* lisp/emacs-lisp/cl-macs.el (cl-progv): Use a properly prefixed var name.
[emacs.git] / lisp / emacs-lisp / cl-loaddefs.el
blobf22bda1559af7722adc57457541afc6638ba9c0e
1 ;;; cl-loaddefs.el --- automatically extracted autoloads
2 ;;
3 ;;; Code:
5 \f
6 ;;;### (autoloads (cl-prettyexpand cl-remprop cl--do-remf cl--set-getf
7 ;;;;;; cl-getf cl-get cl-tailp cl-list-length cl-nreconc cl-revappend
8 ;;;;;; cl-concatenate cl-subseq cl-float-limits cl-random-state-p
9 ;;;;;; cl-make-random-state cl-random cl-signum cl-rem cl-mod cl-round
10 ;;;;;; cl-truncate cl-ceiling cl-floor cl-isqrt cl-lcm cl-gcd cl--set-frame-visible-p
11 ;;;;;; cl--map-overlays cl--map-intervals cl--map-keymap-recursively
12 ;;;;;; cl-notevery cl-notany cl-every cl-some cl-mapcon cl-mapcan
13 ;;;;;; cl-mapl cl-maplist cl-map cl--mapcar-many cl-equalp cl-coerce)
14 ;;;;;; "cl-extra" "cl-extra.el" "535a24c1cff55a16e3d51219498a7858")
15 ;;; Generated autoloads from cl-extra.el
17 (autoload 'cl-coerce "cl-extra" "\
18 Coerce OBJECT to type TYPE.
19 TYPE is a Common Lisp type specifier.
21 \(fn OBJECT TYPE)" nil nil)
23 (autoload 'cl-equalp "cl-extra" "\
24 Return t if two Lisp objects have similar structures and contents.
25 This is like `equal', except that it accepts numerically equal
26 numbers of different types (float vs. integer), and also compares
27 strings case-insensitively.
29 \(fn X Y)" nil nil)
31 (autoload 'cl--mapcar-many "cl-extra" "\
34 \(fn CL-FUNC CL-SEQS)" nil nil)
36 (autoload 'cl-map "cl-extra" "\
37 Map a FUNCTION across one or more SEQUENCEs, returning a sequence.
38 TYPE is the sequence type to return.
40 \(fn TYPE FUNCTION SEQUENCE...)" nil nil)
42 (autoload 'cl-maplist "cl-extra" "\
43 Map FUNCTION to each sublist of LIST or LISTs.
44 Like `mapcar', except applies to lists and their cdr's rather than to
45 the elements themselves.
47 \(fn FUNCTION LIST...)" nil nil)
49 (autoload 'cl-mapl "cl-extra" "\
50 Like `cl-maplist', but does not accumulate values returned by the function.
52 \(fn FUNCTION LIST...)" nil nil)
54 (autoload 'cl-mapcan "cl-extra" "\
55 Like `mapcar', but nconc's together the values returned by the function.
57 \(fn FUNCTION SEQUENCE...)" nil nil)
59 (autoload 'cl-mapcon "cl-extra" "\
60 Like `cl-maplist', but nconc's together the values returned by the function.
62 \(fn FUNCTION LIST...)" nil nil)
64 (autoload 'cl-some "cl-extra" "\
65 Return true if PREDICATE is true of any element of SEQ or SEQs.
66 If so, return the true (non-nil) value returned by PREDICATE.
68 \(fn PREDICATE SEQ...)" nil nil)
70 (autoload 'cl-every "cl-extra" "\
71 Return true if PREDICATE is true of every element of SEQ or SEQs.
73 \(fn PREDICATE SEQ...)" nil nil)
75 (autoload 'cl-notany "cl-extra" "\
76 Return true if PREDICATE is false of every element of SEQ or SEQs.
78 \(fn PREDICATE SEQ...)" nil nil)
80 (autoload 'cl-notevery "cl-extra" "\
81 Return true if PREDICATE is false of some element of SEQ or SEQs.
83 \(fn PREDICATE SEQ...)" nil nil)
85 (autoload 'cl--map-keymap-recursively "cl-extra" "\
88 \(fn CL-FUNC-REC CL-MAP &optional CL-BASE)" nil nil)
90 (autoload 'cl--map-intervals "cl-extra" "\
93 \(fn CL-FUNC &optional CL-WHAT CL-PROP CL-START CL-END)" nil nil)
95 (autoload 'cl--map-overlays "cl-extra" "\
98 \(fn CL-FUNC &optional CL-BUFFER CL-START CL-END CL-ARG)" nil nil)
100 (autoload 'cl--set-frame-visible-p "cl-extra" "\
103 \(fn FRAME VAL)" nil nil)
105 (autoload 'cl-gcd "cl-extra" "\
106 Return the greatest common divisor of the arguments.
108 \(fn &rest ARGS)" nil nil)
110 (autoload 'cl-lcm "cl-extra" "\
111 Return the least common multiple of the arguments.
113 \(fn &rest ARGS)" nil nil)
115 (autoload 'cl-isqrt "cl-extra" "\
116 Return the integer square root of the argument.
118 \(fn X)" nil nil)
120 (autoload 'cl-floor "cl-extra" "\
121 Return a list of the floor of X and the fractional part of X.
122 With two arguments, return floor and remainder of their quotient.
124 \(fn X &optional Y)" nil nil)
126 (autoload 'cl-ceiling "cl-extra" "\
127 Return a list of the ceiling of X and the fractional part of X.
128 With two arguments, return ceiling and remainder of their quotient.
130 \(fn X &optional Y)" nil nil)
132 (autoload 'cl-truncate "cl-extra" "\
133 Return a list of the integer part of X and the fractional part of X.
134 With two arguments, return truncation and remainder of their quotient.
136 \(fn X &optional Y)" nil nil)
138 (autoload 'cl-round "cl-extra" "\
139 Return a list of X rounded to the nearest integer and the remainder.
140 With two arguments, return rounding and remainder of their quotient.
142 \(fn X &optional Y)" nil nil)
144 (autoload 'cl-mod "cl-extra" "\
145 The remainder of X divided by Y, with the same sign as Y.
147 \(fn X Y)" nil nil)
149 (autoload 'cl-rem "cl-extra" "\
150 The remainder of X divided by Y, with the same sign as X.
152 \(fn X Y)" nil nil)
154 (autoload 'cl-signum "cl-extra" "\
155 Return 1 if X is positive, -1 if negative, 0 if zero.
157 \(fn X)" nil nil)
159 (autoload 'cl-random "cl-extra" "\
160 Return a random nonnegative number less than LIM, an integer or float.
161 Optional second arg STATE is a random-state object.
163 \(fn LIM &optional STATE)" nil nil)
165 (autoload 'cl-make-random-state "cl-extra" "\
166 Return a copy of random-state STATE, or of the internal state if omitted.
167 If STATE is t, return a new state object seeded from the time of day.
169 \(fn &optional STATE)" nil nil)
171 (autoload 'cl-random-state-p "cl-extra" "\
172 Return t if OBJECT is a random-state object.
174 \(fn OBJECT)" nil nil)
176 (autoload 'cl-float-limits "cl-extra" "\
177 Initialize the Common Lisp floating-point parameters.
178 This sets the values of: `cl-most-positive-float', `cl-most-negative-float',
179 `cl-least-positive-float', `cl-least-negative-float', `cl-float-epsilon',
180 `cl-float-negative-epsilon', `cl-least-positive-normalized-float', and
181 `cl-least-negative-normalized-float'.
183 \(fn)" nil nil)
185 (autoload 'cl-subseq "cl-extra" "\
186 Return the subsequence of SEQ from START to END.
187 If END is omitted, it defaults to the length of the sequence.
188 If START or END is negative, it counts from the end.
190 \(fn SEQ START &optional END)" nil nil)
192 (autoload 'cl-concatenate "cl-extra" "\
193 Concatenate, into a sequence of type TYPE, the argument SEQUENCEs.
195 \(fn TYPE SEQUENCE...)" nil nil)
197 (autoload 'cl-revappend "cl-extra" "\
198 Equivalent to (append (reverse X) Y).
200 \(fn X Y)" nil nil)
202 (autoload 'cl-nreconc "cl-extra" "\
203 Equivalent to (nconc (nreverse X) Y).
205 \(fn X Y)" nil nil)
207 (autoload 'cl-list-length "cl-extra" "\
208 Return the length of list X. Return nil if list is circular.
210 \(fn X)" nil nil)
212 (autoload 'cl-tailp "cl-extra" "\
213 Return true if SUBLIST is a tail of LIST.
215 \(fn SUBLIST LIST)" nil nil)
217 (autoload 'cl-get "cl-extra" "\
218 Return the value of SYMBOL's PROPNAME property, or DEFAULT if none.
220 \(fn SYMBOL PROPNAME &optional DEFAULT)" nil nil)
222 (put 'cl-get 'compiler-macro #'cl--compiler-macro-get)
224 (autoload 'cl-getf "cl-extra" "\
225 Search PROPLIST for property PROPNAME; return its value or DEFAULT.
226 PROPLIST is a list of the sort returned by `symbol-plist'.
228 \(fn PROPLIST PROPNAME &optional DEFAULT)" nil nil)
230 (autoload 'cl--set-getf "cl-extra" "\
233 \(fn PLIST TAG VAL)" nil nil)
235 (autoload 'cl--do-remf "cl-extra" "\
238 \(fn PLIST TAG)" nil nil)
240 (autoload 'cl-remprop "cl-extra" "\
241 Remove from SYMBOL's plist the property PROPNAME and its value.
243 \(fn SYMBOL PROPNAME)" nil nil)
245 (autoload 'cl-prettyexpand "cl-extra" "\
248 \(fn FORM &optional FULL)" nil nil)
250 ;;;***
252 ;;;### (autoloads (cl--compiler-macro-cXXr cl--compiler-macro-list*
253 ;;;;;; cl--compiler-macro-adjoin cl-defsubst cl-compiler-macroexpand
254 ;;;;;; cl-define-compiler-macro cl-assert cl-check-type cl-typep
255 ;;;;;; cl-deftype cl-defstruct cl-callf2 cl-callf cl-letf* cl-letf
256 ;;;;;; cl-rotatef cl-shiftf cl-remf cl-psetf cl-declare cl-the cl-locally
257 ;;;;;; cl-multiple-value-setq cl-multiple-value-bind cl-symbol-macrolet
258 ;;;;;; cl-macrolet cl-labels cl-flet* cl-flet cl-progv cl-psetq
259 ;;;;;; cl-do-all-symbols cl-do-symbols cl-dotimes cl-dolist cl-do*
260 ;;;;;; cl-do cl-loop cl-return-from cl-return cl-block cl-etypecase
261 ;;;;;; cl-typecase cl-ecase cl-case cl-load-time-value cl-eval-when
262 ;;;;;; cl-destructuring-bind cl-function cl-defmacro cl-defun cl-gentemp
263 ;;;;;; cl-gensym) "cl-macs" "cl-macs.el" "6b06545d8d17e8b902435f08be6ac0c2")
264 ;;; Generated autoloads from cl-macs.el
266 (autoload 'cl-gensym "cl-macs" "\
267 Generate a new uninterned symbol.
268 The name is made by appending a number to PREFIX, default \"G\".
270 \(fn &optional PREFIX)" nil nil)
272 (autoload 'cl-gentemp "cl-macs" "\
273 Generate a new interned symbol with a unique name.
274 The name is made by appending a number to PREFIX, default \"G\".
276 \(fn &optional PREFIX)" nil nil)
278 (autoload 'cl-defun "cl-macs" "\
279 Define NAME as a function.
280 Like normal `defun', except ARGLIST allows full Common Lisp conventions,
281 and BODY is implicitly surrounded by (cl-block NAME ...).
283 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil t)
285 (put 'cl-defun 'doc-string-elt '3)
287 (put 'cl-defun 'lisp-indent-function '2)
289 (autoload 'cl-defmacro "cl-macs" "\
290 Define NAME as a macro.
291 Like normal `defmacro', except ARGLIST allows full Common Lisp conventions,
292 and BODY is implicitly surrounded by (cl-block NAME ...).
294 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil t)
296 (put 'cl-defmacro 'doc-string-elt '3)
298 (put 'cl-defmacro 'lisp-indent-function '2)
300 (autoload 'cl-function "cl-macs" "\
301 Introduce a function.
302 Like normal `function', except that if argument is a lambda form,
303 its argument list allows full Common Lisp conventions.
305 \(fn FUNC)" nil t)
307 (autoload 'cl-destructuring-bind "cl-macs" "\
310 \(fn ARGS EXPR &rest BODY)" nil t)
312 (put 'cl-destructuring-bind 'lisp-indent-function '2)
314 (autoload 'cl-eval-when "cl-macs" "\
315 Control when BODY is evaluated.
316 If `compile' is in WHEN, BODY is evaluated when compiled at top-level.
317 If `load' is in WHEN, BODY is evaluated when loaded after top-level compile.
318 If `eval' is in WHEN, BODY is evaluated when interpreted or at non-top-level.
320 \(fn (WHEN...) BODY...)" nil t)
322 (put 'cl-eval-when 'lisp-indent-function '1)
324 (autoload 'cl-load-time-value "cl-macs" "\
325 Like `progn', but evaluates the body at load time.
326 The result of the body appears to the compiler as a quoted constant.
328 \(fn FORM &optional READ-ONLY)" nil t)
330 (autoload 'cl-case "cl-macs" "\
331 Eval EXPR and choose among clauses on that value.
332 Each clause looks like (KEYLIST BODY...). EXPR is evaluated and compared
333 against each key in each KEYLIST; the corresponding BODY is evaluated.
334 If no clause succeeds, cl-case returns nil. A single atom may be used in
335 place of a KEYLIST of one atom. A KEYLIST of t or `otherwise' is
336 allowed only in the final clause, and matches if no other keys match.
337 Key values are compared by `eql'.
339 \(fn EXPR (KEYLIST BODY...)...)" nil t)
341 (put 'cl-case 'lisp-indent-function '1)
343 (autoload 'cl-ecase "cl-macs" "\
344 Like `cl-case', but error if no case fits.
345 `otherwise'-clauses are not allowed.
347 \(fn EXPR (KEYLIST BODY...)...)" nil t)
349 (put 'cl-ecase 'lisp-indent-function '1)
351 (autoload 'cl-typecase "cl-macs" "\
352 Evals EXPR, chooses among clauses on that value.
353 Each clause looks like (TYPE BODY...). EXPR is evaluated and, if it
354 satisfies TYPE, the corresponding BODY is evaluated. If no clause succeeds,
355 cl-typecase returns nil. A TYPE of t or `otherwise' is allowed only in the
356 final clause, and matches if no other keys match.
358 \(fn EXPR (TYPE BODY...)...)" nil t)
360 (put 'cl-typecase 'lisp-indent-function '1)
362 (autoload 'cl-etypecase "cl-macs" "\
363 Like `cl-typecase', but error if no case fits.
364 `otherwise'-clauses are not allowed.
366 \(fn EXPR (TYPE BODY...)...)" nil t)
368 (put 'cl-etypecase 'lisp-indent-function '1)
370 (autoload 'cl-block "cl-macs" "\
371 Define a lexically-scoped block named NAME.
372 NAME may be any symbol. Code inside the BODY forms can call `cl-return-from'
373 to jump prematurely out of the block. This differs from `catch' and `throw'
374 in two respects: First, the NAME is an unevaluated symbol rather than a
375 quoted symbol or other form; and second, NAME is lexically rather than
376 dynamically scoped: Only references to it within BODY will work. These
377 references may appear inside macro expansions, but not inside functions
378 called from BODY.
380 \(fn NAME &rest BODY)" nil t)
382 (put 'cl-block 'lisp-indent-function '1)
384 (autoload 'cl-return "cl-macs" "\
385 Return from the block named nil.
386 This is equivalent to `(cl-return-from nil RESULT)'.
388 \(fn &optional RESULT)" nil t)
390 (autoload 'cl-return-from "cl-macs" "\
391 Return from the block named NAME.
392 This jumps out to the innermost enclosing `(cl-block NAME ...)' form,
393 returning RESULT from that form (or nil if RESULT is omitted).
394 This is compatible with Common Lisp, but note that `defun' and
395 `defmacro' do not create implicit blocks as they do in Common Lisp.
397 \(fn NAME &optional RESULT)" nil t)
399 (put 'cl-return-from 'lisp-indent-function '1)
401 (autoload 'cl-loop "cl-macs" "\
402 The Common Lisp `cl-loop' macro.
403 Valid clauses are:
404 for VAR from/upfrom/downfrom NUM to/upto/downto/above/below NUM by NUM,
405 for VAR in LIST by FUNC, for VAR on LIST by FUNC, for VAR = INIT then EXPR,
406 for VAR across ARRAY, repeat NUM, with VAR = INIT, while COND, until COND,
407 always COND, never COND, thereis COND, collect EXPR into VAR,
408 append EXPR into VAR, nconc EXPR into VAR, sum EXPR into VAR,
409 count EXPR into VAR, maximize EXPR into VAR, minimize EXPR into VAR,
410 if COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
411 unless COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
412 do EXPRS..., initially EXPRS..., finally EXPRS..., return EXPR,
413 finally return EXPR, named NAME.
415 \(fn CLAUSE...)" nil t)
417 (autoload 'cl-do "cl-macs" "\
418 The Common Lisp `cl-do' loop.
420 \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil t)
422 (put 'cl-do 'lisp-indent-function '2)
424 (autoload 'cl-do* "cl-macs" "\
425 The Common Lisp `cl-do*' loop.
427 \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil t)
429 (put 'cl-do* 'lisp-indent-function '2)
431 (autoload 'cl-dolist "cl-macs" "\
432 Loop over a list.
433 Evaluate BODY with VAR bound to each `car' from LIST, in turn.
434 Then evaluate RESULT to get return value, default nil.
435 An implicit nil block is established around the loop.
437 \(fn (VAR LIST [RESULT]) BODY...)" nil t)
439 (put 'cl-dolist 'lisp-indent-function '1)
441 (autoload 'cl-dotimes "cl-macs" "\
442 Loop a certain number of times.
443 Evaluate BODY with VAR bound to successive integers from 0, inclusive,
444 to COUNT, exclusive. Then evaluate RESULT to get return value, default
445 nil.
447 \(fn (VAR COUNT [RESULT]) BODY...)" nil t)
449 (put 'cl-dotimes 'lisp-indent-function '1)
451 (autoload 'cl-do-symbols "cl-macs" "\
452 Loop over all symbols.
453 Evaluate BODY with VAR bound to each interned symbol, or to each symbol
454 from OBARRAY.
456 \(fn (VAR [OBARRAY [RESULT]]) BODY...)" nil t)
458 (put 'cl-do-symbols 'lisp-indent-function '1)
460 (autoload 'cl-do-all-symbols "cl-macs" "\
463 \(fn SPEC &rest BODY)" nil t)
465 (put 'cl-do-all-symbols 'lisp-indent-function '1)
467 (autoload 'cl-psetq "cl-macs" "\
468 Set SYMs to the values VALs in parallel.
469 This is like `setq', except that all VAL forms are evaluated (in order)
470 before assigning any symbols SYM to the corresponding values.
472 \(fn SYM VAL SYM VAL ...)" nil t)
474 (autoload 'cl-progv "cl-macs" "\
475 Bind SYMBOLS to VALUES dynamically in BODY.
476 The forms SYMBOLS and VALUES are evaluated, and must evaluate to lists.
477 Each symbol in the first list is bound to the corresponding value in the
478 second list (or made unbound if VALUES is shorter than SYMBOLS); then the
479 BODY forms are executed and their result is returned. This is much like
480 a `let' form, except that the list of symbols can be computed at run-time.
482 \(fn SYMBOLS VALUES &rest BODY)" nil t)
484 (put 'cl-progv 'lisp-indent-function '2)
486 (autoload 'cl-flet "cl-macs" "\
487 Make temporary function definitions.
488 Like `cl-labels' but the definitions are not recursive.
490 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil t)
492 (put 'cl-flet 'lisp-indent-function '1)
494 (autoload 'cl-flet* "cl-macs" "\
495 Make temporary function definitions.
496 Like `cl-flet' but the definitions can refer to previous ones.
498 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil t)
500 (put 'cl-flet* 'lisp-indent-function '1)
502 (autoload 'cl-labels "cl-macs" "\
503 Make temporary function bindings.
504 The bindings can be recursive and the scoping is lexical, but capturing them
505 in closures will only work if `lexical-binding' is in use.
507 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil t)
509 (put 'cl-labels 'lisp-indent-function '1)
511 (autoload 'cl-macrolet "cl-macs" "\
512 Make temporary macro definitions.
513 This is like `cl-flet', but for macros instead of functions.
515 \(fn ((NAME ARGLIST BODY...) ...) FORM...)" nil t)
517 (put 'cl-macrolet 'lisp-indent-function '1)
519 (autoload 'cl-symbol-macrolet "cl-macs" "\
520 Make symbol macro definitions.
521 Within the body FORMs, references to the variable NAME will be replaced
522 by EXPANSION, and (setq NAME ...) will act like (setf EXPANSION ...).
524 \(fn ((NAME EXPANSION) ...) FORM...)" nil t)
526 (put 'cl-symbol-macrolet 'lisp-indent-function '1)
528 (autoload 'cl-multiple-value-bind "cl-macs" "\
529 Collect multiple return values.
530 FORM must return a list; the BODY is then executed with the first N elements
531 of this list bound (`let'-style) to each of the symbols SYM in turn. This
532 is analogous to the Common Lisp `cl-multiple-value-bind' macro, using lists to
533 simulate true multiple return values. For compatibility, (cl-values A B C) is
534 a synonym for (list A B C).
536 \(fn (SYM...) FORM BODY)" nil t)
538 (put 'cl-multiple-value-bind 'lisp-indent-function '2)
540 (autoload 'cl-multiple-value-setq "cl-macs" "\
541 Collect multiple return values.
542 FORM must return a list; the first N elements of this list are stored in
543 each of the symbols SYM in turn. This is analogous to the Common Lisp
544 `cl-multiple-value-setq' macro, using lists to simulate true multiple return
545 values. For compatibility, (cl-values A B C) is a synonym for (list A B C).
547 \(fn (SYM...) FORM)" nil t)
549 (put 'cl-multiple-value-setq 'lisp-indent-function '1)
551 (autoload 'cl-locally "cl-macs" "\
554 \(fn &rest BODY)" nil t)
556 (autoload 'cl-the "cl-macs" "\
559 \(fn TYPE FORM)" nil t)
561 (put 'cl-the 'lisp-indent-function '1)
563 (autoload 'cl-declare "cl-macs" "\
564 Declare SPECS about the current function while compiling.
565 For instance
567 (cl-declare (warn 0))
569 will turn off byte-compile warnings in the function.
570 See Info node `(cl)Declarations' for details.
572 \(fn &rest SPECS)" nil t)
574 (autoload 'cl-psetf "cl-macs" "\
575 Set PLACEs to the values VALs in parallel.
576 This is like `setf', except that all VAL forms are evaluated (in order)
577 before assigning any PLACEs to the corresponding values.
579 \(fn PLACE VAL PLACE VAL ...)" nil t)
581 (autoload 'cl-remf "cl-macs" "\
582 Remove TAG from property list PLACE.
583 PLACE may be a symbol, or any generalized variable allowed by `setf'.
584 The form returns true if TAG was found and removed, nil otherwise.
586 \(fn PLACE TAG)" nil t)
588 (autoload 'cl-shiftf "cl-macs" "\
589 Shift left among PLACEs.
590 Example: (cl-shiftf A B C) sets A to B, B to C, and returns the old A.
591 Each PLACE may be a symbol, or any generalized variable allowed by `setf'.
593 \(fn PLACE... VAL)" nil t)
595 (autoload 'cl-rotatef "cl-macs" "\
596 Rotate left among PLACEs.
597 Example: (cl-rotatef A B C) sets A to B, B to C, and C to A. It returns nil.
598 Each PLACE may be a symbol, or any generalized variable allowed by `setf'.
600 \(fn PLACE...)" nil t)
602 (autoload 'cl-letf "cl-macs" "\
603 Temporarily bind to PLACEs.
604 This is the analogue of `let', but with generalized variables (in the
605 sense of `setf') for the PLACEs. Each PLACE is set to the corresponding
606 VALUE, then the BODY forms are executed. On exit, either normally or
607 because of a `throw' or error, the PLACEs are set back to their original
608 values. Note that this macro is *not* available in Common Lisp.
609 As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
610 the PLACE is not modified before executing BODY.
612 \(fn ((PLACE VALUE) ...) BODY...)" nil t)
614 (put 'cl-letf 'lisp-indent-function '1)
616 (autoload 'cl-letf* "cl-macs" "\
617 Temporarily bind to PLACEs.
618 Like `cl-letf' but where the bindings are performed one at a time,
619 rather than all at the end (i.e. like `let*' rather than like `let').
621 \(fn BINDINGS &rest BODY)" nil t)
623 (put 'cl-letf* 'lisp-indent-function '1)
625 (autoload 'cl-callf "cl-macs" "\
626 Set PLACE to (FUNC PLACE ARGS...).
627 FUNC should be an unquoted function name. PLACE may be a symbol,
628 or any generalized variable allowed by `setf'.
630 \(fn FUNC PLACE &rest ARGS)" nil t)
632 (put 'cl-callf 'lisp-indent-function '2)
634 (autoload 'cl-callf2 "cl-macs" "\
635 Set PLACE to (FUNC ARG1 PLACE ARGS...).
636 Like `cl-callf', but PLACE is the second argument of FUNC, not the first.
638 \(fn FUNC ARG1 PLACE ARGS...)" nil t)
640 (put 'cl-callf2 'lisp-indent-function '3)
642 (autoload 'cl-defstruct "cl-macs" "\
643 Define a struct type.
644 This macro defines a new data type called NAME that stores data
645 in SLOTs. It defines a `make-NAME' constructor, a `copy-NAME'
646 copier, a `NAME-p' predicate, and slot accessors named `NAME-SLOT'.
647 You can use the accessors to set the corresponding slots, via `setf'.
649 NAME may instead take the form (NAME OPTIONS...), where each
650 OPTION is either a single keyword or (KEYWORD VALUE).
651 See Info node `(cl)Structures' for a list of valid keywords.
653 Each SLOT may instead take the form (SLOT SLOT-OPTS...), where
654 SLOT-OPTS are keyword-value pairs for that slot. Currently, only
655 one keyword is supported, `:read-only'. If this has a non-nil
656 value, that slot cannot be set via `setf'.
658 \(fn NAME SLOTS...)" nil t)
660 (put 'cl-defstruct 'doc-string-elt '2)
662 (autoload 'cl-deftype "cl-macs" "\
663 Define NAME as a new data type.
664 The type name can then be used in `cl-typecase', `cl-check-type', etc.
666 \(fn NAME ARGLIST &rest BODY)" nil t)
668 (put 'cl-deftype 'doc-string-elt '3)
670 (autoload 'cl-typep "cl-macs" "\
671 Check that OBJECT is of type TYPE.
672 TYPE is a Common Lisp-style type specifier.
674 \(fn OBJECT TYPE)" nil nil)
676 (autoload 'cl-check-type "cl-macs" "\
677 Verify that FORM is of type TYPE; signal an error if not.
678 STRING is an optional description of the desired type.
680 \(fn FORM TYPE &optional STRING)" nil t)
682 (autoload 'cl-assert "cl-macs" "\
683 Verify that FORM returns non-nil; signal an error if not.
684 Second arg SHOW-ARGS means to include arguments of FORM in message.
685 Other args STRING and ARGS... are arguments to be passed to `error'.
686 They are not evaluated unless the assertion fails. If STRING is
687 omitted, a default message listing FORM itself is used.
689 \(fn FORM &optional SHOW-ARGS STRING &rest ARGS)" nil t)
691 (autoload 'cl-define-compiler-macro "cl-macs" "\
692 Define a compiler-only macro.
693 This is like `defmacro', but macro expansion occurs only if the call to
694 FUNC is compiled (i.e., not interpreted). Compiler macros should be used
695 for optimizing the way calls to FUNC are compiled; the form returned by
696 BODY should do the same thing as a call to the normal function called
697 FUNC, though possibly more efficiently. Note that, like regular macros,
698 compiler macros are expanded repeatedly until no further expansions are
699 possible. Unlike regular macros, BODY can decide to \"punt\" and leave the
700 original function call alone by declaring an initial `&whole foo' parameter
701 and then returning foo.
703 \(fn FUNC ARGS &rest BODY)" nil t)
705 (autoload 'cl-compiler-macroexpand "cl-macs" "\
708 \(fn FORM)" nil nil)
710 (autoload 'cl-defsubst "cl-macs" "\
711 Define NAME as a function.
712 Like `defun', except the function is automatically declared `inline',
713 ARGLIST allows full Common Lisp conventions, and BODY is implicitly
714 surrounded by (cl-block NAME ...).
716 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil t)
718 (put 'cl-defsubst 'lisp-indent-function '2)
720 (autoload 'cl--compiler-macro-adjoin "cl-macs" "\
723 \(fn FORM A LIST &rest KEYS)" nil nil)
725 (autoload 'cl--compiler-macro-list* "cl-macs" "\
728 \(fn FORM ARG &rest OTHERS)" nil nil)
730 (autoload 'cl--compiler-macro-cXXr "cl-macs" "\
733 \(fn FORM X)" nil nil)
735 ;;;***
737 ;;;### (autoloads (cl-tree-equal cl-nsublis cl-sublis cl-nsubst-if-not
738 ;;;;;; cl-nsubst-if cl-nsubst cl-subst-if-not cl-subst-if cl-subsetp
739 ;;;;;; cl-nset-exclusive-or cl-set-exclusive-or cl-nset-difference
740 ;;;;;; cl-set-difference cl-nintersection cl-intersection cl-nunion
741 ;;;;;; cl-union cl-rassoc-if-not cl-rassoc-if cl-rassoc cl-assoc-if-not
742 ;;;;;; cl-assoc-if cl-assoc cl--adjoin cl-member-if-not cl-member-if
743 ;;;;;; cl-member cl-merge cl-stable-sort cl-sort cl-search cl-mismatch
744 ;;;;;; cl-count-if-not cl-count-if cl-count cl-position-if-not cl-position-if
745 ;;;;;; cl-position cl-find-if-not cl-find-if cl-find cl-nsubstitute-if-not
746 ;;;;;; cl-nsubstitute-if cl-nsubstitute cl-substitute-if-not cl-substitute-if
747 ;;;;;; cl-substitute cl-delete-duplicates cl-remove-duplicates cl-delete-if-not
748 ;;;;;; cl-delete-if cl-delete cl-remove-if-not cl-remove-if cl-remove
749 ;;;;;; cl-replace cl-fill cl-reduce) "cl-seq" "cl-seq.el" "b444601641dcbd14a23ca5182bc80ffa")
750 ;;; Generated autoloads from cl-seq.el
752 (autoload 'cl-reduce "cl-seq" "\
753 Reduce two-argument FUNCTION across SEQ.
755 Keywords supported: :start :end :from-end :initial-value :key
757 \(fn FUNCTION SEQ [KEYWORD VALUE]...)" nil nil)
759 (autoload 'cl-fill "cl-seq" "\
760 Fill the elements of SEQ with ITEM.
762 Keywords supported: :start :end
764 \(fn SEQ ITEM [KEYWORD VALUE]...)" nil nil)
766 (autoload 'cl-replace "cl-seq" "\
767 Replace the elements of SEQ1 with the elements of SEQ2.
768 SEQ1 is destructively modified, then returned.
770 Keywords supported: :start1 :end1 :start2 :end2
772 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
774 (autoload 'cl-remove "cl-seq" "\
775 Remove all occurrences of ITEM in SEQ.
776 This is a non-destructive function; it makes a copy of SEQ if necessary
777 to avoid corrupting the original SEQ.
779 Keywords supported: :test :test-not :key :count :start :end :from-end
781 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
783 (autoload 'cl-remove-if "cl-seq" "\
784 Remove all items satisfying PREDICATE in SEQ.
785 This is a non-destructive function; it makes a copy of SEQ if necessary
786 to avoid corrupting the original SEQ.
788 Keywords supported: :key :count :start :end :from-end
790 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
792 (autoload 'cl-remove-if-not "cl-seq" "\
793 Remove all items not satisfying PREDICATE in SEQ.
794 This is a non-destructive function; it makes a copy of SEQ if necessary
795 to avoid corrupting the original SEQ.
797 Keywords supported: :key :count :start :end :from-end
799 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
801 (autoload 'cl-delete "cl-seq" "\
802 Remove all occurrences of ITEM in SEQ.
803 This is a destructive function; it reuses the storage of SEQ whenever possible.
805 Keywords supported: :test :test-not :key :count :start :end :from-end
807 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
809 (autoload 'cl-delete-if "cl-seq" "\
810 Remove all items satisfying PREDICATE in SEQ.
811 This is a destructive function; it reuses the storage of SEQ whenever possible.
813 Keywords supported: :key :count :start :end :from-end
815 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
817 (autoload 'cl-delete-if-not "cl-seq" "\
818 Remove all items not satisfying PREDICATE in SEQ.
819 This is a destructive function; it reuses the storage of SEQ whenever possible.
821 Keywords supported: :key :count :start :end :from-end
823 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
825 (autoload 'cl-remove-duplicates "cl-seq" "\
826 Return a copy of SEQ with all duplicate elements removed.
828 Keywords supported: :test :test-not :key :start :end :from-end
830 \(fn SEQ [KEYWORD VALUE]...)" nil nil)
832 (autoload 'cl-delete-duplicates "cl-seq" "\
833 Remove all duplicate elements from SEQ (destructively).
835 Keywords supported: :test :test-not :key :start :end :from-end
837 \(fn SEQ [KEYWORD VALUE]...)" nil nil)
839 (autoload 'cl-substitute "cl-seq" "\
840 Substitute NEW for OLD in SEQ.
841 This is a non-destructive function; it makes a copy of SEQ if necessary
842 to avoid corrupting the original SEQ.
844 Keywords supported: :test :test-not :key :count :start :end :from-end
846 \(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)
848 (autoload 'cl-substitute-if "cl-seq" "\
849 Substitute NEW for all items satisfying PREDICATE in SEQ.
850 This is a non-destructive function; it makes a copy of SEQ if necessary
851 to avoid corrupting the original SEQ.
853 Keywords supported: :key :count :start :end :from-end
855 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
857 (autoload 'cl-substitute-if-not "cl-seq" "\
858 Substitute NEW for all items not satisfying PREDICATE in SEQ.
859 This is a non-destructive function; it makes a copy of SEQ if necessary
860 to avoid corrupting the original SEQ.
862 Keywords supported: :key :count :start :end :from-end
864 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
866 (autoload 'cl-nsubstitute "cl-seq" "\
867 Substitute NEW for OLD in SEQ.
868 This is a destructive function; it reuses the storage of SEQ whenever possible.
870 Keywords supported: :test :test-not :key :count :start :end :from-end
872 \(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)
874 (autoload 'cl-nsubstitute-if "cl-seq" "\
875 Substitute NEW for all items satisfying PREDICATE in SEQ.
876 This is a destructive function; it reuses the storage of SEQ whenever possible.
878 Keywords supported: :key :count :start :end :from-end
880 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
882 (autoload 'cl-nsubstitute-if-not "cl-seq" "\
883 Substitute NEW for all items not satisfying PREDICATE in SEQ.
884 This is a destructive function; it reuses the storage of SEQ whenever possible.
886 Keywords supported: :key :count :start :end :from-end
888 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
890 (autoload 'cl-find "cl-seq" "\
891 Find the first occurrence of ITEM in SEQ.
892 Return the matching ITEM, or nil if not found.
894 Keywords supported: :test :test-not :key :start :end :from-end
896 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
898 (autoload 'cl-find-if "cl-seq" "\
899 Find the first item satisfying PREDICATE in SEQ.
900 Return the matching item, or nil if not found.
902 Keywords supported: :key :start :end :from-end
904 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
906 (autoload 'cl-find-if-not "cl-seq" "\
907 Find the first item not satisfying PREDICATE in SEQ.
908 Return the matching item, or nil if not found.
910 Keywords supported: :key :start :end :from-end
912 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
914 (autoload 'cl-position "cl-seq" "\
915 Find the first occurrence of ITEM in SEQ.
916 Return the index of the matching item, or nil if not found.
918 Keywords supported: :test :test-not :key :start :end :from-end
920 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
922 (autoload 'cl-position-if "cl-seq" "\
923 Find the first item satisfying PREDICATE in SEQ.
924 Return the index of the matching item, or nil if not found.
926 Keywords supported: :key :start :end :from-end
928 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
930 (autoload 'cl-position-if-not "cl-seq" "\
931 Find the first item not satisfying PREDICATE in SEQ.
932 Return the index of the matching item, or nil if not found.
934 Keywords supported: :key :start :end :from-end
936 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
938 (autoload 'cl-count "cl-seq" "\
939 Count the number of occurrences of ITEM in SEQ.
941 Keywords supported: :test :test-not :key :start :end
943 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
945 (autoload 'cl-count-if "cl-seq" "\
946 Count the number of items satisfying PREDICATE in SEQ.
948 Keywords supported: :key :start :end
950 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
952 (autoload 'cl-count-if-not "cl-seq" "\
953 Count the number of items not satisfying PREDICATE in SEQ.
955 Keywords supported: :key :start :end
957 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
959 (autoload 'cl-mismatch "cl-seq" "\
960 Compare SEQ1 with SEQ2, return index of first mismatching element.
961 Return nil if the sequences match. If one sequence is a prefix of the
962 other, the return value indicates the end of the shorter sequence.
964 Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
966 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
968 (autoload 'cl-search "cl-seq" "\
969 Search for SEQ1 as a subsequence of SEQ2.
970 Return the index of the leftmost element of the first match found;
971 return nil if there are no matches.
973 Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
975 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
977 (autoload 'cl-sort "cl-seq" "\
978 Sort the argument SEQ according to PREDICATE.
979 This is a destructive function; it reuses the storage of SEQ if possible.
981 Keywords supported: :key
983 \(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)
985 (autoload 'cl-stable-sort "cl-seq" "\
986 Sort the argument SEQ stably according to PREDICATE.
987 This is a destructive function; it reuses the storage of SEQ if possible.
989 Keywords supported: :key
991 \(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)
993 (autoload 'cl-merge "cl-seq" "\
994 Destructively merge the two sequences to produce a new sequence.
995 TYPE is the sequence type to return, SEQ1 and SEQ2 are the two argument
996 sequences, and PREDICATE is a `less-than' predicate on the elements.
998 Keywords supported: :key
1000 \(fn TYPE SEQ1 SEQ2 PREDICATE [KEYWORD VALUE]...)" nil nil)
1002 (autoload 'cl-member "cl-seq" "\
1003 Find the first occurrence of ITEM in LIST.
1004 Return the sublist of LIST whose car is ITEM.
1006 Keywords supported: :test :test-not :key
1008 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1010 (put 'cl-member 'compiler-macro #'cl--compiler-macro-member)
1012 (autoload 'cl-member-if "cl-seq" "\
1013 Find the first item satisfying PREDICATE in LIST.
1014 Return the sublist of LIST whose car matches.
1016 Keywords supported: :key
1018 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1020 (autoload 'cl-member-if-not "cl-seq" "\
1021 Find the first item not satisfying PREDICATE in LIST.
1022 Return the sublist of LIST whose car matches.
1024 Keywords supported: :key
1026 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1028 (autoload 'cl--adjoin "cl-seq" "\
1031 \(fn CL-ITEM CL-LIST &rest CL-KEYS)" nil nil)
1033 (autoload 'cl-assoc "cl-seq" "\
1034 Find the first item whose car matches ITEM in LIST.
1036 Keywords supported: :test :test-not :key
1038 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1040 (put 'cl-assoc 'compiler-macro #'cl--compiler-macro-assoc)
1042 (autoload 'cl-assoc-if "cl-seq" "\
1043 Find the first item whose car satisfies PREDICATE in LIST.
1045 Keywords supported: :key
1047 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1049 (autoload 'cl-assoc-if-not "cl-seq" "\
1050 Find the first item whose car does not satisfy PREDICATE in LIST.
1052 Keywords supported: :key
1054 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1056 (autoload 'cl-rassoc "cl-seq" "\
1057 Find the first item whose cdr matches ITEM in LIST.
1059 Keywords supported: :test :test-not :key
1061 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1063 (autoload 'cl-rassoc-if "cl-seq" "\
1064 Find the first item whose cdr satisfies PREDICATE in LIST.
1066 Keywords supported: :key
1068 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1070 (autoload 'cl-rassoc-if-not "cl-seq" "\
1071 Find the first item whose cdr does not satisfy PREDICATE in LIST.
1073 Keywords supported: :key
1075 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1077 (autoload 'cl-union "cl-seq" "\
1078 Combine LIST1 and LIST2 using a set-union operation.
1079 The resulting list contains all items that appear in either LIST1 or LIST2.
1080 This is a non-destructive function; it makes a copy of the data if necessary
1081 to avoid corrupting the original LIST1 and LIST2.
1083 Keywords supported: :test :test-not :key
1085 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1087 (autoload 'cl-nunion "cl-seq" "\
1088 Combine LIST1 and LIST2 using a set-union operation.
1089 The resulting list contains all items that appear in either LIST1 or LIST2.
1090 This is a destructive function; it reuses the storage of LIST1 and LIST2
1091 whenever possible.
1093 Keywords supported: :test :test-not :key
1095 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1097 (autoload 'cl-intersection "cl-seq" "\
1098 Combine LIST1 and LIST2 using a set-intersection operation.
1099 The resulting list contains all items that appear in both LIST1 and LIST2.
1100 This is a non-destructive function; it makes a copy of the data if necessary
1101 to avoid corrupting the original LIST1 and LIST2.
1103 Keywords supported: :test :test-not :key
1105 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1107 (autoload 'cl-nintersection "cl-seq" "\
1108 Combine LIST1 and LIST2 using a set-intersection operation.
1109 The resulting list contains all items that appear in both LIST1 and LIST2.
1110 This is a destructive function; it reuses the storage of LIST1 and LIST2
1111 whenever possible.
1113 Keywords supported: :test :test-not :key
1115 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1117 (autoload 'cl-set-difference "cl-seq" "\
1118 Combine LIST1 and LIST2 using a set-difference operation.
1119 The resulting list contains all items that appear in LIST1 but not LIST2.
1120 This is a non-destructive function; it makes a copy of the data if necessary
1121 to avoid corrupting the original LIST1 and LIST2.
1123 Keywords supported: :test :test-not :key
1125 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1127 (autoload 'cl-nset-difference "cl-seq" "\
1128 Combine LIST1 and LIST2 using a set-difference operation.
1129 The resulting list contains all items that appear in LIST1 but not LIST2.
1130 This is a destructive function; it reuses the storage of LIST1 and LIST2
1131 whenever possible.
1133 Keywords supported: :test :test-not :key
1135 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1137 (autoload 'cl-set-exclusive-or "cl-seq" "\
1138 Combine LIST1 and LIST2 using a set-exclusive-or operation.
1139 The resulting list contains all items appearing in exactly one of LIST1, LIST2.
1140 This is a non-destructive function; it makes a copy of the data if necessary
1141 to avoid corrupting the original LIST1 and LIST2.
1143 Keywords supported: :test :test-not :key
1145 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1147 (autoload 'cl-nset-exclusive-or "cl-seq" "\
1148 Combine LIST1 and LIST2 using a set-exclusive-or operation.
1149 The resulting list contains all items appearing in exactly one of LIST1, LIST2.
1150 This is a destructive function; it reuses the storage of LIST1 and LIST2
1151 whenever possible.
1153 Keywords supported: :test :test-not :key
1155 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1157 (autoload 'cl-subsetp "cl-seq" "\
1158 Return true if LIST1 is a subset of LIST2.
1159 I.e., if every element of LIST1 also appears in LIST2.
1161 Keywords supported: :test :test-not :key
1163 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1165 (autoload 'cl-subst-if "cl-seq" "\
1166 Substitute NEW for elements matching PREDICATE in TREE (non-destructively).
1167 Return a copy of TREE with all matching elements replaced by NEW.
1169 Keywords supported: :key
1171 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1173 (autoload 'cl-subst-if-not "cl-seq" "\
1174 Substitute NEW for elts not matching PREDICATE in TREE (non-destructively).
1175 Return a copy of TREE with all non-matching elements replaced by NEW.
1177 Keywords supported: :key
1179 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1181 (autoload 'cl-nsubst "cl-seq" "\
1182 Substitute NEW for OLD everywhere in TREE (destructively).
1183 Any element of TREE which is `eql' to OLD is changed to NEW (via a call
1184 to `setcar').
1186 Keywords supported: :test :test-not :key
1188 \(fn NEW OLD TREE [KEYWORD VALUE]...)" nil nil)
1190 (autoload 'cl-nsubst-if "cl-seq" "\
1191 Substitute NEW for elements matching PREDICATE in TREE (destructively).
1192 Any element of TREE which matches is changed to NEW (via a call to `setcar').
1194 Keywords supported: :key
1196 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1198 (autoload 'cl-nsubst-if-not "cl-seq" "\
1199 Substitute NEW for elements not matching PREDICATE in TREE (destructively).
1200 Any element of TREE which matches is changed to NEW (via a call to `setcar').
1202 Keywords supported: :key
1204 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1206 (autoload 'cl-sublis "cl-seq" "\
1207 Perform substitutions indicated by ALIST in TREE (non-destructively).
1208 Return a copy of TREE with all matching elements replaced.
1210 Keywords supported: :test :test-not :key
1212 \(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)
1214 (autoload 'cl-nsublis "cl-seq" "\
1215 Perform substitutions indicated by ALIST in TREE (destructively).
1216 Any matching element of TREE is changed via a call to `setcar'.
1218 Keywords supported: :test :test-not :key
1220 \(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)
1222 (autoload 'cl-tree-equal "cl-seq" "\
1223 Return t if trees TREE1 and TREE2 have `eql' leaves.
1224 Atoms are compared by `eql'; cons cells are compared recursively.
1226 Keywords supported: :test :test-not :key
1228 \(fn TREE1 TREE2 [KEYWORD VALUE]...)" nil nil)
1230 ;;;***
1232 ;; Local Variables:
1233 ;; version-control: never
1234 ;; no-byte-compile: t
1235 ;; no-update-autoloads: t
1236 ;; coding: utf-8
1237 ;; End:
1238 ;;; cl-loaddefs.el ends here