172 static void
6173 mark_overlay (struct Lisp_Overlay *ptr)
6175 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
6177 ptr->gcmarkbit = 1;
6178 /* These two are always markers and can be marked fast. */
6179 XMARKER (ptr->start)->gcmarkbit = 1;
6180 XMARKER (ptr->end)->gcmarkbit = 1;
6181 mark_object (ptr->plist);
6185 /* Mark Lisp_Objects and special pointers in BUFFER. */
6187 static void
6188 mark_buffer (struct buffer *buffer)
6190 /* This is handled much like other pseudovectors... */
6191 mark_vectorlike ((struct Lisp_Vector *) buffer);
6193 /* ...but there are some buffer-specific things. */
6195 MARK_INTERVAL_TREE (buffer_intervals (buffer));
6197 /* For now, we just don't mark the undo_list. It's done later in
6198 a special way just before the sweep phase, and after stripping
6199 some of its elements that are not needed any more. */
6201 mark_overlay (buffer->overlays_before);
6202 mark_overlay (buffer->overlays_after);
6204 /* If this is an indirect buffer, mark its base buffer. */
6205 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
6206 mark_buffer (buffer->base_buffer);
6209 /* Mark Lisp faces in the face cache C. */
6211 NO_INLINE /* To reduce stack depth in mark_object. */
6212 static void
6213 mark_face_cache (struct face_cache *c)
6215 if (c)
6217 int i, j;
6218 for (i = 0; i < c->used; ++i)
6220 struct face *face = FACE_FROM_ID_OR_NULL (c->f, i);
6222 if (face)
6224 if (face->font && !VECTOR_MARKED_P (face->font))
6225 mark_vectorlike ((struct Lisp_Vector *) face->font);
6227 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
6228 mark_object (face->lface[j]);
6234 NO_INLINE /* To reduce stack depth in mark_object. */
6235 static void
6236 mark_localized_symbol (struct Lisp_Symbol *ptr)
6238 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6239 Lisp_Object where = blv->where;
6240 /* If the value is set up for a killed buffer or deleted
6241 frame, restore its global binding. If the value is
6242 forwarded to a C variable, either it's not a Lisp_Object
6243 var, or it's staticpro'd already. */
6244 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
6245 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
6246 swap_in_global_binding (ptr);
6247 mark_object (blv->where);
6248 mark_object (blv->valcell);
6249 mark_object (blv->defcell);
6252 NO_INLINE /* To reduce stack depth in mark_object. */
6253 static void
6254 mark_save_value (struct Lisp_Save_Value *ptr)
6256 /* If `save_type' is zero, `data[0].pointer' is the address
6257 of a memory area containing `data[1].integer' potential
6258 Lisp_Objects. */
6259 if (ptr->save_type == SAVE_TYPE_MEMORY)
6261 Lisp_Object *p = ptr->data[0].pointer;
6262 ptrdiff_t nelt;
6263 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6264 mark_maybe_object (*p);
6266 else
6268 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6269 int i;
6270 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6271 if (save_type (ptr, i) == SAVE_OBJECT)
6272 mark_object (ptr->data[i].object);
6276 /* Remove killed buffers or items whose car is a killed buffer from
6277 LIST, and mark other items. Return changed LIST, which is marked. */
6279 static Lisp_Object
6280 mark_discard_killed_buffers (Lisp_Object list)
6282 Lisp_Object tail, *prev = &list;
6284 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
6285 tail = XCDR (tail))
6287 Lisp_Object tem = XCAR (tail);
6288 if (CONSP (tem))
6289 tem = XCAR (tem);
6290 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
6291 *prev = XCDR (tail);
6292 else
6294 CONS_MARK (XCONS (tail));
6295 mark_object (XCAR (tail));
6296 prev = xcdr_addr (tail);
6299 mark_object (tail);
6300 return list;
6303 /* Determine type of generic Lisp_Object and mark it accordingly.
6305 This function implements a straightforward depth-first marking
6306 algorithm and so the recursion depth may be very high (a few
6307 tens of thousands is not uncommon). To minimize stack usage,
6308 a few cold paths are moved out to NO_INLINE functions above.
6309 In general, inlining them doesn't help you to gain more speed. */
6311 void
6312 mark_object (Lisp_Object arg)
6314 register Lisp_Object obj;
6315 void *po;
6316 #ifdef GC_CHECK_MARKED_OBJECTS
6317 struct mem_node *m;
6318 #endif
6319 ptrdiff_t cdr_count = 0;
6321 obj = arg;
6322 loop:
6324 po = XPNTR (obj);
6325 if (PURE_P (po))
6326 return;
6328 last_marked[last_marked_index++] = obj;
6329 if (last_marked_index == LAST_MARKED_SIZE)
6330 last_marked_index = 0;
6332 /* Perform some sanity checks on the objects marked here. Abort if
6333 we encounter an object we know is bogus. This increases GC time
6334 by ~80%. */
6335 #ifdef GC_CHECK_MARKED_OBJECTS
6337 /* Check that the object pointed to by PO is known to be a Lisp
6338 structure allocated from the heap. */
6339 #define CHECK_ALLOCATED() \
6340 do { \
6341 m = mem_find (po); \
6342 if (m == MEM_NIL) \
6343 emacs_abort (); \
6344 } while (0)
6346 /* Check that the object pointed to by PO is live, using predicate
6347 function LIVEP. */
6348 #define CHECK_LIVE(LIVEP) \
6349 do { \
6350 if (!LIVEP (m, po)) \
6351 emacs_abort (); \
6352 } while (0)
6354 /* Check both of the above conditions, for non-symbols. */
6355 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
6356 do { \
6357 CHECK_ALLOCATED (); \
6358 CHECK_LIVE (LIVEP); \
6359 } while (0) \
6361 /* Check both of the above conditions, for symbols. */
6362 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() \
6363 do { \
6364 if (!c_symbol_p (ptr)) \
6366 CHECK_ALLOCATED (); \
6367 CHECK_LIVE (live_symbol_p); \
6369 } while (0) \
6371 #else /* not GC_CHECK_MARKED_OBJECTS */
6373 #define CHECK_LIVE(LIVEP) ((void) 0)
6374 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) ((void) 0)
6375 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() ((void) 0)
6377 #endif /* not GC_CHECK_MARKED_OBJECTS */
6379 switch (XTYPE (obj))
6381 case Lisp_String:
6383 register struct Lisp_String *ptr = XSTRING (obj);
6384 if (STRING_MARKED_P (ptr))
6385 break;
6386 CHECK_ALLOCATED_AND_LIVE (live_string_p);
6387 MARK_STRING (ptr);
6388 MARK_INTERVAL_TREE (ptr->intervals);
6389 #ifdef GC_CHECK_STRING_BYTES
6390 /* Check that the string size recorded in the string is the
6391 same as the one recorded in the sdata structure. */
6392 string_bytes (ptr);
6393 #endif /* GC_CHECK_STRING_BYTES */
6395 break;
6397 case Lisp_Vectorlike:
6399 register struct Lisp_Vector *ptr = XVECTOR (obj);
6400 register ptrdiff_t pvectype;
6402 if (VECTOR_MARKED_P (ptr))
6403 break;
6405 #ifdef GC_CHECK_MARKED_OBJECTS
6406 m = mem_find (po);
6407 if (m == MEM_NIL && !SUBRP (obj) && !main_thread_p (po))
6408 emacs_abort ();
6409 #endif /* GC_CHECK_MARKED_OBJECTS */
6411 if (ptr->header.size & PSEUDOVECTOR_FLAG)
6412 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
6413 >> PSEUDOVECTOR_AREA_BITS);
6414 else
6415 pvectype = PVEC_NORMAL_VECTOR;
6417 if (pvectype != PVEC_SUBR
6418 && pvectype != PVEC_BUFFER
6419 && !main_thread_p (po))
6420 CHECK_LIVE (live_vector_p);
6422 switch (pvectype)
6424 case PVEC_BUFFER:
6425 #ifdef GC_CHECK_MARKED_OBJECTS
6427 struct buffer *b;
6428 FOR_EACH_BUFFER (b)
6429 if (b == po)
6430 break;
6431 if (b == NULL)
6432 emacs_abort ();
6434 #endif /* GC_CHECK_MARKED_OBJECTS */
6435 mark_buffer ((struct buffer *) ptr);
6436 break;
6438 case PVEC_COMPILED:
6439 /* Although we could treat this just like a vector, mark_compiled
6440 returns the COMPILED_CONSTANTS element, which is marked at the
6441 next iteration of goto-loop here. This is done to avoid a few
6442 recursive calls to mark_object. */
6443 obj = mark_compiled (ptr);
6444 if (!NILP (obj))
6445 goto loop;
6446 break;
6448 case PVEC_FRAME:
6450 struct frame *f = (struct frame *) ptr;
6452 mark_vectorlike (ptr);
6453 mark_face_cache (f->face_cache);
6454 #ifdef HAVE_WINDOW_SYSTEM
6455 if (FRAME_WINDOW_P (f) && FRAME_X_OUTPUT (f))
6457 struct font *font = FRAME_FONT (f);
6459 if (font && !VECTOR_MARKED_P (font))
6460 mark_vectorlike ((struct Lisp_Vector *) font);
6462 #endif
6464 break;
6466 case PVEC_WINDOW:
6468 struct window *w = (struct window *) ptr;
6470 mark_vectorlike (ptr);
6472 /* Mark glyph matrices, if any. Marking window
6473 matrices is sufficient because frame matrices
6474 use the same glyph memory. */
6475 if (w->current_matrix)
6477 mark_glyph_matrix (w->current_matrix);
6478 mark_glyph_matrix (w->desired_matrix);
6481 /* Filter out killed buffers from both buffer lists
6482 in attempt to help GC to reclaim killed buffers faster.
6483 We can do it elsewhere for live windows, but this is the
6484 best place to do it for dead windows. */
6485 wset_prev_buffers
6486 (w, mark_discard_killed_buffers (w->prev_buffers));
6487 wset_next_buffers
6488 (w, mark_discard_killed_buffers (w->next_buffers));
6490 break;
6492 case PVEC_HASH_TABLE:
6494 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6496 mark_vectorlike (ptr);
6497 mark_object (h->test.name);
6498 mark_object (h->test.user_hash_function);
6499 mark_object (h->test.user_cmp_function);
6500 /* If hash table is not weak, mark all keys and values.
6501 For weak tables, mark only the vector. */
6502 if (NILP (h->weak))
6503 mark_object (h->key_and_value);
6504 else
6505 VECTOR_MARK (XVECTOR (h->key_and_value));
6507 break;
6509 case PVEC_CHAR_TABLE:
6510 case PVEC_SUB_CHAR_TABLE:
6511 mark_char_table (ptr, (enum pvec_type) pvectype);
6512 break;
6514 case PVEC_BOOL_VECTOR:
6515 /* No Lisp_Objects to mark in a bool vector. */
6516 VECTOR_MARK (ptr);
6517 break;
6519 case PVEC_SUBR:
6520 break;
6522 case PVEC_FREE:
6523 emacs_abort ();
6525 default:
6526 mark_vectorlike (ptr);
6529 break;
6531 case Lisp_Symbol:
6533 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6534 nextsym:
6535 if (ptr->gcmarkbit)
6536 break;
6537 CHECK_ALLOCATED_AND_LIVE_SYMBOL ();
6538 ptr->gcmarkbit = 1;
6539 /* Attempt to catch bogus objects. */
6540 eassert (valid_lisp_object_p (ptr->function));
6541 mark_object (ptr->function);
6542 mark_object (ptr->plist);
6543 switch (ptr->redirect)
6545 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6546 case SYMBOL_VARALIAS:
6548 Lisp_Object tem;
6549 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6550 mark_object (tem);
6551 break;
6553 case SYMBOL_LOCALIZED:
6554 mark_localized_symbol (ptr);
6555 break;
6556 case SYMBOL_FORWARDED:
6557 /* If the value is forwarded to a buffer or keyboard field,
6558 these are marked when we see the corresponding object.
6559 And if it's forwarded to a C variable, either it's not
6560 a Lisp_Object var, or it's staticpro'd already. */
6561 break;
6562 default: emacs_abort ();
6564 if (!PURE_P (XSTRING (ptr->name)))
6565 MARK_STRING (XSTRING (ptr->name));
6566 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6567 /* Inner loop to mark next symbol in this bucket, if any. */
6568 po = ptr = ptr->next;
6569 if (ptr)
6570 goto nextsym;
6572 break;
6574 case Lisp_Misc:
6575 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6577 if (XMISCANY (obj)->gcmarkbit)
6578 break;
6580 switch (XMISCTYPE (obj))
6582 case Lisp_Misc_Marker:
6583 /* DO NOT mark thru the marker's chain.
6584 The buffer's markers chain does not preserve markers from gc;
6585 instead, markers are removed from the chain when freed by gc. */
6586 XMISCANY (obj)->gcmarkbit = 1;
6587 break;
6589 case Lisp_Misc_Save_Value:
6590 XMISCANY (obj)->gcmarkbit = 1;
6591 mark_save_value (XSAVE_VALUE (obj));
6592 break;
6594 case Lisp_Misc_Overlay:
6595 mark_overlay (XOVERLAY (obj));
6596 break;
6598 case Lisp_Misc_Finalizer:
6599 XMISCANY (obj)->gcmarkbit = true;
6600 mark_object (XFINALIZER (obj)->function);
6601 break;
6603 #ifdef HAVE_MODULES
6604 case Lisp_Misc_User_Ptr:
6605 XMISCANY (obj)->gcmarkbit = true;
6606 break;
6607 #endif
6609 default:
6610 emacs_abort ();
6612 break;
6614 case Lisp_Cons:
6616 register struct Lisp_Cons *ptr = XCONS (obj);
6617 if (CONS_MARKED_P (ptr))
6618 break;
6619 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6620 CONS_MARK (ptr);
6621 /* If the cdr is nil, avoid recursion for the car. */
6622 if (EQ (ptr->u.cdr, Qnil))
6624 obj = ptr->car;
6625 cdr_count = 0;
6626 goto loop;
6628 mark_object (ptr->car);
6629 obj = ptr->u.cdr;
6630 cdr_count++;
6631 if (cdr_count == mark_object_loop_halt)
6632 emacs_abort ();
6633 goto loop;
6636 case Lisp_Float:
6637 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6638 FLOAT_MARK (XFLOAT (obj));
6639 break;
6641 case_Lisp_Int:
6642 break;
6644 default:
6645 emacs_abort ();
6648 #undef CHECK_LIVE
6649 #undef CHECK_ALLOCATED
6650 #undef CHECK_ALLOCATED_AND_LIVE
6652 /* Mark the Lisp pointers in the terminal objects.
6653 Called by Fgarbage_collect. */
6655 static void
6656 mark_terminals (void)
6658 struct terminal *t;
6659 for (t = terminal_list; t; t = t->next_terminal)
6661 eassert (t->name != NULL);
6662 #ifdef HAVE_WINDOW_SYSTEM
6663 /* If a terminal object is reachable from a stacpro'ed object,
6664 it might have been marked already. Make sure the image cache
6665 gets marked. */
6666 mark_image_cache (t->image_cache);
6667 #endif /* HAVE_WINDOW_SYSTEM */
6668 if (!VECTOR_MARKED_P (t))
6669 mark_vectorlike ((struct Lisp_Vector *)t);
6675 /* Value is non-zero if OBJ will survive the current GC because it's
6676 either marked or does not need to be marked to survive. */
6678 bool
6679 survives_gc_p (Lisp_Object obj)
6681 bool survives_p;
6683 switch (XTYPE (obj))
6685 case_Lisp_Int:
6686 survives_p = 1;
6687 break;
6689 case Lisp_Symbol:
6690 survives_p = XSYMBOL (obj)->gcmarkbit;
6691 break;
6693 case Lisp_Misc:
6694 survives_p = XMISCANY (obj)->gcmarkbit;
6695 break;
6697 case Lisp_String:
6698 survives_p = STRING_MARKED_P (XSTRING (obj));
6699 break;
6701 case Lisp_Vectorlike:
6702 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6703 break;
6705 case Lisp_Cons:
6706 survives_p = CONS_MARKED_P (XCONS (obj));
6707 break;
6709 case Lisp_Float:
6710 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6711 break;
6713 default:
6714 emacs_abort ();
6717 return survives_p || PURE_P (XPNTR (obj));
6723 NO_INLINE /* For better stack traces */
6724 static void
6725 sweep_conses (void)
6727 struct cons_block *cblk;
6728 struct cons_block **cprev = &cons_block;
6729 int lim = cons_block_index;
6730 EMACS_INT num_free = 0, num_used = 0;
6732 cons_free_list = 0;
6734 for (cblk = cons_block; cblk; cblk = *cprev)
6736 int i = 0;
6737 int this_free = 0;
6738 int ilim = (lim + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
6740 /* Scan the mark bits an int at a time. */
6741 for (i = 0; i < ilim; i++)
6743 if (cblk->gcmarkbits[i] == BITS_WORD_MAX)
6745 /* Fast path - all cons cells for this int are marked. */
6746 cblk->gcmarkbits[i] = 0;
6747 num_used += BITS_PER_BITS_WORD;
6749 else
6751 /* Some cons cells for this int are not marked.
6752 Find which ones, and free them. */
6753 int start, pos, stop;
6755 start = i * BITS_PER_BITS_WORD;
6756 stop = lim - start;
6757 if (stop > BITS_PER_BITS_WORD)
6758 stop = BITS_PER_BITS_WORD;
6759 stop += start;
6761 for (pos = start; pos < stop; pos++)
6763 if (!CONS_MARKED_P (&cblk->conses[pos]))
6765 this_free++;
6766 cblk->conses[pos].u.chain = cons_free_list;
6767 cons_free_list = &cblk->conses[pos];
6768 cons_free_list->car = Vdead;
6770 else
6772 num_used++;
6773 CONS_UNMARK (&cblk->conses[pos]);
6779 lim = CONS_BLOCK_SIZE;
6780 /* If this block contains only free conses and we have already
6781 seen more than two blocks worth of free conses then deallocate
6782 this block. */
6783 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6785 *cprev = cblk->next;
6786 /* Unhook from the free list. */
6787 cons_free_list = cblk->conses[0].u.chain;
6788 lisp_align_free (cblk);
6790 else
6792 num_free += this_free;
6793 cprev = &cblk->next;
6796 total_conses = num_used;
6797 total_free_conses = num_free;
6800 NO_INLINE /* For better stack traces */
6801 static void
6802 sweep_floats (void)
6804 register struct float_block *fblk;
6805 struct float_block **fprev = &float_block;
6806 register int lim = float_block_index;
6807 EMACS_INT num_free = 0, num_used = 0;
6809 float_free_list = 0;
6811 for (fblk = float_block; fblk; fblk = *fprev)
6813 register int i;
6814 int this_free = 0;
6815 for (i = 0; i < lim; i++)
6816 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6818 this_free++;
6819 fblk->floats[i].u.chain = float_free_list;
6820 float_free_list = &fblk->floats[i];
6822 else
6824 num_used++;
6825 FLOAT_UNMARK (&fblk->floats[i]);
6827 lim = FLOAT_BLOCK_SIZE;
6828 /* If this block contains only free floats and we have already
6829 seen more than two blocks worth of free floats then deallocate
6830 this block. */
6831 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6833 *fprev = fblk->next;
6834 /* Unhook from the free list. */
6835 float_free_list = fblk->floats[0].u.chain;
6836 lisp_align_free (fblk);
6838 else
6840 num_free += this_free;
6841 fprev = &fblk->next;
6844 total_floats = num_used;
6845 total_free_floats = num_free;
6848 NO_INLINE /* For better stack traces */
6849 static void
6850 sweep_intervals (void)
6852 register struct interval_block *iblk;
6853 struct interval_block **iprev = &interval_block;
6854 register int lim = interval_block_index;
6855 EMACS_INT num_free = 0, num_used = 0;
6857 interval_free_list = 0;
6859 for (iblk = interval_block; iblk; iblk = *iprev)
6861 register int i;
6862 int this_free = 0;
6864 for (i = 0; i < lim; i++)
6866 if (!iblk->intervals[i].gcmarkbit)
6868 set_interval_parent (&iblk->intervals[i], interval_free_list);
6869 interval_free_list = &iblk->intervals[i];
6870 this_free++;
6872 else
6874 num_used++;
6875 iblk->intervals[i].gcmarkbit = 0;
6878 lim = INTERVAL_BLOCK_SIZE;
6879 /* If this block contains only free intervals and we have already
6880 seen more than two blocks worth of free intervals then
6881 deallocate this block. */
6882 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6884 *iprev = iblk->next;
6885 /* Unhook from the free list. */
6886 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6887 lisp_free (iblk);
6889 else
6891 num_free += this_free;
6892 iprev = &iblk->next;
6895 total_intervals = num_used;
6896 total_free_intervals = num_free;
6899 NO_INLINE /* For better stack traces */
6900 static void
6901 sweep_symbols (void)
6903 struct symbol_block *sblk;
6904 struct symbol_block **sprev = &symbol_block;
6905 int lim = symbol_block_index;
6906 EMACS_INT num_free = 0, num_used = ARRAYELTS (lispsym);
6908 symbol_free_list = NULL;
6910 for (int i = 0; i < ARRAYELTS (lispsym); i++)
6911 lispsym[i].gcmarkbit = 0;
6913 for (sblk = symbol_block; sblk; sblk = *sprev)
6915 int this_free = 0;
6916 union aligned_Lisp_Symbol *sym = sblk->symbols;
6917 union aligned_Lisp_Symbol *end = sym + lim;
6919 for (; sym < end; ++sym)
6921 if (!sym->s.gcmarkbit)
6923 if (sym->s.redirect == SYMBOL_LOCALIZED)
6924 xfree (SYMBOL_BLV (&sym->s));
6925 sym->s.next = symbol_free_list;
6926 symbol_free_list = &sym->s;
6927 symbol_free_list->function = Vdead;
6928 ++this_free;
6930 else
6932 ++num_used;
6933 sym->s.gcmarkbit = 0;
6934 /* Attempt to catch bogus objects. */
6935 eassert (valid_lisp_object_p (sym->s.function));
6939 lim = SYMBOL_BLOCK_SIZE;
6940 /* If this block contains only free symbols and we have already
6941 seen more than two blocks worth of free symbols then deallocate
6942 this block. */
6943 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6945 *sprev = sblk->next;
6946 /* Unhook from the free list. */
6947 symbol_free_list = sblk->symbols[0].s.next;
6948 lisp_free (sblk);
6950 else
6952 num_free += this_free;
6953 sprev = &sblk->next;
6956 total_symbols = num_used;
6957 total_free_symbols = num_free;
6960 NO_INLINE /* For better stack traces. */
6961 static void
6962 sweep_misc (void)
6964 register struct marker_block *mblk;
6965 struct marker_block **mprev = &marker_block;
6966 register int lim = marker_block_index;
6967 EMACS_INT num_free = 0, num_used = 0;
6969 /* Put all unmarked misc's on free list. For a marker, first
6970 unchain it from the buffer it points into. */
6972 marker_free_list = 0;
6974 for (mblk = marker_block; mblk; mblk = *mprev)
6976 register int i;
6977 int this_free = 0;
6979 for (i = 0; i < lim; i++)
6981 if (!mblk->markers[i].m.u_any.gcmarkbit)
6983 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6984 unchain_marker (&mblk->markers[i].m.u_marker);
6985 else if (mblk->markers[i].m.u_any.type == Lisp_Misc_Finalizer)
6986 unchain_finalizer (&mblk->markers[i].m.u_finalizer);
6987 #ifdef HAVE_MODULES
6988 else if (mblk->markers[i].m.u_any.type == Lisp_Misc_User_Ptr)
6990 struct Lisp_User_Ptr *uptr = &mblk->markers[i].m.u_user_ptr;
6991 if (uptr->finalizer)
6992 uptr->finalizer (uptr->p);
6994 #endif
6995 /* Set the type of the freed object to Lisp_Misc_Free.
6996 We could leave the type alone, since nobody checks it,
6997 but this might catch bugs faster. */
6998 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6999 mblk->markers[i].m.u_free.chain = marker_free_list;
7000 marker_free_list = &mblk->markers[i].m;
7001 this_free++;
7003 else
7005 num_used++;
7006 mblk->markers[i].m.u_any.gcmarkbit = 0;
7009 lim = MARKER_BLOCK_SIZE;
7010 /* If this block contains only free markers and we have already
7011 seen more than two blocks worth of free markers then deallocate
7012 this block. */
7013 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
7015 *mprev = mblk->next;
7016 /* Unhook from the free list. */
7017 marker_free_list = mblk->markers[0].m.u_free.chain;
7018 lisp_free (mblk);
7020 else
7022 num_free += this_free;
7023 mprev = &mblk->next;
7027 total_markers = num_used;
7028 total_free_markers = num_free;
7031 NO_INLINE /* For better stack traces */
7032 static void
7033 sweep_buffers (void)
7035 register struct buffer *buffer, **bprev = &all_buffers;
7037 total_buffers = 0;
7038 for (buffer = all_buffers; buffer; buffer = *bprev)
7039 if (!VECTOR_MARKED_P (buffer))
7041 *bprev = buffer->next;
7042 lisp_free (buffer);
7044 else
7046 VECTOR_UNMARK (buffer);
7047 /* Do not use buffer_(set|get)_intervals here. */
7048 buffer->text->intervals = balance_intervals (buffer->text->intervals);
7049 total_buffers++;
7050 bprev = &buffer->next;
7054 /* Sweep: find all structures not marked, and free them. */
7055 static void
7056 gc_sweep (void)
7058 /* Remove or mark entries in weak hash tables.
7059 This must be done before any object is unmarked. */
7060 sweep_weak_hash_tables ();
7062 sweep_strings ();
7063 check_string_bytes (!noninteractive);
7064 sweep_conses ();
7065 sweep_floats ();
7066 sweep_intervals ();
7067 sweep_symbols ();
7068 sweep_misc ();
7069 sweep_buffers ();
7070 sweep_vectors ();
7071 check_string_bytes (!noninteractive);
7074 DEFUN ("memory-info", Fmemory_info, Smemory_info, 0, 0, 0,
7075 doc: /* Return a list of (TOTAL-RAM FREE-RAM TOTAL-SWAP FREE-SWAP).
7076 All values are in Kbytes. If there is no swap space,
7077 last two values are zero. If the system is not supported
7078 or memory information can't be obtained, return nil. */)
7079 (void)
7081 #if defined HAVE_LINUX_SYSINFO
7082 struct sysinfo si;
7083 uintmax_t units;
7085 if (sysinfo (&si))
7086 return Qnil;
7087 #ifdef LINUX_SYSINFO_UNIT
7088 units = si.mem_unit;
7089 #else
7090 units = 1;
7091 #endif
7092 return list4i ((uintmax_t) si.totalram * units / 1024,
7093 (uintmax_t) si.freeram * units / 1024,
7094 (uintmax_t) si.totalswap * units / 1024,
7095 (uintmax_t) si.freeswap * units / 1024);
7096 #elif defined WINDOWSNT
7097 unsigned long long totalram, freeram, totalswap, freeswap;
7099 if (w32_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
7100 return list4i ((uintmax_t) totalram / 1024,
7101 (uintmax_t) freeram / 1024,
7102 (uintmax_t) totalswap / 1024,
7103 (uintmax_t) freeswap / 1024);
7104 else
7105 return Qnil;
7106 #elif defined MSDOS
7107 unsigned long totalram, freeram, totalswap, freeswap;
7109 if (dos_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
7110 return list4i ((uintmax_t) totalram / 1024,
7111 (uintmax_t) freeram / 1024,
7112 (uintmax_t) totalswap / 1024,
7113 (uintmax_t) freeswap / 1024);
7114 else
7115 return Qnil;
7116 #else /* not HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
7117 /* FIXME: add more systems. */
7118 return Qnil;
7119 #endif /* HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
7122 /* Debugging aids. */
7124 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
7125 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
7126 This may be helpful in debugging Emacs's memory usage.
7127 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
7128 (void)
7130 Lisp_Object end;
7132 #if defined HAVE_NS || !HAVE_SBRK
7133 /* Avoid warning. sbrk has no relation to memory allocated anyway. */
7134 XSETINT (end, 0);
7135 #else
7136 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
7137 #endif
7139 return end;
7142 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
7143 doc: /* Return a list of counters that measure how much consing there has been.
7144 Each of these counters increments for a certain kind of object.
7145 The counters wrap around from the largest positive integer to zero.
7146 Garbage collection does not decrease them.
7147 The elements of the value are as follows:
7148 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
7149 All are in units of 1 = one object consed
7150 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
7151 objects consed.
7152 MISCS include overlays, markers, and some internal types.
7153 Frames, windows, buffers, and subprocesses count as vectors
7154 (but the contents of a buffer's text do not count here). */)
7155 (void)
7157 return listn (CONSTYPE_HEAP, 8,
7158 bounded_number (cons_cells_consed),
7159 bounded_number (floats_consed),
7160 bounded_number (vector_cells_consed),
7161 bounded_number (symbols_consed),
7162 bounded_number (string_chars_consed),
7163 bounded_number (misc_objects_consed),
7164 bounded_number (intervals_consed),
7165 bounded_number (strings_consed));
7168 static bool
7169 symbol_uses_obj (Lisp_Object symbol, Lisp_Object obj)
7171 struct Lisp_Symbol *sym = XSYMBOL (symbol);
7172 Lisp_Object val = find_symbol_value (symbol);
7173 return (EQ (val, obj)
7174 || EQ (sym->function, obj)
7175 || (!NILP (sym->function)
7176 && COMPILEDP (sym->function)
7177 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
7178 || (!NILP (val)
7179 && COMPILEDP (val)
7180 && EQ (AREF (val, COMPILED_BYTECODE), obj)));
7183 /* Find at most FIND_MAX symbols which have OBJ as their value or
7184 function. This is used in gdbinit's `xwhichsymbols' command. */
7186 Lisp_Object
7187 which_symbols (Lisp_Object obj, EMACS_INT find_max)
7189 struct symbol_block *sblk;
7190 ptrdiff_t gc_count = inhibit_garbage_collection ();
7191 Lisp_Object found = Qnil;
7193 if (! DEADP (obj))
7195 for (int i = 0; i < ARRAYELTS (lispsym); i++)
7197 Lisp_Object sym = builtin_lisp_symbol (i);
7198 if (symbol_uses_obj (sym, obj))
7200 found = Fcons (sym, found);
7201 if (--find_max == 0)
7202 goto out;
7206 for (sblk = symbol_block; sblk; sblk = sblk->next)
7208 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
7209 int bn;
7211 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
7213 if (sblk == symbol_block && bn >= symbol_block_index)
7214 break;
7216 Lisp_Object sym = make_lisp_symbol (&aligned_sym->s);
7217 if (symbol_uses_obj (sym, obj))
7219 found = Fcons (sym, found);
7220 if (--find_max == 0)
7221 goto out;
7227 out:
7228 unbind_to (gc_count, Qnil);
7229 return found;
7232 #ifdef SUSPICIOUS_OBJECT_CHECKING
7234 static void *
7235 find_suspicious_object_in_range (void *begin, void *end)
7237 char *begin_a = begin;
7238 char *end_a = end;
7239 int i;
7241 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7243 char *suspicious_object = suspicious_objects[i];
7244 if (begin_a <= suspicious_object && suspicious_object < end_a)
7245 return suspicious_object;
7248 return NULL;
7251 static void
7252 note_suspicious_free (void* ptr)
7254 struct suspicious_free_record* rec;
7256 rec = &suspicious_free_history[suspicious_free_history_index++];
7257 if (suspicious_free_history_index ==
7258 ARRAYELTS (suspicious_free_history))
7260 suspicious_free_history_index = 0;
7263 memset (rec, 0, sizeof (*rec));
7264 rec->suspicious_object = ptr;
7265 backtrace (&rec->backtrace[0], ARRAYELTS (rec->backtrace));
7268 static void
7269 detect_suspicious_free (void* ptr)
7271 int i;
7273 eassert (ptr != NULL);
7275 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7276 if (suspicious_objects[i] == ptr)
7278 note_suspicious_free (ptr);
7279 suspicious_objects[i] = NULL;
7283 #endif /* SUSPICIOUS_OBJECT_CHECKING */
7285 DEFUN ("suspicious-object", Fsuspicious_object, Ssuspicious_object, 1, 1, 0,
7286 doc: /* Return OBJ, maybe marking it for extra scrutiny.
7287 If Emacs is compiled with suspicious object checking, capture
7288 a stack trace when OBJ is freed in order to help track down
7289 garbage collection bugs. Otherwise, do nothing and return OBJ. */)
7290 (Lisp_Object obj)
7292 #ifdef SUSPICIOUS_OBJECT_CHECKING
7293 /* Right now, we care only about vectors. */
7294 if (VECTORLIKEP (obj))
7296 suspicious_objects[suspicious_object_index++] = XVECTOR (obj);
7297 if (suspicious_object_index == ARRAYELTS (suspicious_objects))
7298 suspicious_object_index = 0;
7300 #endif
7301 return obj;
7304 #ifdef ENABLE_CHECKING
7306 bool suppress_checking;
7308 void
7309 die (const char *msg, const char *file, int line)
7311 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
7312 file, line, msg);
7313 terminate_due_to_signal (SIGABRT, INT_MAX);
7316 #endif /* ENABLE_CHECKING */
7318 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
7320 /* Stress alloca with inconveniently sized requests and check
7321 whether all allocated areas may be used for Lisp_Object. */
7323 NO_INLINE static void
7324 verify_alloca (void)
7326 int i;
7327 enum { ALLOCA_CHECK_MAX = 256 };
7328 /* Start from size of the smallest Lisp object. */
7329 for (i = sizeof (struct Lisp_Cons); i <= ALLOCA_CHECK_MAX; i++)
7331 void *ptr = alloca (i);
7332 make_lisp_ptr (ptr, Lisp_Cons);
7336 #else /* not ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7338 #define verify_alloca() ((void) 0)
7340 #endif /* ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7342 /* Initialization. */
7344 void
7345 init_alloc_once (void)
7347 /* Even though Qt's contents are not set up, its address is known. */
7348 Vpurify_flag = Qt;
7350 purebeg = PUREBEG;
7351 pure_size = PURESIZE;
7353 verify_alloca ();
7354 init_finalizer_list (&finalizers);
7355 init_finalizer_list (&doomed_finalizers);
7357 mem_init ();
7358 Vdead = make_pure_string ("DEAD", 4, 4, 0);
7360 #ifdef DOUG_LEA_MALLOC
7361 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
7362 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
7363 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
7364 #endif
7365 init_strings ();
7366 init_vectors ();
7368 refill_memory_reserve ();
7369 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
7372 void
7373 init_alloc (void)
7375 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
7376 setjmp_tested_p = longjmps_done = 0;
7377 #endif
7378 Vgc_elapsed = make_float (0.0);
7379 gcs_done = 0;
7381 #if USE_VALGRIND
7382 valgrind_p = RUNNING_ON_VALGRIND != 0;
7383 #endif
7386 void
7387 syms_of_alloc (void)
7389 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
7390 doc: /* Number of bytes of consing between garbage collections.
7391 Garbage collection can happen automatically once this many bytes have been
7392 allocated since the last garbage collection. All data types count.
7394 Garbage collection happens automatically only when `eval' is called.
7396 By binding this temporarily to a large number, you can effectively
7397 prevent garbage collection during a part of the program.
7398 See also `gc-cons-percentage'. */);
7400 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
7401 doc: /* Portion of the heap used for allocation.
7402 Garbage collection can happen automatically once this portion of the heap
7403 has been allocated since the last garbage collection.
7404 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
7405 Vgc_cons_percentage = make_float (0.1);
7407 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
7408 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
7410 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
7411 doc: /* Number of cons cells that have been consed so far. */);
7413 DEFVAR_INT ("floats-consed", floats_consed,
7414 doc: /* Number of floats that have been consed so far. */);
7416 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
7417 doc: /* Number of vector cells that have been consed so far. */);
7419 DEFVAR_INT ("symbols-consed", symbols_consed,
7420 doc: /* Number of symbols that have been consed so far. */);
7421 symbols_consed += ARRAYELTS (lispsym);
7423 DEFVAR_INT ("string-chars-consed", string_chars_consed,
7424 doc: /* Number of string characters that have been consed so far. */);
7426 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
7427 doc: /* Number of miscellaneous objects that have been consed so far.
7428 These include markers and overlays, plus certain objects not visible
7429 to users. */);
7431 DEFVAR_INT ("intervals-consed", intervals_consed,
7432 doc: /* Number of intervals that have been consed so far. */);
7434 DEFVAR_INT ("strings-consed", strings_consed,
7435 doc: /* Number of strings that have been consed so far. */);
7437 DEFVAR_LISP ("purify-flag", Vpurify_flag,
7438 doc: /* Non-nil means loading Lisp code in order to dump an executable.
7439 This means that certain objects should be allocated in shared (pure) space.
7440 It can also be set to a hash-table, in which case this table is used to
7441 do hash-consing of the objects allocated to pure space. */);
7443 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
7444 doc: /* Non-nil means display messages at start and end of garbage collection. */);
7445 garbage_collection_messages = 0;
7447 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
7448 doc: /* Hook run after garbage collection has finished. */);
7449 Vpost_gc_hook = Qnil;
7450 DEFSYM (Qpost_gc_hook, "post-gc-hook");
7452 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
7453 doc: /* Precomputed `signal' argument for memory-full error. */);
7454 /* We build this in advance because if we wait until we need it, we might
7455 not be able to allocate the memory to hold it. */
7456 Vmemory_signal_data
7457 = listn (CONSTYPE_PURE, 2, Qerror,
7458 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
7460 DEFVAR_LISP ("memory-full", Vmemory_full,
7461 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
7462 Vmemory_full = Qnil;
7464 DEFSYM (Qconses, "conses");
7465 DEFSYM (Qsymbols, "symbols");
7466 DEFSYM (Qmiscs, "miscs");
7467 DEFSYM (Qstrings, "strings");
7468 DEFSYM (Qvectors, "vectors");
7469 DEFSYM (Qfloats, "floats");
7470 DEFSYM (Qintervals, "intervals");
7471 DEFSYM (Qbuffers, "buffers");
7472 DEFSYM (Qstring_bytes, "string-bytes");
7473 DEFSYM (Qvector_slots, "vector-slots");
7474 DEFSYM (Qheap, "heap");
7475 DEFSYM (QAutomatic_GC, "Automatic GC");
7477 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
7478 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
7480 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
7481 doc: /* Accumulated time elapsed in garbage collections.
7482 The time is in seconds as a floating point value. */);
7483 DEFVAR_INT ("gcs-done", gcs_done,
7484 doc: /* Accumulated number of garbage collections done. */);
7486 defsubr (&Scons);
7487 defsubr (&Slist);
7488 defsubr (&Svector);
7489 defsubr (&Sbool_vector);
7490 defsubr (&Smake_byte_code);
7491 defsubr (&Smake_list);
7492 defsubr (&Smake_vector);
7493 defsubr (&Smake_string);
7494 defsubr (&Smake_bool_vector);
7495 defsubr (&Smake_symbol);
7496 defsubr (&Smake_marker);
7497 defsubr (&Smake_finalizer);
7498 defsubr (&Spurecopy);
7499 defsubr (&Sgarbage_collect);
7500 defsubr (&Smemory_limit);
7501 defsubr (&Smemory_info);
7502 defsubr (&Smemory_use_counts);
7503 defsubr (&Ssuspicious_object);
7506 /* When compiled with GCC, GDB might say "No enum type named
7507 pvec_type" if we don't have at least one symbol with that type, and
7508 then xbacktrace could fail. Similarly for the other enums and
7509 their values. Some non-GCC compilers don't like these constructs. */
7510 #ifdef __GNUC__
7511 union
7513 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
7514 enum char_table_specials char_table_specials;
7515 enum char_bits char_bits;
7516 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
7517 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
7518 enum Lisp_Bits Lisp_Bits;
7519 enum Lisp_Compiled Lisp_Compiled;
7520 enum maxargs maxargs;
7521 enum MAX_ALLOCA MAX_ALLOCA;
7522 enum More_Lisp_Bits More_Lisp_Bits;
7523 enum pvec_type pvec_type;
7524 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
7525 #endif /* __GNUC__ */