Update copyright year to 2014 by running admin/update-copyright.
[emacs.git] / src / alloc.c
blob868ea495475c2e7f3d5622d3ebd26bfe21b78898
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2014 Free Software
4 Foundation, Inc.
6 This file is part of GNU Emacs.
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
21 #include <config.h>
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
26 #ifdef ENABLE_CHECKING
27 #include <signal.h> /* For SIGABRT. */
28 #endif
30 #ifdef HAVE_PTHREAD
31 #include <pthread.h>
32 #endif
34 #include "lisp.h"
35 #include "process.h"
36 #include "intervals.h"
37 #include "puresize.h"
38 #include "character.h"
39 #include "buffer.h"
40 #include "window.h"
41 #include "keyboard.h"
42 #include "frame.h"
43 #include "blockinput.h"
44 #include "termhooks.h" /* For struct terminal. */
45 #ifdef HAVE_WINDOW_SYSTEM
46 #include TERM_HEADER
47 #endif /* HAVE_WINDOW_SYSTEM */
49 #include <verify.h>
51 #if (defined ENABLE_CHECKING \
52 && defined HAVE_VALGRIND_VALGRIND_H \
53 && !defined USE_VALGRIND)
54 # define USE_VALGRIND 1
55 #endif
57 #if USE_VALGRIND
58 #include <valgrind/valgrind.h>
59 #include <valgrind/memcheck.h>
60 static bool valgrind_p;
61 #endif
63 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
64 Doable only if GC_MARK_STACK. */
65 #if ! GC_MARK_STACK
66 # undef GC_CHECK_MARKED_OBJECTS
67 #endif
69 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
70 memory. Can do this only if using gmalloc.c and if not checking
71 marked objects. */
73 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
74 || defined GC_CHECK_MARKED_OBJECTS)
75 #undef GC_MALLOC_CHECK
76 #endif
78 #include <unistd.h>
79 #include <fcntl.h>
81 #ifdef USE_GTK
82 # include "gtkutil.h"
83 #endif
84 #ifdef WINDOWSNT
85 #include "w32.h"
86 #include "w32heap.h" /* for sbrk */
87 #endif
89 #ifdef DOUG_LEA_MALLOC
91 #include <malloc.h>
93 /* Specify maximum number of areas to mmap. It would be nice to use a
94 value that explicitly means "no limit". */
96 #define MMAP_MAX_AREAS 100000000
98 #endif /* not DOUG_LEA_MALLOC */
100 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
101 to a struct Lisp_String. */
103 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
104 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
105 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
107 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
108 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
109 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
111 /* Default value of gc_cons_threshold (see below). */
113 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
115 /* Global variables. */
116 struct emacs_globals globals;
118 /* Number of bytes of consing done since the last gc. */
120 EMACS_INT consing_since_gc;
122 /* Similar minimum, computed from Vgc_cons_percentage. */
124 EMACS_INT gc_relative_threshold;
126 /* Minimum number of bytes of consing since GC before next GC,
127 when memory is full. */
129 EMACS_INT memory_full_cons_threshold;
131 /* True during GC. */
133 bool gc_in_progress;
135 /* True means abort if try to GC.
136 This is for code which is written on the assumption that
137 no GC will happen, so as to verify that assumption. */
139 bool abort_on_gc;
141 /* Number of live and free conses etc. */
143 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
144 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
145 static EMACS_INT total_free_floats, total_floats;
147 /* Points to memory space allocated as "spare", to be freed if we run
148 out of memory. We keep one large block, four cons-blocks, and
149 two string blocks. */
151 static char *spare_memory[7];
153 /* Amount of spare memory to keep in large reserve block, or to see
154 whether this much is available when malloc fails on a larger request. */
156 #define SPARE_MEMORY (1 << 14)
158 /* Initialize it to a nonzero value to force it into data space
159 (rather than bss space). That way unexec will remap it into text
160 space (pure), on some systems. We have not implemented the
161 remapping on more recent systems because this is less important
162 nowadays than in the days of small memories and timesharing. */
164 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
165 #define PUREBEG (char *) pure
167 /* Pointer to the pure area, and its size. */
169 static char *purebeg;
170 static ptrdiff_t pure_size;
172 /* Number of bytes of pure storage used before pure storage overflowed.
173 If this is non-zero, this implies that an overflow occurred. */
175 static ptrdiff_t pure_bytes_used_before_overflow;
177 /* True if P points into pure space. */
179 #define PURE_POINTER_P(P) \
180 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
182 /* Index in pure at which next pure Lisp object will be allocated.. */
184 static ptrdiff_t pure_bytes_used_lisp;
186 /* Number of bytes allocated for non-Lisp objects in pure storage. */
188 static ptrdiff_t pure_bytes_used_non_lisp;
190 /* If nonzero, this is a warning delivered by malloc and not yet
191 displayed. */
193 const char *pending_malloc_warning;
195 /* Maximum amount of C stack to save when a GC happens. */
197 #ifndef MAX_SAVE_STACK
198 #define MAX_SAVE_STACK 16000
199 #endif
201 /* Buffer in which we save a copy of the C stack at each GC. */
203 #if MAX_SAVE_STACK > 0
204 static char *stack_copy;
205 static ptrdiff_t stack_copy_size;
207 /* Copy to DEST a block of memory from SRC of size SIZE bytes,
208 avoiding any address sanitization. */
210 static void * ATTRIBUTE_NO_SANITIZE_ADDRESS
211 no_sanitize_memcpy (void *dest, void const *src, size_t size)
213 if (! ADDRESS_SANITIZER)
214 return memcpy (dest, src, size);
215 else
217 size_t i;
218 char *d = dest;
219 char const *s = src;
220 for (i = 0; i < size; i++)
221 d[i] = s[i];
222 return dest;
226 #endif /* MAX_SAVE_STACK > 0 */
228 static Lisp_Object Qconses;
229 static Lisp_Object Qsymbols;
230 static Lisp_Object Qmiscs;
231 static Lisp_Object Qstrings;
232 static Lisp_Object Qvectors;
233 static Lisp_Object Qfloats;
234 static Lisp_Object Qintervals;
235 static Lisp_Object Qbuffers;
236 static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
237 static Lisp_Object Qgc_cons_threshold;
238 Lisp_Object Qautomatic_gc;
239 Lisp_Object Qchar_table_extra_slots;
241 /* Hook run after GC has finished. */
243 static Lisp_Object Qpost_gc_hook;
245 static void mark_terminals (void);
246 static void gc_sweep (void);
247 static Lisp_Object make_pure_vector (ptrdiff_t);
248 static void mark_buffer (struct buffer *);
250 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
251 static void refill_memory_reserve (void);
252 #endif
253 static void compact_small_strings (void);
254 static void free_large_strings (void);
255 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
257 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
258 what memory allocated via lisp_malloc and lisp_align_malloc is intended
259 for what purpose. This enumeration specifies the type of memory. */
261 enum mem_type
263 MEM_TYPE_NON_LISP,
264 MEM_TYPE_BUFFER,
265 MEM_TYPE_CONS,
266 MEM_TYPE_STRING,
267 MEM_TYPE_MISC,
268 MEM_TYPE_SYMBOL,
269 MEM_TYPE_FLOAT,
270 /* Since all non-bool pseudovectors are small enough to be
271 allocated from vector blocks, this memory type denotes
272 large regular vectors and large bool pseudovectors. */
273 MEM_TYPE_VECTORLIKE,
274 /* Special type to denote vector blocks. */
275 MEM_TYPE_VECTOR_BLOCK,
276 /* Special type to denote reserved memory. */
277 MEM_TYPE_SPARE
280 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
282 /* A unique object in pure space used to make some Lisp objects
283 on free lists recognizable in O(1). */
285 static Lisp_Object Vdead;
286 #define DEADP(x) EQ (x, Vdead)
288 #ifdef GC_MALLOC_CHECK
290 enum mem_type allocated_mem_type;
292 #endif /* GC_MALLOC_CHECK */
294 /* A node in the red-black tree describing allocated memory containing
295 Lisp data. Each such block is recorded with its start and end
296 address when it is allocated, and removed from the tree when it
297 is freed.
299 A red-black tree is a balanced binary tree with the following
300 properties:
302 1. Every node is either red or black.
303 2. Every leaf is black.
304 3. If a node is red, then both of its children are black.
305 4. Every simple path from a node to a descendant leaf contains
306 the same number of black nodes.
307 5. The root is always black.
309 When nodes are inserted into the tree, or deleted from the tree,
310 the tree is "fixed" so that these properties are always true.
312 A red-black tree with N internal nodes has height at most 2
313 log(N+1). Searches, insertions and deletions are done in O(log N).
314 Please see a text book about data structures for a detailed
315 description of red-black trees. Any book worth its salt should
316 describe them. */
318 struct mem_node
320 /* Children of this node. These pointers are never NULL. When there
321 is no child, the value is MEM_NIL, which points to a dummy node. */
322 struct mem_node *left, *right;
324 /* The parent of this node. In the root node, this is NULL. */
325 struct mem_node *parent;
327 /* Start and end of allocated region. */
328 void *start, *end;
330 /* Node color. */
331 enum {MEM_BLACK, MEM_RED} color;
333 /* Memory type. */
334 enum mem_type type;
337 /* Base address of stack. Set in main. */
339 Lisp_Object *stack_base;
341 /* Root of the tree describing allocated Lisp memory. */
343 static struct mem_node *mem_root;
345 /* Lowest and highest known address in the heap. */
347 static void *min_heap_address, *max_heap_address;
349 /* Sentinel node of the tree. */
351 static struct mem_node mem_z;
352 #define MEM_NIL &mem_z
354 static struct mem_node *mem_insert (void *, void *, enum mem_type);
355 static void mem_insert_fixup (struct mem_node *);
356 static void mem_rotate_left (struct mem_node *);
357 static void mem_rotate_right (struct mem_node *);
358 static void mem_delete (struct mem_node *);
359 static void mem_delete_fixup (struct mem_node *);
360 static struct mem_node *mem_find (void *);
362 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
364 #ifndef DEADP
365 # define DEADP(x) 0
366 #endif
368 /* Recording what needs to be marked for gc. */
370 struct gcpro *gcprolist;
372 /* Addresses of staticpro'd variables. Initialize it to a nonzero
373 value; otherwise some compilers put it into BSS. */
375 enum { NSTATICS = 2048 };
376 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
378 /* Index of next unused slot in staticvec. */
380 static int staticidx;
382 static void *pure_alloc (size_t, int);
384 /* Return X rounded to the next multiple of Y. Arguments should not
385 have side effects, as they are evaluated more than once. Assume X
386 + Y - 1 does not overflow. Tune for Y being a power of 2. */
388 #define ROUNDUP(x, y) ((y) & ((y) - 1) \
389 ? ((x) + (y) - 1) - ((x) + (y) - 1) % (y) \
390 : ((x) + (y) - 1) & ~ ((y) - 1))
392 /* Return PTR rounded up to the next multiple of ALIGNMENT. */
394 static void *
395 ALIGN (void *ptr, int alignment)
397 return (void *) ROUNDUP ((uintptr_t) ptr, alignment);
400 static void
401 XFLOAT_INIT (Lisp_Object f, double n)
403 XFLOAT (f)->u.data = n;
407 /************************************************************************
408 Malloc
409 ************************************************************************/
411 /* Function malloc calls this if it finds we are near exhausting storage. */
413 void
414 malloc_warning (const char *str)
416 pending_malloc_warning = str;
420 /* Display an already-pending malloc warning. */
422 void
423 display_malloc_warning (void)
425 call3 (intern ("display-warning"),
426 intern ("alloc"),
427 build_string (pending_malloc_warning),
428 intern ("emergency"));
429 pending_malloc_warning = 0;
432 /* Called if we can't allocate relocatable space for a buffer. */
434 void
435 buffer_memory_full (ptrdiff_t nbytes)
437 /* If buffers use the relocating allocator, no need to free
438 spare_memory, because we may have plenty of malloc space left
439 that we could get, and if we don't, the malloc that fails will
440 itself cause spare_memory to be freed. If buffers don't use the
441 relocating allocator, treat this like any other failing
442 malloc. */
444 #ifndef REL_ALLOC
445 memory_full (nbytes);
446 #else
447 /* This used to call error, but if we've run out of memory, we could
448 get infinite recursion trying to build the string. */
449 xsignal (Qnil, Vmemory_signal_data);
450 #endif
453 /* A common multiple of the positive integers A and B. Ideally this
454 would be the least common multiple, but there's no way to do that
455 as a constant expression in C, so do the best that we can easily do. */
456 #define COMMON_MULTIPLE(a, b) \
457 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
459 #ifndef XMALLOC_OVERRUN_CHECK
460 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
461 #else
463 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
464 around each block.
466 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
467 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
468 block size in little-endian order. The trailer consists of
469 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
471 The header is used to detect whether this block has been allocated
472 through these functions, as some low-level libc functions may
473 bypass the malloc hooks. */
475 #define XMALLOC_OVERRUN_CHECK_SIZE 16
476 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
477 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
479 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
480 hold a size_t value and (2) the header size is a multiple of the
481 alignment that Emacs needs for C types and for USE_LSB_TAG. */
482 #define XMALLOC_BASE_ALIGNMENT \
483 alignof (union { long double d; intmax_t i; void *p; })
485 #if USE_LSB_TAG
486 # define XMALLOC_HEADER_ALIGNMENT \
487 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
488 #else
489 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
490 #endif
491 #define XMALLOC_OVERRUN_SIZE_SIZE \
492 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
493 + XMALLOC_HEADER_ALIGNMENT - 1) \
494 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
495 - XMALLOC_OVERRUN_CHECK_SIZE)
497 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
498 { '\x9a', '\x9b', '\xae', '\xaf',
499 '\xbf', '\xbe', '\xce', '\xcf',
500 '\xea', '\xeb', '\xec', '\xed',
501 '\xdf', '\xde', '\x9c', '\x9d' };
503 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
504 { '\xaa', '\xab', '\xac', '\xad',
505 '\xba', '\xbb', '\xbc', '\xbd',
506 '\xca', '\xcb', '\xcc', '\xcd',
507 '\xda', '\xdb', '\xdc', '\xdd' };
509 /* Insert and extract the block size in the header. */
511 static void
512 xmalloc_put_size (unsigned char *ptr, size_t size)
514 int i;
515 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
517 *--ptr = size & ((1 << CHAR_BIT) - 1);
518 size >>= CHAR_BIT;
522 static size_t
523 xmalloc_get_size (unsigned char *ptr)
525 size_t size = 0;
526 int i;
527 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
528 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
530 size <<= CHAR_BIT;
531 size += *ptr++;
533 return size;
537 /* Like malloc, but wraps allocated block with header and trailer. */
539 static void *
540 overrun_check_malloc (size_t size)
542 register unsigned char *val;
543 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
544 emacs_abort ();
546 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
547 if (val)
549 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
550 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
551 xmalloc_put_size (val, size);
552 memcpy (val + size, xmalloc_overrun_check_trailer,
553 XMALLOC_OVERRUN_CHECK_SIZE);
555 return val;
559 /* Like realloc, but checks old block for overrun, and wraps new block
560 with header and trailer. */
562 static void *
563 overrun_check_realloc (void *block, size_t size)
565 register unsigned char *val = (unsigned char *) block;
566 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
567 emacs_abort ();
569 if (val
570 && memcmp (xmalloc_overrun_check_header,
571 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
572 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
574 size_t osize = xmalloc_get_size (val);
575 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
576 XMALLOC_OVERRUN_CHECK_SIZE))
577 emacs_abort ();
578 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
579 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
580 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
583 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
585 if (val)
587 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
588 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
589 xmalloc_put_size (val, size);
590 memcpy (val + size, xmalloc_overrun_check_trailer,
591 XMALLOC_OVERRUN_CHECK_SIZE);
593 return val;
596 /* Like free, but checks block for overrun. */
598 static void
599 overrun_check_free (void *block)
601 unsigned char *val = (unsigned char *) block;
603 if (val
604 && memcmp (xmalloc_overrun_check_header,
605 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
606 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
608 size_t osize = xmalloc_get_size (val);
609 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
610 XMALLOC_OVERRUN_CHECK_SIZE))
611 emacs_abort ();
612 #ifdef XMALLOC_CLEAR_FREE_MEMORY
613 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
614 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
615 #else
616 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
617 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
618 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
619 #endif
622 free (val);
625 #undef malloc
626 #undef realloc
627 #undef free
628 #define malloc overrun_check_malloc
629 #define realloc overrun_check_realloc
630 #define free overrun_check_free
631 #endif
633 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
634 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
635 If that variable is set, block input while in one of Emacs's memory
636 allocation functions. There should be no need for this debugging
637 option, since signal handlers do not allocate memory, but Emacs
638 formerly allocated memory in signal handlers and this compile-time
639 option remains as a way to help debug the issue should it rear its
640 ugly head again. */
641 #ifdef XMALLOC_BLOCK_INPUT_CHECK
642 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
643 static void
644 malloc_block_input (void)
646 if (block_input_in_memory_allocators)
647 block_input ();
649 static void
650 malloc_unblock_input (void)
652 if (block_input_in_memory_allocators)
653 unblock_input ();
655 # define MALLOC_BLOCK_INPUT malloc_block_input ()
656 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
657 #else
658 # define MALLOC_BLOCK_INPUT ((void) 0)
659 # define MALLOC_UNBLOCK_INPUT ((void) 0)
660 #endif
662 #define MALLOC_PROBE(size) \
663 do { \
664 if (profiler_memory_running) \
665 malloc_probe (size); \
666 } while (0)
669 /* Like malloc but check for no memory and block interrupt input.. */
671 void *
672 xmalloc (size_t size)
674 void *val;
676 MALLOC_BLOCK_INPUT;
677 val = malloc (size);
678 MALLOC_UNBLOCK_INPUT;
680 if (!val && size)
681 memory_full (size);
682 MALLOC_PROBE (size);
683 return val;
686 /* Like the above, but zeroes out the memory just allocated. */
688 void *
689 xzalloc (size_t size)
691 void *val;
693 MALLOC_BLOCK_INPUT;
694 val = malloc (size);
695 MALLOC_UNBLOCK_INPUT;
697 if (!val && size)
698 memory_full (size);
699 memset (val, 0, size);
700 MALLOC_PROBE (size);
701 return val;
704 /* Like realloc but check for no memory and block interrupt input.. */
706 void *
707 xrealloc (void *block, size_t size)
709 void *val;
711 MALLOC_BLOCK_INPUT;
712 /* We must call malloc explicitly when BLOCK is 0, since some
713 reallocs don't do this. */
714 if (! block)
715 val = malloc (size);
716 else
717 val = realloc (block, size);
718 MALLOC_UNBLOCK_INPUT;
720 if (!val && size)
721 memory_full (size);
722 MALLOC_PROBE (size);
723 return val;
727 /* Like free but block interrupt input. */
729 void
730 xfree (void *block)
732 if (!block)
733 return;
734 MALLOC_BLOCK_INPUT;
735 free (block);
736 MALLOC_UNBLOCK_INPUT;
737 /* We don't call refill_memory_reserve here
738 because in practice the call in r_alloc_free seems to suffice. */
742 /* Other parts of Emacs pass large int values to allocator functions
743 expecting ptrdiff_t. This is portable in practice, but check it to
744 be safe. */
745 verify (INT_MAX <= PTRDIFF_MAX);
748 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
749 Signal an error on memory exhaustion, and block interrupt input. */
751 void *
752 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
754 eassert (0 <= nitems && 0 < item_size);
755 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
756 memory_full (SIZE_MAX);
757 return xmalloc (nitems * item_size);
761 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
762 Signal an error on memory exhaustion, and block interrupt input. */
764 void *
765 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
767 eassert (0 <= nitems && 0 < item_size);
768 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
769 memory_full (SIZE_MAX);
770 return xrealloc (pa, nitems * item_size);
774 /* Grow PA, which points to an array of *NITEMS items, and return the
775 location of the reallocated array, updating *NITEMS to reflect its
776 new size. The new array will contain at least NITEMS_INCR_MIN more
777 items, but will not contain more than NITEMS_MAX items total.
778 ITEM_SIZE is the size of each item, in bytes.
780 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
781 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
782 infinity.
784 If PA is null, then allocate a new array instead of reallocating
785 the old one.
787 Block interrupt input as needed. If memory exhaustion occurs, set
788 *NITEMS to zero if PA is null, and signal an error (i.e., do not
789 return).
791 Thus, to grow an array A without saving its old contents, do
792 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
793 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
794 and signals an error, and later this code is reexecuted and
795 attempts to free A. */
797 void *
798 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
799 ptrdiff_t nitems_max, ptrdiff_t item_size)
801 /* The approximate size to use for initial small allocation
802 requests. This is the largest "small" request for the GNU C
803 library malloc. */
804 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
806 /* If the array is tiny, grow it to about (but no greater than)
807 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
808 ptrdiff_t n = *nitems;
809 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
810 ptrdiff_t half_again = n >> 1;
811 ptrdiff_t incr_estimate = max (tiny_max, half_again);
813 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
814 NITEMS_MAX, and what the C language can represent safely. */
815 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
816 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
817 ? nitems_max : C_language_max);
818 ptrdiff_t nitems_incr_max = n_max - n;
819 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
821 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
822 if (! pa)
823 *nitems = 0;
824 if (nitems_incr_max < incr)
825 memory_full (SIZE_MAX);
826 n += incr;
827 pa = xrealloc (pa, n * item_size);
828 *nitems = n;
829 return pa;
833 /* Like strdup, but uses xmalloc. */
835 char *
836 xstrdup (const char *s)
838 ptrdiff_t size;
839 eassert (s);
840 size = strlen (s) + 1;
841 return memcpy (xmalloc (size), s, size);
844 /* Like above, but duplicates Lisp string to C string. */
846 char *
847 xlispstrdup (Lisp_Object string)
849 ptrdiff_t size = SBYTES (string) + 1;
850 return memcpy (xmalloc (size), SSDATA (string), size);
853 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
854 argument is a const pointer. */
856 void
857 xputenv (char const *string)
859 if (putenv ((char *) string) != 0)
860 memory_full (0);
863 /* Return a newly allocated memory block of SIZE bytes, remembering
864 to free it when unwinding. */
865 void *
866 record_xmalloc (size_t size)
868 void *p = xmalloc (size);
869 record_unwind_protect_ptr (xfree, p);
870 return p;
874 /* Like malloc but used for allocating Lisp data. NBYTES is the
875 number of bytes to allocate, TYPE describes the intended use of the
876 allocated memory block (for strings, for conses, ...). */
878 #if ! USE_LSB_TAG
879 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
880 #endif
882 static void *
883 lisp_malloc (size_t nbytes, enum mem_type type)
885 register void *val;
887 MALLOC_BLOCK_INPUT;
889 #ifdef GC_MALLOC_CHECK
890 allocated_mem_type = type;
891 #endif
893 val = malloc (nbytes);
895 #if ! USE_LSB_TAG
896 /* If the memory just allocated cannot be addressed thru a Lisp
897 object's pointer, and it needs to be,
898 that's equivalent to running out of memory. */
899 if (val && type != MEM_TYPE_NON_LISP)
901 Lisp_Object tem;
902 XSETCONS (tem, (char *) val + nbytes - 1);
903 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
905 lisp_malloc_loser = val;
906 free (val);
907 val = 0;
910 #endif
912 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
913 if (val && type != MEM_TYPE_NON_LISP)
914 mem_insert (val, (char *) val + nbytes, type);
915 #endif
917 MALLOC_UNBLOCK_INPUT;
918 if (!val && nbytes)
919 memory_full (nbytes);
920 MALLOC_PROBE (nbytes);
921 return val;
924 /* Free BLOCK. This must be called to free memory allocated with a
925 call to lisp_malloc. */
927 static void
928 lisp_free (void *block)
930 MALLOC_BLOCK_INPUT;
931 free (block);
932 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
933 mem_delete (mem_find (block));
934 #endif
935 MALLOC_UNBLOCK_INPUT;
938 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
940 /* The entry point is lisp_align_malloc which returns blocks of at most
941 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
943 /* Use aligned_alloc if it or a simple substitute is available.
944 Address sanitization breaks aligned allocation, as of gcc 4.8.2 and
945 clang 3.3 anyway. */
947 #if ! ADDRESS_SANITIZER
948 # if !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC
949 # define USE_ALIGNED_ALLOC 1
950 /* Defined in gmalloc.c. */
951 void *aligned_alloc (size_t, size_t);
952 # elif defined HAVE_ALIGNED_ALLOC
953 # define USE_ALIGNED_ALLOC 1
954 # elif defined HAVE_POSIX_MEMALIGN
955 # define USE_ALIGNED_ALLOC 1
956 static void *
957 aligned_alloc (size_t alignment, size_t size)
959 void *p;
960 return posix_memalign (&p, alignment, size) == 0 ? p : 0;
962 # endif
963 #endif
965 /* BLOCK_ALIGN has to be a power of 2. */
966 #define BLOCK_ALIGN (1 << 10)
968 /* Padding to leave at the end of a malloc'd block. This is to give
969 malloc a chance to minimize the amount of memory wasted to alignment.
970 It should be tuned to the particular malloc library used.
971 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
972 aligned_alloc on the other hand would ideally prefer a value of 4
973 because otherwise, there's 1020 bytes wasted between each ablocks.
974 In Emacs, testing shows that those 1020 can most of the time be
975 efficiently used by malloc to place other objects, so a value of 0 can
976 still preferable unless you have a lot of aligned blocks and virtually
977 nothing else. */
978 #define BLOCK_PADDING 0
979 #define BLOCK_BYTES \
980 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
982 /* Internal data structures and constants. */
984 #define ABLOCKS_SIZE 16
986 /* An aligned block of memory. */
987 struct ablock
989 union
991 char payload[BLOCK_BYTES];
992 struct ablock *next_free;
993 } x;
994 /* `abase' is the aligned base of the ablocks. */
995 /* It is overloaded to hold the virtual `busy' field that counts
996 the number of used ablock in the parent ablocks.
997 The first ablock has the `busy' field, the others have the `abase'
998 field. To tell the difference, we assume that pointers will have
999 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1000 is used to tell whether the real base of the parent ablocks is `abase'
1001 (if not, the word before the first ablock holds a pointer to the
1002 real base). */
1003 struct ablocks *abase;
1004 /* The padding of all but the last ablock is unused. The padding of
1005 the last ablock in an ablocks is not allocated. */
1006 #if BLOCK_PADDING
1007 char padding[BLOCK_PADDING];
1008 #endif
1011 /* A bunch of consecutive aligned blocks. */
1012 struct ablocks
1014 struct ablock blocks[ABLOCKS_SIZE];
1017 /* Size of the block requested from malloc or aligned_alloc. */
1018 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1020 #define ABLOCK_ABASE(block) \
1021 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1022 ? (struct ablocks *)(block) \
1023 : (block)->abase)
1025 /* Virtual `busy' field. */
1026 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1028 /* Pointer to the (not necessarily aligned) malloc block. */
1029 #ifdef USE_ALIGNED_ALLOC
1030 #define ABLOCKS_BASE(abase) (abase)
1031 #else
1032 #define ABLOCKS_BASE(abase) \
1033 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
1034 #endif
1036 /* The list of free ablock. */
1037 static struct ablock *free_ablock;
1039 /* Allocate an aligned block of nbytes.
1040 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1041 smaller or equal to BLOCK_BYTES. */
1042 static void *
1043 lisp_align_malloc (size_t nbytes, enum mem_type type)
1045 void *base, *val;
1046 struct ablocks *abase;
1048 eassert (nbytes <= BLOCK_BYTES);
1050 MALLOC_BLOCK_INPUT;
1052 #ifdef GC_MALLOC_CHECK
1053 allocated_mem_type = type;
1054 #endif
1056 if (!free_ablock)
1058 int i;
1059 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1061 #ifdef DOUG_LEA_MALLOC
1062 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1063 because mapped region contents are not preserved in
1064 a dumped Emacs. */
1065 mallopt (M_MMAP_MAX, 0);
1066 #endif
1068 #ifdef USE_ALIGNED_ALLOC
1069 abase = base = aligned_alloc (BLOCK_ALIGN, ABLOCKS_BYTES);
1070 #else
1071 base = malloc (ABLOCKS_BYTES);
1072 abase = ALIGN (base, BLOCK_ALIGN);
1073 #endif
1075 if (base == 0)
1077 MALLOC_UNBLOCK_INPUT;
1078 memory_full (ABLOCKS_BYTES);
1081 aligned = (base == abase);
1082 if (!aligned)
1083 ((void **) abase)[-1] = base;
1085 #ifdef DOUG_LEA_MALLOC
1086 /* Back to a reasonable maximum of mmap'ed areas. */
1087 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1088 #endif
1090 #if ! USE_LSB_TAG
1091 /* If the memory just allocated cannot be addressed thru a Lisp
1092 object's pointer, and it needs to be, that's equivalent to
1093 running out of memory. */
1094 if (type != MEM_TYPE_NON_LISP)
1096 Lisp_Object tem;
1097 char *end = (char *) base + ABLOCKS_BYTES - 1;
1098 XSETCONS (tem, end);
1099 if ((char *) XCONS (tem) != end)
1101 lisp_malloc_loser = base;
1102 free (base);
1103 MALLOC_UNBLOCK_INPUT;
1104 memory_full (SIZE_MAX);
1107 #endif
1109 /* Initialize the blocks and put them on the free list.
1110 If `base' was not properly aligned, we can't use the last block. */
1111 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1113 abase->blocks[i].abase = abase;
1114 abase->blocks[i].x.next_free = free_ablock;
1115 free_ablock = &abase->blocks[i];
1117 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1119 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1120 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1121 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1122 eassert (ABLOCKS_BASE (abase) == base);
1123 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1126 abase = ABLOCK_ABASE (free_ablock);
1127 ABLOCKS_BUSY (abase) =
1128 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1129 val = free_ablock;
1130 free_ablock = free_ablock->x.next_free;
1132 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1133 if (type != MEM_TYPE_NON_LISP)
1134 mem_insert (val, (char *) val + nbytes, type);
1135 #endif
1137 MALLOC_UNBLOCK_INPUT;
1139 MALLOC_PROBE (nbytes);
1141 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1142 return val;
1145 static void
1146 lisp_align_free (void *block)
1148 struct ablock *ablock = block;
1149 struct ablocks *abase = ABLOCK_ABASE (ablock);
1151 MALLOC_BLOCK_INPUT;
1152 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1153 mem_delete (mem_find (block));
1154 #endif
1155 /* Put on free list. */
1156 ablock->x.next_free = free_ablock;
1157 free_ablock = ablock;
1158 /* Update busy count. */
1159 ABLOCKS_BUSY (abase)
1160 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1162 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1163 { /* All the blocks are free. */
1164 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1165 struct ablock **tem = &free_ablock;
1166 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1168 while (*tem)
1170 if (*tem >= (struct ablock *) abase && *tem < atop)
1172 i++;
1173 *tem = (*tem)->x.next_free;
1175 else
1176 tem = &(*tem)->x.next_free;
1178 eassert ((aligned & 1) == aligned);
1179 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1180 #ifdef USE_POSIX_MEMALIGN
1181 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1182 #endif
1183 free (ABLOCKS_BASE (abase));
1185 MALLOC_UNBLOCK_INPUT;
1189 /***********************************************************************
1190 Interval Allocation
1191 ***********************************************************************/
1193 /* Number of intervals allocated in an interval_block structure.
1194 The 1020 is 1024 minus malloc overhead. */
1196 #define INTERVAL_BLOCK_SIZE \
1197 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1199 /* Intervals are allocated in chunks in the form of an interval_block
1200 structure. */
1202 struct interval_block
1204 /* Place `intervals' first, to preserve alignment. */
1205 struct interval intervals[INTERVAL_BLOCK_SIZE];
1206 struct interval_block *next;
1209 /* Current interval block. Its `next' pointer points to older
1210 blocks. */
1212 static struct interval_block *interval_block;
1214 /* Index in interval_block above of the next unused interval
1215 structure. */
1217 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1219 /* Number of free and live intervals. */
1221 static EMACS_INT total_free_intervals, total_intervals;
1223 /* List of free intervals. */
1225 static INTERVAL interval_free_list;
1227 /* Return a new interval. */
1229 INTERVAL
1230 make_interval (void)
1232 INTERVAL val;
1234 MALLOC_BLOCK_INPUT;
1236 if (interval_free_list)
1238 val = interval_free_list;
1239 interval_free_list = INTERVAL_PARENT (interval_free_list);
1241 else
1243 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1245 struct interval_block *newi
1246 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1248 newi->next = interval_block;
1249 interval_block = newi;
1250 interval_block_index = 0;
1251 total_free_intervals += INTERVAL_BLOCK_SIZE;
1253 val = &interval_block->intervals[interval_block_index++];
1256 MALLOC_UNBLOCK_INPUT;
1258 consing_since_gc += sizeof (struct interval);
1259 intervals_consed++;
1260 total_free_intervals--;
1261 RESET_INTERVAL (val);
1262 val->gcmarkbit = 0;
1263 return val;
1267 /* Mark Lisp objects in interval I. */
1269 static void
1270 mark_interval (register INTERVAL i, Lisp_Object dummy)
1272 /* Intervals should never be shared. So, if extra internal checking is
1273 enabled, GC aborts if it seems to have visited an interval twice. */
1274 eassert (!i->gcmarkbit);
1275 i->gcmarkbit = 1;
1276 mark_object (i->plist);
1279 /* Mark the interval tree rooted in I. */
1281 #define MARK_INTERVAL_TREE(i) \
1282 do { \
1283 if (i && !i->gcmarkbit) \
1284 traverse_intervals_noorder (i, mark_interval, Qnil); \
1285 } while (0)
1287 /***********************************************************************
1288 String Allocation
1289 ***********************************************************************/
1291 /* Lisp_Strings are allocated in string_block structures. When a new
1292 string_block is allocated, all the Lisp_Strings it contains are
1293 added to a free-list string_free_list. When a new Lisp_String is
1294 needed, it is taken from that list. During the sweep phase of GC,
1295 string_blocks that are entirely free are freed, except two which
1296 we keep.
1298 String data is allocated from sblock structures. Strings larger
1299 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1300 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1302 Sblocks consist internally of sdata structures, one for each
1303 Lisp_String. The sdata structure points to the Lisp_String it
1304 belongs to. The Lisp_String points back to the `u.data' member of
1305 its sdata structure.
1307 When a Lisp_String is freed during GC, it is put back on
1308 string_free_list, and its `data' member and its sdata's `string'
1309 pointer is set to null. The size of the string is recorded in the
1310 `n.nbytes' member of the sdata. So, sdata structures that are no
1311 longer used, can be easily recognized, and it's easy to compact the
1312 sblocks of small strings which we do in compact_small_strings. */
1314 /* Size in bytes of an sblock structure used for small strings. This
1315 is 8192 minus malloc overhead. */
1317 #define SBLOCK_SIZE 8188
1319 /* Strings larger than this are considered large strings. String data
1320 for large strings is allocated from individual sblocks. */
1322 #define LARGE_STRING_BYTES 1024
1324 /* The SDATA typedef is a struct or union describing string memory
1325 sub-allocated from an sblock. This is where the contents of Lisp
1326 strings are stored. */
1328 struct sdata
1330 /* Back-pointer to the string this sdata belongs to. If null, this
1331 structure is free, and NBYTES (in this structure or in the union below)
1332 contains the string's byte size (the same value that STRING_BYTES
1333 would return if STRING were non-null). If non-null, STRING_BYTES
1334 (STRING) is the size of the data, and DATA contains the string's
1335 contents. */
1336 struct Lisp_String *string;
1338 #ifdef GC_CHECK_STRING_BYTES
1339 ptrdiff_t nbytes;
1340 #endif
1342 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1345 #ifdef GC_CHECK_STRING_BYTES
1347 typedef struct sdata sdata;
1348 #define SDATA_NBYTES(S) (S)->nbytes
1349 #define SDATA_DATA(S) (S)->data
1351 #else
1353 typedef union
1355 struct Lisp_String *string;
1357 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1358 which has a flexible array member. However, if implemented by
1359 giving this union a member of type 'struct sdata', the union
1360 could not be the last (flexible) member of 'struct sblock',
1361 because C99 prohibits a flexible array member from having a type
1362 that is itself a flexible array. So, comment this member out here,
1363 but remember that the option's there when using this union. */
1364 #if 0
1365 struct sdata u;
1366 #endif
1368 /* When STRING is null. */
1369 struct
1371 struct Lisp_String *string;
1372 ptrdiff_t nbytes;
1373 } n;
1374 } sdata;
1376 #define SDATA_NBYTES(S) (S)->n.nbytes
1377 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1379 #endif /* not GC_CHECK_STRING_BYTES */
1381 enum { SDATA_DATA_OFFSET = offsetof (struct sdata, data) };
1383 /* Structure describing a block of memory which is sub-allocated to
1384 obtain string data memory for strings. Blocks for small strings
1385 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1386 as large as needed. */
1388 struct sblock
1390 /* Next in list. */
1391 struct sblock *next;
1393 /* Pointer to the next free sdata block. This points past the end
1394 of the sblock if there isn't any space left in this block. */
1395 sdata *next_free;
1397 /* String data. */
1398 sdata data[FLEXIBLE_ARRAY_MEMBER];
1401 /* Number of Lisp strings in a string_block structure. The 1020 is
1402 1024 minus malloc overhead. */
1404 #define STRING_BLOCK_SIZE \
1405 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1407 /* Structure describing a block from which Lisp_String structures
1408 are allocated. */
1410 struct string_block
1412 /* Place `strings' first, to preserve alignment. */
1413 struct Lisp_String strings[STRING_BLOCK_SIZE];
1414 struct string_block *next;
1417 /* Head and tail of the list of sblock structures holding Lisp string
1418 data. We always allocate from current_sblock. The NEXT pointers
1419 in the sblock structures go from oldest_sblock to current_sblock. */
1421 static struct sblock *oldest_sblock, *current_sblock;
1423 /* List of sblocks for large strings. */
1425 static struct sblock *large_sblocks;
1427 /* List of string_block structures. */
1429 static struct string_block *string_blocks;
1431 /* Free-list of Lisp_Strings. */
1433 static struct Lisp_String *string_free_list;
1435 /* Number of live and free Lisp_Strings. */
1437 static EMACS_INT total_strings, total_free_strings;
1439 /* Number of bytes used by live strings. */
1441 static EMACS_INT total_string_bytes;
1443 /* Given a pointer to a Lisp_String S which is on the free-list
1444 string_free_list, return a pointer to its successor in the
1445 free-list. */
1447 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1449 /* Return a pointer to the sdata structure belonging to Lisp string S.
1450 S must be live, i.e. S->data must not be null. S->data is actually
1451 a pointer to the `u.data' member of its sdata structure; the
1452 structure starts at a constant offset in front of that. */
1454 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1457 #ifdef GC_CHECK_STRING_OVERRUN
1459 /* We check for overrun in string data blocks by appending a small
1460 "cookie" after each allocated string data block, and check for the
1461 presence of this cookie during GC. */
1463 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1464 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1465 { '\xde', '\xad', '\xbe', '\xef' };
1467 #else
1468 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1469 #endif
1471 /* Value is the size of an sdata structure large enough to hold NBYTES
1472 bytes of string data. The value returned includes a terminating
1473 NUL byte, the size of the sdata structure, and padding. */
1475 #ifdef GC_CHECK_STRING_BYTES
1477 #define SDATA_SIZE(NBYTES) \
1478 ((SDATA_DATA_OFFSET \
1479 + (NBYTES) + 1 \
1480 + sizeof (ptrdiff_t) - 1) \
1481 & ~(sizeof (ptrdiff_t) - 1))
1483 #else /* not GC_CHECK_STRING_BYTES */
1485 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1486 less than the size of that member. The 'max' is not needed when
1487 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1488 alignment code reserves enough space. */
1490 #define SDATA_SIZE(NBYTES) \
1491 ((SDATA_DATA_OFFSET \
1492 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1493 ? NBYTES \
1494 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1495 + 1 \
1496 + sizeof (ptrdiff_t) - 1) \
1497 & ~(sizeof (ptrdiff_t) - 1))
1499 #endif /* not GC_CHECK_STRING_BYTES */
1501 /* Extra bytes to allocate for each string. */
1503 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1505 /* Exact bound on the number of bytes in a string, not counting the
1506 terminating null. A string cannot contain more bytes than
1507 STRING_BYTES_BOUND, nor can it be so long that the size_t
1508 arithmetic in allocate_string_data would overflow while it is
1509 calculating a value to be passed to malloc. */
1510 static ptrdiff_t const STRING_BYTES_MAX =
1511 min (STRING_BYTES_BOUND,
1512 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1513 - GC_STRING_EXTRA
1514 - offsetof (struct sblock, data)
1515 - SDATA_DATA_OFFSET)
1516 & ~(sizeof (EMACS_INT) - 1)));
1518 /* Initialize string allocation. Called from init_alloc_once. */
1520 static void
1521 init_strings (void)
1523 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1524 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1528 #ifdef GC_CHECK_STRING_BYTES
1530 static int check_string_bytes_count;
1532 /* Like STRING_BYTES, but with debugging check. Can be
1533 called during GC, so pay attention to the mark bit. */
1535 ptrdiff_t
1536 string_bytes (struct Lisp_String *s)
1538 ptrdiff_t nbytes =
1539 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1541 if (!PURE_POINTER_P (s)
1542 && s->data
1543 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1544 emacs_abort ();
1545 return nbytes;
1548 /* Check validity of Lisp strings' string_bytes member in B. */
1550 static void
1551 check_sblock (struct sblock *b)
1553 sdata *from, *end, *from_end;
1555 end = b->next_free;
1557 for (from = b->data; from < end; from = from_end)
1559 /* Compute the next FROM here because copying below may
1560 overwrite data we need to compute it. */
1561 ptrdiff_t nbytes;
1563 /* Check that the string size recorded in the string is the
1564 same as the one recorded in the sdata structure. */
1565 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1566 : SDATA_NBYTES (from));
1567 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1572 /* Check validity of Lisp strings' string_bytes member. ALL_P
1573 means check all strings, otherwise check only most
1574 recently allocated strings. Used for hunting a bug. */
1576 static void
1577 check_string_bytes (bool all_p)
1579 if (all_p)
1581 struct sblock *b;
1583 for (b = large_sblocks; b; b = b->next)
1585 struct Lisp_String *s = b->data[0].string;
1586 if (s)
1587 string_bytes (s);
1590 for (b = oldest_sblock; b; b = b->next)
1591 check_sblock (b);
1593 else if (current_sblock)
1594 check_sblock (current_sblock);
1597 #else /* not GC_CHECK_STRING_BYTES */
1599 #define check_string_bytes(all) ((void) 0)
1601 #endif /* GC_CHECK_STRING_BYTES */
1603 #ifdef GC_CHECK_STRING_FREE_LIST
1605 /* Walk through the string free list looking for bogus next pointers.
1606 This may catch buffer overrun from a previous string. */
1608 static void
1609 check_string_free_list (void)
1611 struct Lisp_String *s;
1613 /* Pop a Lisp_String off the free-list. */
1614 s = string_free_list;
1615 while (s != NULL)
1617 if ((uintptr_t) s < 1024)
1618 emacs_abort ();
1619 s = NEXT_FREE_LISP_STRING (s);
1622 #else
1623 #define check_string_free_list()
1624 #endif
1626 /* Return a new Lisp_String. */
1628 static struct Lisp_String *
1629 allocate_string (void)
1631 struct Lisp_String *s;
1633 MALLOC_BLOCK_INPUT;
1635 /* If the free-list is empty, allocate a new string_block, and
1636 add all the Lisp_Strings in it to the free-list. */
1637 if (string_free_list == NULL)
1639 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1640 int i;
1642 b->next = string_blocks;
1643 string_blocks = b;
1645 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1647 s = b->strings + i;
1648 /* Every string on a free list should have NULL data pointer. */
1649 s->data = NULL;
1650 NEXT_FREE_LISP_STRING (s) = string_free_list;
1651 string_free_list = s;
1654 total_free_strings += STRING_BLOCK_SIZE;
1657 check_string_free_list ();
1659 /* Pop a Lisp_String off the free-list. */
1660 s = string_free_list;
1661 string_free_list = NEXT_FREE_LISP_STRING (s);
1663 MALLOC_UNBLOCK_INPUT;
1665 --total_free_strings;
1666 ++total_strings;
1667 ++strings_consed;
1668 consing_since_gc += sizeof *s;
1670 #ifdef GC_CHECK_STRING_BYTES
1671 if (!noninteractive)
1673 if (++check_string_bytes_count == 200)
1675 check_string_bytes_count = 0;
1676 check_string_bytes (1);
1678 else
1679 check_string_bytes (0);
1681 #endif /* GC_CHECK_STRING_BYTES */
1683 return s;
1687 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1688 plus a NUL byte at the end. Allocate an sdata structure for S, and
1689 set S->data to its `u.data' member. Store a NUL byte at the end of
1690 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1691 S->data if it was initially non-null. */
1693 void
1694 allocate_string_data (struct Lisp_String *s,
1695 EMACS_INT nchars, EMACS_INT nbytes)
1697 sdata *data, *old_data;
1698 struct sblock *b;
1699 ptrdiff_t needed, old_nbytes;
1701 if (STRING_BYTES_MAX < nbytes)
1702 string_overflow ();
1704 /* Determine the number of bytes needed to store NBYTES bytes
1705 of string data. */
1706 needed = SDATA_SIZE (nbytes);
1707 if (s->data)
1709 old_data = SDATA_OF_STRING (s);
1710 old_nbytes = STRING_BYTES (s);
1712 else
1713 old_data = NULL;
1715 MALLOC_BLOCK_INPUT;
1717 if (nbytes > LARGE_STRING_BYTES)
1719 size_t size = offsetof (struct sblock, data) + needed;
1721 #ifdef DOUG_LEA_MALLOC
1722 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1723 because mapped region contents are not preserved in
1724 a dumped Emacs.
1726 In case you think of allowing it in a dumped Emacs at the
1727 cost of not being able to re-dump, there's another reason:
1728 mmap'ed data typically have an address towards the top of the
1729 address space, which won't fit into an EMACS_INT (at least on
1730 32-bit systems with the current tagging scheme). --fx */
1731 mallopt (M_MMAP_MAX, 0);
1732 #endif
1734 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1736 #ifdef DOUG_LEA_MALLOC
1737 /* Back to a reasonable maximum of mmap'ed areas. */
1738 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1739 #endif
1741 b->next_free = b->data;
1742 b->data[0].string = NULL;
1743 b->next = large_sblocks;
1744 large_sblocks = b;
1746 else if (current_sblock == NULL
1747 || (((char *) current_sblock + SBLOCK_SIZE
1748 - (char *) current_sblock->next_free)
1749 < (needed + GC_STRING_EXTRA)))
1751 /* Not enough room in the current sblock. */
1752 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1753 b->next_free = b->data;
1754 b->data[0].string = NULL;
1755 b->next = NULL;
1757 if (current_sblock)
1758 current_sblock->next = b;
1759 else
1760 oldest_sblock = b;
1761 current_sblock = b;
1763 else
1764 b = current_sblock;
1766 data = b->next_free;
1767 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1769 MALLOC_UNBLOCK_INPUT;
1771 data->string = s;
1772 s->data = SDATA_DATA (data);
1773 #ifdef GC_CHECK_STRING_BYTES
1774 SDATA_NBYTES (data) = nbytes;
1775 #endif
1776 s->size = nchars;
1777 s->size_byte = nbytes;
1778 s->data[nbytes] = '\0';
1779 #ifdef GC_CHECK_STRING_OVERRUN
1780 memcpy ((char *) data + needed, string_overrun_cookie,
1781 GC_STRING_OVERRUN_COOKIE_SIZE);
1782 #endif
1784 /* Note that Faset may call to this function when S has already data
1785 assigned. In this case, mark data as free by setting it's string
1786 back-pointer to null, and record the size of the data in it. */
1787 if (old_data)
1789 SDATA_NBYTES (old_data) = old_nbytes;
1790 old_data->string = NULL;
1793 consing_since_gc += needed;
1797 /* Sweep and compact strings. */
1799 static void
1800 sweep_strings (void)
1802 struct string_block *b, *next;
1803 struct string_block *live_blocks = NULL;
1805 string_free_list = NULL;
1806 total_strings = total_free_strings = 0;
1807 total_string_bytes = 0;
1809 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1810 for (b = string_blocks; b; b = next)
1812 int i, nfree = 0;
1813 struct Lisp_String *free_list_before = string_free_list;
1815 next = b->next;
1817 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1819 struct Lisp_String *s = b->strings + i;
1821 if (s->data)
1823 /* String was not on free-list before. */
1824 if (STRING_MARKED_P (s))
1826 /* String is live; unmark it and its intervals. */
1827 UNMARK_STRING (s);
1829 /* Do not use string_(set|get)_intervals here. */
1830 s->intervals = balance_intervals (s->intervals);
1832 ++total_strings;
1833 total_string_bytes += STRING_BYTES (s);
1835 else
1837 /* String is dead. Put it on the free-list. */
1838 sdata *data = SDATA_OF_STRING (s);
1840 /* Save the size of S in its sdata so that we know
1841 how large that is. Reset the sdata's string
1842 back-pointer so that we know it's free. */
1843 #ifdef GC_CHECK_STRING_BYTES
1844 if (string_bytes (s) != SDATA_NBYTES (data))
1845 emacs_abort ();
1846 #else
1847 data->n.nbytes = STRING_BYTES (s);
1848 #endif
1849 data->string = NULL;
1851 /* Reset the strings's `data' member so that we
1852 know it's free. */
1853 s->data = NULL;
1855 /* Put the string on the free-list. */
1856 NEXT_FREE_LISP_STRING (s) = string_free_list;
1857 string_free_list = s;
1858 ++nfree;
1861 else
1863 /* S was on the free-list before. Put it there again. */
1864 NEXT_FREE_LISP_STRING (s) = string_free_list;
1865 string_free_list = s;
1866 ++nfree;
1870 /* Free blocks that contain free Lisp_Strings only, except
1871 the first two of them. */
1872 if (nfree == STRING_BLOCK_SIZE
1873 && total_free_strings > STRING_BLOCK_SIZE)
1875 lisp_free (b);
1876 string_free_list = free_list_before;
1878 else
1880 total_free_strings += nfree;
1881 b->next = live_blocks;
1882 live_blocks = b;
1886 check_string_free_list ();
1888 string_blocks = live_blocks;
1889 free_large_strings ();
1890 compact_small_strings ();
1892 check_string_free_list ();
1896 /* Free dead large strings. */
1898 static void
1899 free_large_strings (void)
1901 struct sblock *b, *next;
1902 struct sblock *live_blocks = NULL;
1904 for (b = large_sblocks; b; b = next)
1906 next = b->next;
1908 if (b->data[0].string == NULL)
1909 lisp_free (b);
1910 else
1912 b->next = live_blocks;
1913 live_blocks = b;
1917 large_sblocks = live_blocks;
1921 /* Compact data of small strings. Free sblocks that don't contain
1922 data of live strings after compaction. */
1924 static void
1925 compact_small_strings (void)
1927 struct sblock *b, *tb, *next;
1928 sdata *from, *to, *end, *tb_end;
1929 sdata *to_end, *from_end;
1931 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1932 to, and TB_END is the end of TB. */
1933 tb = oldest_sblock;
1934 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1935 to = tb->data;
1937 /* Step through the blocks from the oldest to the youngest. We
1938 expect that old blocks will stabilize over time, so that less
1939 copying will happen this way. */
1940 for (b = oldest_sblock; b; b = b->next)
1942 end = b->next_free;
1943 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1945 for (from = b->data; from < end; from = from_end)
1947 /* Compute the next FROM here because copying below may
1948 overwrite data we need to compute it. */
1949 ptrdiff_t nbytes;
1950 struct Lisp_String *s = from->string;
1952 #ifdef GC_CHECK_STRING_BYTES
1953 /* Check that the string size recorded in the string is the
1954 same as the one recorded in the sdata structure. */
1955 if (s && string_bytes (s) != SDATA_NBYTES (from))
1956 emacs_abort ();
1957 #endif /* GC_CHECK_STRING_BYTES */
1959 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
1960 eassert (nbytes <= LARGE_STRING_BYTES);
1962 nbytes = SDATA_SIZE (nbytes);
1963 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1965 #ifdef GC_CHECK_STRING_OVERRUN
1966 if (memcmp (string_overrun_cookie,
1967 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
1968 GC_STRING_OVERRUN_COOKIE_SIZE))
1969 emacs_abort ();
1970 #endif
1972 /* Non-NULL S means it's alive. Copy its data. */
1973 if (s)
1975 /* If TB is full, proceed with the next sblock. */
1976 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1977 if (to_end > tb_end)
1979 tb->next_free = to;
1980 tb = tb->next;
1981 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1982 to = tb->data;
1983 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1986 /* Copy, and update the string's `data' pointer. */
1987 if (from != to)
1989 eassert (tb != b || to < from);
1990 memmove (to, from, nbytes + GC_STRING_EXTRA);
1991 to->string->data = SDATA_DATA (to);
1994 /* Advance past the sdata we copied to. */
1995 to = to_end;
2000 /* The rest of the sblocks following TB don't contain live data, so
2001 we can free them. */
2002 for (b = tb->next; b; b = next)
2004 next = b->next;
2005 lisp_free (b);
2008 tb->next_free = to;
2009 tb->next = NULL;
2010 current_sblock = tb;
2013 void
2014 string_overflow (void)
2016 error ("Maximum string size exceeded");
2019 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2020 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2021 LENGTH must be an integer.
2022 INIT must be an integer that represents a character. */)
2023 (Lisp_Object length, Lisp_Object init)
2025 register Lisp_Object val;
2026 int c;
2027 EMACS_INT nbytes;
2029 CHECK_NATNUM (length);
2030 CHECK_CHARACTER (init);
2032 c = XFASTINT (init);
2033 if (ASCII_CHAR_P (c))
2035 nbytes = XINT (length);
2036 val = make_uninit_string (nbytes);
2037 memset (SDATA (val), c, nbytes);
2038 SDATA (val)[nbytes] = 0;
2040 else
2042 unsigned char str[MAX_MULTIBYTE_LENGTH];
2043 ptrdiff_t len = CHAR_STRING (c, str);
2044 EMACS_INT string_len = XINT (length);
2045 unsigned char *p, *beg, *end;
2047 if (string_len > STRING_BYTES_MAX / len)
2048 string_overflow ();
2049 nbytes = len * string_len;
2050 val = make_uninit_multibyte_string (string_len, nbytes);
2051 for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
2053 /* First time we just copy `str' to the data of `val'. */
2054 if (p == beg)
2055 memcpy (p, str, len);
2056 else
2058 /* Next time we copy largest possible chunk from
2059 initialized to uninitialized part of `val'. */
2060 len = min (p - beg, end - p);
2061 memcpy (p, beg, len);
2064 *p = 0;
2067 return val;
2070 /* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
2071 Return A. */
2073 Lisp_Object
2074 bool_vector_fill (Lisp_Object a, Lisp_Object init)
2076 EMACS_INT nbits = bool_vector_size (a);
2077 if (0 < nbits)
2079 unsigned char *data = bool_vector_uchar_data (a);
2080 int pattern = NILP (init) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR) - 1;
2081 ptrdiff_t nbytes = bool_vector_bytes (nbits);
2082 int last_mask = ~ (~0 << ((nbits - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1));
2083 memset (data, pattern, nbytes - 1);
2084 data[nbytes - 1] = pattern & last_mask;
2086 return a;
2089 /* Return a newly allocated, uninitialized bool vector of size NBITS. */
2091 Lisp_Object
2092 make_uninit_bool_vector (EMACS_INT nbits)
2094 Lisp_Object val;
2095 EMACS_INT words = bool_vector_words (nbits);
2096 EMACS_INT word_bytes = words * sizeof (bits_word);
2097 EMACS_INT needed_elements = ((bool_header_size - header_size + word_bytes
2098 + word_size - 1)
2099 / word_size);
2100 struct Lisp_Bool_Vector *p
2101 = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2102 XSETVECTOR (val, p);
2103 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2104 p->size = nbits;
2106 /* Clear padding at the end. */
2107 if (words)
2108 p->data[words - 1] = 0;
2110 return val;
2113 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2114 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2115 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2116 (Lisp_Object length, Lisp_Object init)
2118 Lisp_Object val;
2120 CHECK_NATNUM (length);
2121 val = make_uninit_bool_vector (XFASTINT (length));
2122 return bool_vector_fill (val, init);
2126 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2127 of characters from the contents. This string may be unibyte or
2128 multibyte, depending on the contents. */
2130 Lisp_Object
2131 make_string (const char *contents, ptrdiff_t nbytes)
2133 register Lisp_Object val;
2134 ptrdiff_t nchars, multibyte_nbytes;
2136 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2137 &nchars, &multibyte_nbytes);
2138 if (nbytes == nchars || nbytes != multibyte_nbytes)
2139 /* CONTENTS contains no multibyte sequences or contains an invalid
2140 multibyte sequence. We must make unibyte string. */
2141 val = make_unibyte_string (contents, nbytes);
2142 else
2143 val = make_multibyte_string (contents, nchars, nbytes);
2144 return val;
2148 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2150 Lisp_Object
2151 make_unibyte_string (const char *contents, ptrdiff_t length)
2153 register Lisp_Object val;
2154 val = make_uninit_string (length);
2155 memcpy (SDATA (val), contents, length);
2156 return val;
2160 /* Make a multibyte string from NCHARS characters occupying NBYTES
2161 bytes at CONTENTS. */
2163 Lisp_Object
2164 make_multibyte_string (const char *contents,
2165 ptrdiff_t nchars, ptrdiff_t nbytes)
2167 register Lisp_Object val;
2168 val = make_uninit_multibyte_string (nchars, nbytes);
2169 memcpy (SDATA (val), contents, nbytes);
2170 return val;
2174 /* Make a string from NCHARS characters occupying NBYTES bytes at
2175 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2177 Lisp_Object
2178 make_string_from_bytes (const char *contents,
2179 ptrdiff_t nchars, ptrdiff_t nbytes)
2181 register Lisp_Object val;
2182 val = make_uninit_multibyte_string (nchars, nbytes);
2183 memcpy (SDATA (val), contents, nbytes);
2184 if (SBYTES (val) == SCHARS (val))
2185 STRING_SET_UNIBYTE (val);
2186 return val;
2190 /* Make a string from NCHARS characters occupying NBYTES bytes at
2191 CONTENTS. The argument MULTIBYTE controls whether to label the
2192 string as multibyte. If NCHARS is negative, it counts the number of
2193 characters by itself. */
2195 Lisp_Object
2196 make_specified_string (const char *contents,
2197 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2199 Lisp_Object val;
2201 if (nchars < 0)
2203 if (multibyte)
2204 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2205 nbytes);
2206 else
2207 nchars = nbytes;
2209 val = make_uninit_multibyte_string (nchars, nbytes);
2210 memcpy (SDATA (val), contents, nbytes);
2211 if (!multibyte)
2212 STRING_SET_UNIBYTE (val);
2213 return val;
2217 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2218 occupying LENGTH bytes. */
2220 Lisp_Object
2221 make_uninit_string (EMACS_INT length)
2223 Lisp_Object val;
2225 if (!length)
2226 return empty_unibyte_string;
2227 val = make_uninit_multibyte_string (length, length);
2228 STRING_SET_UNIBYTE (val);
2229 return val;
2233 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2234 which occupy NBYTES bytes. */
2236 Lisp_Object
2237 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2239 Lisp_Object string;
2240 struct Lisp_String *s;
2242 if (nchars < 0)
2243 emacs_abort ();
2244 if (!nbytes)
2245 return empty_multibyte_string;
2247 s = allocate_string ();
2248 s->intervals = NULL;
2249 allocate_string_data (s, nchars, nbytes);
2250 XSETSTRING (string, s);
2251 string_chars_consed += nbytes;
2252 return string;
2255 /* Print arguments to BUF according to a FORMAT, then return
2256 a Lisp_String initialized with the data from BUF. */
2258 Lisp_Object
2259 make_formatted_string (char *buf, const char *format, ...)
2261 va_list ap;
2262 int length;
2264 va_start (ap, format);
2265 length = vsprintf (buf, format, ap);
2266 va_end (ap);
2267 return make_string (buf, length);
2271 /***********************************************************************
2272 Float Allocation
2273 ***********************************************************************/
2275 /* We store float cells inside of float_blocks, allocating a new
2276 float_block with malloc whenever necessary. Float cells reclaimed
2277 by GC are put on a free list to be reallocated before allocating
2278 any new float cells from the latest float_block. */
2280 #define FLOAT_BLOCK_SIZE \
2281 (((BLOCK_BYTES - sizeof (struct float_block *) \
2282 /* The compiler might add padding at the end. */ \
2283 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2284 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2286 #define GETMARKBIT(block,n) \
2287 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2288 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2289 & 1)
2291 #define SETMARKBIT(block,n) \
2292 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2293 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2295 #define UNSETMARKBIT(block,n) \
2296 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2297 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2299 #define FLOAT_BLOCK(fptr) \
2300 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2302 #define FLOAT_INDEX(fptr) \
2303 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2305 struct float_block
2307 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2308 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2309 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2310 struct float_block *next;
2313 #define FLOAT_MARKED_P(fptr) \
2314 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2316 #define FLOAT_MARK(fptr) \
2317 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2319 #define FLOAT_UNMARK(fptr) \
2320 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2322 /* Current float_block. */
2324 static struct float_block *float_block;
2326 /* Index of first unused Lisp_Float in the current float_block. */
2328 static int float_block_index = FLOAT_BLOCK_SIZE;
2330 /* Free-list of Lisp_Floats. */
2332 static struct Lisp_Float *float_free_list;
2334 /* Return a new float object with value FLOAT_VALUE. */
2336 Lisp_Object
2337 make_float (double float_value)
2339 register Lisp_Object val;
2341 MALLOC_BLOCK_INPUT;
2343 if (float_free_list)
2345 /* We use the data field for chaining the free list
2346 so that we won't use the same field that has the mark bit. */
2347 XSETFLOAT (val, float_free_list);
2348 float_free_list = float_free_list->u.chain;
2350 else
2352 if (float_block_index == FLOAT_BLOCK_SIZE)
2354 struct float_block *new
2355 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2356 new->next = float_block;
2357 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2358 float_block = new;
2359 float_block_index = 0;
2360 total_free_floats += FLOAT_BLOCK_SIZE;
2362 XSETFLOAT (val, &float_block->floats[float_block_index]);
2363 float_block_index++;
2366 MALLOC_UNBLOCK_INPUT;
2368 XFLOAT_INIT (val, float_value);
2369 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2370 consing_since_gc += sizeof (struct Lisp_Float);
2371 floats_consed++;
2372 total_free_floats--;
2373 return val;
2378 /***********************************************************************
2379 Cons Allocation
2380 ***********************************************************************/
2382 /* We store cons cells inside of cons_blocks, allocating a new
2383 cons_block with malloc whenever necessary. Cons cells reclaimed by
2384 GC are put on a free list to be reallocated before allocating
2385 any new cons cells from the latest cons_block. */
2387 #define CONS_BLOCK_SIZE \
2388 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2389 /* The compiler might add padding at the end. */ \
2390 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2391 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2393 #define CONS_BLOCK(fptr) \
2394 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2396 #define CONS_INDEX(fptr) \
2397 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2399 struct cons_block
2401 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2402 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2403 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2404 struct cons_block *next;
2407 #define CONS_MARKED_P(fptr) \
2408 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2410 #define CONS_MARK(fptr) \
2411 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2413 #define CONS_UNMARK(fptr) \
2414 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2416 /* Current cons_block. */
2418 static struct cons_block *cons_block;
2420 /* Index of first unused Lisp_Cons in the current block. */
2422 static int cons_block_index = CONS_BLOCK_SIZE;
2424 /* Free-list of Lisp_Cons structures. */
2426 static struct Lisp_Cons *cons_free_list;
2428 /* Explicitly free a cons cell by putting it on the free-list. */
2430 void
2431 free_cons (struct Lisp_Cons *ptr)
2433 ptr->u.chain = cons_free_list;
2434 #if GC_MARK_STACK
2435 ptr->car = Vdead;
2436 #endif
2437 cons_free_list = ptr;
2438 consing_since_gc -= sizeof *ptr;
2439 total_free_conses++;
2442 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2443 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2444 (Lisp_Object car, Lisp_Object cdr)
2446 register Lisp_Object val;
2448 MALLOC_BLOCK_INPUT;
2450 if (cons_free_list)
2452 /* We use the cdr for chaining the free list
2453 so that we won't use the same field that has the mark bit. */
2454 XSETCONS (val, cons_free_list);
2455 cons_free_list = cons_free_list->u.chain;
2457 else
2459 if (cons_block_index == CONS_BLOCK_SIZE)
2461 struct cons_block *new
2462 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2463 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2464 new->next = cons_block;
2465 cons_block = new;
2466 cons_block_index = 0;
2467 total_free_conses += CONS_BLOCK_SIZE;
2469 XSETCONS (val, &cons_block->conses[cons_block_index]);
2470 cons_block_index++;
2473 MALLOC_UNBLOCK_INPUT;
2475 XSETCAR (val, car);
2476 XSETCDR (val, cdr);
2477 eassert (!CONS_MARKED_P (XCONS (val)));
2478 consing_since_gc += sizeof (struct Lisp_Cons);
2479 total_free_conses--;
2480 cons_cells_consed++;
2481 return val;
2484 #ifdef GC_CHECK_CONS_LIST
2485 /* Get an error now if there's any junk in the cons free list. */
2486 void
2487 check_cons_list (void)
2489 struct Lisp_Cons *tail = cons_free_list;
2491 while (tail)
2492 tail = tail->u.chain;
2494 #endif
2496 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2498 Lisp_Object
2499 list1 (Lisp_Object arg1)
2501 return Fcons (arg1, Qnil);
2504 Lisp_Object
2505 list2 (Lisp_Object arg1, Lisp_Object arg2)
2507 return Fcons (arg1, Fcons (arg2, Qnil));
2511 Lisp_Object
2512 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2514 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2518 Lisp_Object
2519 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2521 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2525 Lisp_Object
2526 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2528 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2529 Fcons (arg5, Qnil)))));
2532 /* Make a list of COUNT Lisp_Objects, where ARG is the
2533 first one. Allocate conses from pure space if TYPE
2534 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2536 Lisp_Object
2537 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2539 va_list ap;
2540 ptrdiff_t i;
2541 Lisp_Object val, *objp;
2543 /* Change to SAFE_ALLOCA if you hit this eassert. */
2544 eassert (count <= MAX_ALLOCA / word_size);
2546 objp = alloca (count * word_size);
2547 objp[0] = arg;
2548 va_start (ap, arg);
2549 for (i = 1; i < count; i++)
2550 objp[i] = va_arg (ap, Lisp_Object);
2551 va_end (ap);
2553 for (val = Qnil, i = count - 1; i >= 0; i--)
2555 if (type == CONSTYPE_PURE)
2556 val = pure_cons (objp[i], val);
2557 else if (type == CONSTYPE_HEAP)
2558 val = Fcons (objp[i], val);
2559 else
2560 emacs_abort ();
2562 return val;
2565 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2566 doc: /* Return a newly created list with specified arguments as elements.
2567 Any number of arguments, even zero arguments, are allowed.
2568 usage: (list &rest OBJECTS) */)
2569 (ptrdiff_t nargs, Lisp_Object *args)
2571 register Lisp_Object val;
2572 val = Qnil;
2574 while (nargs > 0)
2576 nargs--;
2577 val = Fcons (args[nargs], val);
2579 return val;
2583 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2584 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2585 (register Lisp_Object length, Lisp_Object init)
2587 register Lisp_Object val;
2588 register EMACS_INT size;
2590 CHECK_NATNUM (length);
2591 size = XFASTINT (length);
2593 val = Qnil;
2594 while (size > 0)
2596 val = Fcons (init, val);
2597 --size;
2599 if (size > 0)
2601 val = Fcons (init, val);
2602 --size;
2604 if (size > 0)
2606 val = Fcons (init, val);
2607 --size;
2609 if (size > 0)
2611 val = Fcons (init, val);
2612 --size;
2614 if (size > 0)
2616 val = Fcons (init, val);
2617 --size;
2623 QUIT;
2626 return val;
2631 /***********************************************************************
2632 Vector Allocation
2633 ***********************************************************************/
2635 /* Sometimes a vector's contents are merely a pointer internally used
2636 in vector allocation code. Usually you don't want to touch this. */
2638 static struct Lisp_Vector *
2639 next_vector (struct Lisp_Vector *v)
2641 return XUNTAG (v->contents[0], 0);
2644 static void
2645 set_next_vector (struct Lisp_Vector *v, struct Lisp_Vector *p)
2647 v->contents[0] = make_lisp_ptr (p, 0);
2650 /* This value is balanced well enough to avoid too much internal overhead
2651 for the most common cases; it's not required to be a power of two, but
2652 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2654 #define VECTOR_BLOCK_SIZE 4096
2656 enum
2658 /* Alignment of struct Lisp_Vector objects. */
2659 vector_alignment = COMMON_MULTIPLE (ALIGNOF_STRUCT_LISP_VECTOR,
2660 USE_LSB_TAG ? GCALIGNMENT : 1),
2662 /* Vector size requests are a multiple of this. */
2663 roundup_size = COMMON_MULTIPLE (vector_alignment, word_size)
2666 /* Verify assumptions described above. */
2667 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2668 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2670 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2671 #define vroundup_ct(x) ROUNDUP (x, roundup_size)
2672 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2673 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2675 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2677 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2679 /* Size of the minimal vector allocated from block. */
2681 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2683 /* Size of the largest vector allocated from block. */
2685 #define VBLOCK_BYTES_MAX \
2686 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2688 /* We maintain one free list for each possible block-allocated
2689 vector size, and this is the number of free lists we have. */
2691 #define VECTOR_MAX_FREE_LIST_INDEX \
2692 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2694 /* Common shortcut to advance vector pointer over a block data. */
2696 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2698 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2700 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2702 /* Common shortcut to setup vector on a free list. */
2704 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2705 do { \
2706 (tmp) = ((nbytes - header_size) / word_size); \
2707 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2708 eassert ((nbytes) % roundup_size == 0); \
2709 (tmp) = VINDEX (nbytes); \
2710 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2711 set_next_vector (v, vector_free_lists[tmp]); \
2712 vector_free_lists[tmp] = (v); \
2713 total_free_vector_slots += (nbytes) / word_size; \
2714 } while (0)
2716 /* This internal type is used to maintain the list of large vectors
2717 which are allocated at their own, e.g. outside of vector blocks.
2719 struct large_vector itself cannot contain a struct Lisp_Vector, as
2720 the latter contains a flexible array member and C99 does not allow
2721 such structs to be nested. Instead, each struct large_vector
2722 object LV is followed by a struct Lisp_Vector, which is at offset
2723 large_vector_offset from LV, and whose address is therefore
2724 large_vector_vec (&LV). */
2726 struct large_vector
2728 struct large_vector *next;
2731 enum
2733 large_vector_offset = ROUNDUP (sizeof (struct large_vector), vector_alignment)
2736 static struct Lisp_Vector *
2737 large_vector_vec (struct large_vector *p)
2739 return (struct Lisp_Vector *) ((char *) p + large_vector_offset);
2742 /* This internal type is used to maintain an underlying storage
2743 for small vectors. */
2745 struct vector_block
2747 char data[VECTOR_BLOCK_BYTES];
2748 struct vector_block *next;
2751 /* Chain of vector blocks. */
2753 static struct vector_block *vector_blocks;
2755 /* Vector free lists, where NTH item points to a chain of free
2756 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2758 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2760 /* Singly-linked list of large vectors. */
2762 static struct large_vector *large_vectors;
2764 /* The only vector with 0 slots, allocated from pure space. */
2766 Lisp_Object zero_vector;
2768 /* Number of live vectors. */
2770 static EMACS_INT total_vectors;
2772 /* Total size of live and free vectors, in Lisp_Object units. */
2774 static EMACS_INT total_vector_slots, total_free_vector_slots;
2776 /* Get a new vector block. */
2778 static struct vector_block *
2779 allocate_vector_block (void)
2781 struct vector_block *block = xmalloc (sizeof *block);
2783 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2784 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2785 MEM_TYPE_VECTOR_BLOCK);
2786 #endif
2788 block->next = vector_blocks;
2789 vector_blocks = block;
2790 return block;
2793 /* Called once to initialize vector allocation. */
2795 static void
2796 init_vectors (void)
2798 zero_vector = make_pure_vector (0);
2801 /* Allocate vector from a vector block. */
2803 static struct Lisp_Vector *
2804 allocate_vector_from_block (size_t nbytes)
2806 struct Lisp_Vector *vector;
2807 struct vector_block *block;
2808 size_t index, restbytes;
2810 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2811 eassert (nbytes % roundup_size == 0);
2813 /* First, try to allocate from a free list
2814 containing vectors of the requested size. */
2815 index = VINDEX (nbytes);
2816 if (vector_free_lists[index])
2818 vector = vector_free_lists[index];
2819 vector_free_lists[index] = next_vector (vector);
2820 total_free_vector_slots -= nbytes / word_size;
2821 return vector;
2824 /* Next, check free lists containing larger vectors. Since
2825 we will split the result, we should have remaining space
2826 large enough to use for one-slot vector at least. */
2827 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2828 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2829 if (vector_free_lists[index])
2831 /* This vector is larger than requested. */
2832 vector = vector_free_lists[index];
2833 vector_free_lists[index] = next_vector (vector);
2834 total_free_vector_slots -= nbytes / word_size;
2836 /* Excess bytes are used for the smaller vector,
2837 which should be set on an appropriate free list. */
2838 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2839 eassert (restbytes % roundup_size == 0);
2840 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2841 return vector;
2844 /* Finally, need a new vector block. */
2845 block = allocate_vector_block ();
2847 /* New vector will be at the beginning of this block. */
2848 vector = (struct Lisp_Vector *) block->data;
2850 /* If the rest of space from this block is large enough
2851 for one-slot vector at least, set up it on a free list. */
2852 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2853 if (restbytes >= VBLOCK_BYTES_MIN)
2855 eassert (restbytes % roundup_size == 0);
2856 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2858 return vector;
2861 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2863 #define VECTOR_IN_BLOCK(vector, block) \
2864 ((char *) (vector) <= (block)->data \
2865 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2867 /* Return the memory footprint of V in bytes. */
2869 static ptrdiff_t
2870 vector_nbytes (struct Lisp_Vector *v)
2872 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
2873 ptrdiff_t nwords;
2875 if (size & PSEUDOVECTOR_FLAG)
2877 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
2879 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
2880 ptrdiff_t word_bytes = (bool_vector_words (bv->size)
2881 * sizeof (bits_word));
2882 ptrdiff_t boolvec_bytes = bool_header_size + word_bytes;
2883 verify (header_size <= bool_header_size);
2884 nwords = (boolvec_bytes - header_size + word_size - 1) / word_size;
2886 else
2887 nwords = ((size & PSEUDOVECTOR_SIZE_MASK)
2888 + ((size & PSEUDOVECTOR_REST_MASK)
2889 >> PSEUDOVECTOR_SIZE_BITS));
2891 else
2892 nwords = size;
2893 return vroundup (header_size + word_size * nwords);
2896 /* Release extra resources still in use by VECTOR, which may be any
2897 vector-like object. For now, this is used just to free data in
2898 font objects. */
2900 static void
2901 cleanup_vector (struct Lisp_Vector *vector)
2903 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FONT)
2904 && ((vector->header.size & PSEUDOVECTOR_SIZE_MASK)
2905 == FONT_OBJECT_MAX))
2907 /* Attempt to catch subtle bugs like Bug#16140. */
2908 eassert (valid_font_driver (((struct font *) vector)->driver));
2909 ((struct font *) vector)->driver->close ((struct font *) vector);
2913 /* Reclaim space used by unmarked vectors. */
2915 static void
2916 sweep_vectors (void)
2918 struct vector_block *block, **bprev = &vector_blocks;
2919 struct large_vector *lv, **lvprev = &large_vectors;
2920 struct Lisp_Vector *vector, *next;
2922 total_vectors = total_vector_slots = total_free_vector_slots = 0;
2923 memset (vector_free_lists, 0, sizeof (vector_free_lists));
2925 /* Looking through vector blocks. */
2927 for (block = vector_blocks; block; block = *bprev)
2929 bool free_this_block = 0;
2930 ptrdiff_t nbytes;
2932 for (vector = (struct Lisp_Vector *) block->data;
2933 VECTOR_IN_BLOCK (vector, block); vector = next)
2935 if (VECTOR_MARKED_P (vector))
2937 VECTOR_UNMARK (vector);
2938 total_vectors++;
2939 nbytes = vector_nbytes (vector);
2940 total_vector_slots += nbytes / word_size;
2941 next = ADVANCE (vector, nbytes);
2943 else
2945 ptrdiff_t total_bytes;
2947 cleanup_vector (vector);
2948 nbytes = vector_nbytes (vector);
2949 total_bytes = nbytes;
2950 next = ADVANCE (vector, nbytes);
2952 /* While NEXT is not marked, try to coalesce with VECTOR,
2953 thus making VECTOR of the largest possible size. */
2955 while (VECTOR_IN_BLOCK (next, block))
2957 if (VECTOR_MARKED_P (next))
2958 break;
2959 cleanup_vector (next);
2960 nbytes = vector_nbytes (next);
2961 total_bytes += nbytes;
2962 next = ADVANCE (next, nbytes);
2965 eassert (total_bytes % roundup_size == 0);
2967 if (vector == (struct Lisp_Vector *) block->data
2968 && !VECTOR_IN_BLOCK (next, block))
2969 /* This block should be freed because all of it's
2970 space was coalesced into the only free vector. */
2971 free_this_block = 1;
2972 else
2974 size_t tmp;
2975 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
2980 if (free_this_block)
2982 *bprev = block->next;
2983 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2984 mem_delete (mem_find (block->data));
2985 #endif
2986 xfree (block);
2988 else
2989 bprev = &block->next;
2992 /* Sweep large vectors. */
2994 for (lv = large_vectors; lv; lv = *lvprev)
2996 vector = large_vector_vec (lv);
2997 if (VECTOR_MARKED_P (vector))
2999 VECTOR_UNMARK (vector);
3000 total_vectors++;
3001 if (vector->header.size & PSEUDOVECTOR_FLAG)
3003 /* All non-bool pseudovectors are small enough to be allocated
3004 from vector blocks. This code should be redesigned if some
3005 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
3006 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
3007 total_vector_slots += vector_nbytes (vector) / word_size;
3009 else
3010 total_vector_slots
3011 += header_size / word_size + vector->header.size;
3012 lvprev = &lv->next;
3014 else
3016 *lvprev = lv->next;
3017 lisp_free (lv);
3022 /* Value is a pointer to a newly allocated Lisp_Vector structure
3023 with room for LEN Lisp_Objects. */
3025 static struct Lisp_Vector *
3026 allocate_vectorlike (ptrdiff_t len)
3028 struct Lisp_Vector *p;
3030 MALLOC_BLOCK_INPUT;
3032 if (len == 0)
3033 p = XVECTOR (zero_vector);
3034 else
3036 size_t nbytes = header_size + len * word_size;
3038 #ifdef DOUG_LEA_MALLOC
3039 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
3040 because mapped region contents are not preserved in
3041 a dumped Emacs. */
3042 mallopt (M_MMAP_MAX, 0);
3043 #endif
3045 if (nbytes <= VBLOCK_BYTES_MAX)
3046 p = allocate_vector_from_block (vroundup (nbytes));
3047 else
3049 struct large_vector *lv
3050 = lisp_malloc ((large_vector_offset + header_size
3051 + len * word_size),
3052 MEM_TYPE_VECTORLIKE);
3053 lv->next = large_vectors;
3054 large_vectors = lv;
3055 p = large_vector_vec (lv);
3058 #ifdef DOUG_LEA_MALLOC
3059 /* Back to a reasonable maximum of mmap'ed areas. */
3060 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3061 #endif
3063 consing_since_gc += nbytes;
3064 vector_cells_consed += len;
3067 MALLOC_UNBLOCK_INPUT;
3069 return p;
3073 /* Allocate a vector with LEN slots. */
3075 struct Lisp_Vector *
3076 allocate_vector (EMACS_INT len)
3078 struct Lisp_Vector *v;
3079 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3081 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3082 memory_full (SIZE_MAX);
3083 v = allocate_vectorlike (len);
3084 v->header.size = len;
3085 return v;
3089 /* Allocate other vector-like structures. */
3091 struct Lisp_Vector *
3092 allocate_pseudovector (int memlen, int lisplen, enum pvec_type tag)
3094 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3095 int i;
3097 /* Catch bogus values. */
3098 eassert (tag <= PVEC_FONT);
3099 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3100 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3102 /* Only the first lisplen slots will be traced normally by the GC. */
3103 for (i = 0; i < lisplen; ++i)
3104 v->contents[i] = Qnil;
3106 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3107 return v;
3110 struct buffer *
3111 allocate_buffer (void)
3113 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3115 BUFFER_PVEC_INIT (b);
3116 /* Put B on the chain of all buffers including killed ones. */
3117 b->next = all_buffers;
3118 all_buffers = b;
3119 /* Note that the rest fields of B are not initialized. */
3120 return b;
3123 struct Lisp_Hash_Table *
3124 allocate_hash_table (void)
3126 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3129 struct window *
3130 allocate_window (void)
3132 struct window *w;
3134 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3135 /* Users assumes that non-Lisp data is zeroed. */
3136 memset (&w->current_matrix, 0,
3137 sizeof (*w) - offsetof (struct window, current_matrix));
3138 return w;
3141 struct terminal *
3142 allocate_terminal (void)
3144 struct terminal *t;
3146 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3147 /* Users assumes that non-Lisp data is zeroed. */
3148 memset (&t->next_terminal, 0,
3149 sizeof (*t) - offsetof (struct terminal, next_terminal));
3150 return t;
3153 struct frame *
3154 allocate_frame (void)
3156 struct frame *f;
3158 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3159 /* Users assumes that non-Lisp data is zeroed. */
3160 memset (&f->face_cache, 0,
3161 sizeof (*f) - offsetof (struct frame, face_cache));
3162 return f;
3165 struct Lisp_Process *
3166 allocate_process (void)
3168 struct Lisp_Process *p;
3170 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3171 /* Users assumes that non-Lisp data is zeroed. */
3172 memset (&p->pid, 0,
3173 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3174 return p;
3177 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3178 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3179 See also the function `vector'. */)
3180 (register Lisp_Object length, Lisp_Object init)
3182 Lisp_Object vector;
3183 register ptrdiff_t sizei;
3184 register ptrdiff_t i;
3185 register struct Lisp_Vector *p;
3187 CHECK_NATNUM (length);
3189 p = allocate_vector (XFASTINT (length));
3190 sizei = XFASTINT (length);
3191 for (i = 0; i < sizei; i++)
3192 p->contents[i] = init;
3194 XSETVECTOR (vector, p);
3195 return vector;
3199 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3200 doc: /* Return a newly created vector with specified arguments as elements.
3201 Any number of arguments, even zero arguments, are allowed.
3202 usage: (vector &rest OBJECTS) */)
3203 (ptrdiff_t nargs, Lisp_Object *args)
3205 ptrdiff_t i;
3206 register Lisp_Object val = make_uninit_vector (nargs);
3207 register struct Lisp_Vector *p = XVECTOR (val);
3209 for (i = 0; i < nargs; i++)
3210 p->contents[i] = args[i];
3211 return val;
3214 void
3215 make_byte_code (struct Lisp_Vector *v)
3217 /* Don't allow the global zero_vector to become a byte code object. */
3218 eassert(0 < v->header.size);
3219 if (v->header.size > 1 && STRINGP (v->contents[1])
3220 && STRING_MULTIBYTE (v->contents[1]))
3221 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3222 earlier because they produced a raw 8-bit string for byte-code
3223 and now such a byte-code string is loaded as multibyte while
3224 raw 8-bit characters converted to multibyte form. Thus, now we
3225 must convert them back to the original unibyte form. */
3226 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3227 XSETPVECTYPE (v, PVEC_COMPILED);
3230 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3231 doc: /* Create a byte-code object with specified arguments as elements.
3232 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3233 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3234 and (optional) INTERACTIVE-SPEC.
3235 The first four arguments are required; at most six have any
3236 significance.
3237 The ARGLIST can be either like the one of `lambda', in which case the arguments
3238 will be dynamically bound before executing the byte code, or it can be an
3239 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3240 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3241 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3242 argument to catch the left-over arguments. If such an integer is used, the
3243 arguments will not be dynamically bound but will be instead pushed on the
3244 stack before executing the byte-code.
3245 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3246 (ptrdiff_t nargs, Lisp_Object *args)
3248 ptrdiff_t i;
3249 register Lisp_Object val = make_uninit_vector (nargs);
3250 register struct Lisp_Vector *p = XVECTOR (val);
3252 /* We used to purecopy everything here, if purify-flag was set. This worked
3253 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3254 dangerous, since make-byte-code is used during execution to build
3255 closures, so any closure built during the preload phase would end up
3256 copied into pure space, including its free variables, which is sometimes
3257 just wasteful and other times plainly wrong (e.g. those free vars may want
3258 to be setcar'd). */
3260 for (i = 0; i < nargs; i++)
3261 p->contents[i] = args[i];
3262 make_byte_code (p);
3263 XSETCOMPILED (val, p);
3264 return val;
3269 /***********************************************************************
3270 Symbol Allocation
3271 ***********************************************************************/
3273 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3274 of the required alignment if LSB tags are used. */
3276 union aligned_Lisp_Symbol
3278 struct Lisp_Symbol s;
3279 #if USE_LSB_TAG
3280 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3281 & -GCALIGNMENT];
3282 #endif
3285 /* Each symbol_block is just under 1020 bytes long, since malloc
3286 really allocates in units of powers of two and uses 4 bytes for its
3287 own overhead. */
3289 #define SYMBOL_BLOCK_SIZE \
3290 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3292 struct symbol_block
3294 /* Place `symbols' first, to preserve alignment. */
3295 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3296 struct symbol_block *next;
3299 /* Current symbol block and index of first unused Lisp_Symbol
3300 structure in it. */
3302 static struct symbol_block *symbol_block;
3303 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3305 /* List of free symbols. */
3307 static struct Lisp_Symbol *symbol_free_list;
3309 static void
3310 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3312 XSYMBOL (sym)->name = name;
3315 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3316 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3317 Its value is void, and its function definition and property list are nil. */)
3318 (Lisp_Object name)
3320 register Lisp_Object val;
3321 register struct Lisp_Symbol *p;
3323 CHECK_STRING (name);
3325 MALLOC_BLOCK_INPUT;
3327 if (symbol_free_list)
3329 XSETSYMBOL (val, symbol_free_list);
3330 symbol_free_list = symbol_free_list->next;
3332 else
3334 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3336 struct symbol_block *new
3337 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3338 new->next = symbol_block;
3339 symbol_block = new;
3340 symbol_block_index = 0;
3341 total_free_symbols += SYMBOL_BLOCK_SIZE;
3343 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3344 symbol_block_index++;
3347 MALLOC_UNBLOCK_INPUT;
3349 p = XSYMBOL (val);
3350 set_symbol_name (val, name);
3351 set_symbol_plist (val, Qnil);
3352 p->redirect = SYMBOL_PLAINVAL;
3353 SET_SYMBOL_VAL (p, Qunbound);
3354 set_symbol_function (val, Qnil);
3355 set_symbol_next (val, NULL);
3356 p->gcmarkbit = 0;
3357 p->interned = SYMBOL_UNINTERNED;
3358 p->constant = 0;
3359 p->declared_special = 0;
3360 consing_since_gc += sizeof (struct Lisp_Symbol);
3361 symbols_consed++;
3362 total_free_symbols--;
3363 return val;
3368 /***********************************************************************
3369 Marker (Misc) Allocation
3370 ***********************************************************************/
3372 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3373 the required alignment when LSB tags are used. */
3375 union aligned_Lisp_Misc
3377 union Lisp_Misc m;
3378 #if USE_LSB_TAG
3379 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3380 & -GCALIGNMENT];
3381 #endif
3384 /* Allocation of markers and other objects that share that structure.
3385 Works like allocation of conses. */
3387 #define MARKER_BLOCK_SIZE \
3388 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3390 struct marker_block
3392 /* Place `markers' first, to preserve alignment. */
3393 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3394 struct marker_block *next;
3397 static struct marker_block *marker_block;
3398 static int marker_block_index = MARKER_BLOCK_SIZE;
3400 static union Lisp_Misc *marker_free_list;
3402 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3404 static Lisp_Object
3405 allocate_misc (enum Lisp_Misc_Type type)
3407 Lisp_Object val;
3409 MALLOC_BLOCK_INPUT;
3411 if (marker_free_list)
3413 XSETMISC (val, marker_free_list);
3414 marker_free_list = marker_free_list->u_free.chain;
3416 else
3418 if (marker_block_index == MARKER_BLOCK_SIZE)
3420 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3421 new->next = marker_block;
3422 marker_block = new;
3423 marker_block_index = 0;
3424 total_free_markers += MARKER_BLOCK_SIZE;
3426 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3427 marker_block_index++;
3430 MALLOC_UNBLOCK_INPUT;
3432 --total_free_markers;
3433 consing_since_gc += sizeof (union Lisp_Misc);
3434 misc_objects_consed++;
3435 XMISCANY (val)->type = type;
3436 XMISCANY (val)->gcmarkbit = 0;
3437 return val;
3440 /* Free a Lisp_Misc object. */
3442 void
3443 free_misc (Lisp_Object misc)
3445 XMISCANY (misc)->type = Lisp_Misc_Free;
3446 XMISC (misc)->u_free.chain = marker_free_list;
3447 marker_free_list = XMISC (misc);
3448 consing_since_gc -= sizeof (union Lisp_Misc);
3449 total_free_markers++;
3452 /* Verify properties of Lisp_Save_Value's representation
3453 that are assumed here and elsewhere. */
3455 verify (SAVE_UNUSED == 0);
3456 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3457 >> SAVE_SLOT_BITS)
3458 == 0);
3460 /* Return Lisp_Save_Value objects for the various combinations
3461 that callers need. */
3463 Lisp_Object
3464 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3466 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3467 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3468 p->save_type = SAVE_TYPE_INT_INT_INT;
3469 p->data[0].integer = a;
3470 p->data[1].integer = b;
3471 p->data[2].integer = c;
3472 return val;
3475 Lisp_Object
3476 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3477 Lisp_Object d)
3479 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3480 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3481 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3482 p->data[0].object = a;
3483 p->data[1].object = b;
3484 p->data[2].object = c;
3485 p->data[3].object = d;
3486 return val;
3489 Lisp_Object
3490 make_save_ptr (void *a)
3492 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3493 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3494 p->save_type = SAVE_POINTER;
3495 p->data[0].pointer = a;
3496 return val;
3499 Lisp_Object
3500 make_save_ptr_int (void *a, ptrdiff_t b)
3502 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3503 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3504 p->save_type = SAVE_TYPE_PTR_INT;
3505 p->data[0].pointer = a;
3506 p->data[1].integer = b;
3507 return val;
3510 #if ! (defined USE_X_TOOLKIT || defined USE_GTK)
3511 Lisp_Object
3512 make_save_ptr_ptr (void *a, void *b)
3514 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3515 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3516 p->save_type = SAVE_TYPE_PTR_PTR;
3517 p->data[0].pointer = a;
3518 p->data[1].pointer = b;
3519 return val;
3521 #endif
3523 Lisp_Object
3524 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3526 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3527 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3528 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3529 p->data[0].funcpointer = a;
3530 p->data[1].pointer = b;
3531 p->data[2].object = c;
3532 return val;
3535 /* Return a Lisp_Save_Value object that represents an array A
3536 of N Lisp objects. */
3538 Lisp_Object
3539 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3541 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3542 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3543 p->save_type = SAVE_TYPE_MEMORY;
3544 p->data[0].pointer = a;
3545 p->data[1].integer = n;
3546 return val;
3549 /* Free a Lisp_Save_Value object. Do not use this function
3550 if SAVE contains pointer other than returned by xmalloc. */
3552 void
3553 free_save_value (Lisp_Object save)
3555 xfree (XSAVE_POINTER (save, 0));
3556 free_misc (save);
3559 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3561 Lisp_Object
3562 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3564 register Lisp_Object overlay;
3566 overlay = allocate_misc (Lisp_Misc_Overlay);
3567 OVERLAY_START (overlay) = start;
3568 OVERLAY_END (overlay) = end;
3569 set_overlay_plist (overlay, plist);
3570 XOVERLAY (overlay)->next = NULL;
3571 return overlay;
3574 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3575 doc: /* Return a newly allocated marker which does not point at any place. */)
3576 (void)
3578 register Lisp_Object val;
3579 register struct Lisp_Marker *p;
3581 val = allocate_misc (Lisp_Misc_Marker);
3582 p = XMARKER (val);
3583 p->buffer = 0;
3584 p->bytepos = 0;
3585 p->charpos = 0;
3586 p->next = NULL;
3587 p->insertion_type = 0;
3588 p->need_adjustment = 0;
3589 return val;
3592 /* Return a newly allocated marker which points into BUF
3593 at character position CHARPOS and byte position BYTEPOS. */
3595 Lisp_Object
3596 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3598 Lisp_Object obj;
3599 struct Lisp_Marker *m;
3601 /* No dead buffers here. */
3602 eassert (BUFFER_LIVE_P (buf));
3604 /* Every character is at least one byte. */
3605 eassert (charpos <= bytepos);
3607 obj = allocate_misc (Lisp_Misc_Marker);
3608 m = XMARKER (obj);
3609 m->buffer = buf;
3610 m->charpos = charpos;
3611 m->bytepos = bytepos;
3612 m->insertion_type = 0;
3613 m->need_adjustment = 0;
3614 m->next = BUF_MARKERS (buf);
3615 BUF_MARKERS (buf) = m;
3616 return obj;
3619 /* Put MARKER back on the free list after using it temporarily. */
3621 void
3622 free_marker (Lisp_Object marker)
3624 unchain_marker (XMARKER (marker));
3625 free_misc (marker);
3629 /* Return a newly created vector or string with specified arguments as
3630 elements. If all the arguments are characters that can fit
3631 in a string of events, make a string; otherwise, make a vector.
3633 Any number of arguments, even zero arguments, are allowed. */
3635 Lisp_Object
3636 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3638 ptrdiff_t i;
3640 for (i = 0; i < nargs; i++)
3641 /* The things that fit in a string
3642 are characters that are in 0...127,
3643 after discarding the meta bit and all the bits above it. */
3644 if (!INTEGERP (args[i])
3645 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3646 return Fvector (nargs, args);
3648 /* Since the loop exited, we know that all the things in it are
3649 characters, so we can make a string. */
3651 Lisp_Object result;
3653 result = Fmake_string (make_number (nargs), make_number (0));
3654 for (i = 0; i < nargs; i++)
3656 SSET (result, i, XINT (args[i]));
3657 /* Move the meta bit to the right place for a string char. */
3658 if (XINT (args[i]) & CHAR_META)
3659 SSET (result, i, SREF (result, i) | 0x80);
3662 return result;
3668 /************************************************************************
3669 Memory Full Handling
3670 ************************************************************************/
3673 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3674 there may have been size_t overflow so that malloc was never
3675 called, or perhaps malloc was invoked successfully but the
3676 resulting pointer had problems fitting into a tagged EMACS_INT. In
3677 either case this counts as memory being full even though malloc did
3678 not fail. */
3680 void
3681 memory_full (size_t nbytes)
3683 /* Do not go into hysterics merely because a large request failed. */
3684 bool enough_free_memory = 0;
3685 if (SPARE_MEMORY < nbytes)
3687 void *p;
3689 MALLOC_BLOCK_INPUT;
3690 p = malloc (SPARE_MEMORY);
3691 if (p)
3693 free (p);
3694 enough_free_memory = 1;
3696 MALLOC_UNBLOCK_INPUT;
3699 if (! enough_free_memory)
3701 int i;
3703 Vmemory_full = Qt;
3705 memory_full_cons_threshold = sizeof (struct cons_block);
3707 /* The first time we get here, free the spare memory. */
3708 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3709 if (spare_memory[i])
3711 if (i == 0)
3712 free (spare_memory[i]);
3713 else if (i >= 1 && i <= 4)
3714 lisp_align_free (spare_memory[i]);
3715 else
3716 lisp_free (spare_memory[i]);
3717 spare_memory[i] = 0;
3721 /* This used to call error, but if we've run out of memory, we could
3722 get infinite recursion trying to build the string. */
3723 xsignal (Qnil, Vmemory_signal_data);
3726 /* If we released our reserve (due to running out of memory),
3727 and we have a fair amount free once again,
3728 try to set aside another reserve in case we run out once more.
3730 This is called when a relocatable block is freed in ralloc.c,
3731 and also directly from this file, in case we're not using ralloc.c. */
3733 void
3734 refill_memory_reserve (void)
3736 #ifndef SYSTEM_MALLOC
3737 if (spare_memory[0] == 0)
3738 spare_memory[0] = malloc (SPARE_MEMORY);
3739 if (spare_memory[1] == 0)
3740 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3741 MEM_TYPE_SPARE);
3742 if (spare_memory[2] == 0)
3743 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3744 MEM_TYPE_SPARE);
3745 if (spare_memory[3] == 0)
3746 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3747 MEM_TYPE_SPARE);
3748 if (spare_memory[4] == 0)
3749 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3750 MEM_TYPE_SPARE);
3751 if (spare_memory[5] == 0)
3752 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3753 MEM_TYPE_SPARE);
3754 if (spare_memory[6] == 0)
3755 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3756 MEM_TYPE_SPARE);
3757 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3758 Vmemory_full = Qnil;
3759 #endif
3762 /************************************************************************
3763 C Stack Marking
3764 ************************************************************************/
3766 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3768 /* Conservative C stack marking requires a method to identify possibly
3769 live Lisp objects given a pointer value. We do this by keeping
3770 track of blocks of Lisp data that are allocated in a red-black tree
3771 (see also the comment of mem_node which is the type of nodes in
3772 that tree). Function lisp_malloc adds information for an allocated
3773 block to the red-black tree with calls to mem_insert, and function
3774 lisp_free removes it with mem_delete. Functions live_string_p etc
3775 call mem_find to lookup information about a given pointer in the
3776 tree, and use that to determine if the pointer points to a Lisp
3777 object or not. */
3779 /* Initialize this part of alloc.c. */
3781 static void
3782 mem_init (void)
3784 mem_z.left = mem_z.right = MEM_NIL;
3785 mem_z.parent = NULL;
3786 mem_z.color = MEM_BLACK;
3787 mem_z.start = mem_z.end = NULL;
3788 mem_root = MEM_NIL;
3792 /* Value is a pointer to the mem_node containing START. Value is
3793 MEM_NIL if there is no node in the tree containing START. */
3795 static struct mem_node *
3796 mem_find (void *start)
3798 struct mem_node *p;
3800 if (start < min_heap_address || start > max_heap_address)
3801 return MEM_NIL;
3803 /* Make the search always successful to speed up the loop below. */
3804 mem_z.start = start;
3805 mem_z.end = (char *) start + 1;
3807 p = mem_root;
3808 while (start < p->start || start >= p->end)
3809 p = start < p->start ? p->left : p->right;
3810 return p;
3814 /* Insert a new node into the tree for a block of memory with start
3815 address START, end address END, and type TYPE. Value is a
3816 pointer to the node that was inserted. */
3818 static struct mem_node *
3819 mem_insert (void *start, void *end, enum mem_type type)
3821 struct mem_node *c, *parent, *x;
3823 if (min_heap_address == NULL || start < min_heap_address)
3824 min_heap_address = start;
3825 if (max_heap_address == NULL || end > max_heap_address)
3826 max_heap_address = end;
3828 /* See where in the tree a node for START belongs. In this
3829 particular application, it shouldn't happen that a node is already
3830 present. For debugging purposes, let's check that. */
3831 c = mem_root;
3832 parent = NULL;
3834 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3836 while (c != MEM_NIL)
3838 if (start >= c->start && start < c->end)
3839 emacs_abort ();
3840 parent = c;
3841 c = start < c->start ? c->left : c->right;
3844 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3846 while (c != MEM_NIL)
3848 parent = c;
3849 c = start < c->start ? c->left : c->right;
3852 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3854 /* Create a new node. */
3855 #ifdef GC_MALLOC_CHECK
3856 x = malloc (sizeof *x);
3857 if (x == NULL)
3858 emacs_abort ();
3859 #else
3860 x = xmalloc (sizeof *x);
3861 #endif
3862 x->start = start;
3863 x->end = end;
3864 x->type = type;
3865 x->parent = parent;
3866 x->left = x->right = MEM_NIL;
3867 x->color = MEM_RED;
3869 /* Insert it as child of PARENT or install it as root. */
3870 if (parent)
3872 if (start < parent->start)
3873 parent->left = x;
3874 else
3875 parent->right = x;
3877 else
3878 mem_root = x;
3880 /* Re-establish red-black tree properties. */
3881 mem_insert_fixup (x);
3883 return x;
3887 /* Re-establish the red-black properties of the tree, and thereby
3888 balance the tree, after node X has been inserted; X is always red. */
3890 static void
3891 mem_insert_fixup (struct mem_node *x)
3893 while (x != mem_root && x->parent->color == MEM_RED)
3895 /* X is red and its parent is red. This is a violation of
3896 red-black tree property #3. */
3898 if (x->parent == x->parent->parent->left)
3900 /* We're on the left side of our grandparent, and Y is our
3901 "uncle". */
3902 struct mem_node *y = x->parent->parent->right;
3904 if (y->color == MEM_RED)
3906 /* Uncle and parent are red but should be black because
3907 X is red. Change the colors accordingly and proceed
3908 with the grandparent. */
3909 x->parent->color = MEM_BLACK;
3910 y->color = MEM_BLACK;
3911 x->parent->parent->color = MEM_RED;
3912 x = x->parent->parent;
3914 else
3916 /* Parent and uncle have different colors; parent is
3917 red, uncle is black. */
3918 if (x == x->parent->right)
3920 x = x->parent;
3921 mem_rotate_left (x);
3924 x->parent->color = MEM_BLACK;
3925 x->parent->parent->color = MEM_RED;
3926 mem_rotate_right (x->parent->parent);
3929 else
3931 /* This is the symmetrical case of above. */
3932 struct mem_node *y = x->parent->parent->left;
3934 if (y->color == MEM_RED)
3936 x->parent->color = MEM_BLACK;
3937 y->color = MEM_BLACK;
3938 x->parent->parent->color = MEM_RED;
3939 x = x->parent->parent;
3941 else
3943 if (x == x->parent->left)
3945 x = x->parent;
3946 mem_rotate_right (x);
3949 x->parent->color = MEM_BLACK;
3950 x->parent->parent->color = MEM_RED;
3951 mem_rotate_left (x->parent->parent);
3956 /* The root may have been changed to red due to the algorithm. Set
3957 it to black so that property #5 is satisfied. */
3958 mem_root->color = MEM_BLACK;
3962 /* (x) (y)
3963 / \ / \
3964 a (y) ===> (x) c
3965 / \ / \
3966 b c a b */
3968 static void
3969 mem_rotate_left (struct mem_node *x)
3971 struct mem_node *y;
3973 /* Turn y's left sub-tree into x's right sub-tree. */
3974 y = x->right;
3975 x->right = y->left;
3976 if (y->left != MEM_NIL)
3977 y->left->parent = x;
3979 /* Y's parent was x's parent. */
3980 if (y != MEM_NIL)
3981 y->parent = x->parent;
3983 /* Get the parent to point to y instead of x. */
3984 if (x->parent)
3986 if (x == x->parent->left)
3987 x->parent->left = y;
3988 else
3989 x->parent->right = y;
3991 else
3992 mem_root = y;
3994 /* Put x on y's left. */
3995 y->left = x;
3996 if (x != MEM_NIL)
3997 x->parent = y;
4001 /* (x) (Y)
4002 / \ / \
4003 (y) c ===> a (x)
4004 / \ / \
4005 a b b c */
4007 static void
4008 mem_rotate_right (struct mem_node *x)
4010 struct mem_node *y = x->left;
4012 x->left = y->right;
4013 if (y->right != MEM_NIL)
4014 y->right->parent = x;
4016 if (y != MEM_NIL)
4017 y->parent = x->parent;
4018 if (x->parent)
4020 if (x == x->parent->right)
4021 x->parent->right = y;
4022 else
4023 x->parent->left = y;
4025 else
4026 mem_root = y;
4028 y->right = x;
4029 if (x != MEM_NIL)
4030 x->parent = y;
4034 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4036 static void
4037 mem_delete (struct mem_node *z)
4039 struct mem_node *x, *y;
4041 if (!z || z == MEM_NIL)
4042 return;
4044 if (z->left == MEM_NIL || z->right == MEM_NIL)
4045 y = z;
4046 else
4048 y = z->right;
4049 while (y->left != MEM_NIL)
4050 y = y->left;
4053 if (y->left != MEM_NIL)
4054 x = y->left;
4055 else
4056 x = y->right;
4058 x->parent = y->parent;
4059 if (y->parent)
4061 if (y == y->parent->left)
4062 y->parent->left = x;
4063 else
4064 y->parent->right = x;
4066 else
4067 mem_root = x;
4069 if (y != z)
4071 z->start = y->start;
4072 z->end = y->end;
4073 z->type = y->type;
4076 if (y->color == MEM_BLACK)
4077 mem_delete_fixup (x);
4079 #ifdef GC_MALLOC_CHECK
4080 free (y);
4081 #else
4082 xfree (y);
4083 #endif
4087 /* Re-establish the red-black properties of the tree, after a
4088 deletion. */
4090 static void
4091 mem_delete_fixup (struct mem_node *x)
4093 while (x != mem_root && x->color == MEM_BLACK)
4095 if (x == x->parent->left)
4097 struct mem_node *w = x->parent->right;
4099 if (w->color == MEM_RED)
4101 w->color = MEM_BLACK;
4102 x->parent->color = MEM_RED;
4103 mem_rotate_left (x->parent);
4104 w = x->parent->right;
4107 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4109 w->color = MEM_RED;
4110 x = x->parent;
4112 else
4114 if (w->right->color == MEM_BLACK)
4116 w->left->color = MEM_BLACK;
4117 w->color = MEM_RED;
4118 mem_rotate_right (w);
4119 w = x->parent->right;
4121 w->color = x->parent->color;
4122 x->parent->color = MEM_BLACK;
4123 w->right->color = MEM_BLACK;
4124 mem_rotate_left (x->parent);
4125 x = mem_root;
4128 else
4130 struct mem_node *w = x->parent->left;
4132 if (w->color == MEM_RED)
4134 w->color = MEM_BLACK;
4135 x->parent->color = MEM_RED;
4136 mem_rotate_right (x->parent);
4137 w = x->parent->left;
4140 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4142 w->color = MEM_RED;
4143 x = x->parent;
4145 else
4147 if (w->left->color == MEM_BLACK)
4149 w->right->color = MEM_BLACK;
4150 w->color = MEM_RED;
4151 mem_rotate_left (w);
4152 w = x->parent->left;
4155 w->color = x->parent->color;
4156 x->parent->color = MEM_BLACK;
4157 w->left->color = MEM_BLACK;
4158 mem_rotate_right (x->parent);
4159 x = mem_root;
4164 x->color = MEM_BLACK;
4168 /* Value is non-zero if P is a pointer to a live Lisp string on
4169 the heap. M is a pointer to the mem_block for P. */
4171 static bool
4172 live_string_p (struct mem_node *m, void *p)
4174 if (m->type == MEM_TYPE_STRING)
4176 struct string_block *b = m->start;
4177 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4179 /* P must point to the start of a Lisp_String structure, and it
4180 must not be on the free-list. */
4181 return (offset >= 0
4182 && offset % sizeof b->strings[0] == 0
4183 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4184 && ((struct Lisp_String *) p)->data != NULL);
4186 else
4187 return 0;
4191 /* Value is non-zero if P is a pointer to a live Lisp cons on
4192 the heap. M is a pointer to the mem_block for P. */
4194 static bool
4195 live_cons_p (struct mem_node *m, void *p)
4197 if (m->type == MEM_TYPE_CONS)
4199 struct cons_block *b = m->start;
4200 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4202 /* P must point to the start of a Lisp_Cons, not be
4203 one of the unused cells in the current cons block,
4204 and not be on the free-list. */
4205 return (offset >= 0
4206 && offset % sizeof b->conses[0] == 0
4207 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4208 && (b != cons_block
4209 || offset / sizeof b->conses[0] < cons_block_index)
4210 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4212 else
4213 return 0;
4217 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4218 the heap. M is a pointer to the mem_block for P. */
4220 static bool
4221 live_symbol_p (struct mem_node *m, void *p)
4223 if (m->type == MEM_TYPE_SYMBOL)
4225 struct symbol_block *b = m->start;
4226 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4228 /* P must point to the start of a Lisp_Symbol, not be
4229 one of the unused cells in the current symbol block,
4230 and not be on the free-list. */
4231 return (offset >= 0
4232 && offset % sizeof b->symbols[0] == 0
4233 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4234 && (b != symbol_block
4235 || offset / sizeof b->symbols[0] < symbol_block_index)
4236 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4238 else
4239 return 0;
4243 /* Value is non-zero if P is a pointer to a live Lisp float on
4244 the heap. M is a pointer to the mem_block for P. */
4246 static bool
4247 live_float_p (struct mem_node *m, void *p)
4249 if (m->type == MEM_TYPE_FLOAT)
4251 struct float_block *b = m->start;
4252 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4254 /* P must point to the start of a Lisp_Float and not be
4255 one of the unused cells in the current float block. */
4256 return (offset >= 0
4257 && offset % sizeof b->floats[0] == 0
4258 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4259 && (b != float_block
4260 || offset / sizeof b->floats[0] < float_block_index));
4262 else
4263 return 0;
4267 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4268 the heap. M is a pointer to the mem_block for P. */
4270 static bool
4271 live_misc_p (struct mem_node *m, void *p)
4273 if (m->type == MEM_TYPE_MISC)
4275 struct marker_block *b = m->start;
4276 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4278 /* P must point to the start of a Lisp_Misc, not be
4279 one of the unused cells in the current misc block,
4280 and not be on the free-list. */
4281 return (offset >= 0
4282 && offset % sizeof b->markers[0] == 0
4283 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4284 && (b != marker_block
4285 || offset / sizeof b->markers[0] < marker_block_index)
4286 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4288 else
4289 return 0;
4293 /* Value is non-zero if P is a pointer to a live vector-like object.
4294 M is a pointer to the mem_block for P. */
4296 static bool
4297 live_vector_p (struct mem_node *m, void *p)
4299 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4301 /* This memory node corresponds to a vector block. */
4302 struct vector_block *block = m->start;
4303 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4305 /* P is in the block's allocation range. Scan the block
4306 up to P and see whether P points to the start of some
4307 vector which is not on a free list. FIXME: check whether
4308 some allocation patterns (probably a lot of short vectors)
4309 may cause a substantial overhead of this loop. */
4310 while (VECTOR_IN_BLOCK (vector, block)
4311 && vector <= (struct Lisp_Vector *) p)
4313 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4314 return 1;
4315 else
4316 vector = ADVANCE (vector, vector_nbytes (vector));
4319 else if (m->type == MEM_TYPE_VECTORLIKE && p == large_vector_vec (m->start))
4320 /* This memory node corresponds to a large vector. */
4321 return 1;
4322 return 0;
4326 /* Value is non-zero if P is a pointer to a live buffer. M is a
4327 pointer to the mem_block for P. */
4329 static bool
4330 live_buffer_p (struct mem_node *m, void *p)
4332 /* P must point to the start of the block, and the buffer
4333 must not have been killed. */
4334 return (m->type == MEM_TYPE_BUFFER
4335 && p == m->start
4336 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
4339 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4341 #if GC_MARK_STACK
4343 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4345 /* Currently not used, but may be called from gdb. */
4347 void dump_zombies (void) EXTERNALLY_VISIBLE;
4349 /* Array of objects that are kept alive because the C stack contains
4350 a pattern that looks like a reference to them. */
4352 #define MAX_ZOMBIES 10
4353 static Lisp_Object zombies[MAX_ZOMBIES];
4355 /* Number of zombie objects. */
4357 static EMACS_INT nzombies;
4359 /* Number of garbage collections. */
4361 static EMACS_INT ngcs;
4363 /* Average percentage of zombies per collection. */
4365 static double avg_zombies;
4367 /* Max. number of live and zombie objects. */
4369 static EMACS_INT max_live, max_zombies;
4371 /* Average number of live objects per GC. */
4373 static double avg_live;
4375 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4376 doc: /* Show information about live and zombie objects. */)
4377 (void)
4379 Lisp_Object args[8], zombie_list = Qnil;
4380 EMACS_INT i;
4381 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4382 zombie_list = Fcons (zombies[i], zombie_list);
4383 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4384 args[1] = make_number (ngcs);
4385 args[2] = make_float (avg_live);
4386 args[3] = make_float (avg_zombies);
4387 args[4] = make_float (avg_zombies / avg_live / 100);
4388 args[5] = make_number (max_live);
4389 args[6] = make_number (max_zombies);
4390 args[7] = zombie_list;
4391 return Fmessage (8, args);
4394 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4397 /* Mark OBJ if we can prove it's a Lisp_Object. */
4399 static void
4400 mark_maybe_object (Lisp_Object obj)
4402 void *po;
4403 struct mem_node *m;
4405 #if USE_VALGRIND
4406 if (valgrind_p)
4407 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4408 #endif
4410 if (INTEGERP (obj))
4411 return;
4413 po = (void *) XPNTR (obj);
4414 m = mem_find (po);
4416 if (m != MEM_NIL)
4418 bool mark_p = 0;
4420 switch (XTYPE (obj))
4422 case Lisp_String:
4423 mark_p = (live_string_p (m, po)
4424 && !STRING_MARKED_P ((struct Lisp_String *) po));
4425 break;
4427 case Lisp_Cons:
4428 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4429 break;
4431 case Lisp_Symbol:
4432 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4433 break;
4435 case Lisp_Float:
4436 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4437 break;
4439 case Lisp_Vectorlike:
4440 /* Note: can't check BUFFERP before we know it's a
4441 buffer because checking that dereferences the pointer
4442 PO which might point anywhere. */
4443 if (live_vector_p (m, po))
4444 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4445 else if (live_buffer_p (m, po))
4446 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4447 break;
4449 case Lisp_Misc:
4450 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4451 break;
4453 default:
4454 break;
4457 if (mark_p)
4459 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4460 if (nzombies < MAX_ZOMBIES)
4461 zombies[nzombies] = obj;
4462 ++nzombies;
4463 #endif
4464 mark_object (obj);
4470 /* If P points to Lisp data, mark that as live if it isn't already
4471 marked. */
4473 static void
4474 mark_maybe_pointer (void *p)
4476 struct mem_node *m;
4478 #if USE_VALGRIND
4479 if (valgrind_p)
4480 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4481 #endif
4483 /* Quickly rule out some values which can't point to Lisp data.
4484 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4485 Otherwise, assume that Lisp data is aligned on even addresses. */
4486 if ((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2))
4487 return;
4489 m = mem_find (p);
4490 if (m != MEM_NIL)
4492 Lisp_Object obj = Qnil;
4494 switch (m->type)
4496 case MEM_TYPE_NON_LISP:
4497 case MEM_TYPE_SPARE:
4498 /* Nothing to do; not a pointer to Lisp memory. */
4499 break;
4501 case MEM_TYPE_BUFFER:
4502 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4503 XSETVECTOR (obj, p);
4504 break;
4506 case MEM_TYPE_CONS:
4507 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4508 XSETCONS (obj, p);
4509 break;
4511 case MEM_TYPE_STRING:
4512 if (live_string_p (m, p)
4513 && !STRING_MARKED_P ((struct Lisp_String *) p))
4514 XSETSTRING (obj, p);
4515 break;
4517 case MEM_TYPE_MISC:
4518 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4519 XSETMISC (obj, p);
4520 break;
4522 case MEM_TYPE_SYMBOL:
4523 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4524 XSETSYMBOL (obj, p);
4525 break;
4527 case MEM_TYPE_FLOAT:
4528 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4529 XSETFLOAT (obj, p);
4530 break;
4532 case MEM_TYPE_VECTORLIKE:
4533 case MEM_TYPE_VECTOR_BLOCK:
4534 if (live_vector_p (m, p))
4536 Lisp_Object tem;
4537 XSETVECTOR (tem, p);
4538 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4539 obj = tem;
4541 break;
4543 default:
4544 emacs_abort ();
4547 if (!NILP (obj))
4548 mark_object (obj);
4553 /* Alignment of pointer values. Use alignof, as it sometimes returns
4554 a smaller alignment than GCC's __alignof__ and mark_memory might
4555 miss objects if __alignof__ were used. */
4556 #define GC_POINTER_ALIGNMENT alignof (void *)
4558 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4559 not suffice, which is the typical case. A host where a Lisp_Object is
4560 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4561 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4562 suffice to widen it to to a Lisp_Object and check it that way. */
4563 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4564 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4565 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4566 nor mark_maybe_object can follow the pointers. This should not occur on
4567 any practical porting target. */
4568 # error "MSB type bits straddle pointer-word boundaries"
4569 # endif
4570 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4571 pointer words that hold pointers ORed with type bits. */
4572 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4573 #else
4574 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4575 words that hold unmodified pointers. */
4576 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4577 #endif
4579 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4580 or END+OFFSET..START. */
4582 static void ATTRIBUTE_NO_SANITIZE_ADDRESS
4583 mark_memory (void *start, void *end)
4585 void **pp;
4586 int i;
4588 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4589 nzombies = 0;
4590 #endif
4592 /* Make START the pointer to the start of the memory region,
4593 if it isn't already. */
4594 if (end < start)
4596 void *tem = start;
4597 start = end;
4598 end = tem;
4601 /* Mark Lisp data pointed to. This is necessary because, in some
4602 situations, the C compiler optimizes Lisp objects away, so that
4603 only a pointer to them remains. Example:
4605 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4608 Lisp_Object obj = build_string ("test");
4609 struct Lisp_String *s = XSTRING (obj);
4610 Fgarbage_collect ();
4611 fprintf (stderr, "test `%s'\n", s->data);
4612 return Qnil;
4615 Here, `obj' isn't really used, and the compiler optimizes it
4616 away. The only reference to the life string is through the
4617 pointer `s'. */
4619 for (pp = start; (void *) pp < end; pp++)
4620 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4622 void *p = *(void **) ((char *) pp + i);
4623 mark_maybe_pointer (p);
4624 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4625 mark_maybe_object (XIL ((intptr_t) p));
4629 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4631 static bool setjmp_tested_p;
4632 static int longjmps_done;
4634 #define SETJMP_WILL_LIKELY_WORK "\
4636 Emacs garbage collector has been changed to use conservative stack\n\
4637 marking. Emacs has determined that the method it uses to do the\n\
4638 marking will likely work on your system, but this isn't sure.\n\
4640 If you are a system-programmer, or can get the help of a local wizard\n\
4641 who is, please take a look at the function mark_stack in alloc.c, and\n\
4642 verify that the methods used are appropriate for your system.\n\
4644 Please mail the result to <emacs-devel@gnu.org>.\n\
4647 #define SETJMP_WILL_NOT_WORK "\
4649 Emacs garbage collector has been changed to use conservative stack\n\
4650 marking. Emacs has determined that the default method it uses to do the\n\
4651 marking will not work on your system. We will need a system-dependent\n\
4652 solution for your system.\n\
4654 Please take a look at the function mark_stack in alloc.c, and\n\
4655 try to find a way to make it work on your system.\n\
4657 Note that you may get false negatives, depending on the compiler.\n\
4658 In particular, you need to use -O with GCC for this test.\n\
4660 Please mail the result to <emacs-devel@gnu.org>.\n\
4664 /* Perform a quick check if it looks like setjmp saves registers in a
4665 jmp_buf. Print a message to stderr saying so. When this test
4666 succeeds, this is _not_ a proof that setjmp is sufficient for
4667 conservative stack marking. Only the sources or a disassembly
4668 can prove that. */
4670 static void
4671 test_setjmp (void)
4673 char buf[10];
4674 register int x;
4675 sys_jmp_buf jbuf;
4677 /* Arrange for X to be put in a register. */
4678 sprintf (buf, "1");
4679 x = strlen (buf);
4680 x = 2 * x - 1;
4682 sys_setjmp (jbuf);
4683 if (longjmps_done == 1)
4685 /* Came here after the longjmp at the end of the function.
4687 If x == 1, the longjmp has restored the register to its
4688 value before the setjmp, and we can hope that setjmp
4689 saves all such registers in the jmp_buf, although that
4690 isn't sure.
4692 For other values of X, either something really strange is
4693 taking place, or the setjmp just didn't save the register. */
4695 if (x == 1)
4696 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4697 else
4699 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4700 exit (1);
4704 ++longjmps_done;
4705 x = 2;
4706 if (longjmps_done == 1)
4707 sys_longjmp (jbuf, 1);
4710 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4713 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4715 /* Abort if anything GCPRO'd doesn't survive the GC. */
4717 static void
4718 check_gcpros (void)
4720 struct gcpro *p;
4721 ptrdiff_t i;
4723 for (p = gcprolist; p; p = p->next)
4724 for (i = 0; i < p->nvars; ++i)
4725 if (!survives_gc_p (p->var[i]))
4726 /* FIXME: It's not necessarily a bug. It might just be that the
4727 GCPRO is unnecessary or should release the object sooner. */
4728 emacs_abort ();
4731 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4733 void
4734 dump_zombies (void)
4736 int i;
4738 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4739 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4741 fprintf (stderr, " %d = ", i);
4742 debug_print (zombies[i]);
4746 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4749 /* Mark live Lisp objects on the C stack.
4751 There are several system-dependent problems to consider when
4752 porting this to new architectures:
4754 Processor Registers
4756 We have to mark Lisp objects in CPU registers that can hold local
4757 variables or are used to pass parameters.
4759 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4760 something that either saves relevant registers on the stack, or
4761 calls mark_maybe_object passing it each register's contents.
4763 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4764 implementation assumes that calling setjmp saves registers we need
4765 to see in a jmp_buf which itself lies on the stack. This doesn't
4766 have to be true! It must be verified for each system, possibly
4767 by taking a look at the source code of setjmp.
4769 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4770 can use it as a machine independent method to store all registers
4771 to the stack. In this case the macros described in the previous
4772 two paragraphs are not used.
4774 Stack Layout
4776 Architectures differ in the way their processor stack is organized.
4777 For example, the stack might look like this
4779 +----------------+
4780 | Lisp_Object | size = 4
4781 +----------------+
4782 | something else | size = 2
4783 +----------------+
4784 | Lisp_Object | size = 4
4785 +----------------+
4786 | ... |
4788 In such a case, not every Lisp_Object will be aligned equally. To
4789 find all Lisp_Object on the stack it won't be sufficient to walk
4790 the stack in steps of 4 bytes. Instead, two passes will be
4791 necessary, one starting at the start of the stack, and a second
4792 pass starting at the start of the stack + 2. Likewise, if the
4793 minimal alignment of Lisp_Objects on the stack is 1, four passes
4794 would be necessary, each one starting with one byte more offset
4795 from the stack start. */
4797 static void
4798 mark_stack (void)
4800 void *end;
4802 #ifdef HAVE___BUILTIN_UNWIND_INIT
4803 /* Force callee-saved registers and register windows onto the stack.
4804 This is the preferred method if available, obviating the need for
4805 machine dependent methods. */
4806 __builtin_unwind_init ();
4807 end = &end;
4808 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4809 #ifndef GC_SAVE_REGISTERS_ON_STACK
4810 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4811 union aligned_jmpbuf {
4812 Lisp_Object o;
4813 sys_jmp_buf j;
4814 } j;
4815 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
4816 #endif
4817 /* This trick flushes the register windows so that all the state of
4818 the process is contained in the stack. */
4819 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4820 needed on ia64 too. See mach_dep.c, where it also says inline
4821 assembler doesn't work with relevant proprietary compilers. */
4822 #ifdef __sparc__
4823 #if defined (__sparc64__) && defined (__FreeBSD__)
4824 /* FreeBSD does not have a ta 3 handler. */
4825 asm ("flushw");
4826 #else
4827 asm ("ta 3");
4828 #endif
4829 #endif
4831 /* Save registers that we need to see on the stack. We need to see
4832 registers used to hold register variables and registers used to
4833 pass parameters. */
4834 #ifdef GC_SAVE_REGISTERS_ON_STACK
4835 GC_SAVE_REGISTERS_ON_STACK (end);
4836 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4838 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4839 setjmp will definitely work, test it
4840 and print a message with the result
4841 of the test. */
4842 if (!setjmp_tested_p)
4844 setjmp_tested_p = 1;
4845 test_setjmp ();
4847 #endif /* GC_SETJMP_WORKS */
4849 sys_setjmp (j.j);
4850 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4851 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4852 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4854 /* This assumes that the stack is a contiguous region in memory. If
4855 that's not the case, something has to be done here to iterate
4856 over the stack segments. */
4857 mark_memory (stack_base, end);
4859 /* Allow for marking a secondary stack, like the register stack on the
4860 ia64. */
4861 #ifdef GC_MARK_SECONDARY_STACK
4862 GC_MARK_SECONDARY_STACK ();
4863 #endif
4865 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4866 check_gcpros ();
4867 #endif
4870 #else /* GC_MARK_STACK == 0 */
4872 #define mark_maybe_object(obj) emacs_abort ()
4874 #endif /* GC_MARK_STACK != 0 */
4877 /* Determine whether it is safe to access memory at address P. */
4878 static int
4879 valid_pointer_p (void *p)
4881 #ifdef WINDOWSNT
4882 return w32_valid_pointer_p (p, 16);
4883 #else
4884 int fd[2];
4886 /* Obviously, we cannot just access it (we would SEGV trying), so we
4887 trick the o/s to tell us whether p is a valid pointer.
4888 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4889 not validate p in that case. */
4891 if (emacs_pipe (fd) == 0)
4893 bool valid = emacs_write (fd[1], p, 16) == 16;
4894 emacs_close (fd[1]);
4895 emacs_close (fd[0]);
4896 return valid;
4899 return -1;
4900 #endif
4903 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
4904 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
4905 cannot validate OBJ. This function can be quite slow, so its primary
4906 use is the manual debugging. The only exception is print_object, where
4907 we use it to check whether the memory referenced by the pointer of
4908 Lisp_Save_Value object contains valid objects. */
4911 valid_lisp_object_p (Lisp_Object obj)
4913 void *p;
4914 #if GC_MARK_STACK
4915 struct mem_node *m;
4916 #endif
4918 if (INTEGERP (obj))
4919 return 1;
4921 p = (void *) XPNTR (obj);
4922 if (PURE_POINTER_P (p))
4923 return 1;
4925 if (p == &buffer_defaults || p == &buffer_local_symbols)
4926 return 2;
4928 #if !GC_MARK_STACK
4929 return valid_pointer_p (p);
4930 #else
4932 m = mem_find (p);
4934 if (m == MEM_NIL)
4936 int valid = valid_pointer_p (p);
4937 if (valid <= 0)
4938 return valid;
4940 if (SUBRP (obj))
4941 return 1;
4943 return 0;
4946 switch (m->type)
4948 case MEM_TYPE_NON_LISP:
4949 case MEM_TYPE_SPARE:
4950 return 0;
4952 case MEM_TYPE_BUFFER:
4953 return live_buffer_p (m, p) ? 1 : 2;
4955 case MEM_TYPE_CONS:
4956 return live_cons_p (m, p);
4958 case MEM_TYPE_STRING:
4959 return live_string_p (m, p);
4961 case MEM_TYPE_MISC:
4962 return live_misc_p (m, p);
4964 case MEM_TYPE_SYMBOL:
4965 return live_symbol_p (m, p);
4967 case MEM_TYPE_FLOAT:
4968 return live_float_p (m, p);
4970 case MEM_TYPE_VECTORLIKE:
4971 case MEM_TYPE_VECTOR_BLOCK:
4972 return live_vector_p (m, p);
4974 default:
4975 break;
4978 return 0;
4979 #endif
4985 /***********************************************************************
4986 Pure Storage Management
4987 ***********************************************************************/
4989 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4990 pointer to it. TYPE is the Lisp type for which the memory is
4991 allocated. TYPE < 0 means it's not used for a Lisp object. */
4993 static void *
4994 pure_alloc (size_t size, int type)
4996 void *result;
4997 #if USE_LSB_TAG
4998 size_t alignment = GCALIGNMENT;
4999 #else
5000 size_t alignment = alignof (EMACS_INT);
5002 /* Give Lisp_Floats an extra alignment. */
5003 if (type == Lisp_Float)
5004 alignment = alignof (struct Lisp_Float);
5005 #endif
5007 again:
5008 if (type >= 0)
5010 /* Allocate space for a Lisp object from the beginning of the free
5011 space with taking account of alignment. */
5012 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
5013 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5015 else
5017 /* Allocate space for a non-Lisp object from the end of the free
5018 space. */
5019 pure_bytes_used_non_lisp += size;
5020 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5022 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5024 if (pure_bytes_used <= pure_size)
5025 return result;
5027 /* Don't allocate a large amount here,
5028 because it might get mmap'd and then its address
5029 might not be usable. */
5030 purebeg = xmalloc (10000);
5031 pure_size = 10000;
5032 pure_bytes_used_before_overflow += pure_bytes_used - size;
5033 pure_bytes_used = 0;
5034 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5035 goto again;
5039 /* Print a warning if PURESIZE is too small. */
5041 void
5042 check_pure_size (void)
5044 if (pure_bytes_used_before_overflow)
5045 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5046 " bytes needed)"),
5047 pure_bytes_used + pure_bytes_used_before_overflow);
5051 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5052 the non-Lisp data pool of the pure storage, and return its start
5053 address. Return NULL if not found. */
5055 static char *
5056 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5058 int i;
5059 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5060 const unsigned char *p;
5061 char *non_lisp_beg;
5063 if (pure_bytes_used_non_lisp <= nbytes)
5064 return NULL;
5066 /* Set up the Boyer-Moore table. */
5067 skip = nbytes + 1;
5068 for (i = 0; i < 256; i++)
5069 bm_skip[i] = skip;
5071 p = (const unsigned char *) data;
5072 while (--skip > 0)
5073 bm_skip[*p++] = skip;
5075 last_char_skip = bm_skip['\0'];
5077 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5078 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5080 /* See the comments in the function `boyer_moore' (search.c) for the
5081 use of `infinity'. */
5082 infinity = pure_bytes_used_non_lisp + 1;
5083 bm_skip['\0'] = infinity;
5085 p = (const unsigned char *) non_lisp_beg + nbytes;
5086 start = 0;
5089 /* Check the last character (== '\0'). */
5092 start += bm_skip[*(p + start)];
5094 while (start <= start_max);
5096 if (start < infinity)
5097 /* Couldn't find the last character. */
5098 return NULL;
5100 /* No less than `infinity' means we could find the last
5101 character at `p[start - infinity]'. */
5102 start -= infinity;
5104 /* Check the remaining characters. */
5105 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5106 /* Found. */
5107 return non_lisp_beg + start;
5109 start += last_char_skip;
5111 while (start <= start_max);
5113 return NULL;
5117 /* Return a string allocated in pure space. DATA is a buffer holding
5118 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5119 means make the result string multibyte.
5121 Must get an error if pure storage is full, since if it cannot hold
5122 a large string it may be able to hold conses that point to that
5123 string; then the string is not protected from gc. */
5125 Lisp_Object
5126 make_pure_string (const char *data,
5127 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5129 Lisp_Object string;
5130 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5131 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5132 if (s->data == NULL)
5134 s->data = pure_alloc (nbytes + 1, -1);
5135 memcpy (s->data, data, nbytes);
5136 s->data[nbytes] = '\0';
5138 s->size = nchars;
5139 s->size_byte = multibyte ? nbytes : -1;
5140 s->intervals = NULL;
5141 XSETSTRING (string, s);
5142 return string;
5145 /* Return a string allocated in pure space. Do not
5146 allocate the string data, just point to DATA. */
5148 Lisp_Object
5149 make_pure_c_string (const char *data, ptrdiff_t nchars)
5151 Lisp_Object string;
5152 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5153 s->size = nchars;
5154 s->size_byte = -1;
5155 s->data = (unsigned char *) data;
5156 s->intervals = NULL;
5157 XSETSTRING (string, s);
5158 return string;
5161 /* Return a cons allocated from pure space. Give it pure copies
5162 of CAR as car and CDR as cdr. */
5164 Lisp_Object
5165 pure_cons (Lisp_Object car, Lisp_Object cdr)
5167 Lisp_Object new;
5168 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5169 XSETCONS (new, p);
5170 XSETCAR (new, Fpurecopy (car));
5171 XSETCDR (new, Fpurecopy (cdr));
5172 return new;
5176 /* Value is a float object with value NUM allocated from pure space. */
5178 static Lisp_Object
5179 make_pure_float (double num)
5181 Lisp_Object new;
5182 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5183 XSETFLOAT (new, p);
5184 XFLOAT_INIT (new, num);
5185 return new;
5189 /* Return a vector with room for LEN Lisp_Objects allocated from
5190 pure space. */
5192 static Lisp_Object
5193 make_pure_vector (ptrdiff_t len)
5195 Lisp_Object new;
5196 size_t size = header_size + len * word_size;
5197 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5198 XSETVECTOR (new, p);
5199 XVECTOR (new)->header.size = len;
5200 return new;
5204 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5205 doc: /* Make a copy of object OBJ in pure storage.
5206 Recursively copies contents of vectors and cons cells.
5207 Does not copy symbols. Copies strings without text properties. */)
5208 (register Lisp_Object obj)
5210 if (NILP (Vpurify_flag))
5211 return obj;
5213 if (PURE_POINTER_P (XPNTR (obj)))
5214 return obj;
5216 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5218 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5219 if (!NILP (tmp))
5220 return tmp;
5223 if (CONSP (obj))
5224 obj = pure_cons (XCAR (obj), XCDR (obj));
5225 else if (FLOATP (obj))
5226 obj = make_pure_float (XFLOAT_DATA (obj));
5227 else if (STRINGP (obj))
5228 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5229 SBYTES (obj),
5230 STRING_MULTIBYTE (obj));
5231 else if (COMPILEDP (obj) || VECTORP (obj))
5233 register struct Lisp_Vector *vec;
5234 register ptrdiff_t i;
5235 ptrdiff_t size;
5237 size = ASIZE (obj);
5238 if (size & PSEUDOVECTOR_FLAG)
5239 size &= PSEUDOVECTOR_SIZE_MASK;
5240 vec = XVECTOR (make_pure_vector (size));
5241 for (i = 0; i < size; i++)
5242 vec->contents[i] = Fpurecopy (AREF (obj, i));
5243 if (COMPILEDP (obj))
5245 XSETPVECTYPE (vec, PVEC_COMPILED);
5246 XSETCOMPILED (obj, vec);
5248 else
5249 XSETVECTOR (obj, vec);
5251 else if (MARKERP (obj))
5252 error ("Attempt to copy a marker to pure storage");
5253 else
5254 /* Not purified, don't hash-cons. */
5255 return obj;
5257 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5258 Fputhash (obj, obj, Vpurify_flag);
5260 return obj;
5265 /***********************************************************************
5266 Protection from GC
5267 ***********************************************************************/
5269 /* Put an entry in staticvec, pointing at the variable with address
5270 VARADDRESS. */
5272 void
5273 staticpro (Lisp_Object *varaddress)
5275 if (staticidx >= NSTATICS)
5276 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5277 staticvec[staticidx++] = varaddress;
5281 /***********************************************************************
5282 Protection from GC
5283 ***********************************************************************/
5285 /* Temporarily prevent garbage collection. */
5287 ptrdiff_t
5288 inhibit_garbage_collection (void)
5290 ptrdiff_t count = SPECPDL_INDEX ();
5292 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5293 return count;
5296 /* Used to avoid possible overflows when
5297 converting from C to Lisp integers. */
5299 static Lisp_Object
5300 bounded_number (EMACS_INT number)
5302 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5305 /* Calculate total bytes of live objects. */
5307 static size_t
5308 total_bytes_of_live_objects (void)
5310 size_t tot = 0;
5311 tot += total_conses * sizeof (struct Lisp_Cons);
5312 tot += total_symbols * sizeof (struct Lisp_Symbol);
5313 tot += total_markers * sizeof (union Lisp_Misc);
5314 tot += total_string_bytes;
5315 tot += total_vector_slots * word_size;
5316 tot += total_floats * sizeof (struct Lisp_Float);
5317 tot += total_intervals * sizeof (struct interval);
5318 tot += total_strings * sizeof (struct Lisp_String);
5319 return tot;
5322 #ifdef HAVE_WINDOW_SYSTEM
5324 /* This code has a few issues on MS-Windows, see Bug#15876 and Bug#16140. */
5326 #if !defined (HAVE_NTGUI)
5328 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5329 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5331 static Lisp_Object
5332 compact_font_cache_entry (Lisp_Object entry)
5334 Lisp_Object tail, *prev = &entry;
5336 for (tail = entry; CONSP (tail); tail = XCDR (tail))
5338 bool drop = 0;
5339 Lisp_Object obj = XCAR (tail);
5341 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5342 if (CONSP (obj) && FONT_SPEC_P (XCAR (obj))
5343 && !VECTOR_MARKED_P (XFONT_SPEC (XCAR (obj)))
5344 && VECTORP (XCDR (obj)))
5346 ptrdiff_t i, size = ASIZE (XCDR (obj)) & ~ARRAY_MARK_FLAG;
5348 /* If font-spec is not marked, most likely all font-entities
5349 are not marked too. But we must be sure that nothing is
5350 marked within OBJ before we really drop it. */
5351 for (i = 0; i < size; i++)
5352 if (VECTOR_MARKED_P (XFONT_ENTITY (AREF (XCDR (obj), i))))
5353 break;
5355 if (i == size)
5356 drop = 1;
5358 if (drop)
5359 *prev = XCDR (tail);
5360 else
5361 prev = xcdr_addr (tail);
5363 return entry;
5366 #endif /* not HAVE_NTGUI */
5368 /* Compact font caches on all terminals and mark
5369 everything which is still here after compaction. */
5371 static void
5372 compact_font_caches (void)
5374 struct terminal *t;
5376 for (t = terminal_list; t; t = t->next_terminal)
5378 Lisp_Object cache = TERMINAL_FONT_CACHE (t);
5379 #if !defined (HAVE_NTGUI)
5380 if (CONSP (cache))
5382 Lisp_Object entry;
5384 for (entry = XCDR (cache); CONSP (entry); entry = XCDR (entry))
5385 XSETCAR (entry, compact_font_cache_entry (XCAR (entry)));
5387 #endif /* not HAVE_NTGUI */
5388 mark_object (cache);
5392 #else /* not HAVE_WINDOW_SYSTEM */
5394 #define compact_font_caches() (void)(0)
5396 #endif /* HAVE_WINDOW_SYSTEM */
5398 /* Remove (MARKER . DATA) entries with unmarked MARKER
5399 from buffer undo LIST and return changed list. */
5401 static Lisp_Object
5402 compact_undo_list (Lisp_Object list)
5404 Lisp_Object tail, *prev = &list;
5406 for (tail = list; CONSP (tail); tail = XCDR (tail))
5408 if (CONSP (XCAR (tail))
5409 && MARKERP (XCAR (XCAR (tail)))
5410 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5411 *prev = XCDR (tail);
5412 else
5413 prev = xcdr_addr (tail);
5415 return list;
5418 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5419 doc: /* Reclaim storage for Lisp objects no longer needed.
5420 Garbage collection happens automatically if you cons more than
5421 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5422 `garbage-collect' normally returns a list with info on amount of space in use,
5423 where each entry has the form (NAME SIZE USED FREE), where:
5424 - NAME is a symbol describing the kind of objects this entry represents,
5425 - SIZE is the number of bytes used by each one,
5426 - USED is the number of those objects that were found live in the heap,
5427 - FREE is the number of those objects that are not live but that Emacs
5428 keeps around for future allocations (maybe because it does not know how
5429 to return them to the OS).
5430 However, if there was overflow in pure space, `garbage-collect'
5431 returns nil, because real GC can't be done.
5432 See Info node `(elisp)Garbage Collection'. */)
5433 (void)
5435 struct buffer *nextb;
5436 char stack_top_variable;
5437 ptrdiff_t i;
5438 bool message_p;
5439 ptrdiff_t count = SPECPDL_INDEX ();
5440 struct timespec start;
5441 Lisp_Object retval = Qnil;
5442 size_t tot_before = 0;
5444 if (abort_on_gc)
5445 emacs_abort ();
5447 /* Can't GC if pure storage overflowed because we can't determine
5448 if something is a pure object or not. */
5449 if (pure_bytes_used_before_overflow)
5450 return Qnil;
5452 /* Record this function, so it appears on the profiler's backtraces. */
5453 record_in_backtrace (Qautomatic_gc, &Qnil, 0);
5455 check_cons_list ();
5457 /* Don't keep undo information around forever.
5458 Do this early on, so it is no problem if the user quits. */
5459 FOR_EACH_BUFFER (nextb)
5460 compact_buffer (nextb);
5462 if (profiler_memory_running)
5463 tot_before = total_bytes_of_live_objects ();
5465 start = current_timespec ();
5467 /* In case user calls debug_print during GC,
5468 don't let that cause a recursive GC. */
5469 consing_since_gc = 0;
5471 /* Save what's currently displayed in the echo area. */
5472 message_p = push_message ();
5473 record_unwind_protect_void (pop_message_unwind);
5475 /* Save a copy of the contents of the stack, for debugging. */
5476 #if MAX_SAVE_STACK > 0
5477 if (NILP (Vpurify_flag))
5479 char *stack;
5480 ptrdiff_t stack_size;
5481 if (&stack_top_variable < stack_bottom)
5483 stack = &stack_top_variable;
5484 stack_size = stack_bottom - &stack_top_variable;
5486 else
5488 stack = stack_bottom;
5489 stack_size = &stack_top_variable - stack_bottom;
5491 if (stack_size <= MAX_SAVE_STACK)
5493 if (stack_copy_size < stack_size)
5495 stack_copy = xrealloc (stack_copy, stack_size);
5496 stack_copy_size = stack_size;
5498 no_sanitize_memcpy (stack_copy, stack, stack_size);
5501 #endif /* MAX_SAVE_STACK > 0 */
5503 if (garbage_collection_messages)
5504 message1_nolog ("Garbage collecting...");
5506 block_input ();
5508 shrink_regexp_cache ();
5510 gc_in_progress = 1;
5512 /* Mark all the special slots that serve as the roots of accessibility. */
5514 mark_buffer (&buffer_defaults);
5515 mark_buffer (&buffer_local_symbols);
5517 for (i = 0; i < staticidx; i++)
5518 mark_object (*staticvec[i]);
5520 mark_specpdl ();
5521 mark_terminals ();
5522 mark_kboards ();
5524 #ifdef USE_GTK
5525 xg_mark_data ();
5526 #endif
5528 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5529 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5530 mark_stack ();
5531 #else
5533 register struct gcpro *tail;
5534 for (tail = gcprolist; tail; tail = tail->next)
5535 for (i = 0; i < tail->nvars; i++)
5536 mark_object (tail->var[i]);
5538 mark_byte_stack ();
5539 #endif
5541 struct handler *handler;
5542 for (handler = handlerlist; handler; handler = handler->next)
5544 mark_object (handler->tag_or_ch);
5545 mark_object (handler->val);
5548 #ifdef HAVE_WINDOW_SYSTEM
5549 mark_fringe_data ();
5550 #endif
5552 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5553 mark_stack ();
5554 #endif
5556 /* Everything is now marked, except for the data in font caches
5557 and undo lists. They're compacted by removing an items which
5558 aren't reachable otherwise. */
5560 compact_font_caches ();
5562 FOR_EACH_BUFFER (nextb)
5564 if (!EQ (BVAR (nextb, undo_list), Qt))
5565 bset_undo_list (nextb, compact_undo_list (BVAR (nextb, undo_list)));
5566 /* Now that we have stripped the elements that need not be
5567 in the undo_list any more, we can finally mark the list. */
5568 mark_object (BVAR (nextb, undo_list));
5571 gc_sweep ();
5573 /* Clear the mark bits that we set in certain root slots. */
5575 unmark_byte_stack ();
5576 VECTOR_UNMARK (&buffer_defaults);
5577 VECTOR_UNMARK (&buffer_local_symbols);
5579 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5580 dump_zombies ();
5581 #endif
5583 check_cons_list ();
5585 gc_in_progress = 0;
5587 unblock_input ();
5589 consing_since_gc = 0;
5590 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5591 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5593 gc_relative_threshold = 0;
5594 if (FLOATP (Vgc_cons_percentage))
5595 { /* Set gc_cons_combined_threshold. */
5596 double tot = total_bytes_of_live_objects ();
5598 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5599 if (0 < tot)
5601 if (tot < TYPE_MAXIMUM (EMACS_INT))
5602 gc_relative_threshold = tot;
5603 else
5604 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5608 if (garbage_collection_messages)
5610 if (message_p || minibuf_level > 0)
5611 restore_message ();
5612 else
5613 message1_nolog ("Garbage collecting...done");
5616 unbind_to (count, Qnil);
5618 Lisp_Object total[11];
5619 int total_size = 10;
5621 total[0] = list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5622 bounded_number (total_conses),
5623 bounded_number (total_free_conses));
5625 total[1] = list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5626 bounded_number (total_symbols),
5627 bounded_number (total_free_symbols));
5629 total[2] = list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5630 bounded_number (total_markers),
5631 bounded_number (total_free_markers));
5633 total[3] = list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5634 bounded_number (total_strings),
5635 bounded_number (total_free_strings));
5637 total[4] = list3 (Qstring_bytes, make_number (1),
5638 bounded_number (total_string_bytes));
5640 total[5] = list3 (Qvectors,
5641 make_number (header_size + sizeof (Lisp_Object)),
5642 bounded_number (total_vectors));
5644 total[6] = list4 (Qvector_slots, make_number (word_size),
5645 bounded_number (total_vector_slots),
5646 bounded_number (total_free_vector_slots));
5648 total[7] = list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5649 bounded_number (total_floats),
5650 bounded_number (total_free_floats));
5652 total[8] = list4 (Qintervals, make_number (sizeof (struct interval)),
5653 bounded_number (total_intervals),
5654 bounded_number (total_free_intervals));
5656 total[9] = list3 (Qbuffers, make_number (sizeof (struct buffer)),
5657 bounded_number (total_buffers));
5659 #ifdef DOUG_LEA_MALLOC
5660 total_size++;
5661 total[10] = list4 (Qheap, make_number (1024),
5662 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5663 bounded_number ((mallinfo ().fordblks + 1023) >> 10));
5664 #endif
5665 retval = Flist (total_size, total);
5668 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5670 /* Compute average percentage of zombies. */
5671 double nlive
5672 = (total_conses + total_symbols + total_markers + total_strings
5673 + total_vectors + total_floats + total_intervals + total_buffers);
5675 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5676 max_live = max (nlive, max_live);
5677 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5678 max_zombies = max (nzombies, max_zombies);
5679 ++ngcs;
5681 #endif
5683 if (!NILP (Vpost_gc_hook))
5685 ptrdiff_t gc_count = inhibit_garbage_collection ();
5686 safe_run_hooks (Qpost_gc_hook);
5687 unbind_to (gc_count, Qnil);
5690 /* Accumulate statistics. */
5691 if (FLOATP (Vgc_elapsed))
5693 struct timespec since_start = timespec_sub (current_timespec (), start);
5694 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5695 + timespectod (since_start));
5698 gcs_done++;
5700 /* Collect profiling data. */
5701 if (profiler_memory_running)
5703 size_t swept = 0;
5704 size_t tot_after = total_bytes_of_live_objects ();
5705 if (tot_before > tot_after)
5706 swept = tot_before - tot_after;
5707 malloc_probe (swept);
5710 return retval;
5714 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5715 only interesting objects referenced from glyphs are strings. */
5717 static void
5718 mark_glyph_matrix (struct glyph_matrix *matrix)
5720 struct glyph_row *row = matrix->rows;
5721 struct glyph_row *end = row + matrix->nrows;
5723 for (; row < end; ++row)
5724 if (row->enabled_p)
5726 int area;
5727 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5729 struct glyph *glyph = row->glyphs[area];
5730 struct glyph *end_glyph = glyph + row->used[area];
5732 for (; glyph < end_glyph; ++glyph)
5733 if (STRINGP (glyph->object)
5734 && !STRING_MARKED_P (XSTRING (glyph->object)))
5735 mark_object (glyph->object);
5740 /* Mark reference to a Lisp_Object.
5741 If the object referred to has not been seen yet, recursively mark
5742 all the references contained in it. */
5744 #define LAST_MARKED_SIZE 500
5745 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5746 static int last_marked_index;
5748 /* For debugging--call abort when we cdr down this many
5749 links of a list, in mark_object. In debugging,
5750 the call to abort will hit a breakpoint.
5751 Normally this is zero and the check never goes off. */
5752 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5754 static void
5755 mark_vectorlike (struct Lisp_Vector *ptr)
5757 ptrdiff_t size = ptr->header.size;
5758 ptrdiff_t i;
5760 eassert (!VECTOR_MARKED_P (ptr));
5761 VECTOR_MARK (ptr); /* Else mark it. */
5762 if (size & PSEUDOVECTOR_FLAG)
5763 size &= PSEUDOVECTOR_SIZE_MASK;
5765 /* Note that this size is not the memory-footprint size, but only
5766 the number of Lisp_Object fields that we should trace.
5767 The distinction is used e.g. by Lisp_Process which places extra
5768 non-Lisp_Object fields at the end of the structure... */
5769 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5770 mark_object (ptr->contents[i]);
5773 /* Like mark_vectorlike but optimized for char-tables (and
5774 sub-char-tables) assuming that the contents are mostly integers or
5775 symbols. */
5777 static void
5778 mark_char_table (struct Lisp_Vector *ptr)
5780 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5781 int i;
5783 eassert (!VECTOR_MARKED_P (ptr));
5784 VECTOR_MARK (ptr);
5785 for (i = 0; i < size; i++)
5787 Lisp_Object val = ptr->contents[i];
5789 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5790 continue;
5791 if (SUB_CHAR_TABLE_P (val))
5793 if (! VECTOR_MARKED_P (XVECTOR (val)))
5794 mark_char_table (XVECTOR (val));
5796 else
5797 mark_object (val);
5801 /* Mark the chain of overlays starting at PTR. */
5803 static void
5804 mark_overlay (struct Lisp_Overlay *ptr)
5806 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5808 ptr->gcmarkbit = 1;
5809 mark_object (ptr->start);
5810 mark_object (ptr->end);
5811 mark_object (ptr->plist);
5815 /* Mark Lisp_Objects and special pointers in BUFFER. */
5817 static void
5818 mark_buffer (struct buffer *buffer)
5820 /* This is handled much like other pseudovectors... */
5821 mark_vectorlike ((struct Lisp_Vector *) buffer);
5823 /* ...but there are some buffer-specific things. */
5825 MARK_INTERVAL_TREE (buffer_intervals (buffer));
5827 /* For now, we just don't mark the undo_list. It's done later in
5828 a special way just before the sweep phase, and after stripping
5829 some of its elements that are not needed any more. */
5831 mark_overlay (buffer->overlays_before);
5832 mark_overlay (buffer->overlays_after);
5834 /* If this is an indirect buffer, mark its base buffer. */
5835 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5836 mark_buffer (buffer->base_buffer);
5839 /* Mark Lisp faces in the face cache C. */
5841 static void
5842 mark_face_cache (struct face_cache *c)
5844 if (c)
5846 int i, j;
5847 for (i = 0; i < c->used; ++i)
5849 struct face *face = FACE_FROM_ID (c->f, i);
5851 if (face)
5853 if (face->font && !VECTOR_MARKED_P (face->font))
5854 mark_vectorlike ((struct Lisp_Vector *) face->font);
5856 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5857 mark_object (face->lface[j]);
5863 /* Remove killed buffers or items whose car is a killed buffer from
5864 LIST, and mark other items. Return changed LIST, which is marked. */
5866 static Lisp_Object
5867 mark_discard_killed_buffers (Lisp_Object list)
5869 Lisp_Object tail, *prev = &list;
5871 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
5872 tail = XCDR (tail))
5874 Lisp_Object tem = XCAR (tail);
5875 if (CONSP (tem))
5876 tem = XCAR (tem);
5877 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
5878 *prev = XCDR (tail);
5879 else
5881 CONS_MARK (XCONS (tail));
5882 mark_object (XCAR (tail));
5883 prev = xcdr_addr (tail);
5886 mark_object (tail);
5887 return list;
5890 /* Determine type of generic Lisp_Object and mark it accordingly. */
5892 void
5893 mark_object (Lisp_Object arg)
5895 register Lisp_Object obj = arg;
5896 #ifdef GC_CHECK_MARKED_OBJECTS
5897 void *po;
5898 struct mem_node *m;
5899 #endif
5900 ptrdiff_t cdr_count = 0;
5902 loop:
5904 if (PURE_POINTER_P (XPNTR (obj)))
5905 return;
5907 last_marked[last_marked_index++] = obj;
5908 if (last_marked_index == LAST_MARKED_SIZE)
5909 last_marked_index = 0;
5911 /* Perform some sanity checks on the objects marked here. Abort if
5912 we encounter an object we know is bogus. This increases GC time
5913 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5914 #ifdef GC_CHECK_MARKED_OBJECTS
5916 po = (void *) XPNTR (obj);
5918 /* Check that the object pointed to by PO is known to be a Lisp
5919 structure allocated from the heap. */
5920 #define CHECK_ALLOCATED() \
5921 do { \
5922 m = mem_find (po); \
5923 if (m == MEM_NIL) \
5924 emacs_abort (); \
5925 } while (0)
5927 /* Check that the object pointed to by PO is live, using predicate
5928 function LIVEP. */
5929 #define CHECK_LIVE(LIVEP) \
5930 do { \
5931 if (!LIVEP (m, po)) \
5932 emacs_abort (); \
5933 } while (0)
5935 /* Check both of the above conditions. */
5936 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5937 do { \
5938 CHECK_ALLOCATED (); \
5939 CHECK_LIVE (LIVEP); \
5940 } while (0) \
5942 #else /* not GC_CHECK_MARKED_OBJECTS */
5944 #define CHECK_LIVE(LIVEP) (void) 0
5945 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5947 #endif /* not GC_CHECK_MARKED_OBJECTS */
5949 switch (XTYPE (obj))
5951 case Lisp_String:
5953 register struct Lisp_String *ptr = XSTRING (obj);
5954 if (STRING_MARKED_P (ptr))
5955 break;
5956 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5957 MARK_STRING (ptr);
5958 MARK_INTERVAL_TREE (ptr->intervals);
5959 #ifdef GC_CHECK_STRING_BYTES
5960 /* Check that the string size recorded in the string is the
5961 same as the one recorded in the sdata structure. */
5962 string_bytes (ptr);
5963 #endif /* GC_CHECK_STRING_BYTES */
5965 break;
5967 case Lisp_Vectorlike:
5969 register struct Lisp_Vector *ptr = XVECTOR (obj);
5970 register ptrdiff_t pvectype;
5972 if (VECTOR_MARKED_P (ptr))
5973 break;
5975 #ifdef GC_CHECK_MARKED_OBJECTS
5976 m = mem_find (po);
5977 if (m == MEM_NIL && !SUBRP (obj))
5978 emacs_abort ();
5979 #endif /* GC_CHECK_MARKED_OBJECTS */
5981 if (ptr->header.size & PSEUDOVECTOR_FLAG)
5982 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
5983 >> PSEUDOVECTOR_AREA_BITS);
5984 else
5985 pvectype = PVEC_NORMAL_VECTOR;
5987 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
5988 CHECK_LIVE (live_vector_p);
5990 switch (pvectype)
5992 case PVEC_BUFFER:
5993 #ifdef GC_CHECK_MARKED_OBJECTS
5995 struct buffer *b;
5996 FOR_EACH_BUFFER (b)
5997 if (b == po)
5998 break;
5999 if (b == NULL)
6000 emacs_abort ();
6002 #endif /* GC_CHECK_MARKED_OBJECTS */
6003 mark_buffer ((struct buffer *) ptr);
6004 break;
6006 case PVEC_COMPILED:
6007 { /* We could treat this just like a vector, but it is better
6008 to save the COMPILED_CONSTANTS element for last and avoid
6009 recursion there. */
6010 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6011 int i;
6013 VECTOR_MARK (ptr);
6014 for (i = 0; i < size; i++)
6015 if (i != COMPILED_CONSTANTS)
6016 mark_object (ptr->contents[i]);
6017 if (size > COMPILED_CONSTANTS)
6019 obj = ptr->contents[COMPILED_CONSTANTS];
6020 goto loop;
6023 break;
6025 case PVEC_FRAME:
6027 struct frame *f = (struct frame *) ptr;
6029 mark_vectorlike (ptr);
6030 mark_face_cache (f->face_cache);
6031 #ifdef HAVE_WINDOW_SYSTEM
6032 if (FRAME_WINDOW_P (f) && FRAME_X_OUTPUT (f))
6034 struct font *font = FRAME_FONT (f);
6036 if (font && !VECTOR_MARKED_P (font))
6037 mark_vectorlike ((struct Lisp_Vector *) font);
6039 #endif
6041 break;
6043 case PVEC_WINDOW:
6045 struct window *w = (struct window *) ptr;
6047 mark_vectorlike (ptr);
6049 /* Mark glyph matrices, if any. Marking window
6050 matrices is sufficient because frame matrices
6051 use the same glyph memory. */
6052 if (w->current_matrix)
6054 mark_glyph_matrix (w->current_matrix);
6055 mark_glyph_matrix (w->desired_matrix);
6058 /* Filter out killed buffers from both buffer lists
6059 in attempt to help GC to reclaim killed buffers faster.
6060 We can do it elsewhere for live windows, but this is the
6061 best place to do it for dead windows. */
6062 wset_prev_buffers
6063 (w, mark_discard_killed_buffers (w->prev_buffers));
6064 wset_next_buffers
6065 (w, mark_discard_killed_buffers (w->next_buffers));
6067 break;
6069 case PVEC_HASH_TABLE:
6071 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6073 mark_vectorlike (ptr);
6074 mark_object (h->test.name);
6075 mark_object (h->test.user_hash_function);
6076 mark_object (h->test.user_cmp_function);
6077 /* If hash table is not weak, mark all keys and values.
6078 For weak tables, mark only the vector. */
6079 if (NILP (h->weak))
6080 mark_object (h->key_and_value);
6081 else
6082 VECTOR_MARK (XVECTOR (h->key_and_value));
6084 break;
6086 case PVEC_CHAR_TABLE:
6087 mark_char_table (ptr);
6088 break;
6090 case PVEC_BOOL_VECTOR:
6091 /* No Lisp_Objects to mark in a bool vector. */
6092 VECTOR_MARK (ptr);
6093 break;
6095 case PVEC_SUBR:
6096 break;
6098 case PVEC_FREE:
6099 emacs_abort ();
6101 default:
6102 mark_vectorlike (ptr);
6105 break;
6107 case Lisp_Symbol:
6109 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6110 struct Lisp_Symbol *ptrx;
6112 if (ptr->gcmarkbit)
6113 break;
6114 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
6115 ptr->gcmarkbit = 1;
6116 mark_object (ptr->function);
6117 mark_object (ptr->plist);
6118 switch (ptr->redirect)
6120 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6121 case SYMBOL_VARALIAS:
6123 Lisp_Object tem;
6124 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6125 mark_object (tem);
6126 break;
6128 case SYMBOL_LOCALIZED:
6130 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6131 Lisp_Object where = blv->where;
6132 /* If the value is set up for a killed buffer or deleted
6133 frame, restore it's global binding. If the value is
6134 forwarded to a C variable, either it's not a Lisp_Object
6135 var, or it's staticpro'd already. */
6136 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
6137 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
6138 swap_in_global_binding (ptr);
6139 mark_object (blv->where);
6140 mark_object (blv->valcell);
6141 mark_object (blv->defcell);
6142 break;
6144 case SYMBOL_FORWARDED:
6145 /* If the value is forwarded to a buffer or keyboard field,
6146 these are marked when we see the corresponding object.
6147 And if it's forwarded to a C variable, either it's not
6148 a Lisp_Object var, or it's staticpro'd already. */
6149 break;
6150 default: emacs_abort ();
6152 if (!PURE_POINTER_P (XSTRING (ptr->name)))
6153 MARK_STRING (XSTRING (ptr->name));
6154 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6156 ptr = ptr->next;
6157 if (ptr)
6159 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
6160 XSETSYMBOL (obj, ptrx);
6161 goto loop;
6164 break;
6166 case Lisp_Misc:
6167 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6169 if (XMISCANY (obj)->gcmarkbit)
6170 break;
6172 switch (XMISCTYPE (obj))
6174 case Lisp_Misc_Marker:
6175 /* DO NOT mark thru the marker's chain.
6176 The buffer's markers chain does not preserve markers from gc;
6177 instead, markers are removed from the chain when freed by gc. */
6178 XMISCANY (obj)->gcmarkbit = 1;
6179 break;
6181 case Lisp_Misc_Save_Value:
6182 XMISCANY (obj)->gcmarkbit = 1;
6184 struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6185 /* If `save_type' is zero, `data[0].pointer' is the address
6186 of a memory area containing `data[1].integer' potential
6187 Lisp_Objects. */
6188 if (GC_MARK_STACK && ptr->save_type == SAVE_TYPE_MEMORY)
6190 Lisp_Object *p = ptr->data[0].pointer;
6191 ptrdiff_t nelt;
6192 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6193 mark_maybe_object (*p);
6195 else
6197 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6198 int i;
6199 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6200 if (save_type (ptr, i) == SAVE_OBJECT)
6201 mark_object (ptr->data[i].object);
6204 break;
6206 case Lisp_Misc_Overlay:
6207 mark_overlay (XOVERLAY (obj));
6208 break;
6210 default:
6211 emacs_abort ();
6213 break;
6215 case Lisp_Cons:
6217 register struct Lisp_Cons *ptr = XCONS (obj);
6218 if (CONS_MARKED_P (ptr))
6219 break;
6220 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6221 CONS_MARK (ptr);
6222 /* If the cdr is nil, avoid recursion for the car. */
6223 if (EQ (ptr->u.cdr, Qnil))
6225 obj = ptr->car;
6226 cdr_count = 0;
6227 goto loop;
6229 mark_object (ptr->car);
6230 obj = ptr->u.cdr;
6231 cdr_count++;
6232 if (cdr_count == mark_object_loop_halt)
6233 emacs_abort ();
6234 goto loop;
6237 case Lisp_Float:
6238 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6239 FLOAT_MARK (XFLOAT (obj));
6240 break;
6242 case_Lisp_Int:
6243 break;
6245 default:
6246 emacs_abort ();
6249 #undef CHECK_LIVE
6250 #undef CHECK_ALLOCATED
6251 #undef CHECK_ALLOCATED_AND_LIVE
6253 /* Mark the Lisp pointers in the terminal objects.
6254 Called by Fgarbage_collect. */
6256 static void
6257 mark_terminals (void)
6259 struct terminal *t;
6260 for (t = terminal_list; t; t = t->next_terminal)
6262 eassert (t->name != NULL);
6263 #ifdef HAVE_WINDOW_SYSTEM
6264 /* If a terminal object is reachable from a stacpro'ed object,
6265 it might have been marked already. Make sure the image cache
6266 gets marked. */
6267 mark_image_cache (t->image_cache);
6268 #endif /* HAVE_WINDOW_SYSTEM */
6269 if (!VECTOR_MARKED_P (t))
6270 mark_vectorlike ((struct Lisp_Vector *)t);
6276 /* Value is non-zero if OBJ will survive the current GC because it's
6277 either marked or does not need to be marked to survive. */
6279 bool
6280 survives_gc_p (Lisp_Object obj)
6282 bool survives_p;
6284 switch (XTYPE (obj))
6286 case_Lisp_Int:
6287 survives_p = 1;
6288 break;
6290 case Lisp_Symbol:
6291 survives_p = XSYMBOL (obj)->gcmarkbit;
6292 break;
6294 case Lisp_Misc:
6295 survives_p = XMISCANY (obj)->gcmarkbit;
6296 break;
6298 case Lisp_String:
6299 survives_p = STRING_MARKED_P (XSTRING (obj));
6300 break;
6302 case Lisp_Vectorlike:
6303 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6304 break;
6306 case Lisp_Cons:
6307 survives_p = CONS_MARKED_P (XCONS (obj));
6308 break;
6310 case Lisp_Float:
6311 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6312 break;
6314 default:
6315 emacs_abort ();
6318 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6323 /* Sweep: find all structures not marked, and free them. */
6325 static void
6326 gc_sweep (void)
6328 /* Remove or mark entries in weak hash tables.
6329 This must be done before any object is unmarked. */
6330 sweep_weak_hash_tables ();
6332 sweep_strings ();
6333 check_string_bytes (!noninteractive);
6335 /* Put all unmarked conses on free list. */
6337 register struct cons_block *cblk;
6338 struct cons_block **cprev = &cons_block;
6339 register int lim = cons_block_index;
6340 EMACS_INT num_free = 0, num_used = 0;
6342 cons_free_list = 0;
6344 for (cblk = cons_block; cblk; cblk = *cprev)
6346 register int i = 0;
6347 int this_free = 0;
6348 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6350 /* Scan the mark bits an int at a time. */
6351 for (i = 0; i < ilim; i++)
6353 if (cblk->gcmarkbits[i] == -1)
6355 /* Fast path - all cons cells for this int are marked. */
6356 cblk->gcmarkbits[i] = 0;
6357 num_used += BITS_PER_INT;
6359 else
6361 /* Some cons cells for this int are not marked.
6362 Find which ones, and free them. */
6363 int start, pos, stop;
6365 start = i * BITS_PER_INT;
6366 stop = lim - start;
6367 if (stop > BITS_PER_INT)
6368 stop = BITS_PER_INT;
6369 stop += start;
6371 for (pos = start; pos < stop; pos++)
6373 if (!CONS_MARKED_P (&cblk->conses[pos]))
6375 this_free++;
6376 cblk->conses[pos].u.chain = cons_free_list;
6377 cons_free_list = &cblk->conses[pos];
6378 #if GC_MARK_STACK
6379 cons_free_list->car = Vdead;
6380 #endif
6382 else
6384 num_used++;
6385 CONS_UNMARK (&cblk->conses[pos]);
6391 lim = CONS_BLOCK_SIZE;
6392 /* If this block contains only free conses and we have already
6393 seen more than two blocks worth of free conses then deallocate
6394 this block. */
6395 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6397 *cprev = cblk->next;
6398 /* Unhook from the free list. */
6399 cons_free_list = cblk->conses[0].u.chain;
6400 lisp_align_free (cblk);
6402 else
6404 num_free += this_free;
6405 cprev = &cblk->next;
6408 total_conses = num_used;
6409 total_free_conses = num_free;
6412 /* Put all unmarked floats on free list. */
6414 register struct float_block *fblk;
6415 struct float_block **fprev = &float_block;
6416 register int lim = float_block_index;
6417 EMACS_INT num_free = 0, num_used = 0;
6419 float_free_list = 0;
6421 for (fblk = float_block; fblk; fblk = *fprev)
6423 register int i;
6424 int this_free = 0;
6425 for (i = 0; i < lim; i++)
6426 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6428 this_free++;
6429 fblk->floats[i].u.chain = float_free_list;
6430 float_free_list = &fblk->floats[i];
6432 else
6434 num_used++;
6435 FLOAT_UNMARK (&fblk->floats[i]);
6437 lim = FLOAT_BLOCK_SIZE;
6438 /* If this block contains only free floats and we have already
6439 seen more than two blocks worth of free floats then deallocate
6440 this block. */
6441 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6443 *fprev = fblk->next;
6444 /* Unhook from the free list. */
6445 float_free_list = fblk->floats[0].u.chain;
6446 lisp_align_free (fblk);
6448 else
6450 num_free += this_free;
6451 fprev = &fblk->next;
6454 total_floats = num_used;
6455 total_free_floats = num_free;
6458 /* Put all unmarked intervals on free list. */
6460 register struct interval_block *iblk;
6461 struct interval_block **iprev = &interval_block;
6462 register int lim = interval_block_index;
6463 EMACS_INT num_free = 0, num_used = 0;
6465 interval_free_list = 0;
6467 for (iblk = interval_block; iblk; iblk = *iprev)
6469 register int i;
6470 int this_free = 0;
6472 for (i = 0; i < lim; i++)
6474 if (!iblk->intervals[i].gcmarkbit)
6476 set_interval_parent (&iblk->intervals[i], interval_free_list);
6477 interval_free_list = &iblk->intervals[i];
6478 this_free++;
6480 else
6482 num_used++;
6483 iblk->intervals[i].gcmarkbit = 0;
6486 lim = INTERVAL_BLOCK_SIZE;
6487 /* If this block contains only free intervals and we have already
6488 seen more than two blocks worth of free intervals then
6489 deallocate this block. */
6490 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6492 *iprev = iblk->next;
6493 /* Unhook from the free list. */
6494 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6495 lisp_free (iblk);
6497 else
6499 num_free += this_free;
6500 iprev = &iblk->next;
6503 total_intervals = num_used;
6504 total_free_intervals = num_free;
6507 /* Put all unmarked symbols on free list. */
6509 register struct symbol_block *sblk;
6510 struct symbol_block **sprev = &symbol_block;
6511 register int lim = symbol_block_index;
6512 EMACS_INT num_free = 0, num_used = 0;
6514 symbol_free_list = NULL;
6516 for (sblk = symbol_block; sblk; sblk = *sprev)
6518 int this_free = 0;
6519 union aligned_Lisp_Symbol *sym = sblk->symbols;
6520 union aligned_Lisp_Symbol *end = sym + lim;
6522 for (; sym < end; ++sym)
6524 /* Check if the symbol was created during loadup. In such a case
6525 it might be pointed to by pure bytecode which we don't trace,
6526 so we conservatively assume that it is live. */
6527 bool pure_p = PURE_POINTER_P (XSTRING (sym->s.name));
6529 if (!sym->s.gcmarkbit && !pure_p)
6531 if (sym->s.redirect == SYMBOL_LOCALIZED)
6532 xfree (SYMBOL_BLV (&sym->s));
6533 sym->s.next = symbol_free_list;
6534 symbol_free_list = &sym->s;
6535 #if GC_MARK_STACK
6536 symbol_free_list->function = Vdead;
6537 #endif
6538 ++this_free;
6540 else
6542 ++num_used;
6543 if (!pure_p)
6544 eassert (!STRING_MARKED_P (XSTRING (sym->s.name)));
6545 sym->s.gcmarkbit = 0;
6549 lim = SYMBOL_BLOCK_SIZE;
6550 /* If this block contains only free symbols and we have already
6551 seen more than two blocks worth of free symbols then deallocate
6552 this block. */
6553 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6555 *sprev = sblk->next;
6556 /* Unhook from the free list. */
6557 symbol_free_list = sblk->symbols[0].s.next;
6558 lisp_free (sblk);
6560 else
6562 num_free += this_free;
6563 sprev = &sblk->next;
6566 total_symbols = num_used;
6567 total_free_symbols = num_free;
6570 /* Put all unmarked misc's on free list.
6571 For a marker, first unchain it from the buffer it points into. */
6573 register struct marker_block *mblk;
6574 struct marker_block **mprev = &marker_block;
6575 register int lim = marker_block_index;
6576 EMACS_INT num_free = 0, num_used = 0;
6578 marker_free_list = 0;
6580 for (mblk = marker_block; mblk; mblk = *mprev)
6582 register int i;
6583 int this_free = 0;
6585 for (i = 0; i < lim; i++)
6587 if (!mblk->markers[i].m.u_any.gcmarkbit)
6589 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6590 unchain_marker (&mblk->markers[i].m.u_marker);
6591 /* Set the type of the freed object to Lisp_Misc_Free.
6592 We could leave the type alone, since nobody checks it,
6593 but this might catch bugs faster. */
6594 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6595 mblk->markers[i].m.u_free.chain = marker_free_list;
6596 marker_free_list = &mblk->markers[i].m;
6597 this_free++;
6599 else
6601 num_used++;
6602 mblk->markers[i].m.u_any.gcmarkbit = 0;
6605 lim = MARKER_BLOCK_SIZE;
6606 /* If this block contains only free markers and we have already
6607 seen more than two blocks worth of free markers then deallocate
6608 this block. */
6609 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6611 *mprev = mblk->next;
6612 /* Unhook from the free list. */
6613 marker_free_list = mblk->markers[0].m.u_free.chain;
6614 lisp_free (mblk);
6616 else
6618 num_free += this_free;
6619 mprev = &mblk->next;
6623 total_markers = num_used;
6624 total_free_markers = num_free;
6627 /* Free all unmarked buffers */
6629 register struct buffer *buffer, **bprev = &all_buffers;
6631 total_buffers = 0;
6632 for (buffer = all_buffers; buffer; buffer = *bprev)
6633 if (!VECTOR_MARKED_P (buffer))
6635 *bprev = buffer->next;
6636 lisp_free (buffer);
6638 else
6640 VECTOR_UNMARK (buffer);
6641 /* Do not use buffer_(set|get)_intervals here. */
6642 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6643 total_buffers++;
6644 bprev = &buffer->next;
6648 sweep_vectors ();
6649 check_string_bytes (!noninteractive);
6655 /* Debugging aids. */
6657 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6658 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6659 This may be helpful in debugging Emacs's memory usage.
6660 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6661 (void)
6663 Lisp_Object end;
6665 #ifdef HAVE_NS
6666 /* Avoid warning. sbrk has no relation to memory allocated anyway. */
6667 XSETINT (end, 0);
6668 #else
6669 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6670 #endif
6672 return end;
6675 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6676 doc: /* Return a list of counters that measure how much consing there has been.
6677 Each of these counters increments for a certain kind of object.
6678 The counters wrap around from the largest positive integer to zero.
6679 Garbage collection does not decrease them.
6680 The elements of the value are as follows:
6681 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6682 All are in units of 1 = one object consed
6683 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6684 objects consed.
6685 MISCS include overlays, markers, and some internal types.
6686 Frames, windows, buffers, and subprocesses count as vectors
6687 (but the contents of a buffer's text do not count here). */)
6688 (void)
6690 return listn (CONSTYPE_HEAP, 8,
6691 bounded_number (cons_cells_consed),
6692 bounded_number (floats_consed),
6693 bounded_number (vector_cells_consed),
6694 bounded_number (symbols_consed),
6695 bounded_number (string_chars_consed),
6696 bounded_number (misc_objects_consed),
6697 bounded_number (intervals_consed),
6698 bounded_number (strings_consed));
6701 /* Find at most FIND_MAX symbols which have OBJ as their value or
6702 function. This is used in gdbinit's `xwhichsymbols' command. */
6704 Lisp_Object
6705 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6707 struct symbol_block *sblk;
6708 ptrdiff_t gc_count = inhibit_garbage_collection ();
6709 Lisp_Object found = Qnil;
6711 if (! DEADP (obj))
6713 for (sblk = symbol_block; sblk; sblk = sblk->next)
6715 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6716 int bn;
6718 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6720 struct Lisp_Symbol *sym = &aligned_sym->s;
6721 Lisp_Object val;
6722 Lisp_Object tem;
6724 if (sblk == symbol_block && bn >= symbol_block_index)
6725 break;
6727 XSETSYMBOL (tem, sym);
6728 val = find_symbol_value (tem);
6729 if (EQ (val, obj)
6730 || EQ (sym->function, obj)
6731 || (!NILP (sym->function)
6732 && COMPILEDP (sym->function)
6733 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6734 || (!NILP (val)
6735 && COMPILEDP (val)
6736 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6738 found = Fcons (tem, found);
6739 if (--find_max == 0)
6740 goto out;
6746 out:
6747 unbind_to (gc_count, Qnil);
6748 return found;
6751 #ifdef ENABLE_CHECKING
6753 bool suppress_checking;
6755 void
6756 die (const char *msg, const char *file, int line)
6758 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
6759 file, line, msg);
6760 terminate_due_to_signal (SIGABRT, INT_MAX);
6762 #endif
6764 /* Initialization. */
6766 void
6767 init_alloc_once (void)
6769 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6770 purebeg = PUREBEG;
6771 pure_size = PURESIZE;
6773 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6774 mem_init ();
6775 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6776 #endif
6778 #ifdef DOUG_LEA_MALLOC
6779 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
6780 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
6781 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
6782 #endif
6783 init_strings ();
6784 init_vectors ();
6786 refill_memory_reserve ();
6787 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
6790 void
6791 init_alloc (void)
6793 gcprolist = 0;
6794 byte_stack_list = 0;
6795 #if GC_MARK_STACK
6796 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6797 setjmp_tested_p = longjmps_done = 0;
6798 #endif
6799 #endif
6800 Vgc_elapsed = make_float (0.0);
6801 gcs_done = 0;
6803 #if USE_VALGRIND
6804 valgrind_p = RUNNING_ON_VALGRIND != 0;
6805 #endif
6808 void
6809 syms_of_alloc (void)
6811 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6812 doc: /* Number of bytes of consing between garbage collections.
6813 Garbage collection can happen automatically once this many bytes have been
6814 allocated since the last garbage collection. All data types count.
6816 Garbage collection happens automatically only when `eval' is called.
6818 By binding this temporarily to a large number, you can effectively
6819 prevent garbage collection during a part of the program.
6820 See also `gc-cons-percentage'. */);
6822 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6823 doc: /* Portion of the heap used for allocation.
6824 Garbage collection can happen automatically once this portion of the heap
6825 has been allocated since the last garbage collection.
6826 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6827 Vgc_cons_percentage = make_float (0.1);
6829 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6830 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6832 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6833 doc: /* Number of cons cells that have been consed so far. */);
6835 DEFVAR_INT ("floats-consed", floats_consed,
6836 doc: /* Number of floats that have been consed so far. */);
6838 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6839 doc: /* Number of vector cells that have been consed so far. */);
6841 DEFVAR_INT ("symbols-consed", symbols_consed,
6842 doc: /* Number of symbols that have been consed so far. */);
6844 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6845 doc: /* Number of string characters that have been consed so far. */);
6847 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6848 doc: /* Number of miscellaneous objects that have been consed so far.
6849 These include markers and overlays, plus certain objects not visible
6850 to users. */);
6852 DEFVAR_INT ("intervals-consed", intervals_consed,
6853 doc: /* Number of intervals that have been consed so far. */);
6855 DEFVAR_INT ("strings-consed", strings_consed,
6856 doc: /* Number of strings that have been consed so far. */);
6858 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6859 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6860 This means that certain objects should be allocated in shared (pure) space.
6861 It can also be set to a hash-table, in which case this table is used to
6862 do hash-consing of the objects allocated to pure space. */);
6864 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6865 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6866 garbage_collection_messages = 0;
6868 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6869 doc: /* Hook run after garbage collection has finished. */);
6870 Vpost_gc_hook = Qnil;
6871 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6873 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6874 doc: /* Precomputed `signal' argument for memory-full error. */);
6875 /* We build this in advance because if we wait until we need it, we might
6876 not be able to allocate the memory to hold it. */
6877 Vmemory_signal_data
6878 = listn (CONSTYPE_PURE, 2, Qerror,
6879 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6881 DEFVAR_LISP ("memory-full", Vmemory_full,
6882 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6883 Vmemory_full = Qnil;
6885 DEFSYM (Qconses, "conses");
6886 DEFSYM (Qsymbols, "symbols");
6887 DEFSYM (Qmiscs, "miscs");
6888 DEFSYM (Qstrings, "strings");
6889 DEFSYM (Qvectors, "vectors");
6890 DEFSYM (Qfloats, "floats");
6891 DEFSYM (Qintervals, "intervals");
6892 DEFSYM (Qbuffers, "buffers");
6893 DEFSYM (Qstring_bytes, "string-bytes");
6894 DEFSYM (Qvector_slots, "vector-slots");
6895 DEFSYM (Qheap, "heap");
6896 DEFSYM (Qautomatic_gc, "Automatic GC");
6898 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6899 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6901 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6902 doc: /* Accumulated time elapsed in garbage collections.
6903 The time is in seconds as a floating point value. */);
6904 DEFVAR_INT ("gcs-done", gcs_done,
6905 doc: /* Accumulated number of garbage collections done. */);
6907 defsubr (&Scons);
6908 defsubr (&Slist);
6909 defsubr (&Svector);
6910 defsubr (&Smake_byte_code);
6911 defsubr (&Smake_list);
6912 defsubr (&Smake_vector);
6913 defsubr (&Smake_string);
6914 defsubr (&Smake_bool_vector);
6915 defsubr (&Smake_symbol);
6916 defsubr (&Smake_marker);
6917 defsubr (&Spurecopy);
6918 defsubr (&Sgarbage_collect);
6919 defsubr (&Smemory_limit);
6920 defsubr (&Smemory_use_counts);
6922 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6923 defsubr (&Sgc_status);
6924 #endif
6927 /* When compiled with GCC, GDB might say "No enum type named
6928 pvec_type" if we don't have at least one symbol with that type, and
6929 then xbacktrace could fail. Similarly for the other enums and
6930 their values. Some non-GCC compilers don't like these constructs. */
6931 #ifdef __GNUC__
6932 union
6934 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
6935 enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS;
6936 enum char_bits char_bits;
6937 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
6938 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
6939 enum enum_USE_LSB_TAG enum_USE_LSB_TAG;
6940 enum FLOAT_TO_STRING_BUFSIZE FLOAT_TO_STRING_BUFSIZE;
6941 enum Lisp_Bits Lisp_Bits;
6942 enum Lisp_Compiled Lisp_Compiled;
6943 enum maxargs maxargs;
6944 enum MAX_ALLOCA MAX_ALLOCA;
6945 enum More_Lisp_Bits More_Lisp_Bits;
6946 enum pvec_type pvec_type;
6947 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
6948 #endif /* __GNUC__ */