* lisp/emacs-lisp/cl-macs.el (cl--make-usage-args): Handle improper lists.
[emacs.git] / lisp / emacs-lisp / cl-loaddefs.el
blobf7eaa3b9f9ca696215311ed1045867ae3217e9de
1 ;;; cl-loaddefs.el --- automatically extracted autoloads
2 ;;
3 ;;; Code:
5 \f
6 ;;;### (autoloads (cl-prettyexpand cl-remprop cl--do-remf cl--set-getf
7 ;;;;;; cl-getf cl-get cl-tailp cl-list-length cl-nreconc cl-revappend
8 ;;;;;; cl-concatenate cl-subseq cl-float-limits cl-random-state-p
9 ;;;;;; cl-make-random-state cl-random cl-signum cl-rem cl-mod cl-round
10 ;;;;;; cl-truncate cl-ceiling cl-floor cl-isqrt cl-lcm cl-gcd cl--progv-before
11 ;;;;;; cl--set-frame-visible-p cl--map-overlays cl--map-intervals
12 ;;;;;; cl--map-keymap-recursively cl-notevery cl-notany cl-every
13 ;;;;;; cl-some cl-mapcon cl-mapcan cl-mapl cl-maplist cl-map cl--mapcar-many
14 ;;;;;; cl-equalp cl-coerce) "cl-extra" "cl-extra.el" "3656b89f2196d70e50ba9d7bb9519416")
15 ;;; Generated autoloads from cl-extra.el
17 (autoload 'cl-coerce "cl-extra" "\
18 Coerce OBJECT to type TYPE.
19 TYPE is a Common Lisp type specifier.
21 \(fn OBJECT TYPE)" nil nil)
23 (autoload 'cl-equalp "cl-extra" "\
24 Return t if two Lisp objects have similar structures and contents.
25 This is like `equal', except that it accepts numerically equal
26 numbers of different types (float vs. integer), and also compares
27 strings case-insensitively.
29 \(fn X Y)" nil nil)
31 (autoload 'cl--mapcar-many "cl-extra" "\
34 \(fn CL-FUNC CL-SEQS)" nil nil)
36 (autoload 'cl-map "cl-extra" "\
37 Map a FUNCTION across one or more SEQUENCEs, returning a sequence.
38 TYPE is the sequence type to return.
40 \(fn TYPE FUNCTION SEQUENCE...)" nil nil)
42 (autoload 'cl-maplist "cl-extra" "\
43 Map FUNCTION to each sublist of LIST or LISTs.
44 Like `mapcar', except applies to lists and their cdr's rather than to
45 the elements themselves.
47 \(fn FUNCTION LIST...)" nil nil)
49 (autoload 'cl-mapl "cl-extra" "\
50 Like `cl-maplist', but does not accumulate values returned by the function.
52 \(fn FUNCTION LIST...)" nil nil)
54 (autoload 'cl-mapcan "cl-extra" "\
55 Like `mapcar', but nconc's together the values returned by the function.
57 \(fn FUNCTION SEQUENCE...)" nil nil)
59 (autoload 'cl-mapcon "cl-extra" "\
60 Like `cl-maplist', but nconc's together the values returned by the function.
62 \(fn FUNCTION LIST...)" nil nil)
64 (autoload 'cl-some "cl-extra" "\
65 Return true if PREDICATE is true of any element of SEQ or SEQs.
66 If so, return the true (non-nil) value returned by PREDICATE.
68 \(fn PREDICATE SEQ...)" nil nil)
70 (autoload 'cl-every "cl-extra" "\
71 Return true if PREDICATE is true of every element of SEQ or SEQs.
73 \(fn PREDICATE SEQ...)" nil nil)
75 (autoload 'cl-notany "cl-extra" "\
76 Return true if PREDICATE is false of every element of SEQ or SEQs.
78 \(fn PREDICATE SEQ...)" nil nil)
80 (autoload 'cl-notevery "cl-extra" "\
81 Return true if PREDICATE is false of some element of SEQ or SEQs.
83 \(fn PREDICATE SEQ...)" nil nil)
85 (autoload 'cl--map-keymap-recursively "cl-extra" "\
88 \(fn CL-FUNC-REC CL-MAP &optional CL-BASE)" nil nil)
90 (autoload 'cl--map-intervals "cl-extra" "\
93 \(fn CL-FUNC &optional CL-WHAT CL-PROP CL-START CL-END)" nil nil)
95 (autoload 'cl--map-overlays "cl-extra" "\
98 \(fn CL-FUNC &optional CL-BUFFER CL-START CL-END CL-ARG)" nil nil)
100 (autoload 'cl--set-frame-visible-p "cl-extra" "\
103 \(fn FRAME VAL)" nil nil)
105 (autoload 'cl--progv-before "cl-extra" "\
108 \(fn SYMS VALUES)" nil nil)
110 (autoload 'cl-gcd "cl-extra" "\
111 Return the greatest common divisor of the arguments.
113 \(fn &rest ARGS)" nil nil)
115 (autoload 'cl-lcm "cl-extra" "\
116 Return the least common multiple of the arguments.
118 \(fn &rest ARGS)" nil nil)
120 (autoload 'cl-isqrt "cl-extra" "\
121 Return the integer square root of the argument.
123 \(fn X)" nil nil)
125 (autoload 'cl-floor "cl-extra" "\
126 Return a list of the floor of X and the fractional part of X.
127 With two arguments, return floor and remainder of their quotient.
129 \(fn X &optional Y)" nil nil)
131 (autoload 'cl-ceiling "cl-extra" "\
132 Return a list of the ceiling of X and the fractional part of X.
133 With two arguments, return ceiling and remainder of their quotient.
135 \(fn X &optional Y)" nil nil)
137 (autoload 'cl-truncate "cl-extra" "\
138 Return a list of the integer part of X and the fractional part of X.
139 With two arguments, return truncation and remainder of their quotient.
141 \(fn X &optional Y)" nil nil)
143 (autoload 'cl-round "cl-extra" "\
144 Return a list of X rounded to the nearest integer and the remainder.
145 With two arguments, return rounding and remainder of their quotient.
147 \(fn X &optional Y)" nil nil)
149 (autoload 'cl-mod "cl-extra" "\
150 The remainder of X divided by Y, with the same sign as Y.
152 \(fn X Y)" nil nil)
154 (autoload 'cl-rem "cl-extra" "\
155 The remainder of X divided by Y, with the same sign as X.
157 \(fn X Y)" nil nil)
159 (autoload 'cl-signum "cl-extra" "\
160 Return 1 if X is positive, -1 if negative, 0 if zero.
162 \(fn X)" nil nil)
164 (autoload 'cl-random "cl-extra" "\
165 Return a random nonnegative number less than LIM, an integer or float.
166 Optional second arg STATE is a random-state object.
168 \(fn LIM &optional STATE)" nil nil)
170 (autoload 'cl-make-random-state "cl-extra" "\
171 Return a copy of random-state STATE, or of the internal state if omitted.
172 If STATE is t, return a new state object seeded from the time of day.
174 \(fn &optional STATE)" nil nil)
176 (autoload 'cl-random-state-p "cl-extra" "\
177 Return t if OBJECT is a random-state object.
179 \(fn OBJECT)" nil nil)
181 (autoload 'cl-float-limits "cl-extra" "\
182 Initialize the Common Lisp floating-point parameters.
183 This sets the values of: `cl-most-positive-float', `cl-most-negative-float',
184 `cl-least-positive-float', `cl-least-negative-float', `cl-float-epsilon',
185 `cl-float-negative-epsilon', `cl-least-positive-normalized-float', and
186 `cl-least-negative-normalized-float'.
188 \(fn)" nil nil)
190 (autoload 'cl-subseq "cl-extra" "\
191 Return the subsequence of SEQ from START to END.
192 If END is omitted, it defaults to the length of the sequence.
193 If START or END is negative, it counts from the end.
195 \(fn SEQ START &optional END)" nil nil)
197 (autoload 'cl-concatenate "cl-extra" "\
198 Concatenate, into a sequence of type TYPE, the argument SEQUENCEs.
200 \(fn TYPE SEQUENCE...)" nil nil)
202 (autoload 'cl-revappend "cl-extra" "\
203 Equivalent to (append (reverse X) Y).
205 \(fn X Y)" nil nil)
207 (autoload 'cl-nreconc "cl-extra" "\
208 Equivalent to (nconc (nreverse X) Y).
210 \(fn X Y)" nil nil)
212 (autoload 'cl-list-length "cl-extra" "\
213 Return the length of list X. Return nil if list is circular.
215 \(fn X)" nil nil)
217 (autoload 'cl-tailp "cl-extra" "\
218 Return true if SUBLIST is a tail of LIST.
220 \(fn SUBLIST LIST)" nil nil)
222 (autoload 'cl-get "cl-extra" "\
223 Return the value of SYMBOL's PROPNAME property, or DEFAULT if none.
225 \(fn SYMBOL PROPNAME &optional DEFAULT)" nil nil)
227 (put 'cl-get 'compiler-macro #'cl--compiler-macro-get)
229 (autoload 'cl-getf "cl-extra" "\
230 Search PROPLIST for property PROPNAME; return its value or DEFAULT.
231 PROPLIST is a list of the sort returned by `symbol-plist'.
233 \(fn PROPLIST PROPNAME &optional DEFAULT)" nil nil)
235 (autoload 'cl--set-getf "cl-extra" "\
238 \(fn PLIST TAG VAL)" nil nil)
240 (autoload 'cl--do-remf "cl-extra" "\
243 \(fn PLIST TAG)" nil nil)
245 (autoload 'cl-remprop "cl-extra" "\
246 Remove from SYMBOL's plist the property PROPNAME and its value.
248 \(fn SYMBOL PROPNAME)" nil nil)
250 (autoload 'cl-prettyexpand "cl-extra" "\
253 \(fn FORM &optional FULL)" nil nil)
255 ;;;***
257 ;;;### (autoloads (cl--compiler-macro-cXXr cl--compiler-macro-list*
258 ;;;;;; cl--compiler-macro-adjoin cl-defsubst cl-compiler-macroexpand
259 ;;;;;; cl-define-compiler-macro cl-assert cl-check-type cl-typep
260 ;;;;;; cl-deftype cl-defstruct cl-callf2 cl-callf cl-rotatef cl-shiftf
261 ;;;;;; cl-remf cl-psetf cl-declare cl-the cl-locally cl-multiple-value-setq
262 ;;;;;; cl-multiple-value-bind cl-symbol-macrolet cl-macrolet cl-labels
263 ;;;;;; cl-flet cl-progv cl-psetq cl-do-all-symbols cl-do-symbols
264 ;;;;;; cl-dotimes cl-dolist cl-do* cl-do cl-loop cl-return-from
265 ;;;;;; cl-return cl-block cl-etypecase cl-typecase cl-ecase cl-case
266 ;;;;;; cl-load-time-value cl-eval-when cl-destructuring-bind cl-function
267 ;;;;;; cl-defmacro cl-defun cl-gentemp cl-gensym) "cl-macs" "cl-macs.el"
268 ;;;;;; "41a15289eda7e6ae03ac9edd86bbb1a6")
269 ;;; Generated autoloads from cl-macs.el
271 (autoload 'cl-gensym "cl-macs" "\
272 Generate a new uninterned symbol.
273 The name is made by appending a number to PREFIX, default \"G\".
275 \(fn &optional PREFIX)" nil nil)
277 (autoload 'cl-gentemp "cl-macs" "\
278 Generate a new interned symbol with a unique name.
279 The name is made by appending a number to PREFIX, default \"G\".
281 \(fn &optional PREFIX)" nil nil)
283 (autoload 'cl-defun "cl-macs" "\
284 Define NAME as a function.
285 Like normal `defun', except ARGLIST allows full Common Lisp conventions,
286 and BODY is implicitly surrounded by (cl-block NAME ...).
288 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil t)
290 (put 'cl-defun 'doc-string-elt '3)
292 (put 'cl-defun 'lisp-indent-function '2)
294 (autoload 'cl-defmacro "cl-macs" "\
295 Define NAME as a macro.
296 Like normal `defmacro', except ARGLIST allows full Common Lisp conventions,
297 and BODY is implicitly surrounded by (cl-block NAME ...).
299 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil t)
301 (put 'cl-defmacro 'doc-string-elt '3)
303 (put 'cl-defmacro 'lisp-indent-function '2)
305 (autoload 'cl-function "cl-macs" "\
306 Introduce a function.
307 Like normal `function', except that if argument is a lambda form,
308 its argument list allows full Common Lisp conventions.
310 \(fn FUNC)" nil t)
312 (autoload 'cl-destructuring-bind "cl-macs" "\
315 \(fn ARGS EXPR &rest BODY)" nil t)
317 (put 'cl-destructuring-bind 'lisp-indent-function '2)
319 (autoload 'cl-eval-when "cl-macs" "\
320 Control when BODY is evaluated.
321 If `compile' is in WHEN, BODY is evaluated when compiled at top-level.
322 If `load' is in WHEN, BODY is evaluated when loaded after top-level compile.
323 If `eval' is in WHEN, BODY is evaluated when interpreted or at non-top-level.
325 \(fn (WHEN...) BODY...)" nil t)
327 (put 'cl-eval-when 'lisp-indent-function '1)
329 (autoload 'cl-load-time-value "cl-macs" "\
330 Like `progn', but evaluates the body at load time.
331 The result of the body appears to the compiler as a quoted constant.
333 \(fn FORM &optional READ-ONLY)" nil t)
335 (autoload 'cl-case "cl-macs" "\
336 Eval EXPR and choose among clauses on that value.
337 Each clause looks like (KEYLIST BODY...). EXPR is evaluated and compared
338 against each key in each KEYLIST; the corresponding BODY is evaluated.
339 If no clause succeeds, cl-case returns nil. A single atom may be used in
340 place of a KEYLIST of one atom. A KEYLIST of t or `otherwise' is
341 allowed only in the final clause, and matches if no other keys match.
342 Key values are compared by `eql'.
344 \(fn EXPR (KEYLIST BODY...)...)" nil t)
346 (put 'cl-case 'lisp-indent-function '1)
348 (autoload 'cl-ecase "cl-macs" "\
349 Like `cl-case', but error if no cl-case fits.
350 `otherwise'-clauses are not allowed.
352 \(fn EXPR (KEYLIST BODY...)...)" nil t)
354 (put 'cl-ecase 'lisp-indent-function '1)
356 (autoload 'cl-typecase "cl-macs" "\
357 Evals EXPR, chooses among clauses on that value.
358 Each clause looks like (TYPE BODY...). EXPR is evaluated and, if it
359 satisfies TYPE, the corresponding BODY is evaluated. If no clause succeeds,
360 cl-typecase returns nil. A TYPE of t or `otherwise' is allowed only in the
361 final clause, and matches if no other keys match.
363 \(fn EXPR (TYPE BODY...)...)" nil t)
365 (put 'cl-typecase 'lisp-indent-function '1)
367 (autoload 'cl-etypecase "cl-macs" "\
368 Like `cl-typecase', but error if no case fits.
369 `otherwise'-clauses are not allowed.
371 \(fn EXPR (TYPE BODY...)...)" nil t)
373 (put 'cl-etypecase 'lisp-indent-function '1)
375 (autoload 'cl-block "cl-macs" "\
376 Define a lexically-scoped block named NAME.
377 NAME may be any symbol. Code inside the BODY forms can call `cl-return-from'
378 to jump prematurely out of the block. This differs from `catch' and `throw'
379 in two respects: First, the NAME is an unevaluated symbol rather than a
380 quoted symbol or other form; and second, NAME is lexically rather than
381 dynamically scoped: Only references to it within BODY will work. These
382 references may appear inside macro expansions, but not inside functions
383 called from BODY.
385 \(fn NAME &rest BODY)" nil t)
387 (put 'cl-block 'lisp-indent-function '1)
389 (autoload 'cl-return "cl-macs" "\
390 Return from the block named nil.
391 This is equivalent to `(cl-return-from nil RESULT)'.
393 \(fn &optional RESULT)" nil t)
395 (autoload 'cl-return-from "cl-macs" "\
396 Return from the block named NAME.
397 This jumps out to the innermost enclosing `(cl-block NAME ...)' form,
398 returning RESULT from that form (or nil if RESULT is omitted).
399 This is compatible with Common Lisp, but note that `defun' and
400 `defmacro' do not create implicit blocks as they do in Common Lisp.
402 \(fn NAME &optional RESULT)" nil t)
404 (put 'cl-return-from 'lisp-indent-function '1)
406 (autoload 'cl-loop "cl-macs" "\
407 The Common Lisp `cl-loop' macro.
408 Valid clauses are:
409 for VAR from/upfrom/downfrom NUM to/upto/downto/above/below NUM by NUM,
410 for VAR in LIST by FUNC, for VAR on LIST by FUNC, for VAR = INIT then EXPR,
411 for VAR across ARRAY, repeat NUM, with VAR = INIT, while COND, until COND,
412 always COND, never COND, thereis COND, collect EXPR into VAR,
413 append EXPR into VAR, nconc EXPR into VAR, sum EXPR into VAR,
414 count EXPR into VAR, maximize EXPR into VAR, minimize EXPR into VAR,
415 if COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
416 unless COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
417 do EXPRS..., initially EXPRS..., finally EXPRS..., return EXPR,
418 finally return EXPR, named NAME.
420 \(fn CLAUSE...)" nil t)
422 (autoload 'cl-do "cl-macs" "\
423 The Common Lisp `cl-do' loop.
425 \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil t)
427 (put 'cl-do 'lisp-indent-function '2)
429 (autoload 'cl-do* "cl-macs" "\
430 The Common Lisp `cl-do*' loop.
432 \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil t)
434 (put 'cl-do* 'lisp-indent-function '2)
436 (autoload 'cl-dolist "cl-macs" "\
437 Loop over a list.
438 Evaluate BODY with VAR bound to each `car' from LIST, in turn.
439 Then evaluate RESULT to get return value, default nil.
440 An implicit nil block is established around the loop.
442 \(fn (VAR LIST [RESULT]) BODY...)" nil t)
444 (autoload 'cl-dotimes "cl-macs" "\
445 Loop a certain number of times.
446 Evaluate BODY with VAR bound to successive integers from 0, inclusive,
447 to COUNT, exclusive. Then evaluate RESULT to get return value, default
448 nil.
450 \(fn (VAR COUNT [RESULT]) BODY...)" nil t)
452 (autoload 'cl-do-symbols "cl-macs" "\
453 Loop over all symbols.
454 Evaluate BODY with VAR bound to each interned symbol, or to each symbol
455 from OBARRAY.
457 \(fn (VAR [OBARRAY [RESULT]]) BODY...)" nil t)
459 (put 'cl-do-symbols 'lisp-indent-function '1)
461 (autoload 'cl-do-all-symbols "cl-macs" "\
464 \(fn SPEC &rest BODY)" nil t)
466 (put 'cl-do-all-symbols 'lisp-indent-function '1)
468 (autoload 'cl-psetq "cl-macs" "\
469 Set SYMs to the values VALs in parallel.
470 This is like `setq', except that all VAL forms are evaluated (in order)
471 before assigning any symbols SYM to the corresponding values.
473 \(fn SYM VAL SYM VAL ...)" nil t)
475 (autoload 'cl-progv "cl-macs" "\
476 Bind SYMBOLS to VALUES dynamically in BODY.
477 The forms SYMBOLS and VALUES are evaluated, and must evaluate to lists.
478 Each symbol in the first list is bound to the corresponding value in the
479 second list (or made unbound if VALUES is shorter than SYMBOLS); then the
480 BODY forms are executed and their result is returned. This is much like
481 a `let' form, except that the list of symbols can be computed at run-time.
483 \(fn SYMBOLS VALUES &rest BODY)" nil t)
485 (put 'cl-progv 'lisp-indent-function '2)
487 (autoload 'cl-flet "cl-macs" "\
488 Make temporary function definitions.
489 Like `cl-labels' but the definitions are not recursive.
491 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil t)
493 (put 'cl-flet 'lisp-indent-function '1)
495 (autoload 'cl-labels "cl-macs" "\
496 Make temporary function bindings.
497 The bindings can be recursive. Assumes the use of `lexical-binding'.
499 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil t)
501 (put 'cl-labels 'lisp-indent-function '1)
503 (autoload 'cl-macrolet "cl-macs" "\
504 Make temporary macro definitions.
505 This is like `cl-flet', but for macros instead of functions.
507 \(fn ((NAME ARGLIST BODY...) ...) FORM...)" nil t)
509 (put 'cl-macrolet 'lisp-indent-function '1)
511 (autoload 'cl-symbol-macrolet "cl-macs" "\
512 Make symbol macro definitions.
513 Within the body FORMs, references to the variable NAME will be replaced
514 by EXPANSION, and (setq NAME ...) will act like (setf EXPANSION ...).
516 \(fn ((NAME EXPANSION) ...) FORM...)" nil t)
518 (put 'cl-symbol-macrolet 'lisp-indent-function '1)
520 (autoload 'cl-multiple-value-bind "cl-macs" "\
521 Collect multiple return values.
522 FORM must return a list; the BODY is then executed with the first N elements
523 of this list bound (`let'-style) to each of the symbols SYM in turn. This
524 is analogous to the Common Lisp `cl-multiple-value-bind' macro, using lists to
525 simulate true multiple return values. For compatibility, (cl-values A B C) is
526 a synonym for (list A B C).
528 \(fn (SYM...) FORM BODY)" nil t)
530 (put 'cl-multiple-value-bind 'lisp-indent-function '2)
532 (autoload 'cl-multiple-value-setq "cl-macs" "\
533 Collect multiple return values.
534 FORM must return a list; the first N elements of this list are stored in
535 each of the symbols SYM in turn. This is analogous to the Common Lisp
536 `cl-multiple-value-setq' macro, using lists to simulate true multiple return
537 values. For compatibility, (cl-values A B C) is a synonym for (list A B C).
539 \(fn (SYM...) FORM)" nil t)
541 (put 'cl-multiple-value-setq 'lisp-indent-function '1)
543 (autoload 'cl-locally "cl-macs" "\
546 \(fn &rest BODY)" nil t)
548 (autoload 'cl-the "cl-macs" "\
551 \(fn TYPE FORM)" nil t)
553 (put 'cl-the 'lisp-indent-function '1)
555 (autoload 'cl-declare "cl-macs" "\
556 Declare SPECS about the current function while compiling.
557 For instance
559 (cl-declare (warn 0))
561 will turn off byte-compile warnings in the function.
562 See Info node `(cl)Declarations' for details.
564 \(fn &rest SPECS)" nil t)
566 (autoload 'cl-psetf "cl-macs" "\
567 Set PLACEs to the values VALs in parallel.
568 This is like `setf', except that all VAL forms are evaluated (in order)
569 before assigning any PLACEs to the corresponding values.
571 \(fn PLACE VAL PLACE VAL ...)" nil t)
573 (autoload 'cl-remf "cl-macs" "\
574 Remove TAG from property list PLACE.
575 PLACE may be a symbol, or any generalized variable allowed by `setf'.
576 The form returns true if TAG was found and removed, nil otherwise.
578 \(fn PLACE TAG)" nil t)
580 (autoload 'cl-shiftf "cl-macs" "\
581 Shift left among PLACEs.
582 Example: (cl-shiftf A B C) sets A to B, B to C, and returns the old A.
583 Each PLACE may be a symbol, or any generalized variable allowed by `setf'.
585 \(fn PLACE... VAL)" nil t)
587 (autoload 'cl-rotatef "cl-macs" "\
588 Rotate left among PLACEs.
589 Example: (cl-rotatef A B C) sets A to B, B to C, and C to A. It returns nil.
590 Each PLACE may be a symbol, or any generalized variable allowed by `setf'.
592 \(fn PLACE...)" nil t)
594 (autoload 'cl-callf "cl-macs" "\
595 Set PLACE to (FUNC PLACE ARGS...).
596 FUNC should be an unquoted function name. PLACE may be a symbol,
597 or any generalized variable allowed by `setf'.
599 \(fn FUNC PLACE &rest ARGS)" nil t)
601 (put 'cl-callf 'lisp-indent-function '2)
603 (autoload 'cl-callf2 "cl-macs" "\
604 Set PLACE to (FUNC ARG1 PLACE ARGS...).
605 Like `cl-callf', but PLACE is the second argument of FUNC, not the first.
607 \(fn FUNC ARG1 PLACE ARGS...)" nil t)
609 (put 'cl-callf2 'lisp-indent-function '3)
611 (autoload 'cl-defstruct "cl-macs" "\
612 Define a struct type.
613 This macro defines a new data type called NAME that stores data
614 in SLOTs. It defines a `make-NAME' constructor, a `copy-NAME'
615 copier, a `NAME-p' predicate, and slot accessors named `NAME-SLOT'.
616 You can use the accessors to set the corresponding slots, via `setf'.
618 NAME may instead take the form (NAME OPTIONS...), where each
619 OPTION is either a single keyword or (KEYWORD VALUE).
620 See Info node `(cl)Structures' for a list of valid keywords.
622 Each SLOT may instead take the form (SLOT SLOT-OPTS...), where
623 SLOT-OPTS are keyword-value pairs for that slot. Currently, only
624 one keyword is supported, `:read-only'. If this has a non-nil
625 value, that slot cannot be set via `setf'.
627 \(fn NAME SLOTS...)" nil t)
629 (put 'cl-defstruct 'doc-string-elt '2)
631 (autoload 'cl-deftype "cl-macs" "\
632 Define NAME as a new data type.
633 The type name can then be used in `cl-typecase', `cl-check-type', etc.
635 \(fn NAME ARGLIST &rest BODY)" nil t)
637 (put 'cl-deftype 'doc-string-elt '3)
639 (autoload 'cl-typep "cl-macs" "\
640 Check that OBJECT is of type TYPE.
641 TYPE is a Common Lisp-style type specifier.
643 \(fn OBJECT TYPE)" nil nil)
645 (autoload 'cl-check-type "cl-macs" "\
646 Verify that FORM is of type TYPE; signal an error if not.
647 STRING is an optional description of the desired type.
649 \(fn FORM TYPE &optional STRING)" nil t)
651 (autoload 'cl-assert "cl-macs" "\
652 Verify that FORM returns non-nil; signal an error if not.
653 Second arg SHOW-ARGS means to include arguments of FORM in message.
654 Other args STRING and ARGS... are arguments to be passed to `error'.
655 They are not evaluated unless the assertion fails. If STRING is
656 omitted, a default message listing FORM itself is used.
658 \(fn FORM &optional SHOW-ARGS STRING &rest ARGS)" nil t)
660 (autoload 'cl-define-compiler-macro "cl-macs" "\
661 Define a compiler-only macro.
662 This is like `defmacro', but macro expansion occurs only if the call to
663 FUNC is compiled (i.e., not interpreted). Compiler macros should be used
664 for optimizing the way calls to FUNC are compiled; the form returned by
665 BODY should do the same thing as a call to the normal function called
666 FUNC, though possibly more efficiently. Note that, like regular macros,
667 compiler macros are expanded repeatedly until no further expansions are
668 possible. Unlike regular macros, BODY can decide to \"punt\" and leave the
669 original function call alone by declaring an initial `&whole foo' parameter
670 and then returning foo.
672 \(fn FUNC ARGS &rest BODY)" nil t)
674 (autoload 'cl-compiler-macroexpand "cl-macs" "\
677 \(fn FORM)" nil nil)
679 (autoload 'cl-defsubst "cl-macs" "\
680 Define NAME as a function.
681 Like `defun', except the function is automatically declared `inline',
682 ARGLIST allows full Common Lisp conventions, and BODY is implicitly
683 surrounded by (cl-block NAME ...).
685 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil t)
687 (put 'cl-defsubst 'lisp-indent-function '2)
689 (autoload 'cl--compiler-macro-adjoin "cl-macs" "\
692 \(fn FORM A LIST &rest KEYS)" nil nil)
694 (autoload 'cl--compiler-macro-list* "cl-macs" "\
697 \(fn FORM ARG &rest OTHERS)" nil nil)
699 (autoload 'cl--compiler-macro-cXXr "cl-macs" "\
702 \(fn FORM X)" nil nil)
704 ;;;***
706 ;;;### (autoloads (cl-tree-equal cl-nsublis cl-sublis cl-nsubst-if-not
707 ;;;;;; cl-nsubst-if cl-nsubst cl-subst-if-not cl-subst-if cl-subsetp
708 ;;;;;; cl-nset-exclusive-or cl-set-exclusive-or cl-nset-difference
709 ;;;;;; cl-set-difference cl-nintersection cl-intersection cl-nunion
710 ;;;;;; cl-union cl-rassoc-if-not cl-rassoc-if cl-rassoc cl-assoc-if-not
711 ;;;;;; cl-assoc-if cl-assoc cl--adjoin cl-member-if-not cl-member-if
712 ;;;;;; cl-member cl-merge cl-stable-sort cl-sort cl-search cl-mismatch
713 ;;;;;; cl-count-if-not cl-count-if cl-count cl-position-if-not cl-position-if
714 ;;;;;; cl-position cl-find-if-not cl-find-if cl-find cl-nsubstitute-if-not
715 ;;;;;; cl-nsubstitute-if cl-nsubstitute cl-substitute-if-not cl-substitute-if
716 ;;;;;; cl-substitute cl-delete-duplicates cl-remove-duplicates cl-delete-if-not
717 ;;;;;; cl-delete-if cl-delete cl-remove-if-not cl-remove-if cl-remove
718 ;;;;;; cl-replace cl-fill cl-reduce) "cl-seq" "cl-seq.el" "b444601641dcbd14a23ca5182bc80ffa")
719 ;;; Generated autoloads from cl-seq.el
721 (autoload 'cl-reduce "cl-seq" "\
722 Reduce two-argument FUNCTION across SEQ.
724 Keywords supported: :start :end :from-end :initial-value :key
726 \(fn FUNCTION SEQ [KEYWORD VALUE]...)" nil nil)
728 (autoload 'cl-fill "cl-seq" "\
729 Fill the elements of SEQ with ITEM.
731 Keywords supported: :start :end
733 \(fn SEQ ITEM [KEYWORD VALUE]...)" nil nil)
735 (autoload 'cl-replace "cl-seq" "\
736 Replace the elements of SEQ1 with the elements of SEQ2.
737 SEQ1 is destructively modified, then returned.
739 Keywords supported: :start1 :end1 :start2 :end2
741 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
743 (autoload 'cl-remove "cl-seq" "\
744 Remove all occurrences of ITEM in SEQ.
745 This is a non-destructive function; it makes a copy of SEQ if necessary
746 to avoid corrupting the original SEQ.
748 Keywords supported: :test :test-not :key :count :start :end :from-end
750 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
752 (autoload 'cl-remove-if "cl-seq" "\
753 Remove all items satisfying PREDICATE in SEQ.
754 This is a non-destructive function; it makes a copy of SEQ if necessary
755 to avoid corrupting the original SEQ.
757 Keywords supported: :key :count :start :end :from-end
759 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
761 (autoload 'cl-remove-if-not "cl-seq" "\
762 Remove all items not satisfying PREDICATE in SEQ.
763 This is a non-destructive function; it makes a copy of SEQ if necessary
764 to avoid corrupting the original SEQ.
766 Keywords supported: :key :count :start :end :from-end
768 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
770 (autoload 'cl-delete "cl-seq" "\
771 Remove all occurrences of ITEM in SEQ.
772 This is a destructive function; it reuses the storage of SEQ whenever possible.
774 Keywords supported: :test :test-not :key :count :start :end :from-end
776 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
778 (autoload 'cl-delete-if "cl-seq" "\
779 Remove all items satisfying PREDICATE in SEQ.
780 This is a destructive function; it reuses the storage of SEQ whenever possible.
782 Keywords supported: :key :count :start :end :from-end
784 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
786 (autoload 'cl-delete-if-not "cl-seq" "\
787 Remove all items not satisfying PREDICATE in SEQ.
788 This is a destructive function; it reuses the storage of SEQ whenever possible.
790 Keywords supported: :key :count :start :end :from-end
792 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
794 (autoload 'cl-remove-duplicates "cl-seq" "\
795 Return a copy of SEQ with all duplicate elements removed.
797 Keywords supported: :test :test-not :key :start :end :from-end
799 \(fn SEQ [KEYWORD VALUE]...)" nil nil)
801 (autoload 'cl-delete-duplicates "cl-seq" "\
802 Remove all duplicate elements from SEQ (destructively).
804 Keywords supported: :test :test-not :key :start :end :from-end
806 \(fn SEQ [KEYWORD VALUE]...)" nil nil)
808 (autoload 'cl-substitute "cl-seq" "\
809 Substitute NEW for OLD in SEQ.
810 This is a non-destructive function; it makes a copy of SEQ if necessary
811 to avoid corrupting the original SEQ.
813 Keywords supported: :test :test-not :key :count :start :end :from-end
815 \(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)
817 (autoload 'cl-substitute-if "cl-seq" "\
818 Substitute NEW for all items satisfying PREDICATE in SEQ.
819 This is a non-destructive function; it makes a copy of SEQ if necessary
820 to avoid corrupting the original SEQ.
822 Keywords supported: :key :count :start :end :from-end
824 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
826 (autoload 'cl-substitute-if-not "cl-seq" "\
827 Substitute NEW for all items not satisfying PREDICATE in SEQ.
828 This is a non-destructive function; it makes a copy of SEQ if necessary
829 to avoid corrupting the original SEQ.
831 Keywords supported: :key :count :start :end :from-end
833 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
835 (autoload 'cl-nsubstitute "cl-seq" "\
836 Substitute NEW for OLD in SEQ.
837 This is a destructive function; it reuses the storage of SEQ whenever possible.
839 Keywords supported: :test :test-not :key :count :start :end :from-end
841 \(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)
843 (autoload 'cl-nsubstitute-if "cl-seq" "\
844 Substitute NEW for all items satisfying PREDICATE in SEQ.
845 This is a destructive function; it reuses the storage of SEQ whenever possible.
847 Keywords supported: :key :count :start :end :from-end
849 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
851 (autoload 'cl-nsubstitute-if-not "cl-seq" "\
852 Substitute NEW for all items not satisfying PREDICATE in SEQ.
853 This is a destructive function; it reuses the storage of SEQ whenever possible.
855 Keywords supported: :key :count :start :end :from-end
857 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
859 (autoload 'cl-find "cl-seq" "\
860 Find the first occurrence of ITEM in SEQ.
861 Return the matching ITEM, or nil if not found.
863 Keywords supported: :test :test-not :key :start :end :from-end
865 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
867 (autoload 'cl-find-if "cl-seq" "\
868 Find the first item satisfying PREDICATE in SEQ.
869 Return the matching item, or nil if not found.
871 Keywords supported: :key :start :end :from-end
873 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
875 (autoload 'cl-find-if-not "cl-seq" "\
876 Find the first item not satisfying PREDICATE in SEQ.
877 Return the matching item, or nil if not found.
879 Keywords supported: :key :start :end :from-end
881 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
883 (autoload 'cl-position "cl-seq" "\
884 Find the first occurrence of ITEM in SEQ.
885 Return the index of the matching item, or nil if not found.
887 Keywords supported: :test :test-not :key :start :end :from-end
889 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
891 (autoload 'cl-position-if "cl-seq" "\
892 Find the first item satisfying PREDICATE in SEQ.
893 Return the index of the matching item, or nil if not found.
895 Keywords supported: :key :start :end :from-end
897 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
899 (autoload 'cl-position-if-not "cl-seq" "\
900 Find the first item not satisfying PREDICATE in SEQ.
901 Return the index of the matching item, or nil if not found.
903 Keywords supported: :key :start :end :from-end
905 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
907 (autoload 'cl-count "cl-seq" "\
908 Count the number of occurrences of ITEM in SEQ.
910 Keywords supported: :test :test-not :key :start :end
912 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
914 (autoload 'cl-count-if "cl-seq" "\
915 Count the number of items satisfying PREDICATE in SEQ.
917 Keywords supported: :key :start :end
919 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
921 (autoload 'cl-count-if-not "cl-seq" "\
922 Count the number of items not satisfying PREDICATE in SEQ.
924 Keywords supported: :key :start :end
926 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
928 (autoload 'cl-mismatch "cl-seq" "\
929 Compare SEQ1 with SEQ2, return index of first mismatching element.
930 Return nil if the sequences match. If one sequence is a prefix of the
931 other, the return value indicates the end of the shorter sequence.
933 Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
935 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
937 (autoload 'cl-search "cl-seq" "\
938 Search for SEQ1 as a subsequence of SEQ2.
939 Return the index of the leftmost element of the first match found;
940 return nil if there are no matches.
942 Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
944 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
946 (autoload 'cl-sort "cl-seq" "\
947 Sort the argument SEQ according to PREDICATE.
948 This is a destructive function; it reuses the storage of SEQ if possible.
950 Keywords supported: :key
952 \(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)
954 (autoload 'cl-stable-sort "cl-seq" "\
955 Sort the argument SEQ stably according to PREDICATE.
956 This is a destructive function; it reuses the storage of SEQ if possible.
958 Keywords supported: :key
960 \(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)
962 (autoload 'cl-merge "cl-seq" "\
963 Destructively merge the two sequences to produce a new sequence.
964 TYPE is the sequence type to return, SEQ1 and SEQ2 are the two argument
965 sequences, and PREDICATE is a `less-than' predicate on the elements.
967 Keywords supported: :key
969 \(fn TYPE SEQ1 SEQ2 PREDICATE [KEYWORD VALUE]...)" nil nil)
971 (autoload 'cl-member "cl-seq" "\
972 Find the first occurrence of ITEM in LIST.
973 Return the sublist of LIST whose car is ITEM.
975 Keywords supported: :test :test-not :key
977 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
979 (put 'cl-member 'compiler-macro #'cl--compiler-macro-member)
981 (autoload 'cl-member-if "cl-seq" "\
982 Find the first item satisfying PREDICATE in LIST.
983 Return the sublist of LIST whose car matches.
985 Keywords supported: :key
987 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
989 (autoload 'cl-member-if-not "cl-seq" "\
990 Find the first item not satisfying PREDICATE in LIST.
991 Return the sublist of LIST whose car matches.
993 Keywords supported: :key
995 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
997 (autoload 'cl--adjoin "cl-seq" "\
1000 \(fn CL-ITEM CL-LIST &rest CL-KEYS)" nil nil)
1002 (autoload 'cl-assoc "cl-seq" "\
1003 Find the first item whose car matches ITEM in LIST.
1005 Keywords supported: :test :test-not :key
1007 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1009 (put 'cl-assoc 'compiler-macro #'cl--compiler-macro-assoc)
1011 (autoload 'cl-assoc-if "cl-seq" "\
1012 Find the first item whose car satisfies PREDICATE in LIST.
1014 Keywords supported: :key
1016 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1018 (autoload 'cl-assoc-if-not "cl-seq" "\
1019 Find the first item whose car does not satisfy PREDICATE in LIST.
1021 Keywords supported: :key
1023 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1025 (autoload 'cl-rassoc "cl-seq" "\
1026 Find the first item whose cdr matches ITEM in LIST.
1028 Keywords supported: :test :test-not :key
1030 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1032 (autoload 'cl-rassoc-if "cl-seq" "\
1033 Find the first item whose cdr satisfies PREDICATE in LIST.
1035 Keywords supported: :key
1037 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1039 (autoload 'cl-rassoc-if-not "cl-seq" "\
1040 Find the first item whose cdr does not satisfy PREDICATE in LIST.
1042 Keywords supported: :key
1044 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1046 (autoload 'cl-union "cl-seq" "\
1047 Combine LIST1 and LIST2 using a set-union operation.
1048 The resulting list contains all items that appear in either LIST1 or LIST2.
1049 This is a non-destructive function; it makes a copy of the data if necessary
1050 to avoid corrupting the original LIST1 and LIST2.
1052 Keywords supported: :test :test-not :key
1054 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1056 (autoload 'cl-nunion "cl-seq" "\
1057 Combine LIST1 and LIST2 using a set-union operation.
1058 The resulting list contains all items that appear in either LIST1 or LIST2.
1059 This is a destructive function; it reuses the storage of LIST1 and LIST2
1060 whenever possible.
1062 Keywords supported: :test :test-not :key
1064 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1066 (autoload 'cl-intersection "cl-seq" "\
1067 Combine LIST1 and LIST2 using a set-intersection operation.
1068 The resulting list contains all items that appear in both LIST1 and LIST2.
1069 This is a non-destructive function; it makes a copy of the data if necessary
1070 to avoid corrupting the original LIST1 and LIST2.
1072 Keywords supported: :test :test-not :key
1074 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1076 (autoload 'cl-nintersection "cl-seq" "\
1077 Combine LIST1 and LIST2 using a set-intersection operation.
1078 The resulting list contains all items that appear in both LIST1 and LIST2.
1079 This is a destructive function; it reuses the storage of LIST1 and LIST2
1080 whenever possible.
1082 Keywords supported: :test :test-not :key
1084 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1086 (autoload 'cl-set-difference "cl-seq" "\
1087 Combine LIST1 and LIST2 using a set-difference operation.
1088 The resulting list contains all items that appear in LIST1 but not LIST2.
1089 This is a non-destructive function; it makes a copy of the data if necessary
1090 to avoid corrupting the original LIST1 and LIST2.
1092 Keywords supported: :test :test-not :key
1094 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1096 (autoload 'cl-nset-difference "cl-seq" "\
1097 Combine LIST1 and LIST2 using a set-difference operation.
1098 The resulting list contains all items that appear in LIST1 but not LIST2.
1099 This is a destructive function; it reuses the storage of LIST1 and LIST2
1100 whenever possible.
1102 Keywords supported: :test :test-not :key
1104 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1106 (autoload 'cl-set-exclusive-or "cl-seq" "\
1107 Combine LIST1 and LIST2 using a set-exclusive-or operation.
1108 The resulting list contains all items appearing in exactly one of LIST1, LIST2.
1109 This is a non-destructive function; it makes a copy of the data if necessary
1110 to avoid corrupting the original LIST1 and LIST2.
1112 Keywords supported: :test :test-not :key
1114 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1116 (autoload 'cl-nset-exclusive-or "cl-seq" "\
1117 Combine LIST1 and LIST2 using a set-exclusive-or operation.
1118 The resulting list contains all items appearing in exactly one of LIST1, LIST2.
1119 This is a destructive function; it reuses the storage of LIST1 and LIST2
1120 whenever possible.
1122 Keywords supported: :test :test-not :key
1124 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1126 (autoload 'cl-subsetp "cl-seq" "\
1127 Return true if LIST1 is a subset of LIST2.
1128 I.e., if every element of LIST1 also appears in LIST2.
1130 Keywords supported: :test :test-not :key
1132 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1134 (autoload 'cl-subst-if "cl-seq" "\
1135 Substitute NEW for elements matching PREDICATE in TREE (non-destructively).
1136 Return a copy of TREE with all matching elements replaced by NEW.
1138 Keywords supported: :key
1140 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1142 (autoload 'cl-subst-if-not "cl-seq" "\
1143 Substitute NEW for elts not matching PREDICATE in TREE (non-destructively).
1144 Return a copy of TREE with all non-matching elements replaced by NEW.
1146 Keywords supported: :key
1148 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1150 (autoload 'cl-nsubst "cl-seq" "\
1151 Substitute NEW for OLD everywhere in TREE (destructively).
1152 Any element of TREE which is `eql' to OLD is changed to NEW (via a call
1153 to `setcar').
1155 Keywords supported: :test :test-not :key
1157 \(fn NEW OLD TREE [KEYWORD VALUE]...)" nil nil)
1159 (autoload 'cl-nsubst-if "cl-seq" "\
1160 Substitute NEW for elements matching PREDICATE in TREE (destructively).
1161 Any element of TREE which matches is changed to NEW (via a call to `setcar').
1163 Keywords supported: :key
1165 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1167 (autoload 'cl-nsubst-if-not "cl-seq" "\
1168 Substitute NEW for elements not matching PREDICATE in TREE (destructively).
1169 Any element of TREE which matches is changed to NEW (via a call to `setcar').
1171 Keywords supported: :key
1173 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1175 (autoload 'cl-sublis "cl-seq" "\
1176 Perform substitutions indicated by ALIST in TREE (non-destructively).
1177 Return a copy of TREE with all matching elements replaced.
1179 Keywords supported: :test :test-not :key
1181 \(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)
1183 (autoload 'cl-nsublis "cl-seq" "\
1184 Perform substitutions indicated by ALIST in TREE (destructively).
1185 Any matching element of TREE is changed via a call to `setcar'.
1187 Keywords supported: :test :test-not :key
1189 \(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)
1191 (autoload 'cl-tree-equal "cl-seq" "\
1192 Return t if trees TREE1 and TREE2 have `eql' leaves.
1193 Atoms are compared by `eql'; cons cells are compared recursively.
1195 Keywords supported: :test :test-not :key
1197 \(fn TREE1 TREE2 [KEYWORD VALUE]...)" nil nil)
1199 ;;;***
1201 ;; Local Variables:
1202 ;; version-control: never
1203 ;; no-byte-compile: t
1204 ;; no-update-autoloads: t
1205 ;; coding: utf-8
1206 ;; End:
1207 ;;; cl-loaddefs.el ends here