Misc fixes, and use lexical-binding in more files.
[emacs.git] / lisp / emacs-lisp / cl-loaddefs.el
blob2795b143e470cf2fa73e7b6aa7f20515269ca2bf
1 ;;; cl-loaddefs.el --- automatically extracted autoloads
2 ;;
3 ;;; Code:
5 \f
6 ;;;### (autoloads (cl-prettyexpand cl-macroexpand-all cl-remprop
7 ;;;;;; cl-do-remf cl-set-getf getf get* tailp list-length nreconc
8 ;;;;;; revappend concatenate subseq cl-float-limits random-state-p
9 ;;;;;; make-random-state random* signum rem* mod* round* truncate*
10 ;;;;;; ceiling* floor* isqrt lcm gcd cl-progv-before cl-set-frame-visible-p
11 ;;;;;; cl-map-overlays cl-map-intervals cl-map-keymap-recursively
12 ;;;;;; notevery notany every some mapcon mapcan mapl maplist map
13 ;;;;;; cl-mapcar-many equalp coerce) "cl-extra" "cl-extra.el" "26339d9571f9485bf34fa6d2ae38fc84")
14 ;;; Generated autoloads from cl-extra.el
16 (autoload 'coerce "cl-extra" "\
17 Coerce OBJECT to type TYPE.
18 TYPE is a Common Lisp type specifier.
20 \(fn OBJECT TYPE)" nil nil)
22 (autoload 'equalp "cl-extra" "\
23 Return t if two Lisp objects have similar structures and contents.
24 This is like `equal', except that it accepts numerically equal
25 numbers of different types (float vs. integer), and also compares
26 strings case-insensitively.
28 \(fn X Y)" nil nil)
30 (autoload 'cl-mapcar-many "cl-extra" "\
31 Not documented
33 \(fn CL-FUNC CL-SEQS)" nil nil)
35 (autoload 'map "cl-extra" "\
36 Map a FUNCTION across one or more SEQUENCEs, returning a sequence.
37 TYPE is the sequence type to return.
39 \(fn TYPE FUNCTION SEQUENCE...)" nil nil)
41 (autoload 'maplist "cl-extra" "\
42 Map FUNCTION to each sublist of LIST or LISTs.
43 Like `mapcar', except applies to lists and their cdr's rather than to
44 the elements themselves.
46 \(fn FUNCTION LIST...)" nil nil)
48 (autoload 'mapl "cl-extra" "\
49 Like `maplist', but does not accumulate values returned by the function.
51 \(fn FUNCTION LIST...)" nil nil)
53 (autoload 'mapcan "cl-extra" "\
54 Like `mapcar', but nconc's together the values returned by the function.
56 \(fn FUNCTION SEQUENCE...)" nil nil)
58 (autoload 'mapcon "cl-extra" "\
59 Like `maplist', but nconc's together the values returned by the function.
61 \(fn FUNCTION LIST...)" nil nil)
63 (autoload 'some "cl-extra" "\
64 Return true if PREDICATE is true of any element of SEQ or SEQs.
65 If so, return the true (non-nil) value returned by PREDICATE.
67 \(fn PREDICATE SEQ...)" nil nil)
69 (autoload 'every "cl-extra" "\
70 Return true if PREDICATE is true of every element of SEQ or SEQs.
72 \(fn PREDICATE SEQ...)" nil nil)
74 (autoload 'notany "cl-extra" "\
75 Return true if PREDICATE is false of every element of SEQ or SEQs.
77 \(fn PREDICATE SEQ...)" nil nil)
79 (autoload 'notevery "cl-extra" "\
80 Return true if PREDICATE is false of some element of SEQ or SEQs.
82 \(fn PREDICATE SEQ...)" nil nil)
84 (defalias 'cl-map-keymap 'map-keymap)
86 (autoload 'cl-map-keymap-recursively "cl-extra" "\
87 Not documented
89 \(fn CL-FUNC-REC CL-MAP &optional CL-BASE)" nil nil)
91 (autoload 'cl-map-intervals "cl-extra" "\
92 Not documented
94 \(fn CL-FUNC &optional CL-WHAT CL-PROP CL-START CL-END)" nil nil)
96 (autoload 'cl-map-overlays "cl-extra" "\
97 Not documented
99 \(fn CL-FUNC &optional CL-BUFFER CL-START CL-END CL-ARG)" nil nil)
101 (autoload 'cl-set-frame-visible-p "cl-extra" "\
102 Not documented
104 \(fn FRAME VAL)" nil nil)
106 (autoload 'cl-progv-before "cl-extra" "\
107 Not documented
109 \(fn SYMS VALUES)" nil nil)
111 (autoload 'gcd "cl-extra" "\
112 Return the greatest common divisor of the arguments.
114 \(fn &rest ARGS)" nil nil)
116 (autoload 'lcm "cl-extra" "\
117 Return the least common multiple of the arguments.
119 \(fn &rest ARGS)" nil nil)
121 (autoload 'isqrt "cl-extra" "\
122 Return the integer square root of the argument.
124 \(fn X)" nil nil)
126 (autoload 'floor* "cl-extra" "\
127 Return a list of the floor of X and the fractional part of X.
128 With two arguments, return floor and remainder of their quotient.
130 \(fn X &optional Y)" nil nil)
132 (autoload 'ceiling* "cl-extra" "\
133 Return a list of the ceiling of X and the fractional part of X.
134 With two arguments, return ceiling and remainder of their quotient.
136 \(fn X &optional Y)" nil nil)
138 (autoload 'truncate* "cl-extra" "\
139 Return a list of the integer part of X and the fractional part of X.
140 With two arguments, return truncation and remainder of their quotient.
142 \(fn X &optional Y)" nil nil)
144 (autoload 'round* "cl-extra" "\
145 Return a list of X rounded to the nearest integer and the remainder.
146 With two arguments, return rounding and remainder of their quotient.
148 \(fn X &optional Y)" nil nil)
150 (autoload 'mod* "cl-extra" "\
151 The remainder of X divided by Y, with the same sign as Y.
153 \(fn X Y)" nil nil)
155 (autoload 'rem* "cl-extra" "\
156 The remainder of X divided by Y, with the same sign as X.
158 \(fn X Y)" nil nil)
160 (autoload 'signum "cl-extra" "\
161 Return 1 if X is positive, -1 if negative, 0 if zero.
163 \(fn X)" nil nil)
165 (autoload 'random* "cl-extra" "\
166 Return a random nonnegative number less than LIM, an integer or float.
167 Optional second arg STATE is a random-state object.
169 \(fn LIM &optional STATE)" nil nil)
171 (autoload 'make-random-state "cl-extra" "\
172 Return a copy of random-state STATE, or of `*random-state*' if omitted.
173 If STATE is t, return a new state object seeded from the time of day.
175 \(fn &optional STATE)" nil nil)
177 (autoload 'random-state-p "cl-extra" "\
178 Return t if OBJECT is a random-state object.
180 \(fn OBJECT)" nil nil)
182 (autoload 'cl-float-limits "cl-extra" "\
183 Not documented
185 \(fn)" nil nil)
187 (autoload 'subseq "cl-extra" "\
188 Return the subsequence of SEQ from START to END.
189 If END is omitted, it defaults to the length of the sequence.
190 If START or END is negative, it counts from the end.
192 \(fn SEQ START &optional END)" nil nil)
194 (autoload 'concatenate "cl-extra" "\
195 Concatenate, into a sequence of type TYPE, the argument SEQUENCEs.
197 \(fn TYPE SEQUENCE...)" nil nil)
199 (autoload 'revappend "cl-extra" "\
200 Equivalent to (append (reverse X) Y).
202 \(fn X Y)" nil nil)
204 (autoload 'nreconc "cl-extra" "\
205 Equivalent to (nconc (nreverse X) Y).
207 \(fn X Y)" nil nil)
209 (autoload 'list-length "cl-extra" "\
210 Return the length of list X. Return nil if list is circular.
212 \(fn X)" nil nil)
214 (autoload 'tailp "cl-extra" "\
215 Return true if SUBLIST is a tail of LIST.
217 \(fn SUBLIST LIST)" nil nil)
219 (autoload 'get* "cl-extra" "\
220 Return the value of SYMBOL's PROPNAME property, or DEFAULT if none.
222 \(fn SYMBOL PROPNAME &optional DEFAULT)" nil nil)
224 (autoload 'getf "cl-extra" "\
225 Search PROPLIST for property PROPNAME; return its value or DEFAULT.
226 PROPLIST is a list of the sort returned by `symbol-plist'.
228 \(fn PROPLIST PROPNAME &optional DEFAULT)" nil nil)
230 (autoload 'cl-set-getf "cl-extra" "\
231 Not documented
233 \(fn PLIST TAG VAL)" nil nil)
235 (autoload 'cl-do-remf "cl-extra" "\
236 Not documented
238 \(fn PLIST TAG)" nil nil)
240 (autoload 'cl-remprop "cl-extra" "\
241 Remove from SYMBOL's plist the property PROPNAME and its value.
243 \(fn SYMBOL PROPNAME)" nil nil)
245 (defalias 'remprop 'cl-remprop)
247 (defalias 'cl-gethash 'gethash)
249 (defalias 'cl-puthash 'puthash)
251 (defalias 'cl-remhash 'remhash)
253 (defalias 'cl-clrhash 'clrhash)
255 (defalias 'cl-maphash 'maphash)
257 (defalias 'cl-make-hash-table 'make-hash-table)
259 (defalias 'cl-hash-table-p 'hash-table-p)
261 (defalias 'cl-hash-table-count 'hash-table-count)
263 (autoload 'cl-macroexpand-all "cl-extra" "\
264 Expand all macro calls through a Lisp FORM.
265 This also does some trivial optimizations to make the form prettier.
267 \(fn FORM &optional ENV)" nil nil)
269 (autoload 'cl-prettyexpand "cl-extra" "\
270 Not documented
272 \(fn FORM &optional FULL)" nil nil)
274 ;;;***
276 ;;;### (autoloads (defsubst* compiler-macroexpand define-compiler-macro
277 ;;;;;; assert check-type typep deftype cl-struct-setf-expander defstruct
278 ;;;;;; define-modify-macro callf2 callf letf* letf rotatef shiftf
279 ;;;;;; remf cl-do-pop psetf setf get-setf-method defsetf define-setf-method
280 ;;;;;; declare the locally multiple-value-setq multiple-value-bind
281 ;;;;;; lexical-let* lexical-let symbol-macrolet macrolet labels
282 ;;;;;; flet progv psetq do-all-symbols do-symbols dotimes dolist
283 ;;;;;; do* do loop return-from return block etypecase typecase ecase
284 ;;;;;; case load-time-value eval-when destructuring-bind function*
285 ;;;;;; defmacro* defun* gentemp gensym) "cl-macs" "cl-macs.el" "864a28dc0495ad87d39637a965387526")
286 ;;; Generated autoloads from cl-macs.el
288 (autoload 'gensym "cl-macs" "\
289 Generate a new uninterned symbol.
290 The name is made by appending a number to PREFIX, default \"G\".
292 \(fn &optional PREFIX)" nil nil)
294 (autoload 'gentemp "cl-macs" "\
295 Generate a new interned symbol with a unique name.
296 The name is made by appending a number to PREFIX, default \"G\".
298 \(fn &optional PREFIX)" nil nil)
300 (autoload 'defun* "cl-macs" "\
301 Define NAME as a function.
302 Like normal `defun', except ARGLIST allows full Common Lisp conventions,
303 and BODY is implicitly surrounded by (block NAME ...).
305 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil (quote macro))
307 (autoload 'defmacro* "cl-macs" "\
308 Define NAME as a macro.
309 Like normal `defmacro', except ARGLIST allows full Common Lisp conventions,
310 and BODY is implicitly surrounded by (block NAME ...).
312 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil (quote macro))
314 (autoload 'function* "cl-macs" "\
315 Introduce a function.
316 Like normal `function', except that if argument is a lambda form,
317 its argument list allows full Common Lisp conventions.
319 \(fn FUNC)" nil (quote macro))
321 (autoload 'destructuring-bind "cl-macs" "\
324 \(fn ARGS EXPR &rest BODY)" nil (quote macro))
326 (autoload 'eval-when "cl-macs" "\
327 Control when BODY is evaluated.
328 If `compile' is in WHEN, BODY is evaluated when compiled at top-level.
329 If `load' is in WHEN, BODY is evaluated when loaded after top-level compile.
330 If `eval' is in WHEN, BODY is evaluated when interpreted or at non-top-level.
332 \(fn (WHEN...) BODY...)" nil (quote macro))
334 (autoload 'load-time-value "cl-macs" "\
335 Like `progn', but evaluates the body at load time.
336 The result of the body appears to the compiler as a quoted constant.
338 \(fn FORM &optional READ-ONLY)" nil (quote macro))
340 (autoload 'case "cl-macs" "\
341 Eval EXPR and choose among clauses on that value.
342 Each clause looks like (KEYLIST BODY...). EXPR is evaluated and compared
343 against each key in each KEYLIST; the corresponding BODY is evaluated.
344 If no clause succeeds, case returns nil. A single atom may be used in
345 place of a KEYLIST of one atom. A KEYLIST of t or `otherwise' is
346 allowed only in the final clause, and matches if no other keys match.
347 Key values are compared by `eql'.
349 \(fn EXPR (KEYLIST BODY...)...)" nil (quote macro))
351 (autoload 'ecase "cl-macs" "\
352 Like `case', but error if no case fits.
353 `otherwise'-clauses are not allowed.
355 \(fn EXPR (KEYLIST BODY...)...)" nil (quote macro))
357 (autoload 'typecase "cl-macs" "\
358 Evals EXPR, chooses among clauses on that value.
359 Each clause looks like (TYPE BODY...). EXPR is evaluated and, if it
360 satisfies TYPE, the corresponding BODY is evaluated. If no clause succeeds,
361 typecase returns nil. A TYPE of t or `otherwise' is allowed only in the
362 final clause, and matches if no other keys match.
364 \(fn EXPR (TYPE BODY...)...)" nil (quote macro))
366 (autoload 'etypecase "cl-macs" "\
367 Like `typecase', but error if no case fits.
368 `otherwise'-clauses are not allowed.
370 \(fn EXPR (TYPE BODY...)...)" nil (quote macro))
372 (autoload 'block "cl-macs" "\
373 Define a lexically-scoped block named NAME.
374 NAME may be any symbol. Code inside the BODY forms can call `return-from'
375 to jump prematurely out of the block. This differs from `catch' and `throw'
376 in two respects: First, the NAME is an unevaluated symbol rather than a
377 quoted symbol or other form; and second, NAME is lexically rather than
378 dynamically scoped: Only references to it within BODY will work. These
379 references may appear inside macro expansions, but not inside functions
380 called from BODY.
382 \(fn NAME &rest BODY)" nil (quote macro))
384 (autoload 'return "cl-macs" "\
385 Return from the block named nil.
386 This is equivalent to `(return-from nil RESULT)'.
388 \(fn &optional RESULT)" nil (quote macro))
390 (autoload 'return-from "cl-macs" "\
391 Return from the block named NAME.
392 This jumps out to the innermost enclosing `(block NAME ...)' form,
393 returning RESULT from that form (or nil if RESULT is omitted).
394 This is compatible with Common Lisp, but note that `defun' and
395 `defmacro' do not create implicit blocks as they do in Common Lisp.
397 \(fn NAME &optional RESULT)" nil (quote macro))
399 (autoload 'loop "cl-macs" "\
400 The Common Lisp `loop' macro.
401 Valid clauses are:
402 for VAR from/upfrom/downfrom NUM to/upto/downto/above/below NUM by NUM,
403 for VAR in LIST by FUNC, for VAR on LIST by FUNC, for VAR = INIT then EXPR,
404 for VAR across ARRAY, repeat NUM, with VAR = INIT, while COND, until COND,
405 always COND, never COND, thereis COND, collect EXPR into VAR,
406 append EXPR into VAR, nconc EXPR into VAR, sum EXPR into VAR,
407 count EXPR into VAR, maximize EXPR into VAR, minimize EXPR into VAR,
408 if COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
409 unless COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
410 do EXPRS..., initially EXPRS..., finally EXPRS..., return EXPR,
411 finally return EXPR, named NAME.
413 \(fn CLAUSE...)" nil (quote macro))
415 (autoload 'do "cl-macs" "\
416 The Common Lisp `do' loop.
418 \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil (quote macro))
420 (autoload 'do* "cl-macs" "\
421 The Common Lisp `do*' loop.
423 \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil (quote macro))
425 (autoload 'dolist "cl-macs" "\
426 Loop over a list.
427 Evaluate BODY with VAR bound to each `car' from LIST, in turn.
428 Then evaluate RESULT to get return value, default nil.
430 \(fn (VAR LIST [RESULT]) BODY...)" nil (quote macro))
432 (autoload 'dotimes "cl-macs" "\
433 Loop a certain number of times.
434 Evaluate BODY with VAR bound to successive integers from 0, inclusive,
435 to COUNT, exclusive. Then evaluate RESULT to get return value, default
436 nil.
438 \(fn (VAR COUNT [RESULT]) BODY...)" nil (quote macro))
440 (autoload 'do-symbols "cl-macs" "\
441 Loop over all symbols.
442 Evaluate BODY with VAR bound to each interned symbol, or to each symbol
443 from OBARRAY.
445 \(fn (VAR [OBARRAY [RESULT]]) BODY...)" nil (quote macro))
447 (autoload 'do-all-symbols "cl-macs" "\
450 \(fn SPEC &rest BODY)" nil (quote macro))
452 (autoload 'psetq "cl-macs" "\
453 Set SYMs to the values VALs in parallel.
454 This is like `setq', except that all VAL forms are evaluated (in order)
455 before assigning any symbols SYM to the corresponding values.
457 \(fn SYM VAL SYM VAL ...)" nil (quote macro))
459 (autoload 'progv "cl-macs" "\
460 Bind SYMBOLS to VALUES dynamically in BODY.
461 The forms SYMBOLS and VALUES are evaluated, and must evaluate to lists.
462 Each symbol in the first list is bound to the corresponding value in the
463 second list (or made unbound if VALUES is shorter than SYMBOLS); then the
464 BODY forms are executed and their result is returned. This is much like
465 a `let' form, except that the list of symbols can be computed at run-time.
467 \(fn SYMBOLS VALUES &rest BODY)" nil (quote macro))
469 (autoload 'flet "cl-macs" "\
470 Make temporary function definitions.
471 This is an analogue of `let' that operates on the function cell of FUNC
472 rather than its value cell. The FORMs are evaluated with the specified
473 function definitions in place, then the definitions are undone (the FUNCs
474 go back to their previous definitions, or lack thereof).
476 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil (quote macro))
478 (autoload 'labels "cl-macs" "\
479 Make temporary function bindings.
480 This is like `flet', except the bindings are lexical instead of dynamic.
481 Unlike `flet', this macro is fully compliant with the Common Lisp standard.
483 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil (quote macro))
485 (autoload 'macrolet "cl-macs" "\
486 Make temporary macro definitions.
487 This is like `flet', but for macros instead of functions.
489 \(fn ((NAME ARGLIST BODY...) ...) FORM...)" nil (quote macro))
491 (autoload 'symbol-macrolet "cl-macs" "\
492 Make symbol macro definitions.
493 Within the body FORMs, references to the variable NAME will be replaced
494 by EXPANSION, and (setq NAME ...) will act like (setf EXPANSION ...).
496 \(fn ((NAME EXPANSION) ...) FORM...)" nil (quote macro))
498 (autoload 'lexical-let "cl-macs" "\
499 Like `let', but lexically scoped.
500 The main visible difference is that lambdas inside BODY will create
501 lexical closures as in Common Lisp.
503 \(fn VARLIST BODY)" nil (quote macro))
505 (autoload 'lexical-let* "cl-macs" "\
506 Like `let*', but lexically scoped.
507 The main visible difference is that lambdas inside BODY, and in
508 successive bindings within VARLIST, will create lexical closures
509 as in Common Lisp. This is similar to the behavior of `let*' in
510 Common Lisp.
512 \(fn VARLIST BODY)" nil (quote macro))
514 (autoload 'multiple-value-bind "cl-macs" "\
515 Collect multiple return values.
516 FORM must return a list; the BODY is then executed with the first N elements
517 of this list bound (`let'-style) to each of the symbols SYM in turn. This
518 is analogous to the Common Lisp `multiple-value-bind' macro, using lists to
519 simulate true multiple return values. For compatibility, (values A B C) is
520 a synonym for (list A B C).
522 \(fn (SYM...) FORM BODY)" nil (quote macro))
524 (autoload 'multiple-value-setq "cl-macs" "\
525 Collect multiple return values.
526 FORM must return a list; the first N elements of this list are stored in
527 each of the symbols SYM in turn. This is analogous to the Common Lisp
528 `multiple-value-setq' macro, using lists to simulate true multiple return
529 values. For compatibility, (values A B C) is a synonym for (list A B C).
531 \(fn (SYM...) FORM)" nil (quote macro))
533 (autoload 'locally "cl-macs" "\
536 \(fn &rest BODY)" nil (quote macro))
538 (autoload 'the "cl-macs" "\
541 \(fn TYPE FORM)" nil (quote macro))
543 (autoload 'declare "cl-macs" "\
546 \(fn &rest SPECS)" nil (quote macro))
548 (autoload 'define-setf-method "cl-macs" "\
549 Define a `setf' method.
550 This method shows how to handle `setf's to places of the form (NAME ARGS...).
551 The argument forms ARGS are bound according to ARGLIST, as if NAME were
552 going to be expanded as a macro, then the BODY forms are executed and must
553 return a list of five elements: a temporary-variables list, a value-forms
554 list, a store-variables list (of length one), a store-form, and an access-
555 form. See `defsetf' for a simpler way to define most setf-methods.
557 \(fn NAME ARGLIST BODY...)" nil (quote macro))
559 (autoload 'defsetf "cl-macs" "\
560 Define a `setf' method.
561 This macro is an easy-to-use substitute for `define-setf-method' that works
562 well for simple place forms. In the simple `defsetf' form, `setf's of
563 the form (setf (NAME ARGS...) VAL) are transformed to function or macro
564 calls of the form (FUNC ARGS... VAL). Example:
566 (defsetf aref aset)
568 Alternate form: (defsetf NAME ARGLIST (STORE) BODY...).
569 Here, the above `setf' call is expanded by binding the argument forms ARGS
570 according to ARGLIST, binding the value form VAL to STORE, then executing
571 BODY, which must return a Lisp form that does the necessary `setf' operation.
572 Actually, ARGLIST and STORE may be bound to temporary variables which are
573 introduced automatically to preserve proper execution order of the arguments.
574 Example:
576 (defsetf nth (n x) (v) (list 'setcar (list 'nthcdr n x) v))
578 \(fn NAME [FUNC | ARGLIST (STORE) BODY...])" nil (quote macro))
580 (autoload 'get-setf-method "cl-macs" "\
581 Return a list of five values describing the setf-method for PLACE.
582 PLACE may be any Lisp form which can appear as the PLACE argument to
583 a macro like `setf' or `incf'.
585 \(fn PLACE &optional ENV)" nil nil)
587 (autoload 'setf "cl-macs" "\
588 Set each PLACE to the value of its VAL.
589 This is a generalized version of `setq'; the PLACEs may be symbolic
590 references such as (car x) or (aref x i), as well as plain symbols.
591 For example, (setf (cadar x) y) is equivalent to (setcar (cdar x) y).
592 The return value is the last VAL in the list.
594 \(fn PLACE VAL PLACE VAL ...)" nil (quote macro))
596 (autoload 'psetf "cl-macs" "\
597 Set PLACEs to the values VALs in parallel.
598 This is like `setf', except that all VAL forms are evaluated (in order)
599 before assigning any PLACEs to the corresponding values.
601 \(fn PLACE VAL PLACE VAL ...)" nil (quote macro))
603 (autoload 'cl-do-pop "cl-macs" "\
606 \(fn PLACE)" nil nil)
608 (autoload 'remf "cl-macs" "\
609 Remove TAG from property list PLACE.
610 PLACE may be a symbol, or any generalized variable allowed by `setf'.
611 The form returns true if TAG was found and removed, nil otherwise.
613 \(fn PLACE TAG)" nil (quote macro))
615 (autoload 'shiftf "cl-macs" "\
616 Shift left among PLACEs.
617 Example: (shiftf A B C) sets A to B, B to C, and returns the old A.
618 Each PLACE may be a symbol, or any generalized variable allowed by `setf'.
620 \(fn PLACE... VAL)" nil (quote macro))
622 (autoload 'rotatef "cl-macs" "\
623 Rotate left among PLACEs.
624 Example: (rotatef A B C) sets A to B, B to C, and C to A. It returns nil.
625 Each PLACE may be a symbol, or any generalized variable allowed by `setf'.
627 \(fn PLACE...)" nil (quote macro))
629 (autoload 'letf "cl-macs" "\
630 Temporarily bind to PLACEs.
631 This is the analogue of `let', but with generalized variables (in the
632 sense of `setf') for the PLACEs. Each PLACE is set to the corresponding
633 VALUE, then the BODY forms are executed. On exit, either normally or
634 because of a `throw' or error, the PLACEs are set back to their original
635 values. Note that this macro is *not* available in Common Lisp.
636 As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
637 the PLACE is not modified before executing BODY.
639 \(fn ((PLACE VALUE) ...) BODY...)" nil (quote macro))
641 (autoload 'letf* "cl-macs" "\
642 Temporarily bind to PLACEs.
643 This is the analogue of `let*', but with generalized variables (in the
644 sense of `setf') for the PLACEs. Each PLACE is set to the corresponding
645 VALUE, then the BODY forms are executed. On exit, either normally or
646 because of a `throw' or error, the PLACEs are set back to their original
647 values. Note that this macro is *not* available in Common Lisp.
648 As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
649 the PLACE is not modified before executing BODY.
651 \(fn ((PLACE VALUE) ...) BODY...)" nil (quote macro))
653 (autoload 'callf "cl-macs" "\
654 Set PLACE to (FUNC PLACE ARGS...).
655 FUNC should be an unquoted function name. PLACE may be a symbol,
656 or any generalized variable allowed by `setf'.
658 \(fn FUNC PLACE ARGS...)" nil (quote macro))
660 (autoload 'callf2 "cl-macs" "\
661 Set PLACE to (FUNC ARG1 PLACE ARGS...).
662 Like `callf', but PLACE is the second argument of FUNC, not the first.
664 \(fn FUNC ARG1 PLACE ARGS...)" nil (quote macro))
666 (autoload 'define-modify-macro "cl-macs" "\
667 Define a `setf'-like modify macro.
668 If NAME is called, it combines its PLACE argument with the other arguments
669 from ARGLIST using FUNC: (define-modify-macro incf (&optional (n 1)) +)
671 \(fn NAME ARGLIST FUNC &optional DOC)" nil (quote macro))
673 (autoload 'defstruct "cl-macs" "\
674 Define a struct type.
675 This macro defines a new data type called NAME that stores data
676 in SLOTs. It defines a `make-NAME' constructor, a `copy-NAME'
677 copier, a `NAME-p' predicate, and slot accessors named `NAME-SLOT'.
678 You can use the accessors to set the corresponding slots, via `setf'.
680 NAME may instead take the form (NAME OPTIONS...), where each
681 OPTION is either a single keyword or (KEYWORD VALUE).
682 See Info node `(cl)Structures' for a list of valid keywords.
684 Each SLOT may instead take the form (SLOT SLOT-OPTS...), where
685 SLOT-OPTS are keyword-value pairs for that slot. Currently, only
686 one keyword is supported, `:read-only'. If this has a non-nil
687 value, that slot cannot be set via `setf'.
689 \(fn NAME SLOTS...)" nil (quote macro))
691 (autoload 'cl-struct-setf-expander "cl-macs" "\
694 \(fn X NAME ACCESSOR PRED-FORM POS)" nil nil)
696 (autoload 'deftype "cl-macs" "\
697 Define NAME as a new data type.
698 The type name can then be used in `typecase', `check-type', etc.
700 \(fn NAME ARGLIST &rest BODY)" nil (quote macro))
702 (autoload 'typep "cl-macs" "\
703 Check that OBJECT is of type TYPE.
704 TYPE is a Common Lisp-style type specifier.
706 \(fn OBJECT TYPE)" nil nil)
708 (autoload 'check-type "cl-macs" "\
709 Verify that FORM is of type TYPE; signal an error if not.
710 STRING is an optional description of the desired type.
712 \(fn FORM TYPE &optional STRING)" nil (quote macro))
714 (autoload 'assert "cl-macs" "\
715 Verify that FORM returns non-nil; signal an error if not.
716 Second arg SHOW-ARGS means to include arguments of FORM in message.
717 Other args STRING and ARGS... are arguments to be passed to `error'.
718 They are not evaluated unless the assertion fails. If STRING is
719 omitted, a default message listing FORM itself is used.
721 \(fn FORM &optional SHOW-ARGS STRING &rest ARGS)" nil (quote macro))
723 (autoload 'define-compiler-macro "cl-macs" "\
724 Define a compiler-only macro.
725 This is like `defmacro', but macro expansion occurs only if the call to
726 FUNC is compiled (i.e., not interpreted). Compiler macros should be used
727 for optimizing the way calls to FUNC are compiled; the form returned by
728 BODY should do the same thing as a call to the normal function called
729 FUNC, though possibly more efficiently. Note that, like regular macros,
730 compiler macros are expanded repeatedly until no further expansions are
731 possible. Unlike regular macros, BODY can decide to \"punt\" and leave the
732 original function call alone by declaring an initial `&whole foo' parameter
733 and then returning foo.
735 \(fn FUNC ARGS &rest BODY)" nil (quote macro))
737 (autoload 'compiler-macroexpand "cl-macs" "\
740 \(fn FORM)" nil nil)
742 (autoload 'defsubst* "cl-macs" "\
743 Define NAME as a function.
744 Like `defun', except the function is automatically declared `inline',
745 ARGLIST allows full Common Lisp conventions, and BODY is implicitly
746 surrounded by (block NAME ...).
748 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil (quote macro))
750 ;;;***
752 ;;;### (autoloads (tree-equal nsublis sublis nsubst-if-not nsubst-if
753 ;;;;;; nsubst subst-if-not subst-if subsetp nset-exclusive-or set-exclusive-or
754 ;;;;;; nset-difference set-difference nintersection intersection
755 ;;;;;; nunion union rassoc-if-not rassoc-if rassoc* assoc-if-not
756 ;;;;;; assoc-if assoc* cl-adjoin member-if-not member-if member*
757 ;;;;;; merge stable-sort sort* search mismatch count-if-not count-if
758 ;;;;;; count position-if-not position-if position find-if-not find-if
759 ;;;;;; find nsubstitute-if-not nsubstitute-if nsubstitute substitute-if-not
760 ;;;;;; substitute-if substitute delete-duplicates remove-duplicates
761 ;;;;;; delete-if-not delete-if delete* remove-if-not remove-if remove*
762 ;;;;;; replace fill reduce) "cl-seq" "cl-seq.el" "df375ddc313f0c1c262cacab5cffd3e4")
763 ;;; Generated autoloads from cl-seq.el
765 (autoload 'reduce "cl-seq" "\
766 Reduce two-argument FUNCTION across SEQ.
768 Keywords supported: :start :end :from-end :initial-value :key
770 \(fn FUNCTION SEQ [KEYWORD VALUE]...)" nil nil)
772 (autoload 'fill "cl-seq" "\
773 Fill the elements of SEQ with ITEM.
775 Keywords supported: :start :end
777 \(fn SEQ ITEM [KEYWORD VALUE]...)" nil nil)
779 (autoload 'replace "cl-seq" "\
780 Replace the elements of SEQ1 with the elements of SEQ2.
781 SEQ1 is destructively modified, then returned.
783 Keywords supported: :start1 :end1 :start2 :end2
785 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
787 (autoload 'remove* "cl-seq" "\
788 Remove all occurrences of ITEM in SEQ.
789 This is a non-destructive function; it makes a copy of SEQ if necessary
790 to avoid corrupting the original SEQ.
792 Keywords supported: :test :test-not :key :count :start :end :from-end
794 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
796 (autoload 'remove-if "cl-seq" "\
797 Remove all items satisfying PREDICATE in SEQ.
798 This is a non-destructive function; it makes a copy of SEQ if necessary
799 to avoid corrupting the original SEQ.
801 Keywords supported: :key :count :start :end :from-end
803 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
805 (autoload 'remove-if-not "cl-seq" "\
806 Remove all items not satisfying PREDICATE in SEQ.
807 This is a non-destructive function; it makes a copy of SEQ if necessary
808 to avoid corrupting the original SEQ.
810 Keywords supported: :key :count :start :end :from-end
812 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
814 (autoload 'delete* "cl-seq" "\
815 Remove all occurrences of ITEM in SEQ.
816 This is a destructive function; it reuses the storage of SEQ whenever possible.
818 Keywords supported: :test :test-not :key :count :start :end :from-end
820 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
822 (autoload 'delete-if "cl-seq" "\
823 Remove all items satisfying PREDICATE in SEQ.
824 This is a destructive function; it reuses the storage of SEQ whenever possible.
826 Keywords supported: :key :count :start :end :from-end
828 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
830 (autoload 'delete-if-not "cl-seq" "\
831 Remove all items not satisfying PREDICATE in SEQ.
832 This is a destructive function; it reuses the storage of SEQ whenever possible.
834 Keywords supported: :key :count :start :end :from-end
836 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
838 (autoload 'remove-duplicates "cl-seq" "\
839 Return a copy of SEQ with all duplicate elements removed.
841 Keywords supported: :test :test-not :key :start :end :from-end
843 \(fn SEQ [KEYWORD VALUE]...)" nil nil)
845 (autoload 'delete-duplicates "cl-seq" "\
846 Remove all duplicate elements from SEQ (destructively).
848 Keywords supported: :test :test-not :key :start :end :from-end
850 \(fn SEQ [KEYWORD VALUE]...)" nil nil)
852 (autoload 'substitute "cl-seq" "\
853 Substitute NEW for OLD in SEQ.
854 This is a non-destructive function; it makes a copy of SEQ if necessary
855 to avoid corrupting the original SEQ.
857 Keywords supported: :test :test-not :key :count :start :end :from-end
859 \(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)
861 (autoload 'substitute-if "cl-seq" "\
862 Substitute NEW for all items satisfying PREDICATE in SEQ.
863 This is a non-destructive function; it makes a copy of SEQ if necessary
864 to avoid corrupting the original SEQ.
866 Keywords supported: :key :count :start :end :from-end
868 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
870 (autoload 'substitute-if-not "cl-seq" "\
871 Substitute NEW for all items not satisfying PREDICATE in SEQ.
872 This is a non-destructive function; it makes a copy of SEQ if necessary
873 to avoid corrupting the original SEQ.
875 Keywords supported: :key :count :start :end :from-end
877 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
879 (autoload 'nsubstitute "cl-seq" "\
880 Substitute NEW for OLD in SEQ.
881 This is a destructive function; it reuses the storage of SEQ whenever possible.
883 Keywords supported: :test :test-not :key :count :start :end :from-end
885 \(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)
887 (autoload 'nsubstitute-if "cl-seq" "\
888 Substitute NEW for all items satisfying PREDICATE in SEQ.
889 This is a destructive function; it reuses the storage of SEQ whenever possible.
891 Keywords supported: :key :count :start :end :from-end
893 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
895 (autoload 'nsubstitute-if-not "cl-seq" "\
896 Substitute NEW for all items not satisfying PREDICATE in SEQ.
897 This is a destructive function; it reuses the storage of SEQ whenever possible.
899 Keywords supported: :key :count :start :end :from-end
901 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
903 (autoload 'find "cl-seq" "\
904 Find the first occurrence of ITEM in SEQ.
905 Return the matching ITEM, or nil if not found.
907 Keywords supported: :test :test-not :key :start :end :from-end
909 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
911 (autoload 'find-if "cl-seq" "\
912 Find the first item satisfying PREDICATE in SEQ.
913 Return the matching item, or nil if not found.
915 Keywords supported: :key :start :end :from-end
917 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
919 (autoload 'find-if-not "cl-seq" "\
920 Find the first item not satisfying PREDICATE in SEQ.
921 Return the matching item, or nil if not found.
923 Keywords supported: :key :start :end :from-end
925 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
927 (autoload 'position "cl-seq" "\
928 Find the first occurrence of ITEM in SEQ.
929 Return the index of the matching item, or nil if not found.
931 Keywords supported: :test :test-not :key :start :end :from-end
933 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
935 (autoload 'position-if "cl-seq" "\
936 Find the first item satisfying PREDICATE in SEQ.
937 Return the index of the matching item, or nil if not found.
939 Keywords supported: :key :start :end :from-end
941 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
943 (autoload 'position-if-not "cl-seq" "\
944 Find the first item not satisfying PREDICATE in SEQ.
945 Return the index of the matching item, or nil if not found.
947 Keywords supported: :key :start :end :from-end
949 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
951 (autoload 'count "cl-seq" "\
952 Count the number of occurrences of ITEM in SEQ.
954 Keywords supported: :test :test-not :key :start :end
956 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
958 (autoload 'count-if "cl-seq" "\
959 Count the number of items satisfying PREDICATE in SEQ.
961 Keywords supported: :key :start :end
963 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
965 (autoload 'count-if-not "cl-seq" "\
966 Count the number of items not satisfying PREDICATE in SEQ.
968 Keywords supported: :key :start :end
970 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
972 (autoload 'mismatch "cl-seq" "\
973 Compare SEQ1 with SEQ2, return index of first mismatching element.
974 Return nil if the sequences match. If one sequence is a prefix of the
975 other, the return value indicates the end of the shorter sequence.
977 Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
979 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
981 (autoload 'search "cl-seq" "\
982 Search for SEQ1 as a subsequence of SEQ2.
983 Return the index of the leftmost element of the first match found;
984 return nil if there are no matches.
986 Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
988 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
990 (autoload 'sort* "cl-seq" "\
991 Sort the argument SEQ according to PREDICATE.
992 This is a destructive function; it reuses the storage of SEQ if possible.
994 Keywords supported: :key
996 \(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)
998 (autoload 'stable-sort "cl-seq" "\
999 Sort the argument SEQ stably according to PREDICATE.
1000 This is a destructive function; it reuses the storage of SEQ if possible.
1002 Keywords supported: :key
1004 \(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)
1006 (autoload 'merge "cl-seq" "\
1007 Destructively merge the two sequences to produce a new sequence.
1008 TYPE is the sequence type to return, SEQ1 and SEQ2 are the two argument
1009 sequences, and PREDICATE is a `less-than' predicate on the elements.
1011 Keywords supported: :key
1013 \(fn TYPE SEQ1 SEQ2 PREDICATE [KEYWORD VALUE]...)" nil nil)
1015 (autoload 'member* "cl-seq" "\
1016 Find the first occurrence of ITEM in LIST.
1017 Return the sublist of LIST whose car is ITEM.
1019 Keywords supported: :test :test-not :key
1021 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1023 (autoload 'member-if "cl-seq" "\
1024 Find the first item satisfying PREDICATE in LIST.
1025 Return the sublist of LIST whose car matches.
1027 Keywords supported: :key
1029 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1031 (autoload 'member-if-not "cl-seq" "\
1032 Find the first item not satisfying PREDICATE in LIST.
1033 Return the sublist of LIST whose car matches.
1035 Keywords supported: :key
1037 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1039 (autoload 'cl-adjoin "cl-seq" "\
1040 Not documented
1042 \(fn CL-ITEM CL-LIST &rest CL-KEYS)" nil nil)
1044 (autoload 'assoc* "cl-seq" "\
1045 Find the first item whose car matches ITEM in LIST.
1047 Keywords supported: :test :test-not :key
1049 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1051 (autoload 'assoc-if "cl-seq" "\
1052 Find the first item whose car satisfies PREDICATE in LIST.
1054 Keywords supported: :key
1056 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1058 (autoload 'assoc-if-not "cl-seq" "\
1059 Find the first item whose car does not satisfy PREDICATE in LIST.
1061 Keywords supported: :key
1063 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1065 (autoload 'rassoc* "cl-seq" "\
1066 Find the first item whose cdr matches ITEM in LIST.
1068 Keywords supported: :test :test-not :key
1070 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1072 (autoload 'rassoc-if "cl-seq" "\
1073 Find the first item whose cdr satisfies PREDICATE in LIST.
1075 Keywords supported: :key
1077 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1079 (autoload 'rassoc-if-not "cl-seq" "\
1080 Find the first item whose cdr does not satisfy PREDICATE in LIST.
1082 Keywords supported: :key
1084 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1086 (autoload 'union "cl-seq" "\
1087 Combine LIST1 and LIST2 using a set-union operation.
1088 The resulting list contains all items that appear in either LIST1 or LIST2.
1089 This is a non-destructive function; it makes a copy of the data if necessary
1090 to avoid corrupting the original LIST1 and LIST2.
1092 Keywords supported: :test :test-not :key
1094 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1096 (autoload 'nunion "cl-seq" "\
1097 Combine LIST1 and LIST2 using a set-union operation.
1098 The resulting list contains all items that appear in either LIST1 or LIST2.
1099 This is a destructive function; it reuses the storage of LIST1 and LIST2
1100 whenever possible.
1102 Keywords supported: :test :test-not :key
1104 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1106 (autoload 'intersection "cl-seq" "\
1107 Combine LIST1 and LIST2 using a set-intersection operation.
1108 The resulting list contains all items that appear in both LIST1 and LIST2.
1109 This is a non-destructive function; it makes a copy of the data if necessary
1110 to avoid corrupting the original LIST1 and LIST2.
1112 Keywords supported: :test :test-not :key
1114 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1116 (autoload 'nintersection "cl-seq" "\
1117 Combine LIST1 and LIST2 using a set-intersection operation.
1118 The resulting list contains all items that appear in both LIST1 and LIST2.
1119 This is a destructive function; it reuses the storage of LIST1 and LIST2
1120 whenever possible.
1122 Keywords supported: :test :test-not :key
1124 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1126 (autoload 'set-difference "cl-seq" "\
1127 Combine LIST1 and LIST2 using a set-difference operation.
1128 The resulting list contains all items that appear in LIST1 but not LIST2.
1129 This is a non-destructive function; it makes a copy of the data if necessary
1130 to avoid corrupting the original LIST1 and LIST2.
1132 Keywords supported: :test :test-not :key
1134 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1136 (autoload 'nset-difference "cl-seq" "\
1137 Combine LIST1 and LIST2 using a set-difference operation.
1138 The resulting list contains all items that appear in LIST1 but not LIST2.
1139 This is a destructive function; it reuses the storage of LIST1 and LIST2
1140 whenever possible.
1142 Keywords supported: :test :test-not :key
1144 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1146 (autoload 'set-exclusive-or "cl-seq" "\
1147 Combine LIST1 and LIST2 using a set-exclusive-or operation.
1148 The resulting list contains all items appearing in exactly one of LIST1, LIST2.
1149 This is a non-destructive function; it makes a copy of the data if necessary
1150 to avoid corrupting the original LIST1 and LIST2.
1152 Keywords supported: :test :test-not :key
1154 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1156 (autoload 'nset-exclusive-or "cl-seq" "\
1157 Combine LIST1 and LIST2 using a set-exclusive-or operation.
1158 The resulting list contains all items appearing in exactly one of LIST1, LIST2.
1159 This is a destructive function; it reuses the storage of LIST1 and LIST2
1160 whenever possible.
1162 Keywords supported: :test :test-not :key
1164 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1166 (autoload 'subsetp "cl-seq" "\
1167 Return true if LIST1 is a subset of LIST2.
1168 I.e., if every element of LIST1 also appears in LIST2.
1170 Keywords supported: :test :test-not :key
1172 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1174 (autoload 'subst-if "cl-seq" "\
1175 Substitute NEW for elements matching PREDICATE in TREE (non-destructively).
1176 Return a copy of TREE with all matching elements replaced by NEW.
1178 Keywords supported: :key
1180 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1182 (autoload 'subst-if-not "cl-seq" "\
1183 Substitute NEW for elts not matching PREDICATE in TREE (non-destructively).
1184 Return a copy of TREE with all non-matching elements replaced by NEW.
1186 Keywords supported: :key
1188 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1190 (autoload 'nsubst "cl-seq" "\
1191 Substitute NEW for OLD everywhere in TREE (destructively).
1192 Any element of TREE which is `eql' to OLD is changed to NEW (via a call
1193 to `setcar').
1195 Keywords supported: :test :test-not :key
1197 \(fn NEW OLD TREE [KEYWORD VALUE]...)" nil nil)
1199 (autoload 'nsubst-if "cl-seq" "\
1200 Substitute NEW for elements matching PREDICATE in TREE (destructively).
1201 Any element of TREE which matches is changed to NEW (via a call to `setcar').
1203 Keywords supported: :key
1205 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1207 (autoload 'nsubst-if-not "cl-seq" "\
1208 Substitute NEW for elements not matching PREDICATE in TREE (destructively).
1209 Any element of TREE which matches is changed to NEW (via a call to `setcar').
1211 Keywords supported: :key
1213 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1215 (autoload 'sublis "cl-seq" "\
1216 Perform substitutions indicated by ALIST in TREE (non-destructively).
1217 Return a copy of TREE with all matching elements replaced.
1219 Keywords supported: :test :test-not :key
1221 \(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)
1223 (autoload 'nsublis "cl-seq" "\
1224 Perform substitutions indicated by ALIST in TREE (destructively).
1225 Any matching element of TREE is changed via a call to `setcar'.
1227 Keywords supported: :test :test-not :key
1229 \(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)
1231 (autoload 'tree-equal "cl-seq" "\
1232 Return t if trees TREE1 and TREE2 have `eql' leaves.
1233 Atoms are compared by `eql'; cons cells are compared recursively.
1235 Keywords supported: :test :test-not :key
1237 \(fn TREE1 TREE2 [KEYWORD VALUE]...)" nil nil)
1239 ;;;***
1241 ;; Local Variables:
1242 ;; version-control: never
1243 ;; no-byte-compile: t
1244 ;; no-update-autoloads: t
1245 ;; coding: utf-8
1246 ;; End:
1247 ;;; cl-loaddefs.el ends here