Regenerate.
[emacs.git] / lisp / emacs-lisp / cl-loaddefs.el
blob5fea98cff842f1cf75bcfb496a247515b0ffb4a2
1 ;;; cl-loaddefs.el --- automatically extracted autoloads
2 ;;
3 ;;; Code:
5 \f
6 ;;;### (autoloads (cl-prettyexpand cl-macroexpand-all cl-remprop
7 ;;;;;; cl-do-remf cl-set-getf getf get* tailp list-length nreconc
8 ;;;;;; revappend concatenate subseq cl-float-limits random-state-p
9 ;;;;;; make-random-state random* signum rem* mod* round* truncate*
10 ;;;;;; ceiling* floor* isqrt lcm gcd cl-progv-before cl-set-frame-visible-p
11 ;;;;;; cl-map-overlays cl-map-intervals cl-map-keymap-recursively
12 ;;;;;; notevery notany every some mapcon mapcan mapl maplist map
13 ;;;;;; cl-mapcar-many equalp coerce) "cl-extra" "cl-extra.el" "0e52b41c758c56831930100671c58f50")
14 ;;; Generated autoloads from cl-extra.el
16 (autoload 'coerce "cl-extra" "\
17 Coerce OBJECT to type TYPE.
18 TYPE is a Common Lisp type specifier.
20 \(fn OBJECT TYPE)" nil nil)
22 (autoload 'equalp "cl-extra" "\
23 Return t if two Lisp objects have similar structures and contents.
24 This is like `equal', except that it accepts numerically equal
25 numbers of different types (float vs. integer), and also compares
26 strings case-insensitively.
28 \(fn X Y)" nil nil)
30 (autoload 'cl-mapcar-many "cl-extra" "\
31 Not documented
33 \(fn CL-FUNC CL-SEQS)" nil nil)
35 (autoload 'map "cl-extra" "\
36 Map a FUNCTION across one or more SEQUENCEs, returning a sequence.
37 TYPE is the sequence type to return.
39 \(fn TYPE FUNCTION SEQUENCE...)" nil nil)
41 (autoload 'maplist "cl-extra" "\
42 Map FUNCTION to each sublist of LIST or LISTs.
43 Like `mapcar', except applies to lists and their cdr's rather than to
44 the elements themselves.
46 \(fn FUNCTION LIST...)" nil nil)
48 (autoload 'mapl "cl-extra" "\
49 Like `maplist', but does not accumulate values returned by the function.
51 \(fn FUNCTION LIST...)" nil nil)
53 (autoload 'mapcan "cl-extra" "\
54 Like `mapcar', but nconc's together the values returned by the function.
56 \(fn FUNCTION SEQUENCE...)" nil nil)
58 (autoload 'mapcon "cl-extra" "\
59 Like `maplist', but nconc's together the values returned by the function.
61 \(fn FUNCTION LIST...)" nil nil)
63 (autoload 'some "cl-extra" "\
64 Return true if PREDICATE is true of any element of SEQ or SEQs.
65 If so, return the true (non-nil) value returned by PREDICATE.
67 \(fn PREDICATE SEQ...)" nil nil)
69 (autoload 'every "cl-extra" "\
70 Return true if PREDICATE is true of every element of SEQ or SEQs.
72 \(fn PREDICATE SEQ...)" nil nil)
74 (autoload 'notany "cl-extra" "\
75 Return true if PREDICATE is false of every element of SEQ or SEQs.
77 \(fn PREDICATE SEQ...)" nil nil)
79 (autoload 'notevery "cl-extra" "\
80 Return true if PREDICATE is false of some element of SEQ or SEQs.
82 \(fn PREDICATE SEQ...)" nil nil)
84 (defalias 'cl-map-keymap 'map-keymap)
86 (autoload 'cl-map-keymap-recursively "cl-extra" "\
87 Not documented
89 \(fn CL-FUNC-REC CL-MAP &optional CL-BASE)" nil nil)
91 (autoload 'cl-map-intervals "cl-extra" "\
92 Not documented
94 \(fn CL-FUNC &optional CL-WHAT CL-PROP CL-START CL-END)" nil nil)
96 (autoload 'cl-map-overlays "cl-extra" "\
97 Not documented
99 \(fn CL-FUNC &optional CL-BUFFER CL-START CL-END CL-ARG)" nil nil)
101 (autoload 'cl-set-frame-visible-p "cl-extra" "\
102 Not documented
104 \(fn FRAME VAL)" nil nil)
106 (autoload 'cl-progv-before "cl-extra" "\
107 Not documented
109 \(fn SYMS VALUES)" nil nil)
111 (autoload 'gcd "cl-extra" "\
112 Return the greatest common divisor of the arguments.
114 \(fn &rest ARGS)" nil nil)
116 (autoload 'lcm "cl-extra" "\
117 Return the least common multiple of the arguments.
119 \(fn &rest ARGS)" nil nil)
121 (autoload 'isqrt "cl-extra" "\
122 Return the integer square root of the argument.
124 \(fn X)" nil nil)
126 (autoload 'floor* "cl-extra" "\
127 Return a list of the floor of X and the fractional part of X.
128 With two arguments, return floor and remainder of their quotient.
130 \(fn X &optional Y)" nil nil)
132 (autoload 'ceiling* "cl-extra" "\
133 Return a list of the ceiling of X and the fractional part of X.
134 With two arguments, return ceiling and remainder of their quotient.
136 \(fn X &optional Y)" nil nil)
138 (autoload 'truncate* "cl-extra" "\
139 Return a list of the integer part of X and the fractional part of X.
140 With two arguments, return truncation and remainder of their quotient.
142 \(fn X &optional Y)" nil nil)
144 (autoload 'round* "cl-extra" "\
145 Return a list of X rounded to the nearest integer and the remainder.
146 With two arguments, return rounding and remainder of their quotient.
148 \(fn X &optional Y)" nil nil)
150 (autoload 'mod* "cl-extra" "\
151 The remainder of X divided by Y, with the same sign as Y.
153 \(fn X Y)" nil nil)
155 (autoload 'rem* "cl-extra" "\
156 The remainder of X divided by Y, with the same sign as X.
158 \(fn X Y)" nil nil)
160 (autoload 'signum "cl-extra" "\
161 Return 1 if X is positive, -1 if negative, 0 if zero.
163 \(fn X)" nil nil)
165 (autoload 'random* "cl-extra" "\
166 Return a random nonnegative number less than LIM, an integer or float.
167 Optional second arg STATE is a random-state object.
169 \(fn LIM &optional STATE)" nil nil)
171 (autoload 'make-random-state "cl-extra" "\
172 Return a copy of random-state STATE, or of `*random-state*' if omitted.
173 If STATE is t, return a new state object seeded from the time of day.
175 \(fn &optional STATE)" nil nil)
177 (autoload 'random-state-p "cl-extra" "\
178 Return t if OBJECT is a random-state object.
180 \(fn OBJECT)" nil nil)
182 (autoload 'cl-float-limits "cl-extra" "\
183 Not documented
185 \(fn)" nil nil)
187 (autoload 'subseq "cl-extra" "\
188 Return the subsequence of SEQ from START to END.
189 If END is omitted, it defaults to the length of the sequence.
190 If START or END is negative, it counts from the end.
192 \(fn SEQ START &optional END)" nil nil)
194 (autoload 'concatenate "cl-extra" "\
195 Concatenate, into a sequence of type TYPE, the argument SEQUENCEs.
197 \(fn TYPE SEQUENCE...)" nil nil)
199 (autoload 'revappend "cl-extra" "\
200 Equivalent to (append (reverse X) Y).
202 \(fn X Y)" nil nil)
204 (autoload 'nreconc "cl-extra" "\
205 Equivalent to (nconc (nreverse X) Y).
207 \(fn X Y)" nil nil)
209 (autoload 'list-length "cl-extra" "\
210 Return the length of list X. Return nil if list is circular.
212 \(fn X)" nil nil)
214 (autoload 'tailp "cl-extra" "\
215 Return true if SUBLIST is a tail of LIST.
217 \(fn SUBLIST LIST)" nil nil)
219 (autoload 'get* "cl-extra" "\
220 Return the value of SYMBOL's PROPNAME property, or DEFAULT if none.
222 \(fn SYMBOL PROPNAME &optional DEFAULT)" nil nil)
224 (autoload 'getf "cl-extra" "\
225 Search PROPLIST for property PROPNAME; return its value or DEFAULT.
226 PROPLIST is a list of the sort returned by `symbol-plist'.
228 \(fn PROPLIST PROPNAME &optional DEFAULT)" nil nil)
230 (autoload 'cl-set-getf "cl-extra" "\
231 Not documented
233 \(fn PLIST TAG VAL)" nil nil)
235 (autoload 'cl-do-remf "cl-extra" "\
236 Not documented
238 \(fn PLIST TAG)" nil nil)
240 (autoload 'cl-remprop "cl-extra" "\
241 Remove from SYMBOL's plist the property PROPNAME and its value.
243 \(fn SYMBOL PROPNAME)" nil nil)
245 (defalias 'remprop 'cl-remprop)
247 (defalias 'cl-gethash 'gethash)
249 (defalias 'cl-puthash 'puthash)
251 (defalias 'cl-remhash 'remhash)
253 (defalias 'cl-clrhash 'clrhash)
255 (defalias 'cl-maphash 'maphash)
257 (defalias 'cl-make-hash-table 'make-hash-table)
259 (defalias 'cl-hash-table-p 'hash-table-p)
261 (defalias 'cl-hash-table-count 'hash-table-count)
263 (autoload 'cl-macroexpand-all "cl-extra" "\
264 Expand all macro calls through a Lisp FORM.
265 This also does some trivial optimizations to make the form prettier.
267 \(fn FORM &optional ENV)" nil nil)
269 (autoload 'cl-prettyexpand "cl-extra" "\
270 Not documented
272 \(fn FORM &optional FULL)" nil nil)
274 ;;;***
276 ;;;### (autoloads (compiler-macroexpand define-compiler-macro assert
277 ;;;;;; check-type typep cl-struct-setf-expander defstruct define-modify-macro
278 ;;;;;; callf2 callf letf* letf rotatef shiftf remf cl-do-pop psetf
279 ;;;;;; setf get-setf-method defsetf define-setf-method declare the
280 ;;;;;; locally multiple-value-setq multiple-value-bind lexical-let*
281 ;;;;;; lexical-let symbol-macrolet macrolet labels flet progv psetq
282 ;;;;;; do-all-symbols do-symbols dotimes dolist do* do loop return-from
283 ;;;;;; return block etypecase typecase ecase case load-time-value
284 ;;;;;; eval-when destructuring-bind function* defmacro* defun* gentemp
285 ;;;;;; gensym) "cl-macs" "cl-macs.el" "db690711cf205074d21590cc64a26d89")
286 ;;; Generated autoloads from cl-macs.el
288 (autoload 'gensym "cl-macs" "\
289 Generate a new uninterned symbol.
290 The name is made by appending a number to PREFIX, default \"G\".
292 \(fn &optional PREFIX)" nil nil)
294 (autoload 'gentemp "cl-macs" "\
295 Generate a new interned symbol with a unique name.
296 The name is made by appending a number to PREFIX, default \"G\".
298 \(fn &optional PREFIX)" nil nil)
300 (autoload 'defun* "cl-macs" "\
301 Define NAME as a function.
302 Like normal `defun', except ARGLIST allows full Common Lisp conventions,
303 and BODY is implicitly surrounded by (block NAME ...).
305 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil (quote macro))
307 (autoload 'defmacro* "cl-macs" "\
308 Define NAME as a macro.
309 Like normal `defmacro', except ARGLIST allows full Common Lisp conventions,
310 and BODY is implicitly surrounded by (block NAME ...).
312 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil (quote macro))
314 (autoload 'function* "cl-macs" "\
315 Introduce a function.
316 Like normal `function', except that if argument is a lambda form,
317 its argument list allows full Common Lisp conventions.
319 \(fn FUNC)" nil (quote macro))
321 (autoload 'destructuring-bind "cl-macs" "\
322 Not documented
324 \(fn ARGS EXPR &rest BODY)" nil (quote macro))
326 (autoload 'eval-when "cl-macs" "\
327 Control when BODY is evaluated.
328 If `compile' is in WHEN, BODY is evaluated when compiled at top-level.
329 If `load' is in WHEN, BODY is evaluated when loaded after top-level compile.
330 If `eval' is in WHEN, BODY is evaluated when interpreted or at non-top-level.
332 \(fn (WHEN...) BODY...)" nil (quote macro))
334 (autoload 'load-time-value "cl-macs" "\
335 Like `progn', but evaluates the body at load time.
336 The result of the body appears to the compiler as a quoted constant.
338 \(fn FORM &optional READ-ONLY)" nil (quote macro))
340 (autoload 'case "cl-macs" "\
341 Eval EXPR and choose among clauses on that value.
342 Each clause looks like (KEYLIST BODY...). EXPR is evaluated and compared
343 against each key in each KEYLIST; the corresponding BODY is evaluated.
344 If no clause succeeds, case returns nil. A single atom may be used in
345 place of a KEYLIST of one atom. A KEYLIST of t or `otherwise' is
346 allowed only in the final clause, and matches if no other keys match.
347 Key values are compared by `eql'.
349 \(fn EXPR (KEYLIST BODY...)...)" nil (quote macro))
351 (autoload 'ecase "cl-macs" "\
352 Like `case', but error if no case fits.
353 `otherwise'-clauses are not allowed.
355 \(fn EXPR (KEYLIST BODY...)...)" nil (quote macro))
357 (autoload 'typecase "cl-macs" "\
358 Evals EXPR, chooses among clauses on that value.
359 Each clause looks like (TYPE BODY...). EXPR is evaluated and, if it
360 satisfies TYPE, the corresponding BODY is evaluated. If no clause succeeds,
361 typecase returns nil. A TYPE of t or `otherwise' is allowed only in the
362 final clause, and matches if no other keys match.
364 \(fn EXPR (TYPE BODY...)...)" nil (quote macro))
366 (autoload 'etypecase "cl-macs" "\
367 Like `typecase', but error if no case fits.
368 `otherwise'-clauses are not allowed.
370 \(fn EXPR (TYPE BODY...)...)" nil (quote macro))
372 (autoload 'block "cl-macs" "\
373 Define a lexically-scoped block named NAME.
374 NAME may be any symbol. Code inside the BODY forms can call `return-from'
375 to jump prematurely out of the block. This differs from `catch' and `throw'
376 in two respects: First, the NAME is an unevaluated symbol rather than a
377 quoted symbol or other form; and second, NAME is lexically rather than
378 dynamically scoped: Only references to it within BODY will work. These
379 references may appear inside macro expansions, but not inside functions
380 called from BODY.
382 \(fn NAME &rest BODY)" nil (quote macro))
384 (autoload 'return "cl-macs" "\
385 Return from the block named nil.
386 This is equivalent to `(return-from nil RESULT)'.
388 \(fn &optional RESULT)" nil (quote macro))
390 (autoload 'return-from "cl-macs" "\
391 Return from the block named NAME.
392 This jump out to the innermost enclosing `(block NAME ...)' form,
393 returning RESULT from that form (or nil if RESULT is omitted).
394 This is compatible with Common Lisp, but note that `defun' and
395 `defmacro' do not create implicit blocks as they do in Common Lisp.
397 \(fn NAME &optional RESULT)" nil (quote macro))
399 (autoload 'loop "cl-macs" "\
400 The Common Lisp `loop' macro.
401 Valid clauses are:
402 for VAR from/upfrom/downfrom NUM to/upto/downto/above/below NUM by NUM,
403 for VAR in LIST by FUNC, for VAR on LIST by FUNC, for VAR = INIT then EXPR,
404 for VAR across ARRAY, repeat NUM, with VAR = INIT, while COND, until COND,
405 always COND, never COND, thereis COND, collect EXPR into VAR,
406 append EXPR into VAR, nconc EXPR into VAR, sum EXPR into VAR,
407 count EXPR into VAR, maximize EXPR into VAR, minimize EXPR into VAR,
408 if COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
409 unless COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
410 do EXPRS..., initially EXPRS..., finally EXPRS..., return EXPR,
411 finally return EXPR, named NAME.
413 \(fn CLAUSE...)" nil (quote macro))
415 (autoload 'do "cl-macs" "\
416 The Common Lisp `do' loop.
418 \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil (quote macro))
420 (autoload 'do* "cl-macs" "\
421 The Common Lisp `do*' loop.
423 \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil (quote macro))
425 (autoload 'dolist "cl-macs" "\
426 Loop over a list.
427 Evaluate BODY with VAR bound to each `car' from LIST, in turn.
428 Then evaluate RESULT to get return value, default nil.
430 \(fn (VAR LIST [RESULT]) BODY...)" nil (quote macro))
432 (autoload 'dotimes "cl-macs" "\
433 Loop a certain number of times.
434 Evaluate BODY with VAR bound to successive integers from 0, inclusive,
435 to COUNT, exclusive. Then evaluate RESULT to get return value, default
436 nil.
438 \(fn (VAR COUNT [RESULT]) BODY...)" nil (quote macro))
440 (autoload 'do-symbols "cl-macs" "\
441 Loop over all symbols.
442 Evaluate BODY with VAR bound to each interned symbol, or to each symbol
443 from OBARRAY.
445 \(fn (VAR [OBARRAY [RESULT]]) BODY...)" nil (quote macro))
447 (autoload 'do-all-symbols "cl-macs" "\
448 Not documented
450 \(fn SPEC &rest BODY)" nil (quote macro))
452 (autoload 'psetq "cl-macs" "\
453 Set SYMs to the values VALs in parallel.
454 This is like `setq', except that all VAL forms are evaluated (in order)
455 before assigning any symbols SYM to the corresponding values.
457 \(fn SYM VAL SYM VAL ...)" nil (quote macro))
459 (autoload 'progv "cl-macs" "\
460 Bind SYMBOLS to VALUES dynamically in BODY.
461 The forms SYMBOLS and VALUES are evaluated, and must evaluate to lists.
462 Each symbol in the first list is bound to the corresponding value in the
463 second list (or made unbound if VALUES is shorter than SYMBOLS); then the
464 BODY forms are executed and their result is returned. This is much like
465 a `let' form, except that the list of symbols can be computed at run-time.
467 \(fn SYMBOLS VALUES &rest BODY)" nil (quote macro))
469 (autoload 'flet "cl-macs" "\
470 Make temporary function definitions.
471 This is an analogue of `let' that operates on the function cell of FUNC
472 rather than its value cell. The FORMs are evaluated with the specified
473 function definitions in place, then the definitions are undone (the FUNCs
474 go back to their previous definitions, or lack thereof).
476 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil (quote macro))
478 (autoload 'labels "cl-macs" "\
479 Make temporary function bindings.
480 This is like `flet', except the bindings are lexical instead of dynamic.
481 Unlike `flet', this macro is fully compliant with the Common Lisp standard.
483 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil (quote macro))
485 (autoload 'macrolet "cl-macs" "\
486 Make temporary macro definitions.
487 This is like `flet', but for macros instead of functions.
489 \(fn ((NAME ARGLIST BODY...) ...) FORM...)" nil (quote macro))
491 (autoload 'symbol-macrolet "cl-macs" "\
492 Make symbol macro definitions.
493 Within the body FORMs, references to the variable NAME will be replaced
494 by EXPANSION, and (setq NAME ...) will act like (setf EXPANSION ...).
496 \(fn ((NAME EXPANSION) ...) FORM...)" nil (quote macro))
498 (autoload 'lexical-let "cl-macs" "\
499 Like `let', but lexically scoped.
500 The main visible difference is that lambdas inside BODY will create
501 lexical closures as in Common Lisp.
503 \(fn VARLIST BODY)" nil (quote macro))
505 (autoload 'lexical-let* "cl-macs" "\
506 Like `let*', but lexically scoped.
507 The main visible difference is that lambdas inside BODY will create
508 lexical closures as in Common Lisp.
510 \(fn VARLIST BODY)" nil (quote macro))
512 (autoload 'multiple-value-bind "cl-macs" "\
513 Collect multiple return values.
514 FORM must return a list; the BODY is then executed with the first N elements
515 of this list bound (`let'-style) to each of the symbols SYM in turn. This
516 is analogous to the Common Lisp `multiple-value-bind' macro, using lists to
517 simulate true multiple return values. For compatibility, (values A B C) is
518 a synonym for (list A B C).
520 \(fn (SYM...) FORM BODY)" nil (quote macro))
522 (autoload 'multiple-value-setq "cl-macs" "\
523 Collect multiple return values.
524 FORM must return a list; the first N elements of this list are stored in
525 each of the symbols SYM in turn. This is analogous to the Common Lisp
526 `multiple-value-setq' macro, using lists to simulate true multiple return
527 values. For compatibility, (values A B C) is a synonym for (list A B C).
529 \(fn (SYM...) FORM)" nil (quote macro))
531 (autoload 'locally "cl-macs" "\
532 Not documented
534 \(fn &rest BODY)" nil (quote macro))
536 (autoload 'the "cl-macs" "\
537 Not documented
539 \(fn TYPE FORM)" nil (quote macro))
541 (autoload 'declare "cl-macs" "\
542 Not documented
544 \(fn &rest SPECS)" nil (quote macro))
546 (autoload 'define-setf-method "cl-macs" "\
547 Define a `setf' method.
548 This method shows how to handle `setf's to places of the form (NAME ARGS...).
549 The argument forms ARGS are bound according to ARGLIST, as if NAME were
550 going to be expanded as a macro, then the BODY forms are executed and must
551 return a list of five elements: a temporary-variables list, a value-forms
552 list, a store-variables list (of length one), a store-form, and an access-
553 form. See `defsetf' for a simpler way to define most setf-methods.
555 \(fn NAME ARGLIST BODY...)" nil (quote macro))
557 (autoload 'defsetf "cl-macs" "\
558 Define a `setf' method.
559 This macro is an easy-to-use substitute for `define-setf-method' that works
560 well for simple place forms. In the simple `defsetf' form, `setf's of
561 the form (setf (NAME ARGS...) VAL) are transformed to function or macro
562 calls of the form (FUNC ARGS... VAL). Example:
564 (defsetf aref aset)
566 Alternate form: (defsetf NAME ARGLIST (STORE) BODY...).
567 Here, the above `setf' call is expanded by binding the argument forms ARGS
568 according to ARGLIST, binding the value form VAL to STORE, then executing
569 BODY, which must return a Lisp form that does the necessary `setf' operation.
570 Actually, ARGLIST and STORE may be bound to temporary variables which are
571 introduced automatically to preserve proper execution order of the arguments.
572 Example:
574 (defsetf nth (n x) (v) (list 'setcar (list 'nthcdr n x) v))
576 \(fn NAME [FUNC | ARGLIST (STORE) BODY...])" nil (quote macro))
578 (autoload 'get-setf-method "cl-macs" "\
579 Return a list of five values describing the setf-method for PLACE.
580 PLACE may be any Lisp form which can appear as the PLACE argument to
581 a macro like `setf' or `incf'.
583 \(fn PLACE &optional ENV)" nil nil)
585 (autoload 'setf "cl-macs" "\
586 Set each PLACE to the value of its VAL.
587 This is a generalized version of `setq'; the PLACEs may be symbolic
588 references such as (car x) or (aref x i), as well as plain symbols.
589 For example, (setf (cadar x) y) is equivalent to (setcar (cdar x) y).
590 The return value is the last VAL in the list.
592 \(fn PLACE VAL PLACE VAL ...)" nil (quote macro))
594 (autoload 'psetf "cl-macs" "\
595 Set PLACEs to the values VALs in parallel.
596 This is like `setf', except that all VAL forms are evaluated (in order)
597 before assigning any PLACEs to the corresponding values.
599 \(fn PLACE VAL PLACE VAL ...)" nil (quote macro))
601 (autoload 'cl-do-pop "cl-macs" "\
602 Not documented
604 \(fn PLACE)" nil nil)
606 (autoload 'remf "cl-macs" "\
607 Remove TAG from property list PLACE.
608 PLACE may be a symbol, or any generalized variable allowed by `setf'.
609 The form returns true if TAG was found and removed, nil otherwise.
611 \(fn PLACE TAG)" nil (quote macro))
613 (autoload 'shiftf "cl-macs" "\
614 Shift left among PLACEs.
615 Example: (shiftf A B C) sets A to B, B to C, and returns the old A.
616 Each PLACE may be a symbol, or any generalized variable allowed by `setf'.
618 \(fn PLACE... VAL)" nil (quote macro))
620 (autoload 'rotatef "cl-macs" "\
621 Rotate left among PLACEs.
622 Example: (rotatef A B C) sets A to B, B to C, and C to A. It returns nil.
623 Each PLACE may be a symbol, or any generalized variable allowed by `setf'.
625 \(fn PLACE...)" nil (quote macro))
627 (autoload 'letf "cl-macs" "\
628 Temporarily bind to PLACEs.
629 This is the analogue of `let', but with generalized variables (in the
630 sense of `setf') for the PLACEs. Each PLACE is set to the corresponding
631 VALUE, then the BODY forms are executed. On exit, either normally or
632 because of a `throw' or error, the PLACEs are set back to their original
633 values. Note that this macro is *not* available in Common Lisp.
634 As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
635 the PLACE is not modified before executing BODY.
637 \(fn ((PLACE VALUE) ...) BODY...)" nil (quote macro))
639 (autoload 'letf* "cl-macs" "\
640 Temporarily bind to PLACEs.
641 This is the analogue of `let*', but with generalized variables (in the
642 sense of `setf') for the PLACEs. Each PLACE is set to the corresponding
643 VALUE, then the BODY forms are executed. On exit, either normally or
644 because of a `throw' or error, the PLACEs are set back to their original
645 values. Note that this macro is *not* available in Common Lisp.
646 As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
647 the PLACE is not modified before executing BODY.
649 \(fn ((PLACE VALUE) ...) BODY...)" nil (quote macro))
651 (autoload 'callf "cl-macs" "\
652 Set PLACE to (FUNC PLACE ARGS...).
653 FUNC should be an unquoted function name. PLACE may be a symbol,
654 or any generalized variable allowed by `setf'.
656 \(fn FUNC PLACE ARGS...)" nil (quote macro))
658 (autoload 'callf2 "cl-macs" "\
659 Set PLACE to (FUNC ARG1 PLACE ARGS...).
660 Like `callf', but PLACE is the second argument of FUNC, not the first.
662 \(fn FUNC ARG1 PLACE ARGS...)" nil (quote macro))
664 (autoload 'define-modify-macro "cl-macs" "\
665 Define a `setf'-like modify macro.
666 If NAME is called, it combines its PLACE argument with the other arguments
667 from ARGLIST using FUNC: (define-modify-macro incf (&optional (n 1)) +)
669 \(fn NAME ARGLIST FUNC &optional DOC)" nil (quote macro))
671 (autoload 'defstruct "cl-macs" "\
672 Define a struct type.
673 This macro defines a new Lisp data type called NAME, which contains data
674 stored in SLOTs. This defines a `make-NAME' constructor, a `copy-NAME'
675 copier, a `NAME-p' predicate, and setf-able `NAME-SLOT' accessors.
677 \(fn (NAME OPTIONS...) (SLOT SLOT-OPTS...)...)" nil (quote macro))
679 (autoload 'cl-struct-setf-expander "cl-macs" "\
680 Not documented
682 \(fn X NAME ACCESSOR PRED-FORM POS)" nil nil)
684 (autoload 'typep "cl-macs" "\
685 Check that OBJECT is of type TYPE.
686 TYPE is a Common Lisp-style type specifier.
688 \(fn OBJECT TYPE)" nil nil)
690 (autoload 'check-type "cl-macs" "\
691 Verify that FORM is of type TYPE; signal an error if not.
692 STRING is an optional description of the desired type.
694 \(fn FORM TYPE &optional STRING)" nil (quote macro))
696 (autoload 'assert "cl-macs" "\
697 Verify that FORM returns non-nil; signal an error if not.
698 Second arg SHOW-ARGS means to include arguments of FORM in message.
699 Other args STRING and ARGS... are arguments to be passed to `error'.
700 They are not evaluated unless the assertion fails. If STRING is
701 omitted, a default message listing FORM itself is used.
703 \(fn FORM &optional SHOW-ARGS STRING &rest ARGS)" nil (quote macro))
705 (autoload 'define-compiler-macro "cl-macs" "\
706 Define a compiler-only macro.
707 This is like `defmacro', but macro expansion occurs only if the call to
708 FUNC is compiled (i.e., not interpreted). Compiler macros should be used
709 for optimizing the way calls to FUNC are compiled; the form returned by
710 BODY should do the same thing as a call to the normal function called
711 FUNC, though possibly more efficiently. Note that, like regular macros,
712 compiler macros are expanded repeatedly until no further expansions are
713 possible. Unlike regular macros, BODY can decide to \"punt\" and leave the
714 original function call alone by declaring an initial `&whole foo' parameter
715 and then returning foo.
717 \(fn FUNC ARGS &rest BODY)" nil (quote macro))
719 (autoload 'compiler-macroexpand "cl-macs" "\
720 Not documented
722 \(fn FORM)" nil nil)
724 ;;;***
726 ;;;### (autoloads (tree-equal nsublis sublis nsubst-if-not nsubst-if
727 ;;;;;; nsubst subst-if-not subst-if subsetp nset-exclusive-or set-exclusive-or
728 ;;;;;; nset-difference set-difference nintersection intersection
729 ;;;;;; nunion union rassoc-if-not rassoc-if rassoc* assoc-if-not
730 ;;;;;; assoc-if assoc* cl-adjoin member-if-not member-if member*
731 ;;;;;; merge stable-sort sort* search mismatch count-if-not count-if
732 ;;;;;; count position-if-not position-if position find-if-not find-if
733 ;;;;;; find nsubstitute-if-not nsubstitute-if nsubstitute substitute-if-not
734 ;;;;;; substitute-if substitute delete-duplicates remove-duplicates
735 ;;;;;; delete-if-not delete-if delete* remove-if-not remove-if remove*
736 ;;;;;; replace fill reduce) "cl-seq" "cl-seq.el" "50e97e33d680423c1a09239e41c42e3e")
737 ;;; Generated autoloads from cl-seq.el
739 (autoload 'reduce "cl-seq" "\
740 Reduce two-argument FUNCTION across SEQ.
742 Keywords supported: :start :end :from-end :initial-value :key
744 \(fn FUNCTION SEQ [KEYWORD VALUE]...)" nil nil)
746 (autoload 'fill "cl-seq" "\
747 Fill the elements of SEQ with ITEM.
749 Keywords supported: :start :end
751 \(fn SEQ ITEM [KEYWORD VALUE]...)" nil nil)
753 (autoload 'replace "cl-seq" "\
754 Replace the elements of SEQ1 with the elements of SEQ2.
755 SEQ1 is destructively modified, then returned.
757 Keywords supported: :start1 :end1 :start2 :end2
759 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
761 (autoload 'remove* "cl-seq" "\
762 Remove all occurrences of ITEM in SEQ.
763 This is a non-destructive function; it makes a copy of SEQ if necessary
764 to avoid corrupting the original SEQ.
766 Keywords supported: :test :test-not :key :count :start :end :from-end
768 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
770 (autoload 'remove-if "cl-seq" "\
771 Remove all items satisfying PREDICATE in SEQ.
772 This is a non-destructive function; it makes a copy of SEQ if necessary
773 to avoid corrupting the original SEQ.
775 Keywords supported: :key :count :start :end :from-end
777 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
779 (autoload 'remove-if-not "cl-seq" "\
780 Remove all items not satisfying PREDICATE in SEQ.
781 This is a non-destructive function; it makes a copy of SEQ if necessary
782 to avoid corrupting the original SEQ.
784 Keywords supported: :key :count :start :end :from-end
786 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
788 (autoload 'delete* "cl-seq" "\
789 Remove all occurrences of ITEM in SEQ.
790 This is a destructive function; it reuses the storage of SEQ whenever possible.
792 Keywords supported: :test :test-not :key :count :start :end :from-end
794 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
796 (autoload 'delete-if "cl-seq" "\
797 Remove all items satisfying PREDICATE in SEQ.
798 This is a destructive function; it reuses the storage of SEQ whenever possible.
800 Keywords supported: :key :count :start :end :from-end
802 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
804 (autoload 'delete-if-not "cl-seq" "\
805 Remove all items not satisfying PREDICATE in SEQ.
806 This is a destructive function; it reuses the storage of SEQ whenever possible.
808 Keywords supported: :key :count :start :end :from-end
810 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
812 (autoload 'remove-duplicates "cl-seq" "\
813 Return a copy of SEQ with all duplicate elements removed.
815 Keywords supported: :test :test-not :key :start :end :from-end
817 \(fn SEQ [KEYWORD VALUE]...)" nil nil)
819 (autoload 'delete-duplicates "cl-seq" "\
820 Remove all duplicate elements from SEQ (destructively).
822 Keywords supported: :test :test-not :key :start :end :from-end
824 \(fn SEQ [KEYWORD VALUE]...)" nil nil)
826 (autoload 'substitute "cl-seq" "\
827 Substitute NEW for OLD in SEQ.
828 This is a non-destructive function; it makes a copy of SEQ if necessary
829 to avoid corrupting the original SEQ.
831 Keywords supported: :test :test-not :key :count :start :end :from-end
833 \(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)
835 (autoload 'substitute-if "cl-seq" "\
836 Substitute NEW for all items satisfying PREDICATE in SEQ.
837 This is a non-destructive function; it makes a copy of SEQ if necessary
838 to avoid corrupting the original SEQ.
840 Keywords supported: :key :count :start :end :from-end
842 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
844 (autoload 'substitute-if-not "cl-seq" "\
845 Substitute NEW for all items not satisfying PREDICATE in SEQ.
846 This is a non-destructive function; it makes a copy of SEQ if necessary
847 to avoid corrupting the original SEQ.
849 Keywords supported: :key :count :start :end :from-end
851 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
853 (autoload 'nsubstitute "cl-seq" "\
854 Substitute NEW for OLD in SEQ.
855 This is a destructive function; it reuses the storage of SEQ whenever possible.
857 Keywords supported: :test :test-not :key :count :start :end :from-end
859 \(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)
861 (autoload 'nsubstitute-if "cl-seq" "\
862 Substitute NEW for all items satisfying PREDICATE in SEQ.
863 This is a destructive function; it reuses the storage of SEQ whenever possible.
865 Keywords supported: :key :count :start :end :from-end
867 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
869 (autoload 'nsubstitute-if-not "cl-seq" "\
870 Substitute NEW for all items not satisfying PREDICATE in SEQ.
871 This is a destructive function; it reuses the storage of SEQ whenever possible.
873 Keywords supported: :key :count :start :end :from-end
875 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
877 (autoload 'find "cl-seq" "\
878 Find the first occurrence of ITEM in SEQ.
879 Return the matching ITEM, or nil if not found.
881 Keywords supported: :test :test-not :key :start :end :from-end
883 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
885 (autoload 'find-if "cl-seq" "\
886 Find the first item satisfying PREDICATE in SEQ.
887 Return the matching item, or nil if not found.
889 Keywords supported: :key :start :end :from-end
891 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
893 (autoload 'find-if-not "cl-seq" "\
894 Find the first item not satisfying PREDICATE in SEQ.
895 Return the matching item, or nil if not found.
897 Keywords supported: :key :start :end :from-end
899 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
901 (autoload 'position "cl-seq" "\
902 Find the first occurrence of ITEM in SEQ.
903 Return the index of the matching item, or nil if not found.
905 Keywords supported: :test :test-not :key :start :end :from-end
907 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
909 (autoload 'position-if "cl-seq" "\
910 Find the first item satisfying PREDICATE in SEQ.
911 Return the index of the matching item, or nil if not found.
913 Keywords supported: :key :start :end :from-end
915 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
917 (autoload 'position-if-not "cl-seq" "\
918 Find the first item not satisfying PREDICATE in SEQ.
919 Return the index of the matching item, or nil if not found.
921 Keywords supported: :key :start :end :from-end
923 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
925 (autoload 'count "cl-seq" "\
926 Count the number of occurrences of ITEM in SEQ.
928 Keywords supported: :test :test-not :key :start :end
930 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
932 (autoload 'count-if "cl-seq" "\
933 Count the number of items satisfying PREDICATE in SEQ.
935 Keywords supported: :key :start :end
937 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
939 (autoload 'count-if-not "cl-seq" "\
940 Count the number of items not satisfying PREDICATE in SEQ.
942 Keywords supported: :key :start :end
944 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
946 (autoload 'mismatch "cl-seq" "\
947 Compare SEQ1 with SEQ2, return index of first mismatching element.
948 Return nil if the sequences match. If one sequence is a prefix of the
949 other, the return value indicates the end of the shorter sequence.
951 Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
953 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
955 (autoload 'search "cl-seq" "\
956 Search for SEQ1 as a subsequence of SEQ2.
957 Return the index of the leftmost element of the first match found;
958 return nil if there are no matches.
960 Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
962 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
964 (autoload 'sort* "cl-seq" "\
965 Sort the argument SEQ according to PREDICATE.
966 This is a destructive function; it reuses the storage of SEQ if possible.
968 Keywords supported: :key
970 \(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)
972 (autoload 'stable-sort "cl-seq" "\
973 Sort the argument SEQ stably according to PREDICATE.
974 This is a destructive function; it reuses the storage of SEQ if possible.
976 Keywords supported: :key
978 \(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)
980 (autoload 'merge "cl-seq" "\
981 Destructively merge the two sequences to produce a new sequence.
982 TYPE is the sequence type to return, SEQ1 and SEQ2 are the two argument
983 sequences, and PREDICATE is a `less-than' predicate on the elements.
985 Keywords supported: :key
987 \(fn TYPE SEQ1 SEQ2 PREDICATE [KEYWORD VALUE]...)" nil nil)
989 (autoload 'member* "cl-seq" "\
990 Find the first occurrence of ITEM in LIST.
991 Return the sublist of LIST whose car is ITEM.
993 Keywords supported: :test :test-not :key
995 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
997 (autoload 'member-if "cl-seq" "\
998 Find the first item satisfying PREDICATE in LIST.
999 Return the sublist of LIST whose car matches.
1001 Keywords supported: :key
1003 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1005 (autoload 'member-if-not "cl-seq" "\
1006 Find the first item not satisfying PREDICATE in LIST.
1007 Return the sublist of LIST whose car matches.
1009 Keywords supported: :key
1011 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1013 (autoload 'cl-adjoin "cl-seq" "\
1014 Not documented
1016 \(fn CL-ITEM CL-LIST &rest CL-KEYS)" nil nil)
1018 (autoload 'assoc* "cl-seq" "\
1019 Find the first item whose car matches ITEM in LIST.
1021 Keywords supported: :test :test-not :key
1023 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1025 (autoload 'assoc-if "cl-seq" "\
1026 Find the first item whose car satisfies PREDICATE in LIST.
1028 Keywords supported: :key
1030 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1032 (autoload 'assoc-if-not "cl-seq" "\
1033 Find the first item whose car does not satisfy PREDICATE in LIST.
1035 Keywords supported: :key
1037 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1039 (autoload 'rassoc* "cl-seq" "\
1040 Find the first item whose cdr matches ITEM in LIST.
1042 Keywords supported: :test :test-not :key
1044 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1046 (autoload 'rassoc-if "cl-seq" "\
1047 Find the first item whose cdr satisfies PREDICATE in LIST.
1049 Keywords supported: :key
1051 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1053 (autoload 'rassoc-if-not "cl-seq" "\
1054 Find the first item whose cdr does not satisfy PREDICATE in LIST.
1056 Keywords supported: :key
1058 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1060 (autoload 'union "cl-seq" "\
1061 Combine LIST1 and LIST2 using a set-union operation.
1062 The result list contains all items that appear in either LIST1 or LIST2.
1063 This is a non-destructive function; it makes a copy of the data if necessary
1064 to avoid corrupting the original LIST1 and LIST2.
1066 Keywords supported: :test :test-not :key
1068 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1070 (autoload 'nunion "cl-seq" "\
1071 Combine LIST1 and LIST2 using a set-union operation.
1072 The result list contains all items that appear in either LIST1 or LIST2.
1073 This is a destructive function; it reuses the storage of LIST1 and LIST2
1074 whenever possible.
1076 Keywords supported: :test :test-not :key
1078 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1080 (autoload 'intersection "cl-seq" "\
1081 Combine LIST1 and LIST2 using a set-intersection operation.
1082 The result list contains all items that appear in both LIST1 and LIST2.
1083 This is a non-destructive function; it makes a copy of the data if necessary
1084 to avoid corrupting the original LIST1 and LIST2.
1086 Keywords supported: :test :test-not :key
1088 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1090 (autoload 'nintersection "cl-seq" "\
1091 Combine LIST1 and LIST2 using a set-intersection operation.
1092 The result list contains all items that appear in both LIST1 and LIST2.
1093 This is a destructive function; it reuses the storage of LIST1 and LIST2
1094 whenever possible.
1096 Keywords supported: :test :test-not :key
1098 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1100 (autoload 'set-difference "cl-seq" "\
1101 Combine LIST1 and LIST2 using a set-difference operation.
1102 The result list contains all items that appear in LIST1 but not LIST2.
1103 This is a non-destructive function; it makes a copy of the data if necessary
1104 to avoid corrupting the original LIST1 and LIST2.
1106 Keywords supported: :test :test-not :key
1108 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1110 (autoload 'nset-difference "cl-seq" "\
1111 Combine LIST1 and LIST2 using a set-difference operation.
1112 The result list contains all items that appear in LIST1 but not LIST2.
1113 This is a destructive function; it reuses the storage of LIST1 and LIST2
1114 whenever possible.
1116 Keywords supported: :test :test-not :key
1118 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1120 (autoload 'set-exclusive-or "cl-seq" "\
1121 Combine LIST1 and LIST2 using a set-exclusive-or operation.
1122 The result list contains all items that appear in exactly one of LIST1, LIST2.
1123 This is a non-destructive function; it makes a copy of the data if necessary
1124 to avoid corrupting the original LIST1 and LIST2.
1126 Keywords supported: :test :test-not :key
1128 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1130 (autoload 'nset-exclusive-or "cl-seq" "\
1131 Combine LIST1 and LIST2 using a set-exclusive-or operation.
1132 The result list contains all items that appear in exactly one of LIST1, LIST2.
1133 This is a destructive function; it reuses the storage of LIST1 and LIST2
1134 whenever possible.
1136 Keywords supported: :test :test-not :key
1138 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1140 (autoload 'subsetp "cl-seq" "\
1141 Return true if LIST1 is a subset of LIST2.
1142 I.e., if every element of LIST1 also appears in LIST2.
1144 Keywords supported: :test :test-not :key
1146 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1148 (autoload 'subst-if "cl-seq" "\
1149 Substitute NEW for elements matching PREDICATE in TREE (non-destructively).
1150 Return a copy of TREE with all matching elements replaced by NEW.
1152 Keywords supported: :key
1154 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1156 (autoload 'subst-if-not "cl-seq" "\
1157 Substitute NEW for elts not matching PREDICATE in TREE (non-destructively).
1158 Return a copy of TREE with all non-matching elements replaced by NEW.
1160 Keywords supported: :key
1162 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1164 (autoload 'nsubst "cl-seq" "\
1165 Substitute NEW for OLD everywhere in TREE (destructively).
1166 Any element of TREE which is `eql' to OLD is changed to NEW (via a call
1167 to `setcar').
1169 Keywords supported: :test :test-not :key
1171 \(fn NEW OLD TREE [KEYWORD VALUE]...)" nil nil)
1173 (autoload 'nsubst-if "cl-seq" "\
1174 Substitute NEW for elements matching PREDICATE in TREE (destructively).
1175 Any element of TREE which matches is changed to NEW (via a call to `setcar').
1177 Keywords supported: :key
1179 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1181 (autoload 'nsubst-if-not "cl-seq" "\
1182 Substitute NEW for elements not matching PREDICATE in TREE (destructively).
1183 Any element of TREE which matches is changed to NEW (via a call to `setcar').
1185 Keywords supported: :key
1187 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1189 (autoload 'sublis "cl-seq" "\
1190 Perform substitutions indicated by ALIST in TREE (non-destructively).
1191 Return a copy of TREE with all matching elements replaced.
1193 Keywords supported: :test :test-not :key
1195 \(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)
1197 (autoload 'nsublis "cl-seq" "\
1198 Perform substitutions indicated by ALIST in TREE (destructively).
1199 Any matching element of TREE is changed via a call to `setcar'.
1201 Keywords supported: :test :test-not :key
1203 \(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)
1205 (autoload 'tree-equal "cl-seq" "\
1206 Return t if trees TREE1 and TREE2 have `eql' leaves.
1207 Atoms are compared by `eql'; cons cells are compared recursively.
1209 Keywords supported: :test :test-not :key
1211 \(fn TREE1 TREE2 [KEYWORD VALUE]...)" nil nil)
1213 ;;;***
1215 ;; Local Variables:
1216 ;; version-control: never
1217 ;; no-byte-compile: t
1218 ;; no-update-autoloads: t
1219 ;; End:
1221 ;; arch-tag: 08cc5aab-e992-47f6-992e-12a7428c1a0e
1222 ;;; cl-loaddefs.el ends here