Auto-commit of loaddefs files.
[emacs.git] / lisp / emacs-lisp / cl-loaddefs.el
blobc9324174dceaf0654b0f171a73ce39c9f2f15aa4
1 ;;; cl-loaddefs.el --- automatically extracted autoloads
2 ;;
3 ;;; Code:
5 \f
6 ;;;### (autoloads (cl-prettyexpand cl-remprop cl--do-remf cl--set-getf
7 ;;;;;; cl-getf cl-get cl-tailp cl-list-length cl-nreconc cl-revappend
8 ;;;;;; cl-concatenate cl-subseq cl-float-limits cl-random-state-p
9 ;;;;;; cl-make-random-state cl-random cl-signum cl-rem cl-mod cl-round
10 ;;;;;; cl-truncate cl-ceiling cl-floor cl-isqrt cl-lcm cl-gcd cl--progv-before
11 ;;;;;; cl--set-frame-visible-p cl--map-overlays cl--map-intervals
12 ;;;;;; cl--map-keymap-recursively cl-notevery cl-notany cl-every
13 ;;;;;; cl-some cl-mapcon cl-mapcan cl-mapl cl-maplist cl-map cl--mapcar-many
14 ;;;;;; cl-equalp cl-coerce) "cl-extra" "cl-extra.el" "1f486111e93d119ceb6e95c434e3fd4b")
15 ;;; Generated autoloads from cl-extra.el
17 (autoload 'cl-coerce "cl-extra" "\
18 Coerce OBJECT to type TYPE.
19 TYPE is a Common Lisp type specifier.
21 \(fn OBJECT TYPE)" nil nil)
23 (autoload 'cl-equalp "cl-extra" "\
24 Return t if two Lisp objects have similar structures and contents.
25 This is like `equal', except that it accepts numerically equal
26 numbers of different types (float vs. integer), and also compares
27 strings case-insensitively.
29 \(fn X Y)" nil nil)
31 (autoload 'cl--mapcar-many "cl-extra" "\
34 \(fn CL-FUNC CL-SEQS)" nil nil)
36 (autoload 'cl-map "cl-extra" "\
37 Map a FUNCTION across one or more SEQUENCEs, returning a sequence.
38 TYPE is the sequence type to return.
40 \(fn TYPE FUNCTION SEQUENCE...)" nil nil)
42 (autoload 'cl-maplist "cl-extra" "\
43 Map FUNCTION to each sublist of LIST or LISTs.
44 Like `mapcar', except applies to lists and their cdr's rather than to
45 the elements themselves.
47 \(fn FUNCTION LIST...)" nil nil)
49 (autoload 'cl-mapl "cl-extra" "\
50 Like `cl-maplist', but does not accumulate values returned by the function.
52 \(fn FUNCTION LIST...)" nil nil)
54 (autoload 'cl-mapcan "cl-extra" "\
55 Like `mapcar', but nconc's together the values returned by the function.
57 \(fn FUNCTION SEQUENCE...)" nil nil)
59 (autoload 'cl-mapcon "cl-extra" "\
60 Like `cl-maplist', but nconc's together the values returned by the function.
62 \(fn FUNCTION LIST...)" nil nil)
64 (autoload 'cl-some "cl-extra" "\
65 Return true if PREDICATE is true of any element of SEQ or SEQs.
66 If so, return the true (non-nil) value returned by PREDICATE.
68 \(fn PREDICATE SEQ...)" nil nil)
70 (autoload 'cl-every "cl-extra" "\
71 Return true if PREDICATE is true of every element of SEQ or SEQs.
73 \(fn PREDICATE SEQ...)" nil nil)
75 (autoload 'cl-notany "cl-extra" "\
76 Return true if PREDICATE is false of every element of SEQ or SEQs.
78 \(fn PREDICATE SEQ...)" nil nil)
80 (autoload 'cl-notevery "cl-extra" "\
81 Return true if PREDICATE is false of some element of SEQ or SEQs.
83 \(fn PREDICATE SEQ...)" nil nil)
85 (autoload 'cl--map-keymap-recursively "cl-extra" "\
88 \(fn CL-FUNC-REC CL-MAP &optional CL-BASE)" nil nil)
90 (autoload 'cl--map-intervals "cl-extra" "\
93 \(fn CL-FUNC &optional CL-WHAT CL-PROP CL-START CL-END)" nil nil)
95 (autoload 'cl--map-overlays "cl-extra" "\
98 \(fn CL-FUNC &optional CL-BUFFER CL-START CL-END CL-ARG)" nil nil)
100 (autoload 'cl--set-frame-visible-p "cl-extra" "\
103 \(fn FRAME VAL)" nil nil)
105 (autoload 'cl--progv-before "cl-extra" "\
108 \(fn SYMS VALUES)" nil nil)
110 (autoload 'cl-gcd "cl-extra" "\
111 Return the greatest common divisor of the arguments.
113 \(fn &rest ARGS)" nil nil)
115 (autoload 'cl-lcm "cl-extra" "\
116 Return the least common multiple of the arguments.
118 \(fn &rest ARGS)" nil nil)
120 (autoload 'cl-isqrt "cl-extra" "\
121 Return the integer square root of the argument.
123 \(fn X)" nil nil)
125 (autoload 'cl-floor "cl-extra" "\
126 Return a list of the floor of X and the fractional part of X.
127 With two arguments, return floor and remainder of their quotient.
129 \(fn X &optional Y)" nil nil)
131 (autoload 'cl-ceiling "cl-extra" "\
132 Return a list of the ceiling of X and the fractional part of X.
133 With two arguments, return ceiling and remainder of their quotient.
135 \(fn X &optional Y)" nil nil)
137 (autoload 'cl-truncate "cl-extra" "\
138 Return a list of the integer part of X and the fractional part of X.
139 With two arguments, return truncation and remainder of their quotient.
141 \(fn X &optional Y)" nil nil)
143 (autoload 'cl-round "cl-extra" "\
144 Return a list of X rounded to the nearest integer and the remainder.
145 With two arguments, return rounding and remainder of their quotient.
147 \(fn X &optional Y)" nil nil)
149 (autoload 'cl-mod "cl-extra" "\
150 The remainder of X divided by Y, with the same sign as Y.
152 \(fn X Y)" nil nil)
154 (autoload 'cl-rem "cl-extra" "\
155 The remainder of X divided by Y, with the same sign as X.
157 \(fn X Y)" nil nil)
159 (autoload 'cl-signum "cl-extra" "\
160 Return 1 if X is positive, -1 if negative, 0 if zero.
162 \(fn X)" nil nil)
164 (autoload 'cl-random "cl-extra" "\
165 Return a random nonnegative number less than LIM, an integer or float.
166 Optional second arg STATE is a random-state object.
168 \(fn LIM &optional STATE)" nil nil)
170 (autoload 'cl-make-random-state "cl-extra" "\
171 Return a copy of random-state STATE, or of the internal state if omitted.
172 If STATE is t, return a new state object seeded from the time of day.
174 \(fn &optional STATE)" nil nil)
176 (autoload 'cl-random-state-p "cl-extra" "\
177 Return t if OBJECT is a random-state object.
179 \(fn OBJECT)" nil nil)
181 (autoload 'cl-float-limits "cl-extra" "\
182 Initialize the Common Lisp floating-point parameters.
183 This sets the values of: `cl-most-positive-float', `cl-most-negative-float',
184 `cl-least-positive-float', `cl-least-negative-float', `cl-float-epsilon',
185 `cl-float-negative-epsilon', `cl-least-positive-normalized-float', and
186 `cl-least-negative-normalized-float'.
188 \(fn)" nil nil)
190 (autoload 'cl-subseq "cl-extra" "\
191 Return the subsequence of SEQ from START to END.
192 If END is omitted, it defaults to the length of the sequence.
193 If START or END is negative, it counts from the end.
195 \(fn SEQ START &optional END)" nil nil)
197 (autoload 'cl-concatenate "cl-extra" "\
198 Concatenate, into a sequence of type TYPE, the argument SEQUENCEs.
200 \(fn TYPE SEQUENCE...)" nil nil)
202 (autoload 'cl-revappend "cl-extra" "\
203 Equivalent to (append (reverse X) Y).
205 \(fn X Y)" nil nil)
207 (autoload 'cl-nreconc "cl-extra" "\
208 Equivalent to (nconc (nreverse X) Y).
210 \(fn X Y)" nil nil)
212 (autoload 'cl-list-length "cl-extra" "\
213 Return the length of list X. Return nil if list is circular.
215 \(fn X)" nil nil)
217 (autoload 'cl-tailp "cl-extra" "\
218 Return true if SUBLIST is a tail of LIST.
220 \(fn SUBLIST LIST)" nil nil)
222 (autoload 'cl-get "cl-extra" "\
223 Return the value of SYMBOL's PROPNAME property, or DEFAULT if none.
225 \(fn SYMBOL PROPNAME &optional DEFAULT)" nil nil)
227 (put 'cl-get 'compiler-macro #'cl--compiler-macro-get)
229 (autoload 'cl-getf "cl-extra" "\
230 Search PROPLIST for property PROPNAME; return its value or DEFAULT.
231 PROPLIST is a list of the sort returned by `symbol-plist'.
233 \(fn PROPLIST PROPNAME &optional DEFAULT)" nil nil)
235 (autoload 'cl--set-getf "cl-extra" "\
238 \(fn PLIST TAG VAL)" nil nil)
240 (autoload 'cl--do-remf "cl-extra" "\
243 \(fn PLIST TAG)" nil nil)
245 (autoload 'cl-remprop "cl-extra" "\
246 Remove from SYMBOL's plist the property PROPNAME and its value.
248 \(fn SYMBOL PROPNAME)" nil nil)
250 (autoload 'cl-prettyexpand "cl-extra" "\
253 \(fn FORM &optional FULL)" nil nil)
255 ;;;***
257 ;;;### (autoloads (cl--compiler-macro-cXXr cl--compiler-macro-list*
258 ;;;;;; cl--compiler-macro-adjoin cl-defsubst cl-compiler-macroexpand
259 ;;;;;; cl-define-compiler-macro cl-assert cl-check-type cl-typep
260 ;;;;;; cl-deftype cl-struct-setf-expander cl-defstruct cl-define-modify-macro
261 ;;;;;; cl-callf2 cl-callf cl-letf* cl-letf cl-rotatef cl-shiftf
262 ;;;;;; cl-remf cl-do-pop cl-psetf cl-setf cl-get-setf-method cl-defsetf
263 ;;;;;; cl-define-setf-expander cl-declare cl-the cl-locally cl-multiple-value-setq
264 ;;;;;; cl-multiple-value-bind cl-symbol-macrolet cl-macrolet cl-labels
265 ;;;;;; cl-flet cl-progv cl-psetq cl-do-all-symbols cl-do-symbols
266 ;;;;;; cl-dotimes cl-dolist cl-do* cl-do cl-loop cl-return-from
267 ;;;;;; cl-return cl-block cl-etypecase cl-typecase cl-ecase cl-case
268 ;;;;;; cl-load-time-value cl-eval-when cl-destructuring-bind cl-function
269 ;;;;;; cl-defmacro cl-defun cl-gentemp cl-gensym) "cl-macs" "cl-macs.el"
270 ;;;;;; "ed740fe712e6d259cb14a1ca5576332f")
271 ;;; Generated autoloads from cl-macs.el
273 (autoload 'cl-gensym "cl-macs" "\
274 Generate a new uninterned symbol.
275 The name is made by appending a number to PREFIX, default \"G\".
277 \(fn &optional PREFIX)" nil nil)
279 (autoload 'cl-gentemp "cl-macs" "\
280 Generate a new interned symbol with a unique name.
281 The name is made by appending a number to PREFIX, default \"G\".
283 \(fn &optional PREFIX)" nil nil)
285 (autoload 'cl-defun "cl-macs" "\
286 Define NAME as a function.
287 Like normal `defun', except ARGLIST allows full Common Lisp conventions,
288 and BODY is implicitly surrounded by (cl-block NAME ...).
290 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil t)
292 (put 'cl-defun 'doc-string-elt '3)
294 (put 'cl-defun 'lisp-indent-function '2)
296 (autoload 'cl-defmacro "cl-macs" "\
297 Define NAME as a macro.
298 Like normal `defmacro', except ARGLIST allows full Common Lisp conventions,
299 and BODY is implicitly surrounded by (cl-block NAME ...).
301 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil t)
303 (put 'cl-defmacro 'doc-string-elt '3)
305 (put 'cl-defmacro 'lisp-indent-function '2)
307 (autoload 'cl-function "cl-macs" "\
308 Introduce a function.
309 Like normal `function', except that if argument is a lambda form,
310 its argument list allows full Common Lisp conventions.
312 \(fn FUNC)" nil t)
314 (autoload 'cl-destructuring-bind "cl-macs" "\
317 \(fn ARGS EXPR &rest BODY)" nil t)
319 (put 'cl-destructuring-bind 'lisp-indent-function '2)
321 (autoload 'cl-eval-when "cl-macs" "\
322 Control when BODY is evaluated.
323 If `compile' is in WHEN, BODY is evaluated when compiled at top-level.
324 If `load' is in WHEN, BODY is evaluated when loaded after top-level compile.
325 If `eval' is in WHEN, BODY is evaluated when interpreted or at non-top-level.
327 \(fn (WHEN...) BODY...)" nil t)
329 (put 'cl-eval-when 'lisp-indent-function '1)
331 (autoload 'cl-load-time-value "cl-macs" "\
332 Like `progn', but evaluates the body at load time.
333 The result of the body appears to the compiler as a quoted constant.
335 \(fn FORM &optional READ-ONLY)" nil t)
337 (autoload 'cl-case "cl-macs" "\
338 Eval EXPR and choose among clauses on that value.
339 Each clause looks like (KEYLIST BODY...). EXPR is evaluated and compared
340 against each key in each KEYLIST; the corresponding BODY is evaluated.
341 If no clause succeeds, cl-case returns nil. A single atom may be used in
342 place of a KEYLIST of one atom. A KEYLIST of t or `otherwise' is
343 allowed only in the final clause, and matches if no other keys match.
344 Key values are compared by `eql'.
346 \(fn EXPR (KEYLIST BODY...)...)" nil t)
348 (put 'cl-case 'lisp-indent-function '1)
350 (autoload 'cl-ecase "cl-macs" "\
351 Like `cl-case', but error if no cl-case fits.
352 `otherwise'-clauses are not allowed.
354 \(fn EXPR (KEYLIST BODY...)...)" nil t)
356 (put 'cl-ecase 'lisp-indent-function '1)
358 (autoload 'cl-typecase "cl-macs" "\
359 Evals EXPR, chooses among clauses on that value.
360 Each clause looks like (TYPE BODY...). EXPR is evaluated and, if it
361 satisfies TYPE, the corresponding BODY is evaluated. If no clause succeeds,
362 cl-typecase returns nil. A TYPE of t or `otherwise' is allowed only in the
363 final clause, and matches if no other keys match.
365 \(fn EXPR (TYPE BODY...)...)" nil t)
367 (put 'cl-typecase 'lisp-indent-function '1)
369 (autoload 'cl-etypecase "cl-macs" "\
370 Like `cl-typecase', but error if no case fits.
371 `otherwise'-clauses are not allowed.
373 \(fn EXPR (TYPE BODY...)...)" nil t)
375 (put 'cl-etypecase 'lisp-indent-function '1)
377 (autoload 'cl-block "cl-macs" "\
378 Define a lexically-scoped block named NAME.
379 NAME may be any symbol. Code inside the BODY forms can call `cl-return-from'
380 to jump prematurely out of the block. This differs from `catch' and `throw'
381 in two respects: First, the NAME is an unevaluated symbol rather than a
382 quoted symbol or other form; and second, NAME is lexically rather than
383 dynamically scoped: Only references to it within BODY will work. These
384 references may appear inside macro expansions, but not inside functions
385 called from BODY.
387 \(fn NAME &rest BODY)" nil t)
389 (put 'cl-block 'lisp-indent-function '1)
391 (autoload 'cl-return "cl-macs" "\
392 Return from the block named nil.
393 This is equivalent to `(cl-return-from nil RESULT)'.
395 \(fn &optional RESULT)" nil t)
397 (autoload 'cl-return-from "cl-macs" "\
398 Return from the block named NAME.
399 This jumps out to the innermost enclosing `(cl-block NAME ...)' form,
400 returning RESULT from that form (or nil if RESULT is omitted).
401 This is compatible with Common Lisp, but note that `defun' and
402 `defmacro' do not create implicit blocks as they do in Common Lisp.
404 \(fn NAME &optional RESULT)" nil t)
406 (put 'cl-return-from 'lisp-indent-function '1)
408 (autoload 'cl-loop "cl-macs" "\
409 The Common Lisp `cl-loop' macro.
410 Valid clauses are:
411 for VAR from/upfrom/downfrom NUM to/upto/downto/above/below NUM by NUM,
412 for VAR in LIST by FUNC, for VAR on LIST by FUNC, for VAR = INIT then EXPR,
413 for VAR across ARRAY, repeat NUM, with VAR = INIT, while COND, until COND,
414 always COND, never COND, thereis COND, collect EXPR into VAR,
415 append EXPR into VAR, nconc EXPR into VAR, sum EXPR into VAR,
416 count EXPR into VAR, maximize EXPR into VAR, minimize EXPR into VAR,
417 if COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
418 unless COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
419 do EXPRS..., initially EXPRS..., finally EXPRS..., return EXPR,
420 finally return EXPR, named NAME.
422 \(fn CLAUSE...)" nil t)
424 (autoload 'cl-do "cl-macs" "\
425 The Common Lisp `cl-do' loop.
427 \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil t)
429 (put 'cl-do 'lisp-indent-function '2)
431 (autoload 'cl-do* "cl-macs" "\
432 The Common Lisp `cl-do*' loop.
434 \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil t)
436 (put 'cl-do* 'lisp-indent-function '2)
438 (autoload 'cl-dolist "cl-macs" "\
439 Loop over a list.
440 Evaluate BODY with VAR bound to each `car' from LIST, in turn.
441 Then evaluate RESULT to get return value, default nil.
442 An implicit nil block is established around the loop.
444 \(fn (VAR LIST [RESULT]) BODY...)" nil t)
446 (autoload 'cl-dotimes "cl-macs" "\
447 Loop a certain number of times.
448 Evaluate BODY with VAR bound to successive integers from 0, inclusive,
449 to COUNT, exclusive. Then evaluate RESULT to get return value, default
450 nil.
452 \(fn (VAR COUNT [RESULT]) BODY...)" nil t)
454 (autoload 'cl-do-symbols "cl-macs" "\
455 Loop over all symbols.
456 Evaluate BODY with VAR bound to each interned symbol, or to each symbol
457 from OBARRAY.
459 \(fn (VAR [OBARRAY [RESULT]]) BODY...)" nil t)
461 (put 'cl-do-symbols 'lisp-indent-function '1)
463 (autoload 'cl-do-all-symbols "cl-macs" "\
466 \(fn SPEC &rest BODY)" nil t)
468 (put 'cl-do-all-symbols 'lisp-indent-function '1)
470 (autoload 'cl-psetq "cl-macs" "\
471 Set SYMs to the values VALs in parallel.
472 This is like `setq', except that all VAL forms are evaluated (in order)
473 before assigning any symbols SYM to the corresponding values.
475 \(fn SYM VAL SYM VAL ...)" nil t)
477 (autoload 'cl-progv "cl-macs" "\
478 Bind SYMBOLS to VALUES dynamically in BODY.
479 The forms SYMBOLS and VALUES are evaluated, and must evaluate to lists.
480 Each symbol in the first list is bound to the corresponding value in the
481 second list (or made unbound if VALUES is shorter than SYMBOLS); then the
482 BODY forms are executed and their result is returned. This is much like
483 a `let' form, except that the list of symbols can be computed at run-time.
485 \(fn SYMBOLS VALUES &rest BODY)" nil t)
487 (put 'cl-progv 'lisp-indent-function '2)
489 (autoload 'cl-flet "cl-macs" "\
490 Make temporary function definitions.
491 Like `cl-labels' but the definitions are not recursive.
493 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil t)
495 (put 'cl-flet 'lisp-indent-function '1)
497 (autoload 'cl-labels "cl-macs" "\
498 Make temporary function bindings.
499 The bindings can be recursive. Assumes the use of `lexical-binding'.
501 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil t)
503 (put 'cl-labels 'lisp-indent-function '1)
505 (autoload 'cl-macrolet "cl-macs" "\
506 Make temporary macro definitions.
507 This is like `cl-flet', but for macros instead of functions.
509 \(fn ((NAME ARGLIST BODY...) ...) FORM...)" nil t)
511 (put 'cl-macrolet 'lisp-indent-function '1)
513 (autoload 'cl-symbol-macrolet "cl-macs" "\
514 Make symbol macro definitions.
515 Within the body FORMs, references to the variable NAME will be replaced
516 by EXPANSION, and (setq NAME ...) will act like (cl-setf EXPANSION ...).
518 \(fn ((NAME EXPANSION) ...) FORM...)" nil t)
520 (put 'cl-symbol-macrolet 'lisp-indent-function '1)
522 (autoload 'cl-multiple-value-bind "cl-macs" "\
523 Collect multiple return values.
524 FORM must return a list; the BODY is then executed with the first N elements
525 of this list bound (`let'-style) to each of the symbols SYM in turn. This
526 is analogous to the Common Lisp `cl-multiple-value-bind' macro, using lists to
527 simulate true multiple return values. For compatibility, (cl-values A B C) is
528 a synonym for (list A B C).
530 \(fn (SYM...) FORM BODY)" nil t)
532 (put 'cl-multiple-value-bind 'lisp-indent-function '2)
534 (autoload 'cl-multiple-value-setq "cl-macs" "\
535 Collect multiple return values.
536 FORM must return a list; the first N elements of this list are stored in
537 each of the symbols SYM in turn. This is analogous to the Common Lisp
538 `cl-multiple-value-setq' macro, using lists to simulate true multiple return
539 values. For compatibility, (cl-values A B C) is a synonym for (list A B C).
541 \(fn (SYM...) FORM)" nil t)
543 (put 'cl-multiple-value-setq 'lisp-indent-function '1)
545 (autoload 'cl-locally "cl-macs" "\
548 \(fn &rest BODY)" nil t)
550 (autoload 'cl-the "cl-macs" "\
553 \(fn TYPE FORM)" nil t)
555 (put 'cl-the 'lisp-indent-function '1)
557 (autoload 'cl-declare "cl-macs" "\
558 Declare SPECS about the current function while compiling.
559 For instance
561 (cl-declare (warn 0))
563 will turn off byte-compile warnings in the function.
564 See Info node `(cl)Declarations' for details.
566 \(fn &rest SPECS)" nil t)
568 (autoload 'cl-define-setf-expander "cl-macs" "\
569 Define a `cl-setf' method.
570 This method shows how to handle `cl-setf's to places of the form (NAME ARGS...).
571 The argument forms ARGS are bound according to ARGLIST, as if NAME were
572 going to be expanded as a macro, then the BODY forms are executed and must
573 return a list of five elements: a temporary-variables list, a value-forms
574 list, a store-variables list (of length one), a store-form, and an access-
575 form. See `cl-defsetf' for a simpler way to define most setf-methods.
577 \(fn NAME ARGLIST BODY...)" nil t)
579 (autoload 'cl-defsetf "cl-macs" "\
580 Define a `cl-setf' method.
581 This macro is an easy-to-use substitute for `cl-define-setf-expander' that works
582 well for simple place forms. In the simple `cl-defsetf' form, `cl-setf's of
583 the form (cl-setf (NAME ARGS...) VAL) are transformed to function or macro
584 calls of the form (FUNC ARGS... VAL). Example:
586 (cl-defsetf aref aset)
588 Alternate form: (cl-defsetf NAME ARGLIST (STORE) BODY...).
589 Here, the above `cl-setf' call is expanded by binding the argument forms ARGS
590 according to ARGLIST, binding the value form VAL to STORE, then executing
591 BODY, which must return a Lisp form that does the necessary `cl-setf' operation.
592 Actually, ARGLIST and STORE may be bound to temporary variables which are
593 introduced automatically to preserve proper execution order of the arguments.
594 Example:
596 (cl-defsetf nth (n x) (v) `(setcar (nthcdr ,n ,x) ,v))
598 \(fn NAME [FUNC | ARGLIST (STORE) BODY...])" nil t)
600 (autoload 'cl-get-setf-method "cl-macs" "\
601 Return a list of five values describing the setf-method for PLACE.
602 PLACE may be any Lisp form which can appear as the PLACE argument to
603 a macro like `cl-setf' or `cl-incf'.
605 \(fn PLACE &optional ENV)" nil nil)
607 (autoload 'cl-setf "cl-macs" "\
608 Set each PLACE to the value of its VAL.
609 This is a generalized version of `setq'; the PLACEs may be symbolic
610 references such as (car x) or (aref x i), as well as plain symbols.
611 For example, (cl-setf (cl-cadar x) y) is equivalent to (setcar (cdar x) y).
612 The return value is the last VAL in the list.
614 \(fn PLACE VAL PLACE VAL ...)" nil t)
616 (autoload 'cl-psetf "cl-macs" "\
617 Set PLACEs to the values VALs in parallel.
618 This is like `cl-setf', except that all VAL forms are evaluated (in order)
619 before assigning any PLACEs to the corresponding values.
621 \(fn PLACE VAL PLACE VAL ...)" nil t)
623 (autoload 'cl-do-pop "cl-macs" "\
626 \(fn PLACE)" nil nil)
628 (autoload 'cl-remf "cl-macs" "\
629 Remove TAG from property list PLACE.
630 PLACE may be a symbol, or any generalized variable allowed by `cl-setf'.
631 The form returns true if TAG was found and removed, nil otherwise.
633 \(fn PLACE TAG)" nil t)
635 (autoload 'cl-shiftf "cl-macs" "\
636 Shift left among PLACEs.
637 Example: (cl-shiftf A B C) sets A to B, B to C, and returns the old A.
638 Each PLACE may be a symbol, or any generalized variable allowed by `cl-setf'.
640 \(fn PLACE... VAL)" nil t)
642 (autoload 'cl-rotatef "cl-macs" "\
643 Rotate left among PLACEs.
644 Example: (cl-rotatef A B C) sets A to B, B to C, and C to A. It returns nil.
645 Each PLACE may be a symbol, or any generalized variable allowed by `cl-setf'.
647 \(fn PLACE...)" nil t)
649 (autoload 'cl-letf "cl-macs" "\
650 Temporarily bind to PLACEs.
651 This is the analogue of `let', but with generalized variables (in the
652 sense of `cl-setf') for the PLACEs. Each PLACE is set to the corresponding
653 VALUE, then the BODY forms are executed. On exit, either normally or
654 because of a `throw' or error, the PLACEs are set back to their original
655 values. Note that this macro is *not* available in Common Lisp.
656 As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
657 the PLACE is not modified before executing BODY.
659 \(fn ((PLACE VALUE) ...) BODY...)" nil t)
661 (put 'cl-letf 'lisp-indent-function '1)
663 (autoload 'cl-letf* "cl-macs" "\
664 Temporarily bind to PLACEs.
665 This is the analogue of `let*', but with generalized variables (in the
666 sense of `cl-setf') for the PLACEs. Each PLACE is set to the corresponding
667 VALUE, then the BODY forms are executed. On exit, either normally or
668 because of a `throw' or error, the PLACEs are set back to their original
669 values. Note that this macro is *not* available in Common Lisp.
670 As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
671 the PLACE is not modified before executing BODY.
673 \(fn ((PLACE VALUE) ...) BODY...)" nil t)
675 (put 'cl-letf* 'lisp-indent-function '1)
677 (autoload 'cl-callf "cl-macs" "\
678 Set PLACE to (FUNC PLACE ARGS...).
679 FUNC should be an unquoted function name. PLACE may be a symbol,
680 or any generalized variable allowed by `cl-setf'.
682 \(fn FUNC PLACE ARGS...)" nil t)
684 (put 'cl-callf 'lisp-indent-function '2)
686 (autoload 'cl-callf2 "cl-macs" "\
687 Set PLACE to (FUNC ARG1 PLACE ARGS...).
688 Like `cl-callf', but PLACE is the second argument of FUNC, not the first.
690 \(fn FUNC ARG1 PLACE ARGS...)" nil t)
692 (put 'cl-callf2 'lisp-indent-function '3)
694 (autoload 'cl-define-modify-macro "cl-macs" "\
695 Define a `cl-setf'-like modify macro.
696 If NAME is called, it combines its PLACE argument with the other arguments
697 from ARGLIST using FUNC: (cl-define-modify-macro cl-incf (&optional (n 1)) +)
699 \(fn NAME ARGLIST FUNC &optional DOC)" nil t)
701 (autoload 'cl-defstruct "cl-macs" "\
702 Define a struct type.
703 This macro defines a new data type called NAME that stores data
704 in SLOTs. It defines a `make-NAME' constructor, a `copy-NAME'
705 copier, a `NAME-p' predicate, and slot accessors named `NAME-SLOT'.
706 You can use the accessors to set the corresponding slots, via `cl-setf'.
708 NAME may instead take the form (NAME OPTIONS...), where each
709 OPTION is either a single keyword or (KEYWORD VALUE).
710 See Info node `(cl)Structures' for a list of valid keywords.
712 Each SLOT may instead take the form (SLOT SLOT-OPTS...), where
713 SLOT-OPTS are keyword-value pairs for that slot. Currently, only
714 one keyword is supported, `:read-only'. If this has a non-nil
715 value, that slot cannot be set via `cl-setf'.
717 \(fn NAME SLOTS...)" nil t)
719 (put 'cl-defstruct 'doc-string-elt '2)
721 (autoload 'cl-struct-setf-expander "cl-macs" "\
724 \(fn X NAME ACCESSOR PRED-FORM POS)" nil nil)
726 (autoload 'cl-deftype "cl-macs" "\
727 Define NAME as a new data type.
728 The type name can then be used in `cl-typecase', `cl-check-type', etc.
730 \(fn NAME ARGLIST &rest BODY)" nil t)
732 (put 'cl-deftype 'doc-string-elt '3)
734 (autoload 'cl-typep "cl-macs" "\
735 Check that OBJECT is of type TYPE.
736 TYPE is a Common Lisp-style type specifier.
738 \(fn OBJECT TYPE)" nil nil)
740 (autoload 'cl-check-type "cl-macs" "\
741 Verify that FORM is of type TYPE; signal an error if not.
742 STRING is an optional description of the desired type.
744 \(fn FORM TYPE &optional STRING)" nil t)
746 (autoload 'cl-assert "cl-macs" "\
747 Verify that FORM returns non-nil; signal an error if not.
748 Second arg SHOW-ARGS means to include arguments of FORM in message.
749 Other args STRING and ARGS... are arguments to be passed to `error'.
750 They are not evaluated unless the assertion fails. If STRING is
751 omitted, a default message listing FORM itself is used.
753 \(fn FORM &optional SHOW-ARGS STRING &rest ARGS)" nil t)
755 (autoload 'cl-define-compiler-macro "cl-macs" "\
756 Define a compiler-only macro.
757 This is like `defmacro', but macro expansion occurs only if the call to
758 FUNC is compiled (i.e., not interpreted). Compiler macros should be used
759 for optimizing the way calls to FUNC are compiled; the form returned by
760 BODY should do the same thing as a call to the normal function called
761 FUNC, though possibly more efficiently. Note that, like regular macros,
762 compiler macros are expanded repeatedly until no further expansions are
763 possible. Unlike regular macros, BODY can decide to \"punt\" and leave the
764 original function call alone by declaring an initial `&whole foo' parameter
765 and then returning foo.
767 \(fn FUNC ARGS &rest BODY)" nil t)
769 (autoload 'cl-compiler-macroexpand "cl-macs" "\
772 \(fn FORM)" nil nil)
774 (autoload 'cl-defsubst "cl-macs" "\
775 Define NAME as a function.
776 Like `defun', except the function is automatically declared `inline',
777 ARGLIST allows full Common Lisp conventions, and BODY is implicitly
778 surrounded by (cl-block NAME ...).
780 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil t)
782 (autoload 'cl--compiler-macro-adjoin "cl-macs" "\
785 \(fn FORM A LIST &rest KEYS)" nil nil)
787 (autoload 'cl--compiler-macro-list* "cl-macs" "\
790 \(fn FORM ARG &rest OTHERS)" nil nil)
792 (autoload 'cl--compiler-macro-cXXr "cl-macs" "\
795 \(fn FORM X)" nil nil)
797 ;;;***
799 ;;;### (autoloads (cl-tree-equal cl-nsublis cl-sublis cl-nsubst-if-not
800 ;;;;;; cl-nsubst-if cl-nsubst cl-subst-if-not cl-subst-if cl-subsetp
801 ;;;;;; cl-nset-exclusive-or cl-set-exclusive-or cl-nset-difference
802 ;;;;;; cl-set-difference cl-nintersection cl-intersection cl-nunion
803 ;;;;;; cl-union cl-rassoc-if-not cl-rassoc-if cl-rassoc cl-assoc-if-not
804 ;;;;;; cl-assoc-if cl-assoc cl--adjoin cl-member-if-not cl-member-if
805 ;;;;;; cl-member cl-merge cl-stable-sort cl-sort cl-search cl-mismatch
806 ;;;;;; cl-count-if-not cl-count-if cl-count cl-position-if-not cl-position-if
807 ;;;;;; cl-position cl-find-if-not cl-find-if cl-find cl-nsubstitute-if-not
808 ;;;;;; cl-nsubstitute-if cl-nsubstitute cl-substitute-if-not cl-substitute-if
809 ;;;;;; cl-substitute cl-delete-duplicates cl-remove-duplicates cl-delete-if-not
810 ;;;;;; cl-delete-if cl-delete cl-remove-if-not cl-remove-if cl-remove
811 ;;;;;; cl-replace cl-fill cl-reduce) "cl-seq" "cl-seq.el" "b444601641dcbd14a23ca5182bc80ffa")
812 ;;; Generated autoloads from cl-seq.el
814 (autoload 'cl-reduce "cl-seq" "\
815 Reduce two-argument FUNCTION across SEQ.
817 Keywords supported: :start :end :from-end :initial-value :key
819 \(fn FUNCTION SEQ [KEYWORD VALUE]...)" nil nil)
821 (autoload 'cl-fill "cl-seq" "\
822 Fill the elements of SEQ with ITEM.
824 Keywords supported: :start :end
826 \(fn SEQ ITEM [KEYWORD VALUE]...)" nil nil)
828 (autoload 'cl-replace "cl-seq" "\
829 Replace the elements of SEQ1 with the elements of SEQ2.
830 SEQ1 is destructively modified, then returned.
832 Keywords supported: :start1 :end1 :start2 :end2
834 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
836 (autoload 'cl-remove "cl-seq" "\
837 Remove all occurrences of ITEM in SEQ.
838 This is a non-destructive function; it makes a copy of SEQ if necessary
839 to avoid corrupting the original SEQ.
841 Keywords supported: :test :test-not :key :count :start :end :from-end
843 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
845 (autoload 'cl-remove-if "cl-seq" "\
846 Remove all items satisfying PREDICATE in SEQ.
847 This is a non-destructive function; it makes a copy of SEQ if necessary
848 to avoid corrupting the original SEQ.
850 Keywords supported: :key :count :start :end :from-end
852 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
854 (autoload 'cl-remove-if-not "cl-seq" "\
855 Remove all items not satisfying PREDICATE in SEQ.
856 This is a non-destructive function; it makes a copy of SEQ if necessary
857 to avoid corrupting the original SEQ.
859 Keywords supported: :key :count :start :end :from-end
861 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
863 (autoload 'cl-delete "cl-seq" "\
864 Remove all occurrences of ITEM in SEQ.
865 This is a destructive function; it reuses the storage of SEQ whenever possible.
867 Keywords supported: :test :test-not :key :count :start :end :from-end
869 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
871 (autoload 'cl-delete-if "cl-seq" "\
872 Remove all items satisfying PREDICATE in SEQ.
873 This is a destructive function; it reuses the storage of SEQ whenever possible.
875 Keywords supported: :key :count :start :end :from-end
877 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
879 (autoload 'cl-delete-if-not "cl-seq" "\
880 Remove all items not satisfying PREDICATE in SEQ.
881 This is a destructive function; it reuses the storage of SEQ whenever possible.
883 Keywords supported: :key :count :start :end :from-end
885 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
887 (autoload 'cl-remove-duplicates "cl-seq" "\
888 Return a copy of SEQ with all duplicate elements removed.
890 Keywords supported: :test :test-not :key :start :end :from-end
892 \(fn SEQ [KEYWORD VALUE]...)" nil nil)
894 (autoload 'cl-delete-duplicates "cl-seq" "\
895 Remove all duplicate elements from SEQ (destructively).
897 Keywords supported: :test :test-not :key :start :end :from-end
899 \(fn SEQ [KEYWORD VALUE]...)" nil nil)
901 (autoload 'cl-substitute "cl-seq" "\
902 Substitute NEW for OLD in SEQ.
903 This is a non-destructive function; it makes a copy of SEQ if necessary
904 to avoid corrupting the original SEQ.
906 Keywords supported: :test :test-not :key :count :start :end :from-end
908 \(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)
910 (autoload 'cl-substitute-if "cl-seq" "\
911 Substitute NEW for all items satisfying PREDICATE in SEQ.
912 This is a non-destructive function; it makes a copy of SEQ if necessary
913 to avoid corrupting the original SEQ.
915 Keywords supported: :key :count :start :end :from-end
917 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
919 (autoload 'cl-substitute-if-not "cl-seq" "\
920 Substitute NEW for all items not satisfying PREDICATE in SEQ.
921 This is a non-destructive function; it makes a copy of SEQ if necessary
922 to avoid corrupting the original SEQ.
924 Keywords supported: :key :count :start :end :from-end
926 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
928 (autoload 'cl-nsubstitute "cl-seq" "\
929 Substitute NEW for OLD in SEQ.
930 This is a destructive function; it reuses the storage of SEQ whenever possible.
932 Keywords supported: :test :test-not :key :count :start :end :from-end
934 \(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)
936 (autoload 'cl-nsubstitute-if "cl-seq" "\
937 Substitute NEW for all items satisfying PREDICATE in SEQ.
938 This is a destructive function; it reuses the storage of SEQ whenever possible.
940 Keywords supported: :key :count :start :end :from-end
942 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
944 (autoload 'cl-nsubstitute-if-not "cl-seq" "\
945 Substitute NEW for all items not satisfying PREDICATE in SEQ.
946 This is a destructive function; it reuses the storage of SEQ whenever possible.
948 Keywords supported: :key :count :start :end :from-end
950 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
952 (autoload 'cl-find "cl-seq" "\
953 Find the first occurrence of ITEM in SEQ.
954 Return the matching ITEM, or nil if not found.
956 Keywords supported: :test :test-not :key :start :end :from-end
958 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
960 (autoload 'cl-find-if "cl-seq" "\
961 Find the first item satisfying PREDICATE in SEQ.
962 Return the matching item, or nil if not found.
964 Keywords supported: :key :start :end :from-end
966 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
968 (autoload 'cl-find-if-not "cl-seq" "\
969 Find the first item not satisfying PREDICATE in SEQ.
970 Return the matching item, or nil if not found.
972 Keywords supported: :key :start :end :from-end
974 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
976 (autoload 'cl-position "cl-seq" "\
977 Find the first occurrence of ITEM in SEQ.
978 Return the index of the matching item, or nil if not found.
980 Keywords supported: :test :test-not :key :start :end :from-end
982 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
984 (autoload 'cl-position-if "cl-seq" "\
985 Find the first item satisfying PREDICATE in SEQ.
986 Return the index of the matching item, or nil if not found.
988 Keywords supported: :key :start :end :from-end
990 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
992 (autoload 'cl-position-if-not "cl-seq" "\
993 Find the first item not satisfying PREDICATE in SEQ.
994 Return the index of the matching item, or nil if not found.
996 Keywords supported: :key :start :end :from-end
998 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
1000 (autoload 'cl-count "cl-seq" "\
1001 Count the number of occurrences of ITEM in SEQ.
1003 Keywords supported: :test :test-not :key :start :end
1005 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
1007 (autoload 'cl-count-if "cl-seq" "\
1008 Count the number of items satisfying PREDICATE in SEQ.
1010 Keywords supported: :key :start :end
1012 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
1014 (autoload 'cl-count-if-not "cl-seq" "\
1015 Count the number of items not satisfying PREDICATE in SEQ.
1017 Keywords supported: :key :start :end
1019 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
1021 (autoload 'cl-mismatch "cl-seq" "\
1022 Compare SEQ1 with SEQ2, return index of first mismatching element.
1023 Return nil if the sequences match. If one sequence is a prefix of the
1024 other, the return value indicates the end of the shorter sequence.
1026 Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
1028 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
1030 (autoload 'cl-search "cl-seq" "\
1031 Search for SEQ1 as a subsequence of SEQ2.
1032 Return the index of the leftmost element of the first match found;
1033 return nil if there are no matches.
1035 Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
1037 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
1039 (autoload 'cl-sort "cl-seq" "\
1040 Sort the argument SEQ according to PREDICATE.
1041 This is a destructive function; it reuses the storage of SEQ if possible.
1043 Keywords supported: :key
1045 \(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)
1047 (autoload 'cl-stable-sort "cl-seq" "\
1048 Sort the argument SEQ stably according to PREDICATE.
1049 This is a destructive function; it reuses the storage of SEQ if possible.
1051 Keywords supported: :key
1053 \(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)
1055 (autoload 'cl-merge "cl-seq" "\
1056 Destructively merge the two sequences to produce a new sequence.
1057 TYPE is the sequence type to return, SEQ1 and SEQ2 are the two argument
1058 sequences, and PREDICATE is a `less-than' predicate on the elements.
1060 Keywords supported: :key
1062 \(fn TYPE SEQ1 SEQ2 PREDICATE [KEYWORD VALUE]...)" nil nil)
1064 (autoload 'cl-member "cl-seq" "\
1065 Find the first occurrence of ITEM in LIST.
1066 Return the sublist of LIST whose car is ITEM.
1068 Keywords supported: :test :test-not :key
1070 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1072 (put 'cl-member 'compiler-macro #'cl--compiler-macro-member)
1074 (autoload 'cl-member-if "cl-seq" "\
1075 Find the first item satisfying PREDICATE in LIST.
1076 Return the sublist of LIST whose car matches.
1078 Keywords supported: :key
1080 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1082 (autoload 'cl-member-if-not "cl-seq" "\
1083 Find the first item not satisfying PREDICATE in LIST.
1084 Return the sublist of LIST whose car matches.
1086 Keywords supported: :key
1088 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1090 (autoload 'cl--adjoin "cl-seq" "\
1093 \(fn CL-ITEM CL-LIST &rest CL-KEYS)" nil nil)
1095 (autoload 'cl-assoc "cl-seq" "\
1096 Find the first item whose car matches ITEM in LIST.
1098 Keywords supported: :test :test-not :key
1100 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1102 (put 'cl-assoc 'compiler-macro #'cl--compiler-macro-assoc)
1104 (autoload 'cl-assoc-if "cl-seq" "\
1105 Find the first item whose car satisfies PREDICATE in LIST.
1107 Keywords supported: :key
1109 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1111 (autoload 'cl-assoc-if-not "cl-seq" "\
1112 Find the first item whose car does not satisfy PREDICATE in LIST.
1114 Keywords supported: :key
1116 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1118 (autoload 'cl-rassoc "cl-seq" "\
1119 Find the first item whose cdr matches ITEM in LIST.
1121 Keywords supported: :test :test-not :key
1123 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1125 (autoload 'cl-rassoc-if "cl-seq" "\
1126 Find the first item whose cdr satisfies PREDICATE in LIST.
1128 Keywords supported: :key
1130 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1132 (autoload 'cl-rassoc-if-not "cl-seq" "\
1133 Find the first item whose cdr does not satisfy PREDICATE in LIST.
1135 Keywords supported: :key
1137 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1139 (autoload 'cl-union "cl-seq" "\
1140 Combine LIST1 and LIST2 using a set-union operation.
1141 The resulting list contains all items that appear in either LIST1 or LIST2.
1142 This is a non-destructive function; it makes a copy of the data if necessary
1143 to avoid corrupting the original LIST1 and LIST2.
1145 Keywords supported: :test :test-not :key
1147 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1149 (autoload 'cl-nunion "cl-seq" "\
1150 Combine LIST1 and LIST2 using a set-union operation.
1151 The resulting list contains all items that appear in either LIST1 or LIST2.
1152 This is a destructive function; it reuses the storage of LIST1 and LIST2
1153 whenever possible.
1155 Keywords supported: :test :test-not :key
1157 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1159 (autoload 'cl-intersection "cl-seq" "\
1160 Combine LIST1 and LIST2 using a set-intersection operation.
1161 The resulting list contains all items that appear in both LIST1 and LIST2.
1162 This is a non-destructive function; it makes a copy of the data if necessary
1163 to avoid corrupting the original LIST1 and LIST2.
1165 Keywords supported: :test :test-not :key
1167 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1169 (autoload 'cl-nintersection "cl-seq" "\
1170 Combine LIST1 and LIST2 using a set-intersection operation.
1171 The resulting list contains all items that appear in both LIST1 and LIST2.
1172 This is a destructive function; it reuses the storage of LIST1 and LIST2
1173 whenever possible.
1175 Keywords supported: :test :test-not :key
1177 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1179 (autoload 'cl-set-difference "cl-seq" "\
1180 Combine LIST1 and LIST2 using a set-difference operation.
1181 The resulting list contains all items that appear in LIST1 but not LIST2.
1182 This is a non-destructive function; it makes a copy of the data if necessary
1183 to avoid corrupting the original LIST1 and LIST2.
1185 Keywords supported: :test :test-not :key
1187 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1189 (autoload 'cl-nset-difference "cl-seq" "\
1190 Combine LIST1 and LIST2 using a set-difference operation.
1191 The resulting list contains all items that appear in LIST1 but not LIST2.
1192 This is a destructive function; it reuses the storage of LIST1 and LIST2
1193 whenever possible.
1195 Keywords supported: :test :test-not :key
1197 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1199 (autoload 'cl-set-exclusive-or "cl-seq" "\
1200 Combine LIST1 and LIST2 using a set-exclusive-or operation.
1201 The resulting list contains all items appearing in exactly one of LIST1, LIST2.
1202 This is a non-destructive function; it makes a copy of the data if necessary
1203 to avoid corrupting the original LIST1 and LIST2.
1205 Keywords supported: :test :test-not :key
1207 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1209 (autoload 'cl-nset-exclusive-or "cl-seq" "\
1210 Combine LIST1 and LIST2 using a set-exclusive-or operation.
1211 The resulting list contains all items appearing in exactly one of LIST1, LIST2.
1212 This is a destructive function; it reuses the storage of LIST1 and LIST2
1213 whenever possible.
1215 Keywords supported: :test :test-not :key
1217 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1219 (autoload 'cl-subsetp "cl-seq" "\
1220 Return true if LIST1 is a subset of LIST2.
1221 I.e., if every element of LIST1 also appears in LIST2.
1223 Keywords supported: :test :test-not :key
1225 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1227 (autoload 'cl-subst-if "cl-seq" "\
1228 Substitute NEW for elements matching PREDICATE in TREE (non-destructively).
1229 Return a copy of TREE with all matching elements replaced by NEW.
1231 Keywords supported: :key
1233 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1235 (autoload 'cl-subst-if-not "cl-seq" "\
1236 Substitute NEW for elts not matching PREDICATE in TREE (non-destructively).
1237 Return a copy of TREE with all non-matching elements replaced by NEW.
1239 Keywords supported: :key
1241 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1243 (autoload 'cl-nsubst "cl-seq" "\
1244 Substitute NEW for OLD everywhere in TREE (destructively).
1245 Any element of TREE which is `eql' to OLD is changed to NEW (via a call
1246 to `setcar').
1248 Keywords supported: :test :test-not :key
1250 \(fn NEW OLD TREE [KEYWORD VALUE]...)" nil nil)
1252 (autoload 'cl-nsubst-if "cl-seq" "\
1253 Substitute NEW for elements matching PREDICATE in TREE (destructively).
1254 Any element of TREE which matches is changed to NEW (via a call to `setcar').
1256 Keywords supported: :key
1258 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1260 (autoload 'cl-nsubst-if-not "cl-seq" "\
1261 Substitute NEW for elements not matching PREDICATE in TREE (destructively).
1262 Any element of TREE which matches is changed to NEW (via a call to `setcar').
1264 Keywords supported: :key
1266 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1268 (autoload 'cl-sublis "cl-seq" "\
1269 Perform substitutions indicated by ALIST in TREE (non-destructively).
1270 Return a copy of TREE with all matching elements replaced.
1272 Keywords supported: :test :test-not :key
1274 \(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)
1276 (autoload 'cl-nsublis "cl-seq" "\
1277 Perform substitutions indicated by ALIST in TREE (destructively).
1278 Any matching element of TREE is changed via a call to `setcar'.
1280 Keywords supported: :test :test-not :key
1282 \(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)
1284 (autoload 'cl-tree-equal "cl-seq" "\
1285 Return t if trees TREE1 and TREE2 have `eql' leaves.
1286 Atoms are compared by `eql'; cons cells are compared recursively.
1288 Keywords supported: :test :test-not :key
1290 \(fn TREE1 TREE2 [KEYWORD VALUE]...)" nil nil)
1292 ;;;***
1294 ;; Local Variables:
1295 ;; version-control: never
1296 ;; no-byte-compile: t
1297 ;; no-update-autoloads: t
1298 ;; coding: utf-8
1299 ;; End:
1300 ;;; cl-loaddefs.el ends here