Make typing into incomplete C++ raw strings work, and make it work fast enough
[emacs.git] / lisp / progmodes / cc-engine.el
blob5fa0403458527a805c20c3eb0e431a5860611321
1 ;;; cc-engine.el --- core syntax guessing engine for CC mode -*- coding: utf-8 -*-
3 ;; Copyright (C) 1985, 1987, 1992-2016 Free Software Foundation, Inc.
5 ;; Authors: 2001- Alan Mackenzie
6 ;; 1998- Martin Stjernholm
7 ;; 1992-1999 Barry A. Warsaw
8 ;; 1987 Dave Detlefs
9 ;; 1987 Stewart Clamen
10 ;; 1985 Richard M. Stallman
11 ;; Maintainer: bug-cc-mode@gnu.org
12 ;; Created: 22-Apr-1997 (split from cc-mode.el)
13 ;; Keywords: c languages
14 ;; Package: cc-mode
16 ;; This file is part of GNU Emacs.
18 ;; GNU Emacs is free software: you can redistribute it and/or modify
19 ;; it under the terms of the GNU General Public License as published by
20 ;; the Free Software Foundation, either version 3 of the License, or
21 ;; (at your option) any later version.
23 ;; GNU Emacs is distributed in the hope that it will be useful,
24 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
25 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
26 ;; GNU General Public License for more details.
28 ;; You should have received a copy of the GNU General Public License
29 ;; along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>.
31 ;;; Commentary:
33 ;; The functions which have docstring documentation can be considered
34 ;; part of an API which other packages can use in CC Mode buffers.
35 ;; Otoh, undocumented functions and functions with the documentation
36 ;; in comments are considered purely internal and can change semantics
37 ;; or even disappear in the future.
39 ;; (This policy applies to CC Mode as a whole, not just this file. It
40 ;; probably also applies to many other Emacs packages, but here it's
41 ;; clearly spelled out.)
43 ;; Hidden buffer changes
45 ;; Various functions in CC Mode use text properties for caching and
46 ;; syntactic markup purposes, and those of them that might modify such
47 ;; properties but still don't modify the buffer in a visible way are
48 ;; said to do "hidden buffer changes". They should be used within
49 ;; `c-save-buffer-state' or a similar function that saves and restores
50 ;; buffer modifiedness, disables buffer change hooks, etc.
52 ;; Interactive functions are assumed to not do hidden buffer changes,
53 ;; except in the specific parts of them that do real changes.
55 ;; Lineup functions are assumed to do hidden buffer changes. They
56 ;; must not do real changes, though.
58 ;; All other functions that do hidden buffer changes have that noted
59 ;; in their doc string or comment.
61 ;; The intention with this system is to avoid wrapping every leaf
62 ;; function that do hidden buffer changes inside
63 ;; `c-save-buffer-state'. It should be used as near the top of the
64 ;; interactive functions as possible.
66 ;; Functions called during font locking are allowed to do hidden
67 ;; buffer changes since the font-lock package run them in a context
68 ;; similar to `c-save-buffer-state' (in fact, that function is heavily
69 ;; inspired by `save-buffer-state' in the font-lock package).
71 ;; Use of text properties
73 ;; CC Mode uses several text properties internally to mark up various
74 ;; positions, e.g. to improve speed and to eliminate glitches in
75 ;; interactive refontification.
77 ;; Note: This doc is for internal use only. Other packages should not
78 ;; assume that these text properties are used as described here.
80 ;; 'category
81 ;; Used for "indirection". With its help, some other property can
82 ;; be cheaply and easily switched on or off everywhere it occurs.
84 ;; 'syntax-table
85 ;; Used to modify the syntax of some characters. It is used to
86 ;; mark the "<" and ">" of angle bracket parens with paren syntax, to
87 ;; "hide" obtrusive characters in preprocessor lines, and to mark C++
88 ;; raw strings to enable their fontification.
90 ;; This property is used on single characters and is therefore
91 ;; always treated as front and rear nonsticky (or start and end open
92 ;; in XEmacs vocabulary). It's therefore installed on
93 ;; `text-property-default-nonsticky' if that variable exists (Emacs
94 ;; >= 21).
96 ;; 'c-is-sws and 'c-in-sws
97 ;; Used by `c-forward-syntactic-ws' and `c-backward-syntactic-ws' to
98 ;; speed them up. See the comment blurb before `c-put-is-sws'
99 ;; below for further details.
101 ;; 'c-type
102 ;; This property is used on single characters to mark positions with
103 ;; special syntactic relevance of various sorts. Its primary use is
104 ;; to avoid glitches when multiline constructs are refontified
105 ;; interactively (on font lock decoration level 3). It's cleared in
106 ;; a region before it's fontified and is then put on relevant chars
107 ;; in that region as they are encountered during the fontification.
108 ;; The value specifies the kind of position:
110 ;; 'c-decl-arg-start
111 ;; Put on the last char of the token preceding each declaration
112 ;; inside a declaration style arglist (typically in a function
113 ;; prototype).
115 ;; 'c-decl-end
116 ;; Put on the last char of the token preceding a declaration.
117 ;; This is used in cases where declaration boundaries can't be
118 ;; recognized simply by looking for a token like ";" or "}".
119 ;; `c-type-decl-end-used' must be set if this is used (see also
120 ;; `c-find-decl-spots').
122 ;; 'c-<>-arg-sep
123 ;; Put on the commas that separate arguments in angle bracket
124 ;; arglists like C++ template arglists.
126 ;; 'c-decl-id-start and 'c-decl-type-start
127 ;; Put on the last char of the token preceding each declarator
128 ;; in the declarator list of a declaration. They are also used
129 ;; between the identifiers cases like enum declarations.
130 ;; 'c-decl-type-start is used when the declarators are types,
131 ;; 'c-decl-id-start otherwise.
133 ;; 'c-awk-NL-prop
134 ;; Used in AWK mode to mark the various kinds of newlines. See
135 ;; cc-awk.el.
137 ;;; Code:
139 (eval-when-compile
140 (let ((load-path
141 (if (and (boundp 'byte-compile-dest-file)
142 (stringp byte-compile-dest-file))
143 (cons (file-name-directory byte-compile-dest-file) load-path)
144 load-path)))
145 (load "cc-bytecomp" nil t)))
147 (cc-require 'cc-defs)
148 (cc-require-when-compile 'cc-langs)
149 (cc-require 'cc-vars)
151 (eval-when-compile (require 'cl))
154 ;; Make declarations for all the `c-lang-defvar' variables in cc-langs.
156 (defmacro c-declare-lang-variables ()
157 `(progn
158 ,@(c--mapcan (lambda (init)
159 `(,(if (elt init 2)
160 `(defvar ,(car init) nil ,(elt init 2))
161 `(defvar ,(car init) nil))
162 (make-variable-buffer-local ',(car init))))
163 (cdr c-lang-variable-inits))))
164 (c-declare-lang-variables)
167 ;;; Internal state variables.
169 ;; Internal state of hungry delete key feature
170 (defvar c-hungry-delete-key nil)
171 (make-variable-buffer-local 'c-hungry-delete-key)
173 ;; The electric flag (toggled by `c-toggle-electric-state').
174 ;; If t, electric actions (like automatic reindentation, and (if
175 ;; c-auto-newline is also set) auto newlining) will happen when an electric
176 ;; key like `{' is pressed (or an electric keyword like `else').
177 (defvar c-electric-flag t)
178 (make-variable-buffer-local 'c-electric-flag)
180 ;; Internal state of auto newline feature.
181 (defvar c-auto-newline nil)
182 (make-variable-buffer-local 'c-auto-newline)
184 ;; Included in the mode line to indicate the active submodes.
185 ;; (defvar c-submode-indicators nil)
186 ;; (make-variable-buffer-local 'c-submode-indicators)
188 (defun c-calculate-state (arg prevstate)
189 ;; Calculate the new state of PREVSTATE, t or nil, based on arg. If
190 ;; arg is nil or zero, toggle the state. If arg is negative, turn
191 ;; the state off, and if arg is positive, turn the state on
192 (if (or (not arg)
193 (zerop (setq arg (prefix-numeric-value arg))))
194 (not prevstate)
195 (> arg 0)))
198 ;; Basic handling of preprocessor directives.
200 ;; This is a dynamically bound cache used together with
201 ;; `c-query-macro-start' and `c-query-and-set-macro-start'. It only
202 ;; works as long as point doesn't cross a macro boundary.
203 (defvar c-macro-start 'unknown)
205 (defsubst c-query-and-set-macro-start ()
206 (if (symbolp c-macro-start)
207 (setq c-macro-start (save-excursion
208 (c-save-buffer-state ()
209 (and (c-beginning-of-macro)
210 (point)))))
211 c-macro-start))
213 (defsubst c-query-macro-start ()
214 (if (symbolp c-macro-start)
215 (save-excursion
216 (c-save-buffer-state ()
217 (and (c-beginning-of-macro)
218 (point))))
219 c-macro-start))
221 ;; One element macro cache to cope with continual movement within very large
222 ;; CPP macros.
223 (defvar c-macro-cache nil)
224 (make-variable-buffer-local 'c-macro-cache)
225 ;; Nil or cons of the bounds of the most recent CPP form probed by
226 ;; `c-beginning-of-macro', `c-end-of-macro' or `c-syntactic-end-of-macro'.
227 ;; The cdr will be nil if we know only the start of the CPP form.
228 (defvar c-macro-cache-start-pos nil)
229 (make-variable-buffer-local 'c-macro-cache-start-pos)
230 ;; The starting position from where we determined `c-macro-cache'.
231 (defvar c-macro-cache-syntactic nil)
232 (make-variable-buffer-local 'c-macro-cache-syntactic)
233 ;; Either nil, or the syntactic end of the macro currently represented by
234 ;; `c-macro-cache'.
235 (defvar c-macro-cache-no-comment nil)
236 (make-variable-buffer-local 'c-macro-cache-no-comment)
237 ;; Either nil, or the last character of the macro currently represented by
238 ;; `c-macro-cache' which isn't in a comment. */
240 (defun c-invalidate-macro-cache (beg end)
241 ;; Called from a before-change function. If the change region is before or
242 ;; in the macro characterized by `c-macro-cache' etc., nullify it
243 ;; appropriately. BEG and END are the standard before-change-functions
244 ;; parameters. END isn't used.
245 (cond
246 ((null c-macro-cache))
247 ((< beg (car c-macro-cache))
248 (setq c-macro-cache nil
249 c-macro-cache-start-pos nil
250 c-macro-cache-syntactic nil
251 c-macro-cache-no-comment nil))
252 ((and (cdr c-macro-cache)
253 (< beg (cdr c-macro-cache)))
254 (setcdr c-macro-cache nil)
255 (setq c-macro-cache-start-pos beg
256 c-macro-cache-syntactic nil
257 c-macro-cache-no-comment nil))))
259 (defun c-macro-is-genuine-p ()
260 ;; Check that the ostensible CPP construct at point is a real one. In
261 ;; particular, if point is on the first line of a narrowed buffer, make sure
262 ;; that the "#" isn't, say, the second character of a "##" operator. Return
263 ;; t when the macro is real, nil otherwise.
264 (let ((here (point)))
265 (beginning-of-line)
266 (prog1
267 (if (and (eq (point) (point-min))
268 (/= (point) 1))
269 (save-restriction
270 (widen)
271 (beginning-of-line)
272 (and (looking-at c-anchored-cpp-prefix)
273 (eq (match-beginning 1) here)))
275 (goto-char here))))
277 (defun c-beginning-of-macro (&optional lim)
278 "Go to the beginning of a preprocessor directive.
279 Leave point at the beginning of the directive and return t if in one,
280 otherwise return nil and leave point unchanged.
282 Note that this function might do hidden buffer changes. See the
283 comment at the start of cc-engine.el for more info."
284 (let ((here (point)))
285 (when c-opt-cpp-prefix
286 (if (and (car c-macro-cache)
287 (>= (point) (car c-macro-cache))
288 (or (and (cdr c-macro-cache)
289 (<= (point) (cdr c-macro-cache)))
290 (<= (point) c-macro-cache-start-pos)))
291 (unless (< (car c-macro-cache) (or lim (point-min)))
292 (progn (goto-char (max (or lim (point-min)) (car c-macro-cache)))
293 (setq c-macro-cache-start-pos
294 (max c-macro-cache-start-pos here))
296 (setq c-macro-cache nil
297 c-macro-cache-start-pos nil
298 c-macro-cache-syntactic nil
299 c-macro-cache-no-comment nil)
301 (save-restriction
302 (if lim (narrow-to-region lim (point-max)))
303 (beginning-of-line)
304 (while (eq (char-before (1- (point))) ?\\)
305 (forward-line -1))
306 (back-to-indentation)
307 (if (and (<= (point) here)
308 (save-match-data (looking-at c-opt-cpp-start))
309 (c-macro-is-genuine-p))
310 (progn
311 (setq c-macro-cache (cons (point) nil)
312 c-macro-cache-start-pos here)
314 (goto-char here)
315 nil))))))
317 (defun c-end-of-macro ()
318 "Go to the end of a preprocessor directive.
319 More accurately, move the point to the end of the closest following
320 line that doesn't end with a line continuation backslash - no check is
321 done that the point is inside a cpp directive to begin with.
323 Note that this function might do hidden buffer changes. See the
324 comment at the start of cc-engine.el for more info."
325 (if (and (cdr c-macro-cache)
326 (<= (point) (cdr c-macro-cache))
327 (>= (point) (car c-macro-cache)))
328 (goto-char (cdr c-macro-cache))
329 (unless (and (car c-macro-cache)
330 (<= (point) c-macro-cache-start-pos)
331 (>= (point) (car c-macro-cache)))
332 (setq c-macro-cache nil
333 c-macro-cache-start-pos nil
334 c-macro-cache-syntactic nil
335 c-macro-cache-no-comment nil))
336 (while (progn
337 (end-of-line)
338 (when (and (eq (char-before) ?\\)
339 (not (eobp)))
340 (forward-char)
341 t)))
342 (when (car c-macro-cache)
343 (setcdr c-macro-cache (point)))))
345 (defun c-syntactic-end-of-macro ()
346 ;; Go to the end of a CPP directive, or a "safe" pos just before.
348 ;; This is normally the end of the next non-escaped line. A "safe"
349 ;; position is one not within a string or comment. (The EOL on a line
350 ;; comment is NOT "safe").
352 ;; This function must only be called from the beginning of a CPP construct.
354 ;; Note that this function might do hidden buffer changes. See the comment
355 ;; at the start of cc-engine.el for more info.
356 (let* ((here (point))
357 (there (progn (c-end-of-macro) (point)))
359 (if c-macro-cache-syntactic
360 (goto-char c-macro-cache-syntactic)
361 (setq s (parse-partial-sexp here there))
362 (while (and (or (nth 3 s) ; in a string
363 (nth 4 s)) ; in a comment (maybe at end of line comment)
364 (> there here)) ; No infinite loops, please.
365 (setq there (1- (nth 8 s)))
366 (setq s (parse-partial-sexp here there)))
367 (setq c-macro-cache-syntactic (point)))
368 (point)))
370 (defun c-no-comment-end-of-macro ()
371 ;; Go to the end of a CPP directive, or a pos just before which isn't in a
372 ;; comment. For this purpose, open strings are ignored.
374 ;; This function must only be called from the beginning of a CPP construct.
376 ;; Note that this function might do hidden buffer changes. See the comment
377 ;; at the start of cc-engine.el for more info.
378 (let* ((here (point))
379 (there (progn (c-end-of-macro) (point)))
381 (if c-macro-cache-no-comment
382 (goto-char c-macro-cache-no-comment)
383 (setq s (parse-partial-sexp here there))
384 (while (and (nth 3 s) ; in a string
385 (> there here)) ; No infinite loops, please.
386 (setq here (1+ (nth 8 s)))
387 (setq s (parse-partial-sexp here there)))
388 (when (nth 4 s)
389 (goto-char (1- (nth 8 s))))
390 (setq c-macro-cache-no-comment (point)))
391 (point)))
393 (defun c-forward-over-cpp-define-id ()
394 ;; Assuming point is at the "#" that introduces a preprocessor
395 ;; directive, it's moved forward to the end of the identifier which is
396 ;; "#define"d (or whatever c-opt-cpp-macro-define specifies). Non-nil
397 ;; is returned in this case, in all other cases nil is returned and
398 ;; point isn't moved.
400 ;; This function might do hidden buffer changes.
401 (when (and c-opt-cpp-macro-define-id
402 (looking-at c-opt-cpp-macro-define-id))
403 (goto-char (match-end 0))))
405 (defun c-forward-to-cpp-define-body ()
406 ;; Assuming point is at the "#" that introduces a preprocessor
407 ;; directive, it's moved forward to the start of the definition body
408 ;; if it's a "#define" (or whatever c-opt-cpp-macro-define
409 ;; specifies). Non-nil is returned in this case, in all other cases
410 ;; nil is returned and point isn't moved.
412 ;; This function might do hidden buffer changes.
413 (when (and c-opt-cpp-macro-define-start
414 (looking-at c-opt-cpp-macro-define-start)
415 (not (= (match-end 0) (c-point 'eol))))
416 (goto-char (match-end 0))))
419 ;;; Basic utility functions.
421 (defun c-delq-from-dotted-list (elt dlist)
422 ;; If ELT is a member of the (possibly dotted) list DLIST, remove all
423 ;; occurrences of it (except for any in the last cdr of DLIST).
425 ;; Call this as (setq DLIST (c-delq-from-dotted-list ELT DLIST)), as
426 ;; sometimes the original structure is changed, sometimes it's not.
428 ;; This function is needed in Emacs < 24.5, and possibly XEmacs, because
429 ;; `delq' throws an error in these versions when given a dotted list.
430 (let ((tail dlist) prev)
431 (while (consp tail)
432 (if (eq (car tail) elt)
433 (if prev
434 (setcdr prev (cdr tail))
435 (setq dlist (cdr dlist)))
436 (setq prev tail))
437 (setq tail (cdr tail)))
438 dlist))
440 (defun c-syntactic-content (from to paren-level)
441 ;; Return the given region as a string where all syntactic
442 ;; whitespace is removed or, where necessary, replaced with a single
443 ;; space. If PAREN-LEVEL is given then all parens in the region are
444 ;; collapsed to "()", "[]" etc.
446 ;; This function might do hidden buffer changes.
448 (save-excursion
449 (save-restriction
450 (narrow-to-region from to)
451 (goto-char from)
452 (let* ((parts (list nil)) (tail parts) pos in-paren)
454 (while (re-search-forward c-syntactic-ws-start to t)
455 (goto-char (setq pos (match-beginning 0)))
456 (c-forward-syntactic-ws)
457 (if (= (point) pos)
458 (forward-char)
460 (when paren-level
461 (save-excursion
462 (setq in-paren (= (car (parse-partial-sexp from pos 1)) 1)
463 pos (point))))
465 (if (and (> pos from)
466 (< (point) to)
467 (looking-at "\\w\\|\\s_")
468 (save-excursion
469 (goto-char (1- pos))
470 (looking-at "\\w\\|\\s_")))
471 (progn
472 (setcdr tail (list (buffer-substring-no-properties from pos)
473 " "))
474 (setq tail (cddr tail)))
475 (setcdr tail (list (buffer-substring-no-properties from pos)))
476 (setq tail (cdr tail)))
478 (when in-paren
479 (when (= (car (parse-partial-sexp pos to -1)) -1)
480 (setcdr tail (list (buffer-substring-no-properties
481 (1- (point)) (point))))
482 (setq tail (cdr tail))))
484 (setq from (point))))
486 (setcdr tail (list (buffer-substring-no-properties from to)))
487 (apply 'concat (cdr parts))))))
489 (defun c-shift-line-indentation (shift-amt)
490 ;; Shift the indentation of the current line with the specified
491 ;; amount (positive inwards). The buffer is modified only if
492 ;; SHIFT-AMT isn't equal to zero.
493 (let ((pos (- (point-max) (point)))
494 (c-macro-start c-macro-start)
495 tmp-char-inserted)
496 (if (zerop shift-amt)
498 ;; If we're on an empty line inside a macro, we take the point
499 ;; to be at the current indentation and shift it to the
500 ;; appropriate column. This way we don't treat the extra
501 ;; whitespace out to the line continuation as indentation.
502 (when (and (c-query-and-set-macro-start)
503 (looking-at "[ \t]*\\\\$")
504 (save-excursion
505 (skip-chars-backward " \t")
506 (bolp)))
507 (insert ?x)
508 (backward-char)
509 (setq tmp-char-inserted t))
510 (unwind-protect
511 (let ((col (current-indentation)))
512 (delete-region (c-point 'bol) (c-point 'boi))
513 (beginning-of-line)
514 (indent-to (+ col shift-amt)))
515 (when tmp-char-inserted
516 (delete-char 1))))
517 ;; If initial point was within line's indentation and we're not on
518 ;; a line with a line continuation in a macro, position after the
519 ;; indentation. Else stay at same point in text.
520 (if (and (< (point) (c-point 'boi))
521 (not tmp-char-inserted))
522 (back-to-indentation)
523 (if (> (- (point-max) pos) (point))
524 (goto-char (- (point-max) pos))))))
526 (defsubst c-keyword-sym (keyword)
527 ;; Return non-nil if the string KEYWORD is a known keyword. More
528 ;; precisely, the value is the symbol for the keyword in
529 ;; `c-keywords-obarray'.
530 (intern-soft keyword c-keywords-obarray))
532 (defsubst c-keyword-member (keyword-sym lang-constant)
533 ;; Return non-nil if the symbol KEYWORD-SYM, as returned by
534 ;; `c-keyword-sym', is a member of LANG-CONSTANT, which is the name
535 ;; of a language constant that ends with "-kwds". If KEYWORD-SYM is
536 ;; nil then the result is nil.
537 (get keyword-sym lang-constant))
539 ;; String syntax chars, suitable for skip-syntax-(forward|backward).
540 (defconst c-string-syntax (if (memq 'gen-string-delim c-emacs-features)
541 "\"|"
542 "\""))
544 ;; Regexp matching string limit syntax.
545 (defconst c-string-limit-regexp (if (memq 'gen-string-delim c-emacs-features)
546 "\\s\"\\|\\s|"
547 "\\s\""))
549 ;; Regexp matching WS followed by string limit syntax.
550 (defconst c-ws*-string-limit-regexp
551 (concat "[ \t]*\\(" c-string-limit-regexp "\\)"))
553 ;; Holds formatted error strings for the few cases where parse errors
554 ;; are reported.
555 (defvar c-parsing-error nil)
556 (make-variable-buffer-local 'c-parsing-error)
558 (defun c-echo-parsing-error (&optional quiet)
559 (when (and c-report-syntactic-errors c-parsing-error (not quiet))
560 (c-benign-error "%s" c-parsing-error))
561 c-parsing-error)
563 ;; Faces given to comments and string literals. This is used in some
564 ;; situations to speed up recognition; it isn't mandatory that font
565 ;; locking is in use. This variable is extended with the face in
566 ;; `c-doc-face-name' when fontification is activated in cc-fonts.el.
567 (defvar c-literal-faces
568 (append '(font-lock-comment-face font-lock-string-face)
569 (when (facep 'font-lock-comment-delimiter-face)
570 ;; New in Emacs 22.
571 '(font-lock-comment-delimiter-face))))
573 (defsubst c-put-c-type-property (pos value)
574 ;; Put a c-type property with the given value at POS.
575 (c-put-char-property pos 'c-type value))
577 (defun c-clear-c-type-property (from to value)
578 ;; Remove all occurrences of the c-type property that has the given
579 ;; value in the region between FROM and TO. VALUE is assumed to not
580 ;; be nil.
582 ;; Note: This assumes that c-type is put on single chars only; it's
583 ;; very inefficient if matching properties cover large regions.
584 (save-excursion
585 (goto-char from)
586 (while (progn
587 (when (eq (get-text-property (point) 'c-type) value)
588 (c-clear-char-property (point) 'c-type))
589 (goto-char (c-next-single-property-change (point) 'c-type nil to))
590 (< (point) to)))))
593 ;; Some debug tools to visualize various special positions. This
594 ;; debug code isn't as portable as the rest of CC Mode.
596 (cc-bytecomp-defun overlays-in)
597 (cc-bytecomp-defun overlay-get)
598 (cc-bytecomp-defun overlay-start)
599 (cc-bytecomp-defun overlay-end)
600 (cc-bytecomp-defun delete-overlay)
601 (cc-bytecomp-defun overlay-put)
602 (cc-bytecomp-defun make-overlay)
604 (defun c-debug-add-face (beg end face)
605 (c-save-buffer-state ((overlays (overlays-in beg end)) overlay)
606 (while overlays
607 (setq overlay (car overlays)
608 overlays (cdr overlays))
609 (when (eq (overlay-get overlay 'face) face)
610 (setq beg (min beg (overlay-start overlay))
611 end (max end (overlay-end overlay)))
612 (delete-overlay overlay)))
613 (overlay-put (make-overlay beg end) 'face face)))
615 (defun c-debug-remove-face (beg end face)
616 (c-save-buffer-state ((overlays (overlays-in beg end)) overlay
617 (ol-beg beg) (ol-end end))
618 (while overlays
619 (setq overlay (car overlays)
620 overlays (cdr overlays))
621 (when (eq (overlay-get overlay 'face) face)
622 (setq ol-beg (min ol-beg (overlay-start overlay))
623 ol-end (max ol-end (overlay-end overlay)))
624 (delete-overlay overlay)))
625 (when (< ol-beg beg)
626 (overlay-put (make-overlay ol-beg beg) 'face face))
627 (when (> ol-end end)
628 (overlay-put (make-overlay end ol-end) 'face face))))
631 ;; `c-beginning-of-statement-1' and accompanying stuff.
633 ;; KLUDGE ALERT: c-maybe-labelp is used to pass information between
634 ;; c-crosses-statement-barrier-p and c-beginning-of-statement-1. A
635 ;; better way should be implemented, but this will at least shut up
636 ;; the byte compiler.
637 (defvar c-maybe-labelp)
639 ;; New awk-compatible version of c-beginning-of-statement-1, ACM 2002/6/22
641 ;; Macros used internally in c-beginning-of-statement-1 for the
642 ;; automaton actions.
643 (defmacro c-bos-push-state ()
644 '(setq stack (cons (cons state saved-pos)
645 stack)))
646 (defmacro c-bos-pop-state (&optional do-if-done)
647 `(if (setq state (car (car stack))
648 saved-pos (cdr (car stack))
649 stack (cdr stack))
651 ,do-if-done
652 (throw 'loop nil)))
653 (defmacro c-bos-pop-state-and-retry ()
654 '(throw 'loop (setq state (car (car stack))
655 saved-pos (cdr (car stack))
656 ;; Throw nil if stack is empty, else throw non-nil.
657 stack (cdr stack))))
658 (defmacro c-bos-save-pos ()
659 '(setq saved-pos (vector pos tok ptok pptok)))
660 (defmacro c-bos-restore-pos ()
661 '(unless (eq (elt saved-pos 0) start)
662 (setq pos (elt saved-pos 0)
663 tok (elt saved-pos 1)
664 ptok (elt saved-pos 2)
665 pptok (elt saved-pos 3))
666 (goto-char pos)
667 (setq sym nil)))
668 (defmacro c-bos-save-error-info (missing got)
669 `(setq saved-pos (vector pos ,missing ,got)))
670 (defmacro c-bos-report-error ()
671 '(unless noerror
672 (setq c-parsing-error
673 (format-message
674 "No matching `%s' found for `%s' on line %d"
675 (elt saved-pos 1)
676 (elt saved-pos 2)
677 (1+ (count-lines (point-min)
678 (c-point 'bol (elt saved-pos 0))))))))
680 (defun c-beginning-of-statement-1 (&optional lim ignore-labels
681 noerror comma-delim)
682 "Move to the start of the current statement or declaration, or to
683 the previous one if already at the beginning of one. Only
684 statements/declarations on the same level are considered, i.e. don't
685 move into or out of sexps (not even normal expression parentheses).
687 If point is already at the earliest statement within braces or parens,
688 this function doesn't move back into any whitespace preceding it; it
689 returns `same' in this case.
691 Stop at statement continuation tokens like \"else\", \"catch\",
692 \"finally\" and the \"while\" in \"do ... while\" if the start point
693 is within the continuation. If starting at such a token, move to the
694 corresponding statement start. If at the beginning of a statement,
695 move to the closest containing statement if there is any. This might
696 also stop at a continuation clause.
698 Labels are treated as part of the following statements if
699 IGNORE-LABELS is non-nil. (FIXME: Doesn't work if we stop at a known
700 statement start keyword.) Otherwise, each label is treated as a
701 separate statement.
703 Macros are ignored \(i.e. skipped over) unless point is within one, in
704 which case the content of the macro is treated as normal code. Aside
705 from any normal statement starts found in it, stop at the first token
706 of the content in the macro, i.e. the expression of an \"#if\" or the
707 start of the definition in a \"#define\". Also stop at start of
708 macros before leaving them.
710 Return:
711 `label' if stopped at a label or \"case...:\" or \"default:\";
712 `same' if stopped at the beginning of the current statement;
713 `up' if stepped to a containing statement;
714 `previous' if stepped to a preceding statement;
715 `beginning' if stepped from a statement continuation clause to
716 its start clause; or
717 `macro' if stepped to a macro start.
718 Note that `same' and not `label' is returned if stopped at the same
719 label without crossing the colon character.
721 LIM may be given to limit the search. If the search hits the limit,
722 point will be left at the closest following token, or at the start
723 position if that is less (`same' is returned in this case).
725 NOERROR turns off error logging to `c-parsing-error'.
727 Normally only `;' and virtual semicolons are considered to delimit
728 statements, but if COMMA-DELIM is non-nil then `,' is treated
729 as a delimiter too.
731 Note that this function might do hidden buffer changes. See the
732 comment at the start of cc-engine.el for more info."
734 ;; The bulk of this function is a pushdown automaton that looks at statement
735 ;; boundaries and the tokens (such as "while") in c-opt-block-stmt-key. Its
736 ;; purpose is to keep track of nested statements, ensuring that such
737 ;; statements are skipped over in their entirety (somewhat akin to what C-M-p
738 ;; does with nested braces/brackets/parentheses).
740 ;; Note: The position of a boundary is the following token.
742 ;; Beginning with the current token (the one following point), move back one
743 ;; sexp at a time (where a sexp is, more or less, either a token or the
744 ;; entire contents of a brace/bracket/paren pair). Each time a statement
745 ;; boundary is crossed or a "while"-like token is found, update the state of
746 ;; the PDA. Stop at the beginning of a statement when the stack (holding
747 ;; nested statement info) is empty and the position has been moved.
749 ;; The following variables constitute the PDA:
751 ;; sym: This is either the "while"-like token (e.g. 'for) we've just
752 ;; scanned back over, 'boundary if we've just gone back over a
753 ;; statement boundary, or nil otherwise.
754 ;; state: takes one of the values (nil else else-boundary while
755 ;; while-boundary catch catch-boundary).
756 ;; nil means "no "while"-like token yet scanned".
757 ;; 'else, for example, means "just gone back over an else".
758 ;; 'else-boundary means "just gone back over a statement boundary
759 ;; immediately after having gone back over an else".
760 ;; saved-pos: A vector of either saved positions (tok ptok pptok, etc.) or
761 ;; of error reporting information.
762 ;; stack: The stack onto which the PDA pushes its state. Each entry
763 ;; consists of a saved value of state and saved-pos. An entry is
764 ;; pushed when we move back over a "continuation" token (e.g. else)
765 ;; and popped when we encounter the corresponding opening token
766 ;; (e.g. if).
769 ;; The following diagram briefly outlines the PDA.
771 ;; Common state:
772 ;; "else": Push state, goto state `else'.
773 ;; "while": Push state, goto state `while'.
774 ;; "catch" or "finally": Push state, goto state `catch'.
775 ;; boundary: Pop state.
776 ;; other: Do nothing special.
778 ;; State `else':
779 ;; boundary: Goto state `else-boundary'.
780 ;; other: Error, pop state, retry token.
782 ;; State `else-boundary':
783 ;; "if": Pop state.
784 ;; boundary: Error, pop state.
785 ;; other: See common state.
787 ;; State `while':
788 ;; boundary: Save position, goto state `while-boundary'.
789 ;; other: Pop state, retry token.
791 ;; State `while-boundary':
792 ;; "do": Pop state.
793 ;; boundary: Restore position if it's not at start, pop state. [*see below]
794 ;; other: See common state.
796 ;; State `catch':
797 ;; boundary: Goto state `catch-boundary'.
798 ;; other: Error, pop state, retry token.
800 ;; State `catch-boundary':
801 ;; "try": Pop state.
802 ;; "catch": Goto state `catch'.
803 ;; boundary: Error, pop state.
804 ;; other: See common state.
806 ;; [*] In the `while-boundary' state, we had pushed a 'while state, and were
807 ;; searching for a "do" which would have opened a do-while. If we didn't
808 ;; find it, we discard the analysis done since the "while", go back to this
809 ;; token in the buffer and restart the scanning there, this time WITHOUT
810 ;; pushing the 'while state onto the stack.
812 ;; In addition to the above there is some special handling of labels
813 ;; and macros.
815 (let ((case-fold-search nil)
816 (start (point))
817 macro-start
818 (delims (if comma-delim '(?\; ?,) '(?\;)))
819 (c-stmt-delim-chars (if comma-delim
820 c-stmt-delim-chars-with-comma
821 c-stmt-delim-chars))
822 c-in-literal-cache c-maybe-labelp after-case:-pos saved
823 ;; Current position.
825 ;; Position of last stmt boundary character (e.g. ;).
826 boundary-pos
827 ;; The position of the last sexp or bound that follows the
828 ;; first found colon, i.e. the start of the nonlabel part of
829 ;; the statement. It's `start' if a colon is found just after
830 ;; the start.
831 after-labels-pos
832 ;; Like `after-labels-pos', but the first such position inside
833 ;; a label, i.e. the start of the last label before the start
834 ;; of the nonlabel part of the statement.
835 last-label-pos
836 ;; The last position where a label is possible provided the
837 ;; statement started there. It's nil as long as no invalid
838 ;; label content has been found (according to
839 ;; `c-nonlabel-token-key'). It's `start' if no valid label
840 ;; content was found in the label. Note that we might still
841 ;; regard it a label if it starts with `c-label-kwds'.
842 label-good-pos
843 ;; Putative positions of the components of a bitfield declaration,
844 ;; e.g. "int foo : NUM_FOO_BITS ;"
845 bitfield-type-pos bitfield-id-pos bitfield-size-pos
846 ;; Symbol just scanned back over (e.g. 'while or 'boundary).
847 ;; See above.
849 ;; Current state in the automaton. See above.
850 state
851 ;; Current saved positions. See above.
852 saved-pos
853 ;; Stack of conses (state . saved-pos).
854 stack
855 ;; Regexp which matches "for", "if", etc.
856 (cond-key (or c-opt-block-stmt-key
857 "\\<\\>")) ; Matches nothing.
858 ;; Return value.
859 (ret 'same)
860 ;; Positions of the last three sexps or bounds we've stopped at.
861 tok ptok pptok)
863 (save-restriction
864 (if lim (narrow-to-region lim (point-max)))
866 (if (save-excursion
867 (and (c-beginning-of-macro)
868 (/= (point) start)))
869 (setq macro-start (point)))
871 ;; Try to skip back over unary operator characters, to register
872 ;; that we've moved.
873 (while (progn
874 (setq pos (point))
875 (c-backward-syntactic-ws)
876 ;; Protect post-++/-- operators just before a virtual semicolon.
877 (and (not (c-at-vsemi-p))
878 (/= (skip-chars-backward "-+!*&~@`#") 0))))
880 ;; Skip back over any semicolon here. If it was a bare semicolon, we're
881 ;; done. Later on we ignore the boundaries for statements that don't
882 ;; contain any sexp. The only thing that is affected is that the error
883 ;; checking is a little less strict, and we really don't bother.
884 (if (and (memq (char-before) delims)
885 (progn (forward-char -1)
886 (setq saved (point))
887 (c-backward-syntactic-ws)
888 (or (memq (char-before) delims)
889 (memq (char-before) '(?: nil))
890 (eq (char-syntax (char-before)) ?\()
891 (c-at-vsemi-p))))
892 (setq ret 'previous
893 pos saved)
895 ;; Begin at start and not pos to detect macros if we stand
896 ;; directly after the #.
897 (goto-char start)
898 (if (looking-at "\\<\\|\\W")
899 ;; Record this as the first token if not starting inside it.
900 (setq tok start))
902 ;; The following while loop goes back one sexp (balanced parens,
903 ;; etc. with contents, or symbol or suchlike) each iteration. This
904 ;; movement is accomplished with a call to c-backward-sexp approx 170
905 ;; lines below.
907 ;; The loop is exited only by throwing nil to the (catch 'loop ...):
908 ;; 1. On reaching the start of a macro;
909 ;; 2. On having passed a stmt boundary with the PDA stack empty;
910 ;; 3. On reaching the start of an Objective C method def;
911 ;; 4. From macro `c-bos-pop-state'; when the stack is empty;
912 ;; 5. From macro `c-bos-pop-state-and-retry' when the stack is empty.
913 (while
914 (catch 'loop ;; Throw nil to break, non-nil to continue.
915 (cond
916 ;; Are we in a macro, just after the opening #?
917 ((save-excursion
918 (and macro-start ; Always NIL for AWK.
919 (progn (skip-chars-backward " \t")
920 (eq (char-before) ?#))
921 (progn (setq saved (1- (point)))
922 (beginning-of-line)
923 (not (eq (char-before (1- (point))) ?\\)))
924 (looking-at c-opt-cpp-start)
925 (progn (skip-chars-forward " \t")
926 (eq (point) saved))))
927 (goto-char saved)
928 (if (and (c-forward-to-cpp-define-body)
929 (progn (c-forward-syntactic-ws start)
930 (< (point) start)))
931 ;; Stop at the first token in the content of the macro.
932 (setq pos (point)
933 ignore-labels t) ; Avoid the label check on exit.
934 (setq pos saved
935 ret 'macro
936 ignore-labels t))
937 (throw 'loop nil)) ; 1. Start of macro.
939 ;; Do a round through the automaton if we've just passed a
940 ;; statement boundary or passed a "while"-like token.
941 ((or sym
942 (and (looking-at cond-key)
943 (setq sym (intern (match-string 1)))))
945 (when (and (< pos start) (null stack))
946 (throw 'loop nil)) ; 2. Statement boundary.
948 ;; The PDA state handling.
950 ;; Refer to the description of the PDA in the opening
951 ;; comments. In the following OR form, the first leaf
952 ;; attempts to handles one of the specific actions detailed
953 ;; (e.g., finding token "if" whilst in state `else-boundary').
954 ;; We drop through to the second leaf (which handles common
955 ;; state) if no specific handler is found in the first cond.
956 ;; If a parsing error is detected (e.g. an "else" with no
957 ;; preceding "if"), we throw to the enclosing catch.
959 ;; Note that the (eq state 'else) means
960 ;; "we've just passed an else", NOT "we're looking for an
961 ;; else".
962 (or (cond
963 ((eq state 'else)
964 (if (eq sym 'boundary)
965 (setq state 'else-boundary)
966 (c-bos-report-error)
967 (c-bos-pop-state-and-retry)))
969 ((eq state 'else-boundary)
970 (cond ((eq sym 'if)
971 (c-bos-pop-state (setq ret 'beginning)))
972 ((eq sym 'boundary)
973 (c-bos-report-error)
974 (c-bos-pop-state))))
976 ((eq state 'while)
977 (if (and (eq sym 'boundary)
978 ;; Since this can cause backtracking we do a
979 ;; little more careful analysis to avoid it:
980 ;; If there's a label in front of the while
981 ;; it can't be part of a do-while.
982 (not after-labels-pos))
983 (progn (c-bos-save-pos)
984 (setq state 'while-boundary))
985 (c-bos-pop-state-and-retry))) ; Can't be a do-while
987 ((eq state 'while-boundary)
988 (cond ((eq sym 'do)
989 (c-bos-pop-state (setq ret 'beginning)))
990 ((eq sym 'boundary) ; isn't a do-while
991 (c-bos-restore-pos) ; the position of the while
992 (c-bos-pop-state)))) ; no longer searching for do.
994 ((eq state 'catch)
995 (if (eq sym 'boundary)
996 (setq state 'catch-boundary)
997 (c-bos-report-error)
998 (c-bos-pop-state-and-retry)))
1000 ((eq state 'catch-boundary)
1001 (cond
1002 ((eq sym 'try)
1003 (c-bos-pop-state (setq ret 'beginning)))
1004 ((eq sym 'catch)
1005 (setq state 'catch))
1006 ((eq sym 'boundary)
1007 (c-bos-report-error)
1008 (c-bos-pop-state)))))
1010 ;; This is state common. We get here when the previous
1011 ;; cond statement found no particular state handler.
1012 (cond ((eq sym 'boundary)
1013 ;; If we have a boundary at the start
1014 ;; position we push a frame to go to the
1015 ;; previous statement.
1016 (if (>= pos start)
1017 (c-bos-push-state)
1018 (c-bos-pop-state)))
1019 ((eq sym 'else)
1020 (c-bos-push-state)
1021 (c-bos-save-error-info 'if 'else)
1022 (setq state 'else))
1023 ((eq sym 'while)
1024 ;; Is this a real while, or a do-while?
1025 ;; The next `when' triggers unless we are SURE that
1026 ;; the `while' is not the tail end of a `do-while'.
1027 (when (or (not pptok)
1028 (memq (char-after pptok) delims)
1029 ;; The following kludge is to prevent
1030 ;; infinite recursion when called from
1031 ;; c-awk-after-if-for-while-condition-p,
1032 ;; or the like.
1033 (and (eq (point) start)
1034 (c-vsemi-status-unknown-p))
1035 (c-at-vsemi-p pptok))
1036 ;; Since this can cause backtracking we do a
1037 ;; little more careful analysis to avoid it: If
1038 ;; the while isn't followed by a (possibly
1039 ;; virtual) semicolon it can't be a do-while.
1040 (c-bos-push-state)
1041 (setq state 'while)))
1042 ((memq sym '(catch finally))
1043 (c-bos-push-state)
1044 (c-bos-save-error-info 'try sym)
1045 (setq state 'catch))))
1047 (when c-maybe-labelp
1048 ;; We're either past a statement boundary or at the
1049 ;; start of a statement, so throw away any label data
1050 ;; for the previous one.
1051 (setq after-labels-pos nil
1052 last-label-pos nil
1053 c-maybe-labelp nil))))
1055 ;; Step to the previous sexp, but not if we crossed a
1056 ;; boundary, since that doesn't consume an sexp.
1057 (if (eq sym 'boundary)
1058 (setq ret 'previous)
1060 ;; HERE IS THE SINGLE PLACE INSIDE THE PDA LOOP WHERE WE MOVE
1061 ;; BACKWARDS THROUGH THE SOURCE.
1063 (c-backward-syntactic-ws)
1064 (let ((before-sws-pos (point))
1065 ;; The end position of the area to search for statement
1066 ;; barriers in this round.
1067 (maybe-after-boundary-pos pos))
1069 ;; Go back over exactly one logical sexp, taking proper
1070 ;; account of macros and escaped EOLs.
1071 (while
1072 (progn
1073 (unless (c-safe (c-backward-sexp) t)
1074 ;; Give up if we hit an unbalanced block. Since the
1075 ;; stack won't be empty the code below will report a
1076 ;; suitable error.
1077 (throw 'loop nil))
1078 (cond
1079 ;; Have we moved into a macro?
1080 ((and (not macro-start)
1081 (c-beginning-of-macro))
1082 ;; Have we crossed a statement boundary? If not,
1083 ;; keep going back until we find one or a "real" sexp.
1084 (and
1085 (save-excursion
1086 (c-end-of-macro)
1087 (not (c-crosses-statement-barrier-p
1088 (point) maybe-after-boundary-pos)))
1089 (setq maybe-after-boundary-pos (point))))
1090 ;; Have we just gone back over an escaped NL? This
1091 ;; doesn't count as a sexp.
1092 ((looking-at "\\\\$")))))
1094 ;; Have we crossed a statement boundary?
1095 (setq boundary-pos
1096 (cond
1097 ;; Are we at a macro beginning?
1098 ((and (not macro-start)
1099 c-opt-cpp-prefix
1100 (looking-at c-opt-cpp-prefix))
1101 (save-excursion
1102 (c-end-of-macro)
1103 (c-crosses-statement-barrier-p
1104 (point) maybe-after-boundary-pos)))
1105 ;; Just gone back over a brace block?
1106 ((and
1107 (eq (char-after) ?{)
1108 (not (c-looking-at-inexpr-block lim nil t))
1109 (save-excursion
1110 (c-backward-token-2 1 t nil)
1111 (not (looking-at "=\\([^=]\\|$\\)"))))
1112 (save-excursion
1113 (c-forward-sexp) (point)))
1114 ;; Just gone back over some paren block?
1115 ((looking-at "\\s(")
1116 (save-excursion
1117 (goto-char (1+ (c-down-list-backward
1118 before-sws-pos)))
1119 (c-crosses-statement-barrier-p
1120 (point) maybe-after-boundary-pos)))
1121 ;; Just gone back over an ordinary symbol of some sort?
1122 (t (c-crosses-statement-barrier-p
1123 (point) maybe-after-boundary-pos))))
1125 (when boundary-pos
1126 (setq pptok ptok
1127 ptok tok
1128 tok boundary-pos
1129 sym 'boundary)
1130 ;; Like a C "continue". Analyze the next sexp.
1131 (throw 'loop t))))
1133 ;; ObjC method def?
1134 (when (and c-opt-method-key
1135 (setq saved (c-in-method-def-p)))
1136 (setq pos saved
1137 ignore-labels t) ; Avoid the label check on exit.
1138 (throw 'loop nil)) ; 3. ObjC method def.
1140 ;; Might we have a bitfield declaration, "<type> <id> : <size>"?
1141 (if c-has-bitfields
1142 (cond
1143 ;; The : <size> and <id> fields?
1144 ((and (numberp c-maybe-labelp)
1145 (not bitfield-size-pos)
1146 (save-excursion
1147 (goto-char (or tok start))
1148 (not (looking-at c-keywords-regexp)))
1149 (not (looking-at c-keywords-regexp))
1150 (not (c-punctuation-in (point) c-maybe-labelp)))
1151 (setq bitfield-size-pos (or tok start)
1152 bitfield-id-pos (point)))
1153 ;; The <type> field?
1154 ((and bitfield-id-pos
1155 (not bitfield-type-pos))
1156 (if (and (looking-at c-symbol-key) ; Can only be an integer type. :-)
1157 (not (looking-at c-not-primitive-type-keywords-regexp))
1158 (not (c-punctuation-in (point) tok)))
1159 (setq bitfield-type-pos (point))
1160 (setq bitfield-size-pos nil
1161 bitfield-id-pos nil)))))
1163 ;; Handle labels.
1164 (unless (eq ignore-labels t)
1165 (when (numberp c-maybe-labelp)
1166 ;; `c-crosses-statement-barrier-p' has found a colon, so we
1167 ;; might be in a label now. Have we got a real label
1168 ;; (including a case label) or something like C++'s "public:"?
1169 ;; A case label might use an expression rather than a token.
1170 (setq after-case:-pos (or tok start))
1171 (if (or (looking-at c-nonlabel-token-key) ; e.g. "while" or "'a'"
1172 ;; Catch C++'s inheritance construct "class foo : bar".
1173 (save-excursion
1174 (and
1175 (c-safe (c-backward-sexp) t)
1176 (looking-at c-nonlabel-token-2-key))))
1177 (setq c-maybe-labelp nil)
1178 (if after-labels-pos ; Have we already encountered a label?
1179 (if (not last-label-pos)
1180 (setq last-label-pos (or tok start)))
1181 (setq after-labels-pos (or tok start)))
1182 (setq c-maybe-labelp t
1183 label-good-pos nil))) ; bogus "label"
1185 (when (and (not label-good-pos) ; i.e. no invalid "label"'s yet
1186 ; been found.
1187 (looking-at c-nonlabel-token-key)) ; e.g. "while :"
1188 ;; We're in a potential label and it's the first
1189 ;; time we've found something that isn't allowed in
1190 ;; one.
1191 (setq label-good-pos (or tok start))))
1193 ;; We've moved back by a sexp, so update the token positions.
1194 (setq sym nil
1195 pptok ptok
1196 ptok tok
1197 tok (point)
1198 pos tok) ; always non-nil
1199 ) ; end of (catch loop ....)
1200 ) ; end of sexp-at-a-time (while ....)
1202 ;; If the stack isn't empty there might be errors to report.
1203 (while stack
1204 (if (and (vectorp saved-pos) (eq (length saved-pos) 3))
1205 (c-bos-report-error))
1206 (setq saved-pos (cdr (car stack))
1207 stack (cdr stack)))
1209 (when (and (eq ret 'same)
1210 (not (memq sym '(boundary ignore nil))))
1211 ;; Need to investigate closer whether we've crossed
1212 ;; between a substatement and its containing statement.
1213 (if (setq saved
1214 (cond ((and (looking-at c-block-stmt-1-2-key)
1215 (eq (char-after ptok) ?\())
1216 pptok)
1217 ((looking-at c-block-stmt-1-key)
1218 ptok)
1219 (t pptok)))
1220 (cond ((> start saved) (setq pos saved))
1221 ((= start saved) (setq ret 'up)))))
1223 (when (and (not ignore-labels)
1224 (eq c-maybe-labelp t)
1225 (not (eq ret 'beginning))
1226 after-labels-pos
1227 (not bitfield-type-pos) ; Bitfields take precedence over labels.
1228 (or (not label-good-pos)
1229 (<= label-good-pos pos)
1230 (progn
1231 (goto-char (if (and last-label-pos
1232 (< last-label-pos start))
1233 last-label-pos
1234 pos))
1235 (looking-at c-label-kwds-regexp))))
1236 ;; We're in a label. Maybe we should step to the statement
1237 ;; after it.
1238 (if (< after-labels-pos start)
1239 (setq pos after-labels-pos)
1240 (setq ret 'label)
1241 (if (and last-label-pos (< last-label-pos start))
1242 ;; Might have jumped over several labels. Go to the last one.
1243 (setq pos last-label-pos)))))
1245 ;; Have we got "case <expression>:"?
1246 (goto-char pos)
1247 (when (and after-case:-pos
1248 (not (eq ret 'beginning))
1249 (looking-at c-case-kwds-regexp))
1250 (if (< after-case:-pos start)
1251 (setq pos after-case:-pos))
1252 (if (eq ret 'same)
1253 (setq ret 'label)))
1255 ;; Skip over the unary operators that can start the statement.
1256 (while (progn
1257 (c-backward-syntactic-ws)
1258 ;; protect AWK post-inc/decrement operators, etc.
1259 (and (not (c-at-vsemi-p (point)))
1260 (/= (skip-chars-backward "-+!*&~@`#") 0)))
1261 (setq pos (point)))
1262 (goto-char pos)
1263 ret)))
1265 (defun c-punctuation-in (from to)
1266 "Return non-nil if there is a non-comment non-macro punctuation character
1267 between FROM and TO. FROM must not be in a string or comment. The returned
1268 value is the position of the first such character."
1269 (save-excursion
1270 (goto-char from)
1271 (let ((pos (point)))
1272 (while (progn (skip-chars-forward c-symbol-chars to)
1273 (c-forward-syntactic-ws to)
1274 (> (point) pos))
1275 (setq pos (point))))
1276 (and (< (point) to) (point))))
1278 (defun c-crosses-statement-barrier-p (from to)
1279 "Return non-nil if buffer positions FROM to TO cross one or more
1280 statement or declaration boundaries. The returned value is actually
1281 the position of the earliest boundary char. FROM must not be within
1282 a string or comment.
1284 The variable `c-maybe-labelp' is set to the position of the first `:' that
1285 might start a label (i.e. not part of `::' and not preceded by `?'). If a
1286 single `?' is found, then `c-maybe-labelp' is cleared.
1288 For AWK, a statement which is terminated by an EOL (not a ; or a }) is
1289 regarded as having a \"virtual semicolon\" immediately after the last token on
1290 the line. If this virtual semicolon is _at_ from, the function recognizes it.
1292 Note that this function might do hidden buffer changes. See the
1293 comment at the start of cc-engine.el for more info."
1294 (let* ((skip-chars
1295 ;; If the current language has CPP macros, insert # into skip-chars.
1296 (if c-opt-cpp-symbol
1297 (concat (substring c-stmt-delim-chars 0 1) ; "^"
1298 c-opt-cpp-symbol ; usually "#"
1299 (substring c-stmt-delim-chars 1)) ; e.g. ";{}?:"
1300 c-stmt-delim-chars))
1301 (non-skip-list
1302 (append (substring skip-chars 1) nil)) ; e.g. (?# ?\; ?{ ?} ?? ?:)
1303 lit-range vsemi-pos)
1304 (save-restriction
1305 (widen)
1306 (save-excursion
1307 (catch 'done
1308 (goto-char from)
1309 (while (progn (skip-chars-forward
1310 skip-chars
1311 (min to (c-point 'bonl)))
1312 (< (point) to))
1313 (cond
1314 ;; Virtual semicolon?
1315 ((and (bolp)
1316 (save-excursion
1317 (progn
1318 (if (setq lit-range (c-literal-limits from)) ; Have we landed in a string/comment?
1319 (goto-char (car lit-range)))
1320 (c-backward-syntactic-ws) ; ? put a limit here, maybe?
1321 (setq vsemi-pos (point))
1322 (c-at-vsemi-p))))
1323 (throw 'done vsemi-pos))
1324 ;; In a string/comment?
1325 ((setq lit-range (c-literal-limits from))
1326 (goto-char (cdr lit-range)))
1327 ((eq (char-after) ?:)
1328 (forward-char)
1329 (if (and (eq (char-after) ?:)
1330 (< (point) to))
1331 ;; Ignore scope operators.
1332 (forward-char)
1333 (setq c-maybe-labelp (1- (point)))))
1334 ((eq (char-after) ??)
1335 ;; A question mark. Can't be a label, so stop
1336 ;; looking for more : and ?.
1337 (setq c-maybe-labelp nil
1338 skip-chars (substring c-stmt-delim-chars 0 -2)))
1339 ;; At a CPP construct or a "#" or "##" operator?
1340 ((and c-opt-cpp-symbol (looking-at c-opt-cpp-symbol))
1341 (if (save-excursion
1342 (skip-chars-backward " \t")
1343 (and (bolp)
1344 (or (bobp)
1345 (not (eq (char-before (1- (point))) ?\\)))))
1346 (c-end-of-macro)
1347 (skip-chars-forward c-opt-cpp-symbol)))
1348 ((memq (char-after) non-skip-list)
1349 (throw 'done (point)))))
1350 ;; In trailing space after an as yet undetected virtual semicolon?
1351 (c-backward-syntactic-ws from)
1352 (when (and (bolp) (not (bobp))) ; Can happen in AWK Mode with an
1353 ; unterminated string/regexp.
1354 (backward-char))
1355 (if (and (< (point) to)
1356 (c-at-vsemi-p))
1357 (point)
1358 nil))))))
1360 (defun c-at-statement-start-p ()
1361 "Return non-nil if the point is at the first token in a statement
1362 or somewhere in the syntactic whitespace before it.
1364 A \"statement\" here is not restricted to those inside code blocks.
1365 Any kind of declaration-like construct that occur outside function
1366 bodies is also considered a \"statement\".
1368 Note that this function might do hidden buffer changes. See the
1369 comment at the start of cc-engine.el for more info."
1371 (save-excursion
1372 (let ((end (point))
1373 c-maybe-labelp)
1374 (c-syntactic-skip-backward (substring c-stmt-delim-chars 1) nil t)
1375 (or (bobp)
1376 (eq (char-before) ?})
1377 (and (eq (char-before) ?{)
1378 (not (and c-special-brace-lists
1379 (progn (backward-char)
1380 (c-looking-at-special-brace-list)))))
1381 (c-crosses-statement-barrier-p (point) end)))))
1383 (defun c-at-expression-start-p ()
1384 "Return non-nil if the point is at the first token in an expression or
1385 statement, or somewhere in the syntactic whitespace before it.
1387 An \"expression\" here is a bit different from the normal language
1388 grammar sense: It's any sequence of expression tokens except commas,
1389 unless they are enclosed inside parentheses of some kind. Also, an
1390 expression never continues past an enclosing parenthesis, but it might
1391 contain parenthesis pairs of any sort except braces.
1393 Since expressions never cross statement boundaries, this function also
1394 recognizes statement beginnings, just like `c-at-statement-start-p'.
1396 Note that this function might do hidden buffer changes. See the
1397 comment at the start of cc-engine.el for more info."
1399 (save-excursion
1400 (let ((end (point))
1401 (c-stmt-delim-chars c-stmt-delim-chars-with-comma)
1402 c-maybe-labelp)
1403 (c-syntactic-skip-backward (substring c-stmt-delim-chars 1) nil t)
1404 (or (bobp)
1405 (memq (char-before) '(?{ ?}))
1406 (save-excursion (backward-char)
1407 (looking-at "\\s("))
1408 (c-crosses-statement-barrier-p (point) end)))))
1411 ;; A set of functions that covers various idiosyncrasies in
1412 ;; implementations of `forward-comment'.
1414 ;; Note: Some emacsen considers incorrectly that any line comment
1415 ;; ending with a backslash continues to the next line. I can't think
1416 ;; of any way to work around that in a reliable way without changing
1417 ;; the buffer, though. Suggestions welcome. ;) (No, temporarily
1418 ;; changing the syntax for backslash doesn't work since we must treat
1419 ;; escapes in string literals correctly.)
1421 (defun c-forward-single-comment ()
1422 "Move forward past whitespace and the closest following comment, if any.
1423 Return t if a comment was found, nil otherwise. In either case, the
1424 point is moved past the following whitespace. Line continuations,
1425 i.e. a backslashes followed by line breaks, are treated as whitespace.
1426 The line breaks that end line comments are considered to be the
1427 comment enders, so the point will be put on the beginning of the next
1428 line if it moved past a line comment.
1430 This function does not do any hidden buffer changes."
1432 (let ((start (point)))
1433 (when (looking-at "\\([ \t\n\r\f\v]\\|\\\\[\n\r]\\)+")
1434 (goto-char (match-end 0)))
1436 (when (forward-comment 1)
1437 (if (eobp)
1438 ;; Some emacsen (e.g. XEmacs 21) return t when moving
1439 ;; forwards at eob.
1442 ;; Emacs includes the ending newline in a b-style (c++)
1443 ;; comment, but XEmacs doesn't. We depend on the Emacs
1444 ;; behavior (which also is symmetric).
1445 (if (and (eolp) (elt (parse-partial-sexp start (point)) 7))
1446 (condition-case nil (forward-char 1)))
1448 t))))
1450 (defsubst c-forward-comments ()
1451 "Move forward past all following whitespace and comments.
1452 Line continuations, i.e. a backslashes followed by line breaks, are
1453 treated as whitespace.
1455 Note that this function might do hidden buffer changes. See the
1456 comment at the start of cc-engine.el for more info."
1458 (while (or
1459 ;; If forward-comment in at least XEmacs 21 is given a large
1460 ;; positive value, it'll loop all the way through if it hits
1461 ;; eob.
1462 (and (forward-comment 5)
1463 ;; Some emacsen (e.g. XEmacs 21) return t when moving
1464 ;; forwards at eob.
1465 (not (eobp)))
1467 (when (looking-at "\\\\[\n\r]")
1468 (forward-char 2)
1469 t))))
1471 (defun c-backward-single-comment ()
1472 "Move backward past whitespace and the closest preceding comment, if any.
1473 Return t if a comment was found, nil otherwise. In either case, the
1474 point is moved past the preceding whitespace. Line continuations,
1475 i.e. a backslashes followed by line breaks, are treated as whitespace.
1476 The line breaks that end line comments are considered to be the
1477 comment enders, so the point cannot be at the end of the same line to
1478 move over a line comment.
1480 This function does not do any hidden buffer changes."
1482 (let ((start (point)))
1483 ;; When we got newline terminated comments, forward-comment in all
1484 ;; supported emacsen so far will stop at eol of each line not
1485 ;; ending with a comment when moving backwards. This corrects for
1486 ;; that, and at the same time handles line continuations.
1487 (while (progn
1488 (skip-chars-backward " \t\n\r\f\v")
1489 (and (looking-at "[\n\r]")
1490 (eq (char-before) ?\\)))
1491 (backward-char))
1493 (if (bobp)
1494 ;; Some emacsen (e.g. Emacs 19.34) return t when moving
1495 ;; backwards at bob.
1498 ;; Leave point after the closest following newline if we've
1499 ;; backed up over any above, since forward-comment won't move
1500 ;; backward over a line comment if point is at the end of the
1501 ;; same line.
1502 (re-search-forward "\\=\\s *[\n\r]" start t)
1504 (if (if (forward-comment -1)
1505 (if (eolp)
1506 ;; If forward-comment above succeeded and we're at eol
1507 ;; then the newline we moved over above didn't end a
1508 ;; line comment, so we give it another go.
1509 (forward-comment -1)
1512 ;; Emacs <= 20 and XEmacs move back over the closer of a
1513 ;; block comment that lacks an opener.
1514 (if (looking-at "\\*/")
1515 (progn (forward-char 2) nil)
1516 t)))))
1518 (defsubst c-backward-comments ()
1519 "Move backward past all preceding whitespace and comments.
1520 Line continuations, i.e. a backslashes followed by line breaks, are
1521 treated as whitespace. The line breaks that end line comments are
1522 considered to be the comment enders, so the point cannot be at the end
1523 of the same line to move over a line comment. Unlike
1524 c-backward-syntactic-ws, this function doesn't move back over
1525 preprocessor directives.
1527 Note that this function might do hidden buffer changes. See the
1528 comment at the start of cc-engine.el for more info."
1530 (let ((start (point)))
1531 (while (and
1532 ;; `forward-comment' in some emacsen (e.g. XEmacs 21.4)
1533 ;; return t when moving backwards at bob.
1534 (not (bobp))
1536 (if (let (moved-comment)
1537 (while
1538 (and (not (setq moved-comment (forward-comment -1)))
1539 ;; Cope specifically with ^M^J here -
1540 ;; forward-comment sometimes gets stuck after ^Ms,
1541 ;; sometimes after ^M^J.
1543 (when (eq (char-before) ?\r)
1544 (backward-char)
1546 (when (and (eq (char-before) ?\n)
1547 (eq (char-before (1- (point))) ?\r))
1548 (backward-char 2)
1549 t))))
1550 moved-comment)
1551 (if (looking-at "\\*/")
1552 ;; Emacs <= 20 and XEmacs move back over the
1553 ;; closer of a block comment that lacks an opener.
1554 (progn (forward-char 2) nil)
1557 ;; XEmacs treats line continuations as whitespace but
1558 ;; only in the backward direction, which seems a bit
1559 ;; odd. Anyway, this is necessary for Emacs.
1560 (when (and (looking-at "[\n\r]")
1561 (eq (char-before) ?\\)
1562 (< (point) start))
1563 (backward-char)
1564 t))))))
1567 ;; Tools for skipping over syntactic whitespace.
1569 ;; The following functions use text properties to cache searches over
1570 ;; large regions of syntactic whitespace. It works as follows:
1572 ;; o If a syntactic whitespace region contains anything but simple
1573 ;; whitespace (i.e. space, tab and line breaks), the text property
1574 ;; `c-in-sws' is put over it. At places where we have stopped
1575 ;; within that region there's also a `c-is-sws' text property.
1576 ;; That since there typically are nested whitespace inside that
1577 ;; must be handled separately, e.g. whitespace inside a comment or
1578 ;; cpp directive. Thus, from one point with `c-is-sws' it's safe
1579 ;; to jump to another point with that property within the same
1580 ;; `c-in-sws' region. It can be likened to a ladder where
1581 ;; `c-in-sws' marks the bars and `c-is-sws' the rungs.
1583 ;; o The `c-is-sws' property is put on the simple whitespace chars at
1584 ;; a "rung position" and also maybe on the first following char.
1585 ;; As many characters as can be conveniently found in this range
1586 ;; are marked, but no assumption can be made that the whole range
1587 ;; is marked (it could be clobbered by later changes, for
1588 ;; instance).
1590 ;; Note that some part of the beginning of a sequence of simple
1591 ;; whitespace might be part of the end of a preceding line comment
1592 ;; or cpp directive and must not be considered part of the "rung".
1593 ;; Such whitespace is some amount of horizontal whitespace followed
1594 ;; by a newline. In the case of cpp directives it could also be
1595 ;; two newlines with horizontal whitespace between them.
1597 ;; The reason to include the first following char is to cope with
1598 ;; "rung positions" that don't have any ordinary whitespace. If
1599 ;; `c-is-sws' is put on a token character it does not have
1600 ;; `c-in-sws' set simultaneously. That's the only case when that
1601 ;; can occur, and the reason for not extending the `c-in-sws'
1602 ;; region to cover it is that the `c-in-sws' region could then be
1603 ;; accidentally merged with a following one if the token is only
1604 ;; one character long.
1606 ;; o On buffer changes the `c-in-sws' and `c-is-sws' properties are
1607 ;; removed in the changed region. If the change was inside
1608 ;; syntactic whitespace that means that the "ladder" is broken, but
1609 ;; a later call to `c-forward-sws' or `c-backward-sws' will use the
1610 ;; parts on either side and use an ordinary search only to "repair"
1611 ;; the gap.
1613 ;; Special care needs to be taken if a region is removed: If there
1614 ;; are `c-in-sws' on both sides of it which do not connect inside
1615 ;; the region then they can't be joined. If e.g. a marked macro is
1616 ;; broken, syntactic whitespace inside the new text might be
1617 ;; marked. If those marks would become connected with the old
1618 ;; `c-in-sws' range around the macro then we could get a ladder
1619 ;; with one end outside the macro and the other at some whitespace
1620 ;; within it.
1622 ;; The main motivation for this system is to increase the speed in
1623 ;; skipping over the large whitespace regions that can occur at the
1624 ;; top level in e.g. header files that contain a lot of comments and
1625 ;; cpp directives. For small comments inside code it's probably
1626 ;; slower than using `forward-comment' straightforwardly, but speed is
1627 ;; not a significant factor there anyway.
1629 ; (defface c-debug-is-sws-face
1630 ; '((t (:background "GreenYellow")))
1631 ; "Debug face to mark the `c-is-sws' property.")
1632 ; (defface c-debug-in-sws-face
1633 ; '((t (:underline t)))
1634 ; "Debug face to mark the `c-in-sws' property.")
1636 ; (defun c-debug-put-sws-faces ()
1637 ; ;; Put the sws debug faces on all the `c-is-sws' and `c-in-sws'
1638 ; ;; properties in the buffer.
1639 ; (interactive)
1640 ; (save-excursion
1641 ; (c-save-buffer-state (in-face)
1642 ; (goto-char (point-min))
1643 ; (setq in-face (if (get-text-property (point) 'c-is-sws)
1644 ; (point)))
1645 ; (while (progn
1646 ; (goto-char (next-single-property-change
1647 ; (point) 'c-is-sws nil (point-max)))
1648 ; (if in-face
1649 ; (progn
1650 ; (c-debug-add-face in-face (point) 'c-debug-is-sws-face)
1651 ; (setq in-face nil))
1652 ; (setq in-face (point)))
1653 ; (not (eobp))))
1654 ; (goto-char (point-min))
1655 ; (setq in-face (if (get-text-property (point) 'c-in-sws)
1656 ; (point)))
1657 ; (while (progn
1658 ; (goto-char (next-single-property-change
1659 ; (point) 'c-in-sws nil (point-max)))
1660 ; (if in-face
1661 ; (progn
1662 ; (c-debug-add-face in-face (point) 'c-debug-in-sws-face)
1663 ; (setq in-face nil))
1664 ; (setq in-face (point)))
1665 ; (not (eobp)))))))
1667 (defmacro c-debug-sws-msg (&rest args)
1668 ;;`(message ,@args)
1671 (defmacro c-put-is-sws (beg end)
1672 ;; This macro does a hidden buffer change.
1673 `(let ((beg ,beg) (end ,end))
1674 (put-text-property beg end 'c-is-sws t)
1675 ,@(when (facep 'c-debug-is-sws-face)
1676 `((c-debug-add-face beg end 'c-debug-is-sws-face)))))
1678 (defmacro c-put-in-sws (beg end)
1679 ;; This macro does a hidden buffer change.
1680 `(let ((beg ,beg) (end ,end))
1681 (put-text-property beg end 'c-in-sws t)
1682 ,@(when (facep 'c-debug-is-sws-face)
1683 `((c-debug-add-face beg end 'c-debug-in-sws-face)))))
1685 (defmacro c-remove-is-sws (beg end)
1686 ;; This macro does a hidden buffer change.
1687 `(let ((beg ,beg) (end ,end))
1688 (remove-text-properties beg end '(c-is-sws nil))
1689 ,@(when (facep 'c-debug-is-sws-face)
1690 `((c-debug-remove-face beg end 'c-debug-is-sws-face)))))
1692 (defmacro c-remove-in-sws (beg end)
1693 ;; This macro does a hidden buffer change.
1694 `(let ((beg ,beg) (end ,end))
1695 (remove-text-properties beg end '(c-in-sws nil))
1696 ,@(when (facep 'c-debug-is-sws-face)
1697 `((c-debug-remove-face beg end 'c-debug-in-sws-face)))))
1699 (defmacro c-remove-is-and-in-sws (beg end)
1700 ;; This macro does a hidden buffer change.
1701 `(let ((beg ,beg) (end ,end))
1702 (remove-text-properties beg end '(c-is-sws nil c-in-sws nil))
1703 ,@(when (facep 'c-debug-is-sws-face)
1704 `((c-debug-remove-face beg end 'c-debug-is-sws-face)
1705 (c-debug-remove-face beg end 'c-debug-in-sws-face)))))
1707 (defsubst c-invalidate-sws-region-after (beg end)
1708 ;; Called from `after-change-functions'. Note that if
1709 ;; `c-forward-sws' or `c-backward-sws' are used outside
1710 ;; `c-save-buffer-state' or similar then this will remove the cache
1711 ;; properties right after they're added.
1713 ;; This function does hidden buffer changes.
1715 (save-excursion
1716 ;; Adjust the end to remove the properties in any following simple
1717 ;; ws up to and including the next line break, if there is any
1718 ;; after the changed region. This is necessary e.g. when a rung
1719 ;; marked empty line is converted to a line comment by inserting
1720 ;; "//" before the line break. In that case the line break would
1721 ;; keep the rung mark which could make a later `c-backward-sws'
1722 ;; move into the line comment instead of over it.
1723 (goto-char end)
1724 (skip-chars-forward " \t\f\v")
1725 (when (and (eolp) (not (eobp)))
1726 (setq end (1+ (point)))))
1728 (when (and (= beg end)
1729 (get-text-property beg 'c-in-sws)
1730 (> beg (point-min))
1731 (get-text-property (1- beg) 'c-in-sws))
1732 ;; Ensure that an `c-in-sws' range gets broken. Note that it isn't
1733 ;; safe to keep a range that was continuous before the change. E.g:
1735 ;; #define foo
1736 ;; \
1737 ;; bar
1739 ;; There can be a "ladder" between "#" and "b". Now, if the newline
1740 ;; after "foo" is removed then "bar" will become part of the cpp
1741 ;; directive instead of a syntactically relevant token. In that
1742 ;; case there's no longer syntactic ws from "#" to "b".
1743 (setq beg (1- beg)))
1745 (c-debug-sws-msg "c-invalidate-sws-region-after [%s..%s]" beg end)
1746 (c-remove-is-and-in-sws beg end))
1748 (defun c-forward-sws ()
1749 ;; Used by `c-forward-syntactic-ws' to implement the unbounded search.
1751 ;; This function might do hidden buffer changes.
1753 (let (;; `rung-pos' is set to a position as early as possible in the
1754 ;; unmarked part of the simple ws region.
1755 (rung-pos (point)) next-rung-pos rung-end-pos last-put-in-sws-pos
1756 rung-is-marked next-rung-is-marked simple-ws-end
1757 ;; `safe-start' is set when it's safe to cache the start position.
1758 ;; It's not set if we've initially skipped over comments and line
1759 ;; continuations since we might have gone out through the end of a
1760 ;; macro then. This provision makes `c-forward-sws' not populate the
1761 ;; cache in the majority of cases, but otoh is `c-backward-sws' by far
1762 ;; more common.
1763 safe-start)
1765 ;; Skip simple ws and do a quick check on the following character to see
1766 ;; if it's anything that can't start syntactic ws, so we can bail out
1767 ;; early in the majority of cases when there just are a few ws chars.
1768 (skip-chars-forward " \t\n\r\f\v")
1769 (when (or (looking-at c-syntactic-ws-start)
1770 (and c-opt-cpp-prefix
1771 (looking-at c-noise-macro-name-re)))
1773 (setq rung-end-pos (min (1+ (point)) (point-max)))
1774 (if (setq rung-is-marked (text-property-any rung-pos rung-end-pos
1775 'c-is-sws t))
1776 ;; Find the last rung position to avoid setting properties in all
1777 ;; the cases when the marked rung is complete.
1778 ;; (`next-single-property-change' is certain to move at least one
1779 ;; step forward.)
1780 (setq rung-pos (1- (c-next-single-property-change
1781 rung-is-marked 'c-is-sws nil rung-end-pos)))
1782 ;; Got no marked rung here. Since the simple ws might have started
1783 ;; inside a line comment or cpp directive we must set `rung-pos' as
1784 ;; high as possible.
1785 (setq rung-pos (point)))
1787 (with-silent-modifications
1788 (while
1789 (progn
1790 ;; In the following while form, we move over a "ladder" and
1791 ;; following simple WS each time round the loop, appending the WS
1792 ;; onto the ladder, joining adjacent ladders, and terminating when
1793 ;; there is no more WS or we reach EOB.
1794 (while
1795 (when (and rung-is-marked
1796 (get-text-property (point) 'c-in-sws))
1798 ;; The following search is the main reason that `c-in-sws'
1799 ;; and `c-is-sws' aren't combined to one property.
1800 (goto-char (c-next-single-property-change
1801 (point) 'c-in-sws nil (point-max)))
1802 (unless (get-text-property (point) 'c-is-sws)
1803 ;; If the `c-in-sws' region extended past the last
1804 ;; `c-is-sws' char we have to go back a bit.
1805 (or (get-text-property (1- (point)) 'c-is-sws)
1806 (goto-char (previous-single-property-change
1807 (point) 'c-is-sws)))
1808 (backward-char))
1810 (c-debug-sws-msg
1811 "c-forward-sws cached move %s -> %s (max %s)"
1812 rung-pos (point) (point-max))
1814 (setq rung-pos (point))
1815 (and (> (skip-chars-forward " \t\n\r\f\v") 0)
1816 (not (eobp))))
1818 ;; We'll loop here if there is simple ws after the last rung.
1819 ;; That means that there's been some change in it and it's
1820 ;; possible that we've stepped into another ladder, so extend
1821 ;; the previous one to join with it if there is one, and try to
1822 ;; use the cache again.
1823 (c-debug-sws-msg
1824 "c-forward-sws extending rung with [%s..%s] (max %s)"
1825 (1+ rung-pos) (1+ (point)) (point-max))
1826 (unless (get-text-property (point) 'c-is-sws)
1827 ;; Remove any `c-in-sws' property from the last char of
1828 ;; the rung before we mark it with `c-is-sws', so that we
1829 ;; won't connect with the remains of a broken "ladder".
1830 (c-remove-in-sws (point) (1+ (point))))
1831 (c-put-is-sws (1+ rung-pos)
1832 (1+ (point)))
1833 (c-put-in-sws rung-pos
1834 (setq rung-pos (point)
1835 last-put-in-sws-pos rung-pos)))
1837 ;; Now move over any comments (x)or a CPP construct.
1838 (setq simple-ws-end (point))
1839 (c-forward-comments)
1841 (cond
1842 ((/= (point) simple-ws-end)
1843 ;; Skipped over comments. Don't cache at eob in case the buffer
1844 ;; is narrowed.
1845 (not (eobp)))
1847 ((save-excursion
1848 (and c-opt-cpp-prefix
1849 (looking-at c-opt-cpp-start)
1850 (progn (skip-chars-backward " \t")
1851 (bolp))
1852 (or (bobp)
1853 (progn (backward-char)
1854 (not (eq (char-before) ?\\))))))
1855 ;; Skip a preprocessor directive.
1856 (end-of-line)
1857 (while (and (eq (char-before) ?\\)
1858 (= (forward-line 1) 0))
1859 (end-of-line))
1860 (forward-line 1)
1861 (setq safe-start t)
1862 ;; Don't cache at eob in case the buffer is narrowed.
1863 (not (eobp)))
1865 ((and c-opt-cpp-prefix
1866 (looking-at c-noise-macro-name-re))
1867 ;; Skip over a noise macro.
1868 (goto-char (match-end 1))
1869 (setq safe-start t)
1870 (not (eobp)))))
1872 ;; We've searched over a piece of non-white syntactic ws. See if this
1873 ;; can be cached.
1874 (setq next-rung-pos (point))
1875 (skip-chars-forward " \t\n\r\f\v")
1876 (setq rung-end-pos (min (1+ (point)) (point-max)))
1878 (if (or
1879 ;; Cache if we haven't skipped comments only, and if we started
1880 ;; either from a marked rung or from a completely uncached
1881 ;; position.
1882 (and safe-start
1883 (or rung-is-marked
1884 (not (get-text-property simple-ws-end 'c-in-sws))))
1886 ;; See if there's a marked rung in the encountered simple ws. If
1887 ;; so then we can cache, unless `safe-start' is nil. Even then
1888 ;; we need to do this to check if the cache can be used for the
1889 ;; next step.
1890 (and (setq next-rung-is-marked
1891 (text-property-any next-rung-pos rung-end-pos
1892 'c-is-sws t))
1893 safe-start))
1895 (progn
1896 (c-debug-sws-msg
1897 "c-forward-sws caching [%s..%s] - [%s..%s] (max %s)"
1898 rung-pos (1+ simple-ws-end) next-rung-pos rung-end-pos
1899 (point-max))
1901 ;; Remove the properties for any nested ws that might be cached.
1902 ;; Only necessary for `c-is-sws' since `c-in-sws' will be set
1903 ;; anyway.
1904 (c-remove-is-sws (1+ simple-ws-end) next-rung-pos)
1905 (unless (and rung-is-marked (= rung-pos simple-ws-end))
1906 (c-put-is-sws rung-pos
1907 (1+ simple-ws-end))
1908 (setq rung-is-marked t))
1909 (c-put-in-sws rung-pos
1910 (setq rung-pos (point)
1911 last-put-in-sws-pos rung-pos))
1912 (unless (get-text-property (1- rung-end-pos) 'c-is-sws)
1913 ;; Remove any `c-in-sws' property from the last char of
1914 ;; the rung before we mark it with `c-is-sws', so that we
1915 ;; won't connect with the remains of a broken "ladder".
1916 (c-remove-in-sws (1- rung-end-pos) rung-end-pos))
1917 (c-put-is-sws next-rung-pos
1918 rung-end-pos))
1920 (c-debug-sws-msg
1921 "c-forward-sws not caching [%s..%s] - [%s..%s] (max %s)"
1922 rung-pos (1+ simple-ws-end) next-rung-pos rung-end-pos
1923 (point-max))
1925 ;; Set `rung-pos' for the next rung. It's the same thing here as
1926 ;; initially, except that the rung position is set as early as
1927 ;; possible since we can't be in the ending ws of a line comment or
1928 ;; cpp directive now.
1929 (if (setq rung-is-marked next-rung-is-marked)
1930 (setq rung-pos (1- (c-next-single-property-change
1931 rung-is-marked 'c-is-sws nil rung-end-pos)))
1932 (setq rung-pos next-rung-pos))
1933 (setq safe-start t)))
1935 ;; Make sure that the newly marked `c-in-sws' region doesn't connect to
1936 ;; another one after the point (which might occur when editing inside a
1937 ;; comment or macro).
1938 (when (eq last-put-in-sws-pos (point))
1939 (cond ((< last-put-in-sws-pos (point-max))
1940 (c-debug-sws-msg
1941 "c-forward-sws clearing at %s for cache separation"
1942 last-put-in-sws-pos)
1943 (c-remove-in-sws last-put-in-sws-pos
1944 (1+ last-put-in-sws-pos)))
1946 ;; If at eob we have to clear the last character before the end
1947 ;; instead since the buffer might be narrowed and there might
1948 ;; be a `c-in-sws' after (point-max). In this case it's
1949 ;; necessary to clear both properties.
1950 (c-debug-sws-msg
1951 "c-forward-sws clearing thoroughly at %s for cache separation"
1952 (1- last-put-in-sws-pos))
1953 (c-remove-is-and-in-sws (1- last-put-in-sws-pos)
1954 last-put-in-sws-pos))))
1955 ))))
1957 (defun c-backward-sws ()
1958 ;; Used by `c-backward-syntactic-ws' to implement the unbounded search.
1960 ;; This function might do hidden buffer changes.
1962 (let (;; `rung-pos' is set to a position as late as possible in the unmarked
1963 ;; part of the simple ws region.
1964 (rung-pos (point)) next-rung-pos last-put-in-sws-pos
1965 rung-is-marked simple-ws-beg cmt-skip-pos)
1967 ;; Skip simple horizontal ws and do a quick check on the preceding
1968 ;; character to see if it's anything that can't end syntactic ws, so we can
1969 ;; bail out early in the majority of cases when there just are a few ws
1970 ;; chars. Newlines are complicated in the backward direction, so we can't
1971 ;; skip over them.
1972 (skip-chars-backward " \t\f")
1973 (when (and (not (bobp))
1974 (save-excursion
1975 (backward-char)
1976 (or (looking-at c-syntactic-ws-end)
1977 (and c-opt-cpp-prefix
1978 (looking-at c-symbol-char-key)
1979 (progn (c-beginning-of-current-token)
1980 (looking-at c-noise-macro-name-re))))))
1981 ;; Try to find a rung position in the simple ws preceding point, so that
1982 ;; we can get a cache hit even if the last bit of the simple ws has
1983 ;; changed recently.
1984 (setq simple-ws-beg (point))
1985 (skip-chars-backward " \t\n\r\f\v")
1986 (if (setq rung-is-marked (text-property-any
1987 (point) (min (1+ rung-pos) (point-max))
1988 'c-is-sws t))
1989 ;; `rung-pos' will be the earliest marked position, which means that
1990 ;; there might be later unmarked parts in the simple ws region.
1991 ;; It's not worth the effort to fix that; the last part of the
1992 ;; simple ws is also typically edited often, so it could be wasted.
1993 (goto-char (setq rung-pos rung-is-marked))
1994 (goto-char simple-ws-beg))
1996 (with-silent-modifications
1997 (while
1998 (progn
1999 ;; Each time round the next while form, we move back over a ladder
2000 ;; and append any simple WS preceding it, if possible joining with
2001 ;; the previous ladder.
2002 (while
2003 (when (and rung-is-marked
2004 (not (bobp))
2005 (get-text-property (1- (point)) 'c-in-sws))
2007 ;; The following search is the main reason that `c-in-sws'
2008 ;; and `c-is-sws' aren't combined to one property.
2009 (goto-char (previous-single-property-change
2010 (point) 'c-in-sws nil (point-min)))
2011 (unless (get-text-property (point) 'c-is-sws)
2012 ;; If the `c-in-sws' region extended past the first
2013 ;; `c-is-sws' char we have to go forward a bit.
2014 (goto-char (c-next-single-property-change
2015 (point) 'c-is-sws)))
2017 (c-debug-sws-msg
2018 "c-backward-sws cached move %s <- %s (min %s)"
2019 (point) rung-pos (point-min))
2021 (setq rung-pos (point))
2022 (if (and (< (min (skip-chars-backward " \t\f\v")
2023 (progn
2024 (setq simple-ws-beg (point))
2025 (skip-chars-backward " \t\n\r\f\v")))
2027 (setq rung-is-marked
2028 (text-property-any (point) rung-pos
2029 'c-is-sws t)))
2031 (goto-char simple-ws-beg)
2032 nil))
2034 ;; We'll loop here if there is simple ws before the first rung.
2035 ;; That means that there's been some change in it and it's
2036 ;; possible that we've stepped into another ladder, so extend
2037 ;; the previous one to join with it if there is one, and try to
2038 ;; use the cache again.
2039 (c-debug-sws-msg
2040 "c-backward-sws extending rung with [%s..%s] (min %s)"
2041 rung-is-marked rung-pos (point-min))
2042 (unless (get-text-property (1- rung-pos) 'c-is-sws)
2043 ;; Remove any `c-in-sws' property from the last char of
2044 ;; the rung before we mark it with `c-is-sws', so that we
2045 ;; won't connect with the remains of a broken "ladder".
2046 (c-remove-in-sws (1- rung-pos) rung-pos))
2047 (c-put-is-sws rung-is-marked
2048 rung-pos)
2049 (c-put-in-sws rung-is-marked
2050 (1- rung-pos))
2051 (setq rung-pos rung-is-marked
2052 last-put-in-sws-pos rung-pos))
2054 (c-backward-comments)
2055 (setq cmt-skip-pos (point))
2057 (cond
2058 ((and c-opt-cpp-prefix
2059 (/= cmt-skip-pos simple-ws-beg)
2060 (c-beginning-of-macro))
2061 ;; Inside a cpp directive. See if it should be skipped over.
2062 (let ((cpp-beg (point)))
2064 ;; Move back over all line continuations in the region skipped
2065 ;; over by `c-backward-comments'. If we go past it then we
2066 ;; started inside the cpp directive.
2067 (goto-char simple-ws-beg)
2068 (beginning-of-line)
2069 (while (and (> (point) cmt-skip-pos)
2070 (progn (backward-char)
2071 (eq (char-before) ?\\)))
2072 (beginning-of-line))
2074 (if (< (point) cmt-skip-pos)
2075 ;; Don't move past the cpp directive if we began inside
2076 ;; it. Note that the position at the end of the last line
2077 ;; of the macro is also considered to be within it.
2078 (progn (goto-char cmt-skip-pos)
2079 nil)
2081 ;; It's worthwhile to spend a little bit of effort on finding
2082 ;; the end of the macro, to get a good `simple-ws-beg'
2083 ;; position for the cache. Note that `c-backward-comments'
2084 ;; could have stepped over some comments before going into
2085 ;; the macro, and then `simple-ws-beg' must be kept on the
2086 ;; same side of those comments.
2087 (goto-char simple-ws-beg)
2088 (skip-chars-backward " \t\n\r\f\v")
2089 (if (eq (char-before) ?\\)
2090 (forward-char))
2091 (forward-line 1)
2092 (if (< (point) simple-ws-beg)
2093 ;; Might happen if comments after the macro were skipped
2094 ;; over.
2095 (setq simple-ws-beg (point)))
2097 (goto-char cpp-beg)
2098 t)))
2100 ((/= (save-excursion
2101 (skip-chars-forward " \t\n\r\f\v" simple-ws-beg)
2102 (setq next-rung-pos (point)))
2103 simple-ws-beg)
2104 ;; Skipped over comments. Must put point at the end of
2105 ;; the simple ws at point since we might be after a line
2106 ;; comment or cpp directive that's been partially
2107 ;; narrowed out, and we can't risk marking the simple ws
2108 ;; at the end of it.
2109 (goto-char next-rung-pos)
2112 ((and c-opt-cpp-prefix
2113 (save-excursion
2114 (and (< (skip-syntax-backward "w_") 0)
2115 (progn (setq next-rung-pos (point))
2116 (looking-at c-noise-macro-name-re)))))
2117 ;; Skipped over a noise macro
2118 (goto-char next-rung-pos)
2119 t)))
2121 ;; We've searched over a piece of non-white syntactic ws. See if this
2122 ;; can be cached.
2123 (setq next-rung-pos (point))
2124 (skip-chars-backward " \t\f\v")
2126 (if (or
2127 ;; Cache if we started either from a marked rung or from a
2128 ;; completely uncached position.
2129 rung-is-marked
2130 (not (get-text-property (1- simple-ws-beg) 'c-in-sws))
2132 ;; Cache if there's a marked rung in the encountered simple ws.
2133 (save-excursion
2134 (skip-chars-backward " \t\n\r\f\v")
2135 (text-property-any (point) (min (1+ next-rung-pos) (point-max))
2136 'c-is-sws t)))
2138 (progn
2139 (c-debug-sws-msg
2140 "c-backward-sws caching [%s..%s] - [%s..%s] (min %s)"
2141 (point) (1+ next-rung-pos)
2142 simple-ws-beg (min (1+ rung-pos) (point-max))
2143 (point-min))
2145 ;; Remove the properties for any nested ws that might be cached.
2146 ;; Only necessary for `c-is-sws' since `c-in-sws' will be set
2147 ;; anyway.
2148 (c-remove-is-sws (1+ next-rung-pos) simple-ws-beg)
2149 (unless (and rung-is-marked (= simple-ws-beg rung-pos))
2150 (let ((rung-end-pos (min (1+ rung-pos) (point-max))))
2151 (unless (get-text-property (1- rung-end-pos) 'c-is-sws)
2152 ;; Remove any `c-in-sws' property from the last char of
2153 ;; the rung before we mark it with `c-is-sws', so that we
2154 ;; won't connect with the remains of a broken "ladder".
2155 (c-remove-in-sws (1- rung-end-pos) rung-end-pos))
2156 (c-put-is-sws simple-ws-beg
2157 rung-end-pos)
2158 (setq rung-is-marked t)))
2159 (c-put-in-sws (setq simple-ws-beg (point)
2160 last-put-in-sws-pos simple-ws-beg)
2161 rung-pos)
2162 (c-put-is-sws (setq rung-pos simple-ws-beg)
2163 (1+ next-rung-pos)))
2165 (c-debug-sws-msg
2166 "c-backward-sws not caching [%s..%s] - [%s..%s] (min %s)"
2167 (point) (1+ next-rung-pos)
2168 simple-ws-beg (min (1+ rung-pos) (point-max))
2169 (point-min))
2170 (setq rung-pos next-rung-pos
2171 simple-ws-beg (point))
2174 ;; Make sure that the newly marked `c-in-sws' region doesn't connect to
2175 ;; another one before the point (which might occur when editing inside a
2176 ;; comment or macro).
2177 (when (eq last-put-in-sws-pos (point))
2178 (cond ((< (point-min) last-put-in-sws-pos)
2179 (c-debug-sws-msg
2180 "c-backward-sws clearing at %s for cache separation"
2181 (1- last-put-in-sws-pos))
2182 (c-remove-in-sws (1- last-put-in-sws-pos)
2183 last-put-in-sws-pos))
2184 ((> (point-min) 1)
2185 ;; If at bob and the buffer is narrowed, we have to clear the
2186 ;; character we're standing on instead since there might be a
2187 ;; `c-in-sws' before (point-min). In this case it's necessary
2188 ;; to clear both properties.
2189 (c-debug-sws-msg
2190 "c-backward-sws clearing thoroughly at %s for cache separation"
2191 last-put-in-sws-pos)
2192 (c-remove-is-and-in-sws last-put-in-sws-pos
2193 (1+ last-put-in-sws-pos)))))
2194 ))))
2197 ;; Other whitespace tools
2198 (defun c-partial-ws-p (beg end)
2199 ;; Is the region (beg end) WS, and is there WS (or BOB/EOB) next to the
2200 ;; region? This is a "heuristic" function. .....
2202 ;; The motivation for the second bit is to check whether removing this
2203 ;; region would coalesce two symbols.
2205 ;; FIXME!!! This function doesn't check virtual semicolons in any way. Be
2206 ;; careful about using this function for, e.g. AWK. (2007/3/7)
2207 (save-excursion
2208 (let ((end+1 (min (1+ end) (point-max))))
2209 (or (progn (goto-char (max (point-min) (1- beg)))
2210 (c-skip-ws-forward end)
2211 (eq (point) end))
2212 (progn (goto-char beg)
2213 (c-skip-ws-forward end+1)
2214 (eq (point) end+1))))))
2216 ;; A system for finding noteworthy parens before the point.
2218 (defconst c-state-cache-too-far 5000)
2219 ;; A maximum comfortable scanning distance, e.g. between
2220 ;; `c-state-cache-good-pos' and "HERE" (where we call c-parse-state). When
2221 ;; this distance is exceeded, we take "emergency measures", e.g. by clearing
2222 ;; the cache and starting again from point-min or a beginning of defun. This
2223 ;; value can be tuned for efficiency or set to a lower value for testing.
2225 (defvar c-state-cache nil)
2226 (make-variable-buffer-local 'c-state-cache)
2227 ;; The state cache used by `c-parse-state' to cut down the amount of
2228 ;; searching. It's the result from some earlier `c-parse-state' call. See
2229 ;; `c-parse-state''s doc string for details of its structure.
2231 ;; The use of the cached info is more effective if the next
2232 ;; `c-parse-state' call is on a line close by the one the cached state
2233 ;; was made at; the cache can actually slow down a little if the
2234 ;; cached state was made very far back in the buffer. The cache is
2235 ;; most effective if `c-parse-state' is used on each line while moving
2236 ;; forward.
2238 (defvar c-state-cache-good-pos 1)
2239 (make-variable-buffer-local 'c-state-cache-good-pos)
2240 ;; This is a position where `c-state-cache' is known to be correct, or
2241 ;; nil (see below). It's a position inside one of the recorded unclosed
2242 ;; parens or the top level, but not further nested inside any literal or
2243 ;; subparen that is closed before the last recorded position.
2245 ;; The exact position is chosen to try to be close to yet earlier than
2246 ;; the position where `c-state-cache' will be called next. Right now
2247 ;; the heuristic is to set it to the position after the last found
2248 ;; closing paren (of any type) before the line on which
2249 ;; `c-parse-state' was called. That is chosen primarily to work well
2250 ;; with refontification of the current line.
2252 ;; 2009-07-28: When `c-state-point-min' and the last position where
2253 ;; `c-parse-state' or for which `c-invalidate-state-cache' was called, are
2254 ;; both in the same literal, there is no such "good position", and
2255 ;; c-state-cache-good-pos is then nil. This is the ONLY circumstance in which
2256 ;; it can be nil. In this case, `c-state-point-min-literal' will be non-nil.
2258 ;; 2009-06-12: In a brace desert, c-state-cache-good-pos may also be in
2259 ;; the middle of the desert, as long as it is not within a brace pair
2260 ;; recorded in `c-state-cache' or a paren/bracket pair.
2262 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
2263 ;; We maintain a simple cache of positions which aren't in a literal, so as to
2264 ;; speed up testing for non-literality.
2265 (defconst c-state-nonlit-pos-interval 3000)
2266 ;; The approximate interval between entries in `c-state-nonlit-pos-cache'.
2268 (defvar c-state-nonlit-pos-cache nil)
2269 (make-variable-buffer-local 'c-state-nonlit-pos-cache)
2270 ;; A list of buffer positions which are known not to be in a literal or a cpp
2271 ;; construct. This is ordered with higher positions at the front of the list.
2272 ;; Only those which are less than `c-state-nonlit-pos-cache-limit' are valid.
2274 (defvar c-state-nonlit-pos-cache-limit 1)
2275 (make-variable-buffer-local 'c-state-nonlit-pos-cache-limit)
2276 ;; An upper limit on valid entries in `c-state-nonlit-pos-cache'. This is
2277 ;; reduced by buffer changes, and increased by invocations of
2278 ;; `c-state-literal-at'.
2280 (defvar c-state-semi-nonlit-pos-cache nil)
2281 (make-variable-buffer-local 'c-state-semi-nonlit-pos-cache)
2282 ;; A list of buffer positions which are known not to be in a literal. This is
2283 ;; ordered with higher positions at the front of the list. Only those which
2284 ;; are less than `c-state-semi-nonlit-pos-cache-limit' are valid.
2286 (defvar c-state-semi-nonlit-pos-cache-limit 1)
2287 (make-variable-buffer-local 'c-state-semi-nonlit-pos-cache-limit)
2288 ;; An upper limit on valid entries in `c-state-semi-nonlit-pos-cache'. This is
2289 ;; reduced by buffer changes, and increased by invocations of
2290 ;; `c-state-literal-at'. FIXME!!!
2292 (defsubst c-state-pp-to-literal (from to &optional not-in-delimiter)
2293 ;; Do a parse-partial-sexp from FROM to TO, returning either
2294 ;; (STATE TYPE (BEG . END)) if TO is in a literal; or
2295 ;; (STATE) otherwise,
2296 ;; where STATE is the parsing state at TO, TYPE is the type of the literal
2297 ;; (one of 'c, 'c++, 'string) and (BEG . END) is the boundaries of the literal,
2298 ;; including the delimiters.
2300 ;; Unless NOT-IN-DELIMITER is non-nil, when TO is inside a two-character
2301 ;; comment opener, this is recognized as being in a comment literal.
2303 ;; Only elements 3 (in a string), 4 (in a comment), 5 (following a quote),
2304 ;; 7 (comment type) and 8 (start of comment/string) (and possibly 9) of
2305 ;; STATE are valid.
2306 (save-excursion
2307 (save-match-data
2308 (let ((s (parse-partial-sexp from to))
2309 ty co-st)
2310 (cond
2311 ((or (nth 3 s) (nth 4 s)) ; in a string or comment
2312 (setq ty (cond
2313 ((nth 3 s) 'string)
2314 ((nth 7 s) 'c++)
2315 (t 'c)))
2316 (parse-partial-sexp (point) (point-max)
2317 nil ; TARGETDEPTH
2318 nil ; STOPBEFORE
2319 s ; OLDSTATE
2320 'syntax-table) ; stop at end of literal
2321 `(,s ,ty (,(nth 8 s) . ,(point))))
2323 ((and (not not-in-delimiter) ; inside a comment starter
2324 (not (bobp))
2325 (progn (backward-char)
2326 (and (not (looking-at "\\s!"))
2327 (looking-at c-comment-start-regexp))))
2328 (setq ty (if (looking-at c-block-comment-start-regexp) 'c 'c++)
2329 co-st (point))
2330 (forward-comment 1)
2331 `(,s ,ty (,co-st . ,(point))))
2333 (t `(,s)))))))
2335 (defun c-state-safe-place (here)
2336 ;; Return a buffer position before HERE which is "safe", i.e. outside any
2337 ;; string, comment, or macro.
2339 ;; NOTE: This function manipulates `c-state-nonlit-pos-cache'. This cache
2340 ;; MAY NOT contain any positions within macros, since macros are frequently
2341 ;; turned into comments by use of the `c-cpp-delimiter' category properties.
2342 ;; We cannot rely on this mechanism whilst determining a cache pos since
2343 ;; this function is also called from outwith `c-parse-state'.
2344 (save-restriction
2345 (widen)
2346 (save-excursion
2347 (let ((c c-state-nonlit-pos-cache)
2348 pos npos high-pos lit macro-beg macro-end)
2349 ;; Trim the cache to take account of buffer changes.
2350 (while (and c (> (car c) c-state-nonlit-pos-cache-limit))
2351 (setq c (cdr c)))
2352 (setq c-state-nonlit-pos-cache c)
2354 (while (and c (> (car c) here))
2355 (setq high-pos (car c))
2356 (setq c (cdr c)))
2357 (setq pos (or (car c) (point-min)))
2359 (unless high-pos
2360 (while
2361 ;; Add an element to `c-state-nonlit-pos-cache' each iteration.
2362 (and
2363 (setq npos
2364 (when (<= (+ pos c-state-nonlit-pos-interval) here)
2365 (+ pos c-state-nonlit-pos-interval)))
2367 ;; Test for being in a literal. If so, go to after it.
2368 (progn
2369 (setq lit (car (cddr (c-state-pp-to-literal pos npos))))
2370 (or (null lit)
2371 (prog1 (<= (cdr lit) here)
2372 (setq npos (cdr lit)))))
2374 ;; Test for being in a macro. If so, go to after it.
2375 (progn
2376 (goto-char npos)
2377 (setq macro-beg
2378 (and (c-beginning-of-macro) (/= (point) npos) (point)))
2379 (when macro-beg
2380 (c-syntactic-end-of-macro)
2381 (or (eobp) (forward-char))
2382 (setq macro-end (point)))
2383 (or (null macro-beg)
2384 (prog1 (<= macro-end here)
2385 (setq npos macro-end)))))
2387 (setq pos npos)
2388 (setq c-state-nonlit-pos-cache (cons pos c-state-nonlit-pos-cache)))
2389 ;; Add one extra element above HERE so as to to avoid the previous
2390 ;; expensive calculation when the next call is close to the current
2391 ;; one. This is especially useful when inside a large macro.
2392 (when npos
2393 (setq c-state-nonlit-pos-cache
2394 (cons npos c-state-nonlit-pos-cache))))
2396 (if (> pos c-state-nonlit-pos-cache-limit)
2397 (setq c-state-nonlit-pos-cache-limit pos))
2398 pos))))
2400 (defun c-state-semi-safe-place (here)
2401 ;; Return a buffer position before HERE which is "safe", i.e. outside any
2402 ;; string or comment. It may be in a macro.
2403 (save-restriction
2404 (widen)
2405 (save-excursion
2406 (let ((c c-state-semi-nonlit-pos-cache)
2407 pos npos high-pos lit macro-beg macro-end)
2408 ;; Trim the cache to take account of buffer changes.
2409 (while (and c (> (car c) c-state-semi-nonlit-pos-cache-limit))
2410 (setq c (cdr c)))
2411 (setq c-state-semi-nonlit-pos-cache c)
2413 (while (and c (> (car c) here))
2414 (setq high-pos (car c))
2415 (setq c (cdr c)))
2416 (setq pos (or (car c) (point-min)))
2418 (unless high-pos
2419 (while
2420 ;; Add an element to `c-state-semi-nonlit-pos-cache' each iteration.
2421 (and
2422 (<= (setq npos (+ pos c-state-nonlit-pos-interval)) here)
2424 ;; Test for being in a literal. If so, go to after it.
2425 (progn
2426 (setq lit (car (cddr (c-state-pp-to-literal pos npos))))
2427 (or (null lit)
2428 (prog1 (<= (cdr lit) here)
2429 (setq npos (cdr lit))))))
2431 (setq pos npos)
2432 (setq c-state-semi-nonlit-pos-cache
2433 (cons pos c-state-semi-nonlit-pos-cache))))
2435 (if (> pos c-state-semi-nonlit-pos-cache-limit)
2436 (setq c-state-semi-nonlit-pos-cache-limit pos))
2437 pos))))
2439 (defun c-state-literal-at (here)
2440 ;; If position HERE is inside a literal, return (START . END), the
2441 ;; boundaries of the literal (which may be outside the accessible bit of the
2442 ;; buffer). Otherwise, return nil.
2444 ;; This function is almost the same as `c-literal-limits'. Previously, it
2445 ;; differed in that it was a lower level function, and that it rigorously
2446 ;; followed the syntax from BOB. `c-literal-limits' is now (2011-12)
2447 ;; virtually identical to this function.
2448 (save-restriction
2449 (widen)
2450 (save-excursion
2451 (let ((pos (c-state-safe-place here)))
2452 (car (cddr (c-state-pp-to-literal pos here)))))))
2454 (defsubst c-state-lit-beg (pos)
2455 ;; Return the start of the literal containing POS, or POS itself.
2456 (or (car (c-state-literal-at pos))
2457 pos))
2459 (defsubst c-state-cache-non-literal-place (pos state)
2460 ;; Return a position outside of a string/comment/macro at or before POS.
2461 ;; STATE is the parse-partial-sexp state at POS.
2462 (let ((res (if (or (nth 3 state) ; in a string?
2463 (nth 4 state)) ; in a comment?
2464 (nth 8 state)
2465 pos)))
2466 (save-excursion
2467 (goto-char res)
2468 (if (c-beginning-of-macro)
2469 (point)
2470 res))))
2472 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
2473 ;; Stuff to do with point-min, and coping with any literal there.
2474 (defvar c-state-point-min 1)
2475 (make-variable-buffer-local 'c-state-point-min)
2476 ;; This is (point-min) when `c-state-cache' was last calculated. A change of
2477 ;; narrowing is likely to affect the parens that are visible before the point.
2479 (defvar c-state-point-min-lit-type nil)
2480 (make-variable-buffer-local 'c-state-point-min-lit-type)
2481 (defvar c-state-point-min-lit-start nil)
2482 (make-variable-buffer-local 'c-state-point-min-lit-start)
2483 ;; These two variables define the literal, if any, containing point-min.
2484 ;; Their values are, respectively, 'string, c, or c++, and the start of the
2485 ;; literal. If there's no literal there, they're both nil.
2487 (defvar c-state-min-scan-pos 1)
2488 (make-variable-buffer-local 'c-state-min-scan-pos)
2489 ;; This is the earliest buffer-pos from which scanning can be done. It is
2490 ;; either the end of the literal containing point-min, or point-min itself.
2491 ;; It becomes nil if the buffer is changed earlier than this point.
2492 (defun c-state-get-min-scan-pos ()
2493 ;; Return the lowest valid scanning pos. This will be the end of the
2494 ;; literal enclosing point-min, or point-min itself.
2495 (or c-state-min-scan-pos
2496 (save-restriction
2497 (save-excursion
2498 (widen)
2499 (goto-char c-state-point-min-lit-start)
2500 (if (eq c-state-point-min-lit-type 'string)
2501 (forward-sexp)
2502 (forward-comment 1))
2503 (setq c-state-min-scan-pos (point))))))
2505 (defun c-state-mark-point-min-literal ()
2506 ;; Determine the properties of any literal containing POINT-MIN, setting the
2507 ;; variables `c-state-point-min-lit-type', `c-state-point-min-lit-start',
2508 ;; and `c-state-min-scan-pos' accordingly. The return value is meaningless.
2509 (let ((p-min (point-min))
2510 lit)
2511 (save-restriction
2512 (widen)
2513 (setq lit (c-state-literal-at p-min))
2514 (if lit
2515 (setq c-state-point-min-lit-type
2516 (save-excursion
2517 (goto-char (car lit))
2518 (cond
2519 ((looking-at c-block-comment-start-regexp) 'c)
2520 ((looking-at c-line-comment-starter) 'c++)
2521 (t 'string)))
2522 c-state-point-min-lit-start (car lit)
2523 c-state-min-scan-pos (cdr lit))
2524 (setq c-state-point-min-lit-type nil
2525 c-state-point-min-lit-start nil
2526 c-state-min-scan-pos p-min)))))
2529 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
2530 ;; A variable which signals a brace dessert - helpful for reducing the number
2531 ;; of fruitless backward scans.
2532 (defvar c-state-brace-pair-desert nil)
2533 (make-variable-buffer-local 'c-state-brace-pair-desert)
2534 ;; Used only in `c-append-lower-brace-pair-to-state-cache'. It is set when
2535 ;; that defun has searched backwards for a brace pair and not found one. Its
2536 ;; value is either nil or a cons (PA . FROM), where PA is the position of the
2537 ;; enclosing opening paren/brace/bracket which bounds the backwards search (or
2538 ;; nil when at top level) and FROM is where the backward search started. It
2539 ;; is reset to nil in `c-invalidate-state-cache'.
2542 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
2543 ;; Lowish level functions/macros which work directly on `c-state-cache', or a
2544 ;; list of like structure.
2545 (defmacro c-state-cache-top-lparen (&optional cache)
2546 ;; Return the address of the top left brace/bracket/paren recorded in CACHE
2547 ;; (default `c-state-cache') (or nil).
2548 (let ((cash (or cache 'c-state-cache)))
2549 `(if (consp (car ,cash))
2550 (caar ,cash)
2551 (car ,cash))))
2553 (defmacro c-state-cache-top-paren (&optional cache)
2554 ;; Return the address of the latest brace/bracket/paren (whether left or
2555 ;; right) recorded in CACHE (default `c-state-cache') or nil.
2556 (let ((cash (or cache 'c-state-cache)))
2557 `(if (consp (car ,cash))
2558 (cdar ,cash)
2559 (car ,cash))))
2561 (defmacro c-state-cache-after-top-paren (&optional cache)
2562 ;; Return the position just after the latest brace/bracket/paren (whether
2563 ;; left or right) recorded in CACHE (default `c-state-cache') or nil.
2564 (let ((cash (or cache 'c-state-cache)))
2565 `(if (consp (car ,cash))
2566 (cdar ,cash)
2567 (and (car ,cash)
2568 (1+ (car ,cash))))))
2570 (defun c-get-cache-scan-pos (here)
2571 ;; From the state-cache, determine the buffer position from which we might
2572 ;; scan forward to HERE to update this cache. This position will be just
2573 ;; after a paren/brace/bracket recorded in the cache, if possible, otherwise
2574 ;; return the earliest position in the accessible region which isn't within
2575 ;; a literal. If the visible portion of the buffer is entirely within a
2576 ;; literal, return NIL.
2577 (let ((c c-state-cache) elt)
2578 ;(while (>= (or (c-state-cache-top-lparen c) 1) here)
2579 (while (and c
2580 (>= (c-state-cache-top-lparen c) here))
2581 (setq c (cdr c)))
2583 (setq elt (car c))
2584 (cond
2585 ((consp elt)
2586 (if (> (cdr elt) here)
2587 (1+ (car elt))
2588 (cdr elt)))
2589 (elt (1+ elt))
2590 ((<= (c-state-get-min-scan-pos) here)
2591 (c-state-get-min-scan-pos))
2592 (t nil))))
2594 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
2595 ;; Variables which keep track of preprocessor constructs.
2596 (defvar c-state-old-cpp-beg-marker nil)
2597 (make-variable-buffer-local 'c-state-old-cpp-beg-marker)
2598 (defvar c-state-old-cpp-beg nil)
2599 (make-variable-buffer-local 'c-state-old-cpp-beg)
2600 (defvar c-state-old-cpp-end-marker nil)
2601 (make-variable-buffer-local 'c-state-old-cpp-end-marker)
2602 (defvar c-state-old-cpp-end nil)
2603 (make-variable-buffer-local 'c-state-old-cpp-end)
2604 ;; These are the limits of the macro containing point at the previous call of
2605 ;; `c-parse-state', or nil.
2607 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
2608 ;; Defuns which analyze the buffer, yet don't change `c-state-cache'.
2609 (defun c-get-fallback-scan-pos (here)
2610 ;; Return a start position for building `c-state-cache' from
2611 ;; scratch. This will be at the top level, 2 defuns back.
2612 (save-excursion
2613 ;; Go back 2 bods, but ignore any bogus positions returned by
2614 ;; beginning-of-defun (i.e. open paren in column zero).
2615 (goto-char here)
2616 (let ((cnt 2))
2617 (while (not (or (bobp) (zerop cnt)))
2618 (c-beginning-of-defun-1) ; Pure elisp BOD.
2619 (if (eq (char-after) ?\{)
2620 (setq cnt (1- cnt)))))
2621 (point)))
2623 (defun c-state-balance-parens-backwards (here- here+ top)
2624 ;; Return the position of the opening paren/brace/bracket before HERE- which
2625 ;; matches the outermost close p/b/b between HERE+ and TOP. Except when
2626 ;; there's a macro, HERE- and HERE+ are the same. Like this:
2628 ;; ............................................
2629 ;; | |
2630 ;; ( [ ( .........#macro.. ) ( ) ] )
2631 ;; ^ ^ ^ ^
2632 ;; | | | |
2633 ;; return HERE- HERE+ TOP
2635 ;; If there aren't enough opening paren/brace/brackets, return the position
2636 ;; of the outermost one found, or HERE- if there are none. If there are no
2637 ;; closing p/b/bs between HERE+ and TOP, return HERE-. HERE-/+ and TOP
2638 ;; must not be inside literals. Only the accessible portion of the buffer
2639 ;; will be scanned.
2641 ;; PART 1: scan from `here+' up to `top', accumulating ")"s which enclose
2642 ;; `here'. Go round the next loop each time we pass over such a ")". These
2643 ;; probably match "("s before `here-'.
2644 (let (pos pa ren+1 lonely-rens)
2645 (save-excursion
2646 (save-restriction
2647 (narrow-to-region (point-min) top) ; This can move point, sometimes.
2648 (setq pos here+)
2649 (c-safe
2650 (while
2651 (setq ren+1 (c-sc-scan-lists pos 1 1)) ; might signal
2652 (setq lonely-rens (cons ren+1 lonely-rens)
2653 pos ren+1)))))
2655 ;; PART 2: Scan back before `here-' searching for the "("s
2656 ;; matching/mismatching the ")"s found above. We only need to direct the
2657 ;; caller to scan when we've encountered unmatched right parens.
2658 (setq pos here-)
2659 (when lonely-rens
2660 (c-safe
2661 (while
2662 (and lonely-rens ; actual values aren't used.
2663 (setq pa (c-sc-scan-lists pos -1 1)))
2664 (setq pos pa)
2665 (setq lonely-rens (cdr lonely-rens)))))
2666 pos))
2668 (defun c-parse-state-get-strategy (here good-pos)
2669 ;; Determine the scanning strategy for adjusting `c-parse-state', attempting
2670 ;; to minimize the amount of scanning. HERE is the pertinent position in
2671 ;; the buffer, GOOD-POS is a position where `c-state-cache' (possibly with
2672 ;; its head trimmed) is known to be good, or nil if there is no such
2673 ;; position.
2675 ;; The return value is a list, one of the following:
2677 ;; o - ('forward START-POINT) - scan forward from START-POINT,
2678 ;; which is not less than the highest position in `c-state-cache' below HERE,
2679 ;; which is after GOOD-POS.
2680 ;; o - ('backward nil) - scan backwards (from HERE).
2681 ;; o - ('back-and-forward START-POINT) - like 'forward, but when HERE is earlier
2682 ;; than GOOD-POS.
2683 ;; o - ('BOD START-POINT) - scan forwards from START-POINT, which is at the
2684 ;; top level.
2685 ;; o - ('IN-LIT nil) - point is inside the literal containing point-min.
2686 (let ((cache-pos (c-get-cache-scan-pos here)) ; highest position below HERE in cache (or 1)
2687 BOD-pos ; position of 2nd BOD before HERE.
2688 strategy ; 'forward, 'backward, 'BOD, or 'IN-LIT.
2689 start-point
2690 how-far) ; putative scanning distance.
2691 (setq good-pos (or good-pos (c-state-get-min-scan-pos)))
2692 (cond
2693 ((< here (c-state-get-min-scan-pos))
2694 (setq strategy 'IN-LIT
2695 start-point nil
2696 cache-pos nil
2697 how-far 0))
2698 ((<= good-pos here)
2699 (setq strategy 'forward
2700 start-point (max good-pos cache-pos)
2701 how-far (- here start-point)))
2702 ((< (- good-pos here) (- here cache-pos)) ; FIXME!!! ; apply some sort of weighting.
2703 (setq strategy 'backward
2704 how-far (- good-pos here)))
2706 (setq strategy 'back-and-forward
2707 start-point cache-pos
2708 how-far (- here start-point))))
2710 ;; Might we be better off starting from the top level, two defuns back,
2711 ;; instead? This heuristic no longer works well in C++, where
2712 ;; declarations inside namespace brace blocks are frequently placed at
2713 ;; column zero. (2015-11-10): Remove the condition on C++ Mode.
2714 (when (and (or (not (memq 'col-0-paren c-emacs-features))
2715 open-paren-in-column-0-is-defun-start)
2716 ;; (not (c-major-mode-is 'c++-mode))
2717 (> how-far c-state-cache-too-far))
2718 (setq BOD-pos (c-get-fallback-scan-pos here)) ; somewhat EXPENSIVE!!!
2719 (if (< (- here BOD-pos) how-far)
2720 (setq strategy 'BOD
2721 start-point BOD-pos)))
2723 (list strategy start-point)))
2726 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
2727 ;; Routines which change `c-state-cache' and associated values.
2728 (defun c-renarrow-state-cache ()
2729 ;; The region (more precisely, point-min) has changed since we
2730 ;; calculated `c-state-cache'. Amend `c-state-cache' accordingly.
2731 (if (< (point-min) c-state-point-min)
2732 ;; If point-min has MOVED BACKWARDS then we drop the state completely.
2733 ;; It would be possible to do a better job here and recalculate the top
2734 ;; only.
2735 (progn
2736 (c-state-mark-point-min-literal)
2737 (setq c-state-cache nil
2738 c-state-cache-good-pos c-state-min-scan-pos
2739 c-state-brace-pair-desert nil))
2741 ;; point-min has MOVED FORWARD.
2743 ;; Is the new point-min inside a (different) literal?
2744 (unless (and c-state-point-min-lit-start ; at prev. point-min
2745 (< (point-min) (c-state-get-min-scan-pos)))
2746 (c-state-mark-point-min-literal))
2748 ;; Cut off a bit of the tail from `c-state-cache'.
2749 (let ((ptr (cons nil c-state-cache))
2751 (while (and (setq pa (c-state-cache-top-lparen (cdr ptr)))
2752 (>= pa (point-min)))
2753 (setq ptr (cdr ptr)))
2755 (when (consp ptr)
2756 (if (or (eq (cdr ptr) c-state-cache)
2757 (and (consp (cadr ptr))
2758 (> (cdr (cadr ptr)) (point-min)))) ; Our new point-min is
2759 ; inside a recorded
2760 ; brace pair.
2761 (setq c-state-cache nil
2762 c-state-cache-good-pos c-state-min-scan-pos)
2763 (setcdr ptr nil)
2764 (setq c-state-cache-good-pos (1+ (c-state-cache-top-lparen))))
2767 (setq c-state-point-min (point-min)))
2769 (defun c-append-lower-brace-pair-to-state-cache (from here &optional upper-lim)
2770 ;; If there is a brace pair preceding FROM in the buffer, at the same level
2771 ;; of nesting (not necessarily immediately preceding), push a cons onto
2772 ;; `c-state-cache' to represent it. FROM must not be inside a literal. If
2773 ;; UPPER-LIM is non-nil, we append the highest brace pair whose "}" is below
2774 ;; UPPER-LIM.
2776 ;; Return non-nil when this has been done.
2778 ;; The situation it copes with is this transformation:
2780 ;; OLD: { (.) {...........}
2781 ;; ^ ^
2782 ;; FROM HERE
2784 ;; NEW: { {....} (.) {.........
2785 ;; ^ ^ ^
2786 ;; LOWER BRACE PAIR HERE or HERE
2788 ;; This routine should be fast. Since it can get called a LOT, we maintain
2789 ;; `c-state-brace-pair-desert', a small cache of "failures", such that we
2790 ;; reduce the time wasted in repeated fruitless searches in brace deserts.
2791 (save-excursion
2792 (save-restriction
2793 (let* (new-cons
2794 (cache-pos (c-state-cache-top-lparen)) ; might be nil.
2795 (macro-start-or-from
2796 (progn (goto-char from)
2797 (c-beginning-of-macro)
2798 (point)))
2799 (bra ; Position of "{".
2800 ;; Don't start scanning in the middle of a CPP construct unless
2801 ;; it contains HERE - these constructs, in Emacs, are "commented
2802 ;; out" with category properties.
2803 (if (eq (c-get-char-property macro-start-or-from 'category)
2804 'c-cpp-delimiter)
2805 macro-start-or-from
2806 from))
2807 ce) ; Position of "}"
2808 (or upper-lim (setq upper-lim from))
2810 ;; If we're essentially repeating a fruitless search, just give up.
2811 (unless (and c-state-brace-pair-desert
2812 (eq cache-pos (car c-state-brace-pair-desert))
2813 (or (null (car c-state-brace-pair-desert))
2814 (> from (car c-state-brace-pair-desert)))
2815 (<= from (cdr c-state-brace-pair-desert)))
2816 ;; DESERT-LIM. Avoid repeated searching through the cached desert.
2817 (let ((desert-lim
2818 (and c-state-brace-pair-desert
2819 (eq cache-pos (car c-state-brace-pair-desert))
2820 (>= from (cdr c-state-brace-pair-desert))
2821 (cdr c-state-brace-pair-desert)))
2822 ;; CACHE-LIM. This limit will be necessary when an opening
2823 ;; paren at `cache-pos' has just had its matching close paren
2824 ;; inserted into the buffer. `cache-pos' continues to be a
2825 ;; search bound, even though the algorithm below would skip
2826 ;; over the new paren pair.
2827 (cache-lim (and cache-pos (< cache-pos from) cache-pos)))
2828 (narrow-to-region
2829 (cond
2830 ((and desert-lim cache-lim)
2831 (max desert-lim cache-lim))
2832 (desert-lim)
2833 (cache-lim)
2834 ((point-min)))
2835 ;; The top limit is EOB to ensure that `bra' is inside the
2836 ;; accessible part of the buffer at the next scan operation.
2837 (1+ (buffer-size))))
2839 ;; In the next pair of nested loops, the inner one moves back past a
2840 ;; pair of (mis-)matching parens or brackets; the outer one moves
2841 ;; back over a sequence of unmatched close brace/paren/bracket each
2842 ;; time round.
2843 (while
2844 (progn
2845 (c-safe
2846 (while
2847 (and (setq ce (c-sc-scan-lists bra -1 -1)) ; back past )/]/}; might signal
2848 (setq bra (c-sc-scan-lists ce -1 1)) ; back past (/[/{; might signal
2849 (or (> bra here) ;(> ce here)
2850 (and
2851 (< ce here)
2852 (or (not (eq (char-after bra) ?\{))
2853 (and (goto-char bra)
2854 (c-beginning-of-macro)
2855 (< (point) macro-start-or-from))))))))
2856 (and ce (< ce bra)))
2857 (setq bra ce)) ; If we just backed over an unbalanced closing
2858 ; brace, ignore it.
2860 (if (and ce (< ce here) (< bra ce) (eq (char-after bra) ?\{))
2861 ;; We've found the desired brace-pair.
2862 (progn
2863 (setq new-cons (cons bra (1+ ce)))
2864 (cond
2865 ((consp (car c-state-cache))
2866 (setcar c-state-cache new-cons))
2867 ((and (numberp (car c-state-cache)) ; probably never happens
2868 (< ce (car c-state-cache)))
2869 (setcdr c-state-cache
2870 (cons new-cons (cdr c-state-cache))))
2871 (t (setq c-state-cache (cons new-cons c-state-cache)))))
2873 ;; We haven't found a brace pair. Record this in the cache.
2874 (setq c-state-brace-pair-desert
2875 (cons (if (and ce (< bra ce) (> ce here)) ; {..} straddling HERE?
2877 (point-min))
2878 (min here from)))))))))
2880 (defsubst c-state-push-any-brace-pair (bra+1 macro-start-or-here)
2881 ;; If BRA+1 is nil, do nothing. Otherwise, BRA+1 is the buffer position
2882 ;; following a {, and that brace has a (mis-)matching } (or ]), and we
2883 ;; "push" "a" brace pair onto `c-state-cache'.
2885 ;; Here "push" means overwrite the top element if it's itself a brace-pair,
2886 ;; otherwise push it normally.
2888 ;; The brace pair we push is normally the one surrounding BRA+1, but if the
2889 ;; latter is inside a macro, not being a macro containing
2890 ;; MACRO-START-OR-HERE, we scan backwards through the buffer for a non-macro
2891 ;; base pair. This latter case is assumed to be rare.
2893 ;; Note: POINT is not preserved in this routine.
2894 (if bra+1
2895 (if (or (> bra+1 macro-start-or-here)
2896 (progn (goto-char bra+1)
2897 (not (c-beginning-of-macro))))
2898 (setq c-state-cache
2899 (cons (cons (1- bra+1)
2900 (c-sc-scan-lists bra+1 1 1))
2901 (if (consp (car c-state-cache))
2902 (cdr c-state-cache)
2903 c-state-cache)))
2904 ;; N.B. This defsubst codes one method for the simple, normal case,
2905 ;; and a more sophisticated, slower way for the general case. Don't
2906 ;; eliminate this defsubst - it's a speed optimization.
2907 (c-append-lower-brace-pair-to-state-cache (1- bra+1) (point-max)))))
2909 (defun c-append-to-state-cache (from here)
2910 ;; Scan the buffer from FROM to HERE, adding elements into `c-state-cache'
2911 ;; for braces etc. Return a candidate for `c-state-cache-good-pos'.
2913 ;; FROM must be after the latest brace/paren/bracket in `c-state-cache', if
2914 ;; any. Typically, it is immediately after it. It must not be inside a
2915 ;; literal.
2916 (let ((here-bol (c-point 'bol here))
2917 (macro-start-or-here
2918 (save-excursion (goto-char here)
2919 (if (c-beginning-of-macro)
2920 (point)
2921 here)))
2922 pa+1 ; pos just after an opening PAren (or brace).
2923 (ren+1 from) ; usually a pos just after an closing paREN etc.
2924 ; Is actually the pos. to scan for a (/{/[ from,
2925 ; which sometimes is after a silly )/}/].
2926 paren+1 ; Pos after some opening or closing paren.
2927 paren+1s ; A list of `paren+1's; used to determine a
2928 ; good-pos.
2929 bra+1 ; just after L bra-ce.
2930 bra+1s ; list of OLD values of bra+1.
2931 mstart) ; start of a macro.
2933 (save-excursion
2934 (save-restriction
2935 (narrow-to-region (point-min) here)
2936 ;; Each time round the following loop, we enter a successively deeper
2937 ;; level of brace/paren nesting. (Except sometimes we "continue at
2938 ;; the existing level".) `pa+1' is a pos inside an opening
2939 ;; brace/paren/bracket, usually just after it.
2940 (while
2941 (progn
2942 ;; Each time round the next loop moves forward over an opening then
2943 ;; a closing brace/bracket/paren. This loop is white hot, so it
2944 ;; plays ugly tricks to go fast. DON'T PUT ANYTHING INTO THIS
2945 ;; LOOP WHICH ISN'T ABSOLUTELY NECESSARY!!! It terminates when a
2946 ;; call of `scan-lists' signals an error, which happens when there
2947 ;; are no more b/b/p's to scan.
2948 (c-safe
2949 (while t
2950 (setq pa+1 (c-sc-scan-lists ren+1 1 -1) ; Into (/{/[; might signal
2951 paren+1s (cons pa+1 paren+1s))
2952 (setq ren+1 (c-sc-scan-lists pa+1 1 1)) ; Out of )/}/]; might signal
2953 (if (and (eq (char-before pa+1) ?{)) ; Check for a macro later.
2954 (setq bra+1 pa+1))
2955 (setcar paren+1s ren+1)))
2957 (if (and pa+1 (> pa+1 ren+1))
2958 ;; We've just entered a deeper nesting level.
2959 (progn
2960 ;; Insert the brace pair (if present) and the single open
2961 ;; paren/brace/bracket into `c-state-cache' It cannot be
2962 ;; inside a macro, except one around point, because of what
2963 ;; `c-neutralize-syntax-in-CPP' has done.
2964 (c-state-push-any-brace-pair bra+1 macro-start-or-here)
2965 ;; Insert the opening brace/bracket/paren position.
2966 (setq c-state-cache (cons (1- pa+1) c-state-cache))
2967 ;; Clear admin stuff for the next more nested part of the scan.
2968 (setq ren+1 pa+1 pa+1 nil bra+1 nil bra+1s nil)
2969 t) ; Carry on the loop
2971 ;; All open p/b/b's at this nesting level, if any, have probably
2972 ;; been closed by matching/mismatching ones. We're probably
2973 ;; finished - we just need to check for having found an
2974 ;; unmatched )/}/], which we ignore. Such a )/}/] can't be in a
2975 ;; macro, due the action of `c-neutralize-syntax-in-CPP'.
2976 (c-safe (setq ren+1 (c-sc-scan-lists ren+1 1 1)))))) ; acts as loop control.
2978 ;; Record the final, innermost, brace-pair if there is one.
2979 (c-state-push-any-brace-pair bra+1 macro-start-or-here)
2981 ;; Determine a good pos
2982 (while (and (setq paren+1 (car paren+1s))
2983 (> (if (> paren+1 macro-start-or-here)
2984 paren+1
2985 (goto-char paren+1)
2986 (setq mstart (and (c-beginning-of-macro)
2987 (point)))
2988 (or mstart paren+1))
2989 here-bol))
2990 (setq paren+1s (cdr paren+1s)))
2991 (cond
2992 ((and paren+1 mstart)
2993 (min paren+1 mstart))
2994 (paren+1)
2995 (t from))))))
2997 (defun c-remove-stale-state-cache (start-point here pps-point)
2998 ;; Remove stale entries from the `c-cache-state', i.e. those which will
2999 ;; not be in it when it is amended for position HERE. This may involve
3000 ;; replacing a CONS element for a brace pair containing HERE with its car.
3001 ;; Additionally, the "outermost" open-brace entry before HERE will be
3002 ;; converted to a cons if the matching close-brace is below HERE.
3004 ;; START-POINT is a "maximal" "safe position" - there must be no open
3005 ;; parens/braces/brackets between START-POINT and HERE.
3007 ;; As a second thing, calculate the result of parse-partial-sexp at
3008 ;; PPS-POINT, w.r.t. START-POINT. The motivation here is that
3009 ;; `c-state-cache-good-pos' may become PPS-POINT, but the caller may need to
3010 ;; adjust it to get outside a string/comment. (Sorry about this! The code
3011 ;; needs to be FAST).
3013 ;; Return a list (GOOD-POS SCAN-BACK-POS CONS-SEPARATED PPS-STATE), where
3014 ;; o - GOOD-POS is a position where the new value `c-state-cache' is known
3015 ;; to be good (we aim for this to be as high as possible);
3016 ;; o - SCAN-BACK-POS, if not nil, indicates there may be a brace pair
3017 ;; preceding POS which needs to be recorded in `c-state-cache'. It is a
3018 ;; position to scan backwards from. It is the position of the "{" of the
3019 ;; last element to be removed from `c-state-cache', when that elt is a
3020 ;; cons, otherwise nil.
3021 ;; o - CONS-SEPARATED is t when a cons element in `c-state-cache' has been
3022 ;; replaced by its car because HERE lies inside the brace pair represented
3023 ;; by the cons.
3024 ;; o - PPS-STATE is the parse-partial-sexp state at PPS-POINT.
3025 (save-excursion
3026 (save-restriction
3027 (narrow-to-region 1 (point-max))
3028 (let* ((in-macro-start ; start of macro containing HERE or nil.
3029 (save-excursion
3030 (goto-char here)
3031 (and (c-beginning-of-macro)
3032 (point))))
3033 (start-point-actual-macro-start ; Start of macro containing
3034 ; start-point or nil
3035 (and (< start-point here)
3036 (save-excursion
3037 (goto-char start-point)
3038 (and (c-beginning-of-macro)
3039 (point)))))
3040 (start-point-actual-macro-end ; End of this macro, (maybe
3041 ; HERE), or nil.
3042 (and start-point-actual-macro-start
3043 (save-excursion
3044 (goto-char start-point-actual-macro-start)
3045 (c-end-of-macro)
3046 (point))))
3047 pps-state ; Will be 9 or 10 elements long.
3049 upper-lim ; ,beyond which `c-state-cache' entries are removed
3050 scan-back-pos
3051 cons-separated
3052 pair-beg pps-point-state target-depth)
3054 ;; Remove entries beyond HERE. Also remove any entries inside
3055 ;; a macro, unless HERE is in the same macro.
3056 (setq upper-lim
3057 (if (or (null c-state-old-cpp-beg)
3058 (and (> here c-state-old-cpp-beg)
3059 (< here c-state-old-cpp-end)))
3060 here
3061 (min here c-state-old-cpp-beg)))
3062 (while (and c-state-cache (>= (c-state-cache-top-lparen) upper-lim))
3063 (setq scan-back-pos (car-safe (car c-state-cache)))
3064 (setq c-state-cache (cdr c-state-cache)))
3066 ;; If `upper-lim' is inside the last recorded brace pair, remove its
3067 ;; RBrace and indicate we'll need to search backwards for a previous
3068 ;; brace pair.
3069 (when (and c-state-cache
3070 (consp (car c-state-cache))
3071 (> (cdar c-state-cache) upper-lim))
3072 (setcar c-state-cache (caar c-state-cache))
3073 (setq scan-back-pos (car c-state-cache)
3074 cons-separated t))
3076 ;; The next loop jumps forward out of a nested level of parens each
3077 ;; time round; the corresponding elements in `c-state-cache' are
3078 ;; removed. `pos' is just after the brace-pair or the open paren at
3079 ;; (car c-state-cache). There can be no open parens/braces/brackets
3080 ;; between `start-point'/`start-point-actual-macro-start' and HERE,
3081 ;; due to the interface spec to this function.
3082 (setq pos (if (and start-point-actual-macro-end
3083 (not (eq start-point-actual-macro-start
3084 in-macro-start)))
3085 (1+ start-point-actual-macro-end) ; get outside the macro as
3086 ; marked by a `category' text property.
3087 start-point))
3088 (goto-char pos)
3089 (while (and c-state-cache
3090 (or (numberp (car c-state-cache)) ; Have we a { at all?
3091 (cdr c-state-cache))
3092 (< (point) here))
3093 (cond
3094 ((null pps-state) ; first time through
3095 (setq target-depth -1))
3096 ((eq (car pps-state) target-depth) ; found closing ),},]
3097 (setq target-depth (1- (car pps-state))))
3098 ;; Do nothing when we've merely reached pps-point.
3101 ;; Scan!
3102 (setq pps-state
3103 (c-sc-parse-partial-sexp
3104 (point) (if (< (point) pps-point) pps-point here)
3105 target-depth
3106 nil pps-state))
3108 (if (= (point) pps-point)
3109 (setq pps-point-state pps-state))
3111 (when (eq (car pps-state) target-depth)
3112 (setq pos (point)) ; POS is now just after an R-paren/brace.
3113 (cond
3114 ((and (consp (car c-state-cache))
3115 (eq (point) (cdar c-state-cache)))
3116 ;; We've just moved out of the paren pair containing the brace-pair
3117 ;; at (car c-state-cache). `pair-beg' is where the open paren is,
3118 ;; and is potentially where the open brace of a cons in
3119 ;; c-state-cache will be.
3120 (setq pair-beg (car-safe (cdr c-state-cache))
3121 c-state-cache (cdr-safe (cdr c-state-cache)))) ; remove {}pair + containing Lparen.
3122 ((numberp (car c-state-cache))
3123 (setq pair-beg (car c-state-cache)
3124 c-state-cache (cdr c-state-cache))) ; remove this
3125 ; containing Lparen
3126 ((numberp (cadr c-state-cache))
3127 (setq pair-beg (cadr c-state-cache)
3128 c-state-cache (cddr c-state-cache))) ; Remove a paren pair
3129 ; together with enclosed brace pair.
3130 ;; (t nil) ; Ignore an unmated Rparen.
3133 (if (< (point) pps-point)
3134 (setq pps-state (c-sc-parse-partial-sexp
3135 (point) pps-point
3136 nil nil ; TARGETDEPTH, STOPBEFORE
3137 pps-state)))
3139 ;; If the last paren pair we moved out of was actually a brace pair,
3140 ;; insert it into `c-state-cache'.
3141 (when (and pair-beg (eq (char-after pair-beg) ?{))
3142 (if (consp (car-safe c-state-cache))
3143 (setq c-state-cache (cdr c-state-cache)))
3144 (setq c-state-cache (cons (cons pair-beg pos)
3145 c-state-cache)))
3147 (list pos scan-back-pos cons-separated pps-state)))))
3149 (defun c-remove-stale-state-cache-backwards (here)
3150 ;; Strip stale elements of `c-state-cache' by moving backwards through the
3151 ;; buffer, and inform the caller of the scenario detected.
3153 ;; HERE is the position we're setting `c-state-cache' for.
3154 ;; CACHE-POS (a locally bound variable) is just after the latest recorded
3155 ;; position in `c-state-cache' before HERE, or a position at or near
3156 ;; point-min which isn't in a literal.
3158 ;; This function must only be called only when (> `c-state-cache-good-pos'
3159 ;; HERE). Usually the gap between CACHE-POS and HERE is large. It is thus
3160 ;; optimized to eliminate (or minimize) scanning between these two
3161 ;; positions.
3163 ;; Return a three element list (GOOD-POS SCAN-BACK-POS FWD-FLAG), where:
3164 ;; o - GOOD-POS is a "good position", where `c-state-cache' is valid, or
3165 ;; could become so after missing elements are inserted into
3166 ;; `c-state-cache'. This is JUST AFTER an opening or closing
3167 ;; brace/paren/bracket which is already in `c-state-cache' or just before
3168 ;; one otherwise. exceptionally (when there's no such b/p/b handy) the BOL
3169 ;; before `here''s line, or the start of the literal containing it.
3170 ;; o - SCAN-BACK-POS, if non-nil, indicates there may be a brace pair
3171 ;; preceding POS which isn't recorded in `c-state-cache'. It is a position
3172 ;; to scan backwards from.
3173 ;; o - FWD-FLAG, if non-nil, indicates there may be parens/braces between
3174 ;; POS and HERE which aren't recorded in `c-state-cache'.
3176 ;; The comments in this defun use "paren" to mean parenthesis or square
3177 ;; bracket (as contrasted with a brace), and "(" and ")" likewise.
3179 ;; . {..} (..) (..) ( .. { } ) (...) ( .... . ..)
3180 ;; | | | | | |
3181 ;; CP E here D C good
3182 (let ((cache-pos (c-get-cache-scan-pos here)) ; highest position below HERE in cache (or 1)
3183 (pos c-state-cache-good-pos)
3184 pa ren ; positions of "(" and ")"
3185 dropped-cons ; whether the last element dropped from `c-state-cache'
3186 ; was a cons (representing a brace-pair)
3187 good-pos ; see above.
3188 lit ; (START . END) of a literal containing some point.
3189 here-lit-start here-lit-end ; bounds of literal containing `here'
3190 ; or `here' itself.
3191 here- here+ ; start/end of macro around HERE, or HERE
3192 (here-bol (c-point 'bol here))
3193 (too-far-back (max (- here c-state-cache-too-far) (point-min))))
3195 ;; Remove completely irrelevant entries from `c-state-cache'.
3196 (while (and c-state-cache
3197 (>= (setq pa (c-state-cache-top-lparen)) here))
3198 (setq dropped-cons (consp (car c-state-cache)))
3199 (setq c-state-cache (cdr c-state-cache))
3200 (setq pos pa))
3201 ;; At this stage, (>= pos here);
3202 ;; (< (c-state-cache-top-lparen) here) (or is nil).
3204 (cond
3205 ((and (consp (car c-state-cache))
3206 (> (cdar c-state-cache) here))
3207 ;; CASE 1: The top of the cache is a brace pair which now encloses
3208 ;; `here'. As good-pos, return the address. of the "{". Since we've no
3209 ;; knowledge of what's inside these braces, we have no alternative but
3210 ;; to direct the caller to scan the buffer from the opening brace.
3211 (setq pos (caar c-state-cache))
3212 (setcar c-state-cache pos)
3213 (list (1+ pos) pos t)) ; return value. We've just converted a brace pair
3214 ; entry into a { entry, so the caller needs to
3215 ; search for a brace pair before the {.
3217 ;; `here' might be inside a literal. Check for this.
3218 ((progn
3219 (setq lit (c-state-literal-at here)
3220 here-lit-start (or (car lit) here)
3221 here-lit-end (or (cdr lit) here))
3222 ;; Has `here' just "newly entered" a macro?
3223 (save-excursion
3224 (goto-char here-lit-start)
3225 (if (and (c-beginning-of-macro)
3226 (or (null c-state-old-cpp-beg)
3227 (not (= (point) c-state-old-cpp-beg))))
3228 (progn
3229 (setq here- (point))
3230 (c-end-of-macro)
3231 (setq here+ (point)))
3232 (setq here- here-lit-start
3233 here+ here-lit-end)))
3235 ;; `here' might be nested inside any depth of parens (or brackets but
3236 ;; not braces). Scan backwards to find the outermost such opening
3237 ;; paren, if there is one. This will be the scan position to return.
3238 (save-restriction
3239 (narrow-to-region cache-pos (point-max))
3240 (setq pos (c-state-balance-parens-backwards here- here+ pos)))
3241 nil)) ; for the cond
3243 ((< pos here-lit-start)
3244 ;; CASE 2: Address of outermost ( or [ which now encloses `here', but
3245 ;; didn't enclose the (previous) `c-state-cache-good-pos'. If there is
3246 ;; a brace pair preceding this, it will already be in `c-state-cache',
3247 ;; unless there was a brace pair after it, i.e. there'll only be one to
3248 ;; scan for if we've just deleted one.
3249 (list pos (and dropped-cons pos) t)) ; Return value.
3251 ;; `here' isn't enclosed in a (previously unrecorded) bracket/paren.
3252 ;; Further forward scanning isn't needed, but we still need to find a
3253 ;; GOOD-POS. Step out of all enclosing "("s on HERE's line.
3254 ((progn
3255 (save-restriction
3256 (narrow-to-region here-bol (point-max))
3257 (setq pos here-lit-start)
3258 (c-safe (while (setq pa (c-sc-scan-lists pos -1 1))
3259 (setq pos pa)))) ; might signal
3260 nil)) ; for the cond
3262 ((save-restriction
3263 (narrow-to-region too-far-back (point-max))
3264 (setq ren (c-safe (c-sc-scan-lists pos -1 -1))))
3265 ;; CASE 3: After a }/)/] before `here''s BOL.
3266 (list (1+ ren) (and dropped-cons pos) nil)) ; Return value
3268 ((progn (setq good-pos (c-state-lit-beg (c-point 'bopl here-bol)))
3269 (>= cache-pos good-pos))
3270 ;; CASE 3.5: Just after an existing entry in `c-state-cache' on `here''s
3271 ;; line or the previous line.
3272 (list cache-pos nil nil))
3275 ;; CASE 4; Best of a bad job: BOL before `here-bol', or beginning of
3276 ;; literal containing it.
3277 (list good-pos (and dropped-cons good-pos) nil)))))
3280 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3281 ;; Externally visible routines.
3283 (defun c-state-cache-init ()
3284 (setq c-state-cache nil
3285 c-state-cache-good-pos 1
3286 c-state-nonlit-pos-cache nil
3287 c-state-nonlit-pos-cache-limit 1
3288 c-state-semi-nonlit-pos-cache nil
3289 c-state-semi-nonlit-pos-cache-limit 1
3290 c-state-brace-pair-desert nil
3291 c-state-point-min 1
3292 c-state-point-min-lit-type nil
3293 c-state-point-min-lit-start nil
3294 c-state-min-scan-pos 1
3295 c-state-old-cpp-beg nil
3296 c-state-old-cpp-end nil)
3297 (c-state-mark-point-min-literal))
3299 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3300 ;; Debugging routines to dump `c-state-cache' in a "replayable" form.
3301 ;; (defmacro c-sc-de (elt) ; "c-state-cache-dump-element"
3302 ;; `(format ,(concat "(setq " (symbol-name elt) " %s) ") ,elt))
3303 ;; (defmacro c-sc-qde (elt) ; "c-state-cache-quote-dump-element"
3304 ;; `(format ,(concat "(setq " (symbol-name elt) " '%s) ") ,elt))
3305 ;; (defun c-state-dump ()
3306 ;; ;; For debugging.
3307 ;; ;(message
3308 ;; (concat
3309 ;; (c-sc-qde c-state-cache)
3310 ;; (c-sc-de c-state-cache-good-pos)
3311 ;; (c-sc-qde c-state-nonlit-pos-cache)
3312 ;; (c-sc-de c-state-nonlit-pos-cache-limit)
3313 ;; (c-sc-qde c-state-brace-pair-desert)
3314 ;; (c-sc-de c-state-point-min)
3315 ;; (c-sc-de c-state-point-min-lit-type)
3316 ;; (c-sc-de c-state-point-min-lit-start)
3317 ;; (c-sc-de c-state-min-scan-pos)
3318 ;; (c-sc-de c-state-old-cpp-beg)
3319 ;; (c-sc-de c-state-old-cpp-end)))
3320 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3322 (defun c-invalidate-state-cache-1 (here)
3323 ;; Invalidate all info on `c-state-cache' that applies to the buffer at HERE
3324 ;; or higher and set `c-state-cache-good-pos' accordingly. The cache is
3325 ;; left in a consistent state.
3327 ;; This is much like `c-whack-state-after', but it never changes a paren
3328 ;; pair element into an open paren element. Doing that would mean that the
3329 ;; new open paren wouldn't have the required preceding paren pair element.
3331 ;; This function is called from c-before-change.
3333 ;; The caches of non-literals:
3334 ;; Note that we use "<=" for the possibility of the second char of a two-char
3335 ;; comment opener being typed; this would invalidate any cache position at
3336 ;; HERE.
3337 (if (<= here c-state-nonlit-pos-cache-limit)
3338 (setq c-state-nonlit-pos-cache-limit (1- here)))
3339 (if (<= here c-state-semi-nonlit-pos-cache-limit)
3340 (setq c-state-semi-nonlit-pos-cache-limit (1- here)))
3342 ;; `c-state-cache':
3343 ;; Case 1: if `here' is in a literal containing point-min, everything
3344 ;; becomes (or is already) nil.
3345 (if (or (null c-state-cache-good-pos)
3346 (< here (c-state-get-min-scan-pos)))
3347 (setq c-state-cache nil
3348 c-state-cache-good-pos nil
3349 c-state-min-scan-pos nil)
3351 ;; Truncate `c-state-cache' and set `c-state-cache-good-pos' to a value
3352 ;; below `here'. To maintain its consistency, we may need to insert a new
3353 ;; brace pair.
3354 (let ((here-bol (c-point 'bol here))
3355 too-high-pa ; recorded {/(/[ next above or just below here, or nil.
3356 dropped-cons ; was the last removed element a brace pair?
3358 ;; The easy bit - knock over-the-top bits off `c-state-cache'.
3359 (while (and c-state-cache
3360 (>= (setq pa (c-state-cache-top-paren)) here))
3361 (setq dropped-cons (consp (car c-state-cache))
3362 too-high-pa (c-state-cache-top-lparen)
3363 c-state-cache (cdr c-state-cache)))
3365 ;; Do we need to add in an earlier brace pair, having lopped one off?
3366 (if (and dropped-cons
3367 (<= too-high-pa here))
3368 (c-append-lower-brace-pair-to-state-cache too-high-pa here here-bol))
3369 (setq c-state-cache-good-pos (or (c-state-cache-after-top-paren)
3370 (c-state-get-min-scan-pos)))))
3372 ;; The brace-pair desert marker:
3373 (when (car c-state-brace-pair-desert)
3374 (if (< here (car c-state-brace-pair-desert))
3375 (setq c-state-brace-pair-desert nil)
3376 (if (< here (cdr c-state-brace-pair-desert))
3377 (setcdr c-state-brace-pair-desert here)))))
3379 (defun c-parse-state-1 ()
3380 ;; Find and record all noteworthy parens between some good point earlier in
3381 ;; the file and point. That good point is at least the beginning of the
3382 ;; top-level construct we are in, or the beginning of the preceding
3383 ;; top-level construct if we aren't in one.
3385 ;; The returned value is a list of the noteworthy parens with the last one
3386 ;; first. If an element in the list is an integer, it's the position of an
3387 ;; open paren (of any type) which has not been closed before the point. If
3388 ;; an element is a cons, it gives the position of a closed BRACE paren
3389 ;; pair[*]; the car is the start brace position and the cdr is the position
3390 ;; following the closing brace. Only the last closed brace paren pair
3391 ;; before each open paren and before the point is recorded, and thus the
3392 ;; state never contains two cons elements in succession. When a close brace
3393 ;; has no matching open brace (e.g., the matching brace is outside the
3394 ;; visible region), it is not represented in the returned value.
3396 ;; [*] N.B. The close "brace" might be a mismatching close bracket or paren.
3397 ;; This defun explicitly treats mismatching parens/braces/brackets as
3398 ;; matching. It is the open brace which makes it a "brace" pair.
3400 ;; If POINT is within a macro, open parens and brace pairs within
3401 ;; THIS macro MIGHT be recorded. This depends on whether their
3402 ;; syntactic properties have been suppressed by
3403 ;; `c-neutralize-syntax-in-CPP'. This might need fixing (2008-12-11).
3405 ;; Currently no characters which are given paren syntax with the
3406 ;; syntax-table property are recorded, i.e. angle bracket arglist
3407 ;; parens are never present here. Note that this might change.
3409 ;; BUG: This function doesn't cope entirely well with unbalanced
3410 ;; parens in macros. (2008-12-11: this has probably been resolved
3411 ;; by the function `c-neutralize-syntax-in-CPP'.) E.g. in the
3412 ;; following case the brace before the macro isn't balanced with the
3413 ;; one after it:
3415 ;; {
3416 ;; #define X {
3417 ;; }
3419 ;; Note to maintainers: this function DOES get called with point
3420 ;; within comments and strings, so don't assume it doesn't!
3422 ;; This function might do hidden buffer changes.
3423 (let* ((here (point))
3424 (here-bopl (c-point 'bopl))
3425 strategy ; 'forward, 'backward etc..
3426 ;; Candidate positions to start scanning from:
3427 cache-pos ; highest position below HERE already existing in
3428 ; cache (or 1).
3429 good-pos
3430 start-point ; (when scanning forward) a place below HERE where there
3431 ; are no open parens/braces between it and HERE.
3432 bopl-state
3434 cons-separated
3435 scan-backward-pos scan-forward-p) ; used for 'backward.
3436 ;; If POINT-MIN has changed, adjust the cache
3437 (unless (= (point-min) c-state-point-min)
3438 (c-renarrow-state-cache))
3440 ;; Strategy?
3441 (setq res (c-parse-state-get-strategy here c-state-cache-good-pos)
3442 strategy (car res)
3443 start-point (cadr res))
3445 (when (eq strategy 'BOD)
3446 (setq c-state-cache nil
3447 c-state-cache-good-pos start-point))
3449 ;; SCAN!
3450 (cond
3451 ((memq strategy '(forward back-and-forward BOD))
3452 (setq res (c-remove-stale-state-cache start-point here here-bopl))
3453 (setq cache-pos (car res)
3454 scan-backward-pos (cadr res)
3455 cons-separated (car (cddr res))
3456 bopl-state (cadr (cddr res))) ; will be nil if (< here-bopl
3457 ; start-point)
3458 (if (and scan-backward-pos
3459 (or cons-separated (eq strategy 'forward))) ;scan-backward-pos
3460 (c-append-lower-brace-pair-to-state-cache scan-backward-pos here))
3461 (setq good-pos
3462 (c-append-to-state-cache cache-pos here))
3463 (setq c-state-cache-good-pos
3464 (if (and bopl-state
3465 (< good-pos (- here c-state-cache-too-far)))
3466 (c-state-cache-non-literal-place here-bopl bopl-state)
3467 good-pos)))
3469 ((eq strategy 'backward)
3470 (setq res (c-remove-stale-state-cache-backwards here)
3471 good-pos (car res)
3472 scan-backward-pos (cadr res)
3473 scan-forward-p (car (cddr res)))
3474 (if scan-backward-pos
3475 (c-append-lower-brace-pair-to-state-cache scan-backward-pos here))
3476 (setq c-state-cache-good-pos
3477 (if scan-forward-p
3478 (c-append-to-state-cache good-pos here)
3479 good-pos)))
3481 (t ; (eq strategy 'IN-LIT)
3482 (setq c-state-cache nil
3483 c-state-cache-good-pos nil))))
3485 c-state-cache)
3487 (defun c-invalidate-state-cache (here)
3488 ;; This is a wrapper over `c-invalidate-state-cache-1'.
3490 ;; It suppresses the syntactic effect of the < and > (template) brackets and
3491 ;; of all parens in preprocessor constructs, except for any such construct
3492 ;; containing point. We can then call `c-invalidate-state-cache-1' without
3493 ;; worrying further about macros and template delimiters.
3494 (if (eval-when-compile (memq 'category-properties c-emacs-features))
3495 ;; Emacs
3496 (c-with-<->-as-parens-suppressed
3497 (if (and c-state-old-cpp-beg
3498 (< c-state-old-cpp-beg here))
3499 (c-with-all-but-one-cpps-commented-out
3500 c-state-old-cpp-beg
3501 c-state-old-cpp-end
3502 (c-invalidate-state-cache-1 here))
3503 (c-with-cpps-commented-out
3504 (c-invalidate-state-cache-1 here))))
3505 ;; XEmacs
3506 (c-invalidate-state-cache-1 here)))
3508 (defmacro c-state-maybe-marker (place marker)
3509 ;; If PLACE is non-nil, return a marker marking it, otherwise nil.
3510 ;; We (re)use MARKER.
3511 `(and ,place
3512 (or ,marker (setq ,marker (make-marker)))
3513 (set-marker ,marker ,place)))
3515 (defun c-parse-state ()
3516 ;; This is a wrapper over `c-parse-state-1'. See that function for a
3517 ;; description of the functionality and return value.
3519 ;; It suppresses the syntactic effect of the < and > (template) brackets and
3520 ;; of all parens in preprocessor constructs, except for any such construct
3521 ;; containing point. We can then call `c-parse-state-1' without worrying
3522 ;; further about macros and template delimiters.
3523 (let (here-cpp-beg here-cpp-end)
3524 (save-excursion
3525 (when (c-beginning-of-macro)
3526 (setq here-cpp-beg (point))
3527 (unless
3528 (> (setq here-cpp-end (c-syntactic-end-of-macro))
3529 here-cpp-beg)
3530 (setq here-cpp-beg nil here-cpp-end nil))))
3531 ;; FIXME!!! Put in a `condition-case' here to protect the integrity of the
3532 ;; subsystem.
3533 (prog1
3534 (if (eval-when-compile (memq 'category-properties c-emacs-features))
3535 ;; Emacs
3536 (c-with-<->-as-parens-suppressed
3537 (if (and here-cpp-beg (> here-cpp-end here-cpp-beg))
3538 (c-with-all-but-one-cpps-commented-out
3539 here-cpp-beg here-cpp-end
3540 (c-parse-state-1))
3541 (c-with-cpps-commented-out
3542 (c-parse-state-1))))
3543 ;; XEmacs
3544 (c-parse-state-1))
3545 (setq c-state-old-cpp-beg
3546 (c-state-maybe-marker here-cpp-beg c-state-old-cpp-beg-marker)
3547 c-state-old-cpp-end
3548 (c-state-maybe-marker here-cpp-end c-state-old-cpp-end-marker)))))
3550 ;; Debug tool to catch cache inconsistencies. This is called from
3551 ;; 000tests.el.
3552 (defvar c-debug-parse-state nil)
3553 (unless (fboundp 'c-real-parse-state)
3554 (fset 'c-real-parse-state (symbol-function 'c-parse-state)))
3555 (cc-bytecomp-defun c-real-parse-state)
3557 (defvar c-parse-state-point nil)
3558 (defvar c-parse-state-state nil)
3559 (make-variable-buffer-local 'c-parse-state-state)
3560 (defun c-record-parse-state-state ()
3561 (setq c-parse-state-point (point))
3562 (when (markerp (cdr (assq 'c-state-old-cpp-beg c-parse-state-state)))
3563 (move-marker (cdr (assq 'c-state-old-cpp-beg c-parse-state-state)) nil)
3564 (move-marker (cdr (assq 'c-state-old-cpp-end c-parse-state-state)) nil))
3565 (setq c-parse-state-state
3566 (mapcar
3567 (lambda (arg)
3568 (let ((val (symbol-value arg)))
3569 (cons arg
3570 (cond ((consp val) (copy-tree val))
3571 ((markerp val) (copy-marker val))
3572 (t val)))))
3573 '(c-state-cache
3574 c-state-cache-good-pos
3575 c-state-nonlit-pos-cache
3576 c-state-nonlit-pos-cache-limit
3577 c-state-semi-nonlit-pos-cache
3578 c-state-semi-nonlit-pos-cache-limit
3579 c-state-brace-pair-desert
3580 c-state-point-min
3581 c-state-point-min-lit-type
3582 c-state-point-min-lit-start
3583 c-state-min-scan-pos
3584 c-state-old-cpp-beg
3585 c-state-old-cpp-end
3586 c-parse-state-point))))
3587 (defun c-replay-parse-state-state ()
3588 (message "%s"
3589 (concat "(setq "
3590 (mapconcat
3591 (lambda (arg)
3592 (format "%s %s%s" (car arg)
3593 (if (atom (cdr arg)) "" "'")
3594 (if (markerp (cdr arg))
3595 (format "(copy-marker %s)" (marker-position (cdr arg)))
3596 (cdr arg))))
3597 c-parse-state-state " ")
3598 ")")))
3600 (defun c-debug-parse-state-double-cons (state)
3601 (let (state-car conses-not-ok)
3602 (while state
3603 (setq state-car (car state)
3604 state (cdr state))
3605 (if (and (consp state-car)
3606 (consp (car state)))
3607 (setq conses-not-ok t)))
3608 conses-not-ok))
3610 (defun c-debug-parse-state ()
3611 (let ((here (point)) (min-point (point-min)) (res1 (c-real-parse-state)) res2)
3612 (let ((c-state-cache nil)
3613 (c-state-cache-good-pos 1)
3614 (c-state-nonlit-pos-cache nil)
3615 (c-state-nonlit-pos-cache-limit 1)
3616 (c-state-brace-pair-desert nil)
3617 (c-state-point-min 1)
3618 (c-state-point-min-lit-type nil)
3619 (c-state-point-min-lit-start nil)
3620 (c-state-min-scan-pos 1)
3621 (c-state-old-cpp-beg nil)
3622 (c-state-old-cpp-end nil))
3623 (setq res2 (c-real-parse-state)))
3624 (unless (equal res1 res2)
3625 ;; The cache can actually go further back due to the ad-hoc way
3626 ;; the first paren is found, so try to whack off a bit of its
3627 ;; start before complaining.
3628 ;; (save-excursion
3629 ;; (goto-char (or (c-least-enclosing-brace res2) (point)))
3630 ;; (c-beginning-of-defun-1)
3631 ;; (while (not (or (bobp) (eq (char-after) ?{)))
3632 ;; (c-beginning-of-defun-1))
3633 ;; (unless (equal (c-whack-state-before (point) res1) res2)
3634 ;; (message (concat "c-parse-state inconsistency at %s: "
3635 ;; "using cache: %s, from scratch: %s")
3636 ;; here res1 res2)))
3637 (message (concat "c-parse-state inconsistency at %s: "
3638 "using cache: %s, from scratch: %s. POINT-MIN: %s")
3639 here res1 res2 min-point)
3640 (message "Old state:")
3641 (c-replay-parse-state-state))
3643 (when (c-debug-parse-state-double-cons res1)
3644 (message "c-parse-state INVALIDITY at %s: %s"
3645 here res1)
3646 (message "Old state:")
3647 (c-replay-parse-state-state))
3649 (c-record-parse-state-state)
3650 res2 ; res1 correct a cascading series of errors ASAP
3653 (defun c-toggle-parse-state-debug (&optional arg)
3654 (interactive "P")
3655 (setq c-debug-parse-state (c-calculate-state arg c-debug-parse-state))
3656 (fset 'c-parse-state (symbol-function (if c-debug-parse-state
3657 'c-debug-parse-state
3658 'c-real-parse-state)))
3659 (c-keep-region-active)
3660 (message "c-debug-parse-state %sabled"
3661 (if c-debug-parse-state "en" "dis")))
3662 (when c-debug-parse-state
3663 (c-toggle-parse-state-debug 1))
3666 (defun c-whack-state-before (bufpos paren-state)
3667 ;; Whack off any state information from PAREN-STATE which lies
3668 ;; before BUFPOS. Not destructive on PAREN-STATE.
3669 (let* ((newstate (list nil))
3670 (ptr newstate)
3671 car)
3672 (while paren-state
3673 (setq car (car paren-state)
3674 paren-state (cdr paren-state))
3675 (if (< (if (consp car) (car car) car) bufpos)
3676 (setq paren-state nil)
3677 (setcdr ptr (list car))
3678 (setq ptr (cdr ptr))))
3679 (cdr newstate)))
3681 (defun c-whack-state-after (bufpos paren-state)
3682 ;; Whack off any state information from PAREN-STATE which lies at or
3683 ;; after BUFPOS. Not destructive on PAREN-STATE.
3684 (catch 'done
3685 (while paren-state
3686 (let ((car (car paren-state)))
3687 (if (consp car)
3688 ;; just check the car, because in a balanced brace
3689 ;; expression, it must be impossible for the corresponding
3690 ;; close brace to be before point, but the open brace to
3691 ;; be after.
3692 (if (<= bufpos (car car))
3693 nil ; whack it off
3694 (if (< bufpos (cdr car))
3695 ;; its possible that the open brace is before
3696 ;; bufpos, but the close brace is after. In that
3697 ;; case, convert this to a non-cons element. The
3698 ;; rest of the state is before bufpos, so we're
3699 ;; done.
3700 (throw 'done (cons (car car) (cdr paren-state)))
3701 ;; we know that both the open and close braces are
3702 ;; before bufpos, so we also know that everything else
3703 ;; on state is before bufpos.
3704 (throw 'done paren-state)))
3705 (if (<= bufpos car)
3706 nil ; whack it off
3707 ;; it's before bufpos, so everything else should too.
3708 (throw 'done paren-state)))
3709 (setq paren-state (cdr paren-state)))
3710 nil)))
3712 (defun c-most-enclosing-brace (paren-state &optional bufpos)
3713 ;; Return the bufpos of the innermost enclosing open paren before
3714 ;; bufpos, or nil if none was found.
3715 (let (enclosingp)
3716 (or bufpos (setq bufpos 134217727))
3717 (while paren-state
3718 (setq enclosingp (car paren-state)
3719 paren-state (cdr paren-state))
3720 (if (or (consp enclosingp)
3721 (>= enclosingp bufpos))
3722 (setq enclosingp nil)
3723 (setq paren-state nil)))
3724 enclosingp))
3726 (defun c-least-enclosing-brace (paren-state)
3727 ;; Return the bufpos of the outermost enclosing open paren, or nil
3728 ;; if none was found.
3729 (let (pos elem)
3730 (while paren-state
3731 (setq elem (car paren-state)
3732 paren-state (cdr paren-state))
3733 (if (integerp elem)
3734 (setq pos elem)))
3735 pos))
3737 (defun c-safe-position (bufpos paren-state)
3738 ;; Return the closest "safe" position recorded on PAREN-STATE that
3739 ;; is higher up than BUFPOS. Return nil if PAREN-STATE doesn't
3740 ;; contain any. Return nil if BUFPOS is nil, which is useful to
3741 ;; find the closest limit before a given limit that might be nil.
3743 ;; A "safe" position is a position at or after a recorded open
3744 ;; paren, or after a recorded close paren. The returned position is
3745 ;; thus either the first position after a close brace, or the first
3746 ;; position after an enclosing paren, or at the enclosing paren in
3747 ;; case BUFPOS is immediately after it.
3748 (when bufpos
3749 (let (elem)
3750 (catch 'done
3751 (while paren-state
3752 (setq elem (car paren-state))
3753 (if (consp elem)
3754 (cond ((< (cdr elem) bufpos)
3755 (throw 'done (cdr elem)))
3756 ((< (car elem) bufpos)
3757 ;; See below.
3758 (throw 'done (min (1+ (car elem)) bufpos))))
3759 (if (< elem bufpos)
3760 ;; elem is the position at and not after the opening paren, so
3761 ;; we can go forward one more step unless it's equal to
3762 ;; bufpos. This is useful in some cases avoid an extra paren
3763 ;; level between the safe position and bufpos.
3764 (throw 'done (min (1+ elem) bufpos))))
3765 (setq paren-state (cdr paren-state)))))))
3767 (defun c-beginning-of-syntax ()
3768 ;; This is used for `font-lock-beginning-of-syntax-function'. It
3769 ;; goes to the closest previous point that is known to be outside
3770 ;; any string literal or comment. `c-state-cache' is used if it has
3771 ;; a position in the vicinity.
3772 (let* ((paren-state c-state-cache)
3773 elem
3775 (pos (catch 'done
3776 ;; Note: Similar code in `c-safe-position'. The
3777 ;; difference is that we accept a safe position at
3778 ;; the point and don't bother to go forward past open
3779 ;; parens.
3780 (while paren-state
3781 (setq elem (car paren-state))
3782 (if (consp elem)
3783 (cond ((<= (cdr elem) (point))
3784 (throw 'done (cdr elem)))
3785 ((<= (car elem) (point))
3786 (throw 'done (car elem))))
3787 (if (<= elem (point))
3788 (throw 'done elem)))
3789 (setq paren-state (cdr paren-state)))
3790 (point-min))))
3792 (if (> pos (- (point) 4000))
3793 (goto-char pos)
3794 ;; The position is far back. Try `c-beginning-of-defun-1'
3795 ;; (although we can't be entirely sure it will go to a position
3796 ;; outside a comment or string in current emacsen). FIXME:
3797 ;; Consult `syntax-ppss' here.
3798 (c-beginning-of-defun-1)
3799 (if (< (point) pos)
3800 (goto-char pos)))))
3803 ;; Tools for scanning identifiers and other tokens.
3805 (defun c-on-identifier ()
3806 "Return non-nil if the point is on or directly after an identifier.
3807 Keywords are recognized and not considered identifiers. If an
3808 identifier is detected, the returned value is its starting position.
3809 If an identifier ends at the point and another begins at it \(can only
3810 happen in Pike) then the point for the preceding one is returned.
3812 Note that this function might do hidden buffer changes. See the
3813 comment at the start of cc-engine.el for more info."
3815 ;; FIXME: Shouldn't this function handle "operator" in C++?
3817 (save-excursion
3818 (skip-syntax-backward "w_")
3822 ;; Check for a normal (non-keyword) identifier.
3823 (and (looking-at c-symbol-start)
3824 (not (looking-at c-keywords-regexp))
3825 (point))
3827 (when (c-major-mode-is 'pike-mode)
3828 ;; Handle the `<operator> syntax in Pike.
3829 (let ((pos (point)))
3830 (skip-chars-backward "-!%&*+/<=>^|~[]()")
3831 (and (if (< (skip-chars-backward "`") 0)
3833 (goto-char pos)
3834 (eq (char-after) ?\`))
3835 (looking-at c-symbol-key)
3836 (>= (match-end 0) pos)
3837 (point))))
3839 ;; Handle the "operator +" syntax in C++.
3840 (when (and c-overloadable-operators-regexp
3841 (= (c-backward-token-2 0) 0))
3843 (cond ((and (looking-at c-overloadable-operators-regexp)
3844 (or (not c-opt-op-identifier-prefix)
3845 (and (= (c-backward-token-2 1) 0)
3846 (looking-at c-opt-op-identifier-prefix))))
3847 (point))
3849 ((save-excursion
3850 (and c-opt-op-identifier-prefix
3851 (looking-at c-opt-op-identifier-prefix)
3852 (= (c-forward-token-2 1) 0)
3853 (looking-at c-overloadable-operators-regexp)))
3854 (point))))
3858 (defsubst c-simple-skip-symbol-backward ()
3859 ;; If the point is at the end of a symbol then skip backward to the
3860 ;; beginning of it. Don't move otherwise. Return non-nil if point
3861 ;; moved.
3863 ;; This function might do hidden buffer changes.
3864 (or (< (skip-syntax-backward "w_") 0)
3865 (and (c-major-mode-is 'pike-mode)
3866 ;; Handle the `<operator> syntax in Pike.
3867 (let ((pos (point)))
3868 (if (and (< (skip-chars-backward "-!%&*+/<=>^|~[]()") 0)
3869 (< (skip-chars-backward "`") 0)
3870 (looking-at c-symbol-key)
3871 (>= (match-end 0) pos))
3873 (goto-char pos)
3874 nil)))))
3876 (defun c-beginning-of-current-token (&optional back-limit)
3877 ;; Move to the beginning of the current token. Do not move if not
3878 ;; in the middle of one. BACK-LIMIT may be used to bound the
3879 ;; backward search; if given it's assumed to be at the boundary
3880 ;; between two tokens. Return non-nil if the point is moved, nil
3881 ;; otherwise.
3883 ;; This function might do hidden buffer changes.
3884 (let ((start (point)))
3885 (if (looking-at "\\w\\|\\s_")
3886 (skip-syntax-backward "w_" back-limit)
3887 (when (< (skip-syntax-backward ".()" back-limit) 0)
3888 (while (let ((pos (or (and (looking-at c-nonsymbol-token-regexp)
3889 (match-end 0))
3890 ;; `c-nonsymbol-token-regexp' should always match
3891 ;; since we've skipped backward over punctuation
3892 ;; or paren syntax, but consume one char in case
3893 ;; it doesn't so that we don't leave point before
3894 ;; some earlier incorrect token.
3895 (1+ (point)))))
3896 (if (<= pos start)
3897 (goto-char pos))))))
3898 (< (point) start)))
3900 (defun c-end-of-current-token (&optional back-limit)
3901 ;; Move to the end of the current token. Do not move if not in the
3902 ;; middle of one. BACK-LIMIT may be used to bound the backward
3903 ;; search; if given it's assumed to be at the boundary between two
3904 ;; tokens. Return non-nil if the point is moved, nil otherwise.
3906 ;; This function might do hidden buffer changes.
3907 (let ((start (point)))
3908 (cond ((< (skip-syntax-backward "w_" (1- start)) 0)
3909 (skip-syntax-forward "w_"))
3910 ((< (skip-syntax-backward ".()" back-limit) 0)
3911 (while (progn
3912 (if (looking-at c-nonsymbol-token-regexp)
3913 (goto-char (match-end 0))
3914 ;; `c-nonsymbol-token-regexp' should always match since
3915 ;; we've skipped backward over punctuation or paren
3916 ;; syntax, but move forward in case it doesn't so that
3917 ;; we don't leave point earlier than we started with.
3918 (forward-char))
3919 (< (point) start)))))
3920 (> (point) start)))
3922 (defconst c-jump-syntax-balanced
3923 (if (memq 'gen-string-delim c-emacs-features)
3924 "\\w\\|\\s_\\|\\s(\\|\\s)\\|\\s\"\\|\\s|"
3925 "\\w\\|\\s_\\|\\s(\\|\\s)\\|\\s\""))
3927 (defconst c-jump-syntax-unbalanced
3928 (if (memq 'gen-string-delim c-emacs-features)
3929 "\\w\\|\\s_\\|\\s\"\\|\\s|"
3930 "\\w\\|\\s_\\|\\s\""))
3932 (defun c-forward-token-2 (&optional count balanced limit)
3933 "Move forward by tokens.
3934 A token is defined as all symbols and identifiers which aren't
3935 syntactic whitespace \(note that multicharacter tokens like \"==\" are
3936 treated properly). Point is always either left at the beginning of a
3937 token or not moved at all. COUNT specifies the number of tokens to
3938 move; a negative COUNT moves in the opposite direction. A COUNT of 0
3939 moves to the next token beginning only if not already at one. If
3940 BALANCED is true, move over balanced parens, otherwise move into them.
3941 Also, if BALANCED is true, never move out of an enclosing paren.
3943 LIMIT sets the limit for the movement and defaults to the point limit.
3944 The case when LIMIT is set in the middle of a token, comment or macro
3945 is handled correctly, i.e. the point won't be left there.
3947 Return the number of tokens left to move \(positive or negative). If
3948 BALANCED is true, a move over a balanced paren counts as one. Note
3949 that if COUNT is 0 and no appropriate token beginning is found, 1 will
3950 be returned. Thus, a return value of 0 guarantees that point is at
3951 the requested position and a return value less \(without signs) than
3952 COUNT guarantees that point is at the beginning of some token.
3954 Note that this function might do hidden buffer changes. See the
3955 comment at the start of cc-engine.el for more info."
3957 (or count (setq count 1))
3958 (if (< count 0)
3959 (- (c-backward-token-2 (- count) balanced limit))
3961 (let ((jump-syntax (if balanced
3962 c-jump-syntax-balanced
3963 c-jump-syntax-unbalanced))
3964 (last (point))
3965 (prev (point)))
3967 (if (zerop count)
3968 ;; If count is zero we should jump if in the middle of a token.
3969 (c-end-of-current-token))
3971 (save-restriction
3972 (if limit (narrow-to-region (point-min) limit))
3973 (if (/= (point)
3974 (progn (c-forward-syntactic-ws) (point)))
3975 ;; Skip whitespace. Count this as a move if we did in
3976 ;; fact move.
3977 (setq count (max (1- count) 0)))
3979 (if (eobp)
3980 ;; Moved out of bounds. Make sure the returned count isn't zero.
3981 (progn
3982 (if (zerop count) (setq count 1))
3983 (goto-char last))
3985 ;; Use `condition-case' to avoid having the limit tests
3986 ;; inside the loop.
3987 (condition-case nil
3988 (while (and
3989 (> count 0)
3990 (progn
3991 (setq last (point))
3992 (cond ((looking-at jump-syntax)
3993 (goto-char (scan-sexps (point) 1))
3995 ((looking-at c-nonsymbol-token-regexp)
3996 (goto-char (match-end 0))
3998 ;; `c-nonsymbol-token-regexp' above should always
3999 ;; match if there are correct tokens. Try to
4000 ;; widen to see if the limit was set in the
4001 ;; middle of one, else fall back to treating
4002 ;; the offending thing as a one character token.
4003 ((and limit
4004 (save-restriction
4005 (widen)
4006 (looking-at c-nonsymbol-token-regexp)))
4007 nil)
4009 (forward-char)
4010 t))))
4011 (c-forward-syntactic-ws)
4012 (setq prev last
4013 count (1- count)))
4014 (error (goto-char last)))
4016 (when (eobp)
4017 (goto-char prev)
4018 (setq count (1+ count)))))
4020 count)))
4022 (defun c-backward-token-2 (&optional count balanced limit)
4023 "Move backward by tokens.
4024 See `c-forward-token-2' for details."
4026 (or count (setq count 1))
4027 (if (< count 0)
4028 (- (c-forward-token-2 (- count) balanced limit))
4030 (or limit (setq limit (point-min)))
4031 (let ((jump-syntax (if balanced
4032 c-jump-syntax-balanced
4033 c-jump-syntax-unbalanced))
4034 (last (point)))
4036 (if (zerop count)
4037 ;; The count is zero so try to skip to the beginning of the
4038 ;; current token.
4039 (if (> (point)
4040 (progn (c-beginning-of-current-token) (point)))
4041 (if (< (point) limit)
4042 ;; The limit is inside the same token, so return 1.
4043 (setq count 1))
4045 ;; We're not in the middle of a token. If there's
4046 ;; whitespace after the point then we must move backward,
4047 ;; so set count to 1 in that case.
4048 (and (looking-at c-syntactic-ws-start)
4049 ;; If we're looking at a '#' that might start a cpp
4050 ;; directive then we have to do a more elaborate check.
4051 (or (/= (char-after) ?#)
4052 (not c-opt-cpp-prefix)
4053 (save-excursion
4054 (and (= (point)
4055 (progn (beginning-of-line)
4056 (looking-at "[ \t]*")
4057 (match-end 0)))
4058 (or (bobp)
4059 (progn (backward-char)
4060 (not (eq (char-before) ?\\)))))))
4061 (setq count 1))))
4063 ;; Use `condition-case' to avoid having to check for buffer
4064 ;; limits in `backward-char', `scan-sexps' and `goto-char' below.
4065 (condition-case nil
4066 (while (and
4067 (> count 0)
4068 (progn
4069 (c-backward-syntactic-ws)
4070 (backward-char)
4071 (if (looking-at jump-syntax)
4072 (goto-char (scan-sexps (1+ (point)) -1))
4073 ;; This can be very inefficient if there's a long
4074 ;; sequence of operator tokens without any separation.
4075 ;; That doesn't happen in practice, anyway.
4076 (c-beginning-of-current-token))
4077 (>= (point) limit)))
4078 (setq last (point)
4079 count (1- count)))
4080 (error (goto-char last)))
4082 (if (< (point) limit)
4083 (goto-char last))
4085 count)))
4087 (defun c-forward-token-1 (&optional count balanced limit)
4088 "Like `c-forward-token-2' but doesn't treat multicharacter operator
4089 tokens like \"==\" as single tokens, i.e. all sequences of symbol
4090 characters are jumped over character by character. This function is
4091 for compatibility only; it's only a wrapper over `c-forward-token-2'."
4092 (let ((c-nonsymbol-token-regexp "\\s."))
4093 (c-forward-token-2 count balanced limit)))
4095 (defun c-backward-token-1 (&optional count balanced limit)
4096 "Like `c-backward-token-2' but doesn't treat multicharacter operator
4097 tokens like \"==\" as single tokens, i.e. all sequences of symbol
4098 characters are jumped over character by character. This function is
4099 for compatibility only; it's only a wrapper over `c-backward-token-2'."
4100 (let ((c-nonsymbol-token-regexp "\\s."))
4101 (c-backward-token-2 count balanced limit)))
4104 ;; Tools for doing searches restricted to syntactically relevant text.
4106 (defun c-syntactic-re-search-forward (regexp &optional bound noerror
4107 paren-level not-inside-token
4108 lookbehind-submatch)
4109 "Like `re-search-forward', but only report matches that are found
4110 in syntactically significant text. I.e. matches in comments, macros
4111 or string literals are ignored. The start point is assumed to be
4112 outside any comment, macro or string literal, or else the content of
4113 that region is taken as syntactically significant text.
4115 If PAREN-LEVEL is non-nil, an additional restriction is added to
4116 ignore matches in nested paren sexps. The search will also not go
4117 outside the current list sexp, which has the effect that if the point
4118 should be moved to BOUND when no match is found \(i.e. NOERROR is
4119 neither nil nor t), then it will be at the closing paren if the end of
4120 the current list sexp is encountered first.
4122 If NOT-INSIDE-TOKEN is non-nil, matches in the middle of tokens are
4123 ignored. Things like multicharacter operators and special symbols
4124 \(e.g. \"`()\" in Pike) are handled but currently not floating point
4125 constants.
4127 If LOOKBEHIND-SUBMATCH is non-nil, it's taken as a number of a
4128 subexpression in REGEXP. The end of that submatch is used as the
4129 position to check for syntactic significance. If LOOKBEHIND-SUBMATCH
4130 isn't used or if that subexpression didn't match then the start
4131 position of the whole match is used instead. The \"look behind\"
4132 subexpression is never tested before the starting position, so it
4133 might be a good idea to include \\=\\= as a match alternative in it.
4135 Optimization note: Matches might be missed if the \"look behind\"
4136 subexpression can match the end of nonwhite syntactic whitespace,
4137 i.e. the end of comments or cpp directives. This since the function
4138 skips over such things before resuming the search. It's on the other
4139 hand not safe to assume that the \"look behind\" subexpression never
4140 matches syntactic whitespace.
4142 Bug: Unbalanced parens inside cpp directives are currently not handled
4143 correctly \(i.e. they don't get ignored as they should) when
4144 PAREN-LEVEL is set.
4146 Note that this function might do hidden buffer changes. See the
4147 comment at the start of cc-engine.el for more info."
4149 (or bound (setq bound (point-max)))
4150 (if paren-level (setq paren-level -1))
4152 ;;(message "c-syntactic-re-search-forward %s %s %S" (point) bound regexp)
4154 (let ((start (point))
4156 ;; Start position for the last search.
4157 search-pos
4158 ;; The `parse-partial-sexp' state between the start position
4159 ;; and the point.
4160 state
4161 ;; The current position after the last state update. The next
4162 ;; `parse-partial-sexp' continues from here.
4163 (state-pos (point))
4164 ;; The position at which to check the state and the state
4165 ;; there. This is separate from `state-pos' since we might
4166 ;; need to back up before doing the next search round.
4167 check-pos check-state
4168 ;; Last position known to end a token.
4169 (last-token-end-pos (point-min))
4170 ;; Set when a valid match is found.
4171 found)
4173 (condition-case err
4174 (while
4175 (and
4176 (progn
4177 (setq search-pos (point))
4178 (re-search-forward regexp bound noerror))
4180 (progn
4181 (setq state (parse-partial-sexp
4182 state-pos (match-beginning 0) paren-level nil state)
4183 state-pos (point))
4184 (if (setq check-pos (and lookbehind-submatch
4185 (or (not paren-level)
4186 (>= (car state) 0))
4187 (match-end lookbehind-submatch)))
4188 (setq check-state (parse-partial-sexp
4189 state-pos check-pos paren-level nil state))
4190 (setq check-pos state-pos
4191 check-state state))
4193 ;; NOTE: If we got a look behind subexpression and get
4194 ;; an insignificant match in something that isn't
4195 ;; syntactic whitespace (i.e. strings or in nested
4196 ;; parentheses), then we can never skip more than a
4197 ;; single character from the match start position
4198 ;; (i.e. `state-pos' here) before continuing the
4199 ;; search. That since the look behind subexpression
4200 ;; might match the end of the insignificant region in
4201 ;; the next search.
4203 (cond
4204 ((elt check-state 7)
4205 ;; Match inside a line comment. Skip to eol. Use
4206 ;; `re-search-forward' instead of `skip-chars-forward' to get
4207 ;; the right bound behavior.
4208 (re-search-forward "[\n\r]" bound noerror))
4210 ((elt check-state 4)
4211 ;; Match inside a block comment. Skip to the '*/'.
4212 (search-forward "*/" bound noerror))
4214 ((and (not (elt check-state 5))
4215 (eq (char-before check-pos) ?/)
4216 (not (c-get-char-property (1- check-pos) 'syntax-table))
4217 (memq (char-after check-pos) '(?/ ?*)))
4218 ;; Match in the middle of the opener of a block or line
4219 ;; comment.
4220 (if (= (char-after check-pos) ?/)
4221 (re-search-forward "[\n\r]" bound noerror)
4222 (search-forward "*/" bound noerror)))
4224 ;; The last `parse-partial-sexp' above might have
4225 ;; stopped short of the real check position if the end
4226 ;; of the current sexp was encountered in paren-level
4227 ;; mode. The checks above are always false in that
4228 ;; case, and since they can do better skipping in
4229 ;; lookbehind-submatch mode, we do them before
4230 ;; checking the paren level.
4232 ((and paren-level
4233 (/= (setq tmp (car check-state)) 0))
4234 ;; Check the paren level first since we're short of the
4235 ;; syntactic checking position if the end of the
4236 ;; current sexp was encountered by `parse-partial-sexp'.
4237 (if (> tmp 0)
4239 ;; Inside a nested paren sexp.
4240 (if lookbehind-submatch
4241 ;; See the NOTE above.
4242 (progn (goto-char state-pos) t)
4243 ;; Skip out of the paren quickly.
4244 (setq state (parse-partial-sexp state-pos bound 0 nil state)
4245 state-pos (point)))
4247 ;; Have exited the current paren sexp.
4248 (if noerror
4249 (progn
4250 ;; The last `parse-partial-sexp' call above
4251 ;; has left us just after the closing paren
4252 ;; in this case, so we can modify the bound
4253 ;; to leave the point at the right position
4254 ;; upon return.
4255 (setq bound (1- (point)))
4256 nil)
4257 (signal 'search-failed (list regexp)))))
4259 ((setq tmp (elt check-state 3))
4260 ;; Match inside a string.
4261 (if (or lookbehind-submatch
4262 (not (integerp tmp)))
4263 ;; See the NOTE above.
4264 (progn (goto-char state-pos) t)
4265 ;; Skip to the end of the string before continuing.
4266 (let ((ender (make-string 1 tmp)) (continue t))
4267 (while (if (search-forward ender bound noerror)
4268 (progn
4269 (setq state (parse-partial-sexp
4270 state-pos (point) nil nil state)
4271 state-pos (point))
4272 (elt state 3))
4273 (setq continue nil)))
4274 continue)))
4276 ((save-excursion
4277 (save-match-data
4278 (c-beginning-of-macro start)))
4279 ;; Match inside a macro. Skip to the end of it.
4280 (c-end-of-macro)
4281 (cond ((<= (point) bound) t)
4282 (noerror nil)
4283 (t (signal 'search-failed (list regexp)))))
4285 ((and not-inside-token
4286 (or (< check-pos last-token-end-pos)
4287 (< check-pos
4288 (save-excursion
4289 (goto-char check-pos)
4290 (save-match-data
4291 (c-end-of-current-token last-token-end-pos))
4292 (setq last-token-end-pos (point))))))
4293 ;; Inside a token.
4294 (if lookbehind-submatch
4295 ;; See the NOTE above.
4296 (goto-char state-pos)
4297 (goto-char (min last-token-end-pos bound))))
4300 ;; A real match.
4301 (setq found t)
4302 nil)))
4304 ;; Should loop to search again, but take care to avoid
4305 ;; looping on the same spot.
4306 (or (/= search-pos (point))
4307 (if (= (point) bound)
4308 (if noerror
4310 (signal 'search-failed (list regexp)))
4311 (forward-char)
4312 t))))
4314 (error
4315 (goto-char start)
4316 (signal (car err) (cdr err))))
4318 ;;(message "c-syntactic-re-search-forward done %s" (or (match-end 0) (point)))
4320 (if found
4321 (progn
4322 (goto-char (match-end 0))
4323 (match-end 0))
4325 ;; Search failed. Set point as appropriate.
4326 (if (eq noerror t)
4327 (goto-char start)
4328 (goto-char bound))
4329 nil)))
4331 (defvar safe-pos-list) ; bound in c-syntactic-skip-backward
4333 (defsubst c-ssb-lit-begin ()
4334 ;; Return the start of the literal point is in, or nil.
4335 ;; We read and write the variables `safe-pos', `safe-pos-list', `state'
4336 ;; bound in the caller.
4338 ;; Use `parse-partial-sexp' from a safe position down to the point to check
4339 ;; if it's outside comments and strings.
4340 (save-excursion
4341 (let ((pos (point)) safe-pos state)
4342 ;; Pick a safe position as close to the point as possible.
4344 ;; FIXME: Consult `syntax-ppss' here if our cache doesn't give a good
4345 ;; position.
4347 (while (and safe-pos-list
4348 (> (car safe-pos-list) (point)))
4349 (setq safe-pos-list (cdr safe-pos-list)))
4350 (unless (setq safe-pos (car-safe safe-pos-list))
4351 (setq safe-pos (max (or (c-safe-position
4352 (point) (c-parse-state))
4354 (point-min))
4355 safe-pos-list (list safe-pos)))
4357 ;; Cache positions along the way to use if we have to back up more. We
4358 ;; cache every closing paren on the same level. If the paren cache is
4359 ;; relevant in this region then we're typically already on the same
4360 ;; level as the target position. Note that we might cache positions
4361 ;; after opening parens in case safe-pos is in a nested list. That's
4362 ;; both uncommon and harmless.
4363 (while (progn
4364 (setq state (parse-partial-sexp
4365 safe-pos pos 0))
4366 (< (point) pos))
4367 (setq safe-pos (point)
4368 safe-pos-list (cons safe-pos safe-pos-list)))
4370 ;; If the state contains the start of the containing sexp we cache that
4371 ;; position too, so that parse-partial-sexp in the next run has a bigger
4372 ;; chance of starting at the same level as the target position and thus
4373 ;; will get more good safe positions into the list.
4374 (if (elt state 1)
4375 (setq safe-pos (1+ (elt state 1))
4376 safe-pos-list (cons safe-pos safe-pos-list)))
4378 (if (or (elt state 3) (elt state 4))
4379 ;; Inside string or comment. Continue search at the
4380 ;; beginning of it.
4381 (elt state 8)))))
4383 (defun c-syntactic-skip-backward (skip-chars &optional limit paren-level)
4384 "Like `skip-chars-backward' but only look at syntactically relevant chars,
4385 i.e. don't stop at positions inside syntactic whitespace or string
4386 literals. Preprocessor directives are also ignored, with the exception
4387 of the one that the point starts within, if any. If LIMIT is given,
4388 it's assumed to be at a syntactically relevant position.
4390 If PAREN-LEVEL is non-nil, the function won't stop in nested paren
4391 sexps, and the search will also not go outside the current paren sexp.
4392 However, if LIMIT or the buffer limit is reached inside a nested paren
4393 then the point will be left at the limit.
4395 Non-nil is returned if the point moved, nil otherwise.
4397 Note that this function might do hidden buffer changes. See the
4398 comment at the start of cc-engine.el for more info."
4400 (c-self-bind-state-cache
4401 (let ((start (point))
4402 state-2
4403 ;; A list of syntactically relevant positions in descending
4404 ;; order. It's used to avoid scanning repeatedly over
4405 ;; potentially large regions with `parse-partial-sexp' to verify
4406 ;; each position. Used in `c-ssb-lit-begin'
4407 safe-pos-list
4408 ;; The result from `c-beginning-of-macro' at the start position or the
4409 ;; start position itself if it isn't within a macro. Evaluated on
4410 ;; demand.
4411 start-macro-beg
4412 ;; The earliest position after the current one with the same paren
4413 ;; level. Used only when `paren-level' is set.
4414 lit-beg
4415 (paren-level-pos (point)))
4417 (while
4418 (progn
4419 ;; The next loop "tries" to find the end point each time round,
4420 ;; loops when it hasn't succeeded.
4421 (while
4422 (and
4423 (let ((pos (point)))
4424 (while (and
4425 (< (skip-chars-backward skip-chars limit) 0)
4426 ;; Don't stop inside a literal.
4427 (when (setq lit-beg (c-ssb-lit-begin))
4428 (goto-char lit-beg)
4429 t)))
4430 (< (point) pos))
4432 (let ((pos (point)) state-2 pps-end-pos)
4434 (cond
4435 ((and paren-level
4436 (save-excursion
4437 (setq state-2 (parse-partial-sexp
4438 pos paren-level-pos -1)
4439 pps-end-pos (point))
4440 (/= (car state-2) 0)))
4441 ;; Not at the right level.
4443 (if (and (< (car state-2) 0)
4444 ;; We stop above if we go out of a paren.
4445 ;; Now check whether it precedes or is
4446 ;; nested in the starting sexp.
4447 (save-excursion
4448 (setq state-2
4449 (parse-partial-sexp
4450 pps-end-pos paren-level-pos
4451 nil nil state-2))
4452 (< (car state-2) 0)))
4454 ;; We've stopped short of the starting position
4455 ;; so the hit was inside a nested list. Go up
4456 ;; until we are at the right level.
4457 (condition-case nil
4458 (progn
4459 (goto-char (scan-lists pos -1
4460 (- (car state-2))))
4461 (setq paren-level-pos (point))
4462 (if (and limit (>= limit paren-level-pos))
4463 (progn
4464 (goto-char limit)
4465 nil)
4467 (error
4468 (goto-char (or limit (point-min)))
4469 nil))
4471 ;; The hit was outside the list at the start
4472 ;; position. Go to the start of the list and exit.
4473 (goto-char (1+ (elt state-2 1)))
4474 nil))
4476 ((c-beginning-of-macro limit)
4477 ;; Inside a macro.
4478 (if (< (point)
4479 (or start-macro-beg
4480 (setq start-macro-beg
4481 (save-excursion
4482 (goto-char start)
4483 (c-beginning-of-macro limit)
4484 (point)))))
4487 ;; It's inside the same macro we started in so it's
4488 ;; a relevant match.
4489 (goto-char pos)
4490 nil))))))
4492 (> (point)
4493 (progn
4494 ;; Skip syntactic ws afterwards so that we don't stop at the
4495 ;; end of a comment if `skip-chars' is something like "^/".
4496 (c-backward-syntactic-ws)
4497 (point)))))
4499 ;; We might want to extend this with more useful return values in
4500 ;; the future.
4501 (/= (point) start))))
4503 ;; The following is an alternative implementation of
4504 ;; `c-syntactic-skip-backward' that uses backward movement to keep
4505 ;; track of the syntactic context. It turned out to be generally
4506 ;; slower than the one above which uses forward checks from earlier
4507 ;; safe positions.
4509 ;;(defconst c-ssb-stop-re
4510 ;; ;; The regexp matching chars `c-syntactic-skip-backward' needs to
4511 ;; ;; stop at to avoid going into comments and literals.
4512 ;; (concat
4513 ;; ;; Match comment end syntax and string literal syntax. Also match
4514 ;; ;; '/' for block comment endings (not covered by comment end
4515 ;; ;; syntax).
4516 ;; "\\s>\\|/\\|\\s\""
4517 ;; (if (memq 'gen-string-delim c-emacs-features)
4518 ;; "\\|\\s|"
4519 ;; "")
4520 ;; (if (memq 'gen-comment-delim c-emacs-features)
4521 ;; "\\|\\s!"
4522 ;; "")))
4524 ;;(defconst c-ssb-stop-paren-re
4525 ;; ;; Like `c-ssb-stop-re' but also stops at paren chars.
4526 ;; (concat c-ssb-stop-re "\\|\\s(\\|\\s)"))
4528 ;;(defconst c-ssb-sexp-end-re
4529 ;; ;; Regexp matching the ending syntax of a complex sexp.
4530 ;; (concat c-string-limit-regexp "\\|\\s)"))
4532 ;;(defun c-syntactic-skip-backward (skip-chars &optional limit paren-level)
4533 ;; "Like `skip-chars-backward' but only look at syntactically relevant chars,
4534 ;;i.e. don't stop at positions inside syntactic whitespace or string
4535 ;;literals. Preprocessor directives are also ignored. However, if the
4536 ;;point is within a comment, string literal or preprocessor directory to
4537 ;;begin with, its contents is treated as syntactically relevant chars.
4538 ;;If LIMIT is given, it limits the backward search and the point will be
4539 ;;left there if no earlier position is found.
4541 ;;If PAREN-LEVEL is non-nil, the function won't stop in nested paren
4542 ;;sexps, and the search will also not go outside the current paren sexp.
4543 ;;However, if LIMIT or the buffer limit is reached inside a nested paren
4544 ;;then the point will be left at the limit.
4546 ;;Non-nil is returned if the point moved, nil otherwise.
4548 ;;Note that this function might do hidden buffer changes. See the
4549 ;;comment at the start of cc-engine.el for more info."
4551 ;; (save-restriction
4552 ;; (when limit
4553 ;; (narrow-to-region limit (point-max)))
4555 ;; (let ((start (point)))
4556 ;; (catch 'done
4557 ;; (while (let ((last-pos (point))
4558 ;; (stop-pos (progn
4559 ;; (skip-chars-backward skip-chars)
4560 ;; (point))))
4562 ;; ;; Skip back over the same region as
4563 ;; ;; `skip-chars-backward' above, but keep to
4564 ;; ;; syntactically relevant positions.
4565 ;; (goto-char last-pos)
4566 ;; (while (and
4567 ;; ;; `re-search-backward' with a single char regexp
4568 ;; ;; should be fast.
4569 ;; (re-search-backward
4570 ;; (if paren-level c-ssb-stop-paren-re c-ssb-stop-re)
4571 ;; stop-pos 'move)
4573 ;; (progn
4574 ;; (cond
4575 ;; ((looking-at "\\s(")
4576 ;; ;; `paren-level' is set and we've found the
4577 ;; ;; start of the containing paren.
4578 ;; (forward-char)
4579 ;; (throw 'done t))
4581 ;; ((looking-at c-ssb-sexp-end-re)
4582 ;; ;; We're at the end of a string literal or paren
4583 ;; ;; sexp (if `paren-level' is set).
4584 ;; (forward-char)
4585 ;; (condition-case nil
4586 ;; (c-backward-sexp)
4587 ;; (error
4588 ;; (goto-char limit)
4589 ;; (throw 'done t))))
4591 ;; (t
4592 ;; (forward-char)
4593 ;; ;; At the end of some syntactic ws or possibly
4594 ;; ;; after a plain '/' operator.
4595 ;; (let ((pos (point)))
4596 ;; (c-backward-syntactic-ws)
4597 ;; (if (= pos (point))
4598 ;; ;; Was a plain '/' operator. Go past it.
4599 ;; (backward-char)))))
4601 ;; (> (point) stop-pos))))
4603 ;; ;; Now the point is either at `stop-pos' or at some
4604 ;; ;; position further back if `stop-pos' was at a
4605 ;; ;; syntactically irrelevant place.
4607 ;; ;; Skip additional syntactic ws so that we don't stop
4608 ;; ;; at the end of a comment if `skip-chars' is
4609 ;; ;; something like "^/".
4610 ;; (c-backward-syntactic-ws)
4612 ;; (< (point) stop-pos))))
4614 ;; ;; We might want to extend this with more useful return values
4615 ;; ;; in the future.
4616 ;; (/= (point) start))))
4619 ;; Tools for handling comments and string literals.
4621 (defun c-in-literal (&optional lim detect-cpp)
4622 "Return the type of literal point is in, if any.
4623 The return value is `c' if in a C-style comment, `c++' if in a C++
4624 style comment, `string' if in a string literal, `pound' if DETECT-CPP
4625 is non-nil and in a preprocessor line, or nil if somewhere else.
4626 Optional LIM is used as the backward limit of the search. If omitted,
4627 or nil, `c-beginning-of-defun' is used.
4629 The last point calculated is cached if the cache is enabled, i.e. if
4630 `c-in-literal-cache' is bound to a two element vector.
4632 Note that this function might do hidden buffer changes. See the
4633 comment at the start of cc-engine.el for more info."
4634 (save-restriction
4635 (widen)
4636 (let* ((safe-place (c-state-semi-safe-place (point)))
4637 (lit (c-state-pp-to-literal safe-place (point))))
4638 (or (cadr lit)
4639 (and detect-cpp
4640 (save-excursion (c-beginning-of-macro))
4641 'pound)))))
4643 (defun c-literal-limits (&optional lim near not-in-delimiter)
4644 "Return a cons of the beginning and end positions of the comment or
4645 string surrounding point (including both delimiters), or nil if point
4646 isn't in one. If LIM is non-nil, it's used as the \"safe\" position
4647 to start parsing from. If NEAR is non-nil, then the limits of any
4648 literal next to point is returned. \"Next to\" means there's only
4649 spaces and tabs between point and the literal. The search for such a
4650 literal is done first in forward direction. If NOT-IN-DELIMITER is
4651 non-nil, the case when point is inside a starting delimiter won't be
4652 recognized. This only has effect for comments which have starting
4653 delimiters with more than one character.
4655 Note that this function might do hidden buffer changes. See the
4656 comment at the start of cc-engine.el for more info."
4658 (save-excursion
4659 (let* ((pos (point))
4660 (lim (or lim (c-state-semi-safe-place pos)))
4661 (pp-to-lit (save-restriction
4662 (widen)
4663 (c-state-pp-to-literal lim pos not-in-delimiter)))
4664 (state (car pp-to-lit))
4665 (lit-limits (car (cddr pp-to-lit))))
4667 (cond
4668 (lit-limits)
4670 (near
4671 (goto-char pos)
4672 ;; Search forward for a literal.
4673 (skip-chars-forward " \t")
4674 (cond
4675 ((looking-at c-string-limit-regexp) ; String.
4676 (cons (point) (or (c-safe (c-forward-sexp 1) (point))
4677 (point-max))))
4679 ((looking-at c-comment-start-regexp) ; Line or block comment.
4680 (cons (point) (progn (c-forward-single-comment) (point))))
4683 ;; Search backward.
4684 (skip-chars-backward " \t")
4686 (let ((end (point)) beg)
4687 (cond
4688 ((save-excursion
4689 (< (skip-syntax-backward c-string-syntax) 0)) ; String.
4690 (setq beg (c-safe (c-backward-sexp 1) (point))))
4692 ((and (c-safe (forward-char -2) t)
4693 (looking-at "*/"))
4694 ;; Block comment. Due to the nature of line
4695 ;; comments, they will always be covered by the
4696 ;; normal case above.
4697 (goto-char end)
4698 (c-backward-single-comment)
4699 ;; If LIM is bogus, beg will be bogus.
4700 (setq beg (point))))
4702 (if beg (cons beg end))))))
4703 ))))
4705 ;; In case external callers use this; it did have a docstring.
4706 (defalias 'c-literal-limits-fast 'c-literal-limits)
4708 (defun c-collect-line-comments (range)
4709 "If the argument is a cons of two buffer positions (such as returned by
4710 `c-literal-limits'), and that range contains a C++ style line comment,
4711 then an extended range is returned that contains all adjacent line
4712 comments (i.e. all comments that starts in the same column with no
4713 empty lines or non-whitespace characters between them). Otherwise the
4714 argument is returned.
4716 Note that this function might do hidden buffer changes. See the
4717 comment at the start of cc-engine.el for more info."
4719 (save-excursion
4720 (condition-case nil
4721 (if (and (consp range) (progn
4722 (goto-char (car range))
4723 (looking-at c-line-comment-starter)))
4724 (let ((col (current-column))
4725 (beg (point))
4726 (bopl (c-point 'bopl))
4727 (end (cdr range)))
4728 ;; Got to take care in the backward direction to handle
4729 ;; comments which are preceded by code.
4730 (while (and (c-backward-single-comment)
4731 (>= (point) bopl)
4732 (looking-at c-line-comment-starter)
4733 (= col (current-column)))
4734 (setq beg (point)
4735 bopl (c-point 'bopl)))
4736 (goto-char end)
4737 (while (and (progn (skip-chars-forward " \t")
4738 (looking-at c-line-comment-starter))
4739 (= col (current-column))
4740 (prog1 (zerop (forward-line 1))
4741 (setq end (point)))))
4742 (cons beg end))
4743 range)
4744 (error range))))
4746 (defun c-literal-type (range)
4747 "Convenience function that given the result of `c-literal-limits',
4748 returns nil or the type of literal that the range surrounds, one
4749 of the symbols `c', `c++' or `string'. It's much faster than using
4750 `c-in-literal' and is intended to be used when you need both the
4751 type of a literal and its limits.
4753 Note that this function might do hidden buffer changes. See the
4754 comment at the start of cc-engine.el for more info."
4756 (if (consp range)
4757 (save-excursion
4758 (goto-char (car range))
4759 (cond ((looking-at c-string-limit-regexp) 'string)
4760 ((or (looking-at "//") ; c++ line comment
4761 (and (looking-at "\\s<") ; comment starter
4762 (looking-at "#"))) ; awk comment.
4763 'c++)
4764 (t 'c))) ; Assuming the range is valid.
4765 range))
4767 (defsubst c-determine-limit-get-base (start try-size)
4768 ;; Get a "safe place" approximately TRY-SIZE characters before START.
4769 ;; This doesn't preserve point.
4770 (let* ((pos (max (- start try-size) (point-min)))
4771 (base (c-state-semi-safe-place pos))
4772 (s (parse-partial-sexp base pos)))
4773 (if (or (nth 4 s) (nth 3 s)) ; comment or string
4774 (nth 8 s)
4775 (point))))
4777 (defun c-determine-limit (how-far-back &optional start try-size)
4778 ;; Return a buffer position HOW-FAR-BACK non-literal characters from START
4779 ;; (default point). This is done by going back further in the buffer then
4780 ;; searching forward for literals. The position found won't be in a
4781 ;; literal. We start searching for the sought position TRY-SIZE (default
4782 ;; twice HOW-FAR-BACK) bytes back from START. This function must be fast.
4783 ;; :-)
4784 (save-excursion
4785 (let* ((start (or start (point)))
4786 (try-size (or try-size (* 2 how-far-back)))
4787 (base (c-determine-limit-get-base start try-size))
4788 (pos base)
4790 (s (parse-partial-sexp pos pos)) ; null state.
4791 stack elt size
4792 (count 0))
4793 (while (< pos start)
4794 ;; Move forward one literal each time round this loop.
4795 ;; Move forward to the start of a comment or string.
4796 (setq s (parse-partial-sexp
4798 start
4799 nil ; target-depth
4800 nil ; stop-before
4801 s ; state
4802 'syntax-table)) ; stop-comment
4804 ;; Gather details of the non-literal-bit - starting pos and size.
4805 (setq size (- (if (or (nth 4 s) (nth 3 s))
4806 (nth 8 s)
4807 (point))
4808 pos))
4809 (if (> size 0)
4810 (setq stack (cons (cons pos size) stack)))
4812 ;; Move forward to the end of the comment/string.
4813 (if (or (nth 4 s) (nth 3 s))
4814 (setq s (parse-partial-sexp
4815 (point)
4816 start
4817 nil ; target-depth
4818 nil ; stop-before
4819 s ; state
4820 'syntax-table))) ; stop-comment
4821 (setq pos (point)))
4823 ;; Now try and find enough non-literal characters recorded on the stack.
4824 ;; Go back one recorded literal each time round this loop.
4825 (while (and (< count how-far-back)
4826 stack)
4827 (setq elt (car stack)
4828 stack (cdr stack))
4829 (setq count (+ count (cdr elt))))
4831 ;; Have we found enough yet?
4832 (cond
4833 ((>= count how-far-back)
4834 (+ (car elt) (- count how-far-back)))
4835 ((eq base (point-min))
4836 (point-min))
4838 (c-determine-limit (- how-far-back count) base try-size))))))
4840 (defun c-determine-+ve-limit (how-far &optional start-pos)
4841 ;; Return a buffer position about HOW-FAR non-literal characters forward
4842 ;; from START-POS (default point), which must not be inside a literal.
4843 (save-excursion
4844 (let ((pos (or start-pos (point)))
4845 (count how-far)
4846 (s (parse-partial-sexp (point) (point)))) ; null state
4847 (while (and (not (eobp))
4848 (> count 0))
4849 ;; Scan over counted characters.
4850 (setq s (parse-partial-sexp
4852 (min (+ pos count) (point-max))
4853 nil ; target-depth
4854 nil ; stop-before
4855 s ; state
4856 'syntax-table)) ; stop-comment
4857 (setq count (- count (- (point) pos) 1)
4858 pos (point))
4859 ;; Scan over literal characters.
4860 (if (nth 8 s)
4861 (setq s (parse-partial-sexp
4863 (point-max)
4864 nil ; target-depth
4865 nil ; stop-before
4866 s ; state
4867 'syntax-table) ; stop-comment
4868 pos (point))))
4869 (point))))
4872 ;; `c-find-decl-spots' and accompanying stuff.
4874 ;; Variables used in `c-find-decl-spots' to cache the search done for
4875 ;; the first declaration in the last call. When that function starts,
4876 ;; it needs to back up over syntactic whitespace to look at the last
4877 ;; token before the region being searched. That can sometimes cause
4878 ;; moves back and forth over a quite large region of comments and
4879 ;; macros, which would be repeated for each changed character when
4880 ;; we're called during fontification, since font-lock refontifies the
4881 ;; current line for each change. Thus it's worthwhile to cache the
4882 ;; first match.
4884 ;; `c-find-decl-syntactic-pos' is a syntactically relevant position in
4885 ;; the syntactic whitespace less or equal to some start position.
4886 ;; There's no cached value if it's nil.
4888 ;; `c-find-decl-match-pos' is the match position if
4889 ;; `c-find-decl-prefix-search' matched before the syntactic whitespace
4890 ;; at `c-find-decl-syntactic-pos', or nil if there's no such match.
4891 (defvar c-find-decl-syntactic-pos nil)
4892 (make-variable-buffer-local 'c-find-decl-syntactic-pos)
4893 (defvar c-find-decl-match-pos nil)
4894 (make-variable-buffer-local 'c-find-decl-match-pos)
4896 (defsubst c-invalidate-find-decl-cache (change-min-pos)
4897 (and c-find-decl-syntactic-pos
4898 (< change-min-pos c-find-decl-syntactic-pos)
4899 (setq c-find-decl-syntactic-pos nil)))
4901 ; (defface c-debug-decl-spot-face
4902 ; '((t (:background "Turquoise")))
4903 ; "Debug face to mark the spots where `c-find-decl-spots' stopped.")
4904 ; (defface c-debug-decl-sws-face
4905 ; '((t (:background "Khaki")))
4906 ; "Debug face to mark the syntactic whitespace between the declaration
4907 ; spots and the preceding token end.")
4909 (defmacro c-debug-put-decl-spot-faces (match-pos decl-pos)
4910 (when (facep 'c-debug-decl-spot-face)
4911 `(c-save-buffer-state ((match-pos ,match-pos) (decl-pos ,decl-pos))
4912 (c-debug-add-face (max match-pos (point-min)) decl-pos
4913 'c-debug-decl-sws-face)
4914 (c-debug-add-face decl-pos (min (1+ decl-pos) (point-max))
4915 'c-debug-decl-spot-face))))
4916 (defmacro c-debug-remove-decl-spot-faces (beg end)
4917 (when (facep 'c-debug-decl-spot-face)
4918 `(c-save-buffer-state ()
4919 (c-debug-remove-face ,beg ,end 'c-debug-decl-spot-face)
4920 (c-debug-remove-face ,beg ,end 'c-debug-decl-sws-face))))
4922 (defmacro c-find-decl-prefix-search ()
4923 ;; Macro used inside `c-find-decl-spots'. It ought to be a defun,
4924 ;; but it contains lots of free variables that refer to things
4925 ;; inside `c-find-decl-spots'. The point is left at `cfd-match-pos'
4926 ;; if there is a match, otherwise at `cfd-limit'.
4928 ;; The macro moves point forward to the next putative start of a declaration
4929 ;; or cfd-limit. This decl start is the next token after a "declaration
4930 ;; prefix". The declaration prefix is the earlier of `cfd-prop-match' and
4931 ;; `cfd-re-match'. `cfd-match-pos' is set to the decl prefix.
4933 ;; This macro might do hidden buffer changes.
4935 '(progn
4936 ;; Find the next property match position if we haven't got one already.
4937 (unless cfd-prop-match
4938 (save-excursion
4939 (while (progn
4940 (goto-char (c-next-single-property-change
4941 (point) 'c-type nil cfd-limit))
4942 (and (< (point) cfd-limit)
4943 (not (eq (c-get-char-property (1- (point)) 'c-type)
4944 'c-decl-end)))))
4945 (setq cfd-prop-match (point))))
4947 ;; Find the next `c-decl-prefix-or-start-re' match if we haven't
4948 ;; got one already.
4949 (unless cfd-re-match
4951 (if (> cfd-re-match-end (point))
4952 (goto-char cfd-re-match-end))
4954 ;; Each time round, the next `while' moves forward over a pseudo match
4955 ;; of `c-decl-prefix-or-start-re' which is either inside a literal, or
4956 ;; is a ":" not preceded by "public", etc.. `cfd-re-match' and
4957 ;; `cfd-re-match-end' get set.
4958 (while
4959 (progn
4960 (setq cfd-re-match-end (re-search-forward c-decl-prefix-or-start-re
4961 cfd-limit 'move))
4962 (cond
4963 ((null cfd-re-match-end)
4964 ;; No match. Finish up and exit the loop.
4965 (setq cfd-re-match cfd-limit)
4966 nil)
4967 ((c-got-face-at
4968 (if (setq cfd-re-match (match-end 1))
4969 ;; Matched the end of a token preceding a decl spot.
4970 (progn
4971 (goto-char cfd-re-match)
4972 (1- cfd-re-match))
4973 ;; Matched a token that start a decl spot.
4974 (goto-char (match-beginning 0))
4975 (point))
4976 c-literal-faces)
4977 ;; Pseudo match inside a comment or string literal. Skip out
4978 ;; of comments and string literals.
4979 (while (progn
4980 (goto-char (c-next-single-property-change
4981 (point) 'face nil cfd-limit))
4982 (and (< (point) cfd-limit)
4983 (c-got-face-at (point) c-literal-faces))))
4984 t) ; Continue the loop over pseudo matches.
4985 ((and (match-string 1)
4986 (string= (match-string 1) ":")
4987 (save-excursion
4988 (or (/= (c-backward-token-2 2) 0) ; no search limit. :-(
4989 (not (looking-at c-decl-start-colon-kwd-re)))))
4990 ;; Found a ":" which isn't part of "public:", etc.
4992 (t nil)))) ;; Found a real match. Exit the pseudo-match loop.
4994 ;; If our match was at the decl start, we have to back up over the
4995 ;; preceding syntactic ws to set `cfd-match-pos' and to catch
4996 ;; any decl spots in the syntactic ws.
4997 (unless cfd-re-match
4998 (c-backward-syntactic-ws)
4999 (setq cfd-re-match (point))))
5001 ;; Choose whichever match is closer to the start.
5002 (if (< cfd-re-match cfd-prop-match)
5003 (setq cfd-match-pos cfd-re-match
5004 cfd-re-match nil)
5005 (setq cfd-match-pos cfd-prop-match
5006 cfd-prop-match nil))
5008 (goto-char cfd-match-pos)
5010 (when (< cfd-match-pos cfd-limit)
5011 ;; Skip forward past comments only so we don't skip macros.
5012 (c-forward-comments)
5013 ;; Set the position to continue at. We can avoid going over
5014 ;; the comments skipped above a second time, but it's possible
5015 ;; that the comment skipping has taken us past `cfd-prop-match'
5016 ;; since the property might be used inside comments.
5017 (setq cfd-continue-pos (if cfd-prop-match
5018 (min cfd-prop-match (point))
5019 (point))))))
5021 (defun c-find-decl-spots (cfd-limit cfd-decl-re cfd-face-checklist cfd-fun)
5022 ;; Call CFD-FUN for each possible spot for a declaration, cast or
5023 ;; label from the point to CFD-LIMIT.
5025 ;; CFD-FUN is called with point at the start of the spot. It's passed two
5026 ;; arguments: The first is the end position of the token preceding the spot,
5027 ;; or 0 for the implicit match at bob. The second is a flag that is t when
5028 ;; the match is inside a macro. Point should be moved forward by at least
5029 ;; one token.
5031 ;; If CFD-FUN adds `c-decl-end' properties somewhere below the current spot,
5032 ;; it should return non-nil to ensure that the next search will find them.
5034 ;; Such a spot is:
5035 ;; o The first token after bob.
5036 ;; o The first token after the end of submatch 1 in
5037 ;; `c-decl-prefix-or-start-re' when that submatch matches. This
5038 ;; submatch is typically a (L or R) brace or paren, a ;, or a ,.
5039 ;; o The start of each `c-decl-prefix-or-start-re' match when
5040 ;; submatch 1 doesn't match. This is, for example, the keyword
5041 ;; "class" in Pike.
5042 ;; o The start of a previously recognized declaration; "recognized"
5043 ;; means that the last char of the previous token has a `c-type'
5044 ;; text property with the value `c-decl-end'; this only holds
5045 ;; when `c-type-decl-end-used' is set.
5047 ;; Only a spot that match CFD-DECL-RE and whose face is in the
5048 ;; CFD-FACE-CHECKLIST list causes CFD-FUN to be called. The face
5049 ;; check is disabled if CFD-FACE-CHECKLIST is nil.
5051 ;; If the match is inside a macro then the buffer is narrowed to the
5052 ;; end of it, so that CFD-FUN can investigate the following tokens
5053 ;; without matching something that begins inside a macro and ends
5054 ;; outside it. It's to avoid this work that the CFD-DECL-RE and
5055 ;; CFD-FACE-CHECKLIST checks exist.
5057 ;; The spots are visited approximately in order from top to bottom.
5058 ;; It's however the positions where `c-decl-prefix-or-start-re'
5059 ;; matches and where `c-decl-end' properties are found that are in
5060 ;; order. Since the spots often are at the following token, they
5061 ;; might be visited out of order insofar as more spots are reported
5062 ;; later on within the syntactic whitespace between the match
5063 ;; positions and their spots.
5065 ;; It's assumed that comments and strings are fontified in the
5066 ;; searched range.
5068 ;; This is mainly used in fontification, and so has an elaborate
5069 ;; cache to handle repeated calls from the same start position; see
5070 ;; the variables above.
5072 ;; All variables in this function begin with `cfd-' to avoid name
5073 ;; collision with the (dynamically bound) variables used in CFD-FUN.
5075 ;; This function might do hidden buffer changes.
5077 (let ((cfd-start-pos (point)) ; never changed
5078 (cfd-buffer-end (point-max))
5079 ;; The end of the token preceding the decl spot last found
5080 ;; with `c-decl-prefix-or-start-re'. `cfd-limit' if there's
5081 ;; no match.
5082 cfd-re-match
5083 ;; The end position of the last `c-decl-prefix-or-start-re'
5084 ;; match. If this is greater than `cfd-continue-pos', the
5085 ;; next regexp search is started here instead.
5086 (cfd-re-match-end (point-min))
5087 ;; The end of the last `c-decl-end' found by
5088 ;; `c-find-decl-prefix-search'. `cfd-limit' if there's no
5089 ;; match. If searching for the property isn't needed then we
5090 ;; disable it by setting it to `cfd-limit' directly.
5091 (cfd-prop-match (unless c-type-decl-end-used cfd-limit))
5092 ;; The end of the token preceding the decl spot last found by
5093 ;; `c-find-decl-prefix-search'. 0 for the implicit match at
5094 ;; bob. `cfd-limit' if there's no match. In other words,
5095 ;; this is the minimum of `cfd-re-match' and `cfd-prop-match'.
5096 (cfd-match-pos cfd-limit)
5097 ;; The position to continue searching at.
5098 cfd-continue-pos
5099 ;; The position of the last "real" token we've stopped at.
5100 ;; This can be greater than `cfd-continue-pos' when we get
5101 ;; hits inside macros or at `c-decl-end' positions inside
5102 ;; comments.
5103 (cfd-token-pos 0)
5104 ;; The end position of the last entered macro.
5105 (cfd-macro-end 0))
5107 ;; Initialize by finding a syntactically relevant start position
5108 ;; before the point, and do the first `c-decl-prefix-or-start-re'
5109 ;; search unless we're at bob.
5111 (let (start-in-literal start-in-macro syntactic-pos)
5112 ;; Must back up a bit since we look for the end of the previous
5113 ;; statement or declaration, which is earlier than the first
5114 ;; returned match.
5116 ;; This `cond' moves back over any literals or macros. It has special
5117 ;; handling for when the region being searched is entirely within a
5118 ;; macro. It sets `cfd-continue-pos' (unless we've reached
5119 ;; `cfd-limit').
5120 (cond
5121 ;; First we need to move to a syntactically relevant position.
5122 ;; Begin by backing out of comment or string literals.
5124 ;; This arm of the cond actually triggers if we're in a literal,
5125 ;; and cfd-limit is at most at BONL.
5126 ((and
5127 ;; This arm of the `and' moves backwards out of a literal when
5128 ;; the face at point is a literal face. In this case, its value
5129 ;; is always non-nil.
5130 (when (c-got-face-at (point) c-literal-faces)
5131 ;; Try to use the faces to back up to the start of the
5132 ;; literal. FIXME: What if the point is on a declaration
5133 ;; inside a comment?
5134 (while (and (not (bobp))
5135 (c-got-face-at (1- (point)) c-literal-faces))
5136 (goto-char (previous-single-property-change
5137 (point) 'face nil (point-min))))
5139 ;; XEmacs doesn't fontify the quotes surrounding string
5140 ;; literals.
5141 (and (featurep 'xemacs)
5142 (eq (get-text-property (point) 'face)
5143 'font-lock-string-face)
5144 (not (bobp))
5145 (progn (backward-char)
5146 (not (looking-at c-string-limit-regexp)))
5147 (forward-char))
5149 ;; Don't trust the literal to contain only literal faces
5150 ;; (the font lock package might not have fontified the
5151 ;; start of it at all, for instance) so check that we have
5152 ;; arrived at something that looks like a start or else
5153 ;; resort to `c-literal-limits'.
5154 (unless (looking-at c-literal-start-regexp)
5155 (let ((range (c-literal-limits)))
5156 (if range (goto-char (car range)))))
5158 (setq start-in-literal (point))) ; end of `and' arm.
5160 ;; The start is in a literal. If the limit is in the same
5161 ;; one we don't have to find a syntactic position etc. We
5162 ;; only check that if the limit is at or before bonl to save
5163 ;; time; it covers the by far most common case when font-lock
5164 ;; refontifies the current line only.
5165 (<= cfd-limit (c-point 'bonl cfd-start-pos))
5166 (save-excursion
5167 (goto-char cfd-start-pos)
5168 (while (progn
5169 (goto-char (c-next-single-property-change
5170 (point) 'face nil cfd-limit))
5171 (and (< (point) cfd-limit)
5172 (c-got-face-at (point) c-literal-faces))))
5173 (= (point) cfd-limit))) ; end of `cond' arm condition
5175 ;; Completely inside a literal. Set up variables to trig the
5176 ;; (< cfd-continue-pos cfd-start-pos) case below and it'll
5177 ;; find a suitable start position.
5178 (setq cfd-continue-pos start-in-literal)) ; end of `cond' arm
5180 ;; Check if the region might be completely inside a macro, to
5181 ;; optimize that like the completely-inside-literal above.
5182 ((save-excursion
5183 (and (= (forward-line 1) 0)
5184 (bolp) ; forward-line has funny behavior at eob.
5185 (>= (point) cfd-limit)
5186 (progn (backward-char)
5187 (eq (char-before) ?\\))))
5188 ;; (Maybe) completely inside a macro. Only need to trig the
5189 ;; (< cfd-continue-pos cfd-start-pos) case below to make it
5190 ;; set things up.
5191 (setq cfd-continue-pos (1- cfd-start-pos)
5192 start-in-macro t))
5194 ;; The default arm of the `cond' moves back over any macro we're in
5195 ;; and over any syntactic WS. It sets `c-find-decl-syntactic-pos'.
5197 ;; Back out of any macro so we don't miss any declaration
5198 ;; that could follow after it.
5199 (when (c-beginning-of-macro)
5200 (setq start-in-macro t))
5202 ;; Now we're at a proper syntactically relevant position so we
5203 ;; can use the cache. But first clear it if it applied
5204 ;; further down.
5205 (c-invalidate-find-decl-cache cfd-start-pos)
5207 (setq syntactic-pos (point))
5208 (unless (eq syntactic-pos c-find-decl-syntactic-pos)
5209 ;; Don't have to do this if the cache is relevant here,
5210 ;; typically if the same line is refontified again. If
5211 ;; we're just some syntactic whitespace further down we can
5212 ;; still use the cache to limit the skipping.
5213 (c-backward-syntactic-ws c-find-decl-syntactic-pos))
5215 ;; If we hit `c-find-decl-syntactic-pos' and
5216 ;; `c-find-decl-match-pos' is set then we install the cached
5217 ;; values. If we hit `c-find-decl-syntactic-pos' and
5218 ;; `c-find-decl-match-pos' is nil then we know there's no decl
5219 ;; prefix in the whitespace before `c-find-decl-syntactic-pos'
5220 ;; and so we can continue the search from this point. If we
5221 ;; didn't hit `c-find-decl-syntactic-pos' then we're now in
5222 ;; the right spot to begin searching anyway.
5223 (if (and (eq (point) c-find-decl-syntactic-pos)
5224 c-find-decl-match-pos)
5225 (setq cfd-match-pos c-find-decl-match-pos
5226 cfd-continue-pos syntactic-pos)
5228 (setq c-find-decl-syntactic-pos syntactic-pos)
5230 (when (if (bobp)
5231 ;; Always consider bob a match to get the first
5232 ;; declaration in the file. Do this separately instead of
5233 ;; letting `c-decl-prefix-or-start-re' match bob, so that
5234 ;; regexp always can consume at least one character to
5235 ;; ensure that we won't get stuck in an infinite loop.
5236 (setq cfd-re-match 0)
5237 (backward-char)
5238 (c-beginning-of-current-token)
5239 (< (point) cfd-limit))
5240 ;; Do an initial search now. In the bob case above it's
5241 ;; only done to search for a `c-decl-end' spot.
5242 (c-find-decl-prefix-search)) ; sets cfd-continue-pos
5244 (setq c-find-decl-match-pos (and (< cfd-match-pos cfd-start-pos)
5245 cfd-match-pos))))) ; end of `cond'
5247 ;; Advance `cfd-continue-pos' if it's before the start position.
5248 ;; The closest continue position that might have effect at or
5249 ;; after the start depends on what we started in. This also
5250 ;; finds a suitable start position in the special cases when the
5251 ;; region is completely within a literal or macro.
5252 (when (and cfd-continue-pos (< cfd-continue-pos cfd-start-pos))
5254 (cond
5255 (start-in-macro
5256 ;; If we're in a macro then it's the closest preceding token
5257 ;; in the macro. Check this before `start-in-literal',
5258 ;; since if we're inside a literal in a macro, the preceding
5259 ;; token is earlier than any `c-decl-end' spot inside the
5260 ;; literal (comment).
5261 (goto-char (or start-in-literal cfd-start-pos))
5262 ;; The only syntactic ws in macros are comments.
5263 (c-backward-comments)
5264 (backward-char)
5265 (c-beginning-of-current-token))
5267 (start-in-literal
5268 ;; If we're in a comment it can only be the closest
5269 ;; preceding `c-decl-end' position within that comment, if
5270 ;; any. Go back to the beginning of such a property so that
5271 ;; `c-find-decl-prefix-search' will find the end of it.
5272 ;; (Can't stop at the end and install it directly on
5273 ;; `cfd-prop-match' since that variable might be cleared
5274 ;; after `cfd-fun' below.)
5276 ;; Note that if the literal is a string then the property
5277 ;; search will simply skip to the beginning of it right
5278 ;; away.
5279 (if (not c-type-decl-end-used)
5280 (goto-char start-in-literal)
5281 (goto-char cfd-start-pos)
5282 (while (progn
5283 (goto-char (previous-single-property-change
5284 (point) 'c-type nil start-in-literal))
5285 (and (> (point) start-in-literal)
5286 (not (eq (c-get-char-property (point) 'c-type)
5287 'c-decl-end))))))
5289 (when (= (point) start-in-literal)
5290 ;; Didn't find any property inside the comment, so we can
5291 ;; skip it entirely. (This won't skip past a string, but
5292 ;; that'll be handled quickly by the next
5293 ;; `c-find-decl-prefix-search' anyway.)
5294 (c-forward-single-comment)
5295 (if (> (point) cfd-limit)
5296 (goto-char cfd-limit))))
5299 ;; If we started in normal code, the only match that might
5300 ;; apply before the start is what we already got in
5301 ;; `cfd-match-pos' so we can continue at the start position.
5302 ;; (Note that we don't get here if the first match is below
5303 ;; it.)
5304 (goto-char cfd-start-pos))) ; end of `cond'
5306 ;; Delete found matches if they are before our new continue
5307 ;; position, so that `c-find-decl-prefix-search' won't back up
5308 ;; to them later on.
5309 (setq cfd-continue-pos (point))
5310 (when (and cfd-re-match (< cfd-re-match cfd-continue-pos))
5311 (setq cfd-re-match nil))
5312 (when (and cfd-prop-match (< cfd-prop-match cfd-continue-pos))
5313 (setq cfd-prop-match nil))) ; end of `when'
5315 (if syntactic-pos
5316 ;; This is the normal case and we got a proper syntactic
5317 ;; position. If there's a match then it's always outside
5318 ;; macros and comments, so advance to the next token and set
5319 ;; `cfd-token-pos'. The loop below will later go back using
5320 ;; `cfd-continue-pos' to fix declarations inside the
5321 ;; syntactic ws.
5322 (when (and cfd-match-pos (< cfd-match-pos syntactic-pos))
5323 (goto-char syntactic-pos)
5324 (c-forward-syntactic-ws)
5325 (and cfd-continue-pos
5326 (< cfd-continue-pos (point))
5327 (setq cfd-token-pos (point))))
5329 ;; Have one of the special cases when the region is completely
5330 ;; within a literal or macro. `cfd-continue-pos' is set to a
5331 ;; good start position for the search, so do it.
5332 (c-find-decl-prefix-search)))
5334 ;; Now loop, one decl spot per iteration. We already have the first
5335 ;; match in `cfd-match-pos'.
5336 (while (progn
5337 ;; Go forward over "false matches", one per iteration.
5338 (while (and
5339 (< cfd-match-pos cfd-limit)
5342 ;; Kludge to filter out matches on the "<" that
5343 ;; aren't open parens, for the sake of languages
5344 ;; that got `c-recognize-<>-arglists' set.
5345 (and (eq (char-before cfd-match-pos) ?<)
5346 (not (c-get-char-property (1- cfd-match-pos)
5347 'syntax-table)))
5349 ;; If `cfd-continue-pos' is less or equal to
5350 ;; `cfd-token-pos', we've got a hit inside a macro
5351 ;; that's in the syntactic whitespace before the last
5352 ;; "real" declaration we've checked. If they're equal
5353 ;; we've arrived at the declaration a second time, so
5354 ;; there's nothing to do.
5355 (= cfd-continue-pos cfd-token-pos)
5357 (progn
5358 ;; If `cfd-continue-pos' is less than `cfd-token-pos'
5359 ;; we're still searching for declarations embedded in
5360 ;; the syntactic whitespace. In that case we need
5361 ;; only to skip comments and not macros, since they
5362 ;; can't be nested, and that's already been done in
5363 ;; `c-find-decl-prefix-search'.
5364 (when (> cfd-continue-pos cfd-token-pos)
5365 (c-forward-syntactic-ws)
5366 (setq cfd-token-pos (point)))
5368 ;; Continue if the following token fails the
5369 ;; CFD-DECL-RE and CFD-FACE-CHECKLIST checks.
5370 (when (or (>= (point) cfd-limit)
5371 (not (looking-at cfd-decl-re))
5372 (and cfd-face-checklist
5373 (not (c-got-face-at
5374 (point) cfd-face-checklist))))
5375 (goto-char cfd-continue-pos)
5376 t)))
5378 (< (point) cfd-limit)) ; end of "false matches" condition
5379 (c-find-decl-prefix-search)) ; end of "false matches" loop
5381 (< (point) cfd-limit)) ; end of condition for "decl-spot" while
5383 (when (and
5384 (>= (point) cfd-start-pos)
5386 (progn
5387 ;; Narrow to the end of the macro if we got a hit inside
5388 ;; one, to avoid recognizing things that start inside the
5389 ;; macro and end outside it.
5390 (when (> cfd-match-pos cfd-macro-end)
5391 ;; Not in the same macro as in the previous round.
5392 (save-excursion
5393 (goto-char cfd-match-pos)
5394 (setq cfd-macro-end
5395 (if (save-excursion (and (c-beginning-of-macro)
5396 (< (point) cfd-match-pos)))
5397 (progn (c-end-of-macro)
5398 (point))
5399 0))))
5401 (if (zerop cfd-macro-end)
5403 (if (> cfd-macro-end (point))
5404 (progn (narrow-to-region (point-min) cfd-macro-end)
5406 ;; The matched token was the last thing in the macro,
5407 ;; so the whole match is bogus.
5408 (setq cfd-macro-end 0)
5409 nil)))) ; end of when condition
5411 (c-debug-put-decl-spot-faces cfd-match-pos (point))
5412 (if (funcall cfd-fun cfd-match-pos (/= cfd-macro-end 0))
5413 (setq cfd-prop-match nil))
5415 (when (/= cfd-macro-end 0)
5416 ;; Restore limits if we did macro narrowing above.
5417 (narrow-to-region (point-min) cfd-buffer-end)))
5419 (goto-char cfd-continue-pos)
5420 (if (= cfd-continue-pos cfd-limit)
5421 (setq cfd-match-pos cfd-limit)
5422 (c-find-decl-prefix-search))))) ; Moves point, sets cfd-continue-pos,
5423 ; cfd-match-pos, etc.
5426 ;; A cache for found types.
5428 ;; Buffer local variable that contains an obarray with the types we've
5429 ;; found. If a declaration is recognized somewhere we record the
5430 ;; fully qualified identifier in it to recognize it as a type
5431 ;; elsewhere in the file too. This is not accurate since we do not
5432 ;; bother with the scoping rules of the languages, but in practice the
5433 ;; same name is seldom used as both a type and something else in a
5434 ;; file, and we only use this as a last resort in ambiguous cases (see
5435 ;; `c-forward-decl-or-cast-1').
5437 ;; Not every type need be in this cache. However, things which have
5438 ;; ceased to be types must be removed from it.
5440 ;; Template types in C++ are added here too but with the template
5441 ;; arglist replaced with "<>" in references or "<" for the one in the
5442 ;; primary type. E.g. the type "Foo<A,B>::Bar<C>" is stored as
5443 ;; "Foo<>::Bar<". This avoids storing very long strings (since C++
5444 ;; template specs can be fairly sized programs in themselves) and
5445 ;; improves the hit ratio (it's a type regardless of the template
5446 ;; args; it's just not the same type, but we're only interested in
5447 ;; recognizing types, not telling distinct types apart). Note that
5448 ;; template types in references are added here too; from the example
5449 ;; above there will also be an entry "Foo<".
5450 (defvar c-found-types nil)
5451 (make-variable-buffer-local 'c-found-types)
5453 (defsubst c-clear-found-types ()
5454 ;; Clears `c-found-types'.
5455 (setq c-found-types (make-vector 53 0)))
5457 (defun c-add-type (from to)
5458 ;; Add the given region as a type in `c-found-types'. If the region
5459 ;; doesn't match an existing type but there is a type which is equal
5460 ;; to the given one except that the last character is missing, then
5461 ;; the shorter type is removed. That's done to avoid adding all
5462 ;; prefixes of a type as it's being entered and font locked. This
5463 ;; doesn't cover cases like when characters are removed from a type
5464 ;; or added in the middle. We'd need the position of point when the
5465 ;; font locking is invoked to solve this well.
5467 ;; This function might do hidden buffer changes.
5468 (let ((type (c-syntactic-content from to c-recognize-<>-arglists)))
5469 (unless (intern-soft type c-found-types)
5470 (unintern (substring type 0 -1) c-found-types)
5471 (intern type c-found-types))))
5473 (defun c-unfind-type (name)
5474 ;; Remove the "NAME" from c-found-types, if present.
5475 (unintern name c-found-types))
5477 (defsubst c-check-type (from to)
5478 ;; Return non-nil if the given region contains a type in
5479 ;; `c-found-types'.
5481 ;; This function might do hidden buffer changes.
5482 (intern-soft (c-syntactic-content from to c-recognize-<>-arglists)
5483 c-found-types))
5485 (defun c-list-found-types ()
5486 ;; Return all the types in `c-found-types' as a sorted list of
5487 ;; strings.
5488 (let (type-list)
5489 (mapatoms (lambda (type)
5490 (setq type-list (cons (symbol-name type)
5491 type-list)))
5492 c-found-types)
5493 (sort type-list 'string-lessp)))
5495 ;; Shut up the byte compiler.
5496 (defvar c-maybe-stale-found-type)
5498 (defun c-trim-found-types (beg end old-len)
5499 ;; An after change function which, in conjunction with the info in
5500 ;; c-maybe-stale-found-type (set in c-before-change), removes a type
5501 ;; from `c-found-types', should this type have become stale. For
5502 ;; example, this happens to "foo" when "foo \n bar();" becomes
5503 ;; "foo(); \n bar();". Such stale types, if not removed, foul up
5504 ;; the fontification.
5506 ;; Have we, perhaps, added non-ws characters to the front/back of a found
5507 ;; type?
5508 (when (> end beg)
5509 (save-excursion
5510 (when (< end (point-max))
5511 (goto-char end)
5512 (if (and (c-beginning-of-current-token) ; only moves when we started in the middle
5513 (progn (goto-char end)
5514 (c-end-of-current-token)))
5515 (c-unfind-type (buffer-substring-no-properties
5516 end (point)))))
5517 (when (> beg (point-min))
5518 (goto-char beg)
5519 (if (and (c-end-of-current-token) ; only moves when we started in the middle
5520 (progn (goto-char beg)
5521 (c-beginning-of-current-token)))
5522 (c-unfind-type (buffer-substring-no-properties
5523 (point) beg))))))
5525 (if c-maybe-stale-found-type ; e.g. (c-decl-id-start "foo" 97 107 " (* ooka) " "o")
5526 (cond
5527 ;; Changing the amount of (already existing) whitespace - don't do anything.
5528 ((and (c-partial-ws-p beg end)
5529 (or (= beg end) ; removal of WS
5530 (string-match "^[ \t\n\r\f\v]*$" (nth 5 c-maybe-stale-found-type)))))
5532 ;; The syntactic relationship which defined a "found type" has been
5533 ;; destroyed.
5534 ((eq (car c-maybe-stale-found-type) 'c-decl-id-start)
5535 (c-unfind-type (cadr c-maybe-stale-found-type)))
5536 ;; ((eq (car c-maybe-stale-found-type) 'c-decl-type-start) FIXME!!!
5540 ;; Setting and removing syntax properties on < and > in languages (C++
5541 ;; and Java) where they can be template/generic delimiters as well as
5542 ;; their normal meaning of "less/greater than".
5544 ;; Normally, < and > have syntax 'punctuation'. When they are found to
5545 ;; be delimiters, they are marked as such with the category properties
5546 ;; c-<-as-paren-syntax, c->-as-paren-syntax respectively.
5548 ;; STRATEGY:
5550 ;; It is impossible to determine with certainty whether a <..> pair in
5551 ;; C++ is two comparison operators or is template delimiters, unless
5552 ;; one duplicates a lot of a C++ compiler. For example, the following
5553 ;; code fragment:
5555 ;; foo (a < b, c > d) ;
5557 ;; could be a function call with two integer parameters (each a
5558 ;; relational expression), or it could be a constructor for class foo
5559 ;; taking one parameter d of templated type "a < b, c >". They are
5560 ;; somewhat easier to distinguish in Java.
5562 ;; The strategy now (2010-01) adopted is to mark and unmark < and
5563 ;; > IN MATCHING PAIRS ONLY. [Previously, they were marked
5564 ;; individually when their context so indicated. This gave rise to
5565 ;; intractable problems when one of a matching pair was deleted, or
5566 ;; pulled into a literal.]
5568 ;; At each buffer change, the syntax-table properties are removed in a
5569 ;; before-change function and reapplied, when needed, in an
5570 ;; after-change function. It is far more important that the
5571 ;; properties get removed when they they are spurious than that they
5572 ;; be present when wanted.
5573 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
5574 (defun c-clear-<-pair-props (&optional pos)
5575 ;; POS (default point) is at a < character. If it is marked with
5576 ;; open paren syntax-table text property, remove the property,
5577 ;; together with the close paren property on the matching > (if
5578 ;; any).
5579 (save-excursion
5580 (if pos
5581 (goto-char pos)
5582 (setq pos (point)))
5583 (when (equal (c-get-char-property (point) 'syntax-table)
5584 c-<-as-paren-syntax)
5585 (with-syntax-table c-no-parens-syntax-table ; ignore unbalanced [,{,(,..
5586 (c-go-list-forward))
5587 (when (equal (c-get-char-property (1- (point)) 'syntax-table)
5588 c->-as-paren-syntax) ; should always be true.
5589 (c-unmark-<->-as-paren (1- (point))))
5590 (c-unmark-<->-as-paren pos))))
5592 (defun c-clear->-pair-props (&optional pos)
5593 ;; POS (default point) is at a > character. If it is marked with
5594 ;; close paren syntax-table property, remove the property, together
5595 ;; with the open paren property on the matching < (if any).
5596 (save-excursion
5597 (if pos
5598 (goto-char pos)
5599 (setq pos (point)))
5600 (when (equal (c-get-char-property (point) 'syntax-table)
5601 c->-as-paren-syntax)
5602 (with-syntax-table c-no-parens-syntax-table ; ignore unbalanced [,{,(,..
5603 (c-go-up-list-backward))
5604 (when (equal (c-get-char-property (point) 'syntax-table)
5605 c-<-as-paren-syntax) ; should always be true.
5606 (c-unmark-<->-as-paren (point)))
5607 (c-unmark-<->-as-paren pos))))
5609 (defun c-clear-<>-pair-props (&optional pos)
5610 ;; POS (default point) is at a < or > character. If it has an
5611 ;; open/close paren syntax-table property, remove this property both
5612 ;; from the current character and its partner (which will also be
5613 ;; thusly marked).
5614 (cond
5615 ((eq (char-after) ?\<)
5616 (c-clear-<-pair-props pos))
5617 ((eq (char-after) ?\>)
5618 (c-clear->-pair-props pos))
5619 (t (c-benign-error
5620 "c-clear-<>-pair-props called from wrong position"))))
5622 (defun c-clear-<-pair-props-if-match-after (lim &optional pos)
5623 ;; POS (default point) is at a < character. If it is both marked
5624 ;; with open/close paren syntax-table property, and has a matching >
5625 ;; (also marked) which is after LIM, remove the property both from
5626 ;; the current > and its partner. Return t when this happens, nil
5627 ;; when it doesn't.
5628 (save-excursion
5629 (if pos
5630 (goto-char pos)
5631 (setq pos (point)))
5632 (when (equal (c-get-char-property (point) 'syntax-table)
5633 c-<-as-paren-syntax)
5634 (with-syntax-table c-no-parens-syntax-table ; ignore unbalanced [,{,(,..
5635 (c-go-list-forward))
5636 (when (and (>= (point) lim)
5637 (equal (c-get-char-property (1- (point)) 'syntax-table)
5638 c->-as-paren-syntax)) ; should always be true.
5639 (c-unmark-<->-as-paren (1- (point)))
5640 (c-unmark-<->-as-paren pos))
5641 t)))
5643 (defun c-clear->-pair-props-if-match-before (lim &optional pos)
5644 ;; POS (default point) is at a > character. If it is both marked
5645 ;; with open/close paren syntax-table property, and has a matching <
5646 ;; (also marked) which is before LIM, remove the property both from
5647 ;; the current < and its partner. Return t when this happens, nil
5648 ;; when it doesn't.
5649 (save-excursion
5650 (if pos
5651 (goto-char pos)
5652 (setq pos (point)))
5653 (when (equal (c-get-char-property (point) 'syntax-table)
5654 c->-as-paren-syntax)
5655 (with-syntax-table c-no-parens-syntax-table ; ignore unbalanced [,{,(,..
5656 (c-go-up-list-backward))
5657 (when (and (<= (point) lim)
5658 (equal (c-get-char-property (point) 'syntax-table)
5659 c-<-as-paren-syntax)) ; should always be true.
5660 (c-unmark-<->-as-paren (point))
5661 (c-unmark-<->-as-paren pos))
5662 t)))
5664 ;; Set by c-common-init in cc-mode.el.
5665 (defvar c-new-BEG)
5666 (defvar c-new-END)
5667 ;; Set by c-after-change in cc-mode.el.
5668 (defvar c-old-BEG)
5669 (defvar c-old-END)
5671 (defun c-before-change-check-<>-operators (beg end)
5672 ;; Unmark certain pairs of "< .... >" which are currently marked as
5673 ;; template/generic delimiters. (This marking is via syntax-table text
5674 ;; properties), and expand the (c-new-BEG c-new-END) region to include all
5675 ;; unmarked < and > operators within the certain bounds (see below).
5677 ;; These pairs are those which are in the current "statement" (i.e.,
5678 ;; the region between the {, }, or ; before BEG and the one after
5679 ;; END), and which enclose any part of the interval (BEG END).
5681 ;; Note that in C++ (?and Java), template/generic parens cannot
5682 ;; enclose a brace or semicolon, so we use these as bounds on the
5683 ;; region we must work on.
5685 ;; This function is called from before-change-functions (via
5686 ;; c-get-state-before-change-functions). Thus the buffer is widened,
5687 ;; and point is undefined, both at entry and exit.
5689 ;; FIXME!!! This routine ignores the possibility of macros entirely.
5690 ;; 2010-01-29.
5691 (save-excursion
5692 (c-save-buffer-state
5693 ((beg-lit-limits (progn (goto-char beg) (c-literal-limits)))
5694 (end-lit-limits (progn (goto-char end) (c-literal-limits)))
5695 new-beg new-end beg-limit end-limit)
5696 ;; Locate the earliest < after the barrier before the changed region,
5697 ;; which isn't already marked as a paren.
5698 (goto-char (if beg-lit-limits (car beg-lit-limits) beg))
5699 (setq beg-limit (c-determine-limit 512))
5701 ;; Remove the syntax-table/category properties from each pertinent <...>
5702 ;; pair. Firstly, the ones with the < before beg and > after beg....
5703 (while (progn (c-syntactic-skip-backward "^;{}<" beg-limit)
5704 (eq (char-before) ?<))
5705 (c-backward-token-2)
5706 (when (eq (char-after) ?<)
5707 (c-clear-<-pair-props-if-match-after beg)))
5708 (c-forward-syntactic-ws)
5709 (setq new-beg (point))
5711 ;; ...Then the ones with < before end and > after end.
5712 (goto-char (if end-lit-limits (cdr end-lit-limits) end))
5713 (setq end-limit (c-determine-+ve-limit 512))
5714 (while (and (c-syntactic-re-search-forward "[;{}>]" end-limit 'end)
5715 (eq (char-before) ?>))
5716 (c-end-of-current-token)
5717 (when (eq (char-before) ?>)
5718 (c-clear->-pair-props-if-match-before end (1- (point)))))
5719 (c-backward-syntactic-ws)
5720 (setq new-end (point))
5722 ;; Extend the fontification region, if needed.
5723 (and new-beg
5724 (< new-beg c-new-BEG)
5725 (setq c-new-BEG new-beg))
5726 (and new-end
5727 (> new-end c-new-END)
5728 (setq c-new-END new-end)))))
5730 (defun c-after-change-check-<>-operators (beg end)
5731 ;; This is called from `after-change-functions' when
5732 ;; c-recognize-<>-arglists' is set. It ensures that no "<" or ">"
5733 ;; chars with paren syntax become part of another operator like "<<"
5734 ;; or ">=".
5736 ;; This function might do hidden buffer changes.
5738 (save-excursion
5739 (goto-char beg)
5740 (when (or (looking-at "[<>]")
5741 (< (skip-chars-backward "<>") 0))
5743 (goto-char beg)
5744 (c-beginning-of-current-token)
5745 (when (and (< (point) beg)
5746 (looking-at c-<>-multichar-token-regexp)
5747 (< beg (setq beg (match-end 0))))
5748 (while (progn (skip-chars-forward "^<>" beg)
5749 (< (point) beg))
5750 (c-clear-<>-pair-props)
5751 (forward-char))))
5753 (when (< beg end)
5754 (goto-char end)
5755 (when (or (looking-at "[<>]")
5756 (< (skip-chars-backward "<>") 0))
5758 (goto-char end)
5759 (c-beginning-of-current-token)
5760 (when (and (< (point) end)
5761 (looking-at c-<>-multichar-token-regexp)
5762 (< end (setq end (match-end 0))))
5763 (while (progn (skip-chars-forward "^<>" end)
5764 (< (point) end))
5765 (c-clear-<>-pair-props)
5766 (forward-char)))))))
5768 (defun c-restore-<>-properties (_beg _end _old-len)
5769 ;; This function is called as an after-change function. It restores the
5770 ;; category/syntax-table properties on template/generic <..> pairs between
5771 ;; c-new-BEG and c-new-END. It may do hidden buffer changes.
5772 (c-save-buffer-state ((c-parse-and-markup-<>-arglists t)
5773 c-restricted-<>-arglists lit-limits)
5774 (goto-char c-new-BEG)
5775 (if (setq lit-limits (c-literal-limits))
5776 (goto-char (cdr lit-limits)))
5777 (while (and (< (point) c-new-END)
5778 (c-syntactic-re-search-forward "<" c-new-END 'bound))
5779 (backward-char)
5780 (save-excursion
5781 (c-backward-token-2)
5782 (setq c-restricted-<>-arglists
5783 (and (not (looking-at c-opt-<>-sexp-key))
5784 (progn (c-backward-syntactic-ws) ; to ( or ,
5785 (and (memq (char-before) '(?\( ?,)) ; what about <?
5786 (not (eq (c-get-char-property (point) 'c-type)
5787 'c-decl-arg-start)))))))
5788 (or (c-forward-<>-arglist nil)
5789 (forward-char)))))
5792 ;; Functions to handle C++ raw strings.
5794 ;; A valid C++ raw string looks like
5795 ;; R"<id>(<contents>)<id>"
5796 ;; , where <id> is an identifier from 0 to 16 characters long, not containing
5797 ;; spaces, control characters, double quote or left/right paren. <contents>
5798 ;; can include anything which isn't the terminating )<id>", including new
5799 ;; lines, "s, parentheses, etc.
5801 ;; CC Mode handles C++ raw strings by the use of `syntax-table' text
5802 ;; properties as follows:
5804 ;; (i) On a validly terminated raw string, no `syntax-table' text properties
5805 ;; are applied to the opening and closing delimiters, but any " in the
5806 ;; contents is given the property value "punctuation" (`(1)') to prevent it
5807 ;; interacting with the "s in the delimiters.
5809 ;; The font locking routine `c-font-lock-c++-raw-strings' (in cc-fonts.el)
5810 ;; recognizes valid raw strings, and fontifies the delimiters (apart from
5811 ;; the parentheses) with the default face and the parentheses and the
5812 ;; <contents> with font-lock-string-face.
5814 ;; (ii) A valid, but unterminated, raw string opening delimiter gets the
5815 ;; "punctuation" value (`(1)') of the `syntax-table' text property, and the
5816 ;; open parenthesis gets the "string fence" value (`(15)').
5818 ;; `c-font-lock-c++-raw-strings' puts c-font-lock-warning-face on the entire
5819 ;; unmatched opening delimiter (from the R up to the open paren), and allows
5820 ;; the rest of the buffer to get font-lock-string-face, caused by the
5821 ;; unmatched "string fence" `syntax-table' text property value.
5823 ;; (iii) Inside a macro, a valid raw string is handled as in (i). An
5824 ;; unmatched opening delimiter is handled slightly differently. In addition
5825 ;; to the "punctuation" and "string fence" properties on the delimiter,
5826 ;; another "string fence" `syntax-table' property is applied to the last
5827 ;; possible character of the macro before the terminating linefeed (if there
5828 ;; is such a character after the "("). This "last possible" character is
5829 ;; never a backslash escaping the end of line. If the character preceding
5830 ;; this "last possible" character is itself a backslash, this preceding
5831 ;; character gets a "punctuation" `syntax-table' value. If the "(" is
5832 ;; already at the end of the macro, it gets the "punctuaion" value, and no
5833 ;; "string fence"s are used.
5835 ;; The effect on the fontification of either of these tactics is that rest of
5836 ;; the macro (if any) after the "(" gets font-lock-string-face, but the rest
5837 ;; of the file is fontified normally.
5840 (defun c-raw-string-pos ()
5841 ;; Get POINT's relationship to any containing raw string.
5842 ;; If point isn't in a raw string, return nil.
5843 ;; Otherwise, return the following list:
5845 ;; (POS B\" B\( E\) E\")
5847 ;; , where POS is the symbol `open-delim' if point is in the opening
5848 ;; delimiter, the symbol `close-delim' if it's in the closing delimiter, and
5849 ;; nil if it's in the string body. B\", B\(, E\), E\" are the positions of
5850 ;; the opening and closing quotes and parentheses of a correctly terminated
5851 ;; raw string. (N.B.: E\) and E\" are NOT on the "outside" of these
5852 ;; characters.) If the raw string is not terminated, E\) and E\" are set to
5853 ;; nil.
5855 ;; Note: this routine is dependant upon the correct syntax-table text
5856 ;; properties being set.
5857 (let* ((safe (c-state-semi-safe-place (point)))
5858 (state (c-state-pp-to-literal safe (point)))
5859 open-quote-pos open-paren-pos close-paren-pos close-quote-pos id)
5860 (save-excursion
5861 (when
5862 (and
5863 (cond
5864 ((null (cadr state))
5865 (or (eq (char-after) ?\")
5866 (search-backward "\"" (max (- (point) 17) (point-min)) t)))
5867 ((and (eq (cadr state) 'string)
5868 (goto-char (car (nth 2 state)))
5869 (or (eq (char-after) ?\")
5870 (search-backward "\"" (max (- (point) 17) (point-min)) t))
5871 (not (bobp)))))
5872 (eq (char-before) ?R)
5873 (looking-at "\"\\([^ ()\\\n\r\t]\\{,16\\}\\)("))
5874 (setq open-quote-pos (point)
5875 open-paren-pos (match-end 1)
5876 id (match-string-no-properties 1))
5877 (goto-char (1+ open-paren-pos))
5878 (when (and (not (c-get-char-property open-paren-pos 'syntax-table))
5879 (search-forward (concat ")" id "\"") nil t))
5880 (setq close-paren-pos (match-beginning 0)
5881 close-quote-pos (1- (point))))))
5882 (and open-quote-pos
5883 (list
5884 (cond
5885 ((<= (point) open-paren-pos)
5886 'open-delim)
5887 ((and close-paren-pos
5888 (> (point) close-paren-pos))
5889 'close-delim)
5890 (t nil))
5891 open-quote-pos open-paren-pos close-paren-pos close-quote-pos))))
5893 (defun c-depropertize-raw-string (id open-quote open-paren bound)
5894 ;; Point is immediately after a raw string opening delimiter. Remove any
5895 ;; `syntax-table' text properties associated with the delimiter (if it's
5896 ;; unmatched) or the raw string.
5898 ;; ID, a string, is the delimiter's identifier. OPEN-QUOTE and OPEN-PAREN
5899 ;; are the buffer positions of the delimiter's components. BOUND is the
5900 ;; bound for searching for a matching closing delimiter; it is usually nil,
5901 ;; but if we're inside a macro, it's the end of the macro.
5903 ;; Point is moved to after the (terminated) raw string, or left after the
5904 ;; unmatched opening delimiter, as the case may be. The return value is of
5905 ;; no significance.
5906 (let ((open-paren-prop (c-get-char-property open-paren 'syntax-table)))
5907 (cond
5908 ((null open-paren-prop)
5909 ;; A terminated raw string
5910 (if (search-forward (concat ")" id "\"") nil t)
5911 (c-clear-char-property-with-value
5912 (1+ open-paren) (match-beginning 0) 'syntax-table '(1))))
5913 ((or (and (equal open-paren-prop '(15)) (null bound))
5914 (equal open-paren-prop '(1)))
5915 ;; An unterminated raw string either not in a macro, or in a macro with
5916 ;; the open parenthesis right up against the end of macro
5917 (c-clear-char-property open-quote 'syntax-table)
5918 (c-clear-char-property open-paren 'syntax-table))
5920 ;; An unterminated string in a macro, with at least one char after the
5921 ;; open paren
5922 (c-clear-char-property open-quote 'syntax-table)
5923 (c-clear-char-property open-paren 'syntax-table)
5924 (let ((after-string-fence-pos
5925 (save-excursion
5926 (goto-char (1+ open-paren))
5927 (c-search-forward-char-property 'syntax-table '(15) bound))))
5928 (when after-string-fence-pos
5929 (c-clear-char-property (1- after-string-fence-pos) 'syntax-table)))
5930 ))))
5932 (defun c-depropertize-raw-strings-in-region (start finish)
5933 ;; Remove any `syntax-table' text properties associated with C++ raw strings
5934 ;; contained in the region (START FINISH). Point is undefined at entry and
5935 ;; exit, and the return value has no significance.
5936 (goto-char start)
5937 (while (and (< (point) finish)
5938 (re-search-forward
5939 (concat "\\(" ; 1
5940 c-anchored-cpp-prefix ; 2
5941 "\\)\\|\\(" ; 3
5942 "R\"\\([^ ()\\\n\r\t]\\{,16\\}\\)(" ; 4
5943 "\\)")
5944 finish t))
5945 (when (save-excursion
5946 (goto-char (match-beginning 0)) (not (c-in-literal)))
5947 (if (match-beginning 4) ; the id
5948 ;; We've found a raw string
5949 (c-depropertize-raw-string
5950 (match-string-no-properties 4) ; id
5951 (1+ (match-beginning 3)) ; open quote
5952 (match-end 4) ; open paren
5953 nil) ; bound
5954 ;; We've found a CPP construct. Search for raw strings within it.
5955 (goto-char (match-beginning 2)) ; the "#"
5956 (c-end-of-macro)
5957 (let ((eom (point)))
5958 (goto-char (match-end 2)) ; after the "#".
5959 (while (and (< (point) eom)
5960 (c-syntactic-re-search-forward
5961 "R\"\\([^ ()\\\n\r\t]\\{,16\\}\\)(" eom t))
5962 (c-depropertize-raw-string
5963 (match-string-no-properties 1) ; id
5964 (1+ (match-beginning 0)) ; open quote
5965 (match-end 1) ; open paren
5966 eom))))))) ; bound.
5968 (defun c-before-change-check-raw-strings (beg end)
5969 ;; This function clears `syntax-table' text properties from C++ raw strings
5970 ;; in the region (c-new-BEG c-new-END). BEG and END are the standard
5971 ;; arguments supplied to any before-change function.
5973 ;; Point is undefined on both entry and exit, and the return value has no
5974 ;; significance.
5976 ;; This function is called as a before-change function solely due to its
5977 ;; membership of the C++ value of `c-get-state-before-change-functions'.
5978 (c-save-buffer-state
5979 ((beg-rs (progn (goto-char beg) (c-raw-string-pos)))
5980 (beg-plus (if (null beg-rs)
5982 (max beg
5983 (1+ (or (nth 4 beg-rs) (nth 2 beg-rs))))))
5984 (end-rs (progn (goto-char end) (c-raw-string-pos))) ; FIXME!!!
5985 ; Optimize this so that we don't call
5986 ; `c-raw-string-pos' twice when once
5987 ; will do. (2016-06-02).
5988 (end-minus (if (null end-rs)
5990 (min end (cadr end-rs))))
5992 (when beg-rs
5993 (setq c-new-BEG (min c-new-BEG (1- (cadr beg-rs)))))
5994 (c-depropertize-raw-strings-in-region c-new-BEG beg-plus)
5996 (when end-rs
5997 (setq c-new-END (max c-new-END
5998 (1+ (or (nth 4 end-rs)
5999 (nth 2 end-rs))))))
6000 (c-depropertize-raw-strings-in-region end-minus c-new-END)))
6002 (defun c-propertize-raw-string-opener (id open-quote open-paren bound)
6003 ;; Point is immediately after a raw string opening delimiter. Apply any
6004 ;; pertinent `syntax-table' text properties to the delimiter and also the
6005 ;; raw string, should there be a valid matching closing delimiter.
6007 ;; ID, a string, is the delimiter's identifier. OPEN-QUOTE and OPEN-PAREN
6008 ;; are the buffer positions of the delimiter's components. BOUND is the
6009 ;; bound for searching for a matching closing delimiter; it is usually nil,
6010 ;; but if we're inside a macro, it's the end of the macro.
6012 ;; Point is moved to after the (terminated) raw string, or left after the
6013 ;; unmatched opening delimiter, as the case may be. The return value is of
6014 ;; no significance.
6015 (if (search-forward (concat ")" id "\"") bound t)
6016 (let ((end-string (match-beginning 0))
6017 (after-quote (match-end 0)))
6018 (goto-char open-paren)
6019 (while (progn (skip-syntax-forward "^\"" end-string)
6020 (< (point) end-string))
6021 (c-put-char-property (point) 'syntax-table '(1)) ; punctuation
6022 (forward-char))
6023 (goto-char after-quote))
6024 (c-put-char-property open-quote 'syntax-table '(1)) ; punctuation
6025 (c-put-char-property open-paren 'syntax-table '(15)) ; generic string
6026 (when bound
6027 ;; In a CPP construct, we try to apply a generic-string `syntax-table'
6028 ;; text property to the last possible character in the string, so that
6029 ;; only characters within the macro get "stringed out".
6030 (goto-char bound)
6031 (if (save-restriction
6032 (narrow-to-region (1+ open-paren) (point-max))
6033 (re-search-backward
6034 (eval-when-compile
6035 ;; This regular expression matches either an escape pair (which
6036 ;; isn't an escaped NL) (submatch 5) or a non-escaped character
6037 ;; (which isn't itself a backslash) (submatch 10). The long
6038 ;; preambles to these (respectively submatches 2-4 and 6-9)
6039 ;; ensure that we have the correct parity for sequences of
6040 ;; backslashes, etc..
6041 (concat "\\(" ; 1
6042 "\\(\\`[^\\]?\\|[^\\][^\\]\\)\\(\\\\\\(.\\|\n\\)\\)*" ; 2-4
6043 "\\(\\\\.\\)" ; 5
6044 "\\|"
6045 "\\(\\`\\|[^\\]\\|\\(\\`[^\\]?\\|[^\\][^\\]\\)\\(\\\\\\(.\\|\n\\)\\)+\\)" ; 6-9
6046 "\\([^\\]\\)" ; 10
6047 "\\)"
6048 "\\(\\\\\n\\)*\\=")) ; 11
6049 (1+ open-paren) t))
6050 (if (match-beginning 10)
6051 (c-put-char-property (match-beginning 10) 'syntax-table '(15))
6052 (c-put-char-property (match-beginning 5) 'syntax-table '(1))
6053 (c-put-char-property (1+ (match-beginning 5)) 'syntax-table '(15)))
6054 (c-put-char-property open-paren 'syntax-table '(1)))
6055 (goto-char bound))))
6057 (defun c-after-change-re-mark-raw-strings (beg end old-len)
6058 ;; This function applies `syntax-table' text properties to C++ raw strings
6059 ;; beginning in the region (c-new-BEG c-new-END). BEG, END, and OLD-LEN are
6060 ;; the standard arguments supplied to any after-change function.
6062 ;; Point is undefined on both entry and exit, and the return value has no
6063 ;; significance.
6065 ;; This function is called as an after-change function solely due to its
6066 ;; membership of the C++ value of `c-before-font-lock-functions'.
6067 (c-save-buffer-state ()
6068 ;; If the region (c-new-BEG c-new-END) has expanded, remove
6069 ;; `syntax-table' text-properties from the new piece(s).
6070 (when (< c-new-BEG c-old-BEG)
6071 (let ((beg-rs (progn (goto-char c-old-BEG) (c-raw-string-pos))))
6072 (c-depropertize-raw-strings-in-region
6073 c-new-BEG
6074 (if beg-rs
6075 (1+ (or (nth 4 beg-rs) (nth 2 beg-rs)))
6076 c-old-BEG))))
6077 (when (> c-new-END c-old-END)
6078 (let ((end-rs (progn (goto-char c-old-END) (c-raw-string-pos))))
6079 (c-depropertize-raw-strings-in-region
6080 (if end-rs
6081 (cadr end-rs)
6082 c-old-END)
6083 c-new-END)))
6085 (goto-char c-new-BEG)
6086 (while (and (< (point) c-new-END)
6087 (re-search-forward
6088 (concat "\\(" ; 1
6089 c-anchored-cpp-prefix ; 2
6090 "\\)\\|\\(" ; 3
6091 "R\"\\([^ ()\\\n\r\t]\\{,16\\}\\)(" ; 4
6092 "\\)")
6093 c-new-END t))
6094 (when (save-excursion
6095 (goto-char (match-beginning 0)) (not (c-in-literal)))
6096 (if (match-beginning 4) ; the id
6097 ;; We've found a raw string.
6098 (c-propertize-raw-string-opener
6099 (match-string-no-properties 4) ; id
6100 (1+ (match-beginning 3)) ; open quote
6101 (match-end 4) ; open paren
6102 nil) ; bound
6103 ;; We've found a CPP construct. Search for raw strings within it.
6104 (goto-char (match-beginning 2)) ; the "#"
6105 (c-end-of-macro)
6106 (let ((eom (point)))
6107 (goto-char (match-end 2)) ; after the "#".
6108 (while (and (< (point) eom)
6109 (c-syntactic-re-search-forward
6110 "R\"\\([^ ()\\\n\r\t]\\{,16\\}\\)(" eom t))
6111 (c-propertize-raw-string-opener
6112 (match-string-no-properties 1) ; id
6113 (1+ (match-beginning 0)) ; open quote
6114 (match-end 1) ; open paren
6115 eom)))))))) ; bound
6118 ;; Handling of small scale constructs like types and names.
6120 ;; Dynamically bound variable that instructs `c-forward-type' to also
6121 ;; treat possible types (i.e. those that it normally returns 'maybe or
6122 ;; 'found for) as actual types (and always return 'found for them).
6123 ;; This means that it records them in `c-record-type-identifiers' if
6124 ;; that is set, and that it adds them to `c-found-types'.
6125 (defvar c-promote-possible-types nil)
6127 ;; Dynamically bound variable that instructs `c-forward-<>-arglist' to
6128 ;; mark up successfully parsed arglists with paren syntax properties on
6129 ;; the surrounding angle brackets and with `c-<>-arg-sep' in the
6130 ;; `c-type' property of each argument separating comma.
6132 ;; Setting this variable also makes `c-forward-<>-arglist' recurse into
6133 ;; all arglists for side effects (i.e. recording types), otherwise it
6134 ;; exploits any existing paren syntax properties to quickly jump to the
6135 ;; end of already parsed arglists.
6137 ;; Marking up the arglists is not the default since doing that correctly
6138 ;; depends on a proper value for `c-restricted-<>-arglists'.
6139 (defvar c-parse-and-markup-<>-arglists nil)
6141 ;; Dynamically bound variable that instructs `c-forward-<>-arglist' to
6142 ;; not accept arglists that contain binary operators.
6144 ;; This is primarily used to handle C++ template arglists. C++
6145 ;; disambiguates them by checking whether the preceding name is a
6146 ;; template or not. We can't do that, so we assume it is a template
6147 ;; if it can be parsed as one. That usually works well since
6148 ;; comparison expressions on the forms "a < b > c" or "a < b, c > d"
6149 ;; in almost all cases would be pointless.
6151 ;; However, in function arglists, e.g. in "foo (a < b, c > d)", we
6152 ;; should let the comma separate the function arguments instead. And
6153 ;; in a context where the value of the expression is taken, e.g. in
6154 ;; "if (a < b || c > d)", it's probably not a template.
6155 (defvar c-restricted-<>-arglists nil)
6157 ;; Dynamically bound variables that instructs
6158 ;; `c-forward-keyword-clause', `c-forward-<>-arglist',
6159 ;; `c-forward-name', `c-forward-type', `c-forward-decl-or-cast-1', and
6160 ;; `c-forward-label' to record the ranges of all the type and
6161 ;; reference identifiers they encounter. They will build lists on
6162 ;; these variables where each element is a cons of the buffer
6163 ;; positions surrounding each identifier. This recording is only
6164 ;; activated when `c-record-type-identifiers' is non-nil.
6166 ;; All known types that can't be identifiers are recorded, and also
6167 ;; other possible types if `c-promote-possible-types' is set.
6168 ;; Recording is however disabled inside angle bracket arglists that
6169 ;; are encountered inside names and other angle bracket arglists.
6170 ;; Such occurrences are taken care of by `c-font-lock-<>-arglists'
6171 ;; instead.
6173 ;; Only the names in C++ template style references (e.g. "tmpl" in
6174 ;; "tmpl<a,b>::foo") are recorded as references, other references
6175 ;; aren't handled here.
6177 ;; `c-forward-label' records the label identifier(s) on
6178 ;; `c-record-ref-identifiers'.
6179 (defvar c-record-type-identifiers nil)
6180 (defvar c-record-ref-identifiers nil)
6182 ;; This variable will receive a cons cell of the range of the last
6183 ;; single identifier symbol stepped over by `c-forward-name' if it's
6184 ;; successful. This is the range that should be put on one of the
6185 ;; record lists above by the caller. It's assigned nil if there's no
6186 ;; such symbol in the name.
6187 (defvar c-last-identifier-range nil)
6189 (defmacro c-record-type-id (range)
6190 (if (eq (car-safe range) 'cons)
6191 ;; Always true.
6192 `(setq c-record-type-identifiers
6193 (cons ,range c-record-type-identifiers))
6194 `(let ((range ,range))
6195 (if range
6196 (setq c-record-type-identifiers
6197 (cons range c-record-type-identifiers))))))
6199 (defmacro c-record-ref-id (range)
6200 (if (eq (car-safe range) 'cons)
6201 ;; Always true.
6202 `(setq c-record-ref-identifiers
6203 (cons ,range c-record-ref-identifiers))
6204 `(let ((range ,range))
6205 (if range
6206 (setq c-record-ref-identifiers
6207 (cons range c-record-ref-identifiers))))))
6209 ;; Dynamically bound variable that instructs `c-forward-type' to
6210 ;; record the ranges of types that only are found. Behaves otherwise
6211 ;; like `c-record-type-identifiers'.
6212 (defvar c-record-found-types nil)
6214 (defmacro c-forward-keyword-prefixed-id (type)
6215 ;; Used internally in `c-forward-keyword-clause' to move forward
6216 ;; over a type (if TYPE is 'type) or a name (otherwise) which
6217 ;; possibly is prefixed by keywords and their associated clauses.
6218 ;; Try with a type/name first to not trip up on those that begin
6219 ;; with a keyword. Return t if a known or found type is moved
6220 ;; over. The point is clobbered if nil is returned. If range
6221 ;; recording is enabled, the identifier is recorded on as a type
6222 ;; if TYPE is 'type or as a reference if TYPE is 'ref.
6224 ;; This macro might do hidden buffer changes.
6225 `(let (res)
6226 (setq c-last-identifier-range nil)
6227 (while (if (setq res ,(if (eq type 'type)
6228 `(c-forward-type)
6229 `(c-forward-name)))
6231 (cond ((looking-at c-keywords-regexp)
6232 (c-forward-keyword-clause 1))
6233 ((and c-opt-cpp-prefix
6234 (looking-at c-noise-macro-with-parens-name-re))
6235 (c-forward-noise-clause)))))
6236 (when (memq res '(t known found prefix maybe))
6237 (when c-record-type-identifiers
6238 ,(if (eq type 'type)
6239 `(c-record-type-id c-last-identifier-range)
6240 `(c-record-ref-id c-last-identifier-range)))
6241 t)))
6243 (defmacro c-forward-id-comma-list (type update-safe-pos)
6244 ;; Used internally in `c-forward-keyword-clause' to move forward
6245 ;; over a comma separated list of types or names using
6246 ;; `c-forward-keyword-prefixed-id'.
6248 ;; This macro might do hidden buffer changes.
6249 `(while (and (progn
6250 ,(when update-safe-pos
6251 `(setq safe-pos (point)))
6252 (eq (char-after) ?,))
6253 (progn
6254 (forward-char)
6255 (c-forward-syntactic-ws)
6256 (c-forward-keyword-prefixed-id ,type)))))
6258 (defun c-forward-noise-clause ()
6259 ;; Point is at a c-noise-macro-with-parens-names macro identifier. Go
6260 ;; forward over this name, any parenthesis expression which follows it, and
6261 ;; any syntactic WS, ending up at the next token. If there is an unbalanced
6262 ;; paren expression, leave point at it. Always Return t.
6263 (c-forward-token-2)
6264 (if (and (eq (char-after) ?\()
6265 (c-go-list-forward))
6266 (c-forward-syntactic-ws))
6269 (defun c-forward-keyword-clause (match)
6270 ;; Submatch MATCH in the current match data is assumed to surround a
6271 ;; token. If it's a keyword, move over it and any immediately
6272 ;; following clauses associated with it, stopping at the start of
6273 ;; the next token. t is returned in that case, otherwise the point
6274 ;; stays and nil is returned. The kind of clauses that are
6275 ;; recognized are those specified by `c-type-list-kwds',
6276 ;; `c-ref-list-kwds', `c-colon-type-list-kwds',
6277 ;; `c-paren-nontype-kwds', `c-paren-type-kwds', `c-<>-type-kwds',
6278 ;; and `c-<>-arglist-kwds'.
6280 ;; This function records identifier ranges on
6281 ;; `c-record-type-identifiers' and `c-record-ref-identifiers' if
6282 ;; `c-record-type-identifiers' is non-nil.
6284 ;; Note that for `c-colon-type-list-kwds', which doesn't necessary
6285 ;; apply directly after the keyword, the type list is moved over
6286 ;; only when there is no unaccounted token before it (i.e. a token
6287 ;; that isn't moved over due to some other keyword list). The
6288 ;; identifier ranges in the list are still recorded if that should
6289 ;; be done, though.
6291 ;; This function might do hidden buffer changes.
6293 (let ((kwd-sym (c-keyword-sym (match-string match))) safe-pos pos
6294 ;; The call to `c-forward-<>-arglist' below is made after
6295 ;; `c-<>-sexp-kwds' keywords, so we're certain they actually
6296 ;; are angle bracket arglists and `c-restricted-<>-arglists'
6297 ;; should therefore be nil.
6298 (c-parse-and-markup-<>-arglists t)
6299 c-restricted-<>-arglists)
6301 (when kwd-sym
6302 (goto-char (match-end match))
6303 (c-forward-syntactic-ws)
6304 (setq safe-pos (point))
6306 (cond
6307 ((and (c-keyword-member kwd-sym 'c-type-list-kwds)
6308 (c-forward-keyword-prefixed-id type))
6309 ;; There's a type directly after a keyword in `c-type-list-kwds'.
6310 (c-forward-id-comma-list type t))
6312 ((and (c-keyword-member kwd-sym 'c-ref-list-kwds)
6313 (c-forward-keyword-prefixed-id ref))
6314 ;; There's a name directly after a keyword in `c-ref-list-kwds'.
6315 (c-forward-id-comma-list ref t))
6317 ((and (c-keyword-member kwd-sym 'c-paren-any-kwds)
6318 (eq (char-after) ?\())
6319 ;; There's an open paren after a keyword in `c-paren-any-kwds'.
6321 (forward-char)
6322 (when (and (setq pos (c-up-list-forward))
6323 (eq (char-before pos) ?\)))
6324 (when (and c-record-type-identifiers
6325 (c-keyword-member kwd-sym 'c-paren-type-kwds))
6326 ;; Use `c-forward-type' on every identifier we can find
6327 ;; inside the paren, to record the types.
6328 (while (c-syntactic-re-search-forward c-symbol-start pos t)
6329 (goto-char (match-beginning 0))
6330 (unless (c-forward-type)
6331 (looking-at c-symbol-key) ; Always matches.
6332 (goto-char (match-end 0)))))
6334 (goto-char pos)
6335 (c-forward-syntactic-ws)
6336 (setq safe-pos (point))))
6338 ((and (c-keyword-member kwd-sym 'c-<>-sexp-kwds)
6339 (eq (char-after) ?<)
6340 (c-forward-<>-arglist (c-keyword-member kwd-sym 'c-<>-type-kwds)))
6341 (c-forward-syntactic-ws)
6342 (setq safe-pos (point)))
6344 ((and (c-keyword-member kwd-sym 'c-nonsymbol-sexp-kwds)
6345 (not (looking-at c-symbol-start))
6346 (c-safe (c-forward-sexp) t))
6347 (c-forward-syntactic-ws)
6348 (setq safe-pos (point))))
6350 (when (c-keyword-member kwd-sym 'c-colon-type-list-kwds)
6351 (if (eq (char-after) ?:)
6352 ;; If we are at the colon already, we move over the type
6353 ;; list after it.
6354 (progn
6355 (forward-char)
6356 (c-forward-syntactic-ws)
6357 (when (c-forward-keyword-prefixed-id type)
6358 (c-forward-id-comma-list type t)))
6359 ;; Not at the colon, so stop here. But the identifier
6360 ;; ranges in the type list later on should still be
6361 ;; recorded.
6362 (and c-record-type-identifiers
6363 (progn
6364 ;; If a keyword matched both one of the types above and
6365 ;; this one, we match `c-colon-type-list-re' after the
6366 ;; clause matched above.
6367 (goto-char safe-pos)
6368 (looking-at c-colon-type-list-re))
6369 (progn
6370 (goto-char (match-end 0))
6371 (c-forward-syntactic-ws)
6372 (c-forward-keyword-prefixed-id type))
6373 ;; There's a type after the `c-colon-type-list-re' match
6374 ;; after a keyword in `c-colon-type-list-kwds'.
6375 (c-forward-id-comma-list type nil))))
6377 (goto-char safe-pos)
6378 t)))
6380 ;; cc-mode requires cc-fonts.
6381 (declare-function c-fontify-recorded-types-and-refs "cc-fonts" ())
6383 (defun c-forward-<>-arglist (all-types)
6384 ;; The point is assumed to be at a "<". Try to treat it as the open
6385 ;; paren of an angle bracket arglist and move forward to the
6386 ;; corresponding ">". If successful, the point is left after the
6387 ;; ">" and t is returned, otherwise the point isn't moved and nil is
6388 ;; returned. If ALL-TYPES is t then all encountered arguments in
6389 ;; the arglist that might be types are treated as found types.
6391 ;; The variable `c-parse-and-markup-<>-arglists' controls how this
6392 ;; function handles text properties on the angle brackets and argument
6393 ;; separating commas.
6395 ;; `c-restricted-<>-arglists' controls how lenient the template
6396 ;; arglist recognition should be.
6398 ;; This function records identifier ranges on
6399 ;; `c-record-type-identifiers' and `c-record-ref-identifiers' if
6400 ;; `c-record-type-identifiers' is non-nil.
6402 ;; This function might do hidden buffer changes.
6404 (let ((start (point))
6405 ;; If `c-record-type-identifiers' is set then activate
6406 ;; recording of any found types that constitute an argument in
6407 ;; the arglist.
6408 (c-record-found-types (if c-record-type-identifiers t)))
6409 (if (catch 'angle-bracket-arglist-escape
6410 (setq c-record-found-types
6411 (c-forward-<>-arglist-recur all-types)))
6412 (progn
6413 (when (consp c-record-found-types)
6414 (setq c-record-type-identifiers
6415 ;; `nconc' doesn't mind that the tail of
6416 ;; `c-record-found-types' is t.
6417 (nconc c-record-found-types c-record-type-identifiers)))
6420 (goto-char start)
6421 nil)))
6423 (defun c-forward-<>-arglist-recur (all-types)
6424 ;; Recursive part of `c-forward-<>-arglist'.
6426 ;; This function might do hidden buffer changes.
6427 (let ((start (point)) res pos
6428 ;; Cover this so that any recorded found type ranges are
6429 ;; automatically lost if it turns out to not be an angle
6430 ;; bracket arglist. It's propagated through the return value
6431 ;; on successful completion.
6432 (c-record-found-types c-record-found-types)
6433 ;; List that collects the positions after the argument
6434 ;; separating ',' in the arglist.
6435 arg-start-pos)
6436 ;; If the '<' has paren open syntax then we've marked it as an angle
6437 ;; bracket arglist before, so skip to the end.
6438 (if (and (not c-parse-and-markup-<>-arglists)
6439 (c-get-char-property (point) 'syntax-table))
6441 (progn
6442 (forward-char)
6443 (if (and (c-go-up-list-forward)
6444 (eq (char-before) ?>))
6446 ;; Got unmatched paren angle brackets. We don't clear the paren
6447 ;; syntax properties and retry, on the basis that it's very
6448 ;; unlikely that paren angle brackets become operators by code
6449 ;; manipulation. It's far more likely that it doesn't match due
6450 ;; to narrowing or some temporary change.
6451 (goto-char start)
6452 nil))
6454 (forward-char) ; Forward over the opening '<'.
6456 (unless (looking-at c-<-op-cont-regexp)
6457 ;; go forward one non-alphanumeric character (group) per iteration of
6458 ;; this loop.
6459 (while (and
6460 (progn
6461 (c-forward-syntactic-ws)
6462 (when (or (and c-record-type-identifiers all-types)
6463 (not (equal c-inside-<>-type-key "\\(\\<\\>\\)")))
6464 (c-forward-syntactic-ws)
6465 (cond
6466 ((eq (char-after) ??)
6467 (forward-char))
6468 ((and (looking-at c-identifier-start)
6469 (not (looking-at c-keywords-regexp)))
6470 (if (or (and all-types c-record-type-identifiers)
6471 (c-major-mode-is 'java-mode))
6472 ;; All encountered identifiers are types, so set the
6473 ;; promote flag and parse the type.
6474 (let ((c-promote-possible-types t)
6475 (c-record-found-types t))
6476 (c-forward-type))
6477 (c-forward-token-2))))
6479 (c-forward-syntactic-ws)
6481 (when (looking-at c-inside-<>-type-key)
6482 (goto-char (match-end 1))
6483 (c-forward-syntactic-ws)
6484 (let ((c-promote-possible-types t)
6485 (c-record-found-types t))
6486 (c-forward-type))
6487 (c-forward-syntactic-ws)))
6489 (setq pos (point)) ; e.g. first token inside the '<'
6491 ;; Note: These regexps exploit the match order in \| so
6492 ;; that "<>" is matched by "<" rather than "[^>:-]>".
6493 (c-syntactic-re-search-forward
6494 ;; Stop on ',', '|', '&', '+' and '-' to catch
6495 ;; common binary operators that could be between
6496 ;; two comparison expressions "a<b" and "c>d".
6497 ;; 2016-02-11: C++11 templates can now contain arithmetic
6498 ;; expressions, so template detection in C++ is now less
6499 ;; robust than it was.
6500 c-<>-notable-chars-re
6501 nil t t))
6503 (cond
6504 ((eq (char-before) ?>)
6505 ;; Either an operator starting with '>' or the end of
6506 ;; the angle bracket arglist.
6508 (if (save-excursion
6509 (c-backward-token-2)
6510 (looking-at c-multichar->-op-not->>-regexp))
6511 (progn
6512 (goto-char (match-end 0))
6513 t) ; Continue the loop.
6515 ;; The angle bracket arglist is finished.
6516 (when c-parse-and-markup-<>-arglists
6517 (while arg-start-pos
6518 (c-put-c-type-property (1- (car arg-start-pos))
6519 'c-<>-arg-sep)
6520 (setq arg-start-pos (cdr arg-start-pos)))
6521 (c-mark-<-as-paren start)
6522 (c-mark->-as-paren (1- (point))))
6523 (setq res t)
6524 nil)) ; Exit the loop.
6526 ((eq (char-before) ?<)
6527 ;; Either an operator starting with '<' or a nested arglist.
6528 (setq pos (point))
6529 (let (id-start id-end subres keyword-match)
6530 (cond
6531 ;; The '<' begins a multi-char operator.
6532 ((looking-at c-<-op-cont-regexp)
6533 (goto-char (match-end 0)))
6534 ;; We're at a nested <.....>
6535 ((progn
6536 (backward-char) ; to the '<'
6537 (and
6538 (save-excursion
6539 ;; There's always an identifier before an angle
6540 ;; bracket arglist, or a keyword in `c-<>-type-kwds'
6541 ;; or `c-<>-arglist-kwds'.
6542 (c-backward-syntactic-ws)
6543 (setq id-end (point))
6544 (c-simple-skip-symbol-backward)
6545 (when (or (setq keyword-match
6546 (looking-at c-opt-<>-sexp-key))
6547 (not (looking-at c-keywords-regexp)))
6548 (setq id-start (point))))
6549 (setq subres
6550 (let ((c-promote-possible-types t)
6551 (c-record-found-types t))
6552 (c-forward-<>-arglist-recur
6553 (and keyword-match
6554 (c-keyword-member
6555 (c-keyword-sym (match-string 1))
6556 'c-<>-type-kwds))))))
6557 (or subres (goto-char pos))
6558 subres)
6559 ;; It was an angle bracket arglist.
6560 (setq c-record-found-types subres)
6562 ;; Record the identifier before the template as a type
6563 ;; or reference depending on whether the arglist is last
6564 ;; in a qualified identifier.
6565 (when (and c-record-type-identifiers
6566 (not keyword-match))
6567 (if (and c-opt-identifier-concat-key
6568 (progn
6569 (c-forward-syntactic-ws)
6570 (looking-at c-opt-identifier-concat-key)))
6571 (c-record-ref-id (cons id-start id-end))
6572 (c-record-type-id (cons id-start id-end)))))
6574 ;; At a "less than" operator.
6576 ;; (forward-char) ; NO! We've already gone over the <.
6578 t) ; carry on looping.
6580 ((and
6581 (eq (char-before) ?\()
6582 (c-go-up-list-forward)
6583 (eq (char-before) ?\))))
6585 ((and (not c-restricted-<>-arglists)
6586 (or (and (eq (char-before) ?&)
6587 (not (eq (char-after) ?&)))
6588 (eq (char-before) ?,)))
6589 ;; Just another argument. Record the position. The
6590 ;; type check stuff that made us stop at it is at
6591 ;; the top of the loop.
6592 (setq arg-start-pos (cons (point) arg-start-pos)))
6595 ;; Got a character that can't be in an angle bracket
6596 ;; arglist argument. Abort using `throw', since
6597 ;; it's useless to try to find a surrounding arglist
6598 ;; if we're nested.
6599 (throw 'angle-bracket-arglist-escape nil))))))
6600 (if res
6601 (or c-record-found-types t)))))
6603 (defun c-backward-<>-arglist (all-types &optional limit)
6604 ;; The point is assumed to be directly after a ">". Try to treat it
6605 ;; as the close paren of an angle bracket arglist and move back to
6606 ;; the corresponding "<". If successful, the point is left at
6607 ;; the "<" and t is returned, otherwise the point isn't moved and
6608 ;; nil is returned. ALL-TYPES is passed on to
6609 ;; `c-forward-<>-arglist'.
6611 ;; If the optional LIMIT is given, it bounds the backward search.
6612 ;; It's then assumed to be at a syntactically relevant position.
6614 ;; This is a wrapper around `c-forward-<>-arglist'. See that
6615 ;; function for more details.
6617 (let ((start (point)))
6618 (backward-char)
6619 (if (and (not c-parse-and-markup-<>-arglists)
6620 (c-get-char-property (point) 'syntax-table))
6622 (if (and (c-go-up-list-backward)
6623 (eq (char-after) ?<))
6625 ;; See corresponding note in `c-forward-<>-arglist'.
6626 (goto-char start)
6627 nil)
6629 (while (progn
6630 (c-syntactic-skip-backward "^<;{}" limit t)
6632 (and
6633 (if (eq (char-before) ?<)
6635 ;; Stopped at bob or a char that isn't allowed in an
6636 ;; arglist, so we've failed.
6637 (goto-char start)
6638 nil)
6640 (if (> (point)
6641 (progn (c-beginning-of-current-token)
6642 (point)))
6643 ;; If we moved then the "<" was part of some
6644 ;; multicharacter token.
6647 (backward-char)
6648 (let ((beg-pos (point)))
6649 (if (c-forward-<>-arglist all-types)
6650 (cond ((= (point) start)
6651 ;; Matched the arglist. Break the while.
6652 (goto-char beg-pos)
6653 nil)
6654 ((> (point) start)
6655 ;; We started from a non-paren ">" inside an
6656 ;; arglist.
6657 (goto-char start)
6658 nil)
6660 ;; Matched a shorter arglist. Can be a nested
6661 ;; one so continue looking.
6662 (goto-char beg-pos)
6664 t))))))
6666 (/= (point) start))))
6668 (defun c-forward-name ()
6669 ;; Move forward over a complete name if at the beginning of one,
6670 ;; stopping at the next following token. A keyword, as such,
6671 ;; doesn't count as a name. If the point is not at something that
6672 ;; is recognized as a name then it stays put.
6674 ;; A name could be something as simple as "foo" in C or something as
6675 ;; complex as "X<Y<class A<int>::B, BIT_MAX >> b>, ::operator<> ::
6676 ;; Z<(a>b)> :: operator const X<&foo>::T Q::G<unsigned short
6677 ;; int>::*volatile const" in C++ (this function is actually little
6678 ;; more than a `looking-at' call in all modes except those that,
6679 ;; like C++, have `c-recognize-<>-arglists' set).
6681 ;; Return
6682 ;; o - nil if no name is found;
6683 ;; o - 'template if it's an identifier ending with an angle bracket
6684 ;; arglist;
6685 ;; o - 'operator of it's an operator identifier;
6686 ;; o - t if it's some other kind of name.
6688 ;; This function records identifier ranges on
6689 ;; `c-record-type-identifiers' and `c-record-ref-identifiers' if
6690 ;; `c-record-type-identifiers' is non-nil.
6692 ;; This function might do hidden buffer changes.
6694 (let ((pos (point)) (start (point)) res id-start id-end
6695 ;; Turn off `c-promote-possible-types' here since we might
6696 ;; call `c-forward-<>-arglist' and we don't want it to promote
6697 ;; every suspect thing in the arglist to a type. We're
6698 ;; typically called from `c-forward-type' in this case, and
6699 ;; the caller only wants the top level type that it finds to
6700 ;; be promoted.
6701 c-promote-possible-types)
6702 (while
6703 (and
6704 (looking-at c-identifier-key)
6706 (progn
6707 ;; Check for keyword. We go to the last symbol in
6708 ;; `c-identifier-key' first.
6709 (goto-char (setq id-end (match-end 0)))
6710 (c-simple-skip-symbol-backward)
6711 (setq id-start (point))
6713 (if (looking-at c-keywords-regexp)
6714 (when (and (c-major-mode-is 'c++-mode)
6715 (looking-at
6716 (cc-eval-when-compile
6717 (concat "\\(operator\\|\\(template\\)\\)"
6718 "\\(" (c-lang-const c-nonsymbol-key c++)
6719 "\\|$\\)")))
6720 (if (match-beginning 2)
6721 ;; "template" is only valid inside an
6722 ;; identifier if preceded by "::".
6723 (save-excursion
6724 (c-backward-syntactic-ws)
6725 (and (c-safe (backward-char 2) t)
6726 (looking-at "::")))
6729 ;; Handle a C++ operator or template identifier.
6730 (goto-char id-end)
6731 (c-forward-syntactic-ws)
6732 (cond ((eq (char-before id-end) ?e)
6733 ;; Got "... ::template".
6734 (let ((subres (c-forward-name)))
6735 (when subres
6736 (setq pos (point)
6737 res subres))))
6739 ((looking-at c-identifier-start)
6740 ;; Got a cast operator.
6741 (when (c-forward-type)
6742 (setq pos (point)
6743 res 'operator)
6744 ;; Now we should match a sequence of either
6745 ;; '*', '&' or a name followed by ":: *",
6746 ;; where each can be followed by a sequence
6747 ;; of `c-opt-type-modifier-key'.
6748 (while (cond ((looking-at "[*&]")
6749 (goto-char (match-end 0))
6751 ((looking-at c-identifier-start)
6752 (and (c-forward-name)
6753 (looking-at "::")
6754 (progn
6755 (goto-char (match-end 0))
6756 (c-forward-syntactic-ws)
6757 (eq (char-after) ?*))
6758 (progn
6759 (forward-char)
6760 t))))
6761 (while (progn
6762 (c-forward-syntactic-ws)
6763 (setq pos (point))
6764 (looking-at c-opt-type-modifier-key))
6765 (goto-char (match-end 1))))))
6767 ((looking-at c-overloadable-operators-regexp)
6768 ;; Got some other operator.
6769 (setq c-last-identifier-range
6770 (cons (point) (match-end 0)))
6771 (goto-char (match-end 0))
6772 (c-forward-syntactic-ws)
6773 (setq pos (point)
6774 res 'operator)))
6776 nil)
6778 ;; `id-start' is equal to `id-end' if we've jumped over
6779 ;; an identifier that doesn't end with a symbol token.
6780 ;; That can occur e.g. for Java import directives on the
6781 ;; form "foo.bar.*".
6782 (when (and id-start (/= id-start id-end))
6783 (setq c-last-identifier-range
6784 (cons id-start id-end)))
6785 (goto-char id-end)
6786 (c-forward-syntactic-ws)
6787 (setq pos (point)
6788 res t)))
6790 (progn
6791 (goto-char pos)
6792 (when (or c-opt-identifier-concat-key
6793 c-recognize-<>-arglists)
6795 (cond
6796 ((and c-opt-identifier-concat-key
6797 (looking-at c-opt-identifier-concat-key))
6798 ;; Got a concatenated identifier. This handles the
6799 ;; cases with tricky syntactic whitespace that aren't
6800 ;; covered in `c-identifier-key'.
6801 (goto-char (match-end 0))
6802 (c-forward-syntactic-ws)
6805 ((and c-recognize-<>-arglists
6806 (eq (char-after) ?<))
6807 ;; Maybe an angle bracket arglist.
6808 (when (let (c-last-identifier-range)
6809 (c-forward-<>-arglist nil))
6811 (c-forward-syntactic-ws)
6812 (unless (eq (char-after) ?\()
6813 (setq c-last-identifier-range nil)
6814 (c-add-type start (1+ pos)))
6815 (setq pos (point))
6817 (if (and c-opt-identifier-concat-key
6818 (looking-at c-opt-identifier-concat-key))
6820 ;; Continue if there's an identifier concatenation
6821 ;; operator after the template argument.
6822 (progn
6823 (when (and c-record-type-identifiers id-start)
6824 (c-record-ref-id (cons id-start id-end)))
6825 (forward-char 2)
6826 (c-forward-syntactic-ws)
6829 (when (and c-record-type-identifiers id-start
6830 (not (eq (char-after) ?\()))
6831 (c-record-type-id (cons id-start id-end)))
6832 (setq res 'template)
6833 nil)))
6834 )))))
6836 (goto-char pos)
6837 res))
6839 (defun c-forward-type (&optional brace-block-too)
6840 ;; Move forward over a type spec if at the beginning of one,
6841 ;; stopping at the next following token. The keyword "typedef"
6842 ;; isn't part of a type spec here.
6844 ;; BRACE-BLOCK-TOO, when non-nil, means move over the brace block in
6845 ;; constructs like "struct foo {...} bar ;" or "struct {...} bar;".
6846 ;; The current (2009-03-10) intention is to convert all uses of
6847 ;; `c-forward-type' to call with this parameter set, then to
6848 ;; eliminate it.
6850 ;; Return
6851 ;; o - t if it's a known type that can't be a name or other
6852 ;; expression;
6853 ;; o - 'known if it's an otherwise known type (according to
6854 ;; `*-font-lock-extra-types');
6855 ;; o - 'prefix if it's a known prefix of a type;
6856 ;; o - 'found if it's a type that matches one in `c-found-types';
6857 ;; o - 'maybe if it's an identifier that might be a type;
6858 ;; o - 'decltype if it's a decltype(variable) declaration; - or
6859 ;; o - nil if it can't be a type (the point isn't moved then).
6861 ;; The point is assumed to be at the beginning of a token.
6863 ;; Note that this function doesn't skip past the brace definition
6864 ;; that might be considered part of the type, e.g.
6865 ;; "enum {a, b, c} foo".
6867 ;; This function records identifier ranges on
6868 ;; `c-record-type-identifiers' and `c-record-ref-identifiers' if
6869 ;; `c-record-type-identifiers' is non-nil.
6871 ;; This function might do hidden buffer changes.
6872 (when (and c-recognize-<>-arglists
6873 (looking-at "<"))
6874 (c-forward-<>-arglist t)
6875 (c-forward-syntactic-ws))
6877 (let ((start (point)) pos res name-res id-start id-end id-range)
6879 ;; Skip leading type modifiers. If any are found we know it's a
6880 ;; prefix of a type.
6881 (when c-opt-type-modifier-key ; e.g. "const" "volatile", but NOT "typedef"
6882 (while (looking-at c-opt-type-modifier-key)
6883 (goto-char (match-end 1))
6884 (c-forward-syntactic-ws)
6885 (setq res 'prefix)))
6887 (cond
6888 ((looking-at c-typeof-key) ; e.g. C++'s "decltype".
6889 (goto-char (match-end 1))
6890 (c-forward-syntactic-ws)
6891 (setq res (and (eq (char-after) ?\()
6892 (c-safe (c-forward-sexp))
6893 'decltype))
6894 (if res
6895 (c-forward-syntactic-ws)
6896 (goto-char start)))
6898 ((looking-at c-type-prefix-key) ; e.g. "struct", "class", but NOT
6899 ; "typedef".
6900 (goto-char (match-end 1))
6901 (c-forward-syntactic-ws)
6903 (while (cond
6904 ((looking-at c-decl-hangon-key)
6905 (c-forward-keyword-clause 1))
6906 ((and c-opt-cpp-prefix
6907 (looking-at c-noise-macro-with-parens-name-re))
6908 (c-forward-noise-clause))))
6910 (setq pos (point))
6912 (setq name-res (c-forward-name))
6913 (setq res (not (null name-res)))
6914 (when (eq name-res t)
6915 ;; In many languages the name can be used without the
6916 ;; prefix, so we add it to `c-found-types'.
6917 (c-add-type pos (point))
6918 (when (and c-record-type-identifiers
6919 c-last-identifier-range)
6920 (c-record-type-id c-last-identifier-range)))
6921 (when (and brace-block-too
6922 (memq res '(t nil))
6923 (eq (char-after) ?\{)
6924 (save-excursion
6925 (c-safe
6926 (progn (c-forward-sexp)
6927 (c-forward-syntactic-ws)
6928 (setq pos (point))))))
6929 (goto-char pos)
6930 (setq res t))
6931 (unless res (goto-char start))) ; invalid syntax
6933 ((progn
6934 (setq pos nil)
6935 (if (looking-at c-identifier-start)
6936 (save-excursion
6937 (setq id-start (point)
6938 name-res (c-forward-name))
6939 (when name-res
6940 (setq id-end (point)
6941 id-range c-last-identifier-range))))
6942 (and (cond ((looking-at c-primitive-type-key)
6943 (setq res t))
6944 ((c-with-syntax-table c-identifier-syntax-table
6945 (looking-at c-known-type-key))
6946 (setq res 'known)))
6947 (or (not id-end)
6948 (>= (save-excursion
6949 (save-match-data
6950 (goto-char (match-end 1))
6951 (c-forward-syntactic-ws)
6952 (setq pos (point))))
6953 id-end)
6954 (setq res nil))))
6955 ;; Looking at a primitive or known type identifier. We've
6956 ;; checked for a name first so that we don't go here if the
6957 ;; known type match only is a prefix of another name.
6959 (setq id-end (match-end 1))
6961 (when (and c-record-type-identifiers
6962 (or c-promote-possible-types (eq res t)))
6963 (c-record-type-id (cons (match-beginning 1) (match-end 1))))
6965 (if (and c-opt-type-component-key
6966 (save-match-data
6967 (looking-at c-opt-type-component-key)))
6968 ;; There might be more keywords for the type.
6969 (let (safe-pos)
6970 (c-forward-keyword-clause 1)
6971 (while (progn
6972 (setq safe-pos (point))
6973 (looking-at c-opt-type-component-key))
6974 (when (and c-record-type-identifiers
6975 (looking-at c-primitive-type-key))
6976 (c-record-type-id (cons (match-beginning 1)
6977 (match-end 1))))
6978 (c-forward-keyword-clause 1))
6979 (if (looking-at c-primitive-type-key)
6980 (progn
6981 (when c-record-type-identifiers
6982 (c-record-type-id (cons (match-beginning 1)
6983 (match-end 1))))
6984 (c-forward-keyword-clause 1)
6985 (setq res t))
6986 (goto-char safe-pos)
6987 (setq res 'prefix)))
6988 (unless (save-match-data (c-forward-keyword-clause 1))
6989 (if pos
6990 (goto-char pos)
6991 (goto-char (match-end 1))
6992 (c-forward-syntactic-ws)))))
6994 (name-res
6995 (cond ((eq name-res t)
6996 ;; A normal identifier.
6997 (goto-char id-end)
6998 (if (or res c-promote-possible-types)
6999 (progn
7000 (c-add-type id-start id-end)
7001 (when (and c-record-type-identifiers id-range)
7002 (c-record-type-id id-range))
7003 (unless res
7004 (setq res 'found)))
7005 (setq res (if (c-check-type id-start id-end)
7006 ;; It's an identifier that has been used as
7007 ;; a type somewhere else.
7008 'found
7009 ;; It's an identifier that might be a type.
7010 'maybe))))
7011 ((eq name-res 'template)
7012 ;; A template is sometimes a type.
7013 (goto-char id-end)
7014 (c-forward-syntactic-ws)
7015 (setq res
7016 (if (eq (char-after) ?\()
7017 (if (c-check-type id-start id-end)
7018 ;; It's an identifier that has been used as
7019 ;; a type somewhere else.
7020 'found
7021 ;; It's an identifier that might be a type.
7022 'maybe)
7023 t)))
7025 ;; Otherwise it's an operator identifier, which is not a type.
7026 (goto-char start)
7027 (setq res nil)))))
7029 (when res
7030 ;; Skip trailing type modifiers. If any are found we know it's
7031 ;; a type.
7032 (when c-opt-type-modifier-key
7033 (while (looking-at c-opt-type-modifier-key) ; e.g. "const", "volatile"
7034 (goto-char (match-end 1))
7035 (c-forward-syntactic-ws)
7036 (setq res t)))
7038 ;; Step over any type suffix operator. Do not let the existence
7039 ;; of these alter the classification of the found type, since
7040 ;; these operators typically are allowed in normal expressions
7041 ;; too.
7042 (when c-opt-type-suffix-key ; e.g. "..."
7043 (while (looking-at c-opt-type-suffix-key)
7044 (goto-char (match-end 1))
7045 (c-forward-syntactic-ws)))
7047 (when c-opt-type-concat-key ; Only/mainly for pike.
7048 ;; Look for a trailing operator that concatenates the type
7049 ;; with a following one, and if so step past that one through
7050 ;; a recursive call. Note that we don't record concatenated
7051 ;; types in `c-found-types' - it's the component types that
7052 ;; are recorded when appropriate.
7053 (setq pos (point))
7054 (let* ((c-promote-possible-types (or (memq res '(t known))
7055 c-promote-possible-types))
7056 ;; If we can't promote then set `c-record-found-types' so that
7057 ;; we can merge in the types from the second part afterwards if
7058 ;; it turns out to be a known type there.
7059 (c-record-found-types (and c-record-type-identifiers
7060 (not c-promote-possible-types)))
7061 subres)
7062 (if (and (looking-at c-opt-type-concat-key)
7064 (progn
7065 (goto-char (match-end 1))
7066 (c-forward-syntactic-ws)
7067 (setq subres (c-forward-type))))
7069 (progn
7070 ;; If either operand certainly is a type then both are, but we
7071 ;; don't let the existence of the operator itself promote two
7072 ;; uncertain types to a certain one.
7073 (cond ((eq res t))
7074 ((eq subres t)
7075 (unless (eq name-res 'template)
7076 (c-add-type id-start id-end))
7077 (when (and c-record-type-identifiers id-range)
7078 (c-record-type-id id-range))
7079 (setq res t))
7080 ((eq res 'known))
7081 ((eq subres 'known)
7082 (setq res 'known))
7083 ((eq res 'found))
7084 ((eq subres 'found)
7085 (setq res 'found))
7087 (setq res 'maybe)))
7089 (when (and (eq res t)
7090 (consp c-record-found-types))
7091 ;; Merge in the ranges of any types found by the second
7092 ;; `c-forward-type'.
7093 (setq c-record-type-identifiers
7094 ;; `nconc' doesn't mind that the tail of
7095 ;; `c-record-found-types' is t.
7096 (nconc c-record-found-types
7097 c-record-type-identifiers))))
7099 (goto-char pos))))
7101 (when (and c-record-found-types (memq res '(known found)) id-range)
7102 (setq c-record-found-types
7103 (cons id-range c-record-found-types))))
7105 ;;(message "c-forward-type %s -> %s: %s" start (point) res)
7107 res))
7109 (defun c-forward-annotation ()
7110 ;; Used for Java code only at the moment. Assumes point is on the @, moves
7111 ;; forward an annotation and returns t. Leaves point unmoved and returns
7112 ;; nil if there is no annotation at point.
7113 (let ((pos (point)))
7115 (and (looking-at "@")
7116 (not (looking-at c-keywords-regexp))
7117 (progn (forward-char) t)
7118 (looking-at c-symbol-key)
7119 (progn (goto-char (match-end 0))
7120 (c-forward-syntactic-ws)
7122 (if (looking-at "(")
7123 (c-go-list-forward)
7125 (progn (goto-char pos) nil))))
7127 (defmacro c-pull-open-brace (ps)
7128 ;; Pull the next open brace from PS (which has the form of paren-state),
7129 ;; skipping over any brace pairs. Returns NIL when PS is exhausted.
7130 `(progn
7131 (while (consp (car ,ps))
7132 (setq ,ps (cdr ,ps)))
7133 (prog1 (car ,ps)
7134 (setq ,ps (cdr ,ps)))))
7136 (defun c-back-over-compound-identifier ()
7137 ;; Point is putatively just after a "compound identifier", i.e. something
7138 ;; looking (in C++) like this "FQN::of::base::Class". Move to the start of
7139 ;; this construct and return t. If the parsing fails, return nil, leaving
7140 ;; point unchanged.
7141 (let ((here (point))
7144 (if (not (c-simple-skip-symbol-backward))
7146 (while
7147 (progn
7148 (setq end (point))
7149 (c-backward-syntactic-ws)
7150 (c-backward-token-2)
7151 (and
7152 c-opt-identifier-concat-key
7153 (looking-at c-opt-identifier-concat-key)
7154 (progn
7155 (c-backward-syntactic-ws)
7156 (c-simple-skip-symbol-backward))))
7157 (setq end (point)))
7158 (goto-char end)
7159 t)))
7161 (defun c-back-over-member-initializer-braces ()
7162 ;; Point is just after a closing brace/parenthesis. Try to parse this as a
7163 ;; C++ member initializer list, going back to just after the introducing ":"
7164 ;; and returning t. Otherwise return nil, leaving point unchanged.
7165 (let ((here (point)) res)
7166 (setq res
7167 (catch 'done
7168 (when (not (c-go-list-backward))
7169 (throw 'done nil))
7170 (c-backward-syntactic-ws)
7171 (when (not (c-back-over-compound-identifier))
7172 (throw 'done nil))
7173 (c-backward-syntactic-ws)
7175 (while (eq (char-before) ?,)
7176 (backward-char)
7177 (c-backward-syntactic-ws)
7178 (when (not (memq (char-before) '(?\) ?})))
7179 (throw 'done nil))
7180 (when (not (c-go-list-backward))
7181 (throw 'done nil))
7182 (c-backward-syntactic-ws)
7183 (when (not (c-back-over-compound-identifier))
7184 (throw 'done nil))
7185 (c-backward-syntactic-ws))
7187 (eq (char-before) ?:)))
7188 (or res (goto-char here))
7189 res))
7191 (defmacro c-back-over-list-of-member-inits ()
7192 ;; Go back over a list of elements, each looking like:
7193 ;; <symbol> (<expression>) ,
7194 ;; or <symbol> {<expression>} ,
7195 ;; when we are putatively immediately after a comma. Stop when we don't see
7196 ;; a comma. If either of <symbol> or bracketed <expression> is missing,
7197 ;; throw nil to 'level. If the terminating } or ) is unmatched, throw nil
7198 ;; to 'done. This is not a general purpose macro!
7199 `(while (eq (char-before) ?,)
7200 (backward-char)
7201 (c-backward-syntactic-ws)
7202 (when (not (memq (char-before) '(?\) ?})))
7203 (throw 'level nil))
7204 (when (not (c-go-list-backward))
7205 (throw 'done nil))
7206 (c-backward-syntactic-ws)
7207 (when (not (c-back-over-compound-identifier))
7208 (throw 'level nil))
7209 (c-backward-syntactic-ws)))
7211 (defun c-back-over-member-initializers ()
7212 ;; Test whether we are in a C++ member initializer list, and if so, go back
7213 ;; to the introducing ":", returning the position of the opening paren of
7214 ;; the function's arglist. Otherwise return nil, leaving point unchanged.
7215 (let ((here (point))
7216 (paren-state (c-parse-state))
7217 pos level-plausible at-top-level res)
7218 ;; Assume tentatively that we're at the top level. Try to go back to the
7219 ;; colon we seek.
7220 (setq res
7221 (catch 'done
7222 (setq level-plausible
7223 (catch 'level
7224 (c-backward-syntactic-ws)
7225 (when (memq (char-before) '(?\) ?}))
7226 (when (not (c-go-list-backward))
7227 (throw 'done nil))
7228 (c-backward-syntactic-ws))
7229 (when (c-back-over-compound-identifier)
7230 (c-backward-syntactic-ws))
7231 (c-back-over-list-of-member-inits)
7232 (and (eq (char-before) ?:)
7233 (save-excursion
7234 (c-backward-token-2)
7235 (not (looking-at c-:$-multichar-token-regexp)))
7236 (c-just-after-func-arglist-p))))
7238 (while (and (not (and level-plausible
7239 (setq at-top-level (c-at-toplevel-p))))
7240 (setq pos (c-pull-open-brace paren-state))) ; might be a paren.
7241 (setq level-plausible
7242 (catch 'level
7243 (goto-char pos)
7244 (c-backward-syntactic-ws)
7245 (when (not (c-back-over-compound-identifier))
7246 (throw 'level nil))
7247 (c-backward-syntactic-ws)
7248 (c-back-over-list-of-member-inits)
7249 (and (eq (char-before) ?:)
7250 (save-excursion
7251 (c-backward-token-2)
7252 (not (looking-at c-:$-multichar-token-regexp)))
7253 (c-just-after-func-arglist-p)))))
7255 (and at-top-level level-plausible)))
7256 (or res (goto-char here))
7257 res))
7260 ;; Handling of large scale constructs like statements and declarations.
7262 ;; Macro used inside `c-forward-decl-or-cast-1'. It ought to be a
7263 ;; defsubst or perhaps even a defun, but it contains lots of free
7264 ;; variables that refer to things inside `c-forward-decl-or-cast-1'.
7265 (defmacro c-fdoc-shift-type-backward (&optional short)
7266 ;; `c-forward-decl-or-cast-1' can consume an arbitrary length list
7267 ;; of types when parsing a declaration, which means that it
7268 ;; sometimes consumes the identifier in the declaration as a type.
7269 ;; This is used to "backtrack" and make the last type be treated as
7270 ;; an identifier instead.
7271 `(progn
7272 ,(unless short
7273 ;; These identifiers are bound only in the inner let.
7274 '(setq identifier-type at-type
7275 identifier-start type-start
7276 got-parens nil
7277 got-identifier t
7278 got-suffix t
7279 got-suffix-after-parens id-start
7280 paren-depth 0))
7282 (if (setq at-type (if (eq backup-at-type 'prefix)
7284 backup-at-type))
7285 (setq type-start backup-type-start
7286 id-start backup-id-start)
7287 (setq type-start start-pos
7288 id-start start-pos))
7290 ;; When these flags already are set we've found specifiers that
7291 ;; unconditionally signal these attributes - backtracking doesn't
7292 ;; change that. So keep them set in that case.
7293 (or at-type-decl
7294 (setq at-type-decl backup-at-type-decl))
7295 (or maybe-typeless
7296 (setq maybe-typeless backup-maybe-typeless))
7298 ,(unless short
7299 ;; This identifier is bound only in the inner let.
7300 '(setq start id-start))))
7302 (defun c-forward-declarator (&optional limit accept-anon)
7303 ;; Assuming point is at the start of a declarator, move forward over it,
7304 ;; leaving point at the next token after it (e.g. a ) or a ; or a ,).
7306 ;; Return a list (ID-START ID-END BRACKETS-AFTER-ID GOT-INIT), where ID-START and
7307 ;; ID-END are the bounds of the declarator's identifier, and
7308 ;; BRACKETS-AFTER-ID is non-nil if a [...] pair is present after the id.
7309 ;; GOT-INIT is non-nil when the declarator is followed by "=" or "(".
7311 ;; If ACCEPT-ANON is non-nil, move forward over any "anonymous declarator",
7312 ;; i.e. something like the (*) in int (*), such as might be found in a
7313 ;; declaration. In such a case ID-START and ID-END in the return value are
7314 ;; both set to nil. A "null" "anonymous declarator" gives a non-nil result.
7316 ;; If no declarator is found, leave point unmoved and return nil. LIMIT is
7317 ;; an optional limit for forward searching.
7319 ;; Note that the global variable `c-last-identifier-range' is written to, so
7320 ;; the caller should bind it if necessary.
7322 ;; Inside the following "condition form", we move forward over the
7323 ;; declarator's identifier up as far as any opening bracket (for array
7324 ;; size) or paren (for parameters of function-type) or brace (for
7325 ;; array/struct initialization) or "=" or terminating delimiter
7326 ;; (e.g. "," or ";" or "}").
7327 (let ((here (point))
7328 id-start id-end brackets-after-id paren-depth)
7329 (or limit (setq limit (point-max)))
7330 (if (and
7331 (< (point) limit)
7333 ;; The following form moves forward over the declarator's
7334 ;; identifier (and what precedes it), returning t. If there
7335 ;; wasn't one, it returns nil.
7336 (let (got-identifier)
7337 (setq paren-depth 0)
7338 ;; Skip over type decl prefix operators, one for each iteration
7339 ;; of the while. These are, e.g. "*" in "int *foo" or "(" and
7340 ;; "*" in "int (*foo) (void)" (Note similar code in
7341 ;; `c-forward-decl-or-cast-1'.)
7342 (while
7343 (cond
7344 ((looking-at c-decl-hangon-key)
7345 (c-forward-keyword-clause 1))
7346 ((and c-opt-cpp-prefix
7347 (looking-at c-noise-macro-with-parens-name-re))
7348 (c-forward-noise-clause))
7349 ((and (looking-at c-type-decl-prefix-key)
7350 (if (and (c-major-mode-is 'c++-mode)
7351 (match-beginning 3))
7352 ;; If the third submatch matches in C++ then
7353 ;; we're looking at an identifier that's a
7354 ;; prefix only if it specifies a member pointer.
7355 (progn
7356 (setq id-start (point))
7357 (c-forward-name)
7358 (if (looking-at "\\(::\\)")
7359 ;; We only check for a trailing "::" and
7360 ;; let the "*" that should follow be
7361 ;; matched in the next round.
7363 ;; It turned out to be the real identifier,
7364 ;; so flag that and stop.
7365 (setq got-identifier t)
7366 nil))
7368 (if (eq (char-after) ?\()
7369 (progn
7370 (setq paren-depth (1+ paren-depth))
7371 (forward-char))
7372 (goto-char (match-end 1)))
7373 (c-forward-syntactic-ws)
7374 t)))
7376 ;; If we haven't passed the identifier already, do it now.
7377 (unless got-identifier
7378 (setq id-start (point)))
7379 (cond
7380 ((or got-identifier
7381 (c-forward-name))
7382 (save-excursion
7383 (c-backward-syntactic-ws)
7384 (setq id-end (point))))
7385 (accept-anon
7386 (setq id-start nil id-end nil)
7388 (t (/= (point) here))))
7390 ;; Skip out of the parens surrounding the identifier. If closing
7391 ;; parens are missing, this form returns nil.
7392 (or (= paren-depth 0)
7393 (c-safe (goto-char (scan-lists (point) 1 paren-depth))))
7395 (<= (point) limit)
7397 ;; Skip over any trailing bit, such as "__attribute__".
7398 (progn
7399 (while (cond
7400 ((looking-at c-decl-hangon-key)
7401 (c-forward-keyword-clause 1))
7402 ((and c-opt-cpp-prefix
7403 (looking-at c-noise-macro-with-parens-name-re))
7404 (c-forward-noise-clause))))
7405 (<= (point) limit))
7407 ;; Search syntactically to the end of the declarator (";",
7408 ;; ",", a closing paren, eob etc) or to the beginning of an
7409 ;; initializer or function prototype ("=" or "\\s\(").
7410 ;; Note that square brackets are now not also treated as
7411 ;; initializers, since this broke when there were also
7412 ;; initializing brace lists.
7413 (let (found)
7414 (while
7415 (and (setq found (c-syntactic-re-search-forward
7416 "[;,]\\|\\s)\\|\\'\\|\\(=\\|\\s(\\)" limit t t))
7417 (eq (char-before) ?\[)
7418 (c-go-up-list-forward))
7419 (setq brackets-after-id t))
7420 (backward-char)
7421 found))
7422 (list id-start id-end brackets-after-id (match-beginning 1))
7424 (goto-char here)
7425 nil)))
7427 (defun c-forward-decl-or-cast-1 (preceding-token-end context last-cast-end)
7428 ;; Move forward over a declaration or a cast if at the start of one.
7429 ;; The point is assumed to be at the start of some token. Nil is
7430 ;; returned if no declaration or cast is recognized, and the point
7431 ;; is clobbered in that case.
7433 ;; If a declaration is parsed:
7435 ;; The point is left at the first token after the first complete
7436 ;; declarator, if there is one. The return value is a list of 4 elements,
7437 ;; where the first is the position of the first token in the declarator.
7438 ;; (See below for the other three.)
7439 ;; Some examples:
7441 ;; void foo (int a, char *b) stuff ...
7442 ;; car ^ ^ point
7443 ;; float (*a)[], b;
7444 ;; car ^ ^ point
7445 ;; unsigned int a = c_style_initializer, b;
7446 ;; car ^ ^ point
7447 ;; unsigned int a (cplusplus_style_initializer), b;
7448 ;; car ^ ^ point (might change)
7449 ;; class Foo : public Bar {}
7450 ;; car ^ ^ point
7451 ;; class PikeClass (int a, string b) stuff ...
7452 ;; car ^ ^ point
7453 ;; enum bool;
7454 ;; car ^ ^ point
7455 ;; enum bool flag;
7456 ;; car ^ ^ point
7457 ;; void cplusplus_function (int x) throw (Bad);
7458 ;; car ^ ^ point
7459 ;; Foo::Foo (int b) : Base (b) {}
7460 ;; car ^ ^ point
7462 ;; auto foo = 5;
7463 ;; car ^ ^ point
7464 ;; auto cplusplus_11 (int a, char *b) -> decltype (bar):
7465 ;; car ^ ^ point
7469 ;; The second element of the return value is non-nil when a
7470 ;; `c-typedef-decl-kwds' specifier is found in the declaration.
7471 ;; Specifically it is a dotted pair (A . B) where B is t when a
7472 ;; `c-typedef-kwds' ("typedef") is present, and A is t when some
7473 ;; other `c-typedef-decl-kwds' (e.g. class, struct, enum)
7474 ;; specifier is present. I.e., (some of) the declared
7475 ;; identifier(s) are types.
7477 ;; The third element of the return value is non-nil when the declaration
7478 ;; parsed might be an expression. The fourth element is the position of
7479 ;; the start of the type identifier.
7481 ;; If a cast is parsed:
7483 ;; The point is left at the first token after the closing paren of
7484 ;; the cast. The return value is `cast'. Note that the start
7485 ;; position must be at the first token inside the cast parenthesis
7486 ;; to recognize it.
7488 ;; PRECEDING-TOKEN-END is the first position after the preceding
7489 ;; token, i.e. on the other side of the syntactic ws from the point.
7490 ;; Use a value less than or equal to (point-min) if the point is at
7491 ;; the first token in (the visible part of) the buffer.
7493 ;; CONTEXT is a symbol that describes the context at the point:
7494 ;; 'decl In a comma-separated declaration context (typically
7495 ;; inside a function declaration arglist).
7496 ;; '<> In an angle bracket arglist.
7497 ;; 'arglist Some other type of arglist.
7498 ;; nil Some other context or unknown context. Includes
7499 ;; within the parens of an if, for, ... construct.
7501 ;; LAST-CAST-END is the first token after the closing paren of a
7502 ;; preceding cast, or nil if none is known. If
7503 ;; `c-forward-decl-or-cast-1' is used in succession, it should be
7504 ;; the position after the closest preceding call where a cast was
7505 ;; matched. In that case it's used to discover chains of casts like
7506 ;; "(a) (b) c".
7508 ;; This function records identifier ranges on
7509 ;; `c-record-type-identifiers' and `c-record-ref-identifiers' if
7510 ;; `c-record-type-identifiers' is non-nil.
7512 ;; This function might do hidden buffer changes.
7514 (let (;; `start-pos' is used below to point to the start of the
7515 ;; first type, i.e. after any leading specifiers. It might
7516 ;; also point at the beginning of the preceding syntactic
7517 ;; whitespace.
7518 (start-pos (point))
7519 ;; Set to the result of `c-forward-type'.
7520 at-type
7521 ;; The position of the first token in what we currently
7522 ;; believe is the type in the declaration or cast, after any
7523 ;; specifiers and their associated clauses.
7524 type-start
7525 ;; The position of the first token in what we currently
7526 ;; believe is the declarator for the first identifier. Set
7527 ;; when the type is found, and moved forward over any
7528 ;; `c-decl-hangon-kwds' and their associated clauses that
7529 ;; occurs after the type.
7530 id-start
7531 ;; These store `at-type', `type-start' and `id-start' of the
7532 ;; identifier before the one in those variables. The previous
7533 ;; identifier might turn out to be the real type in a
7534 ;; declaration if the last one has to be the declarator in it.
7535 ;; If `backup-at-type' is nil then the other variables have
7536 ;; undefined values.
7537 backup-at-type backup-type-start backup-id-start
7538 ;; This stores `kwd-sym' of the symbol before the current one.
7539 ;; This is needed to distinguish the C++11 version of "auto" from
7540 ;; the pre C++11 meaning.
7541 backup-kwd-sym
7542 ;; Set if we've found a specifier (apart from "typedef") that makes
7543 ;; the defined identifier(s) types.
7544 at-type-decl
7545 ;; Set if we've a "typedef" keyword.
7546 at-typedef
7547 ;; Set if we've found a specifier that can start a declaration
7548 ;; where there's no type.
7549 maybe-typeless
7550 ;; Save the value of kwd-sym between loops of the "Check for a
7551 ;; type" loop. Needed to distinguish a C++11 "auto" from a pre
7552 ;; C++11 one.
7553 prev-kwd-sym
7554 ;; If a specifier is found that also can be a type prefix,
7555 ;; these flags are set instead of those above. If we need to
7556 ;; back up an identifier, they are copied to the real flag
7557 ;; variables. Thus they only take effect if we fail to
7558 ;; interpret it as a type.
7559 backup-at-type-decl backup-maybe-typeless
7560 ;; Whether we've found a declaration or a cast. We might know
7561 ;; this before we've found the type in it. It's 'ids if we've
7562 ;; found two consecutive identifiers (usually a sure sign, but
7563 ;; we should allow that in labels too), and t if we've found a
7564 ;; specifier keyword (a 100% sure sign).
7565 at-decl-or-cast
7566 ;; Set when we need to back up to parse this as a declaration
7567 ;; but not as a cast.
7568 backup-if-not-cast
7569 ;; For casts, the return position.
7570 cast-end
7571 ;; Have we got a new-style C++11 "auto"?
7572 new-style-auto
7573 ;; Set when the symbol before `preceding-token-end' is known to
7574 ;; terminate the previous construct, or when we're at point-min.
7575 at-decl-start
7576 ;; Save `c-record-type-identifiers' and
7577 ;; `c-record-ref-identifiers' since ranges are recorded
7578 ;; speculatively and should be thrown away if it turns out
7579 ;; that it isn't a declaration or cast.
7580 (save-rec-type-ids c-record-type-identifiers)
7581 (save-rec-ref-ids c-record-ref-identifiers)
7582 ;; Set when we parse a declaration which might also be an expression,
7583 ;; such as "a *b". See CASE 16 and CASE 17.
7584 maybe-expression)
7586 (save-excursion
7587 (goto-char preceding-token-end)
7588 (setq at-decl-start
7589 (or (bobp)
7590 (let ((tok-end (point)))
7591 (c-backward-token-2)
7592 (member (buffer-substring-no-properties (point) tok-end)
7593 c-pre-start-tokens)))))
7595 (while (c-forward-annotation)
7596 (c-forward-syntactic-ws))
7598 ;; Check for a type. Unknown symbols are treated as possible
7599 ;; types, but they could also be specifiers disguised through
7600 ;; macros like __INLINE__, so we recognize both types and known
7601 ;; specifiers after them too.
7602 (while
7603 (let* ((start (point)) kwd-sym kwd-clause-end found-type noise-start)
7605 (cond
7606 ;; Look for a specifier keyword clause.
7607 ((or (looking-at c-prefix-spec-kwds-re)
7608 (and (c-major-mode-is 'java-mode)
7609 (looking-at "@[A-Za-z0-9]+")))
7610 (save-match-data
7611 (if (looking-at c-typedef-key)
7612 (setq at-typedef t)))
7613 (setq kwd-sym (c-keyword-sym (match-string 1)))
7614 (save-excursion
7615 (c-forward-keyword-clause 1)
7616 (setq kwd-clause-end (point))))
7617 ((and c-opt-cpp-prefix
7618 (looking-at c-noise-macro-with-parens-name-re))
7619 (setq noise-start (point))
7620 (c-forward-noise-clause)
7621 (setq kwd-clause-end (point))))
7623 (when (setq found-type (c-forward-type t)) ; brace-block-too
7624 ;; Found a known or possible type or a prefix of a known type.
7625 (when (and (c-major-mode-is 'c++-mode) ; C++11 style "auto"?
7626 (eq prev-kwd-sym (c-keyword-sym "auto"))
7627 (looking-at "[=(]")) ; FIXME!!! proper regexp.
7628 (setq new-style-auto t)
7629 (setq found-type nil)
7630 (goto-char start)) ; position of foo in "auto foo"
7632 (when at-type
7633 ;; Got two identifiers with nothing but whitespace
7634 ;; between them. That can only happen in declarations.
7635 (setq at-decl-or-cast 'ids)
7637 (when (eq at-type 'found)
7638 ;; If the previous identifier is a found type we
7639 ;; record it as a real one; it might be some sort of
7640 ;; alias for a prefix like "unsigned".
7641 (save-excursion
7642 (goto-char type-start)
7643 (let ((c-promote-possible-types t))
7644 (c-forward-type)))))
7646 (setq backup-at-type at-type
7647 backup-type-start type-start
7648 backup-id-start id-start
7649 backup-kwd-sym kwd-sym
7650 at-type found-type
7651 type-start start
7652 id-start (point)
7653 ;; The previous ambiguous specifier/type turned out
7654 ;; to be a type since we've parsed another one after
7655 ;; it, so clear these backup flags.
7656 backup-at-type-decl nil
7657 backup-maybe-typeless nil))
7659 (if (or kwd-sym noise-start)
7660 (progn
7661 ;; Handle known specifier keywords and
7662 ;; `c-decl-hangon-kwds' which can occur after known
7663 ;; types.
7665 (if (or (c-keyword-member kwd-sym 'c-decl-hangon-kwds)
7666 noise-start)
7667 ;; It's a hang-on keyword or noise clause that can occur
7668 ;; anywhere.
7669 (progn
7670 (if at-type
7671 ;; Move the identifier start position if
7672 ;; we've passed a type.
7673 (setq id-start kwd-clause-end)
7674 ;; Otherwise treat this as a specifier and
7675 ;; move the fallback position.
7676 (setq start-pos kwd-clause-end))
7677 (goto-char kwd-clause-end))
7679 ;; It's an ordinary specifier so we know that
7680 ;; anything before this can't be the type.
7681 (setq backup-at-type nil
7682 start-pos kwd-clause-end)
7684 (if found-type
7685 ;; It's ambiguous whether this keyword is a
7686 ;; specifier or a type prefix, so set the backup
7687 ;; flags. (It's assumed that `c-forward-type'
7688 ;; moved further than `c-forward-keyword-clause'.)
7689 (progn
7690 (when (c-keyword-member kwd-sym 'c-typedef-decl-kwds)
7691 (setq backup-at-type-decl t))
7692 (when (c-keyword-member kwd-sym 'c-typeless-decl-kwds)
7693 (setq backup-maybe-typeless t)))
7695 (when (c-keyword-member kwd-sym 'c-typedef-decl-kwds)
7696 ;; This test only happens after we've scanned a type.
7697 ;; So, with valid syntax, kwd-sym can't be 'typedef.
7698 (setq at-type-decl t))
7699 (when (c-keyword-member kwd-sym 'c-typeless-decl-kwds)
7700 (setq maybe-typeless t))
7702 ;; Haven't matched a type so it's an unambiguous
7703 ;; specifier keyword and we know we're in a
7704 ;; declaration.
7705 (setq at-decl-or-cast t)
7706 (setq prev-kwd-sym kwd-sym)
7708 (goto-char kwd-clause-end))))
7710 ;; If the type isn't known we continue so that we'll jump
7711 ;; over all specifiers and type identifiers. The reason
7712 ;; to do this for a known type prefix is to make things
7713 ;; like "unsigned INT16" work.
7714 (and found-type (not (eq found-type t))))))
7716 (cond
7717 ((eq at-type t)
7718 ;; If a known type was found, we still need to skip over any
7719 ;; hangon keyword clauses after it. Otherwise it has already
7720 ;; been done in the loop above.
7721 (while
7722 (cond ((looking-at c-decl-hangon-key)
7723 (c-forward-keyword-clause 1))
7724 ((and c-opt-cpp-prefix
7725 (looking-at c-noise-macro-with-parens-name-re))
7726 (c-forward-noise-clause))))
7727 (setq id-start (point)))
7729 ((eq at-type 'prefix)
7730 ;; A prefix type is itself a primitive type when it's not
7731 ;; followed by another type.
7732 (setq at-type t))
7734 ((not at-type)
7735 ;; Got no type but set things up to continue anyway to handle
7736 ;; the various cases when a declaration doesn't start with a
7737 ;; type.
7738 (setq id-start start-pos))
7740 ((and (eq at-type 'maybe)
7741 (c-major-mode-is 'c++-mode))
7742 ;; If it's C++ then check if the last "type" ends on the form
7743 ;; "foo::foo" or "foo::~foo", i.e. if it's the name of a
7744 ;; (con|de)structor.
7745 (save-excursion
7746 (let (name end-2 end-1)
7747 (goto-char id-start)
7748 (c-backward-syntactic-ws)
7749 (setq end-2 (point))
7750 (when (and
7751 (c-simple-skip-symbol-backward)
7752 (progn
7753 (setq name
7754 (buffer-substring-no-properties (point) end-2))
7755 ;; Cheating in the handling of syntactic ws below.
7756 (< (skip-chars-backward ":~ \t\n\r\v\f") 0))
7757 (progn
7758 (setq end-1 (point))
7759 (c-simple-skip-symbol-backward))
7760 (>= (point) type-start)
7761 (equal (buffer-substring-no-properties (point) end-1)
7762 name))
7763 ;; It is a (con|de)structor name. In that case the
7764 ;; declaration is typeless so zap out any preceding
7765 ;; identifier(s) that we might have taken as types.
7766 (goto-char type-start)
7767 (setq at-type nil
7768 backup-at-type nil
7769 id-start type-start))))))
7771 ;; Check for and step over a type decl expression after the thing
7772 ;; that is or might be a type. This can't be skipped since we
7773 ;; need the correct end position of the declarator for
7774 ;; `max-type-decl-end-*'.
7775 (let ((start (point)) (paren-depth 0) pos
7776 ;; True if there's a non-open-paren match of
7777 ;; `c-type-decl-prefix-key'.
7778 got-prefix
7779 ;; True if the declarator is surrounded by a parenthesis pair.
7780 got-parens
7781 ;; True if there is an identifier in the declarator.
7782 got-identifier
7783 ;; True if there's a non-close-paren match of
7784 ;; `c-type-decl-suffix-key'.
7785 got-suffix
7786 ;; True if there's a prefix match outside the outermost
7787 ;; paren pair that surrounds the declarator.
7788 got-prefix-before-parens
7789 ;; True if there's a suffix match outside the outermost
7790 ;; paren pair that surrounds the declarator. The value is
7791 ;; the position of the first suffix match.
7792 got-suffix-after-parens
7793 ;; True if we've parsed the type decl to a token that is
7794 ;; known to end declarations in this context.
7795 at-decl-end
7796 ;; The earlier values of `at-type' and `type-start' if we've
7797 ;; shifted the type backwards.
7798 identifier-type identifier-start
7799 ;; If `c-parse-and-markup-<>-arglists' is set we need to
7800 ;; turn it off during the name skipping below to avoid
7801 ;; getting `c-type' properties that might be bogus. That
7802 ;; can happen since we don't know if
7803 ;; `c-restricted-<>-arglists' will be correct inside the
7804 ;; arglist paren that gets entered.
7805 c-parse-and-markup-<>-arglists
7806 ;; Start of the identifier for which `got-identifier' was set.
7807 name-start)
7809 (goto-char id-start)
7811 ;; Skip over type decl prefix operators. (Note similar code in
7812 ;; `c-forward-declarator'.)
7813 (if (and c-recognize-typeless-decls
7814 (equal c-type-decl-prefix-key "\\<\\>"))
7815 (when (eq (char-after) ?\()
7816 (progn
7817 (setq paren-depth (1+ paren-depth))
7818 (forward-char)))
7819 (while (and (looking-at c-type-decl-prefix-key)
7820 (if (and (c-major-mode-is 'c++-mode)
7821 (match-beginning 3))
7822 ;; If the third submatch matches in C++ then
7823 ;; we're looking at an identifier that's a
7824 ;; prefix only if it specifies a member pointer.
7825 (when (progn (setq pos (point))
7826 (setq got-identifier (c-forward-name)))
7827 (setq name-start pos)
7828 (if (looking-at "\\(::\\)")
7829 ;; We only check for a trailing "::" and
7830 ;; let the "*" that should follow be
7831 ;; matched in the next round.
7832 (progn (setq got-identifier nil) t)
7833 ;; It turned out to be the real identifier,
7834 ;; so stop.
7835 nil))
7838 (if (eq (char-after) ?\()
7839 (progn
7840 (setq paren-depth (1+ paren-depth))
7841 (forward-char))
7842 (unless got-prefix-before-parens
7843 (setq got-prefix-before-parens (= paren-depth 0)))
7844 (setq got-prefix t)
7845 (goto-char (match-end 1)))
7846 (c-forward-syntactic-ws)))
7848 (setq got-parens (> paren-depth 0))
7850 ;; Skip over an identifier.
7851 (or got-identifier
7852 (and (looking-at c-identifier-start)
7853 (setq pos (point))
7854 (setq got-identifier (c-forward-name))
7855 (setq name-start pos)))
7857 ;; Skip over type decl suffix operators and trailing noise macros.
7858 (while
7859 (cond
7860 ((and c-opt-cpp-prefix
7861 (looking-at c-noise-macro-with-parens-name-re))
7862 (c-forward-noise-clause))
7864 ((looking-at c-type-decl-suffix-key)
7865 (if (eq (char-after) ?\))
7866 (when (> paren-depth 0)
7867 (setq paren-depth (1- paren-depth))
7868 (forward-char)
7870 (when (if (save-match-data (looking-at "\\s("))
7871 (c-safe (c-forward-sexp 1) t)
7872 (goto-char (match-end 1))
7874 (when (and (not got-suffix-after-parens)
7875 (= paren-depth 0))
7876 (setq got-suffix-after-parens (match-beginning 0)))
7877 (setq got-suffix t))))
7880 ;; No suffix matched. We might have matched the
7881 ;; identifier as a type and the open paren of a
7882 ;; function arglist as a type decl prefix. In that
7883 ;; case we should "backtrack": Reinterpret the last
7884 ;; type as the identifier, move out of the arglist and
7885 ;; continue searching for suffix operators.
7887 ;; Do this even if there's no preceding type, to cope
7888 ;; with old style function declarations in K&R C,
7889 ;; (con|de)structors in C++ and `c-typeless-decl-kwds'
7890 ;; style declarations. That isn't applicable in an
7891 ;; arglist context, though.
7892 (when (and (= paren-depth 1)
7893 (not got-prefix-before-parens)
7894 (not (eq at-type t))
7895 (or backup-at-type
7896 maybe-typeless
7897 backup-maybe-typeless
7898 (when c-recognize-typeless-decls
7899 (not context)))
7900 (setq pos (c-up-list-forward (point)))
7901 (eq (char-before pos) ?\)))
7902 (c-fdoc-shift-type-backward)
7903 (goto-char pos)
7904 t)))
7906 (c-forward-syntactic-ws))
7908 (when (or (and new-style-auto
7909 (looking-at c-auto-ops-re))
7910 (and (or maybe-typeless backup-maybe-typeless)
7911 (not got-identifier)
7912 (not got-prefix)
7913 at-type))
7914 ;; Have found no identifier but `c-typeless-decl-kwds' has
7915 ;; matched so we know we're inside a declaration. The
7916 ;; preceding type must be the identifier instead.
7917 (c-fdoc-shift-type-backward))
7919 ;; Prepare the "-> type;" for fontification later on.
7920 (when (and new-style-auto
7921 (looking-at c-haskell-op-re))
7922 (save-excursion
7923 (goto-char (match-end 0))
7924 (c-forward-syntactic-ws)
7925 (setq type-start (point))
7926 (setq at-type (c-forward-type))))
7928 (setq
7929 at-decl-or-cast
7930 (catch 'at-decl-or-cast
7932 ;; CASE 1
7933 (when (> paren-depth 0)
7934 ;; Encountered something inside parens that isn't matched by
7935 ;; the `c-type-decl-*' regexps, so it's not a type decl
7936 ;; expression. Try to skip out to the same paren depth to
7937 ;; not confuse the cast check below.
7938 (c-safe (goto-char (scan-lists (point) 1 paren-depth)))
7939 ;; If we've found a specifier keyword then it's a
7940 ;; declaration regardless.
7941 (throw 'at-decl-or-cast (eq at-decl-or-cast t)))
7943 (setq at-decl-end
7944 (looking-at (cond ((eq context '<>) "[,>]")
7945 (context "[,)]")
7946 (t "[,;]"))))
7948 ;; Now we've collected info about various characteristics of
7949 ;; the construct we're looking at. Below follows a decision
7950 ;; tree based on that. It's ordered to check more certain
7951 ;; signs before less certain ones.
7953 (if got-identifier
7954 (progn
7956 ;; CASE 2
7957 (when (and (or at-type maybe-typeless)
7958 (not (or got-prefix got-parens)))
7959 ;; Got another identifier directly after the type, so it's a
7960 ;; declaration.
7961 (throw 'at-decl-or-cast t))
7963 (when (and got-parens
7964 (not got-prefix)
7965 ;; (not got-suffix-after-parens)
7966 (or backup-at-type
7967 maybe-typeless
7968 backup-maybe-typeless
7969 (eq at-decl-or-cast t)
7970 ;; Check whether we have "bar (gnu);" where we
7971 ;; are directly inside a class (etc.) called "bar".
7972 (save-excursion
7973 (and
7974 (progn
7975 (goto-char name-start)
7976 (not (memq (c-forward-type) '(nil maybe))))
7977 (progn
7978 (goto-char id-start)
7979 (c-directly-in-class-called-p
7980 (buffer-substring
7981 type-start
7982 (progn
7983 (goto-char type-start)
7984 (c-forward-type)
7985 (c-backward-syntactic-ws)
7986 (point)))))))))
7987 ;; Got a declaration of the form "foo bar (gnu);" or "bar
7988 ;; (gnu);" where we've recognized "bar" as the type and "gnu"
7989 ;; as the declarator, and in the latter case, checked that
7990 ;; "bar (gnu)" appears directly inside the class "bar". In
7991 ;; this case it's however more likely that "bar" is the
7992 ;; declarator and "gnu" a function argument or initializer
7993 ;; (if `c-recognize-paren-inits' is set), since the parens
7994 ;; around "gnu" would be superfluous if it's a declarator.
7995 ;; Shift the type one step backward.
7996 (c-fdoc-shift-type-backward)))
7998 ;; Found no identifier.
8000 (if backup-at-type
8001 (progn
8003 ;; CASE 3
8004 (when (= (point) start)
8005 ;; Got a plain list of identifiers. If a colon follows it's
8006 ;; a valid label, or maybe a bitfield. Otherwise the last
8007 ;; one probably is the declared identifier and we should
8008 ;; back up to the previous type, providing it isn't a cast.
8009 (if (and (eq (char-after) ?:)
8010 (not (c-major-mode-is 'java-mode)))
8011 (cond
8012 ;; If we've found a specifier keyword then it's a
8013 ;; declaration regardless.
8014 ((eq at-decl-or-cast t)
8015 (throw 'at-decl-or-cast t))
8016 ((and c-has-bitfields
8017 (eq at-decl-or-cast 'ids)) ; bitfield.
8018 (setq backup-if-not-cast t)
8019 (throw 'at-decl-or-cast t)))
8021 (setq backup-if-not-cast t)
8022 (throw 'at-decl-or-cast t)))
8024 ;; CASE 4
8025 (when (and got-suffix
8026 (not got-prefix)
8027 (not got-parens))
8028 ;; Got a plain list of identifiers followed by some suffix.
8029 ;; If this isn't a cast then the last identifier probably is
8030 ;; the declared one and we should back up to the previous
8031 ;; type.
8032 (setq backup-if-not-cast t)
8033 (throw 'at-decl-or-cast t)))
8035 ;; CASE 5
8036 (when (eq at-type t)
8037 ;; If the type is known we know that there can't be any
8038 ;; identifier somewhere else, and it's only in declarations in
8039 ;; e.g. function prototypes and in casts that the identifier may
8040 ;; be left out.
8041 (throw 'at-decl-or-cast t))
8043 (when (= (point) start)
8044 ;; Only got a single identifier (parsed as a type so far).
8045 ;; CASE 6
8046 (if (and
8047 ;; Check that the identifier isn't at the start of an
8048 ;; expression.
8049 at-decl-end
8050 (cond
8051 ((eq context 'decl)
8052 ;; Inside an arglist that contains declarations. If K&R
8053 ;; style declarations and parenthesis style initializers
8054 ;; aren't allowed then the single identifier must be a
8055 ;; type, else we require that it's known or found
8056 ;; (primitive types are handled above).
8057 (or (and (not c-recognize-knr-p)
8058 (not c-recognize-paren-inits))
8059 (memq at-type '(known found))))
8060 ((eq context '<>)
8061 ;; Inside a template arglist. Accept known and found
8062 ;; types; other identifiers could just as well be
8063 ;; constants in C++.
8064 (memq at-type '(known found)))))
8065 (throw 'at-decl-or-cast t)
8066 ;; CASE 7
8067 ;; Can't be a valid declaration or cast, but if we've found a
8068 ;; specifier it can't be anything else either, so treat it as
8069 ;; an invalid/unfinished declaration or cast.
8070 (throw 'at-decl-or-cast at-decl-or-cast))))
8072 (if (and got-parens
8073 (not got-prefix)
8074 (not context)
8075 (not (eq at-type t))
8076 (or backup-at-type
8077 maybe-typeless
8078 backup-maybe-typeless
8079 (when c-recognize-typeless-decls
8080 (or (not got-suffix)
8081 (not (looking-at
8082 c-after-suffixed-type-maybe-decl-key))))))
8083 ;; Got an empty paren pair and a preceding type that probably
8084 ;; really is the identifier. Shift the type backwards to make
8085 ;; the last one the identifier. This is analogous to the
8086 ;; "backtracking" done inside the `c-type-decl-suffix-key' loop
8087 ;; above.
8089 ;; Exception: In addition to the conditions in that
8090 ;; "backtracking" code, do not shift backward if we're not
8091 ;; looking at either `c-after-suffixed-type-decl-key' or "[;,]".
8092 ;; Since there's no preceding type, the shift would mean that
8093 ;; the declaration is typeless. But if the regexp doesn't match
8094 ;; then we will simply fall through in the tests below and not
8095 ;; recognize it at all, so it's better to try it as an abstract
8096 ;; declarator instead.
8097 (c-fdoc-shift-type-backward)
8099 ;; Still no identifier.
8100 ;; CASE 8
8101 (when (and got-prefix (or got-parens got-suffix))
8102 ;; Require `got-prefix' together with either `got-parens' or
8103 ;; `got-suffix' to recognize it as an abstract declarator:
8104 ;; `got-parens' only is probably an empty function call.
8105 ;; `got-suffix' only can build an ordinary expression together
8106 ;; with the preceding identifier which we've taken as a type.
8107 ;; We could actually accept on `got-prefix' only, but that can
8108 ;; easily occur temporarily while writing an expression so we
8109 ;; avoid that case anyway. We could do a better job if we knew
8110 ;; the point when the fontification was invoked.
8111 (throw 'at-decl-or-cast t))
8113 ;; CASE 9
8114 (when (and at-type
8115 (not got-prefix)
8116 (not got-parens)
8117 got-suffix-after-parens
8118 (eq (char-after got-suffix-after-parens) ?\())
8119 ;; Got a type, no declarator but a paren suffix. I.e. it's a
8120 ;; normal function call after all (or perhaps a C++ style object
8121 ;; instantiation expression).
8122 (throw 'at-decl-or-cast nil))))
8124 ;; CASE 10
8125 (when at-decl-or-cast
8126 ;; By now we've located the type in the declaration that we know
8127 ;; we're in.
8128 (throw 'at-decl-or-cast t))
8130 ;; CASE 11
8131 (when (and got-identifier
8132 (not context)
8133 (looking-at c-after-suffixed-type-decl-key)
8134 (if (and got-parens
8135 (not got-prefix)
8136 (not got-suffix)
8137 (not (eq at-type t)))
8138 ;; Shift the type backward in the case that there's a
8139 ;; single identifier inside parens. That can only
8140 ;; occur in K&R style function declarations so it's
8141 ;; more likely that it really is a function call.
8142 ;; Therefore we only do this after
8143 ;; `c-after-suffixed-type-decl-key' has matched.
8144 (progn (c-fdoc-shift-type-backward) t)
8145 got-suffix-after-parens))
8146 ;; A declaration according to `c-after-suffixed-type-decl-key'.
8147 (throw 'at-decl-or-cast t))
8149 ;; CASE 12
8150 (when (and (or got-prefix (not got-parens))
8151 (memq at-type '(t known)))
8152 ;; It's a declaration if a known type precedes it and it can't be a
8153 ;; function call.
8154 (throw 'at-decl-or-cast t))
8156 ;; If we get here we can't tell if this is a type decl or a normal
8157 ;; expression by looking at it alone. (That's under the assumption
8158 ;; that normal expressions always can look like type decl expressions,
8159 ;; which isn't really true but the cases where it doesn't hold are so
8160 ;; uncommon (e.g. some placements of "const" in C++) it's not worth
8161 ;; the effort to look for them.)
8163 ;;; 2008-04-16: commented out the next form, to allow the function to recognize
8164 ;;; "foo (int bar)" in CC (an implicit type (in class foo) without a semicolon)
8165 ;;; as a(n almost complete) declaration, enabling it to be fontified.
8166 ;; CASE 13
8167 ;; (unless (or at-decl-end (looking-at "=[^=]"))
8168 ;; If this is a declaration it should end here or its initializer(*)
8169 ;; should start here, so check for allowed separation tokens. Note
8170 ;; that this rule doesn't work e.g. with a K&R arglist after a
8171 ;; function header.
8173 ;; *) Don't check for C++ style initializers using parens
8174 ;; since those already have been matched as suffixes.
8176 ;; If `at-decl-or-cast' is then we've found some other sign that
8177 ;; it's a declaration or cast, so then it's probably an
8178 ;; invalid/unfinished one.
8179 ;; (throw 'at-decl-or-cast at-decl-or-cast))
8181 ;; Below are tests that only should be applied when we're certain to
8182 ;; not have parsed halfway through an expression.
8184 ;; CASE 14
8185 (when (memq at-type '(t known))
8186 ;; The expression starts with a known type so treat it as a
8187 ;; declaration.
8188 (throw 'at-decl-or-cast t))
8190 ;; CASE 15
8191 (when (and (c-major-mode-is 'c++-mode)
8192 ;; In C++ we check if the identifier is a known type, since
8193 ;; (con|de)structors use the class name as identifier.
8194 ;; We've always shifted over the identifier as a type and
8195 ;; then backed up again in this case.
8196 identifier-type
8197 (or (memq identifier-type '(found known))
8198 (and (eq (char-after identifier-start) ?~)
8199 ;; `at-type' probably won't be 'found for
8200 ;; destructors since the "~" is then part of the
8201 ;; type name being checked against the list of
8202 ;; known types, so do a check without that
8203 ;; operator.
8204 (or (save-excursion
8205 (goto-char (1+ identifier-start))
8206 (c-forward-syntactic-ws)
8207 (c-with-syntax-table
8208 c-identifier-syntax-table
8209 (looking-at c-known-type-key)))
8210 (save-excursion
8211 (goto-char (1+ identifier-start))
8212 ;; We have already parsed the type earlier,
8213 ;; so it'd be possible to cache the end
8214 ;; position instead of redoing it here, but
8215 ;; then we'd need to keep track of another
8216 ;; position everywhere.
8217 (c-check-type (point)
8218 (progn (c-forward-type)
8219 (point))))))))
8220 (throw 'at-decl-or-cast t))
8222 (if got-identifier
8223 (progn
8224 ;; CASE 16
8225 (when (and got-prefix-before-parens
8226 at-type
8227 (or at-decl-end (looking-at "=[^=]"))
8228 (not context)
8229 (or (not got-suffix)
8230 at-decl-start))
8231 ;; Got something like "foo * bar;". Since we're not inside
8232 ;; an arglist it would be a meaningless expression because
8233 ;; the result isn't used. We therefore choose to recognize
8234 ;; it as a declaration. We only allow a suffix (which makes
8235 ;; the construct look like a function call) when
8236 ;; `at-decl-start' provides additional evidence that we do
8237 ;; have a declaration.
8238 (setq maybe-expression t)
8239 (throw 'at-decl-or-cast t))
8241 ;; CASE 17
8242 (when (and (or got-suffix-after-parens
8243 (looking-at "=[^=]"))
8244 (eq at-type 'found)
8245 (not (eq context 'arglist)))
8246 ;; Got something like "a (*b) (c);" or "a (b) = c;". It could
8247 ;; be an odd expression or it could be a declaration. Treat
8248 ;; it as a declaration if "a" has been used as a type
8249 ;; somewhere else (if it's a known type we won't get here).
8250 (setq maybe-expression t)
8251 (throw 'at-decl-or-cast t)))
8253 ;; CASE 18
8254 (when (and context
8255 (or got-prefix
8256 (and (eq context 'decl)
8257 (not c-recognize-paren-inits)
8258 (or got-parens got-suffix))))
8259 ;; Got a type followed by an abstract declarator. If `got-prefix'
8260 ;; is set it's something like "a *" without anything after it. If
8261 ;; `got-parens' or `got-suffix' is set it's "a()", "a[]", "a()[]",
8262 ;; or similar, which we accept only if the context rules out
8263 ;; expressions.
8264 (throw 'at-decl-or-cast t)))
8266 ;; If we had a complete symbol table here (which rules out
8267 ;; `c-found-types') we should return t due to the disambiguation rule
8268 ;; (in at least C++) that anything that can be parsed as a declaration
8269 ;; is a declaration. Now we're being more defensive and prefer to
8270 ;; highlight things like "foo (bar);" as a declaration only if we're
8271 ;; inside an arglist that contains declarations.
8272 ;; CASE 19
8273 (eq context 'decl))))
8275 ;; The point is now after the type decl expression.
8277 (cond
8278 ;; Check for a cast.
8279 ((save-excursion
8280 (and
8281 c-cast-parens
8283 ;; Should be the first type/identifier in a cast paren.
8284 (> preceding-token-end (point-min))
8285 (memq (char-before preceding-token-end) c-cast-parens)
8287 ;; The closing paren should follow.
8288 (progn
8289 (c-forward-syntactic-ws)
8290 (looking-at "\\s)"))
8292 ;; There should be a primary expression after it.
8293 (let (pos)
8294 (forward-char)
8295 (c-forward-syntactic-ws)
8296 (setq cast-end (point))
8297 (and (looking-at c-primary-expr-regexp)
8298 (progn
8299 (setq pos (match-end 0))
8301 ;; Check if the expression begins with a prefix keyword.
8302 (match-beginning 2)
8303 (if (match-beginning 1)
8304 ;; Expression begins with an ambiguous operator. Treat
8305 ;; it as a cast if it's a type decl or if we've
8306 ;; recognized the type somewhere else.
8307 (or at-decl-or-cast
8308 (memq at-type '(t known found)))
8309 ;; Unless it's a keyword, it's the beginning of a primary
8310 ;; expression.
8311 (not (looking-at c-keywords-regexp)))))
8312 ;; If `c-primary-expr-regexp' matched a nonsymbol token, check
8313 ;; that it matched a whole one so that we don't e.g. confuse
8314 ;; the operator '-' with '->'. It's ok if it matches further,
8315 ;; though, since it e.g. can match the float '.5' while the
8316 ;; operator regexp only matches '.'.
8317 (or (not (looking-at c-nonsymbol-token-regexp))
8318 (<= (match-end 0) pos))))
8320 ;; There should either be a cast before it or something that isn't an
8321 ;; identifier or close paren.
8322 (> preceding-token-end (point-min))
8323 (progn
8324 (goto-char (1- preceding-token-end))
8325 (or (eq (point) last-cast-end)
8326 (progn
8327 (c-backward-syntactic-ws)
8328 (if (< (skip-syntax-backward "w_") 0)
8329 ;; It's a symbol. Accept it only if it's one of the
8330 ;; keywords that can precede an expression (without
8331 ;; surrounding parens).
8332 (looking-at c-simple-stmt-key)
8333 (and
8334 ;; Check that it isn't a close paren (block close is ok,
8335 ;; though).
8336 (not (memq (char-before) '(?\) ?\])))
8337 ;; Check that it isn't a nonsymbol identifier.
8338 (not (c-on-identifier)))))))))
8340 ;; Handle the cast.
8341 (when (and c-record-type-identifiers at-type (not (eq at-type t)))
8342 (let ((c-promote-possible-types t))
8343 (goto-char type-start)
8344 (c-forward-type)))
8346 (goto-char cast-end)
8347 'cast)
8349 (at-decl-or-cast
8350 ;; We're at a declaration. Highlight the type and the following
8351 ;; declarators.
8353 (when backup-if-not-cast
8354 (c-fdoc-shift-type-backward t))
8356 (when (and (eq context 'decl) (looking-at ","))
8357 ;; Make sure to propagate the `c-decl-arg-start' property to
8358 ;; the next argument if it's set in this one, to cope with
8359 ;; interactive refontification.
8360 (c-put-c-type-property (point) 'c-decl-arg-start))
8362 ;; Record the type's coordinates in `c-record-type-identifiers' for
8363 ;; later fontification.
8364 (when (and c-record-type-identifiers at-type ;; (not (eq at-type t))
8365 ;; There seems no reason to exclude a token from
8366 ;; fontification just because it's "a known type that can't
8367 ;; be a name or other expression". 2013-09-18.
8369 (let ((c-promote-possible-types t))
8370 (save-excursion
8371 (goto-char type-start)
8372 (c-forward-type))))
8374 (list id-start
8375 (and (or at-type-decl at-typedef)
8376 (cons at-type-decl at-typedef))
8377 maybe-expression
8378 type-start))
8381 ;; False alarm. Restore the recorded ranges.
8382 (setq c-record-type-identifiers save-rec-type-ids
8383 c-record-ref-identifiers save-rec-ref-ids)
8384 nil))))
8386 (defun c-forward-label (&optional assume-markup preceding-token-end limit)
8387 ;; Assuming that point is at the beginning of a token, check if it starts a
8388 ;; label and if so move over it and return non-nil (t in default situations,
8389 ;; specific symbols (see below) for interesting situations), otherwise don't
8390 ;; move and return nil. "Label" here means "most things with a colon".
8392 ;; More precisely, a "label" is regarded as one of:
8393 ;; (i) a goto target like "foo:" - returns the symbol `goto-target';
8394 ;; (ii) A case label - either the entire construct "case FOO:", or just the
8395 ;; bare "case", should the colon be missing. We return t;
8396 ;; (iii) a keyword which needs a colon, like "default:" or "private:"; We
8397 ;; return t;
8398 ;; (iv) One of QT's "extended" C++ variants of
8399 ;; "private:"/"protected:"/"public:"/"more:" looking like "public slots:".
8400 ;; Returns the symbol `qt-2kwds-colon'.
8401 ;; (v) QT's construct "signals:". Returns the symbol `qt-1kwd-colon'.
8402 ;; (vi) One of the keywords matched by `c-opt-extra-label-key' (without any
8403 ;; colon). Currently (2006-03), this applies only to Objective C's
8404 ;; keywords "@private", "@protected", and "@public". Returns t.
8406 ;; One of the things which will NOT be recognized as a label is a bit-field
8407 ;; element of a struct, something like "int foo:5".
8409 ;; The end of the label is taken to be just after the colon, or the end of
8410 ;; the first submatch in `c-opt-extra-label-key'. The point is directly
8411 ;; after the end on return. The terminating char gets marked with
8412 ;; `c-decl-end' to improve recognition of the following declaration or
8413 ;; statement.
8415 ;; If ASSUME-MARKUP is non-nil, it's assumed that the preceding
8416 ;; label, if any, has already been marked up like that.
8418 ;; If PRECEDING-TOKEN-END is given, it should be the first position
8419 ;; after the preceding token, i.e. on the other side of the
8420 ;; syntactic ws from the point. Use a value less than or equal to
8421 ;; (point-min) if the point is at the first token in (the visible
8422 ;; part of) the buffer.
8424 ;; The optional LIMIT limits the forward scan for the colon.
8426 ;; This function records the ranges of the label symbols on
8427 ;; `c-record-ref-identifiers' if `c-record-type-identifiers' (!) is
8428 ;; non-nil.
8430 ;; This function might do hidden buffer changes.
8432 (let ((start (point))
8433 label-end
8434 qt-symbol-idx
8435 macro-start ; if we're in one.
8436 label-type
8437 kwd)
8438 (cond
8439 ;; "case" or "default" (Doesn't apply to AWK).
8440 ((looking-at c-label-kwds-regexp)
8441 (let ((kwd-end (match-end 1)))
8442 ;; Record only the keyword itself for fontification, since in
8443 ;; case labels the following is a constant expression and not
8444 ;; a label.
8445 (when c-record-type-identifiers
8446 (c-record-ref-id (cons (match-beginning 1) kwd-end)))
8448 ;; Find the label end.
8449 (goto-char kwd-end)
8450 (setq label-type
8451 (if (and (c-syntactic-re-search-forward
8452 ;; Stop on chars that aren't allowed in expressions,
8453 ;; and on operator chars that would be meaningless
8454 ;; there. FIXME: This doesn't cope with ?: operators.
8455 "[;{=,@]\\|\\(\\=\\|[^:]\\):\\([^:]\\|\\'\\)"
8456 limit t t nil 1)
8457 (match-beginning 2))
8459 (progn ; there's a proper :
8460 (goto-char (match-beginning 2)) ; just after the :
8461 (c-put-c-type-property (1- (point)) 'c-decl-end)
8464 ;; It's an unfinished label. We consider the keyword enough
8465 ;; to recognize it as a label, so that it gets fontified.
8466 ;; Leave the point at the end of it, but don't put any
8467 ;; `c-decl-end' marker.
8468 (goto-char kwd-end)
8469 t))))
8471 ;; @private, @protected, @public, in Objective C, or similar.
8472 ((and c-opt-extra-label-key
8473 (looking-at c-opt-extra-label-key))
8474 ;; For a `c-opt-extra-label-key' match, we record the whole
8475 ;; thing for fontification. That's to get the leading '@' in
8476 ;; Objective-C protection labels fontified.
8477 (goto-char (match-end 1))
8478 (when c-record-type-identifiers
8479 (c-record-ref-id (cons (match-beginning 1) (point))))
8480 (c-put-c-type-property (1- (point)) 'c-decl-end)
8481 (setq label-type t))
8483 ;; All other cases of labels.
8484 ((and c-recognize-colon-labels ; nil for AWK and IDL, otherwise t.
8486 ;; A colon label must have something before the colon.
8487 (not (eq (char-after) ?:))
8489 ;; Check that we're not after a token that can't precede a label.
8491 ;; Trivially succeeds when there's no preceding token.
8492 ;; Succeeds when we're at a virtual semicolon.
8493 (if preceding-token-end
8494 (<= preceding-token-end (point-min))
8495 (save-excursion
8496 (c-backward-syntactic-ws)
8497 (setq preceding-token-end (point))
8498 (or (bobp)
8499 (c-at-vsemi-p))))
8501 ;; Check if we're after a label, if we're after a closing
8502 ;; paren that belong to statement, and with
8503 ;; `c-label-prefix-re'. It's done in different order
8504 ;; depending on `assume-markup' since the checks have
8505 ;; different expensiveness.
8506 (if assume-markup
8508 (eq (c-get-char-property (1- preceding-token-end) 'c-type)
8509 'c-decl-end)
8511 (save-excursion
8512 (goto-char (1- preceding-token-end))
8513 (c-beginning-of-current-token)
8514 (or (looking-at c-label-prefix-re)
8515 (looking-at c-block-stmt-1-key)))
8517 (and (eq (char-before preceding-token-end) ?\))
8518 (c-after-conditional)))
8521 (save-excursion
8522 (goto-char (1- preceding-token-end))
8523 (c-beginning-of-current-token)
8524 (or (looking-at c-label-prefix-re)
8525 (looking-at c-block-stmt-1-key)))
8527 (cond
8528 ((eq (char-before preceding-token-end) ?\))
8529 (c-after-conditional))
8531 ((eq (char-before preceding-token-end) ?:)
8532 ;; Might be after another label, so check it recursively.
8533 (save-restriction
8534 (save-excursion
8535 (goto-char (1- preceding-token-end))
8536 ;; Essentially the same as the
8537 ;; `c-syntactic-re-search-forward' regexp below.
8538 (setq macro-start
8539 (save-excursion (and (c-beginning-of-macro)
8540 (point))))
8541 (if macro-start (narrow-to-region macro-start (point-max)))
8542 (c-syntactic-skip-backward "^-]:?;}=*/%&|,<>!@+" nil t)
8543 ;; Note: the following should work instead of the
8544 ;; narrow-to-region above. Investigate why not,
8545 ;; sometime. ACM, 2006-03-31.
8546 ;; (c-syntactic-skip-backward "^-]:?;}=*/%&|,<>!@+"
8547 ;; macro-start t)
8548 (let ((pte (point))
8549 ;; If the caller turned on recording for us,
8550 ;; it shouldn't apply when we check the
8551 ;; preceding label.
8552 c-record-type-identifiers)
8553 ;; A label can't start at a cpp directive. Check for
8554 ;; this, since c-forward-syntactic-ws would foul up on it.
8555 (unless (and c-opt-cpp-prefix (looking-at c-opt-cpp-prefix))
8556 (c-forward-syntactic-ws)
8557 (c-forward-label nil pte start))))))))))
8559 ;; Point is still at the beginning of the possible label construct.
8561 ;; Check that the next nonsymbol token is ":", or that we're in one
8562 ;; of QT's "slots" declarations. Allow '(' for the sake of macro
8563 ;; arguments. FIXME: Should build this regexp from the language
8564 ;; constants.
8565 (cond
8566 ;; public: protected: private:
8567 ((and
8568 (c-major-mode-is 'c++-mode)
8569 (search-forward-regexp
8570 "\\=p\\(r\\(ivate\\|otected\\)\\|ublic\\)\\>[^_]" nil t)
8571 (progn (backward-char)
8572 (c-forward-syntactic-ws limit)
8573 (looking-at ":\\([^:]\\|\\'\\)"))) ; A single colon.
8574 (forward-char)
8575 (setq label-type t))
8576 ;; QT double keyword like "protected slots:" or goto target.
8577 ((progn (goto-char start) nil))
8578 ((when (c-syntactic-re-search-forward
8579 "[ \t\n[:?;{=*/%&|,<>!@+-]" limit t t) ; not at EOB
8580 (backward-char)
8581 (setq label-end (point))
8582 (setq qt-symbol-idx
8583 (and (c-major-mode-is 'c++-mode)
8584 (string-match
8585 "\\(p\\(r\\(ivate\\|otected\\)\\|ublic\\)\\|more\\)\\>"
8586 (buffer-substring start (point)))))
8587 (c-forward-syntactic-ws limit)
8588 (cond
8589 ((looking-at ":\\([^:]\\|\\'\\)") ; A single colon.
8590 (forward-char)
8591 (setq label-type
8592 (if (or (string= "signals" ; Special QT macro
8593 (setq kwd (buffer-substring-no-properties start label-end)))
8594 (string= "Q_SIGNALS" kwd))
8595 'qt-1kwd-colon
8596 'goto-target)))
8597 ((and qt-symbol-idx
8598 (search-forward-regexp "\\=\\(slots\\|Q_SLOTS\\)\\>" limit t)
8599 (progn (c-forward-syntactic-ws limit)
8600 (looking-at ":\\([^:]\\|\\'\\)"))) ; A single colon
8601 (forward-char)
8602 (setq label-type 'qt-2kwds-colon)))))))
8604 (save-restriction
8605 (narrow-to-region start (point))
8607 ;; Check that `c-nonlabel-token-key' doesn't match anywhere.
8608 (catch 'check-label
8609 (goto-char start)
8610 (while (progn
8611 (when (looking-at c-nonlabel-token-key)
8612 (goto-char start)
8613 (setq label-type nil)
8614 (throw 'check-label nil))
8615 (and (c-safe (c-forward-sexp)
8616 (c-forward-syntactic-ws)
8618 (not (eobp)))))
8620 ;; Record the identifiers in the label for fontification, unless
8621 ;; it begins with `c-label-kwds' in which case the following
8622 ;; identifiers are part of a (constant) expression that
8623 ;; shouldn't be fontified.
8624 (when (and c-record-type-identifiers
8625 (progn (goto-char start)
8626 (not (looking-at c-label-kwds-regexp))))
8627 (while (c-syntactic-re-search-forward c-symbol-key nil t)
8628 (c-record-ref-id (cons (match-beginning 0)
8629 (match-end 0)))))
8631 (c-put-c-type-property (1- (point-max)) 'c-decl-end)
8632 (goto-char (point-max)))))
8635 ;; Not a label.
8636 (goto-char start)))
8637 label-type))
8639 (defun c-forward-objc-directive ()
8640 ;; Assuming the point is at the beginning of a token, try to move
8641 ;; forward to the end of the Objective-C directive that starts
8642 ;; there. Return t if a directive was fully recognized, otherwise
8643 ;; the point is moved as far as one could be successfully parsed and
8644 ;; nil is returned.
8646 ;; This function records identifier ranges on
8647 ;; `c-record-type-identifiers' and `c-record-ref-identifiers' if
8648 ;; `c-record-type-identifiers' is non-nil.
8650 ;; This function might do hidden buffer changes.
8652 (let ((start (point))
8653 start-char
8654 (c-promote-possible-types t)
8656 ;; Turn off recognition of angle bracket arglists while parsing
8657 ;; types here since the protocol reference list might then be
8658 ;; considered part of the preceding name or superclass-name.
8659 c-recognize-<>-arglists)
8661 (if (or
8662 (when (looking-at
8663 (eval-when-compile
8664 (c-make-keywords-re t
8665 (append (c-lang-const c-protection-kwds objc)
8666 '("@end"))
8667 'objc-mode)))
8668 (goto-char (match-end 1))
8671 (and
8672 (looking-at
8673 (eval-when-compile
8674 (c-make-keywords-re t
8675 '("@interface" "@implementation" "@protocol")
8676 'objc-mode)))
8678 ;; Handle the name of the class itself.
8679 (progn
8680 ;; (c-forward-token-2) ; 2006/1/13 This doesn't move if the token's
8681 ;; at EOB.
8682 (goto-char (match-end 0))
8683 (setq lim (point))
8684 (c-skip-ws-forward)
8685 (c-forward-type))
8687 (catch 'break
8688 ;; Look for ": superclass-name" or "( category-name )".
8689 (when (looking-at "[:(]")
8690 (setq start-char (char-after))
8691 (forward-char)
8692 (c-forward-syntactic-ws)
8693 (unless (c-forward-type) (throw 'break nil))
8694 (when (eq start-char ?\()
8695 (unless (eq (char-after) ?\)) (throw 'break nil))
8696 (forward-char)
8697 (c-forward-syntactic-ws)))
8699 ;; Look for a protocol reference list.
8700 (if (eq (char-after) ?<)
8701 (let ((c-recognize-<>-arglists t)
8702 (c-parse-and-markup-<>-arglists t)
8703 c-restricted-<>-arglists)
8704 (c-forward-<>-arglist t))
8705 t))))
8707 (progn
8708 (c-backward-syntactic-ws lim)
8709 (c-clear-c-type-property start (1- (point)) 'c-decl-end)
8710 (c-put-c-type-property (1- (point)) 'c-decl-end)
8713 (c-clear-c-type-property start (point) 'c-decl-end)
8714 nil)))
8716 (defun c-beginning-of-inheritance-list (&optional lim)
8717 ;; Go to the first non-whitespace after the colon that starts a
8718 ;; multiple inheritance introduction. Optional LIM is the farthest
8719 ;; back we should search.
8721 ;; This function might do hidden buffer changes.
8722 (c-with-syntax-table c++-template-syntax-table
8723 (c-backward-token-2 0 t lim)
8724 (while (and (or (looking-at c-symbol-start)
8725 (looking-at "[<,]\\|::"))
8726 (zerop (c-backward-token-2 1 t lim))))))
8728 (defun c-in-method-def-p ()
8729 ;; Return nil if we aren't in a method definition, otherwise the
8730 ;; position of the initial [+-].
8732 ;; This function might do hidden buffer changes.
8733 (save-excursion
8734 (beginning-of-line)
8735 (and c-opt-method-key
8736 (looking-at c-opt-method-key)
8737 (point))
8740 ;; Contributed by Kevin Ryde <user42@zip.com.au>.
8741 (defun c-in-gcc-asm-p ()
8742 ;; Return non-nil if point is within a gcc \"asm\" block.
8744 ;; This should be called with point inside an argument list.
8746 ;; Only one level of enclosing parentheses is considered, so for
8747 ;; instance nil is returned when in a function call within an asm
8748 ;; operand.
8750 ;; This function might do hidden buffer changes.
8752 (and c-opt-asm-stmt-key
8753 (save-excursion
8754 (beginning-of-line)
8755 (backward-up-list 1)
8756 (c-beginning-of-statement-1 (point-min) nil t)
8757 (looking-at c-opt-asm-stmt-key))))
8759 (defun c-at-toplevel-p ()
8760 "Return a determination as to whether point is \"at the top level\".
8761 Informally, \"at the top level\" is anywhere where you can write
8762 a function.
8764 More precisely, being at the top-level means that point is either
8765 outside any enclosing block (such as a function definition), or
8766 directly inside a class, namespace or other block that contains
8767 another declaration level.
8769 If point is not at the top-level (e.g. it is inside a method
8770 definition), then nil is returned. Otherwise, if point is at a
8771 top-level not enclosed within a class definition, t is returned.
8772 Otherwise, a 2-vector is returned where the zeroth element is the
8773 buffer position of the start of the class declaration, and the first
8774 element is the buffer position of the enclosing class's opening
8775 brace.
8777 Note that this function might do hidden buffer changes. See the
8778 comment at the start of cc-engine.el for more info."
8779 ;; Note to maintainers: this function consumes a great mass of CPU cycles.
8780 ;; Its use should thus be minimized as far as possible.
8781 (let ((paren-state (c-parse-state)))
8782 (or (not (c-most-enclosing-brace paren-state))
8783 (c-search-uplist-for-classkey paren-state))))
8785 (defun c-just-after-func-arglist-p (&optional lim)
8786 ;; Return non-nil if the point is in the region after the argument
8787 ;; list of a function and its opening brace (or semicolon in case it
8788 ;; got no body). If there are K&R style argument declarations in
8789 ;; that region, the point has to be inside the first one for this
8790 ;; function to recognize it.
8792 ;; If successful, the point is moved to the first token after the
8793 ;; function header (see `c-forward-decl-or-cast-1' for details) and
8794 ;; the position of the opening paren of the function arglist is
8795 ;; returned.
8797 ;; The point is clobbered if not successful.
8799 ;; LIM is used as bound for backward buffer searches.
8801 ;; This function might do hidden buffer changes.
8803 (let ((beg (point)) id-start)
8804 (and
8805 (eq (c-beginning-of-statement-1 lim) 'same)
8807 (not (and (c-major-mode-is 'objc-mode)
8808 (c-forward-objc-directive)))
8810 (setq id-start
8811 (car-safe (c-forward-decl-or-cast-1 (c-point 'bosws) nil nil)))
8812 (< id-start beg)
8814 ;; There should not be a '=' or ',' between beg and the
8815 ;; start of the declaration since that means we were in the
8816 ;; "expression part" of the declaration.
8817 (or (> (point) beg)
8818 (not (looking-at "[=,]")))
8820 (save-excursion
8821 ;; Check that there's an arglist paren in the
8822 ;; declaration.
8823 (goto-char id-start)
8824 (cond ((eq (char-after) ?\()
8825 ;; The declarator is a paren expression, so skip past it
8826 ;; so that we don't get stuck on that instead of the
8827 ;; function arglist.
8828 (c-forward-sexp))
8829 ((and c-opt-op-identifier-prefix
8830 (looking-at c-opt-op-identifier-prefix))
8831 ;; Don't trip up on "operator ()".
8832 (c-forward-token-2 2 t)))
8833 (and (< (point) beg)
8834 (c-syntactic-re-search-forward "(" beg t t)
8835 (1- (point)))))))
8837 (defun c-in-knr-argdecl (&optional lim)
8838 ;; Return the position of the first argument declaration if point is
8839 ;; inside a K&R style argument declaration list, nil otherwise.
8840 ;; `c-recognize-knr-p' is not checked. If LIM is non-nil, it's a
8841 ;; position that bounds the backward search for the argument list. This
8842 ;; function doesn't move point.
8844 ;; Point must be within a possible K&R region, e.g. just before a top-level
8845 ;; "{". It must be outside of parens and brackets. The test can return
8846 ;; false positives otherwise.
8848 ;; This function might do hidden buffer changes.
8849 (save-excursion
8850 (save-restriction
8851 ;; If we're in a macro, our search range is restricted to it. Narrow to
8852 ;; the searchable range.
8853 (let* ((macro-start (save-excursion (and (c-beginning-of-macro) (point))))
8854 (macro-end (save-excursion (and macro-start (c-end-of-macro) (point))))
8855 (low-lim (max (or lim (point-min)) (or macro-start (point-min))))
8856 before-lparen after-rparen
8857 (here (point))
8858 (pp-count-out 20) ; Max number of paren/brace constructs before
8859 ; we give up.
8860 ids ; List of identifiers in the parenthesized list.
8861 id-start after-prec-token decl-or-cast decl-res
8862 c-last-identifier-range identifier-ok)
8863 (narrow-to-region low-lim (or macro-end (point-max)))
8865 ;; Search backwards for the defun's argument list. We give up if we
8866 ;; encounter a "}" (end of a previous defun) an "=" (which can't be in
8867 ;; a knr region) or BOB.
8869 ;; The criterion for a paren structure being the arg list is:
8870 ;; o - there is non-WS stuff after it but before any "{"; AND
8871 ;; o - the token after it isn't a ";" AND
8872 ;; o - it is preceded by either an identifier (the function name) or
8873 ;; a macro expansion like "DEFUN (...)"; AND
8874 ;; o - its content is a non-empty comma-separated list of identifiers
8875 ;; (an empty arg list won't have a knr region).
8877 ;; The following snippet illustrates these rules:
8878 ;; int foo (bar, baz, yuk)
8879 ;; int bar [] ;
8880 ;; int (*baz) (my_type) ;
8881 ;; int (*(* yuk) (void)) (void) ;
8882 ;; {
8884 ;; Additionally, for a knr list to be recognized:
8885 ;; o - The identifier of each declarator up to and including the
8886 ;; one "near" point must be contained in the arg list.
8888 (catch 'knr
8889 (while (> pp-count-out 0) ; go back one paren/bracket pair each time.
8890 (setq pp-count-out (1- pp-count-out))
8891 (c-syntactic-skip-backward "^)]}=")
8892 (cond ((eq (char-before) ?\))
8893 (setq after-rparen (point)))
8894 ((eq (char-before) ?\])
8895 (setq after-rparen nil))
8896 (t ; either } (hit previous defun) or = or no more
8897 ; parens/brackets.
8898 (throw 'knr nil)))
8900 (if after-rparen
8901 ;; We're inside a paren. Could it be our argument list....?
8903 (and
8904 (progn
8905 (goto-char after-rparen)
8906 (unless (c-go-list-backward) (throw 'knr nil)) ;
8907 ;; FIXME!!! What about macros between the parens? 2007/01/20
8908 (setq before-lparen (point)))
8910 ;; It can't be the arg list if next token is ; or {
8911 (progn (goto-char after-rparen)
8912 (c-forward-syntactic-ws)
8913 (not (memq (char-after) '(?\; ?\{ ?\=))))
8915 ;; Is the thing preceding the list an identifier (the
8916 ;; function name), or a macro expansion?
8917 (progn
8918 (goto-char before-lparen)
8919 (eq (c-backward-token-2) 0)
8920 (or (eq (c-on-identifier) (point))
8921 (and (eq (char-after) ?\))
8922 (c-go-up-list-backward)
8923 (eq (c-backward-token-2) 0)
8924 (eq (c-on-identifier) (point)))))
8926 ;; Have we got a non-empty list of comma-separated
8927 ;; identifiers?
8928 (progn
8929 (goto-char before-lparen)
8930 (c-forward-token-2) ; to first token inside parens
8931 (and
8932 (setq id-start (c-on-identifier)) ; Must be at least one.
8933 (catch 'id-list
8934 (while
8935 (progn
8936 (forward-char)
8937 (c-end-of-current-token)
8938 (push (buffer-substring-no-properties id-start
8939 (point))
8940 ids)
8941 (c-forward-syntactic-ws)
8942 (eq (char-after) ?\,))
8943 (c-forward-token-2)
8944 (unless (setq id-start (c-on-identifier))
8945 (throw 'id-list nil)))
8946 (eq (char-after) ?\)))))
8948 ;; Are all the identifiers in the k&r list up to the
8949 ;; current one also in the argument list?
8950 (progn
8951 (forward-char) ; over the )
8952 (setq after-prec-token after-rparen)
8953 (c-forward-syntactic-ws)
8954 (while (and
8955 (or (consp (setq decl-or-cast
8956 (c-forward-decl-or-cast-1
8957 after-prec-token
8958 nil ; Or 'arglist ???
8959 nil)))
8960 (progn
8961 (goto-char after-prec-token)
8962 (c-forward-syntactic-ws)
8963 (setq identifier-ok (eq (char-after) ?{))
8964 nil))
8965 (eq (char-after) ?\;)
8966 (setq after-prec-token (1+ (point)))
8967 (goto-char (car decl-or-cast))
8968 (setq decl-res (c-forward-declarator))
8969 (setq identifier-ok
8970 (member (buffer-substring-no-properties
8971 (car decl-res) (cadr decl-res))
8972 ids))
8973 (progn
8974 (goto-char after-prec-token)
8975 (prog1 (< (point) here)
8976 (c-forward-syntactic-ws))))
8977 (setq identifier-ok nil))
8978 identifier-ok))
8979 ;; ...Yes. We've identified the function's argument list.
8980 (throw 'knr
8981 (progn (goto-char after-rparen)
8982 (c-forward-syntactic-ws)
8983 (point)))
8984 ;; ...No. The current parens aren't the function's arg list.
8985 (goto-char before-lparen))
8987 (or (c-go-list-backward) ; backwards over [ .... ]
8988 (throw 'knr nil)))))))))
8990 (defun c-skip-conditional ()
8991 ;; skip forward over conditional at point, including any predicate
8992 ;; statements in parentheses. No error checking is performed.
8994 ;; This function might do hidden buffer changes.
8995 (c-forward-sexp (cond
8996 ;; else if()
8997 ((looking-at (concat "\\<else"
8998 "\\([ \t\n]\\|\\\\\n\\)+"
8999 "if\\>\\([^_]\\|$\\)"))
9001 ;; do, else, try, finally
9002 ((looking-at (concat "\\<\\("
9003 "do\\|else\\|try\\|finally"
9004 "\\)\\>\\([^_]\\|$\\)"))
9006 ;; for, if, while, switch, catch, synchronized, foreach
9007 (t 2))))
9009 (defun c-after-conditional (&optional lim)
9010 ;; If looking at the token after a conditional then return the
9011 ;; position of its start, otherwise return nil.
9013 ;; This function might do hidden buffer changes.
9014 (save-excursion
9015 (and (zerop (c-backward-token-2 1 t lim))
9016 (or (looking-at c-block-stmt-1-key)
9017 (and (eq (char-after) ?\()
9018 (zerop (c-backward-token-2 1 t lim))
9019 (or (looking-at c-block-stmt-2-key)
9020 (looking-at c-block-stmt-1-2-key))))
9021 (point))))
9023 (defun c-after-special-operator-id (&optional lim)
9024 ;; If the point is after an operator identifier that isn't handled
9025 ;; like an ordinary symbol (i.e. like "operator =" in C++) then the
9026 ;; position of the start of that identifier is returned. nil is
9027 ;; returned otherwise. The point may be anywhere in the syntactic
9028 ;; whitespace after the last token of the operator identifier.
9030 ;; This function might do hidden buffer changes.
9031 (save-excursion
9032 (and c-overloadable-operators-regexp
9033 (zerop (c-backward-token-2 1 nil lim))
9034 (looking-at c-overloadable-operators-regexp)
9035 (or (not c-opt-op-identifier-prefix)
9036 (and
9037 (zerop (c-backward-token-2 1 nil lim))
9038 (looking-at c-opt-op-identifier-prefix)))
9039 (point))))
9041 (defsubst c-backward-to-block-anchor (&optional lim)
9042 ;; Assuming point is at a brace that opens a statement block of some
9043 ;; kind, move to the proper anchor point for that block. It might
9044 ;; need to be adjusted further by c-add-stmt-syntax, but the
9045 ;; position at return is suitable as start position for that
9046 ;; function.
9048 ;; This function might do hidden buffer changes.
9049 (unless (= (point) (c-point 'boi))
9050 (let ((start (c-after-conditional lim)))
9051 (if start
9052 (goto-char start)))))
9054 (defsubst c-backward-to-decl-anchor (&optional lim)
9055 ;; Assuming point is at a brace that opens the block of a top level
9056 ;; declaration of some kind, move to the proper anchor point for
9057 ;; that block.
9059 ;; This function might do hidden buffer changes.
9060 (unless (= (point) (c-point 'boi))
9061 (c-beginning-of-statement-1 lim)))
9063 (defun c-search-decl-header-end ()
9064 ;; Search forward for the end of the "header" of the current
9065 ;; declaration. That's the position where the definition body
9066 ;; starts, or the first variable initializer, or the ending
9067 ;; semicolon. I.e. search forward for the closest following
9068 ;; (syntactically relevant) '{', '=' or ';' token. Point is left
9069 ;; _after_ the first found token, or at point-max if none is found.
9071 ;; This function might do hidden buffer changes.
9073 (let ((base (point)))
9074 (if (c-major-mode-is 'c++-mode)
9076 ;; In C++ we need to take special care to handle operator
9077 ;; tokens and those pesky template brackets.
9078 (while (and
9079 (c-syntactic-re-search-forward "[;{<=]" nil 'move t t)
9081 (c-end-of-current-token base)
9082 ;; Handle operator identifiers, i.e. ignore any
9083 ;; operator token preceded by "operator".
9084 (save-excursion
9085 (and (c-safe (c-backward-sexp) t)
9086 (looking-at c-opt-op-identifier-prefix)))
9087 (and (eq (char-before) ?<)
9088 (c-with-syntax-table c++-template-syntax-table
9089 (if (c-safe (goto-char (c-up-list-forward (point))))
9091 (goto-char (point-max))
9092 nil)))))
9093 (setq base (point)))
9095 (while (and
9096 (c-syntactic-re-search-forward "[;{=]" nil 'move t t)
9097 (c-end-of-current-token base))
9098 (setq base (point))))))
9100 (defun c-beginning-of-decl-1 (&optional lim)
9101 ;; Go to the beginning of the current declaration, or the beginning
9102 ;; of the previous one if already at the start of it. Point won't
9103 ;; be moved out of any surrounding paren. Return a cons cell of the
9104 ;; form (MOVE . KNR-POS). MOVE is like the return value from
9105 ;; `c-beginning-of-statement-1'. If point skipped over some K&R
9106 ;; style argument declarations (and they are to be recognized) then
9107 ;; KNR-POS is set to the start of the first such argument
9108 ;; declaration, otherwise KNR-POS is nil. If LIM is non-nil, it's a
9109 ;; position that bounds the backward search.
9111 ;; NB: Cases where the declaration continues after the block, as in
9112 ;; "struct foo { ... } bar;", are currently recognized as two
9113 ;; declarations, e.g. "struct foo { ... }" and "bar;" in this case.
9115 ;; This function might do hidden buffer changes.
9116 (catch 'return
9117 (let* ((start (point))
9118 (last-stmt-start (point))
9119 (move (c-beginning-of-statement-1 lim nil t)))
9121 ;; `c-beginning-of-statement-1' stops at a block start, but we
9122 ;; want to continue if the block doesn't begin a top level
9123 ;; construct, i.e. if it isn't preceded by ';', '}', ':', bob,
9124 ;; or an open paren.
9125 (let ((beg (point)) tentative-move)
9126 ;; Go back one "statement" each time round the loop until we're just
9127 ;; after a ;, }, or :, or at BOB or the start of a macro or start of
9128 ;; an ObjC method. This will move over a multiple declaration whose
9129 ;; components are comma separated.
9130 (while (and
9131 ;; Must check with c-opt-method-key in ObjC mode.
9132 (not (and c-opt-method-key
9133 (looking-at c-opt-method-key)))
9134 (/= last-stmt-start (point))
9135 (progn
9136 (c-backward-syntactic-ws lim)
9137 (not (memq (char-before) '(?\; ?} ?: nil))))
9138 (save-excursion
9139 (backward-char)
9140 (not (looking-at "\\s(")))
9141 ;; Check that we don't move from the first thing in a
9142 ;; macro to its header.
9143 (not (eq (setq tentative-move
9144 (c-beginning-of-statement-1 lim nil t))
9145 'macro)))
9146 (setq last-stmt-start beg
9147 beg (point)
9148 move tentative-move))
9149 (goto-char beg))
9151 (when c-recognize-knr-p
9152 (let ((fallback-pos (point)) knr-argdecl-start)
9153 ;; Handle K&R argdecls. Back up after the "statement" jumped
9154 ;; over by `c-beginning-of-statement-1', unless it was the
9155 ;; function body, in which case we're sitting on the opening
9156 ;; brace now. Then test if we're in a K&R argdecl region and
9157 ;; that we started at the other side of the first argdecl in
9158 ;; it.
9159 (unless (eq (char-after) ?{)
9160 (goto-char last-stmt-start))
9161 (if (and (setq knr-argdecl-start (c-in-knr-argdecl lim))
9162 (< knr-argdecl-start start)
9163 (progn
9164 (goto-char knr-argdecl-start)
9165 (not (eq (c-beginning-of-statement-1 lim nil t) 'macro))))
9166 (throw 'return
9167 (cons (if (eq (char-after fallback-pos) ?{)
9168 'previous
9169 'same)
9170 knr-argdecl-start))
9171 (goto-char fallback-pos))))
9173 ;; `c-beginning-of-statement-1' counts each brace block as a separate
9174 ;; statement, so the result will be 'previous if we've moved over any.
9175 ;; So change our result back to 'same if necessary.
9177 ;; If they were brace list initializers we might not have moved over a
9178 ;; declaration boundary though, so change it to 'same if we've moved
9179 ;; past a '=' before '{', but not ';'. (This ought to be integrated
9180 ;; into `c-beginning-of-statement-1', so we avoid this extra pass which
9181 ;; potentially can search over a large amount of text.). Take special
9182 ;; pains not to get mislead by C++'s "operator=", and the like.
9183 (if (and (eq move 'previous)
9184 (c-with-syntax-table (if (c-major-mode-is 'c++-mode)
9185 c++-template-syntax-table
9186 (syntax-table))
9187 (save-excursion
9188 (and
9189 (progn
9190 (while ; keep going back to "[;={"s until we either find
9191 ; no more, or get to one which isn't an "operator ="
9192 (and (c-syntactic-re-search-forward "[;={]" start t t t)
9193 (eq (char-before) ?=)
9194 c-overloadable-operators-regexp
9195 c-opt-op-identifier-prefix
9196 (save-excursion
9197 (eq (c-backward-token-2) 0)
9198 (looking-at c-overloadable-operators-regexp)
9199 (eq (c-backward-token-2) 0)
9200 (looking-at c-opt-op-identifier-prefix))))
9201 (eq (char-before) ?=))
9202 (c-syntactic-re-search-forward "[;{]" start t t)
9203 (eq (char-before) ?{)
9204 (c-safe (goto-char (c-up-list-forward (point))) t)
9205 (not (c-syntactic-re-search-forward ";" start t t))))))
9206 (cons 'same nil)
9207 (cons move nil)))))
9209 (defun c-end-of-decl-1 ()
9210 ;; Assuming point is at the start of a declaration (as detected by
9211 ;; e.g. `c-beginning-of-decl-1'), go to the end of it. Unlike
9212 ;; `c-beginning-of-decl-1', this function handles the case when a
9213 ;; block is followed by identifiers in e.g. struct declarations in C
9214 ;; or C++. If a proper end was found then t is returned, otherwise
9215 ;; point is moved as far as possible within the current sexp and nil
9216 ;; is returned. This function doesn't handle macros; use
9217 ;; `c-end-of-macro' instead in those cases.
9219 ;; This function might do hidden buffer changes.
9220 (let ((start (point))
9221 (decl-syntax-table (if (c-major-mode-is 'c++-mode)
9222 c++-template-syntax-table
9223 (syntax-table))))
9224 (catch 'return
9225 (c-search-decl-header-end)
9227 (when (and c-recognize-knr-p
9228 (eq (char-before) ?\;)
9229 (c-in-knr-argdecl start))
9230 ;; Stopped at the ';' in a K&R argdecl section which is
9231 ;; detected using the same criteria as in
9232 ;; `c-beginning-of-decl-1'. Move to the following block
9233 ;; start.
9234 (c-syntactic-re-search-forward "{" nil 'move t))
9236 (when (eq (char-before) ?{)
9237 ;; Encountered a block in the declaration. Jump over it.
9238 (condition-case nil
9239 (goto-char (c-up-list-forward (point)))
9240 (error (goto-char (point-max))
9241 (throw 'return nil)))
9242 (if (or (not c-opt-block-decls-with-vars-key)
9243 (save-excursion
9244 (c-with-syntax-table decl-syntax-table
9245 (let ((lim (point)))
9246 (goto-char start)
9247 (not (and
9248 ;; Check for `c-opt-block-decls-with-vars-key'
9249 ;; before the first paren.
9250 (c-syntactic-re-search-forward
9251 (concat "[;=([{]\\|\\("
9252 c-opt-block-decls-with-vars-key
9253 "\\)")
9254 lim t t t)
9255 (match-beginning 1)
9256 (not (eq (char-before) ?_))
9257 ;; Check that the first following paren is
9258 ;; the block.
9259 (c-syntactic-re-search-forward "[;=([{]"
9260 lim t t t)
9261 (eq (char-before) ?{)))))))
9262 ;; The declaration doesn't have any of the
9263 ;; `c-opt-block-decls-with-vars' keywords in the
9264 ;; beginning, so it ends here at the end of the block.
9265 (throw 'return t)))
9267 (c-with-syntax-table decl-syntax-table
9268 (while (progn
9269 (if (eq (char-before) ?\;)
9270 (throw 'return t))
9271 (c-syntactic-re-search-forward ";" nil 'move t))))
9272 nil)))
9274 (defun c-looking-at-decl-block (containing-sexp goto-start &optional limit)
9275 ;; Assuming the point is at an open brace, check if it starts a
9276 ;; block that contains another declaration level, i.e. that isn't a
9277 ;; statement block or a brace list, and if so return non-nil.
9279 ;; If the check is successful, the return value is the start of the
9280 ;; keyword that tells what kind of construct it is, i.e. typically
9281 ;; what `c-decl-block-key' matched. Also, if GOTO-START is set then
9282 ;; the point will be at the start of the construct, before any
9283 ;; leading specifiers, otherwise it's at the returned position.
9285 ;; The point is clobbered if the check is unsuccessful.
9287 ;; CONTAINING-SEXP is the position of the open of the surrounding
9288 ;; paren, or nil if none.
9290 ;; The optional LIMIT limits the backward search for the start of
9291 ;; the construct. It's assumed to be at a syntactically relevant
9292 ;; position.
9294 ;; If any template arglists are found in the searched region before
9295 ;; the open brace, they get marked with paren syntax.
9297 ;; This function might do hidden buffer changes.
9299 (let ((open-brace (point)) kwd-start first-specifier-pos)
9300 (c-syntactic-skip-backward c-block-prefix-charset limit t)
9302 (when (and c-recognize-<>-arglists
9303 (eq (char-before) ?>))
9304 ;; Could be at the end of a template arglist.
9305 (let ((c-parse-and-markup-<>-arglists t))
9306 (while (and
9307 (c-backward-<>-arglist nil limit)
9308 (progn
9309 (c-syntactic-skip-backward c-block-prefix-charset limit t)
9310 (eq (char-before) ?>))))))
9312 ;; Skip back over noise clauses.
9313 (while (and
9314 c-opt-cpp-prefix
9315 (eq (char-before) ?\))
9316 (let ((after-paren (point)))
9317 (if (and (c-go-list-backward)
9318 (progn (c-backward-syntactic-ws)
9319 (c-simple-skip-symbol-backward))
9320 (or (looking-at c-paren-nontype-key)
9321 (looking-at c-noise-macro-with-parens-name-re)))
9322 (progn
9323 (c-syntactic-skip-backward c-block-prefix-charset limit t)
9325 (goto-char after-paren)
9326 nil))))
9328 ;; Note: Can't get bogus hits inside template arglists below since they
9329 ;; have gotten paren syntax above.
9330 (when (and
9331 ;; If `goto-start' is set we begin by searching for the
9332 ;; first possible position of a leading specifier list.
9333 ;; The `c-decl-block-key' search continues from there since
9334 ;; we know it can't match earlier.
9335 (if goto-start
9336 (when (c-syntactic-re-search-forward c-symbol-start
9337 open-brace t t)
9338 (goto-char (setq first-specifier-pos (match-beginning 0)))
9342 (cond
9343 ((c-syntactic-re-search-forward c-decl-block-key open-brace t t t)
9344 (goto-char (setq kwd-start (match-beginning 0)))
9345 (and
9346 ;; Exclude cases where we matched what would ordinarily
9347 ;; be a block declaration keyword, except where it's not
9348 ;; legal because it's part of a "compound keyword" like
9349 ;; "enum class". Of course, if c-after-brace-list-key
9350 ;; is nil, we can skip the test.
9351 (or (equal c-after-brace-list-key "\\<\\>")
9352 (save-match-data
9353 (save-excursion
9354 (not
9355 (and
9356 (looking-at c-after-brace-list-key)
9357 (= (c-backward-token-2 1 t) 0)
9358 (looking-at c-brace-list-key))))))
9360 ;; Found a keyword that can't be a type?
9361 (match-beginning 1)
9363 ;; Can be a type too, in which case it's the return type of a
9364 ;; function (under the assumption that no declaration level
9365 ;; block construct starts with a type).
9366 (not (c-forward-type))
9368 ;; Jumped over a type, but it could be a declaration keyword
9369 ;; followed by the declared identifier that we've jumped over
9370 ;; instead (e.g. in "class Foo {"). If it indeed is a type
9371 ;; then we should be at the declarator now, so check for a
9372 ;; valid declarator start.
9374 ;; Note: This doesn't cope with the case when a declared
9375 ;; identifier is followed by e.g. '(' in a language where '('
9376 ;; also might be part of a declarator expression. Currently
9377 ;; there's no such language.
9378 (not (or (looking-at c-symbol-start)
9379 (looking-at c-type-decl-prefix-key))))))
9381 ;; In Pike a list of modifiers may be followed by a brace
9382 ;; to make them apply to many identifiers. Note that the
9383 ;; match data will be empty on return in this case.
9384 ((and (c-major-mode-is 'pike-mode)
9385 (progn
9386 (goto-char open-brace)
9387 (= (c-backward-token-2) 0))
9388 (looking-at c-specifier-key)
9389 ;; Use this variant to avoid yet another special regexp.
9390 (c-keyword-member (c-keyword-sym (match-string 1))
9391 'c-modifier-kwds))
9392 (setq kwd-start (point))
9393 t)))
9395 ;; Got a match.
9397 (if goto-start
9398 ;; Back up over any preceding specifiers and their clauses
9399 ;; by going forward from `first-specifier-pos', which is the
9400 ;; earliest possible position where the specifier list can
9401 ;; start.
9402 (progn
9403 (goto-char first-specifier-pos)
9405 (while (< (point) kwd-start)
9406 (if (looking-at c-symbol-key)
9407 ;; Accept any plain symbol token on the ground that
9408 ;; it's a specifier masked through a macro (just
9409 ;; like `c-forward-decl-or-cast-1' skip forward over
9410 ;; such tokens).
9412 ;; Could be more restrictive wrt invalid keywords,
9413 ;; but that'd only occur in invalid code so there's
9414 ;; no use spending effort on it.
9415 (let ((end (match-end 0)))
9416 (unless (c-forward-keyword-clause 0)
9417 (goto-char end)
9418 (c-forward-syntactic-ws)))
9420 ;; Can't parse a declaration preamble and is still
9421 ;; before `kwd-start'. That means `first-specifier-pos'
9422 ;; was in some earlier construct. Search again.
9423 (if (c-syntactic-re-search-forward c-symbol-start
9424 kwd-start 'move t)
9425 (goto-char (setq first-specifier-pos (match-beginning 0)))
9426 ;; Got no preamble before the block declaration keyword.
9427 (setq first-specifier-pos kwd-start))))
9429 (goto-char first-specifier-pos))
9430 (goto-char kwd-start))
9432 kwd-start)))
9434 (defun c-directly-in-class-called-p (name)
9435 ;; Check whether point is directly inside a brace block which is the brace
9436 ;; block of a class, struct, or union which is called NAME, a string.
9437 (let* ((paren-state (c-parse-state))
9438 (brace-pos (c-pull-open-brace paren-state))
9440 (when (eq (char-after brace-pos) ?{)
9441 (goto-char brace-pos)
9442 (save-excursion
9443 ; *c-looking-at-decl-block
9444 ; containing-sexp goto-start &optional
9445 ; limit)
9446 (when (and (c-looking-at-decl-block
9447 (c-pull-open-brace paren-state)
9448 nil)
9449 (looking-at c-class-key))
9450 (goto-char (match-end 1))
9451 (c-forward-syntactic-ws)
9452 (looking-at name))))))
9454 (defun c-search-uplist-for-classkey (paren-state)
9455 ;; Check if the closest containing paren sexp is a declaration
9456 ;; block, returning a 2 element vector in that case. Aref 0
9457 ;; contains the bufpos at boi of the class key line, and aref 1
9458 ;; contains the bufpos of the open brace. This function is an
9459 ;; obsolete wrapper for `c-looking-at-decl-block'.
9461 ;; This function might do hidden buffer changes.
9462 (let ((open-paren-pos (c-most-enclosing-brace paren-state)))
9463 (when open-paren-pos
9464 (save-excursion
9465 (goto-char open-paren-pos)
9466 (when (and (eq (char-after) ?{)
9467 (c-looking-at-decl-block
9468 (c-safe-position open-paren-pos paren-state)
9469 nil))
9470 (back-to-indentation)
9471 (vector (point) open-paren-pos))))))
9473 (defun c-most-enclosing-decl-block (paren-state)
9474 ;; Return the buffer position of the most enclosing decl-block brace (in the
9475 ;; sense of c-looking-at-decl-block) in the PAREN-STATE structure, or nil if
9476 ;; none was found.
9477 (let* ((open-brace (c-pull-open-brace paren-state))
9478 (next-open-brace (c-pull-open-brace paren-state)))
9479 (while (and open-brace
9480 (save-excursion
9481 (goto-char open-brace)
9482 (not (c-looking-at-decl-block next-open-brace nil))))
9483 (setq open-brace next-open-brace
9484 next-open-brace (c-pull-open-brace paren-state)))
9485 open-brace))
9487 (defun c-cheap-inside-bracelist-p (paren-state)
9488 ;; Return the position of the L-brace if point is inside a brace list
9489 ;; initialization of an array, etc. This is an approximate function,
9490 ;; designed for speed over accuracy. It will not find every bracelist, but
9491 ;; a non-nil result is reliable. We simply search for "= {" (naturally with
9492 ;; syntactic whitespace allowed). PAREN-STATE is the normal thing that it
9493 ;; is everywhere else.
9494 (let (b-pos)
9495 (save-excursion
9496 (while
9497 (and (setq b-pos (c-pull-open-brace paren-state))
9498 (progn (goto-char b-pos)
9499 (c-backward-sws)
9500 (c-backward-token-2)
9501 (not (looking-at "=")))))
9502 b-pos)))
9504 (defun c-backward-typed-enum-colon ()
9505 ;; We're at a "{" which might be the opening brace of a enum which is
9506 ;; strongly typed (by a ":" followed by a type). If this is the case, leave
9507 ;; point before the colon and return t. Otherwise leave point unchanged and return nil.
9508 ;; Match data will be clobbered.
9509 (let ((here (point))
9510 (colon-pos nil))
9511 (save-excursion
9512 (while
9513 (and (eql (c-backward-token-2) 0)
9514 (or (not (looking-at "\\s)"))
9515 (c-go-up-list-backward))
9516 (cond
9517 ((and (eql (char-after) ?:)
9518 (save-excursion
9519 (c-backward-syntactic-ws)
9520 (c-on-identifier)))
9521 (setq colon-pos (point))
9522 (forward-char)
9523 (c-forward-syntactic-ws)
9524 (or (and (c-forward-type)
9525 (progn (c-forward-syntactic-ws)
9526 (eq (point) here)))
9527 (setq colon-pos nil))
9528 nil)
9529 ((eql (char-after) ?\()
9531 ((looking-at c-symbol-key)
9533 (t nil)))))
9534 (when colon-pos
9535 (goto-char colon-pos)
9536 t)))
9538 (defun c-backward-over-enum-header ()
9539 ;; We're at a "{". Move back to the enum-like keyword that starts this
9540 ;; declaration and return t, otherwise don't move and return nil.
9541 (let ((here (point))
9542 up-sexp-pos before-identifier)
9543 (when c-recognize-post-brace-list-type-p
9544 (c-backward-typed-enum-colon))
9545 (while
9546 (and
9547 (eq (c-backward-token-2) 0)
9548 (or (not (looking-at "\\s)"))
9549 (c-go-up-list-backward))
9550 (cond
9551 ((and (looking-at c-symbol-key) (c-on-identifier)
9552 (not before-identifier))
9553 (setq before-identifier t))
9554 ((and before-identifier
9555 (or (eql (char-after) ?,)
9556 (looking-at c-postfix-decl-spec-key)))
9557 (setq before-identifier nil)
9559 ((looking-at c-after-brace-list-key) t)
9560 ((looking-at c-brace-list-key) nil)
9561 ((eq (char-after) ?\()
9562 (and (eq (c-backward-token-2) 0)
9563 (or (looking-at c-decl-hangon-key)
9564 (and c-opt-cpp-prefix
9565 (looking-at c-noise-macro-with-parens-name-re)))))
9567 ((and c-recognize-<>-arglists
9568 (eq (char-after) ?<)
9569 (looking-at "\\s("))
9571 (t nil))))
9572 (or (looking-at c-brace-list-key)
9573 (progn (goto-char here) nil))))
9575 (defun c-inside-bracelist-p (containing-sexp paren-state)
9576 ;; return the buffer position of the beginning of the brace list
9577 ;; statement if we're inside a brace list, otherwise return nil.
9578 ;; CONTAINING-SEXP is the buffer pos of the innermost containing
9579 ;; paren. PAREN-STATE is the remainder of the state of enclosing
9580 ;; braces
9582 ;; N.B.: This algorithm can potentially get confused by cpp macros
9583 ;; placed in inconvenient locations. It's a trade-off we make for
9584 ;; speed.
9586 ;; This function might do hidden buffer changes.
9588 ;; This will pick up brace list declarations.
9589 (save-excursion
9590 (goto-char containing-sexp)
9591 (c-backward-over-enum-header))
9592 ;; this will pick up array/aggregate init lists, even if they are nested.
9593 (save-excursion
9594 (let ((class-key
9595 ;; Pike can have class definitions anywhere, so we must
9596 ;; check for the class key here.
9597 (and (c-major-mode-is 'pike-mode)
9598 c-decl-block-key))
9599 bufpos braceassignp lim next-containing macro-start)
9600 (while (and (not bufpos)
9601 containing-sexp)
9602 (when paren-state
9603 (if (consp (car paren-state))
9604 (setq lim (cdr (car paren-state))
9605 paren-state (cdr paren-state))
9606 (setq lim (car paren-state)))
9607 (when paren-state
9608 (setq next-containing (car paren-state)
9609 paren-state (cdr paren-state))))
9610 (goto-char containing-sexp)
9611 (if (c-looking-at-inexpr-block next-containing next-containing)
9612 ;; We're in an in-expression block of some kind. Do not
9613 ;; check nesting. We deliberately set the limit to the
9614 ;; containing sexp, so that c-looking-at-inexpr-block
9615 ;; doesn't check for an identifier before it.
9616 (setq containing-sexp nil)
9617 ;; see if the open brace is preceded by = or [...] in
9618 ;; this statement, but watch out for operator=
9619 (setq braceassignp 'dontknow)
9620 (c-backward-token-2 1 t lim)
9621 ;; Checks to do only on the first sexp before the brace.
9622 (when (and c-opt-inexpr-brace-list-key
9623 (eq (char-after) ?\[))
9624 ;; In Java, an initialization brace list may follow
9625 ;; directly after "new Foo[]", so check for a "new"
9626 ;; earlier.
9627 (while (eq braceassignp 'dontknow)
9628 (setq braceassignp
9629 (cond ((/= (c-backward-token-2 1 t lim) 0) nil)
9630 ((looking-at c-opt-inexpr-brace-list-key) t)
9631 ((looking-at "\\sw\\|\\s_\\|[.[]")
9632 ;; Carry on looking if this is an
9633 ;; identifier (may contain "." in Java)
9634 ;; or another "[]" sexp.
9635 'dontknow)
9636 (t nil)))))
9637 ;; Checks to do on all sexps before the brace, up to the
9638 ;; beginning of the statement.
9639 (while (eq braceassignp 'dontknow)
9640 (cond ((eq (char-after) ?\;)
9641 (setq braceassignp nil))
9642 ((and class-key
9643 (looking-at class-key))
9644 (setq braceassignp nil))
9645 ((eq (char-after) ?=)
9646 ;; We've seen a =, but must check earlier tokens so
9647 ;; that it isn't something that should be ignored.
9648 (setq braceassignp 'maybe)
9649 (while (and (eq braceassignp 'maybe)
9650 (zerop (c-backward-token-2 1 t lim)))
9651 (setq braceassignp
9652 (cond
9653 ;; Check for operator =
9654 ((and c-opt-op-identifier-prefix
9655 (looking-at c-opt-op-identifier-prefix))
9656 nil)
9657 ;; Check for `<opchar>= in Pike.
9658 ((and (c-major-mode-is 'pike-mode)
9659 (or (eq (char-after) ?`)
9660 ;; Special case for Pikes
9661 ;; `[]=, since '[' is not in
9662 ;; the punctuation class.
9663 (and (eq (char-after) ?\[)
9664 (eq (char-before) ?`))))
9665 nil)
9666 ((looking-at "\\s.") 'maybe)
9667 ;; make sure we're not in a C++ template
9668 ;; argument assignment
9669 ((and
9670 (c-major-mode-is 'c++-mode)
9671 (save-excursion
9672 (let ((here (point))
9673 (pos< (progn
9674 (skip-chars-backward "^<>")
9675 (point))))
9676 (and (eq (char-before) ?<)
9677 (not (c-crosses-statement-barrier-p
9678 pos< here))
9679 (not (c-in-literal))
9680 ))))
9681 nil)
9682 (t t))))))
9683 (if (and (eq braceassignp 'dontknow)
9684 (/= (c-backward-token-2 1 t lim) 0))
9685 (setq braceassignp nil)))
9686 (cond
9687 (braceassignp
9688 ;; We've hit the beginning of the aggregate list.
9689 (c-beginning-of-statement-1
9690 (c-most-enclosing-brace paren-state))
9691 (setq bufpos (point)))
9692 ((eq (char-after) ?\;)
9693 ;; Brace lists can't contain a semicolon, so we're done.
9694 (setq containing-sexp nil))
9695 ((and (setq macro-start (point))
9696 (c-forward-to-cpp-define-body)
9697 (eq (point) containing-sexp))
9698 ;; We've a macro whose expansion starts with the '{'.
9699 ;; Heuristically, if we have a ';' in it we've not got a
9700 ;; brace list, otherwise we have.
9701 (let ((macro-end (progn (c-end-of-macro) (point))))
9702 (goto-char containing-sexp)
9703 (forward-char)
9704 (if (and (c-syntactic-re-search-forward "[;,]" macro-end t t)
9705 (eq (char-before) ?\;))
9706 (setq bufpos nil
9707 containing-sexp nil)
9708 (setq bufpos macro-start))))
9710 ;; Go up one level
9711 (setq containing-sexp next-containing
9712 lim nil
9713 next-containing nil)))))
9715 bufpos))
9718 (defun c-looking-at-special-brace-list (&optional lim)
9719 ;; If we're looking at the start of a pike-style list, i.e., `({ })',
9720 ;; `([ ])', `(< >)', etc., a cons of a cons of its starting and ending
9721 ;; positions and its entry in c-special-brace-lists is returned, nil
9722 ;; otherwise. The ending position is nil if the list is still open.
9723 ;; LIM is the limit for forward search. The point may either be at
9724 ;; the `(' or at the following paren character. Tries to check the
9725 ;; matching closer, but assumes it's correct if no balanced paren is
9726 ;; found (i.e. the case `({ ... } ... )' is detected as _not_ being
9727 ;; a special brace list).
9729 ;; This function might do hidden buffer changes.
9730 (if c-special-brace-lists
9731 (condition-case ()
9732 (save-excursion
9733 (let ((beg (point))
9734 inner-beg end type)
9735 (c-forward-syntactic-ws)
9736 (if (eq (char-after) ?\()
9737 (progn
9738 (forward-char 1)
9739 (c-forward-syntactic-ws)
9740 (setq inner-beg (point))
9741 (setq type (assq (char-after) c-special-brace-lists)))
9742 (if (setq type (assq (char-after) c-special-brace-lists))
9743 (progn
9744 (setq inner-beg (point))
9745 (c-backward-syntactic-ws)
9746 (forward-char -1)
9747 (setq beg (if (eq (char-after) ?\()
9748 (point)
9749 nil)))))
9750 (if (and beg type)
9751 (if (and (c-safe
9752 (goto-char beg)
9753 (c-forward-sexp 1)
9754 (setq end (point))
9755 (= (char-before) ?\)))
9756 (c-safe
9757 (goto-char inner-beg)
9758 (if (looking-at "\\s(")
9759 ;; Check balancing of the inner paren
9760 ;; below.
9761 (progn
9762 (c-forward-sexp 1)
9764 ;; If the inner char isn't a paren then
9765 ;; we can't check balancing, so just
9766 ;; check the char before the outer
9767 ;; closing paren.
9768 (goto-char end)
9769 (backward-char)
9770 (c-backward-syntactic-ws)
9771 (= (char-before) (cdr type)))))
9772 (if (or (/= (char-syntax (char-before)) ?\))
9773 (= (progn
9774 (c-forward-syntactic-ws)
9775 (point))
9776 (1- end)))
9777 (cons (cons beg end) type))
9778 (cons (list beg) type)))))
9779 (error nil))))
9781 (defun c-looking-at-bos (&optional lim)
9782 ;; Return non-nil if between two statements or declarations, assuming
9783 ;; point is not inside a literal or comment.
9785 ;; Obsolete - `c-at-statement-start-p' or `c-at-expression-start-p'
9786 ;; are recommended instead.
9788 ;; This function might do hidden buffer changes.
9789 (c-at-statement-start-p))
9790 (make-obsolete 'c-looking-at-bos 'c-at-statement-start-p "22.1")
9792 (defun c-looking-at-inexpr-block (lim containing-sexp &optional check-at-end)
9793 ;; Return non-nil if we're looking at the beginning of a block
9794 ;; inside an expression. The value returned is actually a cons of
9795 ;; either 'inlambda, 'inexpr-statement or 'inexpr-class and the
9796 ;; position of the beginning of the construct.
9798 ;; LIM limits the backward search. CONTAINING-SEXP is the start
9799 ;; position of the closest containing list. If it's nil, the
9800 ;; containing paren isn't used to decide whether we're inside an
9801 ;; expression or not. If both LIM and CONTAINING-SEXP are used, LIM
9802 ;; needs to be farther back.
9804 ;; If CHECK-AT-END is non-nil then extra checks at the end of the
9805 ;; brace block might be done. It should only be used when the
9806 ;; construct can be assumed to be complete, i.e. when the original
9807 ;; starting position was further down than that.
9809 ;; This function might do hidden buffer changes.
9811 (save-excursion
9812 (let ((res 'maybe) passed-paren
9813 (closest-lim (or containing-sexp lim (point-min)))
9814 ;; Look at the character after point only as a last resort
9815 ;; when we can't disambiguate.
9816 (block-follows (and (eq (char-after) ?{) (point))))
9818 (while (and (eq res 'maybe)
9819 (progn (c-backward-syntactic-ws)
9820 (> (point) closest-lim))
9821 (not (bobp))
9822 (progn (backward-char)
9823 (looking-at "[]).]\\|\\w\\|\\s_"))
9824 (c-safe (forward-char)
9825 (goto-char (scan-sexps (point) -1))))
9827 (setq res
9828 (if (looking-at c-keywords-regexp)
9829 (let ((kw-sym (c-keyword-sym (match-string 1))))
9830 (cond
9831 ((and block-follows
9832 (c-keyword-member kw-sym 'c-inexpr-class-kwds))
9833 (and (not (eq passed-paren ?\[))
9834 (or (not (looking-at c-class-key))
9835 ;; If the class definition is at the start of
9836 ;; a statement, we don't consider it an
9837 ;; in-expression class.
9838 (let ((prev (point)))
9839 (while (and
9840 (= (c-backward-token-2 1 nil closest-lim) 0)
9841 (eq (char-syntax (char-after)) ?w))
9842 (setq prev (point)))
9843 (goto-char prev)
9844 (not (c-at-statement-start-p)))
9845 ;; Also, in Pike we treat it as an
9846 ;; in-expression class if it's used in an
9847 ;; object clone expression.
9848 (save-excursion
9849 (and check-at-end
9850 (c-major-mode-is 'pike-mode)
9851 (progn (goto-char block-follows)
9852 (zerop (c-forward-token-2 1 t)))
9853 (eq (char-after) ?\())))
9854 (cons 'inexpr-class (point))))
9855 ((c-keyword-member kw-sym 'c-inexpr-block-kwds)
9856 (when (not passed-paren)
9857 (cons 'inexpr-statement (point))))
9858 ((c-keyword-member kw-sym 'c-lambda-kwds)
9859 (when (or (not passed-paren)
9860 (eq passed-paren ?\())
9861 (cons 'inlambda (point))))
9862 ((c-keyword-member kw-sym 'c-block-stmt-kwds)
9863 nil)
9865 'maybe)))
9867 (if (looking-at "\\s(")
9868 (if passed-paren
9869 (if (and (eq passed-paren ?\[)
9870 (eq (char-after) ?\[))
9871 ;; Accept several square bracket sexps for
9872 ;; Java array initializations.
9873 'maybe)
9874 (setq passed-paren (char-after))
9875 'maybe)
9876 'maybe))))
9878 (if (eq res 'maybe)
9879 (when (and c-recognize-paren-inexpr-blocks
9880 block-follows
9881 containing-sexp
9882 (eq (char-after containing-sexp) ?\())
9883 (goto-char containing-sexp)
9884 (if (or (save-excursion
9885 (c-backward-syntactic-ws lim)
9886 (while (and (eq (char-before) ?>)
9887 (c-get-char-property (1- (point))
9888 'syntax-table)
9889 (c-go-list-backward nil lim))
9890 (c-backward-syntactic-ws lim))
9891 (and (> (point) (or lim (point-min)))
9892 (c-on-identifier)))
9893 (and c-special-brace-lists
9894 (c-looking-at-special-brace-list)))
9896 (cons 'inexpr-statement (point))))
9898 res))))
9900 (defun c-looking-at-inexpr-block-backward (paren-state)
9901 ;; Returns non-nil if we're looking at the end of an in-expression
9902 ;; block, otherwise the same as `c-looking-at-inexpr-block'.
9903 ;; PAREN-STATE is the paren state relevant at the current position.
9905 ;; This function might do hidden buffer changes.
9906 (save-excursion
9907 ;; We currently only recognize a block.
9908 (let ((here (point))
9909 (elem (car-safe paren-state))
9910 containing-sexp)
9911 (when (and (consp elem)
9912 (progn (goto-char (cdr elem))
9913 (c-forward-syntactic-ws here)
9914 (= (point) here)))
9915 (goto-char (car elem))
9916 (if (setq paren-state (cdr paren-state))
9917 (setq containing-sexp (car-safe paren-state)))
9918 (c-looking-at-inexpr-block (c-safe-position containing-sexp
9919 paren-state)
9920 containing-sexp)))))
9922 (defun c-at-macro-vsemi-p (&optional pos)
9923 ;; Is there a "virtual semicolon" at POS or point?
9924 ;; (See cc-defs.el for full details of "virtual semicolons".)
9926 ;; This is true when point is at the last non syntactic WS position on the
9927 ;; line, there is a macro call last on the line, and this particular macro's
9928 ;; name is defined by the regexp `c-vs-macro-regexp' as not needing a
9929 ;; semicolon.
9930 (save-excursion
9931 (save-restriction
9932 (widen)
9933 (if pos
9934 (goto-char pos)
9935 (setq pos (point)))
9936 (and
9937 c-macro-with-semi-re
9938 (eq (skip-chars-backward " \t") 0)
9940 ;; Check we've got nothing after this except comments and empty lines
9941 ;; joined by escaped EOLs.
9942 (skip-chars-forward " \t") ; always returns non-nil.
9943 (progn
9944 (while ; go over 1 block comment per iteration.
9945 (and
9946 (looking-at "\\(\\\\[\n\r][ \t]*\\)*")
9947 (goto-char (match-end 0))
9948 (cond
9949 ((looking-at c-block-comment-start-regexp)
9950 (and (forward-comment 1)
9951 (skip-chars-forward " \t"))) ; always returns non-nil
9952 ((looking-at c-line-comment-start-regexp)
9953 (end-of-line)
9954 nil)
9955 (t nil))))
9956 (eolp))
9958 (goto-char pos)
9959 (progn (c-backward-syntactic-ws)
9960 (eq (point) pos))
9962 ;; Check for one of the listed macros being before point.
9963 (or (not (eq (char-before) ?\)))
9964 (when (c-go-list-backward)
9965 (c-backward-syntactic-ws)
9967 (c-simple-skip-symbol-backward)
9968 (looking-at c-macro-with-semi-re)
9969 (goto-char pos)
9970 (not (c-in-literal)))))) ; The most expensive check last.
9972 (defun c-macro-vsemi-status-unknown-p () t) ; See cc-defs.el.
9975 ;; `c-guess-basic-syntax' and the functions that precedes it below
9976 ;; implements the main decision tree for determining the syntactic
9977 ;; analysis of the current line of code.
9979 ;; Dynamically bound to t when `c-guess-basic-syntax' is called during
9980 ;; auto newline analysis.
9981 (defvar c-auto-newline-analysis nil)
9983 (defun c-brace-anchor-point (bracepos)
9984 ;; BRACEPOS is the position of a brace in a construct like "namespace
9985 ;; Bar {". Return the anchor point in this construct; this is the
9986 ;; earliest symbol on the brace's line which isn't earlier than
9987 ;; "namespace".
9989 ;; Currently (2007-08-17), "like namespace" means "matches
9990 ;; c-other-block-decl-kwds". It doesn't work with "class" or "struct"
9991 ;; or anything like that.
9992 (save-excursion
9993 (let ((boi (c-point 'boi bracepos)))
9994 (goto-char bracepos)
9995 (while (and (> (point) boi)
9996 (not (looking-at c-other-decl-block-key)))
9997 (c-backward-token-2))
9998 (if (> (point) boi) (point) boi))))
10000 (defsubst c-add-syntax (symbol &rest args)
10001 ;; A simple function to prepend a new syntax element to
10002 ;; `c-syntactic-context'. Using `setq' on it is unsafe since it
10003 ;; should always be dynamically bound but since we read it first
10004 ;; we'll fail properly anyway if this function is misused.
10005 (setq c-syntactic-context (cons (cons symbol args)
10006 c-syntactic-context)))
10008 (defsubst c-append-syntax (symbol &rest args)
10009 ;; Like `c-add-syntax' but appends to the end of the syntax list.
10010 ;; (Normally not necessary.)
10011 (setq c-syntactic-context (nconc c-syntactic-context
10012 (list (cons symbol args)))))
10014 (defun c-add-stmt-syntax (syntax-symbol
10015 syntax-extra-args
10016 stop-at-boi-only
10017 containing-sexp
10018 paren-state)
10019 ;; Add the indicated SYNTAX-SYMBOL to `c-syntactic-context', extending it as
10020 ;; needed with further syntax elements of the types `substatement',
10021 ;; `inexpr-statement', `arglist-cont-nonempty', `statement-block-intro', and
10022 ;; `defun-block-intro'.
10024 ;; Do the generic processing to anchor the given syntax symbol on
10025 ;; the preceding statement: Skip over any labels and containing
10026 ;; statements on the same line, and then search backward until we
10027 ;; find a statement or block start that begins at boi without a
10028 ;; label or comment.
10030 ;; Point is assumed to be at the prospective anchor point for the
10031 ;; given SYNTAX-SYMBOL. More syntax entries are added if we need to
10032 ;; skip past open parens and containing statements. Most of the added
10033 ;; syntax elements will get the same anchor point - the exception is
10034 ;; for an anchor in a construct like "namespace"[*] - this is as early
10035 ;; as possible in the construct but on the same line as the {.
10037 ;; [*] i.e. with a keyword matching c-other-block-decl-kwds.
10039 ;; SYNTAX-EXTRA-ARGS are a list of the extra arguments for the
10040 ;; syntax symbol. They are appended after the anchor point.
10042 ;; If STOP-AT-BOI-ONLY is nil, we can stop in the middle of the line
10043 ;; if the current statement starts there.
10045 ;; Note: It's not a problem if PAREN-STATE "overshoots"
10046 ;; CONTAINING-SEXP, i.e. contains info about parens further down.
10048 ;; This function might do hidden buffer changes.
10050 (if (= (point) (c-point 'boi))
10051 ;; This is by far the most common case, so let's give it special
10052 ;; treatment.
10053 (apply 'c-add-syntax syntax-symbol (point) syntax-extra-args)
10055 (let ((syntax-last c-syntactic-context)
10056 (boi (c-point 'boi))
10057 ;; Set when we're on a label, so that we don't stop there.
10058 ;; FIXME: To be complete we should check if we're on a label
10059 ;; now at the start.
10060 on-label)
10062 ;; Use point as the anchor point for "namespace", "extern", etc.
10063 (apply 'c-add-syntax syntax-symbol
10064 (if (rassq syntax-symbol c-other-decl-block-key-in-symbols-alist)
10065 (point) nil)
10066 syntax-extra-args)
10068 ;; Loop while we have to back out of containing blocks.
10069 (while
10070 (and
10071 (catch 'back-up-block
10073 ;; Loop while we have to back up statements.
10074 (while (or (/= (point) boi)
10075 on-label
10076 (looking-at c-comment-start-regexp))
10078 ;; Skip past any comments that stands between the
10079 ;; statement start and boi.
10080 (let ((savepos (point)))
10081 (while (and (/= savepos boi)
10082 (c-backward-single-comment))
10083 (setq savepos (point)
10084 boi (c-point 'boi)))
10085 (goto-char savepos))
10087 ;; Skip to the beginning of this statement or backward
10088 ;; another one.
10089 (let ((old-pos (point))
10090 (old-boi boi)
10091 (step-type (c-beginning-of-statement-1 containing-sexp)))
10092 (setq boi (c-point 'boi)
10093 on-label (eq step-type 'label))
10095 (cond ((= (point) old-pos)
10096 ;; If we didn't move we're at the start of a block and
10097 ;; have to continue outside it.
10098 (throw 'back-up-block t))
10100 ((and (eq step-type 'up)
10101 (>= (point) old-boi)
10102 (looking-at "else\\>[^_]")
10103 (save-excursion
10104 (goto-char old-pos)
10105 (looking-at "if\\>[^_]")))
10106 ;; Special case to avoid deeper and deeper indentation
10107 ;; of "else if" clauses.
10110 ((and (not stop-at-boi-only)
10111 (/= old-pos old-boi)
10112 (memq step-type '(up previous)))
10113 ;; If stop-at-boi-only is nil, we shouldn't back up
10114 ;; over previous or containing statements to try to
10115 ;; reach boi, so go back to the last position and
10116 ;; exit.
10117 (goto-char old-pos)
10118 (throw 'back-up-block nil))
10121 (if (and (not stop-at-boi-only)
10122 (memq step-type '(up previous beginning)))
10123 ;; If we've moved into another statement then we
10124 ;; should no longer try to stop in the middle of a
10125 ;; line.
10126 (setq stop-at-boi-only t))
10128 ;; Record this as a substatement if we skipped up one
10129 ;; level.
10130 (when (eq step-type 'up)
10131 (c-add-syntax 'substatement nil))))
10134 containing-sexp)
10136 ;; Now we have to go out of this block.
10137 (goto-char containing-sexp)
10139 ;; Don't stop in the middle of a special brace list opener
10140 ;; like "({".
10141 (when c-special-brace-lists
10142 (let ((special-list (c-looking-at-special-brace-list)))
10143 (when (and special-list
10144 (< (car (car special-list)) (point)))
10145 (setq containing-sexp (car (car special-list)))
10146 (goto-char containing-sexp))))
10148 (setq paren-state (c-whack-state-after containing-sexp paren-state)
10149 containing-sexp (c-most-enclosing-brace paren-state)
10150 boi (c-point 'boi))
10152 ;; Analyze the construct in front of the block we've stepped out
10153 ;; from and add the right syntactic element for it.
10154 (let ((paren-pos (point))
10155 (paren-char (char-after))
10156 step-type)
10158 (if (eq paren-char ?\()
10159 ;; Stepped out of a parenthesis block, so we're in an
10160 ;; expression now.
10161 (progn
10162 (when (/= paren-pos boi)
10163 (if (and c-recognize-paren-inexpr-blocks
10164 (progn
10165 (c-backward-syntactic-ws containing-sexp)
10166 (or (not (looking-at "\\>"))
10167 (not (c-on-identifier))))
10168 (save-excursion
10169 (goto-char (1+ paren-pos))
10170 (c-forward-syntactic-ws)
10171 (eq (char-after) ?{)))
10172 ;; Stepped out of an in-expression statement. This
10173 ;; syntactic element won't get an anchor pos.
10174 (c-add-syntax 'inexpr-statement)
10176 ;; A parenthesis normally belongs to an arglist.
10177 (c-add-syntax 'arglist-cont-nonempty nil paren-pos)))
10179 (goto-char (max boi
10180 (if containing-sexp
10181 (1+ containing-sexp)
10182 (point-min))))
10183 (setq step-type 'same
10184 on-label nil))
10186 ;; Stepped out of a brace block.
10187 (setq step-type (c-beginning-of-statement-1 containing-sexp)
10188 on-label (eq step-type 'label))
10190 (if (and (eq step-type 'same)
10191 (/= paren-pos (point)))
10192 (let (inexpr)
10193 (cond
10194 ((save-excursion
10195 (goto-char paren-pos)
10196 (setq inexpr (c-looking-at-inexpr-block
10197 (c-safe-position containing-sexp paren-state)
10198 containing-sexp)))
10199 (c-add-syntax (if (eq (car inexpr) 'inlambda)
10200 'defun-block-intro
10201 'statement-block-intro)
10202 nil))
10203 ((looking-at c-other-decl-block-key)
10204 (c-add-syntax
10205 (cdr (assoc (match-string 1)
10206 c-other-decl-block-key-in-symbols-alist))
10207 (max (c-point 'boi paren-pos) (point))))
10208 (t (c-add-syntax 'defun-block-intro nil))))
10210 (c-add-syntax 'statement-block-intro nil)))
10212 (if (= paren-pos boi)
10213 ;; Always done if the open brace was at boi. The
10214 ;; c-beginning-of-statement-1 call above is necessary
10215 ;; anyway, to decide the type of block-intro to add.
10216 (goto-char paren-pos)
10217 (setq boi (c-point 'boi)))
10220 ;; Fill in the current point as the anchor for all the symbols
10221 ;; added above.
10222 (let ((p c-syntactic-context) q)
10223 (while (not (eq p syntax-last))
10224 (setq q (cdr (car p))) ; e.g. (nil 28) [from (arglist-cont-nonempty nil 28)]
10225 (while q
10226 (unless (car q)
10227 (setcar q (point)))
10228 (setq q (cdr q)))
10229 (setq p (cdr p))))
10232 (defun c-add-class-syntax (symbol
10233 containing-decl-open
10234 containing-decl-start
10235 containing-decl-kwd
10236 paren-state)
10237 ;; The inclass and class-close syntactic symbols are added in
10238 ;; several places and some work is needed to fix everything.
10239 ;; Therefore it's collected here.
10241 ;; This function might do hidden buffer changes.
10242 (goto-char containing-decl-open)
10243 (if (and (eq symbol 'inclass) (= (point) (c-point 'boi)))
10244 (progn
10245 (c-add-syntax symbol containing-decl-open)
10246 containing-decl-open)
10247 (goto-char containing-decl-start)
10248 ;; Ought to use `c-add-stmt-syntax' instead of backing up to boi
10249 ;; here, but we have to do like this for compatibility.
10250 (back-to-indentation)
10251 (c-add-syntax symbol (point))
10252 (if (and (c-keyword-member containing-decl-kwd
10253 'c-inexpr-class-kwds)
10254 (/= containing-decl-start (c-point 'boi containing-decl-start)))
10255 (c-add-syntax 'inexpr-class))
10256 (point)))
10258 (defun c-guess-continued-construct (indent-point
10259 char-after-ip
10260 beg-of-same-or-containing-stmt
10261 containing-sexp
10262 paren-state)
10263 ;; This function contains the decision tree reached through both
10264 ;; cases 18 and 10. It's a continued statement or top level
10265 ;; construct of some kind.
10267 ;; This function might do hidden buffer changes.
10269 (let (special-brace-list placeholder)
10270 (goto-char indent-point)
10271 (skip-chars-forward " \t")
10273 (cond
10274 ;; (CASE A removed.)
10275 ;; CASE B: open braces for class or brace-lists
10276 ((setq special-brace-list
10277 (or (and c-special-brace-lists
10278 (c-looking-at-special-brace-list))
10279 (eq char-after-ip ?{)))
10281 (cond
10282 ;; CASE B.1: class-open
10283 ((save-excursion
10284 (and (eq (char-after) ?{)
10285 (c-looking-at-decl-block containing-sexp t)
10286 (setq beg-of-same-or-containing-stmt (point))))
10287 (c-add-syntax 'class-open beg-of-same-or-containing-stmt))
10289 ;; CASE B.2: brace-list-open
10290 ((or (consp special-brace-list)
10291 (save-excursion
10292 (goto-char beg-of-same-or-containing-stmt)
10293 (c-syntactic-re-search-forward "=\\([^=]\\|$\\)"
10294 indent-point t t t)))
10295 ;; The most semantically accurate symbol here is
10296 ;; brace-list-open, but we normally report it simply as a
10297 ;; statement-cont. The reason is that one normally adjusts
10298 ;; brace-list-open for brace lists as top-level constructs,
10299 ;; and brace lists inside statements is a completely different
10300 ;; context. C.f. case 5A.3.
10301 (c-beginning-of-statement-1 containing-sexp)
10302 (c-add-stmt-syntax (if c-auto-newline-analysis
10303 ;; Turn off the dwim above when we're
10304 ;; analyzing the nature of the brace
10305 ;; for the auto newline feature.
10306 'brace-list-open
10307 'statement-cont)
10308 nil nil
10309 containing-sexp paren-state))
10311 ;; CASE B.3: The body of a function declared inside a normal
10312 ;; block. Can occur e.g. in Pike and when using gcc
10313 ;; extensions, but watch out for macros followed by blocks.
10314 ;; C.f. cases E, 16F and 17G.
10315 ((and (not (c-at-statement-start-p))
10316 (eq (c-beginning-of-statement-1 containing-sexp nil nil t)
10317 'same)
10318 (save-excursion
10319 (let ((c-recognize-typeless-decls nil))
10320 ;; Turn off recognition of constructs that lacks a
10321 ;; type in this case, since that's more likely to be
10322 ;; a macro followed by a block.
10323 (c-forward-decl-or-cast-1 (c-point 'bosws) nil nil))))
10324 (c-add-stmt-syntax 'defun-open nil t
10325 containing-sexp paren-state))
10327 ;; CASE B.4: Continued statement with block open. The most
10328 ;; accurate analysis is perhaps `statement-cont' together with
10329 ;; `block-open' but we play DWIM and use `substatement-open'
10330 ;; instead. The rationale is that this typically is a macro
10331 ;; followed by a block which makes it very similar to a
10332 ;; statement with a substatement block.
10334 (c-add-stmt-syntax 'substatement-open nil nil
10335 containing-sexp paren-state))
10338 ;; CASE C: iostream insertion or extraction operator
10339 ((and (looking-at "\\(<<\\|>>\\)\\([^=]\\|$\\)")
10340 (save-excursion
10341 (goto-char beg-of-same-or-containing-stmt)
10342 ;; If there is no preceding streamop in the statement
10343 ;; then indent this line as a normal statement-cont.
10344 (when (c-syntactic-re-search-forward
10345 "\\(<<\\|>>\\)\\([^=]\\|$\\)" indent-point 'move t t)
10346 (c-add-syntax 'stream-op (c-point 'boi))
10347 t))))
10349 ;; CASE E: In the "K&R region" of a function declared inside a
10350 ;; normal block. C.f. case B.3.
10351 ((and (save-excursion
10352 ;; Check that the next token is a '{'. This works as
10353 ;; long as no language that allows nested function
10354 ;; definitions allows stuff like member init lists, K&R
10355 ;; declarations or throws clauses there.
10357 ;; Note that we do a forward search for something ahead
10358 ;; of the indentation line here. That's not good since
10359 ;; the user might not have typed it yet. Unfortunately
10360 ;; it's exceedingly tricky to recognize a function
10361 ;; prototype in a code block without resorting to this.
10362 (c-forward-syntactic-ws)
10363 (eq (char-after) ?{))
10364 (not (c-at-statement-start-p))
10365 (eq (c-beginning-of-statement-1 containing-sexp nil nil t)
10366 'same)
10367 (save-excursion
10368 (let ((c-recognize-typeless-decls nil))
10369 ;; Turn off recognition of constructs that lacks a
10370 ;; type in this case, since that's more likely to be
10371 ;; a macro followed by a block.
10372 (c-forward-decl-or-cast-1 (c-point 'bosws) nil nil))))
10373 (c-add-stmt-syntax 'func-decl-cont nil t
10374 containing-sexp paren-state))
10376 ;;CASE F: continued statement and the only preceding items are
10377 ;;annotations.
10378 ((and (c-major-mode-is 'java-mode)
10379 (setq placeholder (point))
10380 (c-beginning-of-statement-1)
10381 (progn
10382 (while (and (c-forward-annotation)
10383 (< (point) placeholder))
10384 (c-forward-syntactic-ws))
10386 (prog1
10387 (>= (point) placeholder)
10388 (goto-char placeholder)))
10389 (c-beginning-of-statement-1 containing-sexp)
10390 (c-add-syntax 'annotation-var-cont (point)))
10392 ;; CASE G: a template list continuation?
10393 ;; Mostly a duplication of case 5D.3 to fix templates-19:
10394 ((and (c-major-mode-is 'c++-mode)
10395 (save-excursion
10396 (goto-char indent-point)
10397 (c-with-syntax-table c++-template-syntax-table
10398 (setq placeholder (c-up-list-backward)))
10399 (and placeholder
10400 (eq (char-after placeholder) ?<)
10401 (/= (char-before placeholder) ?<)
10402 (progn
10403 (goto-char (1+ placeholder))
10404 (not (looking-at c-<-op-cont-regexp))))))
10405 (c-with-syntax-table c++-template-syntax-table
10406 (goto-char placeholder)
10407 (c-beginning-of-statement-1 containing-sexp t))
10408 (if (save-excursion
10409 (c-backward-syntactic-ws containing-sexp)
10410 (eq (char-before) ?<))
10411 ;; In a nested template arglist.
10412 (progn
10413 (goto-char placeholder)
10414 (c-syntactic-skip-backward "^,;" containing-sexp t)
10415 (c-forward-syntactic-ws))
10416 (back-to-indentation))
10417 ;; FIXME: Should use c-add-stmt-syntax, but it's not yet
10418 ;; template aware.
10419 (c-add-syntax 'template-args-cont (point) placeholder))
10421 ;; CASE D: continued statement.
10423 (c-beginning-of-statement-1 containing-sexp)
10424 (c-add-stmt-syntax 'statement-cont nil nil
10425 containing-sexp paren-state))
10428 ;; The next autoload was added by RMS on 2005/8/9 - don't know why (ACM,
10429 ;; 2005/11/29).
10430 ;;;###autoload
10431 (defun c-guess-basic-syntax ()
10432 "Return the syntactic context of the current line."
10433 (save-excursion
10434 (beginning-of-line)
10435 (c-save-buffer-state
10436 ((indent-point (point))
10437 (case-fold-search nil)
10438 ;; A whole ugly bunch of various temporary variables. Have
10439 ;; to declare them here since it's not possible to declare
10440 ;; a variable with only the scope of a cond test and the
10441 ;; following result clauses, and most of this function is a
10442 ;; single gigantic cond. :P
10443 literal char-before-ip before-ws-ip char-after-ip macro-start
10444 in-macro-expr c-syntactic-context placeholder c-in-literal-cache
10445 step-type tmpsymbol keyword injava-inher special-brace-list tmp-pos
10446 containing-<
10447 ;; The following record some positions for the containing
10448 ;; declaration block if we're directly within one:
10449 ;; `containing-decl-open' is the position of the open
10450 ;; brace. `containing-decl-start' is the start of the
10451 ;; declaration. `containing-decl-kwd' is the keyword
10452 ;; symbol of the keyword that tells what kind of block it
10453 ;; is.
10454 containing-decl-open
10455 containing-decl-start
10456 containing-decl-kwd
10457 ;; The open paren of the closest surrounding sexp or nil if
10458 ;; there is none.
10459 containing-sexp
10460 ;; The position after the closest preceding brace sexp
10461 ;; (nested sexps are ignored), or the position after
10462 ;; `containing-sexp' if there is none, or (point-min) if
10463 ;; `containing-sexp' is nil.
10465 ;; The paren state outside `containing-sexp', or at
10466 ;; `indent-point' if `containing-sexp' is nil.
10467 (paren-state (c-parse-state))
10468 ;; There's always at most one syntactic element which got
10469 ;; an anchor pos. It's stored in syntactic-relpos.
10470 syntactic-relpos
10471 (c-stmt-delim-chars c-stmt-delim-chars))
10473 ;; Check if we're directly inside an enclosing declaration
10474 ;; level block.
10475 (when (and (setq containing-sexp
10476 (c-most-enclosing-brace paren-state))
10477 (progn
10478 (goto-char containing-sexp)
10479 (eq (char-after) ?{))
10480 (setq placeholder
10481 (c-looking-at-decl-block
10482 (c-most-enclosing-brace paren-state
10483 containing-sexp)
10484 t)))
10485 (setq containing-decl-open containing-sexp
10486 containing-decl-start (point)
10487 containing-sexp nil)
10488 (goto-char placeholder)
10489 (setq containing-decl-kwd (and (looking-at c-keywords-regexp)
10490 (c-keyword-sym (match-string 1)))))
10492 ;; Init some position variables.
10493 (if paren-state
10494 (progn
10495 (setq containing-sexp (car paren-state)
10496 paren-state (cdr paren-state))
10497 (if (consp containing-sexp)
10498 (save-excursion
10499 (goto-char (cdr containing-sexp))
10500 (if (and (c-major-mode-is 'c++-mode)
10501 (c-back-over-member-initializer-braces))
10502 (c-syntactic-skip-backward "^}" nil t))
10503 (setq lim (point))
10504 (if paren-state
10505 ;; Ignore balanced paren. The next entry
10506 ;; can't be another one.
10507 (setq containing-sexp (car paren-state)
10508 paren-state (cdr paren-state))
10509 ;; If there is no surrounding open paren then
10510 ;; put the last balanced pair back on paren-state.
10511 (setq paren-state (cons containing-sexp paren-state)
10512 containing-sexp nil)))
10513 (setq lim (1+ containing-sexp))))
10514 (setq lim (point-min)))
10516 ;; If we're in a parenthesis list then ',' delimits the
10517 ;; "statements" rather than being an operator (with the
10518 ;; exception of the "for" clause). This difference is
10519 ;; typically only noticeable when statements are used in macro
10520 ;; arglists.
10521 (when (and containing-sexp
10522 (eq (char-after containing-sexp) ?\())
10523 (setq c-stmt-delim-chars c-stmt-delim-chars-with-comma))
10524 ;; cache char before and after indent point, and move point to
10525 ;; the most likely position to perform the majority of tests
10526 (goto-char indent-point)
10527 (c-backward-syntactic-ws lim)
10528 (setq before-ws-ip (point)
10529 char-before-ip (char-before))
10530 (goto-char indent-point)
10531 (skip-chars-forward " \t")
10532 (setq char-after-ip (char-after))
10534 ;; are we in a literal?
10535 (setq literal (c-in-literal lim))
10537 ;; now figure out syntactic qualities of the current line
10538 (cond
10540 ;; CASE 1: in a string.
10541 ((eq literal 'string)
10542 (c-add-syntax 'string (c-point 'bopl)))
10544 ;; CASE 2: in a C or C++ style comment.
10545 ((and (memq literal '(c c++))
10546 ;; This is a kludge for XEmacs where we use
10547 ;; `buffer-syntactic-context', which doesn't correctly
10548 ;; recognize "\*/" to end a block comment.
10549 ;; `parse-partial-sexp' which is used by
10550 ;; `c-literal-limits' will however do that in most
10551 ;; versions, which results in that we get nil from
10552 ;; `c-literal-limits' even when `c-in-literal' claims
10553 ;; we're inside a comment.
10554 (setq placeholder (c-literal-limits lim)))
10555 (c-add-syntax literal (car placeholder)))
10557 ;; CASE 3: in a cpp preprocessor macro continuation.
10558 ((and (save-excursion
10559 (when (c-beginning-of-macro)
10560 (setq macro-start (point))))
10561 (/= macro-start (c-point 'boi))
10562 (progn
10563 (setq tmpsymbol 'cpp-macro-cont)
10564 (or (not c-syntactic-indentation-in-macros)
10565 (save-excursion
10566 (goto-char macro-start)
10567 ;; If at the beginning of the body of a #define
10568 ;; directive then analyze as cpp-define-intro
10569 ;; only. Go on with the syntactic analysis
10570 ;; otherwise. in-macro-expr is set if we're in a
10571 ;; cpp expression, i.e. before the #define body
10572 ;; or anywhere in a non-#define directive.
10573 (if (c-forward-to-cpp-define-body)
10574 (let ((indent-boi (c-point 'boi indent-point)))
10575 (setq in-macro-expr (> (point) indent-boi)
10576 tmpsymbol 'cpp-define-intro)
10577 (= (point) indent-boi))
10578 (setq in-macro-expr t)
10579 nil)))))
10580 (c-add-syntax tmpsymbol macro-start)
10581 (setq macro-start nil))
10583 ;; CASE 11: an else clause?
10584 ((looking-at "else\\>[^_]")
10585 (c-beginning-of-statement-1 containing-sexp)
10586 (c-add-stmt-syntax 'else-clause nil t
10587 containing-sexp paren-state))
10589 ;; CASE 12: while closure of a do/while construct?
10590 ((and (looking-at "while\\>[^_]")
10591 (save-excursion
10592 (prog1 (eq (c-beginning-of-statement-1 containing-sexp)
10593 'beginning)
10594 (setq placeholder (point)))))
10595 (goto-char placeholder)
10596 (c-add-stmt-syntax 'do-while-closure nil t
10597 containing-sexp paren-state))
10599 ;; CASE 13: A catch or finally clause? This case is simpler
10600 ;; than if-else and do-while, because a block is required
10601 ;; after every try, catch and finally.
10602 ((save-excursion
10603 (and (cond ((c-major-mode-is 'c++-mode)
10604 (looking-at "catch\\>[^_]"))
10605 ((c-major-mode-is 'java-mode)
10606 (looking-at "\\(catch\\|finally\\)\\>[^_]")))
10607 (and (c-safe (c-backward-syntactic-ws)
10608 (c-backward-sexp)
10610 (eq (char-after) ?{)
10611 (c-safe (c-backward-syntactic-ws)
10612 (c-backward-sexp)
10614 (if (eq (char-after) ?\()
10615 (c-safe (c-backward-sexp) t)
10617 (looking-at "\\(try\\|catch\\)\\>[^_]")
10618 (setq placeholder (point))))
10619 (goto-char placeholder)
10620 (c-add-stmt-syntax 'catch-clause nil t
10621 containing-sexp paren-state))
10623 ;; CASE 18: A substatement we can recognize by keyword.
10624 ((save-excursion
10625 (and c-opt-block-stmt-key
10626 (not (eq char-before-ip ?\;))
10627 (not (c-at-vsemi-p before-ws-ip))
10628 (not (memq char-after-ip '(?\) ?\] ?,)))
10629 (or (not (eq char-before-ip ?}))
10630 (c-looking-at-inexpr-block-backward c-state-cache))
10631 (> (point)
10632 (progn
10633 ;; Ought to cache the result from the
10634 ;; c-beginning-of-statement-1 calls here.
10635 (setq placeholder (point))
10636 (while (eq (setq step-type
10637 (c-beginning-of-statement-1 lim))
10638 'label))
10639 (if (eq step-type 'previous)
10640 (goto-char placeholder)
10641 (setq placeholder (point))
10642 (if (and (eq step-type 'same)
10643 (not (looking-at c-opt-block-stmt-key)))
10644 ;; Step up to the containing statement if we
10645 ;; stayed in the same one.
10646 (let (step)
10647 (while (eq
10648 (setq step
10649 (c-beginning-of-statement-1 lim))
10650 'label))
10651 (if (eq step 'up)
10652 (setq placeholder (point))
10653 ;; There was no containing statement after all.
10654 (goto-char placeholder)))))
10655 placeholder))
10656 (if (looking-at c-block-stmt-2-key)
10657 ;; Require a parenthesis after these keywords.
10658 ;; Necessary to catch e.g. synchronized in Java,
10659 ;; which can be used both as statement and
10660 ;; modifier.
10661 (and (zerop (c-forward-token-2 1 nil))
10662 (eq (char-after) ?\())
10663 (looking-at c-opt-block-stmt-key))))
10665 (if (eq step-type 'up)
10666 ;; CASE 18A: Simple substatement.
10667 (progn
10668 (goto-char placeholder)
10669 (cond
10670 ((eq char-after-ip ?{)
10671 (c-add-stmt-syntax 'substatement-open nil nil
10672 containing-sexp paren-state))
10673 ((save-excursion
10674 (goto-char indent-point)
10675 (back-to-indentation)
10676 (c-forward-label))
10677 (c-add-stmt-syntax 'substatement-label nil nil
10678 containing-sexp paren-state))
10680 (c-add-stmt-syntax 'substatement nil nil
10681 containing-sexp paren-state))))
10683 ;; CASE 18B: Some other substatement. This is shared
10684 ;; with case 10.
10685 (c-guess-continued-construct indent-point
10686 char-after-ip
10687 placeholder
10689 paren-state)))
10691 ;; CASE 14: A case or default label
10692 ((save-excursion
10693 (and (looking-at c-label-kwds-regexp)
10694 (or (c-major-mode-is 'idl-mode)
10695 (and
10696 containing-sexp
10697 (goto-char containing-sexp)
10698 (eq (char-after) ?{)
10699 (progn (c-backward-syntactic-ws) t)
10700 (eq (char-before) ?\))
10701 (c-go-list-backward)
10702 (progn (c-backward-syntactic-ws) t)
10703 (c-simple-skip-symbol-backward)
10704 (looking-at c-block-stmt-2-key)))))
10705 (if containing-sexp
10706 (progn
10707 (goto-char containing-sexp)
10708 (setq lim (c-most-enclosing-brace c-state-cache
10709 containing-sexp))
10710 (c-backward-to-block-anchor lim)
10711 (c-add-stmt-syntax 'case-label nil t lim paren-state))
10712 ;; Got a bogus label at the top level. In lack of better
10713 ;; alternatives, anchor it on (point-min).
10714 (c-add-syntax 'case-label (point-min))))
10716 ;; CASE 15: any other label
10717 ((save-excursion
10718 (back-to-indentation)
10719 (and (not (looking-at c-syntactic-ws-start))
10720 (not (looking-at c-label-kwds-regexp))
10721 (c-forward-label)))
10722 (cond (containing-decl-open
10723 (setq placeholder (c-add-class-syntax 'inclass
10724 containing-decl-open
10725 containing-decl-start
10726 containing-decl-kwd
10727 paren-state))
10728 ;; Append access-label with the same anchor point as
10729 ;; inclass gets.
10730 (c-append-syntax 'access-label placeholder))
10732 (containing-sexp
10733 (goto-char containing-sexp)
10734 (setq lim (c-most-enclosing-brace c-state-cache
10735 containing-sexp))
10736 (save-excursion
10737 (setq tmpsymbol
10738 (if (and (eq (c-beginning-of-statement-1 lim) 'up)
10739 (looking-at "switch\\>[^_]"))
10740 ;; If the surrounding statement is a switch then
10741 ;; let's analyze all labels as switch labels, so
10742 ;; that they get lined up consistently.
10743 'case-label
10744 'label)))
10745 (c-backward-to-block-anchor lim)
10746 (c-add-stmt-syntax tmpsymbol nil t lim paren-state))
10749 ;; A label on the top level. Treat it as a class
10750 ;; context. (point-min) is the closest we get to the
10751 ;; class open brace.
10752 (c-add-syntax 'access-label (point-min)))))
10754 ;; CASE 4: In-expression statement. C.f. cases 7B, 16A and
10755 ;; 17E.
10756 ((setq placeholder (c-looking-at-inexpr-block
10757 (c-safe-position containing-sexp paren-state)
10758 containing-sexp
10759 ;; Have to turn on the heuristics after
10760 ;; the point even though it doesn't work
10761 ;; very well. C.f. test case class-16.pike.
10763 (setq tmpsymbol (assq (car placeholder)
10764 '((inexpr-class . class-open)
10765 (inexpr-statement . block-open))))
10766 (if tmpsymbol
10767 ;; It's a statement block or an anonymous class.
10768 (setq tmpsymbol (cdr tmpsymbol))
10769 ;; It's a Pike lambda. Check whether we are between the
10770 ;; lambda keyword and the argument list or at the defun
10771 ;; opener.
10772 (setq tmpsymbol (if (eq char-after-ip ?{)
10773 'inline-open
10774 'lambda-intro-cont)))
10775 (goto-char (cdr placeholder))
10776 (back-to-indentation)
10777 (c-add-stmt-syntax tmpsymbol nil t
10778 (c-most-enclosing-brace c-state-cache (point))
10779 paren-state)
10780 (unless (eq (point) (cdr placeholder))
10781 (c-add-syntax (car placeholder))))
10783 ;; CASE 5: Line is inside a declaration level block or at top level.
10784 ((or containing-decl-open (null containing-sexp))
10785 (cond
10787 ;; CASE 5A: we are looking at a defun, brace list, class,
10788 ;; or inline-inclass method opening brace
10789 ((setq special-brace-list
10790 (or (and c-special-brace-lists
10791 (c-looking-at-special-brace-list))
10792 (eq char-after-ip ?{)))
10793 (cond
10795 ;; CASE 5A.1: Non-class declaration block open.
10796 ((save-excursion
10797 (let (tmp)
10798 (and (eq char-after-ip ?{)
10799 (setq tmp (c-looking-at-decl-block containing-sexp t))
10800 (progn
10801 (setq placeholder (point))
10802 (goto-char tmp)
10803 (looking-at c-symbol-key))
10804 (c-keyword-member
10805 (c-keyword-sym (setq keyword (match-string 0)))
10806 'c-other-block-decl-kwds))))
10807 (goto-char placeholder)
10808 (c-add-stmt-syntax
10809 (if (string-equal keyword "extern")
10810 ;; Special case for extern-lang-open.
10811 'extern-lang-open
10812 (intern (concat keyword "-open")))
10813 nil t containing-sexp paren-state))
10815 ;; CASE 5A.2: we are looking at a class opening brace
10816 ((save-excursion
10817 (goto-char indent-point)
10818 (skip-chars-forward " \t")
10819 (and (eq (char-after) ?{)
10820 (c-looking-at-decl-block containing-sexp t)
10821 (setq placeholder (point))))
10822 (c-add-syntax 'class-open placeholder))
10824 ;; CASE 5A.3: brace list open
10825 ((save-excursion
10826 (c-beginning-of-decl-1 lim)
10827 (while (cond
10828 ((looking-at c-specifier-key)
10829 (c-forward-keyword-clause 1))
10830 ((and c-opt-cpp-prefix
10831 (looking-at c-noise-macro-with-parens-name-re))
10832 (c-forward-noise-clause))))
10833 (setq placeholder (c-point 'boi))
10834 (or (consp special-brace-list)
10835 (and (or (save-excursion
10836 (goto-char indent-point)
10837 (setq tmpsymbol nil)
10838 (while (and (> (point) placeholder)
10839 (zerop (c-backward-token-2 1 t))
10840 (not (looking-at "=\\([^=]\\|$\\)")))
10841 (and c-opt-inexpr-brace-list-key
10842 (not tmpsymbol)
10843 (looking-at c-opt-inexpr-brace-list-key)
10844 (setq tmpsymbol 'topmost-intro-cont)))
10845 (looking-at "=\\([^=]\\|$\\)"))
10846 (looking-at c-brace-list-key))
10847 (save-excursion
10848 (while (and (< (point) indent-point)
10849 (zerop (c-forward-token-2 1 t))
10850 (not (memq (char-after) '(?\; ?\()))))
10851 (not (memq (char-after) '(?\; ?\()))
10852 ))))
10853 (if (and (not c-auto-newline-analysis)
10854 (c-major-mode-is 'java-mode)
10855 (eq tmpsymbol 'topmost-intro-cont))
10856 ;; We're in Java and have found that the open brace
10857 ;; belongs to a "new Foo[]" initialization list,
10858 ;; which means the brace list is part of an
10859 ;; expression and not a top level definition. We
10860 ;; therefore treat it as any topmost continuation
10861 ;; even though the semantically correct symbol still
10862 ;; is brace-list-open, on the same grounds as in
10863 ;; case B.2.
10864 (progn
10865 (c-beginning-of-statement-1 lim)
10866 (c-add-syntax 'topmost-intro-cont (c-point 'boi)))
10867 (c-add-syntax 'brace-list-open placeholder)))
10869 ;; CASE 5A.4: inline defun open
10870 ((and containing-decl-open
10871 (not (c-keyword-member containing-decl-kwd
10872 'c-other-block-decl-kwds)))
10873 (c-add-syntax 'inline-open)
10874 (c-add-class-syntax 'inclass
10875 containing-decl-open
10876 containing-decl-start
10877 containing-decl-kwd
10878 paren-state))
10880 ;; CASE 5A.5: ordinary defun open
10882 (save-excursion
10883 (c-beginning-of-decl-1 lim)
10884 (while (cond
10885 ((looking-at c-specifier-key)
10886 (c-forward-keyword-clause 1))
10887 ((and c-opt-cpp-prefix
10888 (looking-at c-noise-macro-with-parens-name-re))
10889 (c-forward-noise-clause))))
10890 (c-add-syntax 'defun-open (c-point 'boi))
10891 ;; Bogus to use bol here, but it's the legacy. (Resolved,
10892 ;; 2007-11-09)
10893 ))))
10895 ;; CASE 5R: Member init list. (Used to be part of CASE 5B.1)
10896 ;; Note there is no limit on the backward search here, since member
10897 ;; init lists can, in practice, be very large.
10898 ((save-excursion
10899 (when (and (c-major-mode-is 'c++-mode)
10900 (setq placeholder (c-back-over-member-initializers)))
10901 (setq tmp-pos (point))))
10902 (if (= (c-point 'bosws) (1+ tmp-pos))
10903 (progn
10904 ;; There is no preceding member init clause.
10905 ;; Indent relative to the beginning of indentation
10906 ;; for the topmost-intro line that contains the
10907 ;; prototype's open paren.
10908 (goto-char placeholder)
10909 (c-add-syntax 'member-init-intro (c-point 'boi)))
10910 ;; Indent relative to the first member init clause.
10911 (goto-char (1+ tmp-pos))
10912 (c-forward-syntactic-ws)
10913 (c-add-syntax 'member-init-cont (point))))
10915 ;; CASE 5B: After a function header but before the body (or
10916 ;; the ending semicolon if there's no body).
10917 ((save-excursion
10918 (when (setq placeholder (c-just-after-func-arglist-p
10919 (max lim (c-determine-limit 500))))
10920 (setq tmp-pos (point))))
10921 (cond
10923 ;; CASE 5B.1: Member init list.
10924 ((eq (char-after tmp-pos) ?:)
10925 ;; There is no preceding member init clause.
10926 ;; Indent relative to the beginning of indentation
10927 ;; for the topmost-intro line that contains the
10928 ;; prototype's open paren.
10929 (goto-char placeholder)
10930 (c-add-syntax 'member-init-intro (c-point 'boi)))
10932 ;; CASE 5B.2: K&R arg decl intro
10933 ((and c-recognize-knr-p
10934 (c-in-knr-argdecl lim))
10935 (c-beginning-of-statement-1 lim)
10936 (c-add-syntax 'knr-argdecl-intro (c-point 'boi))
10937 (if containing-decl-open
10938 (c-add-class-syntax 'inclass
10939 containing-decl-open
10940 containing-decl-start
10941 containing-decl-kwd
10942 paren-state)))
10944 ;; CASE 5B.4: Nether region after a C++ or Java func
10945 ;; decl, which could include a `throws' declaration.
10947 (c-beginning-of-statement-1 lim)
10948 (c-add-syntax 'func-decl-cont (c-point 'boi))
10951 ;; CASE 5C: inheritance line. could be first inheritance
10952 ;; line, or continuation of a multiple inheritance
10953 ((or (and (c-major-mode-is 'c++-mode)
10954 (progn
10955 (when (eq char-after-ip ?,)
10956 (skip-chars-forward " \t")
10957 (forward-char))
10958 (looking-at c-opt-postfix-decl-spec-key)))
10959 (and (or (eq char-before-ip ?:)
10960 ;; watch out for scope operator
10961 (save-excursion
10962 (and (eq char-after-ip ?:)
10963 (c-safe (forward-char 1) t)
10964 (not (eq (char-after) ?:))
10966 (save-excursion
10967 (c-beginning-of-statement-1 lim)
10968 (when (looking-at c-opt-<>-sexp-key)
10969 (goto-char (match-end 1))
10970 (c-forward-syntactic-ws)
10971 (c-forward-<>-arglist nil)
10972 (c-forward-syntactic-ws))
10973 (looking-at c-class-key)))
10974 ;; for Java
10975 (and (c-major-mode-is 'java-mode)
10976 (let ((fence (save-excursion
10977 (c-beginning-of-statement-1 lim)
10978 (point)))
10979 cont done)
10980 (save-excursion
10981 (while (not done)
10982 (cond ((looking-at c-opt-postfix-decl-spec-key)
10983 (setq injava-inher (cons cont (point))
10984 done t))
10985 ((or (not (c-safe (c-forward-sexp -1) t))
10986 (<= (point) fence))
10987 (setq done t))
10989 (setq cont t)))
10990 injava-inher)
10991 (not (c-crosses-statement-barrier-p (cdr injava-inher)
10992 (point)))
10994 (cond
10996 ;; CASE 5C.1: non-hanging colon on an inher intro
10997 ((eq char-after-ip ?:)
10998 (c-beginning-of-statement-1 lim)
10999 (c-add-syntax 'inher-intro (c-point 'boi))
11000 ;; don't add inclass symbol since relative point already
11001 ;; contains any class offset
11004 ;; CASE 5C.2: hanging colon on an inher intro
11005 ((eq char-before-ip ?:)
11006 (c-beginning-of-statement-1 lim)
11007 (c-add-syntax 'inher-intro (c-point 'boi))
11008 (if containing-decl-open
11009 (c-add-class-syntax 'inclass
11010 containing-decl-open
11011 containing-decl-start
11012 containing-decl-kwd
11013 paren-state)))
11015 ;; CASE 5C.3: in a Java implements/extends
11016 (injava-inher
11017 (let ((where (cdr injava-inher))
11018 (cont (car injava-inher)))
11019 (goto-char where)
11020 (cond ((looking-at "throws\\>[^_]")
11021 (c-add-syntax 'func-decl-cont
11022 (progn (c-beginning-of-statement-1 lim)
11023 (c-point 'boi))))
11024 (cont (c-add-syntax 'inher-cont where))
11025 (t (c-add-syntax 'inher-intro
11026 (progn (goto-char (cdr injava-inher))
11027 (c-beginning-of-statement-1 lim)
11028 (point))))
11031 ;; CASE 5C.4: a continued inheritance line
11033 (c-beginning-of-inheritance-list lim)
11034 (c-add-syntax 'inher-cont (point))
11035 ;; don't add inclass symbol since relative point already
11036 ;; contains any class offset
11039 ;; CASE 5P: AWK pattern or function or continuation
11040 ;; thereof.
11041 ((c-major-mode-is 'awk-mode)
11042 (setq placeholder (point))
11043 (c-add-stmt-syntax
11044 (if (and (eq (c-beginning-of-statement-1) 'same)
11045 (/= (point) placeholder))
11046 'topmost-intro-cont
11047 'topmost-intro)
11048 nil nil
11049 containing-sexp paren-state))
11051 ;; CASE 5D: this could be a top-level initialization, a
11052 ;; member init list continuation, or a template argument
11053 ;; list continuation.
11054 ((save-excursion
11055 ;; Note: We use the fact that lim is always after any
11056 ;; preceding brace sexp.
11057 (if c-recognize-<>-arglists
11058 (while (and
11059 (progn
11060 (c-syntactic-skip-backward "^;,=<>" lim t)
11061 (> (point) lim))
11063 (when c-overloadable-operators-regexp
11064 (when (setq placeholder (c-after-special-operator-id lim))
11065 (goto-char placeholder)
11067 (cond
11068 ((eq (char-before) ?>)
11069 (or (c-backward-<>-arglist nil lim)
11070 (backward-char))
11072 ((eq (char-before) ?<)
11073 (backward-char)
11074 (if (save-excursion
11075 (c-forward-<>-arglist nil))
11076 (progn (forward-char)
11077 nil)
11079 (t nil)))))
11080 ;; NB: No c-after-special-operator-id stuff in this
11081 ;; clause - we assume only C++ needs it.
11082 (c-syntactic-skip-backward "^;,=" lim t))
11083 (memq (char-before) '(?, ?= ?<)))
11084 (cond
11086 ;; CASE 5D.3: perhaps a template list continuation?
11087 ((and (c-major-mode-is 'c++-mode)
11088 (save-excursion
11089 (save-restriction
11090 (c-with-syntax-table c++-template-syntax-table
11091 (goto-char indent-point)
11092 (setq placeholder (c-up-list-backward))
11093 (and placeholder
11094 (eq (char-after placeholder) ?<))))))
11095 (c-with-syntax-table c++-template-syntax-table
11096 (goto-char placeholder)
11097 (c-beginning-of-statement-1 lim t))
11098 (if (save-excursion
11099 (c-backward-syntactic-ws lim)
11100 (eq (char-before) ?<))
11101 ;; In a nested template arglist.
11102 (progn
11103 (goto-char placeholder)
11104 (c-syntactic-skip-backward "^,;" lim t)
11105 (c-forward-syntactic-ws))
11106 (back-to-indentation))
11107 ;; FIXME: Should use c-add-stmt-syntax, but it's not yet
11108 ;; template aware.
11109 (c-add-syntax 'template-args-cont (point) placeholder))
11111 ;; CASE 5D.4: perhaps a multiple inheritance line?
11112 ((and (c-major-mode-is 'c++-mode)
11113 (save-excursion
11114 (c-beginning-of-statement-1 lim)
11115 (setq placeholder (point))
11116 (if (looking-at "static\\>[^_]")
11117 (c-forward-token-2 1 nil indent-point))
11118 (and (looking-at c-class-key)
11119 (zerop (c-forward-token-2 2 nil indent-point))
11120 (if (eq (char-after) ?<)
11121 (c-with-syntax-table c++-template-syntax-table
11122 (zerop (c-forward-token-2 1 t indent-point)))
11124 (eq (char-after) ?:))))
11125 (goto-char placeholder)
11126 (c-add-syntax 'inher-cont (c-point 'boi)))
11128 ;; CASE 5D.5: Continuation of the "expression part" of a
11129 ;; top level construct. Or, perhaps, an unrecognized construct.
11131 (while (and (setq placeholder (point))
11132 (eq (car (c-beginning-of-decl-1 containing-sexp)) ; Can't use `lim' here.
11133 'same)
11134 (save-excursion
11135 (c-backward-syntactic-ws)
11136 (eq (char-before) ?}))
11137 (< (point) placeholder)))
11138 (c-add-stmt-syntax
11139 (cond
11140 ((eq (point) placeholder) 'statement) ; unrecognized construct
11141 ;; A preceding comma at the top level means that a
11142 ;; new variable declaration starts here. Use
11143 ;; topmost-intro-cont for it, for consistency with
11144 ;; the first variable declaration. C.f. case 5N.
11145 ((eq char-before-ip ?,) 'topmost-intro-cont)
11146 (t 'statement-cont))
11147 nil nil containing-sexp paren-state))
11150 ;; CASE 5F: Close of a non-class declaration level block.
11151 ((and (eq char-after-ip ?})
11152 (c-keyword-member containing-decl-kwd
11153 'c-other-block-decl-kwds))
11154 ;; This is inconsistent: Should use `containing-decl-open'
11155 ;; here if it's at boi, like in case 5J.
11156 (goto-char containing-decl-start)
11157 (c-add-stmt-syntax
11158 (if (string-equal (symbol-name containing-decl-kwd) "extern")
11159 ;; Special case for compatibility with the
11160 ;; extern-lang syntactic symbols.
11161 'extern-lang-close
11162 (intern (concat (symbol-name containing-decl-kwd)
11163 "-close")))
11164 nil t
11165 (c-most-enclosing-brace paren-state (point))
11166 paren-state))
11168 ;; CASE 5G: we are looking at the brace which closes the
11169 ;; enclosing nested class decl
11170 ((and containing-sexp
11171 (eq char-after-ip ?})
11172 (eq containing-decl-open containing-sexp))
11173 (c-add-class-syntax 'class-close
11174 containing-decl-open
11175 containing-decl-start
11176 containing-decl-kwd
11177 paren-state))
11179 ;; CASE 5H: we could be looking at subsequent knr-argdecls
11180 ((and c-recognize-knr-p
11181 (not containing-sexp) ; can't be knr inside braces.
11182 (not (eq char-before-ip ?}))
11183 (save-excursion
11184 (setq placeholder (cdr (c-beginning-of-decl-1 lim)))
11185 (and placeholder
11186 ;; Do an extra check to avoid tripping up on
11187 ;; statements that occur in invalid contexts
11188 ;; (e.g. in macro bodies where we don't really
11189 ;; know the context of what we're looking at).
11190 (not (and c-opt-block-stmt-key
11191 (looking-at c-opt-block-stmt-key)))))
11192 (< placeholder indent-point))
11193 (goto-char placeholder)
11194 (c-add-syntax 'knr-argdecl (point)))
11196 ;; CASE 5I: ObjC method definition.
11197 ((and c-opt-method-key
11198 (looking-at c-opt-method-key))
11199 (c-beginning-of-statement-1 nil t)
11200 (if (= (point) indent-point)
11201 ;; Handle the case when it's the first (non-comment)
11202 ;; thing in the buffer. Can't look for a 'same return
11203 ;; value from cbos1 since ObjC directives currently
11204 ;; aren't recognized fully, so that we get 'same
11205 ;; instead of 'previous if it moved over a preceding
11206 ;; directive.
11207 (goto-char (point-min)))
11208 (c-add-syntax 'objc-method-intro (c-point 'boi)))
11210 ;; CASE 5N: At a variable declaration that follows a class
11211 ;; definition or some other block declaration that doesn't
11212 ;; end at the closing '}'. C.f. case 5D.5.
11213 ((progn
11214 (c-backward-syntactic-ws lim)
11215 (and (eq (char-before) ?})
11216 (save-excursion
11217 (let ((start (point)))
11218 (if (and c-state-cache
11219 (consp (car c-state-cache))
11220 (eq (cdar c-state-cache) (point)))
11221 ;; Speed up the backward search a bit.
11222 (goto-char (caar c-state-cache)))
11223 (c-beginning-of-decl-1 containing-sexp) ; Can't use `lim' here.
11224 (setq placeholder (point))
11225 (if (= start (point))
11226 ;; The '}' is unbalanced.
11228 (c-end-of-decl-1)
11229 (>= (point) indent-point))))))
11230 (goto-char placeholder)
11231 (c-add-stmt-syntax 'topmost-intro-cont nil nil
11232 containing-sexp paren-state))
11234 ;; NOTE: The point is at the end of the previous token here.
11236 ;; CASE 5J: we are at the topmost level, make
11237 ;; sure we skip back past any access specifiers
11238 ((and
11239 ;; A macro continuation line is never at top level.
11240 (not (and macro-start
11241 (> indent-point macro-start)))
11242 (save-excursion
11243 (setq placeholder (point))
11244 (or (memq char-before-ip '(?\; ?{ ?} nil))
11245 (c-at-vsemi-p before-ws-ip)
11246 (when (and (eq char-before-ip ?:)
11247 (eq (c-beginning-of-statement-1 lim)
11248 'label))
11249 (c-backward-syntactic-ws lim)
11250 (setq placeholder (point)))
11251 (and (c-major-mode-is 'objc-mode)
11252 (catch 'not-in-directive
11253 (c-beginning-of-statement-1 lim)
11254 (setq placeholder (point))
11255 (while (and (c-forward-objc-directive)
11256 (< (point) indent-point))
11257 (c-forward-syntactic-ws)
11258 (if (>= (point) indent-point)
11259 (throw 'not-in-directive t))
11260 (setq placeholder (point)))
11261 nil)))))
11262 ;; For historic reasons we anchor at bol of the last
11263 ;; line of the previous declaration. That's clearly
11264 ;; highly bogus and useless, and it makes our lives hard
11265 ;; to remain compatible. :P
11266 (goto-char placeholder)
11267 (c-add-syntax 'topmost-intro (c-point 'bol))
11268 (if containing-decl-open
11269 (if (c-keyword-member containing-decl-kwd
11270 'c-other-block-decl-kwds)
11271 (progn
11272 (goto-char (c-brace-anchor-point containing-decl-open))
11273 (c-add-stmt-syntax
11274 (if (string-equal (symbol-name containing-decl-kwd)
11275 "extern")
11276 ;; Special case for compatibility with the
11277 ;; extern-lang syntactic symbols.
11278 'inextern-lang
11279 (intern (concat "in"
11280 (symbol-name containing-decl-kwd))))
11281 nil t
11282 (c-most-enclosing-brace paren-state (point))
11283 paren-state))
11284 (c-add-class-syntax 'inclass
11285 containing-decl-open
11286 containing-decl-start
11287 containing-decl-kwd
11288 paren-state)))
11289 (when (and c-syntactic-indentation-in-macros
11290 macro-start
11291 (/= macro-start (c-point 'boi indent-point)))
11292 (c-add-syntax 'cpp-define-intro)
11293 (setq macro-start nil)))
11295 ;; CASE 5K: we are at an ObjC method definition
11296 ;; continuation line.
11297 ((and c-opt-method-key
11298 (save-excursion
11299 (c-beginning-of-statement-1 lim)
11300 (beginning-of-line)
11301 (when (looking-at c-opt-method-key)
11302 (setq placeholder (point)))))
11303 (c-add-syntax 'objc-method-args-cont placeholder))
11305 ;; CASE 5L: we are at the first argument of a template
11306 ;; arglist that begins on the previous line.
11307 ((and c-recognize-<>-arglists
11308 (eq (char-before) ?<)
11309 (not (and c-overloadable-operators-regexp
11310 (c-after-special-operator-id lim))))
11311 (c-beginning-of-statement-1 (c-safe-position (point) paren-state))
11312 (c-add-syntax 'template-args-cont (c-point 'boi)))
11314 ;; CASE 5Q: we are at a statement within a macro.
11315 (macro-start
11316 (c-beginning-of-statement-1 containing-sexp)
11317 (c-add-stmt-syntax 'statement nil t containing-sexp paren-state))
11319 ;;CASE 5N: We are at a topmost continuation line and the only
11320 ;;preceding items are annotations.
11321 ((and (c-major-mode-is 'java-mode)
11322 (setq placeholder (point))
11323 (c-beginning-of-statement-1)
11324 (progn
11325 (while (and (c-forward-annotation))
11326 (c-forward-syntactic-ws))
11328 (prog1
11329 (>= (point) placeholder)
11330 (goto-char placeholder)))
11331 (c-add-syntax 'annotation-top-cont (c-point 'boi)))
11333 ;; CASE 5M: we are at a topmost continuation line
11335 (c-beginning-of-statement-1 (c-safe-position (point) paren-state))
11336 (when (c-major-mode-is 'objc-mode)
11337 (setq placeholder (point))
11338 (while (and (c-forward-objc-directive)
11339 (< (point) indent-point))
11340 (c-forward-syntactic-ws)
11341 (setq placeholder (point)))
11342 (goto-char placeholder))
11343 (c-add-syntax 'topmost-intro-cont (c-point 'boi)))
11346 ;; (CASE 6 has been removed.)
11348 ;; CASE 7: line is an expression, not a statement. Most
11349 ;; likely we are either in a function prototype or a function
11350 ;; call argument list
11351 ((not (or (and c-special-brace-lists
11352 (save-excursion
11353 (goto-char containing-sexp)
11354 (c-looking-at-special-brace-list)))
11355 (eq (char-after containing-sexp) ?{)))
11356 (cond
11358 ;; CASE 7A: we are looking at the arglist closing paren.
11359 ;; C.f. case 7F.
11360 ((memq char-after-ip '(?\) ?\]))
11361 (goto-char containing-sexp)
11362 (setq placeholder (c-point 'boi))
11363 (if (and (c-safe (backward-up-list 1) t)
11364 (>= (point) placeholder))
11365 (progn
11366 (forward-char)
11367 (skip-chars-forward " \t"))
11368 (goto-char placeholder))
11369 (c-add-stmt-syntax 'arglist-close (list containing-sexp) t
11370 (c-most-enclosing-brace paren-state (point))
11371 paren-state))
11373 ;; CASE 7B: Looking at the opening brace of an
11374 ;; in-expression block or brace list. C.f. cases 4, 16A
11375 ;; and 17E.
11376 ((and (eq char-after-ip ?{)
11377 (progn
11378 (setq placeholder (c-inside-bracelist-p (point)
11379 paren-state))
11380 (if placeholder
11381 (setq tmpsymbol '(brace-list-open . inexpr-class))
11382 (setq tmpsymbol '(block-open . inexpr-statement)
11383 placeholder
11384 (cdr-safe (c-looking-at-inexpr-block
11385 (c-safe-position containing-sexp
11386 paren-state)
11387 containing-sexp)))
11388 ;; placeholder is nil if it's a block directly in
11389 ;; a function arglist. That makes us skip out of
11390 ;; this case.
11392 (goto-char placeholder)
11393 (back-to-indentation)
11394 (c-add-stmt-syntax (car tmpsymbol) nil t
11395 (c-most-enclosing-brace paren-state (point))
11396 paren-state)
11397 (if (/= (point) placeholder)
11398 (c-add-syntax (cdr tmpsymbol))))
11400 ;; CASE 7C: we are looking at the first argument in an empty
11401 ;; argument list. Use arglist-close if we're actually
11402 ;; looking at a close paren or bracket.
11403 ((memq char-before-ip '(?\( ?\[))
11404 (goto-char containing-sexp)
11405 (setq placeholder (c-point 'boi))
11406 (if (and (c-safe (backward-up-list 1) t)
11407 (>= (point) placeholder))
11408 (progn
11409 (forward-char)
11410 (skip-chars-forward " \t"))
11411 (goto-char placeholder))
11412 (c-add-stmt-syntax 'arglist-intro (list containing-sexp) t
11413 (c-most-enclosing-brace paren-state (point))
11414 paren-state))
11416 ;; CASE 7D: we are inside a conditional test clause. treat
11417 ;; these things as statements
11418 ((progn
11419 (goto-char containing-sexp)
11420 (and (c-safe (c-forward-sexp -1) t)
11421 (looking-at "\\<for\\>[^_]")))
11422 (goto-char (1+ containing-sexp))
11423 (c-forward-syntactic-ws indent-point)
11424 (if (eq char-before-ip ?\;)
11425 (c-add-syntax 'statement (point))
11426 (c-add-syntax 'statement-cont (point))
11429 ;; CASE 7E: maybe a continued ObjC method call. This is the
11430 ;; case when we are inside a [] bracketed exp, and what
11431 ;; precede the opening bracket is not an identifier.
11432 ((and c-opt-method-key
11433 (eq (char-after containing-sexp) ?\[)
11434 (progn
11435 (goto-char (1- containing-sexp))
11436 (c-backward-syntactic-ws (c-point 'bod))
11437 (if (not (looking-at c-symbol-key))
11438 (c-add-syntax 'objc-method-call-cont containing-sexp))
11441 ;; CASE 7F: we are looking at an arglist continuation line,
11442 ;; but the preceding argument is on the same line as the
11443 ;; opening paren. This case includes multi-line
11444 ;; mathematical paren groupings, but we could be on a
11445 ;; for-list continuation line. C.f. case 7A.
11446 ((progn
11447 (goto-char (1+ containing-sexp))
11448 (< (save-excursion
11449 (c-forward-syntactic-ws)
11450 (point))
11451 (c-point 'bonl)))
11452 (goto-char containing-sexp) ; paren opening the arglist
11453 (setq placeholder (c-point 'boi))
11454 (if (and (c-safe (backward-up-list 1) t)
11455 (>= (point) placeholder))
11456 (progn
11457 (forward-char)
11458 (skip-chars-forward " \t"))
11459 (goto-char placeholder))
11460 (c-add-stmt-syntax 'arglist-cont-nonempty (list containing-sexp) t
11461 (c-most-enclosing-brace c-state-cache (point))
11462 paren-state))
11464 ;; CASE 7G: we are looking at just a normal arglist
11465 ;; continuation line
11466 (t (c-forward-syntactic-ws indent-point)
11467 (c-add-syntax 'arglist-cont (c-point 'boi)))
11470 ;; CASE 8: func-local multi-inheritance line
11471 ((and (c-major-mode-is 'c++-mode)
11472 (save-excursion
11473 (goto-char indent-point)
11474 (skip-chars-forward " \t")
11475 (looking-at c-opt-postfix-decl-spec-key)))
11476 (goto-char indent-point)
11477 (skip-chars-forward " \t")
11478 (cond
11480 ;; CASE 8A: non-hanging colon on an inher intro
11481 ((eq char-after-ip ?:)
11482 (c-backward-syntactic-ws lim)
11483 (c-add-syntax 'inher-intro (c-point 'boi)))
11485 ;; CASE 8B: hanging colon on an inher intro
11486 ((eq char-before-ip ?:)
11487 (c-add-syntax 'inher-intro (c-point 'boi)))
11489 ;; CASE 8C: a continued inheritance line
11491 (c-beginning-of-inheritance-list lim)
11492 (c-add-syntax 'inher-cont (point))
11495 ;; CASE 9: we are inside a brace-list
11496 ((and (not (c-major-mode-is 'awk-mode)) ; Maybe this isn't needed (ACM, 2002/3/29)
11497 (setq special-brace-list
11498 (or (and c-special-brace-lists ;;;; ALWAYS NIL FOR AWK!!
11499 (save-excursion
11500 (goto-char containing-sexp)
11501 (c-looking-at-special-brace-list)))
11502 (c-inside-bracelist-p containing-sexp paren-state))))
11503 (cond
11505 ;; CASE 9A: In the middle of a special brace list opener.
11506 ((and (consp special-brace-list)
11507 (save-excursion
11508 (goto-char containing-sexp)
11509 (eq (char-after) ?\())
11510 (eq char-after-ip (car (cdr special-brace-list))))
11511 (goto-char (car (car special-brace-list)))
11512 (skip-chars-backward " \t")
11513 (if (and (bolp)
11514 (assoc 'statement-cont
11515 (setq placeholder (c-guess-basic-syntax))))
11516 (setq c-syntactic-context placeholder)
11517 (c-beginning-of-statement-1
11518 (c-safe-position (1- containing-sexp) paren-state))
11519 (c-forward-token-2 0)
11520 (while (cond
11521 ((looking-at c-specifier-key)
11522 (c-forward-keyword-clause 1))
11523 ((and c-opt-cpp-prefix
11524 (looking-at c-noise-macro-with-parens-name-re))
11525 (c-forward-noise-clause))))
11526 (c-add-syntax 'brace-list-open (c-point 'boi))))
11528 ;; CASE 9B: brace-list-close brace
11529 ((if (consp special-brace-list)
11530 ;; Check special brace list closer.
11531 (progn
11532 (goto-char (car (car special-brace-list)))
11533 (save-excursion
11534 (goto-char indent-point)
11535 (back-to-indentation)
11537 ;; We were between the special close char and the `)'.
11538 (and (eq (char-after) ?\))
11539 (eq (1+ (point)) (cdr (car special-brace-list))))
11540 ;; We were before the special close char.
11541 (and (eq (char-after) (cdr (cdr special-brace-list)))
11542 (zerop (c-forward-token-2))
11543 (eq (1+ (point)) (cdr (car special-brace-list)))))))
11544 ;; Normal brace list check.
11545 (and (eq char-after-ip ?})
11546 (c-safe (goto-char (c-up-list-backward (point))) t)
11547 (= (point) containing-sexp)))
11548 (if (eq (point) (c-point 'boi))
11549 (c-add-syntax 'brace-list-close (point))
11550 (setq lim (c-most-enclosing-brace c-state-cache (point)))
11551 (c-beginning-of-statement-1 lim nil nil t)
11552 (c-add-stmt-syntax 'brace-list-close nil t lim paren-state)))
11555 ;; Prepare for the rest of the cases below by going to the
11556 ;; token following the opening brace
11557 (if (consp special-brace-list)
11558 (progn
11559 (goto-char (car (car special-brace-list)))
11560 (c-forward-token-2 1 nil indent-point))
11561 (goto-char containing-sexp))
11562 (forward-char)
11563 (let ((start (point)))
11564 (c-forward-syntactic-ws indent-point)
11565 (goto-char (max start (c-point 'bol))))
11566 (c-skip-ws-forward indent-point)
11567 (cond
11569 ;; CASE 9C: we're looking at the first line in a brace-list
11570 ((= (point) indent-point)
11571 (if (consp special-brace-list)
11572 (goto-char (car (car special-brace-list)))
11573 (goto-char containing-sexp))
11574 (if (eq (point) (c-point 'boi))
11575 (c-add-syntax 'brace-list-intro (point))
11576 (setq lim (c-most-enclosing-brace c-state-cache (point)))
11577 (c-beginning-of-statement-1 lim)
11578 (c-add-stmt-syntax 'brace-list-intro nil t lim paren-state)))
11580 ;; CASE 9D: this is just a later brace-list-entry or
11581 ;; brace-entry-open
11582 (t (if (or (eq char-after-ip ?{)
11583 (and c-special-brace-lists
11584 (save-excursion
11585 (goto-char indent-point)
11586 (c-forward-syntactic-ws (c-point 'eol))
11587 (c-looking-at-special-brace-list (point)))))
11588 (c-add-syntax 'brace-entry-open (point))
11589 (c-add-syntax 'brace-list-entry (point))
11591 ))))
11593 ;; CASE 10: A continued statement or top level construct.
11594 ((and (not (memq char-before-ip '(?\; ?:)))
11595 (not (c-at-vsemi-p before-ws-ip))
11596 (or (not (eq char-before-ip ?}))
11597 (c-looking-at-inexpr-block-backward c-state-cache))
11598 (> (point)
11599 (save-excursion
11600 (c-beginning-of-statement-1 containing-sexp)
11601 (setq placeholder (point))))
11602 (/= placeholder containing-sexp))
11603 ;; This is shared with case 18.
11604 (c-guess-continued-construct indent-point
11605 char-after-ip
11606 placeholder
11607 containing-sexp
11608 paren-state))
11610 ;; CASE 16: block close brace, possibly closing the defun or
11611 ;; the class
11612 ((eq char-after-ip ?})
11613 ;; From here on we have the next containing sexp in lim.
11614 (setq lim (c-most-enclosing-brace paren-state))
11615 (goto-char containing-sexp)
11616 (cond
11618 ;; CASE 16E: Closing a statement block? This catches
11619 ;; cases where it's preceded by a statement keyword,
11620 ;; which works even when used in an "invalid" context,
11621 ;; e.g. a macro argument.
11622 ((c-after-conditional)
11623 (c-backward-to-block-anchor lim)
11624 (c-add-stmt-syntax 'block-close nil t lim paren-state))
11626 ;; CASE 16A: closing a lambda defun or an in-expression
11627 ;; block? C.f. cases 4, 7B and 17E.
11628 ((setq placeholder (c-looking-at-inexpr-block
11629 (c-safe-position containing-sexp paren-state)
11630 nil))
11631 (setq tmpsymbol (if (eq (car placeholder) 'inlambda)
11632 'inline-close
11633 'block-close))
11634 (goto-char containing-sexp)
11635 (back-to-indentation)
11636 (if (= containing-sexp (point))
11637 (c-add-syntax tmpsymbol (point))
11638 (goto-char (cdr placeholder))
11639 (back-to-indentation)
11640 (c-add-stmt-syntax tmpsymbol nil t
11641 (c-most-enclosing-brace paren-state (point))
11642 paren-state)
11643 (if (/= (point) (cdr placeholder))
11644 (c-add-syntax (car placeholder)))))
11646 ;; CASE 16B: does this close an inline or a function in
11647 ;; a non-class declaration level block?
11648 ((save-excursion
11649 (and lim
11650 (progn
11651 (goto-char lim)
11652 (c-looking-at-decl-block
11653 (c-most-enclosing-brace paren-state lim)
11654 nil))
11655 (setq placeholder (point))))
11656 (c-backward-to-decl-anchor lim)
11657 (back-to-indentation)
11658 (if (save-excursion
11659 (goto-char placeholder)
11660 (looking-at c-other-decl-block-key))
11661 (c-add-syntax 'defun-close (point))
11662 (c-add-syntax 'inline-close (point))))
11664 ;; CASE 16F: Can be a defun-close of a function declared
11665 ;; in a statement block, e.g. in Pike or when using gcc
11666 ;; extensions, but watch out for macros followed by
11667 ;; blocks. Let it through to be handled below.
11668 ;; C.f. cases B.3 and 17G.
11669 ((save-excursion
11670 (and (not (c-at-statement-start-p))
11671 (eq (c-beginning-of-statement-1 lim nil nil t) 'same)
11672 (setq placeholder (point))
11673 (let ((c-recognize-typeless-decls nil))
11674 ;; Turn off recognition of constructs that
11675 ;; lacks a type in this case, since that's more
11676 ;; likely to be a macro followed by a block.
11677 (c-forward-decl-or-cast-1 (c-point 'bosws) nil nil))))
11678 (back-to-indentation)
11679 (if (/= (point) containing-sexp)
11680 (goto-char placeholder))
11681 (c-add-stmt-syntax 'defun-close nil t lim paren-state))
11683 ;; CASE 16C: If there is an enclosing brace then this is
11684 ;; a block close since defun closes inside declaration
11685 ;; level blocks have been handled above.
11686 (lim
11687 ;; If the block is preceded by a case/switch label on
11688 ;; the same line, we anchor at the first preceding label
11689 ;; at boi. The default handling in c-add-stmt-syntax
11690 ;; really fixes it better, but we do like this to keep
11691 ;; the indentation compatible with version 5.28 and
11692 ;; earlier. C.f. case 17H.
11693 (while (and (/= (setq placeholder (point)) (c-point 'boi))
11694 (eq (c-beginning-of-statement-1 lim) 'label)))
11695 (goto-char placeholder)
11696 (if (looking-at c-label-kwds-regexp)
11697 (c-add-syntax 'block-close (point))
11698 (goto-char containing-sexp)
11699 ;; c-backward-to-block-anchor not necessary here; those
11700 ;; situations are handled in case 16E above.
11701 (c-add-stmt-syntax 'block-close nil t lim paren-state)))
11703 ;; CASE 16D: Only top level defun close left.
11705 (goto-char containing-sexp)
11706 (c-backward-to-decl-anchor lim)
11707 (c-add-stmt-syntax 'defun-close nil nil
11708 (c-most-enclosing-brace paren-state)
11709 paren-state))
11712 ;; CASE 19: line is an expression, not a statement, and is directly
11713 ;; contained by a template delimiter. Most likely, we are in a
11714 ;; template arglist within a statement. This case is based on CASE
11715 ;; 7. At some point in the future, we may wish to create more
11716 ;; syntactic symbols such as `template-intro',
11717 ;; `template-cont-nonempty', etc., and distinguish between them as we
11718 ;; do for `arglist-intro' etc. (2009-12-07).
11719 ((and c-recognize-<>-arglists
11720 (setq containing-< (c-up-list-backward indent-point containing-sexp))
11721 (eq (char-after containing-<) ?\<))
11722 (setq placeholder (c-point 'boi containing-<))
11723 (goto-char containing-sexp) ; Most nested Lbrace/Lparen (but not
11724 ; '<') before indent-point.
11725 (if (>= (point) placeholder)
11726 (progn
11727 (forward-char)
11728 (skip-chars-forward " \t"))
11729 (goto-char placeholder))
11730 (c-add-stmt-syntax 'template-args-cont (list containing-<) t
11731 (c-most-enclosing-brace c-state-cache (point))
11732 paren-state))
11734 ;; CASE 17: Statement or defun catchall.
11736 (goto-char indent-point)
11737 ;; Back up statements until we find one that starts at boi.
11738 (while (let* ((prev-point (point))
11739 (last-step-type (c-beginning-of-statement-1
11740 containing-sexp)))
11741 (if (= (point) prev-point)
11742 (progn
11743 (setq step-type (or step-type last-step-type))
11744 nil)
11745 (setq step-type last-step-type)
11746 (/= (point) (c-point 'boi)))))
11747 (cond
11749 ;; CASE 17B: continued statement
11750 ((and (eq step-type 'same)
11751 (/= (point) indent-point))
11752 (c-add-stmt-syntax 'statement-cont nil nil
11753 containing-sexp paren-state))
11755 ;; CASE 17A: After a case/default label?
11756 ((progn
11757 (while (and (eq step-type 'label)
11758 (not (looking-at c-label-kwds-regexp)))
11759 (setq step-type
11760 (c-beginning-of-statement-1 containing-sexp)))
11761 (eq step-type 'label))
11762 (c-add-stmt-syntax (if (eq char-after-ip ?{)
11763 'statement-case-open
11764 'statement-case-intro)
11765 nil t containing-sexp paren-state))
11767 ;; CASE 17D: any old statement
11768 ((progn
11769 (while (eq step-type 'label)
11770 (setq step-type
11771 (c-beginning-of-statement-1 containing-sexp)))
11772 (eq step-type 'previous))
11773 (c-add-stmt-syntax 'statement nil t
11774 containing-sexp paren-state)
11775 (if (eq char-after-ip ?{)
11776 (c-add-syntax 'block-open)))
11778 ;; CASE 17I: Inside a substatement block.
11779 ((progn
11780 ;; The following tests are all based on containing-sexp.
11781 (goto-char containing-sexp)
11782 ;; From here on we have the next containing sexp in lim.
11783 (setq lim (c-most-enclosing-brace paren-state containing-sexp))
11784 (c-after-conditional))
11785 (c-backward-to-block-anchor lim)
11786 (c-add-stmt-syntax 'statement-block-intro nil t
11787 lim paren-state)
11788 (if (eq char-after-ip ?{)
11789 (c-add-syntax 'block-open)))
11791 ;; CASE 17E: first statement in an in-expression block.
11792 ;; C.f. cases 4, 7B and 16A.
11793 ((setq placeholder (c-looking-at-inexpr-block
11794 (c-safe-position containing-sexp paren-state)
11795 nil))
11796 (setq tmpsymbol (if (eq (car placeholder) 'inlambda)
11797 'defun-block-intro
11798 'statement-block-intro))
11799 (back-to-indentation)
11800 (if (= containing-sexp (point))
11801 (c-add-syntax tmpsymbol (point))
11802 (goto-char (cdr placeholder))
11803 (back-to-indentation)
11804 (c-add-stmt-syntax tmpsymbol nil t
11805 (c-most-enclosing-brace c-state-cache (point))
11806 paren-state)
11807 (if (/= (point) (cdr placeholder))
11808 (c-add-syntax (car placeholder))))
11809 (if (eq char-after-ip ?{)
11810 (c-add-syntax 'block-open)))
11812 ;; CASE 17F: first statement in an inline, or first
11813 ;; statement in a top-level defun. we can tell this is it
11814 ;; if there are no enclosing braces that haven't been
11815 ;; narrowed out by a class (i.e. don't use bod here).
11816 ((save-excursion
11817 (or (not (setq placeholder (c-most-enclosing-brace
11818 paren-state)))
11819 (and (progn
11820 (goto-char placeholder)
11821 (eq (char-after) ?{))
11822 (c-looking-at-decl-block (c-most-enclosing-brace
11823 paren-state (point))
11824 nil))))
11825 (c-backward-to-decl-anchor lim)
11826 (back-to-indentation)
11827 (c-add-syntax 'defun-block-intro (point)))
11829 ;; CASE 17G: First statement in a function declared inside
11830 ;; a normal block. This can occur in Pike and with
11831 ;; e.g. the gcc extensions, but watch out for macros
11832 ;; followed by blocks. C.f. cases B.3 and 16F.
11833 ((save-excursion
11834 (and (not (c-at-statement-start-p))
11835 (eq (c-beginning-of-statement-1 lim nil nil t) 'same)
11836 (setq placeholder (point))
11837 (let ((c-recognize-typeless-decls nil))
11838 ;; Turn off recognition of constructs that lacks
11839 ;; a type in this case, since that's more likely
11840 ;; to be a macro followed by a block.
11841 (c-forward-decl-or-cast-1 (c-point 'bosws) nil nil))))
11842 (back-to-indentation)
11843 (if (/= (point) containing-sexp)
11844 (goto-char placeholder))
11845 (c-add-stmt-syntax 'defun-block-intro nil t
11846 lim paren-state))
11848 ;; CASE 17H: First statement in a block.
11850 ;; If the block is preceded by a case/switch label on the
11851 ;; same line, we anchor at the first preceding label at
11852 ;; boi. The default handling in c-add-stmt-syntax is
11853 ;; really fixes it better, but we do like this to keep the
11854 ;; indentation compatible with version 5.28 and earlier.
11855 ;; C.f. case 16C.
11856 (while (and (/= (setq placeholder (point)) (c-point 'boi))
11857 (eq (c-beginning-of-statement-1 lim) 'label)))
11858 (goto-char placeholder)
11859 (if (looking-at c-label-kwds-regexp)
11860 (c-add-syntax 'statement-block-intro (point))
11861 (goto-char containing-sexp)
11862 ;; c-backward-to-block-anchor not necessary here; those
11863 ;; situations are handled in case 17I above.
11864 (c-add-stmt-syntax 'statement-block-intro nil t
11865 lim paren-state))
11866 (if (eq char-after-ip ?{)
11867 (c-add-syntax 'block-open)))
11871 ;; now we need to look at any modifiers
11872 (goto-char indent-point)
11873 (skip-chars-forward " \t")
11875 ;; are we looking at a comment only line?
11876 (when (and (looking-at c-comment-start-regexp)
11877 (/= (c-forward-token-2 0 nil (c-point 'eol)) 0))
11878 (c-append-syntax 'comment-intro))
11880 ;; we might want to give additional offset to friends (in C++).
11881 (when (and c-opt-friend-key
11882 (looking-at c-opt-friend-key))
11883 (c-append-syntax 'friend))
11885 ;; Set syntactic-relpos.
11886 (let ((p c-syntactic-context))
11887 (while (and p
11888 (if (integerp (c-langelem-pos (car p)))
11889 (progn
11890 (setq syntactic-relpos (c-langelem-pos (car p)))
11891 nil)
11893 (setq p (cdr p))))
11895 ;; Start of or a continuation of a preprocessor directive?
11896 (if (and macro-start
11897 (eq macro-start (c-point 'boi))
11898 (not (and (c-major-mode-is 'pike-mode)
11899 (eq (char-after (1+ macro-start)) ?\"))))
11900 (c-append-syntax 'cpp-macro)
11901 (when (and c-syntactic-indentation-in-macros macro-start)
11902 (if in-macro-expr
11903 (when (or
11904 (< syntactic-relpos macro-start)
11905 (not (or
11906 (assq 'arglist-intro c-syntactic-context)
11907 (assq 'arglist-cont c-syntactic-context)
11908 (assq 'arglist-cont-nonempty c-syntactic-context)
11909 (assq 'arglist-close c-syntactic-context))))
11910 ;; If inside a cpp expression, i.e. anywhere in a
11911 ;; cpp directive except a #define body, we only let
11912 ;; through the syntactic analysis that is internal
11913 ;; in the expression. That means the arglist
11914 ;; elements, if they are anchored inside the cpp
11915 ;; expression.
11916 (setq c-syntactic-context nil)
11917 (c-add-syntax 'cpp-macro-cont macro-start))
11918 (when (and (eq macro-start syntactic-relpos)
11919 (not (assq 'cpp-define-intro c-syntactic-context))
11920 (save-excursion
11921 (goto-char macro-start)
11922 (or (not (c-forward-to-cpp-define-body))
11923 (<= (point) (c-point 'boi indent-point)))))
11924 ;; Inside a #define body and the syntactic analysis is
11925 ;; anchored on the start of the #define. In this case
11926 ;; we add cpp-define-intro to get the extra
11927 ;; indentation of the #define body.
11928 (c-add-syntax 'cpp-define-intro)))))
11930 ;; return the syntax
11931 c-syntactic-context)))
11934 ;; Indentation calculation.
11936 (defun c-evaluate-offset (offset langelem symbol)
11937 ;; offset can be a number, a function, a variable, a list, or one of
11938 ;; the symbols + or -
11940 ;; This function might do hidden buffer changes.
11941 (let ((res
11942 (cond
11943 ((numberp offset) offset)
11944 ((vectorp offset) offset)
11945 ((null offset) nil)
11947 ((eq offset '+) c-basic-offset)
11948 ((eq offset '-) (- c-basic-offset))
11949 ((eq offset '++) (* 2 c-basic-offset))
11950 ((eq offset '--) (* 2 (- c-basic-offset)))
11951 ((eq offset '*) (/ c-basic-offset 2))
11952 ((eq offset '/) (/ (- c-basic-offset) 2))
11954 ((functionp offset)
11955 (c-evaluate-offset
11956 (funcall offset
11957 (cons (c-langelem-sym langelem)
11958 (c-langelem-pos langelem)))
11959 langelem symbol))
11961 ((listp offset)
11962 (cond
11963 ((eq (car offset) 'quote)
11964 (c-benign-error "The offset %S for %s was mistakenly quoted"
11965 offset symbol)
11966 nil)
11968 ((memq (car offset) '(min max))
11969 (let (res val (method (car offset)))
11970 (setq offset (cdr offset))
11971 (while offset
11972 (setq val (c-evaluate-offset (car offset) langelem symbol))
11973 (cond
11974 ((not val))
11975 ((not res)
11976 (setq res val))
11977 ((integerp val)
11978 (if (vectorp res)
11979 (c-benign-error "\
11980 Error evaluating offset %S for %s: \
11981 Cannot combine absolute offset %S with relative %S in `%s' method"
11982 (car offset) symbol res val method)
11983 (setq res (funcall method res val))))
11985 (if (integerp res)
11986 (c-benign-error "\
11987 Error evaluating offset %S for %s: \
11988 Cannot combine relative offset %S with absolute %S in `%s' method"
11989 (car offset) symbol res val method)
11990 (setq res (vector (funcall method (aref res 0)
11991 (aref val 0)))))))
11992 (setq offset (cdr offset)))
11993 res))
11995 ((eq (car offset) 'add)
11996 (let (res val)
11997 (setq offset (cdr offset))
11998 (while offset
11999 (setq val (c-evaluate-offset (car offset) langelem symbol))
12000 (cond
12001 ((not val))
12002 ((not res)
12003 (setq res val))
12004 ((integerp val)
12005 (if (vectorp res)
12006 (setq res (vector (+ (aref res 0) val)))
12007 (setq res (+ res val))))
12009 (if (vectorp res)
12010 (c-benign-error "\
12011 Error evaluating offset %S for %s: \
12012 Cannot combine absolute offsets %S and %S in `add' method"
12013 (car offset) symbol res val)
12014 (setq res val)))) ; Override.
12015 (setq offset (cdr offset)))
12016 res))
12019 (let (res)
12020 (when (eq (car offset) 'first)
12021 (setq offset (cdr offset)))
12022 (while (and (not res) offset)
12023 (setq res (c-evaluate-offset (car offset) langelem symbol)
12024 offset (cdr offset)))
12025 res))))
12027 ((and (symbolp offset) (boundp offset))
12028 (symbol-value offset))
12031 (c-benign-error "Unknown offset format %S for %s" offset symbol)
12032 nil))))
12034 (if (or (null res) (integerp res)
12035 (and (vectorp res) (= (length res) 1) (integerp (aref res 0))))
12037 (c-benign-error "Error evaluating offset %S for %s: Got invalid value %S"
12038 offset symbol res)
12039 nil)))
12041 (defun c-calc-offset (langelem)
12042 ;; Get offset from LANGELEM which is a list beginning with the
12043 ;; syntactic symbol and followed by any analysis data it provides.
12044 ;; That data may be zero or more elements, but if at least one is
12045 ;; given then the first is the anchor position (or nil). The symbol
12046 ;; is matched against `c-offsets-alist' and the offset calculated
12047 ;; from that is returned.
12049 ;; This function might do hidden buffer changes.
12050 (let* ((symbol (c-langelem-sym langelem))
12051 (match (assq symbol c-offsets-alist))
12052 (offset (cdr-safe match)))
12053 (if match
12054 (setq offset (c-evaluate-offset offset langelem symbol))
12055 (if c-strict-syntax-p
12056 (c-benign-error "No offset found for syntactic symbol %s" symbol))
12057 (setq offset 0))
12058 (if (vectorp offset)
12059 offset
12060 (or (and (numberp offset) offset)
12061 (and (symbolp offset) (symbol-value offset))
12065 (defun c-get-offset (langelem)
12066 ;; This is a compatibility wrapper for `c-calc-offset' in case
12067 ;; someone is calling it directly. It takes an old style syntactic
12068 ;; element on the form (SYMBOL . ANCHOR-POS) and converts it to the
12069 ;; new list form.
12071 ;; This function might do hidden buffer changes.
12072 (if (c-langelem-pos langelem)
12073 (c-calc-offset (list (c-langelem-sym langelem)
12074 (c-langelem-pos langelem)))
12075 (c-calc-offset langelem)))
12077 (defun c-get-syntactic-indentation (langelems)
12078 ;; Calculate the syntactic indentation from a syntactic description
12079 ;; as returned by `c-guess-syntax'.
12081 ;; Note that topmost-intro always has an anchor position at bol, for
12082 ;; historical reasons. It's often used together with other symbols
12083 ;; that has more sane positions. Since we always use the first
12084 ;; found anchor position, we rely on that these other symbols always
12085 ;; precede topmost-intro in the LANGELEMS list.
12087 ;; This function might do hidden buffer changes.
12088 (let ((indent 0) anchor)
12090 (while langelems
12091 (let* ((c-syntactic-element (car langelems))
12092 (res (c-calc-offset c-syntactic-element)))
12094 (if (vectorp res)
12095 ;; Got an absolute column that overrides any indentation
12096 ;; we've collected so far, but not the relative
12097 ;; indentation we might get for the nested structures
12098 ;; further down the langelems list.
12099 (setq indent (elt res 0)
12100 anchor (point-min)) ; A position at column 0.
12102 ;; Got a relative change of the current calculated
12103 ;; indentation.
12104 (setq indent (+ indent res))
12106 ;; Use the anchor position from the first syntactic
12107 ;; element with one.
12108 (unless anchor
12109 (setq anchor (c-langelem-pos (car langelems)))))
12111 (setq langelems (cdr langelems))))
12113 (if anchor
12114 (+ indent (save-excursion
12115 (goto-char anchor)
12116 (current-column)))
12117 indent)))
12120 (cc-provide 'cc-engine)
12122 ;; Local Variables:
12123 ;; indent-tabs-mode: t
12124 ;; tab-width: 8
12125 ;; End:
12126 ;;; cc-engine.el ends here