Spelling fixes.
[emacs.git] / src / bytecode.c
blob3af0abd63cf6b9586661629a51f3dabed8f070fb
1 /* Execution of byte code produced by bytecomp.el.
2 Copyright (C) 1985-1988, 1993, 2000-2011 Free Software Foundation, Inc.
4 This file is part of GNU Emacs.
6 GNU Emacs is free software: you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation, either version 3 of the License, or
9 (at your option) any later version.
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20 hacked on by jwz@lucid.com 17-jun-91
21 o added a compile-time switch to turn on simple sanity checking;
22 o put back the obsolete byte-codes for error-detection;
23 o added a new instruction, unbind_all, which I will use for
24 tail-recursion elimination;
25 o made temp_output_buffer_show be called with the right number
26 of args;
27 o made the new bytecodes be called with args in the right order;
28 o added metering support.
30 by Hallvard:
31 o added relative jump instructions;
32 o all conditionals now only do QUIT if they jump.
35 #include <config.h>
36 #include <setjmp.h>
37 #include "lisp.h"
38 #include "buffer.h"
39 #include "character.h"
40 #include "syntax.h"
41 #include "window.h"
43 #ifdef CHECK_FRAME_FONT
44 #include "frame.h"
45 #include "xterm.h"
46 #endif
49 * define BYTE_CODE_SAFE to enable some minor sanity checking (useful for
50 * debugging the byte compiler...)
52 * define BYTE_CODE_METER to enable generation of a byte-op usage histogram.
54 /* #define BYTE_CODE_SAFE */
55 /* #define BYTE_CODE_METER */
58 #ifdef BYTE_CODE_METER
60 Lisp_Object Qbyte_code_meter;
61 #define METER_2(code1, code2) \
62 XFASTINT (XVECTOR (XVECTOR (Vbyte_code_meter)->contents[(code1)]) \
63 ->contents[(code2)])
65 #define METER_1(code) METER_2 (0, (code))
67 #define METER_CODE(last_code, this_code) \
68 { \
69 if (byte_metering_on) \
70 { \
71 if (METER_1 (this_code) < MOST_POSITIVE_FIXNUM) \
72 METER_1 (this_code)++; \
73 if (last_code \
74 && METER_2 (last_code, this_code) < MOST_POSITIVE_FIXNUM) \
75 METER_2 (last_code, this_code)++; \
76 } \
79 #endif /* BYTE_CODE_METER */
82 Lisp_Object Qbytecode;
84 /* Byte codes: */
86 #define Bstack_ref 0 /* Actually, Bstack_ref+0 is not implemented: use dup. */
87 #define Bvarref 010
88 #define Bvarset 020
89 #define Bvarbind 030
90 #define Bcall 040
91 #define Bunbind 050
93 #define Bnth 070
94 #define Bsymbolp 071
95 #define Bconsp 072
96 #define Bstringp 073
97 #define Blistp 074
98 #define Beq 075
99 #define Bmemq 076
100 #define Bnot 077
101 #define Bcar 0100
102 #define Bcdr 0101
103 #define Bcons 0102
104 #define Blist1 0103
105 #define Blist2 0104
106 #define Blist3 0105
107 #define Blist4 0106
108 #define Blength 0107
109 #define Baref 0110
110 #define Baset 0111
111 #define Bsymbol_value 0112
112 #define Bsymbol_function 0113
113 #define Bset 0114
114 #define Bfset 0115
115 #define Bget 0116
116 #define Bsubstring 0117
117 #define Bconcat2 0120
118 #define Bconcat3 0121
119 #define Bconcat4 0122
120 #define Bsub1 0123
121 #define Badd1 0124
122 #define Beqlsign 0125
123 #define Bgtr 0126
124 #define Blss 0127
125 #define Bleq 0130
126 #define Bgeq 0131
127 #define Bdiff 0132
128 #define Bnegate 0133
129 #define Bplus 0134
130 #define Bmax 0135
131 #define Bmin 0136
132 #define Bmult 0137
134 #define Bpoint 0140
135 /* Was Bmark in v17. */
136 #define Bsave_current_buffer 0141 /* Obsolete. */
137 #define Bgoto_char 0142
138 #define Binsert 0143
139 #define Bpoint_max 0144
140 #define Bpoint_min 0145
141 #define Bchar_after 0146
142 #define Bfollowing_char 0147
143 #define Bpreceding_char 0150
144 #define Bcurrent_column 0151
145 #define Bindent_to 0152
146 #ifdef BYTE_CODE_SAFE
147 #define Bscan_buffer 0153 /* No longer generated as of v18. */
148 #endif
149 #define Beolp 0154
150 #define Beobp 0155
151 #define Bbolp 0156
152 #define Bbobp 0157
153 #define Bcurrent_buffer 0160
154 #define Bset_buffer 0161
155 #define Bsave_current_buffer_1 0162 /* Replacing Bsave_current_buffer. */
156 #if 0
157 #define Bread_char 0162 /* No longer generated as of v19 */
158 #endif
159 #ifdef BYTE_CODE_SAFE
160 #define Bset_mark 0163 /* this loser is no longer generated as of v18 */
161 #endif
162 #define Binteractive_p 0164 /* Obsolete since Emacs-24.1. */
164 #define Bforward_char 0165
165 #define Bforward_word 0166
166 #define Bskip_chars_forward 0167
167 #define Bskip_chars_backward 0170
168 #define Bforward_line 0171
169 #define Bchar_syntax 0172
170 #define Bbuffer_substring 0173
171 #define Bdelete_region 0174
172 #define Bnarrow_to_region 0175
173 #define Bwiden 0176
174 #define Bend_of_line 0177
176 #define Bconstant2 0201
177 #define Bgoto 0202
178 #define Bgotoifnil 0203
179 #define Bgotoifnonnil 0204
180 #define Bgotoifnilelsepop 0205
181 #define Bgotoifnonnilelsepop 0206
182 #define Breturn 0207
183 #define Bdiscard 0210
184 #define Bdup 0211
186 #define Bsave_excursion 0212
187 #define Bsave_window_excursion 0213 /* Obsolete since Emacs-24.1. */
188 #define Bsave_restriction 0214
189 #define Bcatch 0215
191 #define Bunwind_protect 0216
192 #define Bcondition_case 0217
193 #define Btemp_output_buffer_setup 0220 /* Obsolete since Emacs-24.1. */
194 #define Btemp_output_buffer_show 0221 /* Obsolete since Emacs-24.1. */
196 #define Bunbind_all 0222 /* Obsolete. Never used. */
198 #define Bset_marker 0223
199 #define Bmatch_beginning 0224
200 #define Bmatch_end 0225
201 #define Bupcase 0226
202 #define Bdowncase 0227
204 #define Bstringeqlsign 0230
205 #define Bstringlss 0231
206 #define Bequal 0232
207 #define Bnthcdr 0233
208 #define Belt 0234
209 #define Bmember 0235
210 #define Bassq 0236
211 #define Bnreverse 0237
212 #define Bsetcar 0240
213 #define Bsetcdr 0241
214 #define Bcar_safe 0242
215 #define Bcdr_safe 0243
216 #define Bnconc 0244
217 #define Bquo 0245
218 #define Brem 0246
219 #define Bnumberp 0247
220 #define Bintegerp 0250
222 #define BRgoto 0252
223 #define BRgotoifnil 0253
224 #define BRgotoifnonnil 0254
225 #define BRgotoifnilelsepop 0255
226 #define BRgotoifnonnilelsepop 0256
228 #define BlistN 0257
229 #define BconcatN 0260
230 #define BinsertN 0261
232 /* Bstack_ref is code 0. */
233 #define Bstack_set 0262
234 #define Bstack_set2 0263
235 #define BdiscardN 0266
237 #define Bconstant 0300
239 /* Whether to maintain a `top' and `bottom' field in the stack frame. */
240 #define BYTE_MAINTAIN_TOP (BYTE_CODE_SAFE || BYTE_MARK_STACK)
242 /* Structure describing a value stack used during byte-code execution
243 in Fbyte_code. */
245 struct byte_stack
247 /* Program counter. This points into the byte_string below
248 and is relocated when that string is relocated. */
249 const unsigned char *pc;
251 /* Top and bottom of stack. The bottom points to an area of memory
252 allocated with alloca in Fbyte_code. */
253 #if BYTE_MAINTAIN_TOP
254 Lisp_Object *top, *bottom;
255 #endif
257 /* The string containing the byte-code, and its current address.
258 Storing this here protects it from GC because mark_byte_stack
259 marks it. */
260 Lisp_Object byte_string;
261 const unsigned char *byte_string_start;
263 /* The vector of constants used during byte-code execution. Storing
264 this here protects it from GC because mark_byte_stack marks it. */
265 Lisp_Object constants;
267 /* Next entry in byte_stack_list. */
268 struct byte_stack *next;
271 /* A list of currently active byte-code execution value stacks.
272 Fbyte_code adds an entry to the head of this list before it starts
273 processing byte-code, and it removed the entry again when it is
274 done. Signaling an error truncates the list analogous to
275 gcprolist. */
277 struct byte_stack *byte_stack_list;
280 /* Mark objects on byte_stack_list. Called during GC. */
282 #if BYTE_MARK_STACK
283 void
284 mark_byte_stack (void)
286 struct byte_stack *stack;
287 Lisp_Object *obj;
289 for (stack = byte_stack_list; stack; stack = stack->next)
291 /* If STACK->top is null here, this means there's an opcode in
292 Fbyte_code that wasn't expected to GC, but did. To find out
293 which opcode this is, record the value of `stack', and walk
294 up the stack in a debugger, stopping in frames of Fbyte_code.
295 The culprit is found in the frame of Fbyte_code where the
296 address of its local variable `stack' is equal to the
297 recorded value of `stack' here. */
298 eassert (stack->top);
300 for (obj = stack->bottom; obj <= stack->top; ++obj)
301 mark_object (*obj);
303 mark_object (stack->byte_string);
304 mark_object (stack->constants);
307 #endif
309 /* Unmark objects in the stacks on byte_stack_list. Relocate program
310 counters. Called when GC has completed. */
312 void
313 unmark_byte_stack (void)
315 struct byte_stack *stack;
317 for (stack = byte_stack_list; stack; stack = stack->next)
319 if (stack->byte_string_start != SDATA (stack->byte_string))
321 int offset = stack->pc - stack->byte_string_start;
322 stack->byte_string_start = SDATA (stack->byte_string);
323 stack->pc = stack->byte_string_start + offset;
329 /* Fetch the next byte from the bytecode stream */
331 #define FETCH *stack.pc++
333 /* Fetch two bytes from the bytecode stream and make a 16-bit number
334 out of them */
336 #define FETCH2 (op = FETCH, op + (FETCH << 8))
338 /* Push x onto the execution stack. This used to be #define PUSH(x)
339 (*++stackp = (x)) This oddity is necessary because Alliant can't be
340 bothered to compile the preincrement operator properly, as of 4/91.
341 -JimB */
343 #define PUSH(x) (top++, *top = (x))
345 /* Pop a value off the execution stack. */
347 #define POP (*top--)
349 /* Discard n values from the execution stack. */
351 #define DISCARD(n) (top -= (n))
353 /* Get the value which is at the top of the execution stack, but don't
354 pop it. */
356 #define TOP (*top)
358 /* Actions that must be performed before and after calling a function
359 that might GC. */
361 #if !BYTE_MAINTAIN_TOP
362 #define BEFORE_POTENTIAL_GC() ((void)0)
363 #define AFTER_POTENTIAL_GC() ((void)0)
364 #else
365 #define BEFORE_POTENTIAL_GC() stack.top = top
366 #define AFTER_POTENTIAL_GC() stack.top = NULL
367 #endif
369 /* Garbage collect if we have consed enough since the last time.
370 We do this at every branch, to avoid loops that never GC. */
372 #define MAYBE_GC() \
373 do { \
374 if (consing_since_gc > gc_cons_threshold \
375 && consing_since_gc > gc_relative_threshold) \
377 BEFORE_POTENTIAL_GC (); \
378 Fgarbage_collect (); \
379 AFTER_POTENTIAL_GC (); \
381 } while (0)
383 /* Check for jumping out of range. */
385 #ifdef BYTE_CODE_SAFE
387 #define CHECK_RANGE(ARG) \
388 if (ARG >= bytestr_length) abort ()
390 #else /* not BYTE_CODE_SAFE */
392 #define CHECK_RANGE(ARG)
394 #endif /* not BYTE_CODE_SAFE */
396 /* A version of the QUIT macro which makes sure that the stack top is
397 set before signaling `quit'. */
399 #define BYTE_CODE_QUIT \
400 do { \
401 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit)) \
403 Lisp_Object flag = Vquit_flag; \
404 Vquit_flag = Qnil; \
405 BEFORE_POTENTIAL_GC (); \
406 if (EQ (Vthrow_on_input, flag)) \
407 Fthrow (Vthrow_on_input, Qt); \
408 Fsignal (Qquit, Qnil); \
409 AFTER_POTENTIAL_GC (); \
411 ELSE_PENDING_SIGNALS \
412 } while (0)
415 DEFUN ("byte-code", Fbyte_code, Sbyte_code, 3, 3, 0,
416 doc: /* Function used internally in byte-compiled code.
417 The first argument, BYTESTR, is a string of byte code;
418 the second, VECTOR, a vector of constants;
419 the third, MAXDEPTH, the maximum stack depth used in this function.
420 If the third argument is incorrect, Emacs may crash. */)
421 (Lisp_Object bytestr, Lisp_Object vector, Lisp_Object maxdepth)
423 return exec_byte_code (bytestr, vector, maxdepth, Qnil, 0, NULL);
426 /* Execute the byte-code in BYTESTR. VECTOR is the constant vector, and
427 MAXDEPTH is the maximum stack depth used (if MAXDEPTH is incorrect,
428 emacs may crash!). If ARGS_TEMPLATE is non-nil, it should be a lisp
429 argument list (including &rest, &optional, etc.), and ARGS, of size
430 NARGS, should be a vector of the actual arguments. The arguments in
431 ARGS are pushed on the stack according to ARGS_TEMPLATE before
432 executing BYTESTR. */
434 Lisp_Object
435 exec_byte_code (Lisp_Object bytestr, Lisp_Object vector, Lisp_Object maxdepth,
436 Lisp_Object args_template, ptrdiff_t nargs, Lisp_Object *args)
438 int count = SPECPDL_INDEX ();
439 #ifdef BYTE_CODE_METER
440 int this_op = 0;
441 int prev_op;
442 #endif
443 int op;
444 /* Lisp_Object v1, v2; */
445 Lisp_Object *vectorp;
446 #ifdef BYTE_CODE_SAFE
447 ptrdiff_t const_length;
448 Lisp_Object *stacke;
449 int bytestr_length;
450 #endif
451 struct byte_stack stack;
452 Lisp_Object *top;
453 Lisp_Object result;
455 #if 0 /* CHECK_FRAME_FONT */
457 struct frame *f = SELECTED_FRAME ();
458 if (FRAME_X_P (f)
459 && FRAME_FONT (f)->direction != 0
460 && FRAME_FONT (f)->direction != 1)
461 abort ();
463 #endif
465 CHECK_STRING (bytestr);
466 CHECK_VECTOR (vector);
467 CHECK_NATNUM (maxdepth);
469 #ifdef BYTE_CODE_SAFE
470 const_length = ASIZE (vector);
471 #endif
473 if (STRING_MULTIBYTE (bytestr))
474 /* BYTESTR must have been produced by Emacs 20.2 or the earlier
475 because they produced a raw 8-bit string for byte-code and now
476 such a byte-code string is loaded as multibyte while raw 8-bit
477 characters converted to multibyte form. Thus, now we must
478 convert them back to the originally intended unibyte form. */
479 bytestr = Fstring_as_unibyte (bytestr);
481 #ifdef BYTE_CODE_SAFE
482 bytestr_length = SBYTES (bytestr);
483 #endif
484 vectorp = XVECTOR (vector)->contents;
486 stack.byte_string = bytestr;
487 stack.pc = stack.byte_string_start = SDATA (bytestr);
488 stack.constants = vector;
489 if (min (PTRDIFF_MAX, SIZE_MAX) / sizeof (Lisp_Object) < XFASTINT (maxdepth))
490 memory_full (SIZE_MAX);
491 top = (Lisp_Object *) alloca (XFASTINT (maxdepth)
492 * sizeof (Lisp_Object));
493 #if BYTE_MAINTAIN_TOP
494 stack.bottom = top;
495 stack.top = NULL;
496 #endif
497 top -= 1;
498 stack.next = byte_stack_list;
499 byte_stack_list = &stack;
501 #ifdef BYTE_CODE_SAFE
502 stacke = stack.bottom - 1 + XFASTINT (maxdepth);
503 #endif
505 if (INTEGERP (args_template))
507 ptrdiff_t at = XINT (args_template);
508 int rest = at & 128;
509 int mandatory = at & 127;
510 ptrdiff_t nonrest = at >> 8;
511 eassert (mandatory <= nonrest);
512 if (nargs <= nonrest)
514 ptrdiff_t i;
515 for (i = 0 ; i < nargs; i++, args++)
516 PUSH (*args);
517 if (nargs < mandatory)
518 /* Too few arguments. */
519 Fsignal (Qwrong_number_of_arguments,
520 Fcons (Fcons (make_number (mandatory),
521 rest ? Qand_rest : make_number (nonrest)),
522 Fcons (make_number (nargs), Qnil)));
523 else
525 for (; i < nonrest; i++)
526 PUSH (Qnil);
527 if (rest)
528 PUSH (Qnil);
531 else if (rest)
533 ptrdiff_t i;
534 for (i = 0 ; i < nonrest; i++, args++)
535 PUSH (*args);
536 PUSH (Flist (nargs - nonrest, args));
538 else
539 /* Too many arguments. */
540 Fsignal (Qwrong_number_of_arguments,
541 Fcons (Fcons (make_number (mandatory),
542 make_number (nonrest)),
543 Fcons (make_number (nargs), Qnil)));
545 else if (! NILP (args_template))
546 /* We should push some arguments on the stack. */
548 error ("Unknown args template!");
551 while (1)
553 #ifdef BYTE_CODE_SAFE
554 if (top > stacke)
555 abort ();
556 else if (top < stack.bottom - 1)
557 abort ();
558 #endif
560 #ifdef BYTE_CODE_METER
561 prev_op = this_op;
562 this_op = op = FETCH;
563 METER_CODE (prev_op, op);
564 #else
565 op = FETCH;
566 #endif
568 switch (op)
570 case Bvarref + 7:
571 op = FETCH2;
572 goto varref;
574 case Bvarref:
575 case Bvarref + 1:
576 case Bvarref + 2:
577 case Bvarref + 3:
578 case Bvarref + 4:
579 case Bvarref + 5:
580 op = op - Bvarref;
581 goto varref;
583 /* This seems to be the most frequently executed byte-code
584 among the Bvarref's, so avoid a goto here. */
585 case Bvarref+6:
586 op = FETCH;
587 varref:
589 Lisp_Object v1, v2;
591 v1 = vectorp[op];
592 if (SYMBOLP (v1))
594 if (XSYMBOL (v1)->redirect != SYMBOL_PLAINVAL
595 || (v2 = SYMBOL_VAL (XSYMBOL (v1)),
596 EQ (v2, Qunbound)))
598 BEFORE_POTENTIAL_GC ();
599 v2 = Fsymbol_value (v1);
600 AFTER_POTENTIAL_GC ();
603 else
605 BEFORE_POTENTIAL_GC ();
606 v2 = Fsymbol_value (v1);
607 AFTER_POTENTIAL_GC ();
609 PUSH (v2);
610 break;
613 case Bgotoifnil:
615 Lisp_Object v1;
616 MAYBE_GC ();
617 op = FETCH2;
618 v1 = POP;
619 if (NILP (v1))
621 BYTE_CODE_QUIT;
622 CHECK_RANGE (op);
623 stack.pc = stack.byte_string_start + op;
625 break;
628 case Bcar:
630 Lisp_Object v1;
631 v1 = TOP;
632 if (CONSP (v1))
633 TOP = XCAR (v1);
634 else if (NILP (v1))
635 TOP = Qnil;
636 else
638 BEFORE_POTENTIAL_GC ();
639 wrong_type_argument (Qlistp, v1);
640 AFTER_POTENTIAL_GC ();
642 break;
645 case Beq:
647 Lisp_Object v1;
648 v1 = POP;
649 TOP = EQ (v1, TOP) ? Qt : Qnil;
650 break;
653 case Bmemq:
655 Lisp_Object v1;
656 BEFORE_POTENTIAL_GC ();
657 v1 = POP;
658 TOP = Fmemq (TOP, v1);
659 AFTER_POTENTIAL_GC ();
660 break;
663 case Bcdr:
665 Lisp_Object v1;
666 v1 = TOP;
667 if (CONSP (v1))
668 TOP = XCDR (v1);
669 else if (NILP (v1))
670 TOP = Qnil;
671 else
673 BEFORE_POTENTIAL_GC ();
674 wrong_type_argument (Qlistp, v1);
675 AFTER_POTENTIAL_GC ();
677 break;
678 break;
681 case Bvarset:
682 case Bvarset+1:
683 case Bvarset+2:
684 case Bvarset+3:
685 case Bvarset+4:
686 case Bvarset+5:
687 op -= Bvarset;
688 goto varset;
690 case Bvarset+7:
691 op = FETCH2;
692 goto varset;
694 case Bvarset+6:
695 op = FETCH;
696 varset:
698 Lisp_Object sym, val;
700 sym = vectorp[op];
701 val = TOP;
703 /* Inline the most common case. */
704 if (SYMBOLP (sym)
705 && !EQ (val, Qunbound)
706 && !XSYMBOL (sym)->redirect
707 && !SYMBOL_CONSTANT_P (sym))
708 XSYMBOL (sym)->val.value = val;
709 else
711 BEFORE_POTENTIAL_GC ();
712 set_internal (sym, val, Qnil, 0);
713 AFTER_POTENTIAL_GC ();
716 (void) POP;
717 break;
719 case Bdup:
721 Lisp_Object v1;
722 v1 = TOP;
723 PUSH (v1);
724 break;
727 /* ------------------ */
729 case Bvarbind+6:
730 op = FETCH;
731 goto varbind;
733 case Bvarbind+7:
734 op = FETCH2;
735 goto varbind;
737 case Bvarbind:
738 case Bvarbind+1:
739 case Bvarbind+2:
740 case Bvarbind+3:
741 case Bvarbind+4:
742 case Bvarbind+5:
743 op -= Bvarbind;
744 varbind:
745 /* Specbind can signal and thus GC. */
746 BEFORE_POTENTIAL_GC ();
747 specbind (vectorp[op], POP);
748 AFTER_POTENTIAL_GC ();
749 break;
751 case Bcall+6:
752 op = FETCH;
753 goto docall;
755 case Bcall+7:
756 op = FETCH2;
757 goto docall;
759 case Bcall:
760 case Bcall+1:
761 case Bcall+2:
762 case Bcall+3:
763 case Bcall+4:
764 case Bcall+5:
765 op -= Bcall;
766 docall:
768 BEFORE_POTENTIAL_GC ();
769 DISCARD (op);
770 #ifdef BYTE_CODE_METER
771 if (byte_metering_on && SYMBOLP (TOP))
773 Lisp_Object v1, v2;
775 v1 = TOP;
776 v2 = Fget (v1, Qbyte_code_meter);
777 if (INTEGERP (v2)
778 && XINT (v2) < MOST_POSITIVE_FIXNUM)
780 XSETINT (v2, XINT (v2) + 1);
781 Fput (v1, Qbyte_code_meter, v2);
784 #endif
785 TOP = Ffuncall (op + 1, &TOP);
786 AFTER_POTENTIAL_GC ();
787 break;
790 case Bunbind+6:
791 op = FETCH;
792 goto dounbind;
794 case Bunbind+7:
795 op = FETCH2;
796 goto dounbind;
798 case Bunbind:
799 case Bunbind+1:
800 case Bunbind+2:
801 case Bunbind+3:
802 case Bunbind+4:
803 case Bunbind+5:
804 op -= Bunbind;
805 dounbind:
806 BEFORE_POTENTIAL_GC ();
807 unbind_to (SPECPDL_INDEX () - op, Qnil);
808 AFTER_POTENTIAL_GC ();
809 break;
811 case Bunbind_all: /* Obsolete. Never used. */
812 /* To unbind back to the beginning of this frame. Not used yet,
813 but will be needed for tail-recursion elimination. */
814 BEFORE_POTENTIAL_GC ();
815 unbind_to (count, Qnil);
816 AFTER_POTENTIAL_GC ();
817 break;
819 case Bgoto:
820 MAYBE_GC ();
821 BYTE_CODE_QUIT;
822 op = FETCH2; /* pc = FETCH2 loses since FETCH2 contains pc++ */
823 CHECK_RANGE (op);
824 stack.pc = stack.byte_string_start + op;
825 break;
827 case Bgotoifnonnil:
829 Lisp_Object v1;
830 MAYBE_GC ();
831 op = FETCH2;
832 v1 = POP;
833 if (!NILP (v1))
835 BYTE_CODE_QUIT;
836 CHECK_RANGE (op);
837 stack.pc = stack.byte_string_start + op;
839 break;
842 case Bgotoifnilelsepop:
843 MAYBE_GC ();
844 op = FETCH2;
845 if (NILP (TOP))
847 BYTE_CODE_QUIT;
848 CHECK_RANGE (op);
849 stack.pc = stack.byte_string_start + op;
851 else DISCARD (1);
852 break;
854 case Bgotoifnonnilelsepop:
855 MAYBE_GC ();
856 op = FETCH2;
857 if (!NILP (TOP))
859 BYTE_CODE_QUIT;
860 CHECK_RANGE (op);
861 stack.pc = stack.byte_string_start + op;
863 else DISCARD (1);
864 break;
866 case BRgoto:
867 MAYBE_GC ();
868 BYTE_CODE_QUIT;
869 stack.pc += (int) *stack.pc - 127;
870 break;
872 case BRgotoifnil:
874 Lisp_Object v1;
875 MAYBE_GC ();
876 v1 = POP;
877 if (NILP (v1))
879 BYTE_CODE_QUIT;
880 stack.pc += (int) *stack.pc - 128;
882 stack.pc++;
883 break;
886 case BRgotoifnonnil:
888 Lisp_Object v1;
889 MAYBE_GC ();
890 v1 = POP;
891 if (!NILP (v1))
893 BYTE_CODE_QUIT;
894 stack.pc += (int) *stack.pc - 128;
896 stack.pc++;
897 break;
900 case BRgotoifnilelsepop:
901 MAYBE_GC ();
902 op = *stack.pc++;
903 if (NILP (TOP))
905 BYTE_CODE_QUIT;
906 stack.pc += op - 128;
908 else DISCARD (1);
909 break;
911 case BRgotoifnonnilelsepop:
912 MAYBE_GC ();
913 op = *stack.pc++;
914 if (!NILP (TOP))
916 BYTE_CODE_QUIT;
917 stack.pc += op - 128;
919 else DISCARD (1);
920 break;
922 case Breturn:
923 result = POP;
924 goto exit;
926 case Bdiscard:
927 DISCARD (1);
928 break;
930 case Bconstant2:
931 PUSH (vectorp[FETCH2]);
932 break;
934 case Bsave_excursion:
935 record_unwind_protect (save_excursion_restore,
936 save_excursion_save ());
937 break;
939 case Bsave_current_buffer: /* Obsolete since ??. */
940 case Bsave_current_buffer_1:
941 record_unwind_protect (set_buffer_if_live, Fcurrent_buffer ());
942 break;
944 case Bsave_window_excursion: /* Obsolete since 24.1. */
946 register int count1 = SPECPDL_INDEX ();
947 record_unwind_protect (Fset_window_configuration,
948 Fcurrent_window_configuration (Qnil));
949 BEFORE_POTENTIAL_GC ();
950 TOP = Fprogn (TOP);
951 unbind_to (count1, TOP);
952 AFTER_POTENTIAL_GC ();
953 break;
956 case Bsave_restriction:
957 record_unwind_protect (save_restriction_restore,
958 save_restriction_save ());
959 break;
961 case Bcatch: /* FIXME: ill-suited for lexbind. */
963 Lisp_Object v1;
964 BEFORE_POTENTIAL_GC ();
965 v1 = POP;
966 TOP = internal_catch (TOP, eval_sub, v1);
967 AFTER_POTENTIAL_GC ();
968 break;
971 case Bunwind_protect: /* FIXME: avoid closure for lexbind. */
972 record_unwind_protect (Fprogn, POP);
973 break;
975 case Bcondition_case: /* FIXME: ill-suited for lexbind. */
977 Lisp_Object handlers, body;
978 handlers = POP;
979 body = POP;
980 BEFORE_POTENTIAL_GC ();
981 TOP = internal_lisp_condition_case (TOP, body, handlers);
982 AFTER_POTENTIAL_GC ();
983 break;
986 case Btemp_output_buffer_setup: /* Obsolete since 24.1. */
987 BEFORE_POTENTIAL_GC ();
988 CHECK_STRING (TOP);
989 temp_output_buffer_setup (SSDATA (TOP));
990 AFTER_POTENTIAL_GC ();
991 TOP = Vstandard_output;
992 break;
994 case Btemp_output_buffer_show: /* Obsolete since 24.1. */
996 Lisp_Object v1;
997 BEFORE_POTENTIAL_GC ();
998 v1 = POP;
999 temp_output_buffer_show (TOP);
1000 TOP = v1;
1001 /* pop binding of standard-output */
1002 unbind_to (SPECPDL_INDEX () - 1, Qnil);
1003 AFTER_POTENTIAL_GC ();
1004 break;
1007 case Bnth:
1009 Lisp_Object v1, v2;
1010 BEFORE_POTENTIAL_GC ();
1011 v1 = POP;
1012 v2 = TOP;
1013 CHECK_NUMBER (v2);
1014 op = XINT (v2);
1015 immediate_quit = 1;
1016 while (--op >= 0 && CONSP (v1))
1017 v1 = XCDR (v1);
1018 immediate_quit = 0;
1019 TOP = CAR (v1);
1020 AFTER_POTENTIAL_GC ();
1021 break;
1024 case Bsymbolp:
1025 TOP = SYMBOLP (TOP) ? Qt : Qnil;
1026 break;
1028 case Bconsp:
1029 TOP = CONSP (TOP) ? Qt : Qnil;
1030 break;
1032 case Bstringp:
1033 TOP = STRINGP (TOP) ? Qt : Qnil;
1034 break;
1036 case Blistp:
1037 TOP = CONSP (TOP) || NILP (TOP) ? Qt : Qnil;
1038 break;
1040 case Bnot:
1041 TOP = NILP (TOP) ? Qt : Qnil;
1042 break;
1044 case Bcons:
1046 Lisp_Object v1;
1047 v1 = POP;
1048 TOP = Fcons (TOP, v1);
1049 break;
1052 case Blist1:
1053 TOP = Fcons (TOP, Qnil);
1054 break;
1056 case Blist2:
1058 Lisp_Object v1;
1059 v1 = POP;
1060 TOP = Fcons (TOP, Fcons (v1, Qnil));
1061 break;
1064 case Blist3:
1065 DISCARD (2);
1066 TOP = Flist (3, &TOP);
1067 break;
1069 case Blist4:
1070 DISCARD (3);
1071 TOP = Flist (4, &TOP);
1072 break;
1074 case BlistN:
1075 op = FETCH;
1076 DISCARD (op - 1);
1077 TOP = Flist (op, &TOP);
1078 break;
1080 case Blength:
1081 BEFORE_POTENTIAL_GC ();
1082 TOP = Flength (TOP);
1083 AFTER_POTENTIAL_GC ();
1084 break;
1086 case Baref:
1088 Lisp_Object v1;
1089 BEFORE_POTENTIAL_GC ();
1090 v1 = POP;
1091 TOP = Faref (TOP, v1);
1092 AFTER_POTENTIAL_GC ();
1093 break;
1096 case Baset:
1098 Lisp_Object v1, v2;
1099 BEFORE_POTENTIAL_GC ();
1100 v2 = POP; v1 = POP;
1101 TOP = Faset (TOP, v1, v2);
1102 AFTER_POTENTIAL_GC ();
1103 break;
1106 case Bsymbol_value:
1107 BEFORE_POTENTIAL_GC ();
1108 TOP = Fsymbol_value (TOP);
1109 AFTER_POTENTIAL_GC ();
1110 break;
1112 case Bsymbol_function:
1113 BEFORE_POTENTIAL_GC ();
1114 TOP = Fsymbol_function (TOP);
1115 AFTER_POTENTIAL_GC ();
1116 break;
1118 case Bset:
1120 Lisp_Object v1;
1121 BEFORE_POTENTIAL_GC ();
1122 v1 = POP;
1123 TOP = Fset (TOP, v1);
1124 AFTER_POTENTIAL_GC ();
1125 break;
1128 case Bfset:
1130 Lisp_Object v1;
1131 BEFORE_POTENTIAL_GC ();
1132 v1 = POP;
1133 TOP = Ffset (TOP, v1);
1134 AFTER_POTENTIAL_GC ();
1135 break;
1138 case Bget:
1140 Lisp_Object v1;
1141 BEFORE_POTENTIAL_GC ();
1142 v1 = POP;
1143 TOP = Fget (TOP, v1);
1144 AFTER_POTENTIAL_GC ();
1145 break;
1148 case Bsubstring:
1150 Lisp_Object v1, v2;
1151 BEFORE_POTENTIAL_GC ();
1152 v2 = POP; v1 = POP;
1153 TOP = Fsubstring (TOP, v1, v2);
1154 AFTER_POTENTIAL_GC ();
1155 break;
1158 case Bconcat2:
1159 BEFORE_POTENTIAL_GC ();
1160 DISCARD (1);
1161 TOP = Fconcat (2, &TOP);
1162 AFTER_POTENTIAL_GC ();
1163 break;
1165 case Bconcat3:
1166 BEFORE_POTENTIAL_GC ();
1167 DISCARD (2);
1168 TOP = Fconcat (3, &TOP);
1169 AFTER_POTENTIAL_GC ();
1170 break;
1172 case Bconcat4:
1173 BEFORE_POTENTIAL_GC ();
1174 DISCARD (3);
1175 TOP = Fconcat (4, &TOP);
1176 AFTER_POTENTIAL_GC ();
1177 break;
1179 case BconcatN:
1180 op = FETCH;
1181 BEFORE_POTENTIAL_GC ();
1182 DISCARD (op - 1);
1183 TOP = Fconcat (op, &TOP);
1184 AFTER_POTENTIAL_GC ();
1185 break;
1187 case Bsub1:
1189 Lisp_Object v1;
1190 v1 = TOP;
1191 if (INTEGERP (v1))
1193 XSETINT (v1, XINT (v1) - 1);
1194 TOP = v1;
1196 else
1198 BEFORE_POTENTIAL_GC ();
1199 TOP = Fsub1 (v1);
1200 AFTER_POTENTIAL_GC ();
1202 break;
1205 case Badd1:
1207 Lisp_Object v1;
1208 v1 = TOP;
1209 if (INTEGERP (v1))
1211 XSETINT (v1, XINT (v1) + 1);
1212 TOP = v1;
1214 else
1216 BEFORE_POTENTIAL_GC ();
1217 TOP = Fadd1 (v1);
1218 AFTER_POTENTIAL_GC ();
1220 break;
1223 case Beqlsign:
1225 Lisp_Object v1, v2;
1226 BEFORE_POTENTIAL_GC ();
1227 v2 = POP; v1 = TOP;
1228 CHECK_NUMBER_OR_FLOAT_COERCE_MARKER (v1);
1229 CHECK_NUMBER_OR_FLOAT_COERCE_MARKER (v2);
1230 AFTER_POTENTIAL_GC ();
1231 if (FLOATP (v1) || FLOATP (v2))
1233 double f1, f2;
1235 f1 = (FLOATP (v1) ? XFLOAT_DATA (v1) : XINT (v1));
1236 f2 = (FLOATP (v2) ? XFLOAT_DATA (v2) : XINT (v2));
1237 TOP = (f1 == f2 ? Qt : Qnil);
1239 else
1240 TOP = (XINT (v1) == XINT (v2) ? Qt : Qnil);
1241 break;
1244 case Bgtr:
1246 Lisp_Object v1;
1247 BEFORE_POTENTIAL_GC ();
1248 v1 = POP;
1249 TOP = Fgtr (TOP, v1);
1250 AFTER_POTENTIAL_GC ();
1251 break;
1254 case Blss:
1256 Lisp_Object v1;
1257 BEFORE_POTENTIAL_GC ();
1258 v1 = POP;
1259 TOP = Flss (TOP, v1);
1260 AFTER_POTENTIAL_GC ();
1261 break;
1264 case Bleq:
1266 Lisp_Object v1;
1267 BEFORE_POTENTIAL_GC ();
1268 v1 = POP;
1269 TOP = Fleq (TOP, v1);
1270 AFTER_POTENTIAL_GC ();
1271 break;
1274 case Bgeq:
1276 Lisp_Object v1;
1277 BEFORE_POTENTIAL_GC ();
1278 v1 = POP;
1279 TOP = Fgeq (TOP, v1);
1280 AFTER_POTENTIAL_GC ();
1281 break;
1284 case Bdiff:
1285 BEFORE_POTENTIAL_GC ();
1286 DISCARD (1);
1287 TOP = Fminus (2, &TOP);
1288 AFTER_POTENTIAL_GC ();
1289 break;
1291 case Bnegate:
1293 Lisp_Object v1;
1294 v1 = TOP;
1295 if (INTEGERP (v1))
1297 XSETINT (v1, - XINT (v1));
1298 TOP = v1;
1300 else
1302 BEFORE_POTENTIAL_GC ();
1303 TOP = Fminus (1, &TOP);
1304 AFTER_POTENTIAL_GC ();
1306 break;
1309 case Bplus:
1310 BEFORE_POTENTIAL_GC ();
1311 DISCARD (1);
1312 TOP = Fplus (2, &TOP);
1313 AFTER_POTENTIAL_GC ();
1314 break;
1316 case Bmax:
1317 BEFORE_POTENTIAL_GC ();
1318 DISCARD (1);
1319 TOP = Fmax (2, &TOP);
1320 AFTER_POTENTIAL_GC ();
1321 break;
1323 case Bmin:
1324 BEFORE_POTENTIAL_GC ();
1325 DISCARD (1);
1326 TOP = Fmin (2, &TOP);
1327 AFTER_POTENTIAL_GC ();
1328 break;
1330 case Bmult:
1331 BEFORE_POTENTIAL_GC ();
1332 DISCARD (1);
1333 TOP = Ftimes (2, &TOP);
1334 AFTER_POTENTIAL_GC ();
1335 break;
1337 case Bquo:
1338 BEFORE_POTENTIAL_GC ();
1339 DISCARD (1);
1340 TOP = Fquo (2, &TOP);
1341 AFTER_POTENTIAL_GC ();
1342 break;
1344 case Brem:
1346 Lisp_Object v1;
1347 BEFORE_POTENTIAL_GC ();
1348 v1 = POP;
1349 TOP = Frem (TOP, v1);
1350 AFTER_POTENTIAL_GC ();
1351 break;
1354 case Bpoint:
1356 Lisp_Object v1;
1357 XSETFASTINT (v1, PT);
1358 PUSH (v1);
1359 break;
1362 case Bgoto_char:
1363 BEFORE_POTENTIAL_GC ();
1364 TOP = Fgoto_char (TOP);
1365 AFTER_POTENTIAL_GC ();
1366 break;
1368 case Binsert:
1369 BEFORE_POTENTIAL_GC ();
1370 TOP = Finsert (1, &TOP);
1371 AFTER_POTENTIAL_GC ();
1372 break;
1374 case BinsertN:
1375 op = FETCH;
1376 BEFORE_POTENTIAL_GC ();
1377 DISCARD (op - 1);
1378 TOP = Finsert (op, &TOP);
1379 AFTER_POTENTIAL_GC ();
1380 break;
1382 case Bpoint_max:
1384 Lisp_Object v1;
1385 XSETFASTINT (v1, ZV);
1386 PUSH (v1);
1387 break;
1390 case Bpoint_min:
1392 Lisp_Object v1;
1393 XSETFASTINT (v1, BEGV);
1394 PUSH (v1);
1395 break;
1398 case Bchar_after:
1399 BEFORE_POTENTIAL_GC ();
1400 TOP = Fchar_after (TOP);
1401 AFTER_POTENTIAL_GC ();
1402 break;
1404 case Bfollowing_char:
1406 Lisp_Object v1;
1407 BEFORE_POTENTIAL_GC ();
1408 v1 = Ffollowing_char ();
1409 AFTER_POTENTIAL_GC ();
1410 PUSH (v1);
1411 break;
1414 case Bpreceding_char:
1416 Lisp_Object v1;
1417 BEFORE_POTENTIAL_GC ();
1418 v1 = Fprevious_char ();
1419 AFTER_POTENTIAL_GC ();
1420 PUSH (v1);
1421 break;
1424 case Bcurrent_column:
1426 Lisp_Object v1;
1427 BEFORE_POTENTIAL_GC ();
1428 XSETFASTINT (v1, current_column ());
1429 AFTER_POTENTIAL_GC ();
1430 PUSH (v1);
1431 break;
1434 case Bindent_to:
1435 BEFORE_POTENTIAL_GC ();
1436 TOP = Findent_to (TOP, Qnil);
1437 AFTER_POTENTIAL_GC ();
1438 break;
1440 case Beolp:
1441 PUSH (Feolp ());
1442 break;
1444 case Beobp:
1445 PUSH (Feobp ());
1446 break;
1448 case Bbolp:
1449 PUSH (Fbolp ());
1450 break;
1452 case Bbobp:
1453 PUSH (Fbobp ());
1454 break;
1456 case Bcurrent_buffer:
1457 PUSH (Fcurrent_buffer ());
1458 break;
1460 case Bset_buffer:
1461 BEFORE_POTENTIAL_GC ();
1462 TOP = Fset_buffer (TOP);
1463 AFTER_POTENTIAL_GC ();
1464 break;
1466 case Binteractive_p: /* Obsolete since 24.1. */
1467 PUSH (Finteractive_p ());
1468 break;
1470 case Bforward_char:
1471 BEFORE_POTENTIAL_GC ();
1472 TOP = Fforward_char (TOP);
1473 AFTER_POTENTIAL_GC ();
1474 break;
1476 case Bforward_word:
1477 BEFORE_POTENTIAL_GC ();
1478 TOP = Fforward_word (TOP);
1479 AFTER_POTENTIAL_GC ();
1480 break;
1482 case Bskip_chars_forward:
1484 Lisp_Object v1;
1485 BEFORE_POTENTIAL_GC ();
1486 v1 = POP;
1487 TOP = Fskip_chars_forward (TOP, v1);
1488 AFTER_POTENTIAL_GC ();
1489 break;
1492 case Bskip_chars_backward:
1494 Lisp_Object v1;
1495 BEFORE_POTENTIAL_GC ();
1496 v1 = POP;
1497 TOP = Fskip_chars_backward (TOP, v1);
1498 AFTER_POTENTIAL_GC ();
1499 break;
1502 case Bforward_line:
1503 BEFORE_POTENTIAL_GC ();
1504 TOP = Fforward_line (TOP);
1505 AFTER_POTENTIAL_GC ();
1506 break;
1508 case Bchar_syntax:
1510 int c;
1512 BEFORE_POTENTIAL_GC ();
1513 CHECK_CHARACTER (TOP);
1514 AFTER_POTENTIAL_GC ();
1515 c = XFASTINT (TOP);
1516 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
1517 MAKE_CHAR_MULTIBYTE (c);
1518 XSETFASTINT (TOP, syntax_code_spec[(int) SYNTAX (c)]);
1520 break;
1522 case Bbuffer_substring:
1524 Lisp_Object v1;
1525 BEFORE_POTENTIAL_GC ();
1526 v1 = POP;
1527 TOP = Fbuffer_substring (TOP, v1);
1528 AFTER_POTENTIAL_GC ();
1529 break;
1532 case Bdelete_region:
1534 Lisp_Object v1;
1535 BEFORE_POTENTIAL_GC ();
1536 v1 = POP;
1537 TOP = Fdelete_region (TOP, v1);
1538 AFTER_POTENTIAL_GC ();
1539 break;
1542 case Bnarrow_to_region:
1544 Lisp_Object v1;
1545 BEFORE_POTENTIAL_GC ();
1546 v1 = POP;
1547 TOP = Fnarrow_to_region (TOP, v1);
1548 AFTER_POTENTIAL_GC ();
1549 break;
1552 case Bwiden:
1553 BEFORE_POTENTIAL_GC ();
1554 PUSH (Fwiden ());
1555 AFTER_POTENTIAL_GC ();
1556 break;
1558 case Bend_of_line:
1559 BEFORE_POTENTIAL_GC ();
1560 TOP = Fend_of_line (TOP);
1561 AFTER_POTENTIAL_GC ();
1562 break;
1564 case Bset_marker:
1566 Lisp_Object v1, v2;
1567 BEFORE_POTENTIAL_GC ();
1568 v1 = POP;
1569 v2 = POP;
1570 TOP = Fset_marker (TOP, v2, v1);
1571 AFTER_POTENTIAL_GC ();
1572 break;
1575 case Bmatch_beginning:
1576 BEFORE_POTENTIAL_GC ();
1577 TOP = Fmatch_beginning (TOP);
1578 AFTER_POTENTIAL_GC ();
1579 break;
1581 case Bmatch_end:
1582 BEFORE_POTENTIAL_GC ();
1583 TOP = Fmatch_end (TOP);
1584 AFTER_POTENTIAL_GC ();
1585 break;
1587 case Bupcase:
1588 BEFORE_POTENTIAL_GC ();
1589 TOP = Fupcase (TOP);
1590 AFTER_POTENTIAL_GC ();
1591 break;
1593 case Bdowncase:
1594 BEFORE_POTENTIAL_GC ();
1595 TOP = Fdowncase (TOP);
1596 AFTER_POTENTIAL_GC ();
1597 break;
1599 case Bstringeqlsign:
1601 Lisp_Object v1;
1602 BEFORE_POTENTIAL_GC ();
1603 v1 = POP;
1604 TOP = Fstring_equal (TOP, v1);
1605 AFTER_POTENTIAL_GC ();
1606 break;
1609 case Bstringlss:
1611 Lisp_Object v1;
1612 BEFORE_POTENTIAL_GC ();
1613 v1 = POP;
1614 TOP = Fstring_lessp (TOP, v1);
1615 AFTER_POTENTIAL_GC ();
1616 break;
1619 case Bequal:
1621 Lisp_Object v1;
1622 v1 = POP;
1623 TOP = Fequal (TOP, v1);
1624 break;
1627 case Bnthcdr:
1629 Lisp_Object v1;
1630 BEFORE_POTENTIAL_GC ();
1631 v1 = POP;
1632 TOP = Fnthcdr (TOP, v1);
1633 AFTER_POTENTIAL_GC ();
1634 break;
1637 case Belt:
1639 Lisp_Object v1, v2;
1640 if (CONSP (TOP))
1642 /* Exchange args and then do nth. */
1643 BEFORE_POTENTIAL_GC ();
1644 v2 = POP;
1645 v1 = TOP;
1646 CHECK_NUMBER (v2);
1647 AFTER_POTENTIAL_GC ();
1648 op = XINT (v2);
1649 immediate_quit = 1;
1650 while (--op >= 0 && CONSP (v1))
1651 v1 = XCDR (v1);
1652 immediate_quit = 0;
1653 TOP = CAR (v1);
1655 else
1657 BEFORE_POTENTIAL_GC ();
1658 v1 = POP;
1659 TOP = Felt (TOP, v1);
1660 AFTER_POTENTIAL_GC ();
1662 break;
1665 case Bmember:
1667 Lisp_Object v1;
1668 BEFORE_POTENTIAL_GC ();
1669 v1 = POP;
1670 TOP = Fmember (TOP, v1);
1671 AFTER_POTENTIAL_GC ();
1672 break;
1675 case Bassq:
1677 Lisp_Object v1;
1678 BEFORE_POTENTIAL_GC ();
1679 v1 = POP;
1680 TOP = Fassq (TOP, v1);
1681 AFTER_POTENTIAL_GC ();
1682 break;
1685 case Bnreverse:
1686 BEFORE_POTENTIAL_GC ();
1687 TOP = Fnreverse (TOP);
1688 AFTER_POTENTIAL_GC ();
1689 break;
1691 case Bsetcar:
1693 Lisp_Object v1;
1694 BEFORE_POTENTIAL_GC ();
1695 v1 = POP;
1696 TOP = Fsetcar (TOP, v1);
1697 AFTER_POTENTIAL_GC ();
1698 break;
1701 case Bsetcdr:
1703 Lisp_Object v1;
1704 BEFORE_POTENTIAL_GC ();
1705 v1 = POP;
1706 TOP = Fsetcdr (TOP, v1);
1707 AFTER_POTENTIAL_GC ();
1708 break;
1711 case Bcar_safe:
1713 Lisp_Object v1;
1714 v1 = TOP;
1715 TOP = CAR_SAFE (v1);
1716 break;
1719 case Bcdr_safe:
1721 Lisp_Object v1;
1722 v1 = TOP;
1723 TOP = CDR_SAFE (v1);
1724 break;
1727 case Bnconc:
1728 BEFORE_POTENTIAL_GC ();
1729 DISCARD (1);
1730 TOP = Fnconc (2, &TOP);
1731 AFTER_POTENTIAL_GC ();
1732 break;
1734 case Bnumberp:
1735 TOP = (NUMBERP (TOP) ? Qt : Qnil);
1736 break;
1738 case Bintegerp:
1739 TOP = INTEGERP (TOP) ? Qt : Qnil;
1740 break;
1742 #ifdef BYTE_CODE_SAFE
1743 case Bset_mark:
1744 BEFORE_POTENTIAL_GC ();
1745 error ("set-mark is an obsolete bytecode");
1746 AFTER_POTENTIAL_GC ();
1747 break;
1748 case Bscan_buffer:
1749 BEFORE_POTENTIAL_GC ();
1750 error ("scan-buffer is an obsolete bytecode");
1751 AFTER_POTENTIAL_GC ();
1752 break;
1753 #endif
1755 case 0:
1756 /* Actually this is Bstack_ref with offset 0, but we use Bdup
1757 for that instead. */
1758 /* case Bstack_ref: */
1759 abort ();
1761 /* Handy byte-codes for lexical binding. */
1762 case Bstack_ref+1:
1763 case Bstack_ref+2:
1764 case Bstack_ref+3:
1765 case Bstack_ref+4:
1766 case Bstack_ref+5:
1768 Lisp_Object *ptr = top - (op - Bstack_ref);
1769 PUSH (*ptr);
1770 break;
1772 case Bstack_ref+6:
1774 Lisp_Object *ptr = top - (FETCH);
1775 PUSH (*ptr);
1776 break;
1778 case Bstack_ref+7:
1780 Lisp_Object *ptr = top - (FETCH2);
1781 PUSH (*ptr);
1782 break;
1784 case Bstack_set:
1785 /* stack-set-0 = discard; stack-set-1 = discard-1-preserve-tos. */
1787 Lisp_Object *ptr = top - (FETCH);
1788 *ptr = POP;
1789 break;
1791 case Bstack_set2:
1793 Lisp_Object *ptr = top - (FETCH2);
1794 *ptr = POP;
1795 break;
1797 case BdiscardN:
1798 op = FETCH;
1799 if (op & 0x80)
1801 op &= 0x7F;
1802 top[-op] = TOP;
1804 DISCARD (op);
1805 break;
1807 case 255:
1808 default:
1809 #ifdef BYTE_CODE_SAFE
1810 if (op < Bconstant)
1812 abort ();
1814 if ((op -= Bconstant) >= const_length)
1816 abort ();
1818 PUSH (vectorp[op]);
1819 #else
1820 PUSH (vectorp[op - Bconstant]);
1821 #endif
1825 exit:
1827 byte_stack_list = byte_stack_list->next;
1829 /* Binds and unbinds are supposed to be compiled balanced. */
1830 if (SPECPDL_INDEX () != count)
1831 #ifdef BYTE_CODE_SAFE
1832 error ("binding stack not balanced (serious byte compiler bug)");
1833 #else
1834 abort ();
1835 #endif
1837 return result;
1840 void
1841 syms_of_bytecode (void)
1843 DEFSYM (Qbytecode, "byte-code");
1845 defsubr (&Sbyte_code);
1847 #ifdef BYTE_CODE_METER
1849 DEFVAR_LISP ("byte-code-meter", Vbyte_code_meter,
1850 doc: /* A vector of vectors which holds a histogram of byte-code usage.
1851 \(aref (aref byte-code-meter 0) CODE) indicates how many times the byte
1852 opcode CODE has been executed.
1853 \(aref (aref byte-code-meter CODE1) CODE2), where CODE1 is not 0,
1854 indicates how many times the byte opcodes CODE1 and CODE2 have been
1855 executed in succession. */);
1857 DEFVAR_BOOL ("byte-metering-on", byte_metering_on,
1858 doc: /* If non-nil, keep profiling information on byte code usage.
1859 The variable byte-code-meter indicates how often each byte opcode is used.
1860 If a symbol has a property named `byte-code-meter' whose value is an
1861 integer, it is incremented each time that symbol's function is called. */);
1863 byte_metering_on = 0;
1864 Vbyte_code_meter = Fmake_vector (make_number (256), make_number (0));
1865 DEFSYM (Qbyte_code_meter, "byte-code-meter");
1867 int i = 256;
1868 while (i--)
1869 XVECTOR (Vbyte_code_meter)->contents[i] =
1870 Fmake_vector (make_number (256), make_number (0));
1872 #endif