Avoid leaving garbage on screen when using 'raise' display property
[emacs.git] / src / unexmacosx.c
blob97dcb435d3750c6aff6616b6dbc2d96de727f94c
1 /* Dump Emacs in Mach-O format for use on macOS.
2 Copyright (C) 2001-2017 Free Software Foundation, Inc.
4 This file is part of GNU Emacs.
6 GNU Emacs is free software: you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation, either version 3 of the License, or (at
9 your option) any later version.
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19 /* Contributed by Andrew Choi (akochoi@mac.com). */
21 /* Documentation note.
23 Consult the following documents/files for a description of the
24 Mach-O format: the file loader.h, man pages for Mach-O and ld, old
25 NEXTSTEP documents of the Mach-O format. The tool otool dumps the
26 mach header (-h option) and the load commands (-l option) in a
27 Mach-O file. The tool nm on macOS displays the symbol table in
28 a Mach-O file. For examples of unexec for the Mach-O format, see
29 the file unexnext.c in the GNU Emacs distribution, the file
30 unexdyld.c in the Darwin port of GNU Emacs 20.7, and unexdyld.c in
31 the Darwin port of XEmacs 21.1. Also the Darwin Libc source
32 contains the source code for malloc_freezedry and malloc_jumpstart.
33 Read that to see what they do. This file was written completely
34 from scratch, making use of information from the above sources. */
36 /* The macOS implementation of unexec makes use of Darwin's `zone'
37 memory allocator. All calls to malloc, realloc, and free in Emacs
38 are redirected to unexec_malloc, unexec_realloc, and unexec_free in
39 this file. When temacs is run, all memory requests are handled in
40 the zone EmacsZone. The Darwin memory allocator library calls
41 maintain the data structures to manage this zone. Dumping writes
42 its contents to data segments of the executable file. When emacs
43 is run, the loader recreates the contents of the zone in memory.
44 However since the initialization routine of the zone memory
45 allocator is run again, this `zone' can no longer be used as a
46 heap. That is why emacs uses the ordinary malloc system call to
47 allocate memory. Also, when a block of memory needs to be
48 reallocated and the new size is larger than the old one, a new
49 block must be obtained by malloc and the old contents copied to
50 it. */
52 /* Peculiarity of the Mach-O files generated by ld in macOS
53 (possible causes of future bugs if changed).
55 The file offset of the start of the __TEXT segment is zero. Since
56 the Mach header and load commands are located at the beginning of a
57 Mach-O file, copying the contents of the __TEXT segment from the
58 input file overwrites them in the output file. Despite this,
59 unexec works fine as written below because the segment load command
60 for __TEXT appears, and is therefore processed, before all other
61 load commands except the segment load command for __PAGEZERO, which
62 remains unchanged.
64 Although the file offset of the start of the __TEXT segment is
65 zero, none of the sections it contains actually start there. In
66 fact, the earliest one starts a few hundred bytes beyond the end of
67 the last load command. The linker option -headerpad controls the
68 minimum size of this padding. Its setting can be changed in
69 s/darwin.h. A value of 0x690, e.g., leaves room for 30 additional
70 load commands for the newly created __DATA segments (at 56 bytes
71 each). Unexec fails if there is not enough room for these new
72 segments.
74 The __TEXT segment contains the sections __text, __cstring,
75 __picsymbol_stub, and __const and the __DATA segment contains the
76 sections __data, __la_symbol_ptr, __nl_symbol_ptr, __dyld, __bss,
77 and __common. The other segments do not contain any sections.
78 These sections are copied from the input file to the output file,
79 except for __data, __bss, and __common, which are dumped from
80 memory. The types of the sections __bss and __common are changed
81 from S_ZEROFILL to S_REGULAR. Note that the number of sections and
82 their relative order in the input and output files remain
83 unchanged. Otherwise all n_sect fields in the nlist records in the
84 symbol table (specified by the LC_SYMTAB load command) will have to
85 be changed accordingly.
88 #include <config.h>
90 /* Although <config.h> redefines malloc to unexec_malloc, etc., this
91 file wants stdlib.h to declare the originals. */
92 #undef malloc
93 #undef realloc
94 #undef free
96 #include <stdlib.h>
98 #include "unexec.h"
99 #include "lisp.h"
101 #include <errno.h>
102 #include <stdio.h>
103 #include <fcntl.h>
104 #include <stdarg.h>
105 #include <stdint.h>
106 #include <sys/types.h>
107 #include <unistd.h>
108 #include <mach/mach.h>
109 #include <mach/vm_map.h>
110 #include <mach-o/loader.h>
111 #include <mach-o/reloc.h>
112 #ifdef HAVE_MALLOC_MALLOC_H
113 #include <malloc/malloc.h>
114 #else
115 #include <objc/malloc.h>
116 #endif
118 #include <assert.h>
120 /* LC_DATA_IN_CODE is not defined in mach-o/loader.h on Mac OS X 10.7.
121 But it is used if we build with "Command Line Tools for Xcode 4.5
122 (Mac OS X Lion) - September 2012". */
123 #ifndef LC_DATA_IN_CODE
124 #define LC_DATA_IN_CODE 0x29 /* table of non-instructions in __text */
125 #endif
127 #ifdef _LP64
128 #define mach_header mach_header_64
129 #define segment_command segment_command_64
130 #undef VM_REGION_BASIC_INFO_COUNT
131 #define VM_REGION_BASIC_INFO_COUNT VM_REGION_BASIC_INFO_COUNT_64
132 #undef VM_REGION_BASIC_INFO
133 #define VM_REGION_BASIC_INFO VM_REGION_BASIC_INFO_64
134 #undef LC_SEGMENT
135 #define LC_SEGMENT LC_SEGMENT_64
136 #define vm_region vm_region_64
137 #define section section_64
138 #undef MH_MAGIC
139 #define MH_MAGIC MH_MAGIC_64
140 #endif
142 #define VERBOSE 1
144 /* Size of buffer used to copy data from the input file to the output
145 file in function unexec_copy. */
146 #define UNEXEC_COPY_BUFSZ 1024
148 /* Regions with memory addresses above this value are assumed to be
149 mapped to dynamically loaded libraries and will not be dumped. */
150 #define VM_DATA_TOP (20 * 1024 * 1024)
152 /* Type of an element on the list of regions to be dumped. */
153 struct region_t {
154 vm_address_t address;
155 vm_size_t size;
156 vm_prot_t protection;
157 vm_prot_t max_protection;
159 struct region_t *next;
162 /* Head and tail of the list of regions to be dumped. */
163 static struct region_t *region_list_head = 0;
164 static struct region_t *region_list_tail = 0;
166 /* Pointer to array of load commands. */
167 static struct load_command **lca;
169 /* Number of load commands. */
170 static int nlc;
172 /* The highest VM address of segments loaded by the input file.
173 Regions with addresses beyond this are assumed to be allocated
174 dynamically and thus require dumping. */
175 static vm_address_t infile_lc_highest_addr = 0;
177 /* The lowest file offset used by the all sections in the __TEXT
178 segments. This leaves room at the beginning of the file to store
179 the Mach-O header. Check this value against header size to ensure
180 the added load commands for the new __DATA segments did not
181 overwrite any of the sections in the __TEXT segment. */
182 static unsigned long text_seg_lowest_offset = 0x10000000;
184 /* Mach header. */
185 static struct mach_header mh;
187 /* Offset at which the next load command should be written. */
188 static unsigned long curr_header_offset = sizeof (struct mach_header);
190 /* Offset at which the next segment should be written. */
191 static unsigned long curr_file_offset = 0;
193 static unsigned long pagesize;
194 #define ROUNDUP_TO_PAGE_BOUNDARY(x) (((x) + pagesize - 1) & ~(pagesize - 1))
196 static int infd, outfd;
198 static int in_dumped_exec = 0;
200 static malloc_zone_t *emacs_zone;
202 /* file offset of input file's data segment */
203 static off_t data_segment_old_fileoff = 0;
205 static struct segment_command *data_segment_scp;
207 /* Read N bytes from infd into memory starting at address DEST.
208 Return true if successful, false otherwise. */
209 static int
210 unexec_read (void *dest, size_t n)
212 return n == read (infd, dest, n);
215 /* Write COUNT bytes from memory starting at address SRC to outfd
216 starting at offset DEST. Return true if successful, false
217 otherwise. */
218 static int
219 unexec_write (off_t dest, const void *src, size_t count)
221 task_t task = mach_task_self();
222 if (task == MACH_PORT_NULL || task == MACH_PORT_DEAD)
223 return false;
225 if (lseek (outfd, dest, SEEK_SET) != dest)
226 return 0;
228 /* We use the Mach virtual memory API to read our process memory
229 because using src directly would be undefined behavior and fails
230 under Address Sanitizer. */
231 bool success = false;
232 vm_offset_t data;
233 mach_msg_type_number_t data_count;
234 if (vm_read (task, (uintptr_t) src, count, &data, &data_count)
235 == KERN_SUCCESS)
237 success =
238 write (outfd, (const void *) (uintptr_t) data, data_count) == count;
239 vm_deallocate (task, data, data_count);
241 return success;
244 /* Write COUNT bytes of zeros to outfd starting at offset DEST.
245 Return true if successful, false otherwise. */
246 static int
247 unexec_write_zero (off_t dest, size_t count)
249 char buf[UNEXEC_COPY_BUFSZ];
250 ssize_t bytes;
252 memset (buf, 0, UNEXEC_COPY_BUFSZ);
253 if (lseek (outfd, dest, SEEK_SET) != dest)
254 return 0;
256 while (count > 0)
258 bytes = count > UNEXEC_COPY_BUFSZ ? UNEXEC_COPY_BUFSZ : count;
259 if (write (outfd, buf, bytes) != bytes)
260 return 0;
261 count -= bytes;
264 return 1;
267 /* Copy COUNT bytes from starting offset SRC in infd to starting
268 offset DEST in outfd. Return true if successful, false
269 otherwise. */
270 static int
271 unexec_copy (off_t dest, off_t src, ssize_t count)
273 ssize_t bytes_read;
274 ssize_t bytes_to_read;
276 char buf[UNEXEC_COPY_BUFSZ];
278 if (lseek (infd, src, SEEK_SET) != src)
279 return 0;
281 if (lseek (outfd, dest, SEEK_SET) != dest)
282 return 0;
284 while (count > 0)
286 bytes_to_read = count > UNEXEC_COPY_BUFSZ ? UNEXEC_COPY_BUFSZ : count;
287 bytes_read = read (infd, buf, bytes_to_read);
288 if (bytes_read <= 0)
289 return 0;
290 if (write (outfd, buf, bytes_read) != bytes_read)
291 return 0;
292 count -= bytes_read;
295 return 1;
298 /* Debugging and informational messages routines. */
300 static _Noreturn void
301 unexec_error (const char *format, ...)
303 va_list ap;
305 va_start (ap, format);
306 fprintf (stderr, "unexec: ");
307 vfprintf (stderr, format, ap);
308 fprintf (stderr, "\n");
309 va_end (ap);
310 exit (1);
313 static void
314 print_prot (vm_prot_t prot)
316 if (prot == VM_PROT_NONE)
317 printf ("none");
318 else
320 putchar (prot & VM_PROT_READ ? 'r' : ' ');
321 putchar (prot & VM_PROT_WRITE ? 'w' : ' ');
322 putchar (prot & VM_PROT_EXECUTE ? 'x' : ' ');
323 putchar (' ');
327 static void
328 print_region (vm_address_t address, vm_size_t size, vm_prot_t prot,
329 vm_prot_t max_prot)
331 printf ("%#10lx %#8lx ", (long) address, (long) size);
332 print_prot (prot);
333 putchar (' ');
334 print_prot (max_prot);
335 putchar ('\n');
338 static void
339 print_region_list (void)
341 struct region_t *r;
343 printf (" address size prot maxp\n");
345 for (r = region_list_head; r; r = r->next)
346 print_region (r->address, r->size, r->protection, r->max_protection);
349 static void
350 print_regions (void)
352 task_t target_task = mach_task_self ();
353 vm_address_t address = (vm_address_t) 0;
354 vm_size_t size;
355 struct vm_region_basic_info info;
356 mach_msg_type_number_t info_count = VM_REGION_BASIC_INFO_COUNT;
357 mach_port_t object_name;
359 printf (" address size prot maxp\n");
361 while (vm_region (target_task, &address, &size, VM_REGION_BASIC_INFO,
362 (vm_region_info_t) &info, &info_count, &object_name)
363 == KERN_SUCCESS && info_count == VM_REGION_BASIC_INFO_COUNT)
365 print_region (address, size, info.protection, info.max_protection);
367 if (object_name != MACH_PORT_NULL)
368 mach_port_deallocate (target_task, object_name);
370 address += size;
374 /* Build the list of regions that need to be dumped. Regions with
375 addresses above VM_DATA_TOP are omitted. Adjacent regions with
376 identical protection are merged. Note that non-writable regions
377 cannot be omitted because they some regions created at run time are
378 read-only. */
379 static void
380 build_region_list (void)
382 task_t target_task = mach_task_self ();
383 vm_address_t address = (vm_address_t) 0;
384 vm_size_t size;
385 struct vm_region_basic_info info;
386 mach_msg_type_number_t info_count = VM_REGION_BASIC_INFO_COUNT;
387 mach_port_t object_name;
388 struct region_t *r;
390 #if VERBOSE
391 printf ("--- List of All Regions ---\n");
392 printf (" address size prot maxp\n");
393 #endif
395 while (vm_region (target_task, &address, &size, VM_REGION_BASIC_INFO,
396 (vm_region_info_t) &info, &info_count, &object_name)
397 == KERN_SUCCESS && info_count == VM_REGION_BASIC_INFO_COUNT)
399 /* Done when we reach addresses of shared libraries, which are
400 loaded in high memory. */
401 if (address >= VM_DATA_TOP)
402 break;
404 #if VERBOSE
405 print_region (address, size, info.protection, info.max_protection);
406 #endif
408 /* If a region immediately follows the previous one (the one
409 most recently added to the list) and has identical
410 protection, merge it with the latter. Otherwise create a
411 new list element for it. */
412 if (region_list_tail
413 && info.protection == region_list_tail->protection
414 && info.max_protection == region_list_tail->max_protection
415 && region_list_tail->address + region_list_tail->size == address)
417 region_list_tail->size += size;
419 else
421 r = malloc (sizeof *r);
423 if (!r)
424 unexec_error ("cannot allocate region structure");
426 r->address = address;
427 r->size = size;
428 r->protection = info.protection;
429 r->max_protection = info.max_protection;
431 r->next = 0;
432 if (region_list_head == 0)
434 region_list_head = r;
435 region_list_tail = r;
437 else
439 region_list_tail->next = r;
440 region_list_tail = r;
443 /* Deallocate (unused) object name returned by
444 vm_region. */
445 if (object_name != MACH_PORT_NULL)
446 mach_port_deallocate (target_task, object_name);
449 address += size;
452 printf ("--- List of Regions to be Dumped ---\n");
453 print_region_list ();
457 #define MAX_UNEXEC_REGIONS 400
459 static int num_unexec_regions;
460 typedef struct {
461 vm_range_t range;
462 vm_size_t filesize;
463 } unexec_region_info;
464 static unexec_region_info unexec_regions[MAX_UNEXEC_REGIONS];
466 static void
467 unexec_regions_recorder (task_t task, void *rr, unsigned type,
468 vm_range_t *ranges, unsigned num)
470 vm_address_t p;
471 vm_size_t filesize;
473 while (num && num_unexec_regions < MAX_UNEXEC_REGIONS)
475 /* Subtract the size of trailing null bytes from filesize. It
476 can be smaller than vmsize in segment commands. In such a
477 case, trailing bytes are initialized with zeros. */
478 for (p = ranges->address + ranges->size; p > ranges->address; p--)
479 if (*(((char *) p)-1))
480 break;
481 filesize = p - ranges->address;
483 unexec_regions[num_unexec_regions].filesize = filesize;
484 unexec_regions[num_unexec_regions++].range = *ranges;
485 printf ("%#10lx (sz: %#8lx/%#8lx)\n", (long) (ranges->address),
486 (long) filesize, (long) (ranges->size));
487 ranges++; num--;
491 static kern_return_t
492 unexec_reader (task_t task, vm_address_t address, vm_size_t size, void **ptr)
494 *ptr = (void *) address;
495 return KERN_SUCCESS;
498 static void
499 find_emacs_zone_regions (void)
501 num_unexec_regions = 0;
503 emacs_zone->introspect->enumerator (mach_task_self (), 0,
504 MALLOC_PTR_REGION_RANGE_TYPE
505 | MALLOC_ADMIN_REGION_RANGE_TYPE,
506 (vm_address_t) emacs_zone,
507 unexec_reader,
508 unexec_regions_recorder);
510 if (num_unexec_regions == MAX_UNEXEC_REGIONS)
511 unexec_error ("find_emacs_zone_regions: too many regions");
514 static int
515 unexec_regions_sort_compare (const void *a, const void *b)
517 vm_address_t aa = ((unexec_region_info *) a)->range.address;
518 vm_address_t bb = ((unexec_region_info *) b)->range.address;
520 if (aa < bb)
521 return -1;
522 else if (aa > bb)
523 return 1;
524 else
525 return 0;
528 static void
529 unexec_regions_merge (void)
531 int i, n;
532 unexec_region_info r;
533 vm_size_t padsize;
535 qsort (unexec_regions, num_unexec_regions, sizeof (unexec_regions[0]),
536 &unexec_regions_sort_compare);
537 n = 0;
538 r = unexec_regions[0];
539 padsize = r.range.address & (pagesize - 1);
540 if (padsize)
542 r.range.address -= padsize;
543 r.range.size += padsize;
544 r.filesize += padsize;
546 for (i = 1; i < num_unexec_regions; i++)
548 if (r.range.address + r.range.size == unexec_regions[i].range.address
549 && r.range.size - r.filesize < 2 * pagesize)
551 r.filesize = r.range.size + unexec_regions[i].filesize;
552 r.range.size += unexec_regions[i].range.size;
554 else
556 unexec_regions[n++] = r;
557 r = unexec_regions[i];
558 padsize = r.range.address & (pagesize - 1);
559 if (padsize)
561 if ((unexec_regions[n-1].range.address
562 + unexec_regions[n-1].range.size) == r.range.address)
563 unexec_regions[n-1].range.size -= padsize;
565 r.range.address -= padsize;
566 r.range.size += padsize;
567 r.filesize += padsize;
571 unexec_regions[n++] = r;
572 num_unexec_regions = n;
576 /* More informational messages routines. */
578 static void
579 print_load_command_name (int lc)
581 switch (lc)
583 case LC_SEGMENT:
584 #ifndef _LP64
585 printf ("LC_SEGMENT ");
586 #else
587 printf ("LC_SEGMENT_64 ");
588 #endif
589 break;
590 case LC_LOAD_DYLINKER:
591 printf ("LC_LOAD_DYLINKER ");
592 break;
593 case LC_LOAD_DYLIB:
594 printf ("LC_LOAD_DYLIB ");
595 break;
596 case LC_SYMTAB:
597 printf ("LC_SYMTAB ");
598 break;
599 case LC_DYSYMTAB:
600 printf ("LC_DYSYMTAB ");
601 break;
602 case LC_UNIXTHREAD:
603 printf ("LC_UNIXTHREAD ");
604 break;
605 case LC_PREBOUND_DYLIB:
606 printf ("LC_PREBOUND_DYLIB");
607 break;
608 case LC_TWOLEVEL_HINTS:
609 printf ("LC_TWOLEVEL_HINTS");
610 break;
611 #ifdef LC_UUID
612 case LC_UUID:
613 printf ("LC_UUID ");
614 break;
615 #endif
616 #ifdef LC_DYLD_INFO
617 case LC_DYLD_INFO:
618 printf ("LC_DYLD_INFO ");
619 break;
620 case LC_DYLD_INFO_ONLY:
621 printf ("LC_DYLD_INFO_ONLY");
622 break;
623 #endif
624 #ifdef LC_VERSION_MIN_MACOSX
625 case LC_VERSION_MIN_MACOSX:
626 printf ("LC_VERSION_MIN_MACOSX");
627 break;
628 #endif
629 #ifdef LC_FUNCTION_STARTS
630 case LC_FUNCTION_STARTS:
631 printf ("LC_FUNCTION_STARTS");
632 break;
633 #endif
634 #ifdef LC_MAIN
635 case LC_MAIN:
636 printf ("LC_MAIN ");
637 break;
638 #endif
639 #ifdef LC_DATA_IN_CODE
640 case LC_DATA_IN_CODE:
641 printf ("LC_DATA_IN_CODE ");
642 break;
643 #endif
644 #ifdef LC_SOURCE_VERSION
645 case LC_SOURCE_VERSION:
646 printf ("LC_SOURCE_VERSION");
647 break;
648 #endif
649 #ifdef LC_DYLIB_CODE_SIGN_DRS
650 case LC_DYLIB_CODE_SIGN_DRS:
651 printf ("LC_DYLIB_CODE_SIGN_DRS");
652 break;
653 #endif
654 default:
655 printf ("unknown ");
659 static void
660 print_load_command (struct load_command *lc)
662 print_load_command_name (lc->cmd);
663 printf ("%8d", lc->cmdsize);
665 if (lc->cmd == LC_SEGMENT)
667 struct segment_command *scp;
668 struct section *sectp;
669 int j;
671 scp = (struct segment_command *) lc;
672 printf (" %-16.16s %#10lx %#8lx\n",
673 scp->segname, (long) (scp->vmaddr), (long) (scp->vmsize));
675 sectp = (struct section *) (scp + 1);
676 for (j = 0; j < scp->nsects; j++)
678 printf (" %-16.16s %#10lx %#8lx\n",
679 sectp->sectname, (long) (sectp->addr), (long) (sectp->size));
680 sectp++;
683 else
684 printf ("\n");
687 /* Read header and load commands from input file. Store the latter in
688 the global array lca. Store the total number of load commands in
689 global variable nlc. */
690 static void
691 read_load_commands (void)
693 int i;
695 if (!unexec_read (&mh, sizeof (struct mach_header)))
696 unexec_error ("cannot read mach-o header");
698 if (mh.magic != MH_MAGIC)
699 unexec_error ("input file not in Mach-O format");
701 if (mh.filetype != MH_EXECUTE)
702 unexec_error ("input Mach-O file is not an executable object file");
704 #if VERBOSE
705 printf ("--- Header Information ---\n");
706 printf ("Magic = 0x%08x\n", mh.magic);
707 printf ("CPUType = %d\n", mh.cputype);
708 printf ("CPUSubType = %d\n", mh.cpusubtype);
709 printf ("FileType = 0x%x\n", mh.filetype);
710 printf ("NCmds = %d\n", mh.ncmds);
711 printf ("SizeOfCmds = %d\n", mh.sizeofcmds);
712 printf ("Flags = 0x%08x\n", mh.flags);
713 #endif
715 nlc = mh.ncmds;
716 lca = malloc (nlc * sizeof *lca);
718 for (i = 0; i < nlc; i++)
720 struct load_command lc;
721 /* Load commands are variable-size: so read the command type and
722 size first and then read the rest. */
723 if (!unexec_read (&lc, sizeof (struct load_command)))
724 unexec_error ("cannot read load command");
725 lca[i] = malloc (lc.cmdsize);
726 memcpy (lca[i], &lc, sizeof (struct load_command));
727 if (!unexec_read (lca[i] + 1, lc.cmdsize - sizeof (struct load_command)))
728 unexec_error ("cannot read content of load command");
729 if (lc.cmd == LC_SEGMENT)
731 struct segment_command *scp = (struct segment_command *) lca[i];
733 if (scp->vmaddr + scp->vmsize > infile_lc_highest_addr)
734 infile_lc_highest_addr = scp->vmaddr + scp->vmsize;
736 if (strncmp (scp->segname, SEG_TEXT, 16) == 0)
738 struct section *sectp = (struct section *) (scp + 1);
739 int j;
741 for (j = 0; j < scp->nsects; j++)
742 if (sectp->offset < text_seg_lowest_offset)
743 text_seg_lowest_offset = sectp->offset;
748 printf ("Highest address of load commands in input file: %#8lx\n",
749 (unsigned long)infile_lc_highest_addr);
751 printf ("Lowest offset of all sections in __TEXT segment: %#8lx\n",
752 text_seg_lowest_offset);
754 printf ("--- List of Load Commands in Input File ---\n");
755 printf ("# cmd cmdsize name address size\n");
757 for (i = 0; i < nlc; i++)
759 printf ("%1d ", i);
760 print_load_command (lca[i]);
764 /* Copy a LC_SEGMENT load command other than the __DATA segment from
765 the input file to the output file, adjusting the file offset of the
766 segment and the file offsets of sections contained in it. */
767 static void
768 copy_segment (struct load_command *lc)
770 struct segment_command *scp = (struct segment_command *) lc;
771 unsigned long old_fileoff = scp->fileoff;
772 struct section *sectp;
773 int j;
775 scp->fileoff = curr_file_offset;
777 sectp = (struct section *) (scp + 1);
778 for (j = 0; j < scp->nsects; j++)
780 sectp->offset += curr_file_offset - old_fileoff;
781 sectp++;
784 printf ("Writing segment %-16.16s @ %#8lx (%#8lx/%#8lx @ %#10lx)\n",
785 scp->segname, (long) (scp->fileoff), (long) (scp->filesize),
786 (long) (scp->vmsize), (long) (scp->vmaddr));
788 if (!unexec_copy (scp->fileoff, old_fileoff, scp->filesize))
789 unexec_error ("cannot copy segment from input to output file");
790 curr_file_offset += ROUNDUP_TO_PAGE_BOUNDARY (scp->filesize);
792 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
793 unexec_error ("cannot write load command to header");
795 curr_header_offset += lc->cmdsize;
798 /* Copy a LC_SEGMENT load command for the __DATA segment in the input
799 file to the output file. We assume that only one such segment load
800 command exists in the input file and it contains the sections
801 __data, __bss, __common, __la_symbol_ptr, __nl_symbol_ptr, and
802 __dyld. The first three of these should be dumped from memory and
803 the rest should be copied from the input file. Note that the
804 sections __bss and __common contain no data in the input file
805 because their flag fields have the value S_ZEROFILL. Dumping these
806 from memory makes it necessary to adjust file offset fields in
807 subsequently dumped load commands. Then, create new __DATA segment
808 load commands for regions on the region list other than the one
809 corresponding to the __DATA segment in the input file. */
810 static void
811 copy_data_segment (struct load_command *lc)
813 struct segment_command *scp = (struct segment_command *) lc;
814 struct section *sectp;
815 int j;
816 unsigned long header_offset, old_file_offset;
818 /* The new filesize of the segment is set to its vmsize because data
819 blocks for segments must start at region boundaries. Note that
820 this may leave unused locations at the end of the segment data
821 block because the total of the sizes of all sections in the
822 segment is generally smaller than vmsize. */
823 scp->filesize = scp->vmsize;
825 printf ("Writing segment %-16.16s @ %#8lx (%#8lx/%#8lx @ %#10lx)\n",
826 scp->segname, curr_file_offset, (long)(scp->filesize),
827 (long)(scp->vmsize), (long) (scp->vmaddr));
829 /* Offsets in the output file for writing the next section structure
830 and segment data block, respectively. */
831 header_offset = curr_header_offset + sizeof (struct segment_command);
833 sectp = (struct section *) (scp + 1);
834 for (j = 0; j < scp->nsects; j++)
836 old_file_offset = sectp->offset;
837 sectp->offset = sectp->addr - scp->vmaddr + curr_file_offset;
838 /* The __data section is dumped from memory. The __bss and
839 __common sections are also dumped from memory but their flag
840 fields require changing (from S_ZEROFILL to S_REGULAR). The
841 other three kinds of sections are just copied from the input
842 file. */
843 if (strncmp (sectp->sectname, SECT_DATA, 16) == 0)
845 unsigned long my_size;
847 /* The __data section is basically dumped from memory. But
848 initialized data in statically linked libraries are
849 copied from the input file. In particular,
850 add_image_hook.names and add_image_hook.pointers stored
851 by libarclite_macosx.a, are restored so that they will be
852 reinitialized when the dumped binary is executed. */
853 my_size = (unsigned long)my_edata - sectp->addr;
854 if (!(sectp->addr <= (unsigned long)my_edata
855 && my_size <= sectp->size))
856 unexec_error ("my_edata is not in section %s", SECT_DATA);
857 if (!unexec_write (sectp->offset, (void *) sectp->addr, my_size))
858 unexec_error ("cannot write section %s", SECT_DATA);
859 if (!unexec_copy (sectp->offset + my_size, old_file_offset + my_size,
860 sectp->size - my_size))
861 unexec_error ("cannot copy section %s", SECT_DATA);
862 if (!unexec_write (header_offset, sectp, sizeof (struct section)))
863 unexec_error ("cannot write section %s's header", SECT_DATA);
865 else if (strncmp (sectp->sectname, SECT_COMMON, 16) == 0)
867 sectp->flags = S_REGULAR;
868 if (!unexec_write (sectp->offset, (void *) sectp->addr, sectp->size))
869 unexec_error ("cannot write section %.16s", sectp->sectname);
870 if (!unexec_write (header_offset, sectp, sizeof (struct section)))
871 unexec_error ("cannot write section %.16s's header", sectp->sectname);
873 else if (strncmp (sectp->sectname, SECT_BSS, 16) == 0)
875 unsigned long my_size;
877 sectp->flags = S_REGULAR;
879 /* Clear uninitialized local variables in statically linked
880 libraries. In particular, function pointers stored by
881 libSystemStub.a, which is introduced in Mac OS X 10.4 for
882 binary compatibility with respect to long double, are
883 cleared so that they will be reinitialized when the
884 dumped binary is executed on other versions of OS. */
885 my_size = (unsigned long)my_endbss_static - sectp->addr;
886 if (!(sectp->addr <= (unsigned long)my_endbss_static
887 && my_size <= sectp->size))
888 unexec_error ("my_endbss_static is not in section %.16s",
889 sectp->sectname);
890 if (!unexec_write (sectp->offset, (void *) sectp->addr, my_size))
891 unexec_error ("cannot write section %.16s", sectp->sectname);
892 if (!unexec_write_zero (sectp->offset + my_size,
893 sectp->size - my_size))
894 unexec_error ("cannot write section %.16s", sectp->sectname);
895 if (!unexec_write (header_offset, sectp, sizeof (struct section)))
896 unexec_error ("cannot write section %.16s's header", sectp->sectname);
898 else if (strncmp (sectp->sectname, "__bss", 5) == 0
899 || strncmp (sectp->sectname, "__pu_bss", 8) == 0)
901 sectp->flags = S_REGULAR;
903 /* These sections are produced by GCC 4.6+.
905 FIXME: We possibly ought to clear uninitialized local
906 variables in statically linked libraries like for
907 SECT_BSS (__bss) above, but setting up the markers we
908 need in lastfile.c would be rather messy. See
909 darwin_output_aligned_bss () in gcc/config/darwin.c for
910 the root of the problem, keeping in mind that the
911 sections are numbered by their alignment in GCC 4.6, but
912 by log2(alignment) in GCC 4.7. */
914 if (!unexec_write (sectp->offset, (void *) sectp->addr, sectp->size))
915 unexec_error ("cannot copy section %.16s", sectp->sectname);
916 if (!unexec_write (header_offset, sectp, sizeof (struct section)))
917 unexec_error ("cannot write section %.16s's header", sectp->sectname);
919 else if (strncmp (sectp->sectname, "__la_symbol_ptr", 16) == 0
920 || strncmp (sectp->sectname, "__nl_symbol_ptr", 16) == 0
921 || strncmp (sectp->sectname, "__got", 16) == 0
922 || strncmp (sectp->sectname, "__la_sym_ptr2", 16) == 0
923 || strncmp (sectp->sectname, "__dyld", 16) == 0
924 || strncmp (sectp->sectname, "__const", 16) == 0
925 || strncmp (sectp->sectname, "__cfstring", 16) == 0
926 || strncmp (sectp->sectname, "__gcc_except_tab", 16) == 0
927 || strncmp (sectp->sectname, "__program_vars", 16) == 0
928 || strncmp (sectp->sectname, "__mod_init_func", 16) == 0
929 || strncmp (sectp->sectname, "__mod_term_func", 16) == 0
930 || strncmp (sectp->sectname, "__static_data", 16) == 0
931 || strncmp (sectp->sectname, "__objc_", 7) == 0)
933 if (!unexec_copy (sectp->offset, old_file_offset, sectp->size))
934 unexec_error ("cannot copy section %.16s", sectp->sectname);
935 if (!unexec_write (header_offset, sectp, sizeof (struct section)))
936 unexec_error ("cannot write section %.16s's header", sectp->sectname);
938 else
939 unexec_error ("unrecognized section %.16s in __DATA segment",
940 sectp->sectname);
942 printf (" section %-16.16s at %#8lx - %#8lx (sz: %#8lx)\n",
943 sectp->sectname, (long) (sectp->offset),
944 (long) (sectp->offset + sectp->size), (long) (sectp->size));
946 header_offset += sizeof (struct section);
947 sectp++;
950 curr_file_offset += ROUNDUP_TO_PAGE_BOUNDARY (scp->filesize);
952 if (!unexec_write (curr_header_offset, scp, sizeof (struct segment_command)))
953 unexec_error ("cannot write header of __DATA segment");
954 curr_header_offset += lc->cmdsize;
956 /* Create new __DATA segment load commands for regions on the region
957 list that do not corresponding to any segment load commands in
958 the input file.
960 for (j = 0; j < num_unexec_regions; j++)
962 struct segment_command sc;
964 sc.cmd = LC_SEGMENT;
965 sc.cmdsize = sizeof (struct segment_command);
966 strncpy (sc.segname, SEG_DATA, 16);
967 sc.vmaddr = unexec_regions[j].range.address;
968 sc.vmsize = unexec_regions[j].range.size;
969 sc.fileoff = curr_file_offset;
970 sc.filesize = unexec_regions[j].filesize;
971 sc.maxprot = VM_PROT_READ | VM_PROT_WRITE;
972 sc.initprot = VM_PROT_READ | VM_PROT_WRITE;
973 sc.nsects = 0;
974 sc.flags = 0;
976 printf ("Writing segment %-16.16s @ %#8lx (%#8lx/%#8lx @ %#10lx)\n",
977 sc.segname, (long) (sc.fileoff), (long) (sc.filesize),
978 (long) (sc.vmsize), (long) (sc.vmaddr));
980 if (!unexec_write (sc.fileoff, (void *) sc.vmaddr, sc.filesize))
981 unexec_error ("cannot write new __DATA segment");
982 curr_file_offset += ROUNDUP_TO_PAGE_BOUNDARY (sc.filesize);
984 if (!unexec_write (curr_header_offset, &sc, sc.cmdsize))
985 unexec_error ("cannot write new __DATA segment's header");
986 curr_header_offset += sc.cmdsize;
987 mh.ncmds++;
991 /* Copy a LC_SYMTAB load command from the input file to the output
992 file, adjusting the file offset fields. */
993 static void
994 copy_symtab (struct load_command *lc, long delta)
996 struct symtab_command *stp = (struct symtab_command *) lc;
998 stp->symoff += delta;
999 stp->stroff += delta;
1001 printf ("Writing LC_SYMTAB command\n");
1003 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
1004 unexec_error ("cannot write symtab command to header");
1006 curr_header_offset += lc->cmdsize;
1009 /* Fix up relocation entries. */
1010 static void
1011 unrelocate (const char *name, off_t reloff, int nrel, vm_address_t base)
1013 int i, unreloc_count;
1014 struct relocation_info reloc_info;
1015 struct scattered_relocation_info *sc_reloc_info
1016 = (struct scattered_relocation_info *) &reloc_info;
1017 vm_address_t location;
1019 for (unreloc_count = 0, i = 0; i < nrel; i++)
1021 if (lseek (infd, reloff, L_SET) != reloff)
1022 unexec_error ("unrelocate: %s:%d cannot seek to reloc_info", name, i);
1023 if (!unexec_read (&reloc_info, sizeof (reloc_info)))
1024 unexec_error ("unrelocate: %s:%d cannot read reloc_info", name, i);
1025 reloff += sizeof (reloc_info);
1027 if (sc_reloc_info->r_scattered == 0)
1028 switch (reloc_info.r_type)
1030 case GENERIC_RELOC_VANILLA:
1031 location = base + reloc_info.r_address;
1032 if (location >= data_segment_scp->vmaddr
1033 && location < (data_segment_scp->vmaddr
1034 + data_segment_scp->vmsize))
1036 off_t src_off = data_segment_old_fileoff
1037 + (location - data_segment_scp->vmaddr);
1038 off_t dst_off = data_segment_scp->fileoff
1039 + (location - data_segment_scp->vmaddr);
1041 if (!unexec_copy (dst_off, src_off, 1 << reloc_info.r_length))
1042 unexec_error ("unrelocate: %s:%d cannot copy original value",
1043 name, i);
1044 unreloc_count++;
1046 break;
1047 default:
1048 unexec_error ("unrelocate: %s:%d cannot handle type = %d",
1049 name, i, reloc_info.r_type);
1051 else
1052 unexec_error ("unrelocate: %s:%d cannot handle scattered type = %d",
1053 name, i, sc_reloc_info->r_type);
1056 if (nrel > 0)
1057 printf ("Fixed up %d/%d %s relocation entries in data segment.\n",
1058 unreloc_count, nrel, name);
1061 /* Copy a LC_DYSYMTAB load command from the input file to the output
1062 file, adjusting the file offset fields. */
1063 static void
1064 copy_dysymtab (struct load_command *lc, long delta)
1066 struct dysymtab_command *dstp = (struct dysymtab_command *) lc;
1067 vm_address_t base;
1069 #ifdef _LP64
1070 /* First writable segment address. */
1071 base = data_segment_scp->vmaddr;
1072 #else
1073 /* First segment address in the file (unless MH_SPLIT_SEGS set). */
1074 base = 0;
1075 #endif
1077 unrelocate ("local", dstp->locreloff, dstp->nlocrel, base);
1078 unrelocate ("external", dstp->extreloff, dstp->nextrel, base);
1080 if (dstp->nextrel > 0) {
1081 dstp->extreloff += delta;
1084 if (dstp->nlocrel > 0) {
1085 dstp->locreloff += delta;
1088 if (dstp->nindirectsyms > 0)
1089 dstp->indirectsymoff += delta;
1091 printf ("Writing LC_DYSYMTAB command\n");
1093 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
1094 unexec_error ("cannot write symtab command to header");
1096 curr_header_offset += lc->cmdsize;
1099 /* Copy a LC_TWOLEVEL_HINTS load command from the input file to the output
1100 file, adjusting the file offset fields. */
1101 static void
1102 copy_twolevelhints (struct load_command *lc, long delta)
1104 struct twolevel_hints_command *tlhp = (struct twolevel_hints_command *) lc;
1106 if (tlhp->nhints > 0) {
1107 tlhp->offset += delta;
1110 printf ("Writing LC_TWOLEVEL_HINTS command\n");
1112 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
1113 unexec_error ("cannot write two level hint command to header");
1115 curr_header_offset += lc->cmdsize;
1118 #ifdef LC_DYLD_INFO
1119 /* Copy a LC_DYLD_INFO(_ONLY) load command from the input file to the output
1120 file, adjusting the file offset fields. */
1121 static void
1122 copy_dyld_info (struct load_command *lc, long delta)
1124 struct dyld_info_command *dip = (struct dyld_info_command *) lc;
1126 if (dip->rebase_off > 0)
1127 dip->rebase_off += delta;
1128 if (dip->bind_off > 0)
1129 dip->bind_off += delta;
1130 if (dip->weak_bind_off > 0)
1131 dip->weak_bind_off += delta;
1132 if (dip->lazy_bind_off > 0)
1133 dip->lazy_bind_off += delta;
1134 if (dip->export_off > 0)
1135 dip->export_off += delta;
1137 printf ("Writing ");
1138 print_load_command_name (lc->cmd);
1139 printf (" command\n");
1141 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
1142 unexec_error ("cannot write dyld info command to header");
1144 curr_header_offset += lc->cmdsize;
1146 #endif
1148 #ifdef LC_FUNCTION_STARTS
1149 /* Copy a LC_FUNCTION_STARTS/LC_DATA_IN_CODE/LC_DYLIB_CODE_SIGN_DRS
1150 load command from the input file to the output file, adjusting the
1151 data offset field. */
1152 static void
1153 copy_linkedit_data (struct load_command *lc, long delta)
1155 struct linkedit_data_command *ldp = (struct linkedit_data_command *) lc;
1157 if (ldp->dataoff > 0)
1158 ldp->dataoff += delta;
1160 printf ("Writing ");
1161 print_load_command_name (lc->cmd);
1162 printf (" command\n");
1164 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
1165 unexec_error ("cannot write linkedit data command to header");
1167 curr_header_offset += lc->cmdsize;
1169 #endif
1171 /* Copy other kinds of load commands from the input file to the output
1172 file, ones that do not require adjustments of file offsets. */
1173 static void
1174 copy_other (struct load_command *lc)
1176 printf ("Writing ");
1177 print_load_command_name (lc->cmd);
1178 printf (" command\n");
1180 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
1181 unexec_error ("cannot write symtab command to header");
1183 curr_header_offset += lc->cmdsize;
1186 /* Loop through all load commands and dump them. Then write the Mach
1187 header. */
1188 static void
1189 dump_it (void)
1191 int i;
1192 long linkedit_delta = 0;
1194 printf ("--- Load Commands written to Output File ---\n");
1196 for (i = 0; i < nlc; i++)
1197 switch (lca[i]->cmd)
1199 case LC_SEGMENT:
1201 struct segment_command *scp = (struct segment_command *) lca[i];
1202 if (strncmp (scp->segname, SEG_DATA, 16) == 0)
1204 /* save data segment file offset and segment_command for
1205 unrelocate */
1206 if (data_segment_old_fileoff)
1207 unexec_error ("cannot handle multiple DATA segments"
1208 " in input file");
1209 data_segment_old_fileoff = scp->fileoff;
1210 data_segment_scp = scp;
1212 copy_data_segment (lca[i]);
1214 else
1216 if (strncmp (scp->segname, SEG_LINKEDIT, 16) == 0)
1218 if (linkedit_delta)
1219 unexec_error ("cannot handle multiple LINKEDIT segments"
1220 " in input file");
1221 linkedit_delta = curr_file_offset - scp->fileoff;
1224 copy_segment (lca[i]);
1227 break;
1228 case LC_SYMTAB:
1229 copy_symtab (lca[i], linkedit_delta);
1230 break;
1231 case LC_DYSYMTAB:
1232 copy_dysymtab (lca[i], linkedit_delta);
1233 break;
1234 case LC_TWOLEVEL_HINTS:
1235 copy_twolevelhints (lca[i], linkedit_delta);
1236 break;
1237 #ifdef LC_DYLD_INFO
1238 case LC_DYLD_INFO:
1239 case LC_DYLD_INFO_ONLY:
1240 copy_dyld_info (lca[i], linkedit_delta);
1241 break;
1242 #endif
1243 #ifdef LC_FUNCTION_STARTS
1244 case LC_FUNCTION_STARTS:
1245 #ifdef LC_DATA_IN_CODE
1246 case LC_DATA_IN_CODE:
1247 #endif
1248 #ifdef LC_DYLIB_CODE_SIGN_DRS
1249 case LC_DYLIB_CODE_SIGN_DRS:
1250 #endif
1251 copy_linkedit_data (lca[i], linkedit_delta);
1252 break;
1253 #endif
1254 default:
1255 copy_other (lca[i]);
1256 break;
1259 if (curr_header_offset > text_seg_lowest_offset)
1260 unexec_error ("not enough room for load commands for new __DATA segments"
1261 " (increase headerpad_extra in configure.in to at least %lX)",
1262 num_unexec_regions * sizeof (struct segment_command));
1264 printf ("%ld unused bytes follow Mach-O header\n",
1265 text_seg_lowest_offset - curr_header_offset);
1267 mh.sizeofcmds = curr_header_offset - sizeof (struct mach_header);
1268 if (!unexec_write (0, &mh, sizeof (struct mach_header)))
1269 unexec_error ("cannot write final header contents");
1272 /* Take a snapshot of Emacs and make a Mach-O format executable file
1273 from it. The file names of the output and input files are outfile
1274 and infile, respectively. The three other parameters are
1275 ignored. */
1276 void
1277 unexec (const char *outfile, const char *infile)
1279 if (in_dumped_exec)
1280 unexec_error ("Unexec from a dumped executable is not supported.");
1282 pagesize = getpagesize ();
1283 infd = emacs_open (infile, O_RDONLY, 0);
1284 if (infd < 0)
1286 unexec_error ("%s: %s", infile, strerror (errno));
1289 outfd = emacs_open (outfile, O_WRONLY | O_TRUNC | O_CREAT, 0777);
1290 if (outfd < 0)
1292 emacs_close (infd);
1293 unexec_error ("%s: %s", outfile, strerror (errno));
1296 build_region_list ();
1297 read_load_commands ();
1299 find_emacs_zone_regions ();
1300 unexec_regions_merge ();
1302 in_dumped_exec = 1;
1304 dump_it ();
1306 emacs_close (outfd);
1310 void
1311 unexec_init_emacs_zone (void)
1313 emacs_zone = malloc_create_zone (0, 0);
1314 malloc_set_zone_name (emacs_zone, "EmacsZone");
1317 #ifndef MACOSX_MALLOC_MULT16
1318 #define MACOSX_MALLOC_MULT16 1
1319 #endif
1321 typedef struct unexec_malloc_header {
1322 union {
1323 char c[8];
1324 size_t size;
1325 } u;
1326 } unexec_malloc_header_t;
1328 #if MACOSX_MALLOC_MULT16
1330 #define ptr_in_unexec_regions(p) ((((vm_address_t) (p)) & 8) != 0)
1332 #else
1335 ptr_in_unexec_regions (void *ptr)
1337 int i;
1339 for (i = 0; i < num_unexec_regions; i++)
1340 if ((vm_address_t) ptr - unexec_regions[i].range.address
1341 < unexec_regions[i].range.size)
1342 return 1;
1344 return 0;
1347 #endif
1349 void *
1350 unexec_malloc (size_t size)
1352 if (in_dumped_exec)
1354 void *p;
1356 p = malloc (size);
1357 #if MACOSX_MALLOC_MULT16
1358 assert (((vm_address_t) p % 16) == 0);
1359 #endif
1360 return p;
1362 else
1364 unexec_malloc_header_t *ptr;
1366 ptr = (unexec_malloc_header_t *)
1367 malloc_zone_malloc (emacs_zone, size + sizeof (unexec_malloc_header_t));
1368 ptr->u.size = size;
1369 ptr++;
1370 #if MACOSX_MALLOC_MULT16
1371 assert (((vm_address_t) ptr % 16) == 8);
1372 #endif
1373 return (void *) ptr;
1377 void *
1378 unexec_realloc (void *old_ptr, size_t new_size)
1380 if (in_dumped_exec)
1382 void *p;
1384 if (ptr_in_unexec_regions (old_ptr))
1386 size_t old_size = ((unexec_malloc_header_t *) old_ptr)[-1].u.size;
1387 size_t size = new_size > old_size ? old_size : new_size;
1389 p = malloc (new_size);
1390 if (size)
1391 memcpy (p, old_ptr, size);
1393 else
1395 p = realloc (old_ptr, new_size);
1397 #if MACOSX_MALLOC_MULT16
1398 assert (((vm_address_t) p % 16) == 0);
1399 #endif
1400 return p;
1402 else
1404 unexec_malloc_header_t *ptr;
1406 ptr = (unexec_malloc_header_t *)
1407 malloc_zone_realloc (emacs_zone, (unexec_malloc_header_t *) old_ptr - 1,
1408 new_size + sizeof (unexec_malloc_header_t));
1409 ptr->u.size = new_size;
1410 ptr++;
1411 #if MACOSX_MALLOC_MULT16
1412 assert (((vm_address_t) ptr % 16) == 8);
1413 #endif
1414 return (void *) ptr;
1418 void
1419 unexec_free (void *ptr)
1421 if (ptr == NULL)
1422 return;
1423 if (in_dumped_exec)
1425 if (!ptr_in_unexec_regions (ptr))
1426 free (ptr);
1428 else
1429 malloc_zone_free (emacs_zone, (unexec_malloc_header_t *) ptr - 1);