Add "Package:" file headers to denote built-in packages.
[emacs.git] / lisp / emacs-lisp / cl-loaddefs.el
blob98b3c8e52e091b8eb0d790feee702b675995fc3b
1 ;;; cl-loaddefs.el --- automatically extracted autoloads
2 ;;
3 ;;; Code:
5 \f
6 ;;;### (autoloads (cl-prettyexpand cl-macroexpand-all cl-remprop
7 ;;;;;; cl-do-remf cl-set-getf getf get* tailp list-length nreconc
8 ;;;;;; revappend concatenate subseq cl-float-limits random-state-p
9 ;;;;;; make-random-state random* signum rem* mod* round* truncate*
10 ;;;;;; ceiling* floor* isqrt lcm gcd cl-progv-before cl-set-frame-visible-p
11 ;;;;;; cl-map-overlays cl-map-intervals cl-map-keymap-recursively
12 ;;;;;; notevery notany every some mapcon mapcan mapl maplist map
13 ;;;;;; cl-mapcar-many equalp coerce) "cl-extra" "cl-extra.el" "20c8c875ff1d11dd819e15a1f25afd73")
14 ;;; Generated autoloads from cl-extra.el
16 (autoload 'coerce "cl-extra" "\
17 Coerce OBJECT to type TYPE.
18 TYPE is a Common Lisp type specifier.
20 \(fn OBJECT TYPE)" nil nil)
22 (autoload 'equalp "cl-extra" "\
23 Return t if two Lisp objects have similar structures and contents.
24 This is like `equal', except that it accepts numerically equal
25 numbers of different types (float vs. integer), and also compares
26 strings case-insensitively.
28 \(fn X Y)" nil nil)
30 (autoload 'cl-mapcar-many "cl-extra" "\
31 Not documented
33 \(fn CL-FUNC CL-SEQS)" nil nil)
35 (autoload 'map "cl-extra" "\
36 Map a FUNCTION across one or more SEQUENCEs, returning a sequence.
37 TYPE is the sequence type to return.
39 \(fn TYPE FUNCTION SEQUENCE...)" nil nil)
41 (autoload 'maplist "cl-extra" "\
42 Map FUNCTION to each sublist of LIST or LISTs.
43 Like `mapcar', except applies to lists and their cdr's rather than to
44 the elements themselves.
46 \(fn FUNCTION LIST...)" nil nil)
48 (autoload 'mapl "cl-extra" "\
49 Like `maplist', but does not accumulate values returned by the function.
51 \(fn FUNCTION LIST...)" nil nil)
53 (autoload 'mapcan "cl-extra" "\
54 Like `mapcar', but nconc's together the values returned by the function.
56 \(fn FUNCTION SEQUENCE...)" nil nil)
58 (autoload 'mapcon "cl-extra" "\
59 Like `maplist', but nconc's together the values returned by the function.
61 \(fn FUNCTION LIST...)" nil nil)
63 (autoload 'some "cl-extra" "\
64 Return true if PREDICATE is true of any element of SEQ or SEQs.
65 If so, return the true (non-nil) value returned by PREDICATE.
67 \(fn PREDICATE SEQ...)" nil nil)
69 (autoload 'every "cl-extra" "\
70 Return true if PREDICATE is true of every element of SEQ or SEQs.
72 \(fn PREDICATE SEQ...)" nil nil)
74 (autoload 'notany "cl-extra" "\
75 Return true if PREDICATE is false of every element of SEQ or SEQs.
77 \(fn PREDICATE SEQ...)" nil nil)
79 (autoload 'notevery "cl-extra" "\
80 Return true if PREDICATE is false of some element of SEQ or SEQs.
82 \(fn PREDICATE SEQ...)" nil nil)
84 (defalias 'cl-map-keymap 'map-keymap)
86 (autoload 'cl-map-keymap-recursively "cl-extra" "\
87 Not documented
89 \(fn CL-FUNC-REC CL-MAP &optional CL-BASE)" nil nil)
91 (autoload 'cl-map-intervals "cl-extra" "\
92 Not documented
94 \(fn CL-FUNC &optional CL-WHAT CL-PROP CL-START CL-END)" nil nil)
96 (autoload 'cl-map-overlays "cl-extra" "\
97 Not documented
99 \(fn CL-FUNC &optional CL-BUFFER CL-START CL-END CL-ARG)" nil nil)
101 (autoload 'cl-set-frame-visible-p "cl-extra" "\
102 Not documented
104 \(fn FRAME VAL)" nil nil)
106 (autoload 'cl-progv-before "cl-extra" "\
107 Not documented
109 \(fn SYMS VALUES)" nil nil)
111 (autoload 'gcd "cl-extra" "\
112 Return the greatest common divisor of the arguments.
114 \(fn &rest ARGS)" nil nil)
116 (autoload 'lcm "cl-extra" "\
117 Return the least common multiple of the arguments.
119 \(fn &rest ARGS)" nil nil)
121 (autoload 'isqrt "cl-extra" "\
122 Return the integer square root of the argument.
124 \(fn X)" nil nil)
126 (autoload 'floor* "cl-extra" "\
127 Return a list of the floor of X and the fractional part of X.
128 With two arguments, return floor and remainder of their quotient.
130 \(fn X &optional Y)" nil nil)
132 (autoload 'ceiling* "cl-extra" "\
133 Return a list of the ceiling of X and the fractional part of X.
134 With two arguments, return ceiling and remainder of their quotient.
136 \(fn X &optional Y)" nil nil)
138 (autoload 'truncate* "cl-extra" "\
139 Return a list of the integer part of X and the fractional part of X.
140 With two arguments, return truncation and remainder of their quotient.
142 \(fn X &optional Y)" nil nil)
144 (autoload 'round* "cl-extra" "\
145 Return a list of X rounded to the nearest integer and the remainder.
146 With two arguments, return rounding and remainder of their quotient.
148 \(fn X &optional Y)" nil nil)
150 (autoload 'mod* "cl-extra" "\
151 The remainder of X divided by Y, with the same sign as Y.
153 \(fn X Y)" nil nil)
155 (autoload 'rem* "cl-extra" "\
156 The remainder of X divided by Y, with the same sign as X.
158 \(fn X Y)" nil nil)
160 (autoload 'signum "cl-extra" "\
161 Return 1 if X is positive, -1 if negative, 0 if zero.
163 \(fn X)" nil nil)
165 (autoload 'random* "cl-extra" "\
166 Return a random nonnegative number less than LIM, an integer or float.
167 Optional second arg STATE is a random-state object.
169 \(fn LIM &optional STATE)" nil nil)
171 (autoload 'make-random-state "cl-extra" "\
172 Return a copy of random-state STATE, or of `*random-state*' if omitted.
173 If STATE is t, return a new state object seeded from the time of day.
175 \(fn &optional STATE)" nil nil)
177 (autoload 'random-state-p "cl-extra" "\
178 Return t if OBJECT is a random-state object.
180 \(fn OBJECT)" nil nil)
182 (autoload 'cl-float-limits "cl-extra" "\
183 Not documented
185 \(fn)" nil nil)
187 (autoload 'subseq "cl-extra" "\
188 Return the subsequence of SEQ from START to END.
189 If END is omitted, it defaults to the length of the sequence.
190 If START or END is negative, it counts from the end.
192 \(fn SEQ START &optional END)" nil nil)
194 (autoload 'concatenate "cl-extra" "\
195 Concatenate, into a sequence of type TYPE, the argument SEQUENCEs.
197 \(fn TYPE SEQUENCE...)" nil nil)
199 (autoload 'revappend "cl-extra" "\
200 Equivalent to (append (reverse X) Y).
202 \(fn X Y)" nil nil)
204 (autoload 'nreconc "cl-extra" "\
205 Equivalent to (nconc (nreverse X) Y).
207 \(fn X Y)" nil nil)
209 (autoload 'list-length "cl-extra" "\
210 Return the length of list X. Return nil if list is circular.
212 \(fn X)" nil nil)
214 (autoload 'tailp "cl-extra" "\
215 Return true if SUBLIST is a tail of LIST.
217 \(fn SUBLIST LIST)" nil nil)
219 (autoload 'get* "cl-extra" "\
220 Return the value of SYMBOL's PROPNAME property, or DEFAULT if none.
222 \(fn SYMBOL PROPNAME &optional DEFAULT)" nil nil)
224 (autoload 'getf "cl-extra" "\
225 Search PROPLIST for property PROPNAME; return its value or DEFAULT.
226 PROPLIST is a list of the sort returned by `symbol-plist'.
228 \(fn PROPLIST PROPNAME &optional DEFAULT)" nil nil)
230 (autoload 'cl-set-getf "cl-extra" "\
231 Not documented
233 \(fn PLIST TAG VAL)" nil nil)
235 (autoload 'cl-do-remf "cl-extra" "\
236 Not documented
238 \(fn PLIST TAG)" nil nil)
240 (autoload 'cl-remprop "cl-extra" "\
241 Remove from SYMBOL's plist the property PROPNAME and its value.
243 \(fn SYMBOL PROPNAME)" nil nil)
245 (defalias 'remprop 'cl-remprop)
247 (defalias 'cl-gethash 'gethash)
249 (defalias 'cl-puthash 'puthash)
251 (defalias 'cl-remhash 'remhash)
253 (defalias 'cl-clrhash 'clrhash)
255 (defalias 'cl-maphash 'maphash)
257 (defalias 'cl-make-hash-table 'make-hash-table)
259 (defalias 'cl-hash-table-p 'hash-table-p)
261 (defalias 'cl-hash-table-count 'hash-table-count)
263 (autoload 'cl-macroexpand-all "cl-extra" "\
264 Expand all macro calls through a Lisp FORM.
265 This also does some trivial optimizations to make the form prettier.
267 \(fn FORM &optional ENV)" nil nil)
269 (autoload 'cl-prettyexpand "cl-extra" "\
270 Not documented
272 \(fn FORM &optional FULL)" nil nil)
274 ;;;***
276 ;;;### (autoloads (defsubst* compiler-macroexpand define-compiler-macro
277 ;;;;;; assert check-type typep deftype cl-struct-setf-expander defstruct
278 ;;;;;; define-modify-macro callf2 callf letf* letf rotatef shiftf
279 ;;;;;; remf cl-do-pop psetf setf get-setf-method defsetf define-setf-method
280 ;;;;;; declare locally multiple-value-setq multiple-value-bind lexical-let*
281 ;;;;;; lexical-let symbol-macrolet macrolet labels flet progv psetq
282 ;;;;;; do-all-symbols do-symbols dotimes dolist do* do loop return-from
283 ;;;;;; return block etypecase typecase ecase case load-time-value
284 ;;;;;; eval-when destructuring-bind function* defmacro* defun* gentemp
285 ;;;;;; gensym) "cl-macs" "cl-macs.el" "c5a12d86541b5137054eccc43e4fc839")
286 ;;; Generated autoloads from cl-macs.el
288 (autoload 'gensym "cl-macs" "\
289 Generate a new uninterned symbol.
290 The name is made by appending a number to PREFIX, default \"G\".
292 \(fn &optional PREFIX)" nil nil)
294 (autoload 'gentemp "cl-macs" "\
295 Generate a new interned symbol with a unique name.
296 The name is made by appending a number to PREFIX, default \"G\".
298 \(fn &optional PREFIX)" nil nil)
300 (autoload 'defun* "cl-macs" "\
301 Define NAME as a function.
302 Like normal `defun', except ARGLIST allows full Common Lisp conventions,
303 and BODY is implicitly surrounded by (block NAME ...).
305 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil (quote macro))
307 (autoload 'defmacro* "cl-macs" "\
308 Define NAME as a macro.
309 Like normal `defmacro', except ARGLIST allows full Common Lisp conventions,
310 and BODY is implicitly surrounded by (block NAME ...).
312 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil (quote macro))
314 (autoload 'function* "cl-macs" "\
315 Introduce a function.
316 Like normal `function', except that if argument is a lambda form,
317 its argument list allows full Common Lisp conventions.
319 \(fn FUNC)" nil (quote macro))
321 (autoload 'destructuring-bind "cl-macs" "\
322 Not documented
324 \(fn ARGS EXPR &rest BODY)" nil (quote macro))
326 (autoload 'eval-when "cl-macs" "\
327 Control when BODY is evaluated.
328 If `compile' is in WHEN, BODY is evaluated when compiled at top-level.
329 If `load' is in WHEN, BODY is evaluated when loaded after top-level compile.
330 If `eval' is in WHEN, BODY is evaluated when interpreted or at non-top-level.
332 \(fn (WHEN...) BODY...)" nil (quote macro))
334 (autoload 'load-time-value "cl-macs" "\
335 Like `progn', but evaluates the body at load time.
336 The result of the body appears to the compiler as a quoted constant.
338 \(fn FORM &optional READ-ONLY)" nil (quote macro))
340 (autoload 'case "cl-macs" "\
341 Eval EXPR and choose among clauses on that value.
342 Each clause looks like (KEYLIST BODY...). EXPR is evaluated and compared
343 against each key in each KEYLIST; the corresponding BODY is evaluated.
344 If no clause succeeds, case returns nil. A single atom may be used in
345 place of a KEYLIST of one atom. A KEYLIST of t or `otherwise' is
346 allowed only in the final clause, and matches if no other keys match.
347 Key values are compared by `eql'.
349 \(fn EXPR (KEYLIST BODY...)...)" nil (quote macro))
351 (autoload 'ecase "cl-macs" "\
352 Like `case', but error if no case fits.
353 `otherwise'-clauses are not allowed.
355 \(fn EXPR (KEYLIST BODY...)...)" nil (quote macro))
357 (autoload 'typecase "cl-macs" "\
358 Evals EXPR, chooses among clauses on that value.
359 Each clause looks like (TYPE BODY...). EXPR is evaluated and, if it
360 satisfies TYPE, the corresponding BODY is evaluated. If no clause succeeds,
361 typecase returns nil. A TYPE of t or `otherwise' is allowed only in the
362 final clause, and matches if no other keys match.
364 \(fn EXPR (TYPE BODY...)...)" nil (quote macro))
366 (autoload 'etypecase "cl-macs" "\
367 Like `typecase', but error if no case fits.
368 `otherwise'-clauses are not allowed.
370 \(fn EXPR (TYPE BODY...)...)" nil (quote macro))
372 (autoload 'block "cl-macs" "\
373 Define a lexically-scoped block named NAME.
374 NAME may be any symbol. Code inside the BODY forms can call `return-from'
375 to jump prematurely out of the block. This differs from `catch' and `throw'
376 in two respects: First, the NAME is an unevaluated symbol rather than a
377 quoted symbol or other form; and second, NAME is lexically rather than
378 dynamically scoped: Only references to it within BODY will work. These
379 references may appear inside macro expansions, but not inside functions
380 called from BODY.
382 \(fn NAME &rest BODY)" nil (quote macro))
384 (autoload 'return "cl-macs" "\
385 Return from the block named nil.
386 This is equivalent to `(return-from nil RESULT)'.
388 \(fn &optional RESULT)" nil (quote macro))
390 (autoload 'return-from "cl-macs" "\
391 Return from the block named NAME.
392 This jump out to the innermost enclosing `(block NAME ...)' form,
393 returning RESULT from that form (or nil if RESULT is omitted).
394 This is compatible with Common Lisp, but note that `defun' and
395 `defmacro' do not create implicit blocks as they do in Common Lisp.
397 \(fn NAME &optional RESULT)" nil (quote macro))
399 (autoload 'loop "cl-macs" "\
400 The Common Lisp `loop' macro.
401 Valid clauses are:
402 for VAR from/upfrom/downfrom NUM to/upto/downto/above/below NUM by NUM,
403 for VAR in LIST by FUNC, for VAR on LIST by FUNC, for VAR = INIT then EXPR,
404 for VAR across ARRAY, repeat NUM, with VAR = INIT, while COND, until COND,
405 always COND, never COND, thereis COND, collect EXPR into VAR,
406 append EXPR into VAR, nconc EXPR into VAR, sum EXPR into VAR,
407 count EXPR into VAR, maximize EXPR into VAR, minimize EXPR into VAR,
408 if COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
409 unless COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
410 do EXPRS..., initially EXPRS..., finally EXPRS..., return EXPR,
411 finally return EXPR, named NAME.
413 \(fn CLAUSE...)" nil (quote macro))
415 (autoload 'do "cl-macs" "\
416 The Common Lisp `do' loop.
418 \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil (quote macro))
420 (autoload 'do* "cl-macs" "\
421 The Common Lisp `do*' loop.
423 \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil (quote macro))
425 (autoload 'dolist "cl-macs" "\
426 Loop over a list.
427 Evaluate BODY with VAR bound to each `car' from LIST, in turn.
428 Then evaluate RESULT to get return value, default nil.
430 \(fn (VAR LIST [RESULT]) BODY...)" nil (quote macro))
432 (autoload 'dotimes "cl-macs" "\
433 Loop a certain number of times.
434 Evaluate BODY with VAR bound to successive integers from 0, inclusive,
435 to COUNT, exclusive. Then evaluate RESULT to get return value, default
436 nil.
438 \(fn (VAR COUNT [RESULT]) BODY...)" nil (quote macro))
440 (autoload 'do-symbols "cl-macs" "\
441 Loop over all symbols.
442 Evaluate BODY with VAR bound to each interned symbol, or to each symbol
443 from OBARRAY.
445 \(fn (VAR [OBARRAY [RESULT]]) BODY...)" nil (quote macro))
447 (autoload 'do-all-symbols "cl-macs" "\
448 Not documented
450 \(fn SPEC &rest BODY)" nil (quote macro))
452 (autoload 'psetq "cl-macs" "\
453 Set SYMs to the values VALs in parallel.
454 This is like `setq', except that all VAL forms are evaluated (in order)
455 before assigning any symbols SYM to the corresponding values.
457 \(fn SYM VAL SYM VAL ...)" nil (quote macro))
459 (autoload 'progv "cl-macs" "\
460 Bind SYMBOLS to VALUES dynamically in BODY.
461 The forms SYMBOLS and VALUES are evaluated, and must evaluate to lists.
462 Each symbol in the first list is bound to the corresponding value in the
463 second list (or made unbound if VALUES is shorter than SYMBOLS); then the
464 BODY forms are executed and their result is returned. This is much like
465 a `let' form, except that the list of symbols can be computed at run-time.
467 \(fn SYMBOLS VALUES &rest BODY)" nil (quote macro))
469 (autoload 'flet "cl-macs" "\
470 Make temporary function definitions.
471 This is an analogue of `let' that operates on the function cell of FUNC
472 rather than its value cell. The FORMs are evaluated with the specified
473 function definitions in place, then the definitions are undone (the FUNCs
474 go back to their previous definitions, or lack thereof).
476 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil (quote macro))
478 (autoload 'labels "cl-macs" "\
479 Make temporary function bindings.
480 This is like `flet', except the bindings are lexical instead of dynamic.
481 Unlike `flet', this macro is fully compliant with the Common Lisp standard.
483 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil (quote macro))
485 (autoload 'macrolet "cl-macs" "\
486 Make temporary macro definitions.
487 This is like `flet', but for macros instead of functions.
489 \(fn ((NAME ARGLIST BODY...) ...) FORM...)" nil (quote macro))
491 (autoload 'symbol-macrolet "cl-macs" "\
492 Make symbol macro definitions.
493 Within the body FORMs, references to the variable NAME will be replaced
494 by EXPANSION, and (setq NAME ...) will act like (setf EXPANSION ...).
496 \(fn ((NAME EXPANSION) ...) FORM...)" nil (quote macro))
498 (autoload 'lexical-let "cl-macs" "\
499 Like `let', but lexically scoped.
500 The main visible difference is that lambdas inside BODY will create
501 lexical closures as in Common Lisp.
503 \(fn VARLIST BODY)" nil (quote macro))
505 (autoload 'lexical-let* "cl-macs" "\
506 Like `let*', but lexically scoped.
507 The main visible difference is that lambdas inside BODY, and in
508 successive bindings within BINDINGS, will create lexical closures
509 as in Common Lisp. This is similar to the behavior of `let*' in
510 Common Lisp.
512 \(fn VARLIST BODY)" nil (quote macro))
514 (autoload 'multiple-value-bind "cl-macs" "\
515 Collect multiple return values.
516 FORM must return a list; the BODY is then executed with the first N elements
517 of this list bound (`let'-style) to each of the symbols SYM in turn. This
518 is analogous to the Common Lisp `multiple-value-bind' macro, using lists to
519 simulate true multiple return values. For compatibility, (values A B C) is
520 a synonym for (list A B C).
522 \(fn (SYM...) FORM BODY)" nil (quote macro))
524 (autoload 'multiple-value-setq "cl-macs" "\
525 Collect multiple return values.
526 FORM must return a list; the first N elements of this list are stored in
527 each of the symbols SYM in turn. This is analogous to the Common Lisp
528 `multiple-value-setq' macro, using lists to simulate true multiple return
529 values. For compatibility, (values A B C) is a synonym for (list A B C).
531 \(fn (SYM...) FORM)" nil (quote macro))
533 (autoload 'locally "cl-macs" "\
534 Not documented
536 \(fn &rest BODY)" nil (quote macro))
538 (autoload 'declare "cl-macs" "\
539 Not documented
541 \(fn &rest SPECS)" nil (quote macro))
543 (autoload 'define-setf-method "cl-macs" "\
544 Define a `setf' method.
545 This method shows how to handle `setf's to places of the form (NAME ARGS...).
546 The argument forms ARGS are bound according to ARGLIST, as if NAME were
547 going to be expanded as a macro, then the BODY forms are executed and must
548 return a list of five elements: a temporary-variables list, a value-forms
549 list, a store-variables list (of length one), a store-form, and an access-
550 form. See `defsetf' for a simpler way to define most setf-methods.
552 \(fn NAME ARGLIST BODY...)" nil (quote macro))
554 (autoload 'defsetf "cl-macs" "\
555 Define a `setf' method.
556 This macro is an easy-to-use substitute for `define-setf-method' that works
557 well for simple place forms. In the simple `defsetf' form, `setf's of
558 the form (setf (NAME ARGS...) VAL) are transformed to function or macro
559 calls of the form (FUNC ARGS... VAL). Example:
561 (defsetf aref aset)
563 Alternate form: (defsetf NAME ARGLIST (STORE) BODY...).
564 Here, the above `setf' call is expanded by binding the argument forms ARGS
565 according to ARGLIST, binding the value form VAL to STORE, then executing
566 BODY, which must return a Lisp form that does the necessary `setf' operation.
567 Actually, ARGLIST and STORE may be bound to temporary variables which are
568 introduced automatically to preserve proper execution order of the arguments.
569 Example:
571 (defsetf nth (n x) (v) (list 'setcar (list 'nthcdr n x) v))
573 \(fn NAME [FUNC | ARGLIST (STORE) BODY...])" nil (quote macro))
575 (autoload 'get-setf-method "cl-macs" "\
576 Return a list of five values describing the setf-method for PLACE.
577 PLACE may be any Lisp form which can appear as the PLACE argument to
578 a macro like `setf' or `incf'.
580 \(fn PLACE &optional ENV)" nil nil)
582 (autoload 'setf "cl-macs" "\
583 Set each PLACE to the value of its VAL.
584 This is a generalized version of `setq'; the PLACEs may be symbolic
585 references such as (car x) or (aref x i), as well as plain symbols.
586 For example, (setf (cadar x) y) is equivalent to (setcar (cdar x) y).
587 The return value is the last VAL in the list.
589 \(fn PLACE VAL PLACE VAL ...)" nil (quote macro))
591 (autoload 'psetf "cl-macs" "\
592 Set PLACEs to the values VALs in parallel.
593 This is like `setf', except that all VAL forms are evaluated (in order)
594 before assigning any PLACEs to the corresponding values.
596 \(fn PLACE VAL PLACE VAL ...)" nil (quote macro))
598 (autoload 'cl-do-pop "cl-macs" "\
599 Not documented
601 \(fn PLACE)" nil nil)
603 (autoload 'remf "cl-macs" "\
604 Remove TAG from property list PLACE.
605 PLACE may be a symbol, or any generalized variable allowed by `setf'.
606 The form returns true if TAG was found and removed, nil otherwise.
608 \(fn PLACE TAG)" nil (quote macro))
610 (autoload 'shiftf "cl-macs" "\
611 Shift left among PLACEs.
612 Example: (shiftf A B C) sets A to B, B to C, and returns the old A.
613 Each PLACE may be a symbol, or any generalized variable allowed by `setf'.
615 \(fn PLACE... VAL)" nil (quote macro))
617 (autoload 'rotatef "cl-macs" "\
618 Rotate left among PLACEs.
619 Example: (rotatef A B C) sets A to B, B to C, and C to A. It returns nil.
620 Each PLACE may be a symbol, or any generalized variable allowed by `setf'.
622 \(fn PLACE...)" nil (quote macro))
624 (autoload 'letf "cl-macs" "\
625 Temporarily bind to PLACEs.
626 This is the analogue of `let', but with generalized variables (in the
627 sense of `setf') for the PLACEs. Each PLACE is set to the corresponding
628 VALUE, then the BODY forms are executed. On exit, either normally or
629 because of a `throw' or error, the PLACEs are set back to their original
630 values. Note that this macro is *not* available in Common Lisp.
631 As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
632 the PLACE is not modified before executing BODY.
634 \(fn ((PLACE VALUE) ...) BODY...)" nil (quote macro))
636 (autoload 'letf* "cl-macs" "\
637 Temporarily bind to PLACEs.
638 This is the analogue of `let*', but with generalized variables (in the
639 sense of `setf') for the PLACEs. Each PLACE is set to the corresponding
640 VALUE, then the BODY forms are executed. On exit, either normally or
641 because of a `throw' or error, the PLACEs are set back to their original
642 values. Note that this macro is *not* available in Common Lisp.
643 As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
644 the PLACE is not modified before executing BODY.
646 \(fn ((PLACE VALUE) ...) BODY...)" nil (quote macro))
648 (autoload 'callf "cl-macs" "\
649 Set PLACE to (FUNC PLACE ARGS...).
650 FUNC should be an unquoted function name. PLACE may be a symbol,
651 or any generalized variable allowed by `setf'.
653 \(fn FUNC PLACE ARGS...)" nil (quote macro))
655 (autoload 'callf2 "cl-macs" "\
656 Set PLACE to (FUNC ARG1 PLACE ARGS...).
657 Like `callf', but PLACE is the second argument of FUNC, not the first.
659 \(fn FUNC ARG1 PLACE ARGS...)" nil (quote macro))
661 (autoload 'define-modify-macro "cl-macs" "\
662 Define a `setf'-like modify macro.
663 If NAME is called, it combines its PLACE argument with the other arguments
664 from ARGLIST using FUNC: (define-modify-macro incf (&optional (n 1)) +)
666 \(fn NAME ARGLIST FUNC &optional DOC)" nil (quote macro))
668 (autoload 'defstruct "cl-macs" "\
669 Define a struct type.
670 This macro defines a new data type called NAME that stores data
671 in SLOTs. It defines a `make-NAME' constructor, a `copy-NAME'
672 copier, a `NAME-p' predicate, and slot accessors named `NAME-SLOT'.
673 You can use the accessors to set the corresponding slots, via `setf'.
675 NAME may instead take the form (NAME OPTIONS...), where each
676 OPTION is either a single keyword or (KEYWORD VALUE).
677 See Info node `(cl)Structures' for a list of valid keywords.
679 Each SLOT may instead take the form (SLOT SLOT-OPTS...), where
680 SLOT-OPTS are keyword-value pairs for that slot. Currently, only
681 one keyword is supported, `:read-only'. If this has a non-nil
682 value, that slot cannot be set via `setf'.
684 \(fn NAME SLOTS...)" nil (quote macro))
686 (autoload 'cl-struct-setf-expander "cl-macs" "\
687 Not documented
689 \(fn X NAME ACCESSOR PRED-FORM POS)" nil nil)
691 (autoload 'deftype "cl-macs" "\
692 Define NAME as a new data type.
693 The type name can then be used in `typecase', `check-type', etc.
695 \(fn NAME ARGLIST &rest BODY)" nil (quote macro))
697 (autoload 'typep "cl-macs" "\
698 Check that OBJECT is of type TYPE.
699 TYPE is a Common Lisp-style type specifier.
701 \(fn OBJECT TYPE)" nil nil)
703 (autoload 'check-type "cl-macs" "\
704 Verify that FORM is of type TYPE; signal an error if not.
705 STRING is an optional description of the desired type.
707 \(fn FORM TYPE &optional STRING)" nil (quote macro))
709 (autoload 'assert "cl-macs" "\
710 Verify that FORM returns non-nil; signal an error if not.
711 Second arg SHOW-ARGS means to include arguments of FORM in message.
712 Other args STRING and ARGS... are arguments to be passed to `error'.
713 They are not evaluated unless the assertion fails. If STRING is
714 omitted, a default message listing FORM itself is used.
716 \(fn FORM &optional SHOW-ARGS STRING &rest ARGS)" nil (quote macro))
718 (autoload 'define-compiler-macro "cl-macs" "\
719 Define a compiler-only macro.
720 This is like `defmacro', but macro expansion occurs only if the call to
721 FUNC is compiled (i.e., not interpreted). Compiler macros should be used
722 for optimizing the way calls to FUNC are compiled; the form returned by
723 BODY should do the same thing as a call to the normal function called
724 FUNC, though possibly more efficiently. Note that, like regular macros,
725 compiler macros are expanded repeatedly until no further expansions are
726 possible. Unlike regular macros, BODY can decide to \"punt\" and leave the
727 original function call alone by declaring an initial `&whole foo' parameter
728 and then returning foo.
730 \(fn FUNC ARGS &rest BODY)" nil (quote macro))
732 (autoload 'compiler-macroexpand "cl-macs" "\
733 Not documented
735 \(fn FORM)" nil nil)
737 (autoload 'defsubst* "cl-macs" "\
738 Define NAME as a function.
739 Like `defun', except the function is automatically declared `inline',
740 ARGLIST allows full Common Lisp conventions, and BODY is implicitly
741 surrounded by (block NAME ...).
743 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil (quote macro))
745 ;;;***
747 ;;;### (autoloads (tree-equal nsublis sublis nsubst-if-not nsubst-if
748 ;;;;;; nsubst subst-if-not subst-if subsetp nset-exclusive-or set-exclusive-or
749 ;;;;;; nset-difference set-difference nintersection intersection
750 ;;;;;; nunion union rassoc-if-not rassoc-if rassoc* assoc-if-not
751 ;;;;;; assoc-if assoc* cl-adjoin member-if-not member-if member*
752 ;;;;;; merge stable-sort sort* search mismatch count-if-not count-if
753 ;;;;;; count position-if-not position-if position find-if-not find-if
754 ;;;;;; find nsubstitute-if-not nsubstitute-if nsubstitute substitute-if-not
755 ;;;;;; substitute-if substitute delete-duplicates remove-duplicates
756 ;;;;;; delete-if-not delete-if delete* remove-if-not remove-if remove*
757 ;;;;;; replace fill reduce) "cl-seq" "cl-seq.el" "8f4ba525c894365101b9a53905db94ba")
758 ;;; Generated autoloads from cl-seq.el
760 (autoload 'reduce "cl-seq" "\
761 Reduce two-argument FUNCTION across SEQ.
763 Keywords supported: :start :end :from-end :initial-value :key
765 \(fn FUNCTION SEQ [KEYWORD VALUE]...)" nil nil)
767 (autoload 'fill "cl-seq" "\
768 Fill the elements of SEQ with ITEM.
770 Keywords supported: :start :end
772 \(fn SEQ ITEM [KEYWORD VALUE]...)" nil nil)
774 (autoload 'replace "cl-seq" "\
775 Replace the elements of SEQ1 with the elements of SEQ2.
776 SEQ1 is destructively modified, then returned.
778 Keywords supported: :start1 :end1 :start2 :end2
780 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
782 (autoload 'remove* "cl-seq" "\
783 Remove all occurrences of ITEM in SEQ.
784 This is a non-destructive function; it makes a copy of SEQ if necessary
785 to avoid corrupting the original SEQ.
787 Keywords supported: :test :test-not :key :count :start :end :from-end
789 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
791 (autoload 'remove-if "cl-seq" "\
792 Remove all items satisfying PREDICATE in SEQ.
793 This is a non-destructive function; it makes a copy of SEQ if necessary
794 to avoid corrupting the original SEQ.
796 Keywords supported: :key :count :start :end :from-end
798 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
800 (autoload 'remove-if-not "cl-seq" "\
801 Remove all items not satisfying PREDICATE in SEQ.
802 This is a non-destructive function; it makes a copy of SEQ if necessary
803 to avoid corrupting the original SEQ.
805 Keywords supported: :key :count :start :end :from-end
807 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
809 (autoload 'delete* "cl-seq" "\
810 Remove all occurrences of ITEM in SEQ.
811 This is a destructive function; it reuses the storage of SEQ whenever possible.
813 Keywords supported: :test :test-not :key :count :start :end :from-end
815 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
817 (autoload 'delete-if "cl-seq" "\
818 Remove all items satisfying PREDICATE in SEQ.
819 This is a destructive function; it reuses the storage of SEQ whenever possible.
821 Keywords supported: :key :count :start :end :from-end
823 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
825 (autoload 'delete-if-not "cl-seq" "\
826 Remove all items not satisfying PREDICATE in SEQ.
827 This is a destructive function; it reuses the storage of SEQ whenever possible.
829 Keywords supported: :key :count :start :end :from-end
831 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
833 (autoload 'remove-duplicates "cl-seq" "\
834 Return a copy of SEQ with all duplicate elements removed.
836 Keywords supported: :test :test-not :key :start :end :from-end
838 \(fn SEQ [KEYWORD VALUE]...)" nil nil)
840 (autoload 'delete-duplicates "cl-seq" "\
841 Remove all duplicate elements from SEQ (destructively).
843 Keywords supported: :test :test-not :key :start :end :from-end
845 \(fn SEQ [KEYWORD VALUE]...)" nil nil)
847 (autoload 'substitute "cl-seq" "\
848 Substitute NEW for OLD in SEQ.
849 This is a non-destructive function; it makes a copy of SEQ if necessary
850 to avoid corrupting the original SEQ.
852 Keywords supported: :test :test-not :key :count :start :end :from-end
854 \(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)
856 (autoload 'substitute-if "cl-seq" "\
857 Substitute NEW for all items satisfying PREDICATE in SEQ.
858 This is a non-destructive function; it makes a copy of SEQ if necessary
859 to avoid corrupting the original SEQ.
861 Keywords supported: :key :count :start :end :from-end
863 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
865 (autoload 'substitute-if-not "cl-seq" "\
866 Substitute NEW for all items not satisfying PREDICATE in SEQ.
867 This is a non-destructive function; it makes a copy of SEQ if necessary
868 to avoid corrupting the original SEQ.
870 Keywords supported: :key :count :start :end :from-end
872 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
874 (autoload 'nsubstitute "cl-seq" "\
875 Substitute NEW for OLD in SEQ.
876 This is a destructive function; it reuses the storage of SEQ whenever possible.
878 Keywords supported: :test :test-not :key :count :start :end :from-end
880 \(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)
882 (autoload 'nsubstitute-if "cl-seq" "\
883 Substitute NEW for all items satisfying PREDICATE in SEQ.
884 This is a destructive function; it reuses the storage of SEQ whenever possible.
886 Keywords supported: :key :count :start :end :from-end
888 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
890 (autoload 'nsubstitute-if-not "cl-seq" "\
891 Substitute NEW for all items not satisfying PREDICATE in SEQ.
892 This is a destructive function; it reuses the storage of SEQ whenever possible.
894 Keywords supported: :key :count :start :end :from-end
896 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
898 (autoload 'find "cl-seq" "\
899 Find the first occurrence of ITEM in SEQ.
900 Return the matching ITEM, or nil if not found.
902 Keywords supported: :test :test-not :key :start :end :from-end
904 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
906 (autoload 'find-if "cl-seq" "\
907 Find the first item satisfying PREDICATE in SEQ.
908 Return the matching item, or nil if not found.
910 Keywords supported: :key :start :end :from-end
912 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
914 (autoload 'find-if-not "cl-seq" "\
915 Find the first item not satisfying PREDICATE in SEQ.
916 Return the matching item, or nil if not found.
918 Keywords supported: :key :start :end :from-end
920 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
922 (autoload 'position "cl-seq" "\
923 Find the first occurrence of ITEM in SEQ.
924 Return the index of the matching item, or nil if not found.
926 Keywords supported: :test :test-not :key :start :end :from-end
928 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
930 (autoload 'position-if "cl-seq" "\
931 Find the first item satisfying PREDICATE in SEQ.
932 Return the index of the matching item, or nil if not found.
934 Keywords supported: :key :start :end :from-end
936 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
938 (autoload 'position-if-not "cl-seq" "\
939 Find the first item not satisfying PREDICATE in SEQ.
940 Return the index of the matching item, or nil if not found.
942 Keywords supported: :key :start :end :from-end
944 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
946 (autoload 'count "cl-seq" "\
947 Count the number of occurrences of ITEM in SEQ.
949 Keywords supported: :test :test-not :key :start :end
951 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
953 (autoload 'count-if "cl-seq" "\
954 Count the number of items satisfying PREDICATE in SEQ.
956 Keywords supported: :key :start :end
958 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
960 (autoload 'count-if-not "cl-seq" "\
961 Count the number of items not satisfying PREDICATE in SEQ.
963 Keywords supported: :key :start :end
965 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
967 (autoload 'mismatch "cl-seq" "\
968 Compare SEQ1 with SEQ2, return index of first mismatching element.
969 Return nil if the sequences match. If one sequence is a prefix of the
970 other, the return value indicates the end of the shorter sequence.
972 Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
974 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
976 (autoload 'search "cl-seq" "\
977 Search for SEQ1 as a subsequence of SEQ2.
978 Return the index of the leftmost element of the first match found;
979 return nil if there are no matches.
981 Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
983 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
985 (autoload 'sort* "cl-seq" "\
986 Sort the argument SEQ according to PREDICATE.
987 This is a destructive function; it reuses the storage of SEQ if possible.
989 Keywords supported: :key
991 \(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)
993 (autoload 'stable-sort "cl-seq" "\
994 Sort the argument SEQ stably according to PREDICATE.
995 This is a destructive function; it reuses the storage of SEQ if possible.
997 Keywords supported: :key
999 \(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)
1001 (autoload 'merge "cl-seq" "\
1002 Destructively merge the two sequences to produce a new sequence.
1003 TYPE is the sequence type to return, SEQ1 and SEQ2 are the two argument
1004 sequences, and PREDICATE is a `less-than' predicate on the elements.
1006 Keywords supported: :key
1008 \(fn TYPE SEQ1 SEQ2 PREDICATE [KEYWORD VALUE]...)" nil nil)
1010 (autoload 'member* "cl-seq" "\
1011 Find the first occurrence of ITEM in LIST.
1012 Return the sublist of LIST whose car is ITEM.
1014 Keywords supported: :test :test-not :key
1016 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1018 (autoload 'member-if "cl-seq" "\
1019 Find the first item satisfying PREDICATE in LIST.
1020 Return the sublist of LIST whose car matches.
1022 Keywords supported: :key
1024 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1026 (autoload 'member-if-not "cl-seq" "\
1027 Find the first item not satisfying PREDICATE in LIST.
1028 Return the sublist of LIST whose car matches.
1030 Keywords supported: :key
1032 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1034 (autoload 'cl-adjoin "cl-seq" "\
1035 Not documented
1037 \(fn CL-ITEM CL-LIST &rest CL-KEYS)" nil nil)
1039 (autoload 'assoc* "cl-seq" "\
1040 Find the first item whose car matches ITEM in LIST.
1042 Keywords supported: :test :test-not :key
1044 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1046 (autoload 'assoc-if "cl-seq" "\
1047 Find the first item whose car satisfies PREDICATE in LIST.
1049 Keywords supported: :key
1051 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1053 (autoload 'assoc-if-not "cl-seq" "\
1054 Find the first item whose car does not satisfy PREDICATE in LIST.
1056 Keywords supported: :key
1058 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1060 (autoload 'rassoc* "cl-seq" "\
1061 Find the first item whose cdr matches ITEM in LIST.
1063 Keywords supported: :test :test-not :key
1065 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1067 (autoload 'rassoc-if "cl-seq" "\
1068 Find the first item whose cdr satisfies PREDICATE in LIST.
1070 Keywords supported: :key
1072 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1074 (autoload 'rassoc-if-not "cl-seq" "\
1075 Find the first item whose cdr does not satisfy PREDICATE in LIST.
1077 Keywords supported: :key
1079 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1081 (autoload 'union "cl-seq" "\
1082 Combine LIST1 and LIST2 using a set-union operation.
1083 The result list contains all items that appear in either LIST1 or LIST2.
1084 This is a non-destructive function; it makes a copy of the data if necessary
1085 to avoid corrupting the original LIST1 and LIST2.
1087 Keywords supported: :test :test-not :key
1089 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1091 (autoload 'nunion "cl-seq" "\
1092 Combine LIST1 and LIST2 using a set-union operation.
1093 The result list contains all items that appear in either LIST1 or LIST2.
1094 This is a destructive function; it reuses the storage of LIST1 and LIST2
1095 whenever possible.
1097 Keywords supported: :test :test-not :key
1099 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1101 (autoload 'intersection "cl-seq" "\
1102 Combine LIST1 and LIST2 using a set-intersection operation.
1103 The result list contains all items that appear in both LIST1 and LIST2.
1104 This is a non-destructive function; it makes a copy of the data if necessary
1105 to avoid corrupting the original LIST1 and LIST2.
1107 Keywords supported: :test :test-not :key
1109 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1111 (autoload 'nintersection "cl-seq" "\
1112 Combine LIST1 and LIST2 using a set-intersection operation.
1113 The result list contains all items that appear in both LIST1 and LIST2.
1114 This is a destructive function; it reuses the storage of LIST1 and LIST2
1115 whenever possible.
1117 Keywords supported: :test :test-not :key
1119 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1121 (autoload 'set-difference "cl-seq" "\
1122 Combine LIST1 and LIST2 using a set-difference operation.
1123 The result list contains all items that appear in LIST1 but not LIST2.
1124 This is a non-destructive function; it makes a copy of the data if necessary
1125 to avoid corrupting the original LIST1 and LIST2.
1127 Keywords supported: :test :test-not :key
1129 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1131 (autoload 'nset-difference "cl-seq" "\
1132 Combine LIST1 and LIST2 using a set-difference operation.
1133 The result list contains all items that appear in LIST1 but not LIST2.
1134 This is a destructive function; it reuses the storage of LIST1 and LIST2
1135 whenever possible.
1137 Keywords supported: :test :test-not :key
1139 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1141 (autoload 'set-exclusive-or "cl-seq" "\
1142 Combine LIST1 and LIST2 using a set-exclusive-or operation.
1143 The result list contains all items that appear in exactly one of LIST1, LIST2.
1144 This is a non-destructive function; it makes a copy of the data if necessary
1145 to avoid corrupting the original LIST1 and LIST2.
1147 Keywords supported: :test :test-not :key
1149 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1151 (autoload 'nset-exclusive-or "cl-seq" "\
1152 Combine LIST1 and LIST2 using a set-exclusive-or operation.
1153 The result list contains all items that appear in exactly one of LIST1, LIST2.
1154 This is a destructive function; it reuses the storage of LIST1 and LIST2
1155 whenever possible.
1157 Keywords supported: :test :test-not :key
1159 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1161 (autoload 'subsetp "cl-seq" "\
1162 Return true if LIST1 is a subset of LIST2.
1163 I.e., if every element of LIST1 also appears in LIST2.
1165 Keywords supported: :test :test-not :key
1167 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1169 (autoload 'subst-if "cl-seq" "\
1170 Substitute NEW for elements matching PREDICATE in TREE (non-destructively).
1171 Return a copy of TREE with all matching elements replaced by NEW.
1173 Keywords supported: :key
1175 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1177 (autoload 'subst-if-not "cl-seq" "\
1178 Substitute NEW for elts not matching PREDICATE in TREE (non-destructively).
1179 Return a copy of TREE with all non-matching elements replaced by NEW.
1181 Keywords supported: :key
1183 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1185 (autoload 'nsubst "cl-seq" "\
1186 Substitute NEW for OLD everywhere in TREE (destructively).
1187 Any element of TREE which is `eql' to OLD is changed to NEW (via a call
1188 to `setcar').
1190 Keywords supported: :test :test-not :key
1192 \(fn NEW OLD TREE [KEYWORD VALUE]...)" nil nil)
1194 (autoload 'nsubst-if "cl-seq" "\
1195 Substitute NEW for elements matching PREDICATE in TREE (destructively).
1196 Any element of TREE which matches is changed to NEW (via a call to `setcar').
1198 Keywords supported: :key
1200 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1202 (autoload 'nsubst-if-not "cl-seq" "\
1203 Substitute NEW for elements not matching PREDICATE in TREE (destructively).
1204 Any element of TREE which matches is changed to NEW (via a call to `setcar').
1206 Keywords supported: :key
1208 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1210 (autoload 'sublis "cl-seq" "\
1211 Perform substitutions indicated by ALIST in TREE (non-destructively).
1212 Return a copy of TREE with all matching elements replaced.
1214 Keywords supported: :test :test-not :key
1216 \(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)
1218 (autoload 'nsublis "cl-seq" "\
1219 Perform substitutions indicated by ALIST in TREE (destructively).
1220 Any matching element of TREE is changed via a call to `setcar'.
1222 Keywords supported: :test :test-not :key
1224 \(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)
1226 (autoload 'tree-equal "cl-seq" "\
1227 Return t if trees TREE1 and TREE2 have `eql' leaves.
1228 Atoms are compared by `eql'; cons cells are compared recursively.
1230 Keywords supported: :test :test-not :key
1232 \(fn TREE1 TREE2 [KEYWORD VALUE]...)" nil nil)
1234 ;;;***
1236 ;; Local Variables:
1237 ;; version-control: never
1238 ;; no-byte-compile: t
1239 ;; no-update-autoloads: t
1240 ;; coding: utf-8
1241 ;; End:
1242 ;;; cl-loaddefs.el ends here