Subject: Restore correct Gnus newsgroup name after sending message
[emacs.git] / src / regex.c
blobf6e67afef4c615becdb4d186d4fb1611ccf2c4cd
1 /* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
3 internationalization features.)
5 Copyright (C) 1993-2017 Free Software Foundation, Inc.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 /* TODO:
21 - structure the opcode space into opcode+flag.
22 - merge with glibc's regex.[ch].
23 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
24 need to modify the compiled regexp so that re_match can be reentrant.
25 - get rid of on_failure_jump_smart by doing the optimization in re_comp
26 rather than at run-time, so that re_match can be reentrant.
29 /* AIX requires this to be the first thing in the file. */
30 #if defined _AIX && !defined REGEX_MALLOC
31 #pragma alloca
32 #endif
34 /* Ignore some GCC warnings for now. This section should go away
35 once the Emacs and Gnulib regex code is merged. */
36 #if 4 < __GNUC__ + (5 <= __GNUC_MINOR__) || defined __clang__
37 # pragma GCC diagnostic ignored "-Wstrict-overflow"
38 # ifndef emacs
39 # pragma GCC diagnostic ignored "-Wunused-function"
40 # pragma GCC diagnostic ignored "-Wunused-macros"
41 # pragma GCC diagnostic ignored "-Wunused-result"
42 # pragma GCC diagnostic ignored "-Wunused-variable"
43 # endif
44 #endif
46 #if 4 < __GNUC__ + (6 <= __GNUC_MINOR__) && ! defined __clang__
47 # pragma GCC diagnostic ignored "-Wunused-but-set-variable"
48 #endif
50 #include <config.h>
52 #include <stddef.h>
53 #include <stdlib.h>
55 #ifdef emacs
56 /* We need this for `regex.h', and perhaps for the Emacs include files. */
57 # include <sys/types.h>
58 #endif
60 /* Whether to use ISO C Amendment 1 wide char functions.
61 Those should not be used for Emacs since it uses its own. */
62 #if defined _LIBC
63 #define WIDE_CHAR_SUPPORT 1
64 #else
65 #define WIDE_CHAR_SUPPORT \
66 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
67 #endif
69 /* For platform which support the ISO C amendment 1 functionality we
70 support user defined character classes. */
71 #if WIDE_CHAR_SUPPORT
72 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
73 # include <wchar.h>
74 # include <wctype.h>
75 #endif
77 #ifdef _LIBC
78 /* We have to keep the namespace clean. */
79 # define regfree(preg) __regfree (preg)
80 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
81 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
82 # define regerror(err_code, preg, errbuf, errbuf_size) \
83 __regerror (err_code, preg, errbuf, errbuf_size)
84 # define re_set_registers(bu, re, nu, st, en) \
85 __re_set_registers (bu, re, nu, st, en)
86 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
87 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
88 # define re_match(bufp, string, size, pos, regs) \
89 __re_match (bufp, string, size, pos, regs)
90 # define re_search(bufp, string, size, startpos, range, regs) \
91 __re_search (bufp, string, size, startpos, range, regs)
92 # define re_compile_pattern(pattern, length, bufp) \
93 __re_compile_pattern (pattern, length, bufp)
94 # define re_set_syntax(syntax) __re_set_syntax (syntax)
95 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
96 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
97 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
99 /* Make sure we call libc's function even if the user overrides them. */
100 # define btowc __btowc
101 # define iswctype __iswctype
102 # define wctype __wctype
104 # define WEAK_ALIAS(a,b) weak_alias (a, b)
106 /* We are also using some library internals. */
107 # include <locale/localeinfo.h>
108 # include <locale/elem-hash.h>
109 # include <langinfo.h>
110 #else
111 # define WEAK_ALIAS(a,b)
112 #endif
114 /* This is for other GNU distributions with internationalized messages. */
115 #if HAVE_LIBINTL_H || defined _LIBC
116 # include <libintl.h>
117 #else
118 # define gettext(msgid) (msgid)
119 #endif
121 #ifndef gettext_noop
122 /* This define is so xgettext can find the internationalizable
123 strings. */
124 # define gettext_noop(String) String
125 #endif
127 /* The `emacs' switch turns on certain matching commands
128 that make sense only in Emacs. */
129 #ifdef emacs
131 # include "lisp.h"
132 # include "character.h"
133 # include "buffer.h"
135 # include "syntax.h"
136 # include "category.h"
138 /* Make syntax table lookup grant data in gl_state. */
139 # define SYNTAX(c) syntax_property (c, 1)
141 # ifdef malloc
142 # undef malloc
143 # endif
144 # define malloc xmalloc
145 # ifdef realloc
146 # undef realloc
147 # endif
148 # define realloc xrealloc
149 # ifdef free
150 # undef free
151 # endif
152 # define free xfree
154 /* Converts the pointer to the char to BEG-based offset from the start. */
155 # define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
156 /* Strings are 0-indexed, buffers are 1-indexed; we pun on the boolean
157 result to get the right base index. */
158 # define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
160 # define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
161 # define RE_TARGET_MULTIBYTE_P(bufp) ((bufp)->target_multibyte)
162 # define RE_STRING_CHAR(p, multibyte) \
163 (multibyte ? (STRING_CHAR (p)) : (*(p)))
164 # define RE_STRING_CHAR_AND_LENGTH(p, len, multibyte) \
165 (multibyte ? (STRING_CHAR_AND_LENGTH (p, len)) : ((len) = 1, *(p)))
167 # define RE_CHAR_TO_MULTIBYTE(c) UNIBYTE_TO_CHAR (c)
169 # define RE_CHAR_TO_UNIBYTE(c) CHAR_TO_BYTE_SAFE (c)
171 /* Set C a (possibly converted to multibyte) character before P. P
172 points into a string which is the virtual concatenation of STR1
173 (which ends at END1) or STR2 (which ends at END2). */
174 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
175 do { \
176 if (target_multibyte) \
178 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
179 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
180 while (dtemp-- > dlimit && !CHAR_HEAD_P (*dtemp)); \
181 c = STRING_CHAR (dtemp); \
183 else \
185 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
186 (c) = RE_CHAR_TO_MULTIBYTE (c); \
188 } while (0)
190 /* Set C a (possibly converted to multibyte) character at P, and set
191 LEN to the byte length of that character. */
192 # define GET_CHAR_AFTER(c, p, len) \
193 do { \
194 if (target_multibyte) \
195 (c) = STRING_CHAR_AND_LENGTH (p, len); \
196 else \
198 (c) = *p; \
199 len = 1; \
200 (c) = RE_CHAR_TO_MULTIBYTE (c); \
202 } while (0)
204 #else /* not emacs */
206 /* If we are not linking with Emacs proper,
207 we can't use the relocating allocator
208 even if config.h says that we can. */
209 # undef REL_ALLOC
211 # include <unistd.h>
213 /* When used in Emacs's lib-src, we need xmalloc and xrealloc. */
215 static void *
216 xmalloc (size_t size)
218 void *val = malloc (size);
219 if (!val && size)
221 write (STDERR_FILENO, "virtual memory exhausted\n", 25);
222 exit (1);
224 return val;
227 static void *
228 xrealloc (void *block, size_t size)
230 void *val;
231 /* We must call malloc explicitly when BLOCK is 0, since some
232 reallocs don't do this. */
233 if (! block)
234 val = malloc (size);
235 else
236 val = realloc (block, size);
237 if (!val && size)
239 write (STDERR_FILENO, "virtual memory exhausted\n", 25);
240 exit (1);
242 return val;
245 # ifdef malloc
246 # undef malloc
247 # endif
248 # define malloc xmalloc
249 # ifdef realloc
250 # undef realloc
251 # endif
252 # define realloc xrealloc
254 # include <stdbool.h>
255 # include <string.h>
257 /* Define the syntax stuff for \<, \>, etc. */
259 /* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
260 enum syntaxcode { Swhitespace = 0, Sword = 1, Ssymbol = 2 };
262 /* Dummy macros for non-Emacs environments. */
263 # define MAX_MULTIBYTE_LENGTH 1
264 # define RE_MULTIBYTE_P(x) 0
265 # define RE_TARGET_MULTIBYTE_P(x) 0
266 # define WORD_BOUNDARY_P(c1, c2) (0)
267 # define BYTES_BY_CHAR_HEAD(p) (1)
268 # define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
269 # define STRING_CHAR(p) (*(p))
270 # define RE_STRING_CHAR(p, multibyte) STRING_CHAR (p)
271 # define CHAR_STRING(c, s) (*(s) = (c), 1)
272 # define STRING_CHAR_AND_LENGTH(p, actual_len) ((actual_len) = 1, *(p))
273 # define RE_STRING_CHAR_AND_LENGTH(p, len, multibyte) STRING_CHAR_AND_LENGTH (p, len)
274 # define RE_CHAR_TO_MULTIBYTE(c) (c)
275 # define RE_CHAR_TO_UNIBYTE(c) (c)
276 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
277 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
278 # define GET_CHAR_AFTER(c, p, len) \
279 (c = *p, len = 1)
280 # define CHAR_BYTE8_P(c) (0)
281 # define CHAR_LEADING_CODE(c) (c)
283 #endif /* not emacs */
285 #ifndef RE_TRANSLATE
286 # define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
287 # define RE_TRANSLATE_P(TBL) (TBL)
288 #endif
290 /* Get the interface, including the syntax bits. */
291 #include "regex.h"
293 /* isalpha etc. are used for the character classes. */
294 #include <ctype.h>
296 #ifdef emacs
298 /* 1 if C is an ASCII character. */
299 # define IS_REAL_ASCII(c) ((c) < 0200)
301 /* 1 if C is a unibyte character. */
302 # define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
304 /* The Emacs definitions should not be directly affected by locales. */
306 /* In Emacs, these are only used for single-byte characters. */
307 # define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
308 # define ISCNTRL(c) ((c) < ' ')
309 # define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
310 || ((c) >= 'a' && (c) <= 'f') \
311 || ((c) >= 'A' && (c) <= 'F'))
313 /* The rest must handle multibyte characters. */
315 # define ISBLANK(c) (IS_REAL_ASCII (c) \
316 ? ((c) == ' ' || (c) == '\t') \
317 : blankp (c))
319 # define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
320 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0240) \
321 : graphicp (c))
323 # define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
324 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
325 : printablep (c))
327 # define ISALNUM(c) (IS_REAL_ASCII (c) \
328 ? (((c) >= 'a' && (c) <= 'z') \
329 || ((c) >= 'A' && (c) <= 'Z') \
330 || ((c) >= '0' && (c) <= '9')) \
331 : alphanumericp (c))
333 # define ISALPHA(c) (IS_REAL_ASCII (c) \
334 ? (((c) >= 'a' && (c) <= 'z') \
335 || ((c) >= 'A' && (c) <= 'Z')) \
336 : alphabeticp (c))
338 # define ISLOWER(c) lowercasep (c)
340 # define ISPUNCT(c) (IS_REAL_ASCII (c) \
341 ? ((c) > ' ' && (c) < 0177 \
342 && !(((c) >= 'a' && (c) <= 'z') \
343 || ((c) >= 'A' && (c) <= 'Z') \
344 || ((c) >= '0' && (c) <= '9'))) \
345 : SYNTAX (c) != Sword)
347 # define ISSPACE(c) (SYNTAX (c) == Swhitespace)
349 # define ISUPPER(c) uppercasep (c)
351 # define ISWORD(c) (SYNTAX (c) == Sword)
353 #else /* not emacs */
355 /* 1 if C is an ASCII character. */
356 # define IS_REAL_ASCII(c) ((c) < 0200)
358 /* This distinction is not meaningful, except in Emacs. */
359 # define ISUNIBYTE(c) 1
361 # ifdef isblank
362 # define ISBLANK(c) isblank (c)
363 # else
364 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
365 # endif
366 # ifdef isgraph
367 # define ISGRAPH(c) isgraph (c)
368 # else
369 # define ISGRAPH(c) (isprint (c) && !isspace (c))
370 # endif
372 /* Solaris defines ISPRINT so we must undefine it first. */
373 # undef ISPRINT
374 # define ISPRINT(c) isprint (c)
375 # define ISDIGIT(c) isdigit (c)
376 # define ISALNUM(c) isalnum (c)
377 # define ISALPHA(c) isalpha (c)
378 # define ISCNTRL(c) iscntrl (c)
379 # define ISLOWER(c) islower (c)
380 # define ISPUNCT(c) ispunct (c)
381 # define ISSPACE(c) isspace (c)
382 # define ISUPPER(c) isupper (c)
383 # define ISXDIGIT(c) isxdigit (c)
385 # define ISWORD(c) ISALPHA (c)
387 # ifdef _tolower
388 # define TOLOWER(c) _tolower (c)
389 # else
390 # define TOLOWER(c) tolower (c)
391 # endif
393 /* How many characters in the character set. */
394 # define CHAR_SET_SIZE 256
396 # ifdef SYNTAX_TABLE
398 extern char *re_syntax_table;
400 # else /* not SYNTAX_TABLE */
402 static char re_syntax_table[CHAR_SET_SIZE];
404 static void
405 init_syntax_once (void)
407 register int c;
408 static int done = 0;
410 if (done)
411 return;
413 memset (re_syntax_table, 0, sizeof re_syntax_table);
415 for (c = 0; c < CHAR_SET_SIZE; ++c)
416 if (ISALNUM (c))
417 re_syntax_table[c] = Sword;
419 re_syntax_table['_'] = Ssymbol;
421 done = 1;
424 # endif /* not SYNTAX_TABLE */
426 # define SYNTAX(c) re_syntax_table[(c)]
428 #endif /* not emacs */
430 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
432 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
433 use `alloca' instead of `malloc'. This is because using malloc in
434 re_search* or re_match* could cause memory leaks when C-g is used
435 in Emacs (note that SAFE_ALLOCA could also call malloc, but does so
436 via `record_xmalloc' which uses `unwind_protect' to ensure the
437 memory is freed even in case of non-local exits); also, malloc is
438 slower and causes storage fragmentation. On the other hand, malloc
439 is more portable, and easier to debug.
441 Because we sometimes use alloca, some routines have to be macros,
442 not functions -- `alloca'-allocated space disappears at the end of the
443 function it is called in. */
445 #ifdef REGEX_MALLOC
447 # define REGEX_ALLOCATE malloc
448 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
449 # define REGEX_FREE free
451 #else /* not REGEX_MALLOC */
453 # ifdef emacs
454 /* This may be adjusted in main(), if the stack is successfully grown. */
455 ptrdiff_t emacs_re_safe_alloca = MAX_ALLOCA;
456 /* Like USE_SAFE_ALLOCA, but use emacs_re_safe_alloca. */
457 # define REGEX_USE_SAFE_ALLOCA \
458 ptrdiff_t sa_avail = emacs_re_safe_alloca; \
459 ptrdiff_t sa_count = SPECPDL_INDEX (); bool sa_must_free = false
461 # define REGEX_SAFE_FREE() SAFE_FREE ()
462 # define REGEX_ALLOCATE SAFE_ALLOCA
463 # else
464 # include <alloca.h>
465 # define REGEX_ALLOCATE alloca
466 # endif
468 /* Assumes a `char *destination' variable. */
469 # define REGEX_REALLOCATE(source, osize, nsize) \
470 (destination = REGEX_ALLOCATE (nsize), \
471 memcpy (destination, source, osize))
473 /* No need to do anything to free, after alloca. */
474 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
476 #endif /* not REGEX_MALLOC */
478 #ifndef REGEX_USE_SAFE_ALLOCA
479 # define REGEX_USE_SAFE_ALLOCA ((void) 0)
480 # define REGEX_SAFE_FREE() ((void) 0)
481 #endif
483 /* Define how to allocate the failure stack. */
485 #if defined REL_ALLOC && defined REGEX_MALLOC
487 # define REGEX_ALLOCATE_STACK(size) \
488 r_alloc (&failure_stack_ptr, (size))
489 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
490 r_re_alloc (&failure_stack_ptr, (nsize))
491 # define REGEX_FREE_STACK(ptr) \
492 r_alloc_free (&failure_stack_ptr)
494 #else /* not using relocating allocator */
496 # define REGEX_ALLOCATE_STACK(size) REGEX_ALLOCATE (size)
497 # define REGEX_REALLOCATE_STACK(source, o, n) REGEX_REALLOCATE (source, o, n)
498 # define REGEX_FREE_STACK(ptr) REGEX_FREE (ptr)
500 #endif /* not using relocating allocator */
503 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
504 `string1' or just past its end. This works if PTR is NULL, which is
505 a good thing. */
506 #define FIRST_STRING_P(ptr) \
507 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
509 /* (Re)Allocate N items of type T using malloc, or fail. */
510 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
511 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
512 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
514 #define BYTEWIDTH 8 /* In bits. */
516 #ifndef emacs
517 # undef max
518 # undef min
519 # define max(a, b) ((a) > (b) ? (a) : (b))
520 # define min(a, b) ((a) < (b) ? (a) : (b))
521 #endif
523 /* Type of source-pattern and string chars. */
524 #ifdef _MSC_VER
525 typedef unsigned char re_char;
526 typedef const re_char const_re_char;
527 #else
528 typedef const unsigned char re_char;
529 typedef re_char const_re_char;
530 #endif
532 typedef char boolean;
534 static regoff_t re_match_2_internal (struct re_pattern_buffer *bufp,
535 re_char *string1, size_t size1,
536 re_char *string2, size_t size2,
537 ssize_t pos,
538 struct re_registers *regs,
539 ssize_t stop);
541 /* These are the command codes that appear in compiled regular
542 expressions. Some opcodes are followed by argument bytes. A
543 command code can specify any interpretation whatsoever for its
544 arguments. Zero bytes may appear in the compiled regular expression. */
546 typedef enum
548 no_op = 0,
550 /* Succeed right away--no more backtracking. */
551 succeed,
553 /* Followed by one byte giving n, then by n literal bytes. */
554 exactn,
556 /* Matches any (more or less) character. */
557 anychar,
559 /* Matches any one char belonging to specified set. First
560 following byte is number of bitmap bytes. Then come bytes
561 for a bitmap saying which chars are in. Bits in each byte
562 are ordered low-bit-first. A character is in the set if its
563 bit is 1. A character too large to have a bit in the map is
564 automatically not in the set.
566 If the length byte has the 0x80 bit set, then that stuff
567 is followed by a range table:
568 2 bytes of flags for character sets (low 8 bits, high 8 bits)
569 See RANGE_TABLE_WORK_BITS below.
570 2 bytes, the number of pairs that follow (upto 32767)
571 pairs, each 2 multibyte characters,
572 each multibyte character represented as 3 bytes. */
573 charset,
575 /* Same parameters as charset, but match any character that is
576 not one of those specified. */
577 charset_not,
579 /* Start remembering the text that is matched, for storing in a
580 register. Followed by one byte with the register number, in
581 the range 0 to one less than the pattern buffer's re_nsub
582 field. */
583 start_memory,
585 /* Stop remembering the text that is matched and store it in a
586 memory register. Followed by one byte with the register
587 number, in the range 0 to one less than `re_nsub' in the
588 pattern buffer. */
589 stop_memory,
591 /* Match a duplicate of something remembered. Followed by one
592 byte containing the register number. */
593 duplicate,
595 /* Fail unless at beginning of line. */
596 begline,
598 /* Fail unless at end of line. */
599 endline,
601 /* Succeeds if at beginning of buffer (if emacs) or at beginning
602 of string to be matched (if not). */
603 begbuf,
605 /* Analogously, for end of buffer/string. */
606 endbuf,
608 /* Followed by two byte relative address to which to jump. */
609 jump,
611 /* Followed by two-byte relative address of place to resume at
612 in case of failure. */
613 on_failure_jump,
615 /* Like on_failure_jump, but pushes a placeholder instead of the
616 current string position when executed. */
617 on_failure_keep_string_jump,
619 /* Just like `on_failure_jump', except that it checks that we
620 don't get stuck in an infinite loop (matching an empty string
621 indefinitely). */
622 on_failure_jump_loop,
624 /* Just like `on_failure_jump_loop', except that it checks for
625 a different kind of loop (the kind that shows up with non-greedy
626 operators). This operation has to be immediately preceded
627 by a `no_op'. */
628 on_failure_jump_nastyloop,
630 /* A smart `on_failure_jump' used for greedy * and + operators.
631 It analyzes the loop before which it is put and if the
632 loop does not require backtracking, it changes itself to
633 `on_failure_keep_string_jump' and short-circuits the loop,
634 else it just defaults to changing itself into `on_failure_jump'.
635 It assumes that it is pointing to just past a `jump'. */
636 on_failure_jump_smart,
638 /* Followed by two-byte relative address and two-byte number n.
639 After matching N times, jump to the address upon failure.
640 Does not work if N starts at 0: use on_failure_jump_loop
641 instead. */
642 succeed_n,
644 /* Followed by two-byte relative address, and two-byte number n.
645 Jump to the address N times, then fail. */
646 jump_n,
648 /* Set the following two-byte relative address to the
649 subsequent two-byte number. The address *includes* the two
650 bytes of number. */
651 set_number_at,
653 wordbeg, /* Succeeds if at word beginning. */
654 wordend, /* Succeeds if at word end. */
656 wordbound, /* Succeeds if at a word boundary. */
657 notwordbound, /* Succeeds if not at a word boundary. */
659 symbeg, /* Succeeds if at symbol beginning. */
660 symend, /* Succeeds if at symbol end. */
662 /* Matches any character whose syntax is specified. Followed by
663 a byte which contains a syntax code, e.g., Sword. */
664 syntaxspec,
666 /* Matches any character whose syntax is not that specified. */
667 notsyntaxspec
669 #ifdef emacs
670 , at_dot, /* Succeeds if at point. */
672 /* Matches any character whose category-set contains the specified
673 category. The operator is followed by a byte which contains a
674 category code (mnemonic ASCII character). */
675 categoryspec,
677 /* Matches any character whose category-set does not contain the
678 specified category. The operator is followed by a byte which
679 contains the category code (mnemonic ASCII character). */
680 notcategoryspec
681 #endif /* emacs */
682 } re_opcode_t;
684 /* Common operations on the compiled pattern. */
686 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
688 #define STORE_NUMBER(destination, number) \
689 do { \
690 (destination)[0] = (number) & 0377; \
691 (destination)[1] = (number) >> 8; \
692 } while (0)
694 /* Same as STORE_NUMBER, except increment DESTINATION to
695 the byte after where the number is stored. Therefore, DESTINATION
696 must be an lvalue. */
698 #define STORE_NUMBER_AND_INCR(destination, number) \
699 do { \
700 STORE_NUMBER (destination, number); \
701 (destination) += 2; \
702 } while (0)
704 /* Put into DESTINATION a number stored in two contiguous bytes starting
705 at SOURCE. */
707 #define EXTRACT_NUMBER(destination, source) \
708 ((destination) = extract_number (source))
710 static int
711 extract_number (re_char *source)
713 unsigned leading_byte = SIGN_EXTEND_CHAR (source[1]);
714 return (leading_byte << 8) + source[0];
717 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
718 SOURCE must be an lvalue. */
720 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
721 ((destination) = extract_number_and_incr (&source))
723 static int
724 extract_number_and_incr (re_char **source)
726 int num = extract_number (*source);
727 *source += 2;
728 return num;
731 /* Store a multibyte character in three contiguous bytes starting
732 DESTINATION, and increment DESTINATION to the byte after where the
733 character is stored. Therefore, DESTINATION must be an lvalue. */
735 #define STORE_CHARACTER_AND_INCR(destination, character) \
736 do { \
737 (destination)[0] = (character) & 0377; \
738 (destination)[1] = ((character) >> 8) & 0377; \
739 (destination)[2] = (character) >> 16; \
740 (destination) += 3; \
741 } while (0)
743 /* Put into DESTINATION a character stored in three contiguous bytes
744 starting at SOURCE. */
746 #define EXTRACT_CHARACTER(destination, source) \
747 do { \
748 (destination) = ((source)[0] \
749 | ((source)[1] << 8) \
750 | ((source)[2] << 16)); \
751 } while (0)
754 /* Macros for charset. */
756 /* Size of bitmap of charset P in bytes. P is a start of charset,
757 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
758 #define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
760 /* Nonzero if charset P has range table. */
761 #define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
763 /* Return the address of range table of charset P. But not the start
764 of table itself, but the before where the number of ranges is
765 stored. `2 +' means to skip re_opcode_t and size of bitmap,
766 and the 2 bytes of flags at the start of the range table. */
767 #define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
769 #ifdef emacs
770 /* Extract the bit flags that start a range table. */
771 #define CHARSET_RANGE_TABLE_BITS(p) \
772 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
773 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
774 #endif
776 /* Return the address of end of RANGE_TABLE. COUNT is number of
777 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
778 is start of range and end of range. `* 3' is size of each start
779 and end. */
780 #define CHARSET_RANGE_TABLE_END(range_table, count) \
781 ((range_table) + (count) * 2 * 3)
783 /* If DEBUG is defined, Regex prints many voluminous messages about what
784 it is doing (if the variable `debug' is nonzero). If linked with the
785 main program in `iregex.c', you can enter patterns and strings
786 interactively. And if linked with the main program in `main.c' and
787 the other test files, you can run the already-written tests. */
789 #ifdef DEBUG
791 /* We use standard I/O for debugging. */
792 # include <stdio.h>
794 /* It is useful to test things that ``must'' be true when debugging. */
795 # include <assert.h>
797 static int debug = -100000;
799 # define DEBUG_STATEMENT(e) e
800 # define DEBUG_PRINT(...) if (debug > 0) printf (__VA_ARGS__)
801 # define DEBUG_COMPILES_ARGUMENTS
802 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
803 if (debug > 0) print_partial_compiled_pattern (s, e)
804 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
805 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
808 /* Print the fastmap in human-readable form. */
810 static void
811 print_fastmap (char *fastmap)
813 unsigned was_a_range = 0;
814 unsigned i = 0;
816 while (i < (1 << BYTEWIDTH))
818 if (fastmap[i++])
820 was_a_range = 0;
821 putchar (i - 1);
822 while (i < (1 << BYTEWIDTH) && fastmap[i])
824 was_a_range = 1;
825 i++;
827 if (was_a_range)
829 printf ("-");
830 putchar (i - 1);
834 putchar ('\n');
838 /* Print a compiled pattern string in human-readable form, starting at
839 the START pointer into it and ending just before the pointer END. */
841 static void
842 print_partial_compiled_pattern (re_char *start, re_char *end)
844 int mcnt, mcnt2;
845 re_char *p = start;
846 re_char *pend = end;
848 if (start == NULL)
850 fprintf (stderr, "(null)\n");
851 return;
854 /* Loop over pattern commands. */
855 while (p < pend)
857 fprintf (stderr, "%td:\t", p - start);
859 switch ((re_opcode_t) *p++)
861 case no_op:
862 fprintf (stderr, "/no_op");
863 break;
865 case succeed:
866 fprintf (stderr, "/succeed");
867 break;
869 case exactn:
870 mcnt = *p++;
871 fprintf (stderr, "/exactn/%d", mcnt);
874 fprintf (stderr, "/%c", *p++);
876 while (--mcnt);
877 break;
879 case start_memory:
880 fprintf (stderr, "/start_memory/%d", *p++);
881 break;
883 case stop_memory:
884 fprintf (stderr, "/stop_memory/%d", *p++);
885 break;
887 case duplicate:
888 fprintf (stderr, "/duplicate/%d", *p++);
889 break;
891 case anychar:
892 fprintf (stderr, "/anychar");
893 break;
895 case charset:
896 case charset_not:
898 register int c, last = -100;
899 register int in_range = 0;
900 int length = CHARSET_BITMAP_SIZE (p - 1);
901 int has_range_table = CHARSET_RANGE_TABLE_EXISTS_P (p - 1);
903 fprintf (stderr, "/charset [%s",
904 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
906 if (p + *p >= pend)
907 fprintf (stderr, " !extends past end of pattern! ");
909 for (c = 0; c < 256; c++)
910 if (c / 8 < length
911 && (p[1 + (c/8)] & (1 << (c % 8))))
913 /* Are we starting a range? */
914 if (last + 1 == c && ! in_range)
916 fprintf (stderr, "-");
917 in_range = 1;
919 /* Have we broken a range? */
920 else if (last + 1 != c && in_range)
922 fprintf (stderr, "%c", last);
923 in_range = 0;
926 if (! in_range)
927 fprintf (stderr, "%c", c);
929 last = c;
932 if (in_range)
933 fprintf (stderr, "%c", last);
935 fprintf (stderr, "]");
937 p += 1 + length;
939 if (has_range_table)
941 int count;
942 fprintf (stderr, "has-range-table");
944 /* ??? Should print the range table; for now, just skip it. */
945 p += 2; /* skip range table bits */
946 EXTRACT_NUMBER_AND_INCR (count, p);
947 p = CHARSET_RANGE_TABLE_END (p, count);
950 break;
952 case begline:
953 fprintf (stderr, "/begline");
954 break;
956 case endline:
957 fprintf (stderr, "/endline");
958 break;
960 case on_failure_jump:
961 EXTRACT_NUMBER_AND_INCR (mcnt, p);
962 fprintf (stderr, "/on_failure_jump to %td", p + mcnt - start);
963 break;
965 case on_failure_keep_string_jump:
966 EXTRACT_NUMBER_AND_INCR (mcnt, p);
967 fprintf (stderr, "/on_failure_keep_string_jump to %td",
968 p + mcnt - start);
969 break;
971 case on_failure_jump_nastyloop:
972 EXTRACT_NUMBER_AND_INCR (mcnt, p);
973 fprintf (stderr, "/on_failure_jump_nastyloop to %td",
974 p + mcnt - start);
975 break;
977 case on_failure_jump_loop:
978 EXTRACT_NUMBER_AND_INCR (mcnt, p);
979 fprintf (stderr, "/on_failure_jump_loop to %td",
980 p + mcnt - start);
981 break;
983 case on_failure_jump_smart:
984 EXTRACT_NUMBER_AND_INCR (mcnt, p);
985 fprintf (stderr, "/on_failure_jump_smart to %td",
986 p + mcnt - start);
987 break;
989 case jump:
990 EXTRACT_NUMBER_AND_INCR (mcnt, p);
991 fprintf (stderr, "/jump to %td", p + mcnt - start);
992 break;
994 case succeed_n:
995 EXTRACT_NUMBER_AND_INCR (mcnt, p);
996 EXTRACT_NUMBER_AND_INCR (mcnt2, p);
997 fprintf (stderr, "/succeed_n to %td, %d times",
998 p - 2 + mcnt - start, mcnt2);
999 break;
1001 case jump_n:
1002 EXTRACT_NUMBER_AND_INCR (mcnt, p);
1003 EXTRACT_NUMBER_AND_INCR (mcnt2, p);
1004 fprintf (stderr, "/jump_n to %td, %d times",
1005 p - 2 + mcnt - start, mcnt2);
1006 break;
1008 case set_number_at:
1009 EXTRACT_NUMBER_AND_INCR (mcnt, p);
1010 EXTRACT_NUMBER_AND_INCR (mcnt2, p);
1011 fprintf (stderr, "/set_number_at location %td to %d",
1012 p - 2 + mcnt - start, mcnt2);
1013 break;
1015 case wordbound:
1016 fprintf (stderr, "/wordbound");
1017 break;
1019 case notwordbound:
1020 fprintf (stderr, "/notwordbound");
1021 break;
1023 case wordbeg:
1024 fprintf (stderr, "/wordbeg");
1025 break;
1027 case wordend:
1028 fprintf (stderr, "/wordend");
1029 break;
1031 case symbeg:
1032 fprintf (stderr, "/symbeg");
1033 break;
1035 case symend:
1036 fprintf (stderr, "/symend");
1037 break;
1039 case syntaxspec:
1040 fprintf (stderr, "/syntaxspec");
1041 mcnt = *p++;
1042 fprintf (stderr, "/%d", mcnt);
1043 break;
1045 case notsyntaxspec:
1046 fprintf (stderr, "/notsyntaxspec");
1047 mcnt = *p++;
1048 fprintf (stderr, "/%d", mcnt);
1049 break;
1051 # ifdef emacs
1052 case at_dot:
1053 fprintf (stderr, "/at_dot");
1054 break;
1056 case categoryspec:
1057 fprintf (stderr, "/categoryspec");
1058 mcnt = *p++;
1059 fprintf (stderr, "/%d", mcnt);
1060 break;
1062 case notcategoryspec:
1063 fprintf (stderr, "/notcategoryspec");
1064 mcnt = *p++;
1065 fprintf (stderr, "/%d", mcnt);
1066 break;
1067 # endif /* emacs */
1069 case begbuf:
1070 fprintf (stderr, "/begbuf");
1071 break;
1073 case endbuf:
1074 fprintf (stderr, "/endbuf");
1075 break;
1077 default:
1078 fprintf (stderr, "?%d", *(p-1));
1081 fprintf (stderr, "\n");
1084 fprintf (stderr, "%td:\tend of pattern.\n", p - start);
1088 static void
1089 print_compiled_pattern (struct re_pattern_buffer *bufp)
1091 re_char *buffer = bufp->buffer;
1093 print_partial_compiled_pattern (buffer, buffer + bufp->used);
1094 printf ("%ld bytes used/%ld bytes allocated.\n",
1095 bufp->used, bufp->allocated);
1097 if (bufp->fastmap_accurate && bufp->fastmap)
1099 printf ("fastmap: ");
1100 print_fastmap (bufp->fastmap);
1103 printf ("re_nsub: %zu\t", bufp->re_nsub);
1104 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1105 printf ("can_be_null: %d\t", bufp->can_be_null);
1106 printf ("no_sub: %d\t", bufp->no_sub);
1107 printf ("not_bol: %d\t", bufp->not_bol);
1108 printf ("not_eol: %d\t", bufp->not_eol);
1109 #ifndef emacs
1110 printf ("syntax: %lx\n", bufp->syntax);
1111 #endif
1112 fflush (stdout);
1113 /* Perhaps we should print the translate table? */
1117 static void
1118 print_double_string (re_char *where, re_char *string1, ssize_t size1,
1119 re_char *string2, ssize_t size2)
1121 ssize_t this_char;
1123 if (where == NULL)
1124 printf ("(null)");
1125 else
1127 if (FIRST_STRING_P (where))
1129 for (this_char = where - string1; this_char < size1; this_char++)
1130 putchar (string1[this_char]);
1132 where = string2;
1135 for (this_char = where - string2; this_char < size2; this_char++)
1136 putchar (string2[this_char]);
1140 #else /* not DEBUG */
1142 # undef assert
1143 # define assert(e)
1145 # define DEBUG_STATEMENT(e)
1146 # define DEBUG_PRINT(...)
1147 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1148 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1150 #endif /* not DEBUG */
1152 #ifndef emacs
1154 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1155 also be assigned to arbitrarily: each pattern buffer stores its own
1156 syntax, so it can be changed between regex compilations. */
1157 /* This has no initializer because initialized variables in Emacs
1158 become read-only after dumping. */
1159 reg_syntax_t re_syntax_options;
1162 /* Specify the precise syntax of regexps for compilation. This provides
1163 for compatibility for various utilities which historically have
1164 different, incompatible syntaxes.
1166 The argument SYNTAX is a bit mask comprised of the various bits
1167 defined in regex.h. We return the old syntax. */
1169 reg_syntax_t
1170 re_set_syntax (reg_syntax_t syntax)
1172 reg_syntax_t ret = re_syntax_options;
1174 re_syntax_options = syntax;
1175 return ret;
1177 WEAK_ALIAS (__re_set_syntax, re_set_syntax)
1179 #endif
1181 /* This table gives an error message for each of the error codes listed
1182 in regex.h. Obviously the order here has to be same as there.
1183 POSIX doesn't require that we do anything for REG_NOERROR,
1184 but why not be nice? */
1186 static const char *re_error_msgid[] =
1188 gettext_noop ("Success"), /* REG_NOERROR */
1189 gettext_noop ("No match"), /* REG_NOMATCH */
1190 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1191 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1192 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1193 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1194 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1195 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1196 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1197 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1198 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1199 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1200 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1201 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1202 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1203 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1204 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1205 gettext_noop ("Range striding over charsets") /* REG_ERANGEX */
1208 /* Whether to allocate memory during matching. */
1210 /* Define MATCH_MAY_ALLOCATE to allow the searching and matching
1211 functions allocate memory for the failure stack and registers.
1212 Normally should be defined, because otherwise searching and
1213 matching routines will have much smaller memory resources at their
1214 disposal, and therefore might fail to handle complex regexps.
1215 Therefore undefine MATCH_MAY_ALLOCATE only in the following
1216 exceptional situations:
1218 . When running on a system where memory is at premium.
1219 . When alloca cannot be used at all, perhaps due to bugs in
1220 its implementation, or its being unavailable, or due to a
1221 very small stack size. This requires to define REGEX_MALLOC
1222 to use malloc instead, which in turn could lead to memory
1223 leaks if search is interrupted by a signal. (For these
1224 reasons, defining REGEX_MALLOC when building Emacs
1225 automatically undefines MATCH_MAY_ALLOCATE, but outside
1226 Emacs you may not care about memory leaks.) If you want to
1227 prevent the memory leaks, undefine MATCH_MAY_ALLOCATE.
1228 . When code that calls the searching and matching functions
1229 cannot allow memory allocation, for whatever reasons. */
1231 /* Normally, this is fine. */
1232 #define MATCH_MAY_ALLOCATE
1234 /* The match routines may not allocate if (1) they would do it with malloc
1235 and (2) it's not safe for them to use malloc.
1236 Note that if REL_ALLOC is defined, matching would not use malloc for the
1237 failure stack, but we would still use it for the register vectors;
1238 so REL_ALLOC should not affect this. */
1239 #if defined REGEX_MALLOC && defined emacs
1240 # undef MATCH_MAY_ALLOCATE
1241 #endif
1244 /* Failure stack declarations and macros; both re_compile_fastmap and
1245 re_match_2 use a failure stack. These have to be macros because of
1246 REGEX_ALLOCATE_STACK. */
1249 /* Approximate number of failure points for which to initially allocate space
1250 when matching. If this number is exceeded, we allocate more
1251 space, so it is not a hard limit. */
1252 #ifndef INIT_FAILURE_ALLOC
1253 # define INIT_FAILURE_ALLOC 20
1254 #endif
1256 /* Roughly the maximum number of failure points on the stack. Would be
1257 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
1258 This is a variable only so users of regex can assign to it; we never
1259 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1260 before using it, so it should probably be a byte-count instead. */
1261 # if defined MATCH_MAY_ALLOCATE
1262 /* Note that 4400 was enough to cause a crash on Alpha OSF/1,
1263 whose default stack limit is 2mb. In order for a larger
1264 value to work reliably, you have to try to make it accord
1265 with the process stack limit. */
1266 size_t emacs_re_max_failures = 40000;
1267 # else
1268 size_t emacs_re_max_failures = 4000;
1269 # endif
1271 union fail_stack_elt
1273 re_char *pointer;
1274 /* This should be the biggest `int' that's no bigger than a pointer. */
1275 long integer;
1278 typedef union fail_stack_elt fail_stack_elt_t;
1280 typedef struct
1282 fail_stack_elt_t *stack;
1283 size_t size;
1284 size_t avail; /* Offset of next open position. */
1285 size_t frame; /* Offset of the cur constructed frame. */
1286 } fail_stack_type;
1288 #define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
1291 /* Define macros to initialize and free the failure stack.
1292 Do `return -2' if the alloc fails. */
1294 #ifdef MATCH_MAY_ALLOCATE
1295 # define INIT_FAIL_STACK() \
1296 do { \
1297 fail_stack.stack = \
1298 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1299 * sizeof (fail_stack_elt_t)); \
1301 if (fail_stack.stack == NULL) \
1302 return -2; \
1304 fail_stack.size = INIT_FAILURE_ALLOC; \
1305 fail_stack.avail = 0; \
1306 fail_stack.frame = 0; \
1307 } while (0)
1308 #else
1309 # define INIT_FAIL_STACK() \
1310 do { \
1311 fail_stack.avail = 0; \
1312 fail_stack.frame = 0; \
1313 } while (0)
1315 # define RETALLOC_IF(addr, n, t) \
1316 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
1317 #endif
1320 /* Double the size of FAIL_STACK, up to a limit
1321 which allows approximately `emacs_re_max_failures' items.
1323 Return 1 if succeeds, and 0 if either ran out of memory
1324 allocating space for it or it was already too large.
1326 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1328 /* Factor to increase the failure stack size by
1329 when we increase it.
1330 This used to be 2, but 2 was too wasteful
1331 because the old discarded stacks added up to as much space
1332 were as ultimate, maximum-size stack. */
1333 #define FAIL_STACK_GROWTH_FACTOR 4
1335 #define GROW_FAIL_STACK(fail_stack) \
1336 (((fail_stack).size >= emacs_re_max_failures * TYPICAL_FAILURE_SIZE) \
1337 ? 0 \
1338 : ((fail_stack).stack \
1339 = REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1340 (fail_stack).size * sizeof (fail_stack_elt_t), \
1341 min (emacs_re_max_failures * TYPICAL_FAILURE_SIZE, \
1342 ((fail_stack).size * FAIL_STACK_GROWTH_FACTOR)) \
1343 * sizeof (fail_stack_elt_t)), \
1345 (fail_stack).stack == NULL \
1346 ? 0 \
1347 : ((fail_stack).size \
1348 = (min (emacs_re_max_failures * TYPICAL_FAILURE_SIZE, \
1349 ((fail_stack).size * FAIL_STACK_GROWTH_FACTOR))), \
1350 1)))
1353 /* Push a pointer value onto the failure stack.
1354 Assumes the variable `fail_stack'. Probably should only
1355 be called from within `PUSH_FAILURE_POINT'. */
1356 #define PUSH_FAILURE_POINTER(item) \
1357 fail_stack.stack[fail_stack.avail++].pointer = (item)
1359 /* This pushes an integer-valued item onto the failure stack.
1360 Assumes the variable `fail_stack'. Probably should only
1361 be called from within `PUSH_FAILURE_POINT'. */
1362 #define PUSH_FAILURE_INT(item) \
1363 fail_stack.stack[fail_stack.avail++].integer = (item)
1365 /* These POP... operations complement the PUSH... operations.
1366 All assume that `fail_stack' is nonempty. */
1367 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1368 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1370 /* Individual items aside from the registers. */
1371 #define NUM_NONREG_ITEMS 3
1373 /* Used to examine the stack (to detect infinite loops). */
1374 #define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
1375 #define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
1376 #define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1377 #define TOP_FAILURE_HANDLE() fail_stack.frame
1380 #define ENSURE_FAIL_STACK(space) \
1381 while (REMAINING_AVAIL_SLOTS <= space) { \
1382 if (!GROW_FAIL_STACK (fail_stack)) \
1383 return -2; \
1384 DEBUG_PRINT ("\n Doubled stack; size now: %zd\n", (fail_stack).size);\
1385 DEBUG_PRINT (" slots available: %zd\n", REMAINING_AVAIL_SLOTS);\
1388 /* Push register NUM onto the stack. */
1389 #define PUSH_FAILURE_REG(num) \
1390 do { \
1391 char *destination; \
1392 long n = num; \
1393 ENSURE_FAIL_STACK(3); \
1394 DEBUG_PRINT (" Push reg %ld (spanning %p -> %p)\n", \
1395 n, regstart[n], regend[n]); \
1396 PUSH_FAILURE_POINTER (regstart[n]); \
1397 PUSH_FAILURE_POINTER (regend[n]); \
1398 PUSH_FAILURE_INT (n); \
1399 } while (0)
1401 /* Change the counter's value to VAL, but make sure that it will
1402 be reset when backtracking. */
1403 #define PUSH_NUMBER(ptr,val) \
1404 do { \
1405 char *destination; \
1406 int c; \
1407 ENSURE_FAIL_STACK(3); \
1408 EXTRACT_NUMBER (c, ptr); \
1409 DEBUG_PRINT (" Push number %p = %d -> %d\n", ptr, c, val); \
1410 PUSH_FAILURE_INT (c); \
1411 PUSH_FAILURE_POINTER (ptr); \
1412 PUSH_FAILURE_INT (-1); \
1413 STORE_NUMBER (ptr, val); \
1414 } while (0)
1416 /* Pop a saved register off the stack. */
1417 #define POP_FAILURE_REG_OR_COUNT() \
1418 do { \
1419 long pfreg = POP_FAILURE_INT (); \
1420 if (pfreg == -1) \
1422 /* It's a counter. */ \
1423 /* Here, we discard `const', making re_match non-reentrant. */ \
1424 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
1425 pfreg = POP_FAILURE_INT (); \
1426 STORE_NUMBER (ptr, pfreg); \
1427 DEBUG_PRINT (" Pop counter %p = %ld\n", ptr, pfreg); \
1429 else \
1431 regend[pfreg] = POP_FAILURE_POINTER (); \
1432 regstart[pfreg] = POP_FAILURE_POINTER (); \
1433 DEBUG_PRINT (" Pop reg %ld (spanning %p -> %p)\n", \
1434 pfreg, regstart[pfreg], regend[pfreg]); \
1436 } while (0)
1438 /* Check that we are not stuck in an infinite loop. */
1439 #define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1440 do { \
1441 ssize_t failure = TOP_FAILURE_HANDLE (); \
1442 /* Check for infinite matching loops */ \
1443 while (failure > 0 \
1444 && (FAILURE_STR (failure) == string_place \
1445 || FAILURE_STR (failure) == NULL)) \
1447 assert (FAILURE_PAT (failure) >= bufp->buffer \
1448 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
1449 if (FAILURE_PAT (failure) == pat_cur) \
1451 cycle = 1; \
1452 break; \
1454 DEBUG_PRINT (" Other pattern: %p\n", FAILURE_PAT (failure)); \
1455 failure = NEXT_FAILURE_HANDLE(failure); \
1457 DEBUG_PRINT (" Other string: %p\n", FAILURE_STR (failure)); \
1458 } while (0)
1460 /* Push the information about the state we will need
1461 if we ever fail back to it.
1463 Requires variables fail_stack, regstart, regend and
1464 num_regs be declared. GROW_FAIL_STACK requires `destination' be
1465 declared.
1467 Does `return FAILURE_CODE' if runs out of memory. */
1469 #define PUSH_FAILURE_POINT(pattern, string_place) \
1470 do { \
1471 char *destination; \
1472 /* Must be int, so when we don't save any registers, the arithmetic \
1473 of 0 + -1 isn't done as unsigned. */ \
1475 DEBUG_STATEMENT (nfailure_points_pushed++); \
1476 DEBUG_PRINT ("\nPUSH_FAILURE_POINT:\n"); \
1477 DEBUG_PRINT (" Before push, next avail: %zd\n", (fail_stack).avail); \
1478 DEBUG_PRINT (" size: %zd\n", (fail_stack).size);\
1480 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1482 DEBUG_PRINT ("\n"); \
1484 DEBUG_PRINT (" Push frame index: %zd\n", fail_stack.frame); \
1485 PUSH_FAILURE_INT (fail_stack.frame); \
1487 DEBUG_PRINT (" Push string %p: \"", string_place); \
1488 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1489 DEBUG_PRINT ("\"\n"); \
1490 PUSH_FAILURE_POINTER (string_place); \
1492 DEBUG_PRINT (" Push pattern %p: ", pattern); \
1493 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1494 PUSH_FAILURE_POINTER (pattern); \
1496 /* Close the frame by moving the frame pointer past it. */ \
1497 fail_stack.frame = fail_stack.avail; \
1498 } while (0)
1500 /* Estimate the size of data pushed by a typical failure stack entry.
1501 An estimate is all we need, because all we use this for
1502 is to choose a limit for how big to make the failure stack. */
1503 /* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
1504 #define TYPICAL_FAILURE_SIZE 20
1506 /* How many items can still be added to the stack without overflowing it. */
1507 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1510 /* Pops what PUSH_FAIL_STACK pushes.
1512 We restore into the parameters, all of which should be lvalues:
1513 STR -- the saved data position.
1514 PAT -- the saved pattern position.
1515 REGSTART, REGEND -- arrays of string positions.
1517 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1518 `pend', `string1', `size1', `string2', and `size2'. */
1520 #define POP_FAILURE_POINT(str, pat) \
1521 do { \
1522 assert (!FAIL_STACK_EMPTY ()); \
1524 /* Remove failure points and point to how many regs pushed. */ \
1525 DEBUG_PRINT ("POP_FAILURE_POINT:\n"); \
1526 DEBUG_PRINT (" Before pop, next avail: %zd\n", fail_stack.avail); \
1527 DEBUG_PRINT (" size: %zd\n", fail_stack.size); \
1529 /* Pop the saved registers. */ \
1530 while (fail_stack.frame < fail_stack.avail) \
1531 POP_FAILURE_REG_OR_COUNT (); \
1533 pat = POP_FAILURE_POINTER (); \
1534 DEBUG_PRINT (" Popping pattern %p: ", pat); \
1535 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1537 /* If the saved string location is NULL, it came from an \
1538 on_failure_keep_string_jump opcode, and we want to throw away the \
1539 saved NULL, thus retaining our current position in the string. */ \
1540 str = POP_FAILURE_POINTER (); \
1541 DEBUG_PRINT (" Popping string %p: \"", str); \
1542 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1543 DEBUG_PRINT ("\"\n"); \
1545 fail_stack.frame = POP_FAILURE_INT (); \
1546 DEBUG_PRINT (" Popping frame index: %zd\n", fail_stack.frame); \
1548 assert (fail_stack.avail >= 0); \
1549 assert (fail_stack.frame <= fail_stack.avail); \
1551 DEBUG_STATEMENT (nfailure_points_popped++); \
1552 } while (0) /* POP_FAILURE_POINT */
1556 /* Registers are set to a sentinel when they haven't yet matched. */
1557 #define REG_UNSET(e) ((e) == NULL)
1559 /* Subroutine declarations and macros for regex_compile. */
1561 static reg_errcode_t regex_compile (re_char *pattern, size_t size,
1562 #ifdef emacs
1563 bool posix_backtracking,
1564 const char *whitespace_regexp,
1565 #else
1566 reg_syntax_t syntax,
1567 #endif
1568 struct re_pattern_buffer *bufp);
1569 static void store_op1 (re_opcode_t op, unsigned char *loc, int arg);
1570 static void store_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2);
1571 static void insert_op1 (re_opcode_t op, unsigned char *loc,
1572 int arg, unsigned char *end);
1573 static void insert_op2 (re_opcode_t op, unsigned char *loc,
1574 int arg1, int arg2, unsigned char *end);
1575 static boolean at_begline_loc_p (re_char *pattern, re_char *p,
1576 reg_syntax_t syntax);
1577 static boolean at_endline_loc_p (re_char *p, re_char *pend,
1578 reg_syntax_t syntax);
1579 static re_char *skip_one_char (re_char *p);
1580 static int analyze_first (re_char *p, re_char *pend,
1581 char *fastmap, const int multibyte);
1583 /* Fetch the next character in the uncompiled pattern, with no
1584 translation. */
1585 #define PATFETCH(c) \
1586 do { \
1587 int len; \
1588 if (p == pend) return REG_EEND; \
1589 c = RE_STRING_CHAR_AND_LENGTH (p, len, multibyte); \
1590 p += len; \
1591 } while (0)
1594 /* If `translate' is non-null, return translate[D], else just D. We
1595 cast the subscript to translate because some data is declared as
1596 `char *', to avoid warnings when a string constant is passed. But
1597 when we use a character as a subscript we must make it unsigned. */
1598 #ifndef TRANSLATE
1599 # define TRANSLATE(d) \
1600 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
1601 #endif
1604 /* Macros for outputting the compiled pattern into `buffer'. */
1606 /* If the buffer isn't allocated when it comes in, use this. */
1607 #define INIT_BUF_SIZE 32
1609 /* Make sure we have at least N more bytes of space in buffer. */
1610 #define GET_BUFFER_SPACE(n) \
1611 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
1612 EXTEND_BUFFER ()
1614 /* Make sure we have one more byte of buffer space and then add C to it. */
1615 #define BUF_PUSH(c) \
1616 do { \
1617 GET_BUFFER_SPACE (1); \
1618 *b++ = (unsigned char) (c); \
1619 } while (0)
1622 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1623 #define BUF_PUSH_2(c1, c2) \
1624 do { \
1625 GET_BUFFER_SPACE (2); \
1626 *b++ = (unsigned char) (c1); \
1627 *b++ = (unsigned char) (c2); \
1628 } while (0)
1631 /* Store a jump with opcode OP at LOC to location TO. We store a
1632 relative address offset by the three bytes the jump itself occupies. */
1633 #define STORE_JUMP(op, loc, to) \
1634 store_op1 (op, loc, (to) - (loc) - 3)
1636 /* Likewise, for a two-argument jump. */
1637 #define STORE_JUMP2(op, loc, to, arg) \
1638 store_op2 (op, loc, (to) - (loc) - 3, arg)
1640 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1641 #define INSERT_JUMP(op, loc, to) \
1642 insert_op1 (op, loc, (to) - (loc) - 3, b)
1644 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1645 #define INSERT_JUMP2(op, loc, to, arg) \
1646 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1649 /* This is not an arbitrary limit: the arguments which represent offsets
1650 into the pattern are two bytes long. So if 2^15 bytes turns out to
1651 be too small, many things would have to change. */
1652 # define MAX_BUF_SIZE (1L << 15)
1654 /* Extend the buffer by twice its current size via realloc and
1655 reset the pointers that pointed into the old block to point to the
1656 correct places in the new one. If extending the buffer results in it
1657 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1658 #define EXTEND_BUFFER() \
1659 do { \
1660 unsigned char *old_buffer = bufp->buffer; \
1661 if (bufp->allocated == MAX_BUF_SIZE) \
1662 return REG_ESIZE; \
1663 bufp->allocated <<= 1; \
1664 if (bufp->allocated > MAX_BUF_SIZE) \
1665 bufp->allocated = MAX_BUF_SIZE; \
1666 ptrdiff_t b_off = b - old_buffer; \
1667 ptrdiff_t begalt_off = begalt - old_buffer; \
1668 bool fixup_alt_jump_set = !!fixup_alt_jump; \
1669 bool laststart_set = !!laststart; \
1670 bool pending_exact_set = !!pending_exact; \
1671 ptrdiff_t fixup_alt_jump_off, laststart_off, pending_exact_off; \
1672 if (fixup_alt_jump_set) fixup_alt_jump_off = fixup_alt_jump - old_buffer; \
1673 if (laststart_set) laststart_off = laststart - old_buffer; \
1674 if (pending_exact_set) pending_exact_off = pending_exact - old_buffer; \
1675 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
1676 if (bufp->buffer == NULL) \
1677 return REG_ESPACE; \
1678 unsigned char *new_buffer = bufp->buffer; \
1679 b = new_buffer + b_off; \
1680 begalt = new_buffer + begalt_off; \
1681 if (fixup_alt_jump_set) fixup_alt_jump = new_buffer + fixup_alt_jump_off; \
1682 if (laststart_set) laststart = new_buffer + laststart_off; \
1683 if (pending_exact_set) pending_exact = new_buffer + pending_exact_off; \
1684 } while (0)
1687 /* Since we have one byte reserved for the register number argument to
1688 {start,stop}_memory, the maximum number of groups we can report
1689 things about is what fits in that byte. */
1690 #define MAX_REGNUM 255
1692 /* But patterns can have more than `MAX_REGNUM' registers. We just
1693 ignore the excess. */
1694 typedef int regnum_t;
1697 /* Macros for the compile stack. */
1699 /* Since offsets can go either forwards or backwards, this type needs to
1700 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1701 /* int may be not enough when sizeof(int) == 2. */
1702 typedef long pattern_offset_t;
1704 typedef struct
1706 pattern_offset_t begalt_offset;
1707 pattern_offset_t fixup_alt_jump;
1708 pattern_offset_t laststart_offset;
1709 regnum_t regnum;
1710 } compile_stack_elt_t;
1713 typedef struct
1715 compile_stack_elt_t *stack;
1716 size_t size;
1717 size_t avail; /* Offset of next open position. */
1718 } compile_stack_type;
1721 #define INIT_COMPILE_STACK_SIZE 32
1723 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1724 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1726 /* The next available element. */
1727 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1729 /* Explicit quit checking is needed for Emacs, which uses polling to
1730 process input events. */
1731 #ifdef emacs
1732 # define IMMEDIATE_QUIT_CHECK (immediate_quit ? maybe_quit () : (void) 0)
1733 #else
1734 # define IMMEDIATE_QUIT_CHECK ((void) 0)
1735 #endif
1737 /* Structure to manage work area for range table. */
1738 struct range_table_work_area
1740 int *table; /* actual work area. */
1741 int allocated; /* allocated size for work area in bytes. */
1742 int used; /* actually used size in words. */
1743 int bits; /* flag to record character classes */
1746 #ifdef emacs
1748 /* Make sure that WORK_AREA can hold more N multibyte characters.
1749 This is used only in set_image_of_range and set_image_of_range_1.
1750 It expects WORK_AREA to be a pointer.
1751 If it can't get the space, it returns from the surrounding function. */
1753 #define EXTEND_RANGE_TABLE(work_area, n) \
1754 do { \
1755 if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated) \
1757 extend_range_table_work_area (&work_area); \
1758 if ((work_area).table == 0) \
1759 return (REG_ESPACE); \
1761 } while (0)
1763 #define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1764 (work_area).bits |= (bit)
1766 /* Set a range (RANGE_START, RANGE_END) to WORK_AREA. */
1767 #define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end) \
1768 do { \
1769 EXTEND_RANGE_TABLE ((work_area), 2); \
1770 (work_area).table[(work_area).used++] = (range_start); \
1771 (work_area).table[(work_area).used++] = (range_end); \
1772 } while (0)
1774 #endif /* emacs */
1776 /* Free allocated memory for WORK_AREA. */
1777 #define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1778 do { \
1779 if ((work_area).table) \
1780 free ((work_area).table); \
1781 } while (0)
1783 #define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
1784 #define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
1785 #define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
1786 #define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
1788 /* Bits used to implement the multibyte-part of the various character classes
1789 such as [:alnum:] in a charset's range table. The code currently assumes
1790 that only the low 16 bits are used. */
1791 #define BIT_WORD 0x1
1792 #define BIT_LOWER 0x2
1793 #define BIT_PUNCT 0x4
1794 #define BIT_SPACE 0x8
1795 #define BIT_UPPER 0x10
1796 #define BIT_MULTIBYTE 0x20
1797 #define BIT_ALPHA 0x40
1798 #define BIT_ALNUM 0x80
1799 #define BIT_GRAPH 0x100
1800 #define BIT_PRINT 0x200
1801 #define BIT_BLANK 0x400
1804 /* Set the bit for character C in a list. */
1805 #define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
1808 #ifdef emacs
1810 /* Store characters in the range FROM to TO in the bitmap at B (for
1811 ASCII and unibyte characters) and WORK_AREA (for multibyte
1812 characters) while translating them and paying attention to the
1813 continuity of translated characters.
1815 Implementation note: It is better to implement these fairly big
1816 macros by a function, but it's not that easy because macros called
1817 in this macro assume various local variables already declared. */
1819 /* Both FROM and TO are ASCII characters. */
1821 #define SETUP_ASCII_RANGE(work_area, FROM, TO) \
1822 do { \
1823 int C0, C1; \
1825 for (C0 = (FROM); C0 <= (TO); C0++) \
1827 C1 = TRANSLATE (C0); \
1828 if (! ASCII_CHAR_P (C1)) \
1830 SET_RANGE_TABLE_WORK_AREA ((work_area), C1, C1); \
1831 if ((C1 = RE_CHAR_TO_UNIBYTE (C1)) < 0) \
1832 C1 = C0; \
1834 SET_LIST_BIT (C1); \
1836 } while (0)
1839 /* Both FROM and TO are unibyte characters (0x80..0xFF). */
1841 #define SETUP_UNIBYTE_RANGE(work_area, FROM, TO) \
1842 do { \
1843 int C0, C1, C2, I; \
1844 int USED = RANGE_TABLE_WORK_USED (work_area); \
1846 for (C0 = (FROM); C0 <= (TO); C0++) \
1848 C1 = RE_CHAR_TO_MULTIBYTE (C0); \
1849 if (CHAR_BYTE8_P (C1)) \
1850 SET_LIST_BIT (C0); \
1851 else \
1853 C2 = TRANSLATE (C1); \
1854 if (C2 == C1 \
1855 || (C1 = RE_CHAR_TO_UNIBYTE (C2)) < 0) \
1856 C1 = C0; \
1857 SET_LIST_BIT (C1); \
1858 for (I = RANGE_TABLE_WORK_USED (work_area) - 2; I >= USED; I -= 2) \
1860 int from = RANGE_TABLE_WORK_ELT (work_area, I); \
1861 int to = RANGE_TABLE_WORK_ELT (work_area, I + 1); \
1863 if (C2 >= from - 1 && C2 <= to + 1) \
1865 if (C2 == from - 1) \
1866 RANGE_TABLE_WORK_ELT (work_area, I)--; \
1867 else if (C2 == to + 1) \
1868 RANGE_TABLE_WORK_ELT (work_area, I + 1)++; \
1869 break; \
1872 if (I < USED) \
1873 SET_RANGE_TABLE_WORK_AREA ((work_area), C2, C2); \
1876 } while (0)
1879 /* Both FROM and TO are multibyte characters. */
1881 #define SETUP_MULTIBYTE_RANGE(work_area, FROM, TO) \
1882 do { \
1883 int C0, C1, C2, I, USED = RANGE_TABLE_WORK_USED (work_area); \
1885 SET_RANGE_TABLE_WORK_AREA ((work_area), (FROM), (TO)); \
1886 for (C0 = (FROM); C0 <= (TO); C0++) \
1888 C1 = TRANSLATE (C0); \
1889 if ((C2 = RE_CHAR_TO_UNIBYTE (C1)) >= 0 \
1890 || (C1 != C0 && (C2 = RE_CHAR_TO_UNIBYTE (C0)) >= 0)) \
1891 SET_LIST_BIT (C2); \
1892 if (C1 >= (FROM) && C1 <= (TO)) \
1893 continue; \
1894 for (I = RANGE_TABLE_WORK_USED (work_area) - 2; I >= USED; I -= 2) \
1896 int from = RANGE_TABLE_WORK_ELT (work_area, I); \
1897 int to = RANGE_TABLE_WORK_ELT (work_area, I + 1); \
1899 if (C1 >= from - 1 && C1 <= to + 1) \
1901 if (C1 == from - 1) \
1902 RANGE_TABLE_WORK_ELT (work_area, I)--; \
1903 else if (C1 == to + 1) \
1904 RANGE_TABLE_WORK_ELT (work_area, I + 1)++; \
1905 break; \
1908 if (I < USED) \
1909 SET_RANGE_TABLE_WORK_AREA ((work_area), C1, C1); \
1911 } while (0)
1913 #endif /* emacs */
1915 /* Get the next unsigned number in the uncompiled pattern. */
1916 #define GET_INTERVAL_COUNT(num) \
1917 do { \
1918 if (p == pend) \
1919 FREE_STACK_RETURN (REG_EBRACE); \
1920 else \
1922 PATFETCH (c); \
1923 while ('0' <= c && c <= '9') \
1925 if (num < 0) \
1926 num = 0; \
1927 if (RE_DUP_MAX / 10 - (RE_DUP_MAX % 10 < c - '0') < num) \
1928 FREE_STACK_RETURN (REG_BADBR); \
1929 num = num * 10 + c - '0'; \
1930 if (p == pend) \
1931 FREE_STACK_RETURN (REG_EBRACE); \
1932 PATFETCH (c); \
1935 } while (0)
1937 #if ! WIDE_CHAR_SUPPORT
1939 /* Parse a character class, i.e. string such as "[:name:]". *strp
1940 points to the string to be parsed and limit is length, in bytes, of
1941 that string.
1943 If *strp point to a string that begins with "[:name:]", where name is
1944 a non-empty sequence of lower case letters, *strp will be advanced past the
1945 closing square bracket and RECC_* constant which maps to the name will be
1946 returned. If name is not a valid character class name zero, or RECC_ERROR,
1947 is returned.
1949 Otherwise, if *strp doesn’t begin with "[:name:]", -1 is returned.
1951 The function can be used on ASCII and multibyte (UTF-8-encoded) strings.
1953 re_wctype_t
1954 re_wctype_parse (const unsigned char **strp, unsigned limit)
1956 const char *beg = (const char *)*strp, *it;
1958 if (limit < 4 || beg[0] != '[' || beg[1] != ':')
1959 return -1;
1961 beg += 2; /* skip opening ‘[:’ */
1962 limit -= 3; /* opening ‘[:’ and half of closing ‘:]’; --limit handles rest */
1963 for (it = beg; it[0] != ':' || it[1] != ']'; ++it)
1964 if (!--limit)
1965 return -1;
1967 *strp = (const unsigned char *)(it + 2);
1969 /* Sort tests in the length=five case by frequency the classes to minimize
1970 number of times we fail the comparison. The frequencies of character class
1971 names used in Emacs sources as of 2016-07-27:
1973 $ find \( -name \*.c -o -name \*.el \) -exec grep -h '\[:[a-z]*:]' {} + |
1974 sed 's/]/]\n/g' |grep -o '\[:[a-z]*:]' |sort |uniq -c |sort -nr
1975 213 [:alnum:]
1976 104 [:alpha:]
1977 62 [:space:]
1978 39 [:digit:]
1979 36 [:blank:]
1980 26 [:word:]
1981 26 [:upper:]
1982 21 [:lower:]
1983 10 [:xdigit:]
1984 10 [:punct:]
1985 10 [:ascii:]
1986 4 [:nonascii:]
1987 4 [:graph:]
1988 2 [:print:]
1989 2 [:cntrl:]
1990 1 [:ff:]
1992 If you update this list, consider also updating chain of or’ed conditions
1993 in execute_charset function.
1996 switch (it - beg) {
1997 case 4:
1998 if (!memcmp (beg, "word", 4)) return RECC_WORD;
1999 break;
2000 case 5:
2001 if (!memcmp (beg, "alnum", 5)) return RECC_ALNUM;
2002 if (!memcmp (beg, "alpha", 5)) return RECC_ALPHA;
2003 if (!memcmp (beg, "space", 5)) return RECC_SPACE;
2004 if (!memcmp (beg, "digit", 5)) return RECC_DIGIT;
2005 if (!memcmp (beg, "blank", 5)) return RECC_BLANK;
2006 if (!memcmp (beg, "upper", 5)) return RECC_UPPER;
2007 if (!memcmp (beg, "lower", 5)) return RECC_LOWER;
2008 if (!memcmp (beg, "punct", 5)) return RECC_PUNCT;
2009 if (!memcmp (beg, "ascii", 5)) return RECC_ASCII;
2010 if (!memcmp (beg, "graph", 5)) return RECC_GRAPH;
2011 if (!memcmp (beg, "print", 5)) return RECC_PRINT;
2012 if (!memcmp (beg, "cntrl", 5)) return RECC_CNTRL;
2013 break;
2014 case 6:
2015 if (!memcmp (beg, "xdigit", 6)) return RECC_XDIGIT;
2016 break;
2017 case 7:
2018 if (!memcmp (beg, "unibyte", 7)) return RECC_UNIBYTE;
2019 break;
2020 case 8:
2021 if (!memcmp (beg, "nonascii", 8)) return RECC_NONASCII;
2022 break;
2023 case 9:
2024 if (!memcmp (beg, "multibyte", 9)) return RECC_MULTIBYTE;
2025 break;
2028 return RECC_ERROR;
2031 /* True if CH is in the char class CC. */
2032 boolean
2033 re_iswctype (int ch, re_wctype_t cc)
2035 switch (cc)
2037 case RECC_ALNUM: return ISALNUM (ch) != 0;
2038 case RECC_ALPHA: return ISALPHA (ch) != 0;
2039 case RECC_BLANK: return ISBLANK (ch) != 0;
2040 case RECC_CNTRL: return ISCNTRL (ch) != 0;
2041 case RECC_DIGIT: return ISDIGIT (ch) != 0;
2042 case RECC_GRAPH: return ISGRAPH (ch) != 0;
2043 case RECC_LOWER: return ISLOWER (ch) != 0;
2044 case RECC_PRINT: return ISPRINT (ch) != 0;
2045 case RECC_PUNCT: return ISPUNCT (ch) != 0;
2046 case RECC_SPACE: return ISSPACE (ch) != 0;
2047 case RECC_UPPER: return ISUPPER (ch) != 0;
2048 case RECC_XDIGIT: return ISXDIGIT (ch) != 0;
2049 case RECC_ASCII: return IS_REAL_ASCII (ch) != 0;
2050 case RECC_NONASCII: return !IS_REAL_ASCII (ch);
2051 case RECC_UNIBYTE: return ISUNIBYTE (ch) != 0;
2052 case RECC_MULTIBYTE: return !ISUNIBYTE (ch);
2053 case RECC_WORD: return ISWORD (ch) != 0;
2054 case RECC_ERROR: return false;
2055 default:
2056 abort ();
2060 /* Return a bit-pattern to use in the range-table bits to match multibyte
2061 chars of class CC. */
2062 static int
2063 re_wctype_to_bit (re_wctype_t cc)
2065 switch (cc)
2067 case RECC_NONASCII:
2068 case RECC_MULTIBYTE: return BIT_MULTIBYTE;
2069 case RECC_ALPHA: return BIT_ALPHA;
2070 case RECC_ALNUM: return BIT_ALNUM;
2071 case RECC_WORD: return BIT_WORD;
2072 case RECC_LOWER: return BIT_LOWER;
2073 case RECC_UPPER: return BIT_UPPER;
2074 case RECC_PUNCT: return BIT_PUNCT;
2075 case RECC_SPACE: return BIT_SPACE;
2076 case RECC_GRAPH: return BIT_GRAPH;
2077 case RECC_PRINT: return BIT_PRINT;
2078 case RECC_BLANK: return BIT_BLANK;
2079 case RECC_ASCII: case RECC_DIGIT: case RECC_XDIGIT: case RECC_CNTRL:
2080 case RECC_UNIBYTE: case RECC_ERROR: return 0;
2081 default:
2082 abort ();
2085 #endif
2087 /* Filling in the work area of a range. */
2089 /* Actually extend the space in WORK_AREA. */
2091 static void
2092 extend_range_table_work_area (struct range_table_work_area *work_area)
2094 work_area->allocated += 16 * sizeof (int);
2095 work_area->table = realloc (work_area->table, work_area->allocated);
2098 #if 0
2099 #ifdef emacs
2101 /* Carefully find the ranges of codes that are equivalent
2102 under case conversion to the range start..end when passed through
2103 TRANSLATE. Handle the case where non-letters can come in between
2104 two upper-case letters (which happens in Latin-1).
2105 Also handle the case of groups of more than 2 case-equivalent chars.
2107 The basic method is to look at consecutive characters and see
2108 if they can form a run that can be handled as one.
2110 Returns -1 if successful, REG_ESPACE if ran out of space. */
2112 static int
2113 set_image_of_range_1 (struct range_table_work_area *work_area,
2114 re_wchar_t start, re_wchar_t end,
2115 RE_TRANSLATE_TYPE translate)
2117 /* `one_case' indicates a character, or a run of characters,
2118 each of which is an isolate (no case-equivalents).
2119 This includes all ASCII non-letters.
2121 `two_case' indicates a character, or a run of characters,
2122 each of which has two case-equivalent forms.
2123 This includes all ASCII letters.
2125 `strange' indicates a character that has more than one
2126 case-equivalent. */
2128 enum case_type {one_case, two_case, strange};
2130 /* Describe the run that is in progress,
2131 which the next character can try to extend.
2132 If run_type is strange, that means there really is no run.
2133 If run_type is one_case, then run_start...run_end is the run.
2134 If run_type is two_case, then the run is run_start...run_end,
2135 and the case-equivalents end at run_eqv_end. */
2137 enum case_type run_type = strange;
2138 int run_start, run_end, run_eqv_end;
2140 Lisp_Object eqv_table;
2142 if (!RE_TRANSLATE_P (translate))
2144 EXTEND_RANGE_TABLE (work_area, 2);
2145 work_area->table[work_area->used++] = (start);
2146 work_area->table[work_area->used++] = (end);
2147 return -1;
2150 eqv_table = XCHAR_TABLE (translate)->extras[2];
2152 for (; start <= end; start++)
2154 enum case_type this_type;
2155 int eqv = RE_TRANSLATE (eqv_table, start);
2156 int minchar, maxchar;
2158 /* Classify this character */
2159 if (eqv == start)
2160 this_type = one_case;
2161 else if (RE_TRANSLATE (eqv_table, eqv) == start)
2162 this_type = two_case;
2163 else
2164 this_type = strange;
2166 if (start < eqv)
2167 minchar = start, maxchar = eqv;
2168 else
2169 minchar = eqv, maxchar = start;
2171 /* Can this character extend the run in progress? */
2172 if (this_type == strange || this_type != run_type
2173 || !(minchar == run_end + 1
2174 && (run_type == two_case
2175 ? maxchar == run_eqv_end + 1 : 1)))
2177 /* No, end the run.
2178 Record each of its equivalent ranges. */
2179 if (run_type == one_case)
2181 EXTEND_RANGE_TABLE (work_area, 2);
2182 work_area->table[work_area->used++] = run_start;
2183 work_area->table[work_area->used++] = run_end;
2185 else if (run_type == two_case)
2187 EXTEND_RANGE_TABLE (work_area, 4);
2188 work_area->table[work_area->used++] = run_start;
2189 work_area->table[work_area->used++] = run_end;
2190 work_area->table[work_area->used++]
2191 = RE_TRANSLATE (eqv_table, run_start);
2192 work_area->table[work_area->used++]
2193 = RE_TRANSLATE (eqv_table, run_end);
2195 run_type = strange;
2198 if (this_type == strange)
2200 /* For a strange character, add each of its equivalents, one
2201 by one. Don't start a range. */
2204 EXTEND_RANGE_TABLE (work_area, 2);
2205 work_area->table[work_area->used++] = eqv;
2206 work_area->table[work_area->used++] = eqv;
2207 eqv = RE_TRANSLATE (eqv_table, eqv);
2209 while (eqv != start);
2212 /* Add this char to the run, or start a new run. */
2213 else if (run_type == strange)
2215 /* Initialize a new range. */
2216 run_type = this_type;
2217 run_start = start;
2218 run_end = start;
2219 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2221 else
2223 /* Extend a running range. */
2224 run_end = minchar;
2225 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2229 /* If a run is still in progress at the end, finish it now
2230 by recording its equivalent ranges. */
2231 if (run_type == one_case)
2233 EXTEND_RANGE_TABLE (work_area, 2);
2234 work_area->table[work_area->used++] = run_start;
2235 work_area->table[work_area->used++] = run_end;
2237 else if (run_type == two_case)
2239 EXTEND_RANGE_TABLE (work_area, 4);
2240 work_area->table[work_area->used++] = run_start;
2241 work_area->table[work_area->used++] = run_end;
2242 work_area->table[work_area->used++]
2243 = RE_TRANSLATE (eqv_table, run_start);
2244 work_area->table[work_area->used++]
2245 = RE_TRANSLATE (eqv_table, run_end);
2248 return -1;
2251 #endif /* emacs */
2253 /* Record the image of the range start..end when passed through
2254 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2255 and is not even necessarily contiguous.
2256 Normally we approximate it with the smallest contiguous range that contains
2257 all the chars we need. However, for Latin-1 we go to extra effort
2258 to do a better job.
2260 This function is not called for ASCII ranges.
2262 Returns -1 if successful, REG_ESPACE if ran out of space. */
2264 static int
2265 set_image_of_range (struct range_table_work_area *work_area,
2266 re_wchar_t start, re_wchar_t end,
2267 RE_TRANSLATE_TYPE translate)
2269 re_wchar_t cmin, cmax;
2271 #ifdef emacs
2272 /* For Latin-1 ranges, use set_image_of_range_1
2273 to get proper handling of ranges that include letters and nonletters.
2274 For a range that includes the whole of Latin-1, this is not necessary.
2275 For other character sets, we don't bother to get this right. */
2276 if (RE_TRANSLATE_P (translate) && start < 04400
2277 && !(start < 04200 && end >= 04377))
2279 int newend;
2280 int tem;
2281 newend = end;
2282 if (newend > 04377)
2283 newend = 04377;
2284 tem = set_image_of_range_1 (work_area, start, newend, translate);
2285 if (tem > 0)
2286 return tem;
2288 start = 04400;
2289 if (end < 04400)
2290 return -1;
2292 #endif
2294 EXTEND_RANGE_TABLE (work_area, 2);
2295 work_area->table[work_area->used++] = (start);
2296 work_area->table[work_area->used++] = (end);
2298 cmin = -1, cmax = -1;
2300 if (RE_TRANSLATE_P (translate))
2302 int ch;
2304 for (ch = start; ch <= end; ch++)
2306 re_wchar_t c = TRANSLATE (ch);
2307 if (! (start <= c && c <= end))
2309 if (cmin == -1)
2310 cmin = c, cmax = c;
2311 else
2313 cmin = min (cmin, c);
2314 cmax = max (cmax, c);
2319 if (cmin != -1)
2321 EXTEND_RANGE_TABLE (work_area, 2);
2322 work_area->table[work_area->used++] = (cmin);
2323 work_area->table[work_area->used++] = (cmax);
2327 return -1;
2329 #endif /* 0 */
2331 #ifndef MATCH_MAY_ALLOCATE
2333 /* If we cannot allocate large objects within re_match_2_internal,
2334 we make the fail stack and register vectors global.
2335 The fail stack, we grow to the maximum size when a regexp
2336 is compiled.
2337 The register vectors, we adjust in size each time we
2338 compile a regexp, according to the number of registers it needs. */
2340 static fail_stack_type fail_stack;
2342 /* Size with which the following vectors are currently allocated.
2343 That is so we can make them bigger as needed,
2344 but never make them smaller. */
2345 static int regs_allocated_size;
2347 static re_char ** regstart, ** regend;
2348 static re_char **best_regstart, **best_regend;
2350 /* Make the register vectors big enough for NUM_REGS registers,
2351 but don't make them smaller. */
2353 static
2354 regex_grow_registers (int num_regs)
2356 if (num_regs > regs_allocated_size)
2358 RETALLOC_IF (regstart, num_regs, re_char *);
2359 RETALLOC_IF (regend, num_regs, re_char *);
2360 RETALLOC_IF (best_regstart, num_regs, re_char *);
2361 RETALLOC_IF (best_regend, num_regs, re_char *);
2363 regs_allocated_size = num_regs;
2367 #endif /* not MATCH_MAY_ALLOCATE */
2369 static boolean group_in_compile_stack (compile_stack_type compile_stack,
2370 regnum_t regnum);
2372 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2373 Returns one of error codes defined in `regex.h', or zero for success.
2375 If WHITESPACE_REGEXP is given (only #ifdef emacs), it is used instead of
2376 a space character in PATTERN.
2378 Assumes the `allocated' (and perhaps `buffer') and `translate'
2379 fields are set in BUFP on entry.
2381 If it succeeds, results are put in BUFP (if it returns an error, the
2382 contents of BUFP are undefined):
2383 `buffer' is the compiled pattern;
2384 `syntax' is set to SYNTAX;
2385 `used' is set to the length of the compiled pattern;
2386 `fastmap_accurate' is zero;
2387 `re_nsub' is the number of subexpressions in PATTERN;
2388 `not_bol' and `not_eol' are zero;
2390 The `fastmap' field is neither examined nor set. */
2392 /* Insert the `jump' from the end of last alternative to "here".
2393 The space for the jump has already been allocated. */
2394 #define FIXUP_ALT_JUMP() \
2395 do { \
2396 if (fixup_alt_jump) \
2397 STORE_JUMP (jump, fixup_alt_jump, b); \
2398 } while (0)
2401 /* Return, freeing storage we allocated. */
2402 #define FREE_STACK_RETURN(value) \
2403 do { \
2404 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2405 free (compile_stack.stack); \
2406 return value; \
2407 } while (0)
2409 static reg_errcode_t
2410 regex_compile (const_re_char *pattern, size_t size,
2411 #ifdef emacs
2412 # define syntax RE_SYNTAX_EMACS
2413 bool posix_backtracking,
2414 const char *whitespace_regexp,
2415 #else
2416 reg_syntax_t syntax,
2417 # define posix_backtracking (!(syntax & RE_NO_POSIX_BACKTRACKING))
2418 #endif
2419 struct re_pattern_buffer *bufp)
2421 /* We fetch characters from PATTERN here. */
2422 register re_wchar_t c, c1;
2424 /* Points to the end of the buffer, where we should append. */
2425 register unsigned char *b;
2427 /* Keeps track of unclosed groups. */
2428 compile_stack_type compile_stack;
2430 /* Points to the current (ending) position in the pattern. */
2431 #ifdef AIX
2432 /* `const' makes AIX compiler fail. */
2433 unsigned char *p = pattern;
2434 #else
2435 re_char *p = pattern;
2436 #endif
2437 re_char *pend = pattern + size;
2439 /* How to translate the characters in the pattern. */
2440 RE_TRANSLATE_TYPE translate = bufp->translate;
2442 /* Address of the count-byte of the most recently inserted `exactn'
2443 command. This makes it possible to tell if a new exact-match
2444 character can be added to that command or if the character requires
2445 a new `exactn' command. */
2446 unsigned char *pending_exact = 0;
2448 /* Address of start of the most recently finished expression.
2449 This tells, e.g., postfix * where to find the start of its
2450 operand. Reset at the beginning of groups and alternatives. */
2451 unsigned char *laststart = 0;
2453 /* Address of beginning of regexp, or inside of last group. */
2454 unsigned char *begalt;
2456 /* Place in the uncompiled pattern (i.e., the {) to
2457 which to go back if the interval is invalid. */
2458 re_char *beg_interval;
2460 /* Address of the place where a forward jump should go to the end of
2461 the containing expression. Each alternative of an `or' -- except the
2462 last -- ends with a forward jump of this sort. */
2463 unsigned char *fixup_alt_jump = 0;
2465 /* Work area for range table of charset. */
2466 struct range_table_work_area range_table_work;
2468 /* If the object matched can contain multibyte characters. */
2469 const boolean multibyte = RE_MULTIBYTE_P (bufp);
2471 #ifdef emacs
2472 /* Nonzero if we have pushed down into a subpattern. */
2473 int in_subpattern = 0;
2475 /* These hold the values of p, pattern, and pend from the main
2476 pattern when we have pushed into a subpattern. */
2477 re_char *main_p;
2478 re_char *main_pattern;
2479 re_char *main_pend;
2480 #endif
2482 #ifdef DEBUG
2483 debug++;
2484 DEBUG_PRINT ("\nCompiling pattern: ");
2485 if (debug > 0)
2487 unsigned debug_count;
2489 for (debug_count = 0; debug_count < size; debug_count++)
2490 putchar (pattern[debug_count]);
2491 putchar ('\n');
2493 #endif /* DEBUG */
2495 /* Initialize the compile stack. */
2496 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2497 if (compile_stack.stack == NULL)
2498 return REG_ESPACE;
2500 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2501 compile_stack.avail = 0;
2503 range_table_work.table = 0;
2504 range_table_work.allocated = 0;
2506 /* Initialize the pattern buffer. */
2507 #ifndef emacs
2508 bufp->syntax = syntax;
2509 #endif
2510 bufp->fastmap_accurate = 0;
2511 bufp->not_bol = bufp->not_eol = 0;
2512 bufp->used_syntax = 0;
2514 /* Set `used' to zero, so that if we return an error, the pattern
2515 printer (for debugging) will think there's no pattern. We reset it
2516 at the end. */
2517 bufp->used = 0;
2519 /* Always count groups, whether or not bufp->no_sub is set. */
2520 bufp->re_nsub = 0;
2522 #if !defined emacs && !defined SYNTAX_TABLE
2523 /* Initialize the syntax table. */
2524 init_syntax_once ();
2525 #endif
2527 if (bufp->allocated == 0)
2529 if (bufp->buffer)
2530 { /* If zero allocated, but buffer is non-null, try to realloc
2531 enough space. This loses if buffer's address is bogus, but
2532 that is the user's responsibility. */
2533 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
2535 else
2536 { /* Caller did not allocate a buffer. Do it for them. */
2537 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
2539 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
2541 bufp->allocated = INIT_BUF_SIZE;
2544 begalt = b = bufp->buffer;
2546 /* Loop through the uncompiled pattern until we're at the end. */
2547 while (1)
2549 if (p == pend)
2551 #ifdef emacs
2552 /* If this is the end of an included regexp,
2553 pop back to the main regexp and try again. */
2554 if (in_subpattern)
2556 in_subpattern = 0;
2557 pattern = main_pattern;
2558 p = main_p;
2559 pend = main_pend;
2560 continue;
2562 #endif
2563 /* If this is the end of the main regexp, we are done. */
2564 break;
2567 PATFETCH (c);
2569 switch (c)
2571 #ifdef emacs
2572 case ' ':
2574 re_char *p1 = p;
2576 /* If there's no special whitespace regexp, treat
2577 spaces normally. And don't try to do this recursively. */
2578 if (!whitespace_regexp || in_subpattern)
2579 goto normal_char;
2581 /* Peek past following spaces. */
2582 while (p1 != pend)
2584 if (*p1 != ' ')
2585 break;
2586 p1++;
2588 /* If the spaces are followed by a repetition op,
2589 treat them normally. */
2590 if (p1 != pend
2591 && (*p1 == '*' || *p1 == '+' || *p1 == '?'
2592 || (*p1 == '\\' && p1 + 1 != pend && p1[1] == '{')))
2593 goto normal_char;
2595 /* Replace the spaces with the whitespace regexp. */
2596 in_subpattern = 1;
2597 main_p = p1;
2598 main_pend = pend;
2599 main_pattern = pattern;
2600 p = pattern = (re_char *) whitespace_regexp;
2601 pend = p + strlen (whitespace_regexp);
2602 break;
2604 #endif
2606 case '^':
2608 if ( /* If at start of pattern, it's an operator. */
2609 p == pattern + 1
2610 /* If context independent, it's an operator. */
2611 || syntax & RE_CONTEXT_INDEP_ANCHORS
2612 /* Otherwise, depends on what's come before. */
2613 || at_begline_loc_p (pattern, p, syntax))
2614 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? begbuf : begline);
2615 else
2616 goto normal_char;
2618 break;
2621 case '$':
2623 if ( /* If at end of pattern, it's an operator. */
2624 p == pend
2625 /* If context independent, it's an operator. */
2626 || syntax & RE_CONTEXT_INDEP_ANCHORS
2627 /* Otherwise, depends on what's next. */
2628 || at_endline_loc_p (p, pend, syntax))
2629 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? endbuf : endline);
2630 else
2631 goto normal_char;
2633 break;
2636 case '+':
2637 case '?':
2638 if ((syntax & RE_BK_PLUS_QM)
2639 || (syntax & RE_LIMITED_OPS))
2640 goto normal_char;
2641 handle_plus:
2642 case '*':
2643 /* If there is no previous pattern... */
2644 if (!laststart)
2646 if (syntax & RE_CONTEXT_INVALID_OPS)
2647 FREE_STACK_RETURN (REG_BADRPT);
2648 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2649 goto normal_char;
2653 /* 1 means zero (many) matches is allowed. */
2654 boolean zero_times_ok = 0, many_times_ok = 0;
2655 boolean greedy = 1;
2657 /* If there is a sequence of repetition chars, collapse it
2658 down to just one (the right one). We can't combine
2659 interval operators with these because of, e.g., `a{2}*',
2660 which should only match an even number of `a's. */
2662 for (;;)
2664 if ((syntax & RE_FRUGAL)
2665 && c == '?' && (zero_times_ok || many_times_ok))
2666 greedy = 0;
2667 else
2669 zero_times_ok |= c != '+';
2670 many_times_ok |= c != '?';
2673 if (p == pend)
2674 break;
2675 else if (*p == '*'
2676 || (!(syntax & RE_BK_PLUS_QM)
2677 && (*p == '+' || *p == '?')))
2679 else if (syntax & RE_BK_PLUS_QM && *p == '\\')
2681 if (p+1 == pend)
2682 FREE_STACK_RETURN (REG_EESCAPE);
2683 if (p[1] == '+' || p[1] == '?')
2684 PATFETCH (c); /* Gobble up the backslash. */
2685 else
2686 break;
2688 else
2689 break;
2690 /* If we get here, we found another repeat character. */
2691 PATFETCH (c);
2694 /* Star, etc. applied to an empty pattern is equivalent
2695 to an empty pattern. */
2696 if (!laststart || laststart == b)
2697 break;
2699 /* Now we know whether or not zero matches is allowed
2700 and also whether or not two or more matches is allowed. */
2701 if (greedy)
2703 if (many_times_ok)
2705 boolean simple = skip_one_char (laststart) == b;
2706 size_t startoffset = 0;
2707 re_opcode_t ofj =
2708 /* Check if the loop can match the empty string. */
2709 (simple || !analyze_first (laststart, b, NULL, 0))
2710 ? on_failure_jump : on_failure_jump_loop;
2711 assert (skip_one_char (laststart) <= b);
2713 if (!zero_times_ok && simple)
2714 { /* Since simple * loops can be made faster by using
2715 on_failure_keep_string_jump, we turn simple P+
2716 into PP* if P is simple. */
2717 unsigned char *p1, *p2;
2718 startoffset = b - laststart;
2719 GET_BUFFER_SPACE (startoffset);
2720 p1 = b; p2 = laststart;
2721 while (p2 < p1)
2722 *b++ = *p2++;
2723 zero_times_ok = 1;
2726 GET_BUFFER_SPACE (6);
2727 if (!zero_times_ok)
2728 /* A + loop. */
2729 STORE_JUMP (ofj, b, b + 6);
2730 else
2731 /* Simple * loops can use on_failure_keep_string_jump
2732 depending on what follows. But since we don't know
2733 that yet, we leave the decision up to
2734 on_failure_jump_smart. */
2735 INSERT_JUMP (simple ? on_failure_jump_smart : ofj,
2736 laststart + startoffset, b + 6);
2737 b += 3;
2738 STORE_JUMP (jump, b, laststart + startoffset);
2739 b += 3;
2741 else
2743 /* A simple ? pattern. */
2744 assert (zero_times_ok);
2745 GET_BUFFER_SPACE (3);
2746 INSERT_JUMP (on_failure_jump, laststart, b + 3);
2747 b += 3;
2750 else /* not greedy */
2751 { /* I wish the greedy and non-greedy cases could be merged. */
2753 GET_BUFFER_SPACE (7); /* We might use less. */
2754 if (many_times_ok)
2756 boolean emptyp = analyze_first (laststart, b, NULL, 0);
2758 /* The non-greedy multiple match looks like
2759 a repeat..until: we only need a conditional jump
2760 at the end of the loop. */
2761 if (emptyp) BUF_PUSH (no_op);
2762 STORE_JUMP (emptyp ? on_failure_jump_nastyloop
2763 : on_failure_jump, b, laststart);
2764 b += 3;
2765 if (zero_times_ok)
2767 /* The repeat...until naturally matches one or more.
2768 To also match zero times, we need to first jump to
2769 the end of the loop (its conditional jump). */
2770 INSERT_JUMP (jump, laststart, b);
2771 b += 3;
2774 else
2776 /* non-greedy a?? */
2777 INSERT_JUMP (jump, laststart, b + 3);
2778 b += 3;
2779 INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
2780 b += 3;
2784 pending_exact = 0;
2785 break;
2788 case '.':
2789 laststart = b;
2790 BUF_PUSH (anychar);
2791 break;
2794 case '[':
2796 re_char *p1;
2798 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
2800 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2802 /* Ensure that we have enough space to push a charset: the
2803 opcode, the length count, and the bitset; 34 bytes in all. */
2804 GET_BUFFER_SPACE (34);
2806 laststart = b;
2808 /* We test `*p == '^' twice, instead of using an if
2809 statement, so we only need one BUF_PUSH. */
2810 BUF_PUSH (*p == '^' ? charset_not : charset);
2811 if (*p == '^')
2812 p++;
2814 /* Remember the first position in the bracket expression. */
2815 p1 = p;
2817 /* Push the number of bytes in the bitmap. */
2818 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2820 /* Clear the whole map. */
2821 memset (b, 0, (1 << BYTEWIDTH) / BYTEWIDTH);
2823 /* charset_not matches newline according to a syntax bit. */
2824 if ((re_opcode_t) b[-2] == charset_not
2825 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2826 SET_LIST_BIT ('\n');
2828 /* Read in characters and ranges, setting map bits. */
2829 for (;;)
2831 boolean escaped_char = false;
2832 const unsigned char *p2 = p;
2833 re_wctype_t cc;
2834 re_wchar_t ch;
2836 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2838 /* See if we're at the beginning of a possible character
2839 class. */
2840 if (syntax & RE_CHAR_CLASSES &&
2841 (cc = re_wctype_parse(&p, pend - p)) != -1)
2843 if (cc == 0)
2844 FREE_STACK_RETURN (REG_ECTYPE);
2846 if (p == pend)
2847 FREE_STACK_RETURN (REG_EBRACK);
2849 #ifndef emacs
2850 for (ch = 0; ch < (1 << BYTEWIDTH); ++ch)
2851 if (re_iswctype (btowc (ch), cc))
2853 c = TRANSLATE (ch);
2854 if (c < (1 << BYTEWIDTH))
2855 SET_LIST_BIT (c);
2857 #else /* emacs */
2858 /* Most character classes in a multibyte match just set
2859 a flag. Exceptions are is_blank, is_digit, is_cntrl, and
2860 is_xdigit, since they can only match ASCII characters.
2861 We don't need to handle them for multibyte. */
2863 /* Setup the gl_state object to its buffer-defined value.
2864 This hardcodes the buffer-global syntax-table for ASCII
2865 chars, while the other chars will obey syntax-table
2866 properties. It's not ideal, but it's the way it's been
2867 done until now. */
2868 SETUP_BUFFER_SYNTAX_TABLE ();
2870 for (c = 0; c < 0x80; ++c)
2871 if (re_iswctype (c, cc))
2873 SET_LIST_BIT (c);
2874 c1 = TRANSLATE (c);
2875 if (c1 == c)
2876 continue;
2877 if (ASCII_CHAR_P (c1))
2878 SET_LIST_BIT (c1);
2879 else if ((c1 = RE_CHAR_TO_UNIBYTE (c1)) >= 0)
2880 SET_LIST_BIT (c1);
2882 SET_RANGE_TABLE_WORK_AREA_BIT
2883 (range_table_work, re_wctype_to_bit (cc));
2884 #endif /* emacs */
2885 /* In most cases the matching rule for char classes only
2886 uses the syntax table for multibyte chars, so that the
2887 content of the syntax-table is not hardcoded in the
2888 range_table. SPACE and WORD are the two exceptions. */
2889 if ((1 << cc) & ((1 << RECC_SPACE) | (1 << RECC_WORD)))
2890 bufp->used_syntax = 1;
2892 /* Repeat the loop. */
2893 continue;
2896 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2897 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2898 So the translation is done later in a loop. Example:
2899 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
2900 PATFETCH (c);
2902 /* \ might escape characters inside [...] and [^...]. */
2903 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2905 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2907 PATFETCH (c);
2908 escaped_char = true;
2910 else
2912 /* Could be the end of the bracket expression. If it's
2913 not (i.e., when the bracket expression is `[]' so
2914 far), the ']' character bit gets set way below. */
2915 if (c == ']' && p2 != p1)
2916 break;
2919 if (p < pend && p[0] == '-' && p[1] != ']')
2922 /* Discard the `-'. */
2923 PATFETCH (c1);
2925 /* Fetch the character which ends the range. */
2926 PATFETCH (c1);
2927 #ifdef emacs
2928 if (CHAR_BYTE8_P (c1)
2929 && ! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
2930 /* Treat the range from a multibyte character to
2931 raw-byte character as empty. */
2932 c = c1 + 1;
2933 #endif /* emacs */
2935 else
2936 /* Range from C to C. */
2937 c1 = c;
2939 if (c > c1)
2941 if (syntax & RE_NO_EMPTY_RANGES)
2942 FREE_STACK_RETURN (REG_ERANGEX);
2943 /* Else, repeat the loop. */
2945 else
2947 #ifndef emacs
2948 /* Set the range into bitmap */
2949 for (; c <= c1; c++)
2951 ch = TRANSLATE (c);
2952 if (ch < (1 << BYTEWIDTH))
2953 SET_LIST_BIT (ch);
2955 #else /* emacs */
2956 if (c < 128)
2958 ch = min (127, c1);
2959 SETUP_ASCII_RANGE (range_table_work, c, ch);
2960 c = ch + 1;
2961 if (CHAR_BYTE8_P (c1))
2962 c = BYTE8_TO_CHAR (128);
2964 if (c <= c1)
2966 if (CHAR_BYTE8_P (c))
2968 c = CHAR_TO_BYTE8 (c);
2969 c1 = CHAR_TO_BYTE8 (c1);
2970 for (; c <= c1; c++)
2971 SET_LIST_BIT (c);
2973 else if (multibyte)
2975 SETUP_MULTIBYTE_RANGE (range_table_work, c, c1);
2977 else
2979 SETUP_UNIBYTE_RANGE (range_table_work, c, c1);
2982 #endif /* emacs */
2986 /* Discard any (non)matching list bytes that are all 0 at the
2987 end of the map. Decrease the map-length byte too. */
2988 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2989 b[-1]--;
2990 b += b[-1];
2992 /* Build real range table from work area. */
2993 if (RANGE_TABLE_WORK_USED (range_table_work)
2994 || RANGE_TABLE_WORK_BITS (range_table_work))
2996 int i;
2997 int used = RANGE_TABLE_WORK_USED (range_table_work);
2999 /* Allocate space for COUNT + RANGE_TABLE. Needs two
3000 bytes for flags, two for COUNT, and three bytes for
3001 each character. */
3002 GET_BUFFER_SPACE (4 + used * 3);
3004 /* Indicate the existence of range table. */
3005 laststart[1] |= 0x80;
3007 /* Store the character class flag bits into the range table.
3008 If not in emacs, these flag bits are always 0. */
3009 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) & 0xff;
3010 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) >> 8;
3012 STORE_NUMBER_AND_INCR (b, used / 2);
3013 for (i = 0; i < used; i++)
3014 STORE_CHARACTER_AND_INCR
3015 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
3018 break;
3021 case '(':
3022 if (syntax & RE_NO_BK_PARENS)
3023 goto handle_open;
3024 else
3025 goto normal_char;
3028 case ')':
3029 if (syntax & RE_NO_BK_PARENS)
3030 goto handle_close;
3031 else
3032 goto normal_char;
3035 case '\n':
3036 if (syntax & RE_NEWLINE_ALT)
3037 goto handle_alt;
3038 else
3039 goto normal_char;
3042 case '|':
3043 if (syntax & RE_NO_BK_VBAR)
3044 goto handle_alt;
3045 else
3046 goto normal_char;
3049 case '{':
3050 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3051 goto handle_interval;
3052 else
3053 goto normal_char;
3056 case '\\':
3057 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3059 /* Do not translate the character after the \, so that we can
3060 distinguish, e.g., \B from \b, even if we normally would
3061 translate, e.g., B to b. */
3062 PATFETCH (c);
3064 switch (c)
3066 case '(':
3067 if (syntax & RE_NO_BK_PARENS)
3068 goto normal_backslash;
3070 handle_open:
3072 int shy = 0;
3073 regnum_t regnum = 0;
3074 if (p+1 < pend)
3076 /* Look for a special (?...) construct */
3077 if ((syntax & RE_SHY_GROUPS) && *p == '?')
3079 PATFETCH (c); /* Gobble up the '?'. */
3080 while (!shy)
3082 PATFETCH (c);
3083 switch (c)
3085 case ':': shy = 1; break;
3086 case '0':
3087 /* An explicitly specified regnum must start
3088 with non-0. */
3089 if (regnum == 0)
3090 FREE_STACK_RETURN (REG_BADPAT);
3091 case '1': case '2': case '3': case '4':
3092 case '5': case '6': case '7': case '8': case '9':
3093 regnum = 10*regnum + (c - '0'); break;
3094 default:
3095 /* Only (?:...) is supported right now. */
3096 FREE_STACK_RETURN (REG_BADPAT);
3102 if (!shy)
3103 regnum = ++bufp->re_nsub;
3104 else if (regnum)
3105 { /* It's actually not shy, but explicitly numbered. */
3106 shy = 0;
3107 if (regnum > bufp->re_nsub)
3108 bufp->re_nsub = regnum;
3109 else if (regnum > bufp->re_nsub
3110 /* Ideally, we'd want to check that the specified
3111 group can't have matched (i.e. all subgroups
3112 using the same regnum are in other branches of
3113 OR patterns), but we don't currently keep track
3114 of enough info to do that easily. */
3115 || group_in_compile_stack (compile_stack, regnum))
3116 FREE_STACK_RETURN (REG_BADPAT);
3118 else
3119 /* It's really shy. */
3120 regnum = - bufp->re_nsub;
3122 if (COMPILE_STACK_FULL)
3124 RETALLOC (compile_stack.stack, compile_stack.size << 1,
3125 compile_stack_elt_t);
3126 if (compile_stack.stack == NULL) return REG_ESPACE;
3128 compile_stack.size <<= 1;
3131 /* These are the values to restore when we hit end of this
3132 group. They are all relative offsets, so that if the
3133 whole pattern moves because of realloc, they will still
3134 be valid. */
3135 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
3136 COMPILE_STACK_TOP.fixup_alt_jump
3137 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
3138 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
3139 COMPILE_STACK_TOP.regnum = regnum;
3141 /* Do not push a start_memory for groups beyond the last one
3142 we can represent in the compiled pattern. */
3143 if (regnum <= MAX_REGNUM && regnum > 0)
3144 BUF_PUSH_2 (start_memory, regnum);
3146 compile_stack.avail++;
3148 fixup_alt_jump = 0;
3149 laststart = 0;
3150 begalt = b;
3151 /* If we've reached MAX_REGNUM groups, then this open
3152 won't actually generate any code, so we'll have to
3153 clear pending_exact explicitly. */
3154 pending_exact = 0;
3155 break;
3158 case ')':
3159 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3161 if (COMPILE_STACK_EMPTY)
3163 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3164 goto normal_backslash;
3165 else
3166 FREE_STACK_RETURN (REG_ERPAREN);
3169 handle_close:
3170 FIXUP_ALT_JUMP ();
3172 /* See similar code for backslashed left paren above. */
3173 if (COMPILE_STACK_EMPTY)
3175 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3176 goto normal_char;
3177 else
3178 FREE_STACK_RETURN (REG_ERPAREN);
3181 /* Since we just checked for an empty stack above, this
3182 ``can't happen''. */
3183 assert (compile_stack.avail != 0);
3185 /* We don't just want to restore into `regnum', because
3186 later groups should continue to be numbered higher,
3187 as in `(ab)c(de)' -- the second group is #2. */
3188 regnum_t regnum;
3190 compile_stack.avail--;
3191 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
3192 fixup_alt_jump
3193 = COMPILE_STACK_TOP.fixup_alt_jump
3194 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
3195 : 0;
3196 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
3197 regnum = COMPILE_STACK_TOP.regnum;
3198 /* If we've reached MAX_REGNUM groups, then this open
3199 won't actually generate any code, so we'll have to
3200 clear pending_exact explicitly. */
3201 pending_exact = 0;
3203 /* We're at the end of the group, so now we know how many
3204 groups were inside this one. */
3205 if (regnum <= MAX_REGNUM && regnum > 0)
3206 BUF_PUSH_2 (stop_memory, regnum);
3208 break;
3211 case '|': /* `\|'. */
3212 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3213 goto normal_backslash;
3214 handle_alt:
3215 if (syntax & RE_LIMITED_OPS)
3216 goto normal_char;
3218 /* Insert before the previous alternative a jump which
3219 jumps to this alternative if the former fails. */
3220 GET_BUFFER_SPACE (3);
3221 INSERT_JUMP (on_failure_jump, begalt, b + 6);
3222 pending_exact = 0;
3223 b += 3;
3225 /* The alternative before this one has a jump after it
3226 which gets executed if it gets matched. Adjust that
3227 jump so it will jump to this alternative's analogous
3228 jump (put in below, which in turn will jump to the next
3229 (if any) alternative's such jump, etc.). The last such
3230 jump jumps to the correct final destination. A picture:
3231 _____ _____
3232 | | | |
3233 | v | v
3234 a | b | c
3236 If we are at `b', then fixup_alt_jump right now points to a
3237 three-byte space after `a'. We'll put in the jump, set
3238 fixup_alt_jump to right after `b', and leave behind three
3239 bytes which we'll fill in when we get to after `c'. */
3241 FIXUP_ALT_JUMP ();
3243 /* Mark and leave space for a jump after this alternative,
3244 to be filled in later either by next alternative or
3245 when know we're at the end of a series of alternatives. */
3246 fixup_alt_jump = b;
3247 GET_BUFFER_SPACE (3);
3248 b += 3;
3250 laststart = 0;
3251 begalt = b;
3252 break;
3255 case '{':
3256 /* If \{ is a literal. */
3257 if (!(syntax & RE_INTERVALS)
3258 /* If we're at `\{' and it's not the open-interval
3259 operator. */
3260 || (syntax & RE_NO_BK_BRACES))
3261 goto normal_backslash;
3263 handle_interval:
3265 /* If got here, then the syntax allows intervals. */
3267 /* At least (most) this many matches must be made. */
3268 int lower_bound = 0, upper_bound = -1;
3270 beg_interval = p;
3272 GET_INTERVAL_COUNT (lower_bound);
3274 if (c == ',')
3275 GET_INTERVAL_COUNT (upper_bound);
3276 else
3277 /* Interval such as `{1}' => match exactly once. */
3278 upper_bound = lower_bound;
3280 if (lower_bound < 0
3281 || (0 <= upper_bound && upper_bound < lower_bound))
3282 FREE_STACK_RETURN (REG_BADBR);
3284 if (!(syntax & RE_NO_BK_BRACES))
3286 if (c != '\\')
3287 FREE_STACK_RETURN (REG_BADBR);
3288 if (p == pend)
3289 FREE_STACK_RETURN (REG_EESCAPE);
3290 PATFETCH (c);
3293 if (c != '}')
3294 FREE_STACK_RETURN (REG_BADBR);
3296 /* We just parsed a valid interval. */
3298 /* If it's invalid to have no preceding re. */
3299 if (!laststart)
3301 if (syntax & RE_CONTEXT_INVALID_OPS)
3302 FREE_STACK_RETURN (REG_BADRPT);
3303 else if (syntax & RE_CONTEXT_INDEP_OPS)
3304 laststart = b;
3305 else
3306 goto unfetch_interval;
3309 if (upper_bound == 0)
3310 /* If the upper bound is zero, just drop the sub pattern
3311 altogether. */
3312 b = laststart;
3313 else if (lower_bound == 1 && upper_bound == 1)
3314 /* Just match it once: nothing to do here. */
3317 /* Otherwise, we have a nontrivial interval. When
3318 we're all done, the pattern will look like:
3319 set_number_at <jump count> <upper bound>
3320 set_number_at <succeed_n count> <lower bound>
3321 succeed_n <after jump addr> <succeed_n count>
3322 <body of loop>
3323 jump_n <succeed_n addr> <jump count>
3324 (The upper bound and `jump_n' are omitted if
3325 `upper_bound' is 1, though.) */
3326 else
3327 { /* If the upper bound is > 1, we need to insert
3328 more at the end of the loop. */
3329 unsigned int nbytes = (upper_bound < 0 ? 3
3330 : upper_bound > 1 ? 5 : 0);
3331 unsigned int startoffset = 0;
3333 GET_BUFFER_SPACE (20); /* We might use less. */
3335 if (lower_bound == 0)
3337 /* A succeed_n that starts with 0 is really a
3338 a simple on_failure_jump_loop. */
3339 INSERT_JUMP (on_failure_jump_loop, laststart,
3340 b + 3 + nbytes);
3341 b += 3;
3343 else
3345 /* Initialize lower bound of the `succeed_n', even
3346 though it will be set during matching by its
3347 attendant `set_number_at' (inserted next),
3348 because `re_compile_fastmap' needs to know.
3349 Jump to the `jump_n' we might insert below. */
3350 INSERT_JUMP2 (succeed_n, laststart,
3351 b + 5 + nbytes,
3352 lower_bound);
3353 b += 5;
3355 /* Code to initialize the lower bound. Insert
3356 before the `succeed_n'. The `5' is the last two
3357 bytes of this `set_number_at', plus 3 bytes of
3358 the following `succeed_n'. */
3359 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
3360 b += 5;
3361 startoffset += 5;
3364 if (upper_bound < 0)
3366 /* A negative upper bound stands for infinity,
3367 in which case it degenerates to a plain jump. */
3368 STORE_JUMP (jump, b, laststart + startoffset);
3369 b += 3;
3371 else if (upper_bound > 1)
3372 { /* More than one repetition is allowed, so
3373 append a backward jump to the `succeed_n'
3374 that starts this interval.
3376 When we've reached this during matching,
3377 we'll have matched the interval once, so
3378 jump back only `upper_bound - 1' times. */
3379 STORE_JUMP2 (jump_n, b, laststart + startoffset,
3380 upper_bound - 1);
3381 b += 5;
3383 /* The location we want to set is the second
3384 parameter of the `jump_n'; that is `b-2' as
3385 an absolute address. `laststart' will be
3386 the `set_number_at' we're about to insert;
3387 `laststart+3' the number to set, the source
3388 for the relative address. But we are
3389 inserting into the middle of the pattern --
3390 so everything is getting moved up by 5.
3391 Conclusion: (b - 2) - (laststart + 3) + 5,
3392 i.e., b - laststart.
3394 We insert this at the beginning of the loop
3395 so that if we fail during matching, we'll
3396 reinitialize the bounds. */
3397 insert_op2 (set_number_at, laststart, b - laststart,
3398 upper_bound - 1, b);
3399 b += 5;
3402 pending_exact = 0;
3403 beg_interval = NULL;
3405 break;
3407 unfetch_interval:
3408 /* If an invalid interval, match the characters as literals. */
3409 assert (beg_interval);
3410 p = beg_interval;
3411 beg_interval = NULL;
3413 /* normal_char and normal_backslash need `c'. */
3414 c = '{';
3416 if (!(syntax & RE_NO_BK_BRACES))
3418 assert (p > pattern && p[-1] == '\\');
3419 goto normal_backslash;
3421 else
3422 goto normal_char;
3424 #ifdef emacs
3425 case '=':
3426 laststart = b;
3427 BUF_PUSH (at_dot);
3428 break;
3430 case 's':
3431 laststart = b;
3432 PATFETCH (c);
3433 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3434 break;
3436 case 'S':
3437 laststart = b;
3438 PATFETCH (c);
3439 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
3440 break;
3442 case 'c':
3443 laststart = b;
3444 PATFETCH (c);
3445 BUF_PUSH_2 (categoryspec, c);
3446 break;
3448 case 'C':
3449 laststart = b;
3450 PATFETCH (c);
3451 BUF_PUSH_2 (notcategoryspec, c);
3452 break;
3453 #endif /* emacs */
3456 case 'w':
3457 if (syntax & RE_NO_GNU_OPS)
3458 goto normal_char;
3459 laststart = b;
3460 BUF_PUSH_2 (syntaxspec, Sword);
3461 break;
3464 case 'W':
3465 if (syntax & RE_NO_GNU_OPS)
3466 goto normal_char;
3467 laststart = b;
3468 BUF_PUSH_2 (notsyntaxspec, Sword);
3469 break;
3472 case '<':
3473 if (syntax & RE_NO_GNU_OPS)
3474 goto normal_char;
3475 laststart = b;
3476 BUF_PUSH (wordbeg);
3477 break;
3479 case '>':
3480 if (syntax & RE_NO_GNU_OPS)
3481 goto normal_char;
3482 laststart = b;
3483 BUF_PUSH (wordend);
3484 break;
3486 case '_':
3487 if (syntax & RE_NO_GNU_OPS)
3488 goto normal_char;
3489 laststart = b;
3490 PATFETCH (c);
3491 if (c == '<')
3492 BUF_PUSH (symbeg);
3493 else if (c == '>')
3494 BUF_PUSH (symend);
3495 else
3496 FREE_STACK_RETURN (REG_BADPAT);
3497 break;
3499 case 'b':
3500 if (syntax & RE_NO_GNU_OPS)
3501 goto normal_char;
3502 BUF_PUSH (wordbound);
3503 break;
3505 case 'B':
3506 if (syntax & RE_NO_GNU_OPS)
3507 goto normal_char;
3508 BUF_PUSH (notwordbound);
3509 break;
3511 case '`':
3512 if (syntax & RE_NO_GNU_OPS)
3513 goto normal_char;
3514 BUF_PUSH (begbuf);
3515 break;
3517 case '\'':
3518 if (syntax & RE_NO_GNU_OPS)
3519 goto normal_char;
3520 BUF_PUSH (endbuf);
3521 break;
3523 case '1': case '2': case '3': case '4': case '5':
3524 case '6': case '7': case '8': case '9':
3526 regnum_t reg;
3528 if (syntax & RE_NO_BK_REFS)
3529 goto normal_backslash;
3531 reg = c - '0';
3533 if (reg > bufp->re_nsub || reg < 1
3534 /* Can't back reference to a subexp before its end. */
3535 || group_in_compile_stack (compile_stack, reg))
3536 FREE_STACK_RETURN (REG_ESUBREG);
3538 laststart = b;
3539 BUF_PUSH_2 (duplicate, reg);
3541 break;
3544 case '+':
3545 case '?':
3546 if (syntax & RE_BK_PLUS_QM)
3547 goto handle_plus;
3548 else
3549 goto normal_backslash;
3551 default:
3552 normal_backslash:
3553 /* You might think it would be useful for \ to mean
3554 not to translate; but if we don't translate it
3555 it will never match anything. */
3556 goto normal_char;
3558 break;
3561 default:
3562 /* Expects the character in `c'. */
3563 normal_char:
3564 /* If no exactn currently being built. */
3565 if (!pending_exact
3567 /* If last exactn not at current position. */
3568 || pending_exact + *pending_exact + 1 != b
3570 /* We have only one byte following the exactn for the count. */
3571 || *pending_exact >= (1 << BYTEWIDTH) - MAX_MULTIBYTE_LENGTH
3573 /* If followed by a repetition operator. */
3574 || (p != pend && (*p == '*' || *p == '^'))
3575 || ((syntax & RE_BK_PLUS_QM)
3576 ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
3577 : p != pend && (*p == '+' || *p == '?'))
3578 || ((syntax & RE_INTERVALS)
3579 && ((syntax & RE_NO_BK_BRACES)
3580 ? p != pend && *p == '{'
3581 : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
3583 /* Start building a new exactn. */
3585 laststart = b;
3587 BUF_PUSH_2 (exactn, 0);
3588 pending_exact = b - 1;
3591 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH);
3593 int len;
3595 if (multibyte)
3597 c = TRANSLATE (c);
3598 len = CHAR_STRING (c, b);
3599 b += len;
3601 else
3603 c1 = RE_CHAR_TO_MULTIBYTE (c);
3604 if (! CHAR_BYTE8_P (c1))
3606 re_wchar_t c2 = TRANSLATE (c1);
3608 if (c1 != c2 && (c1 = RE_CHAR_TO_UNIBYTE (c2)) >= 0)
3609 c = c1;
3611 *b++ = c;
3612 len = 1;
3614 (*pending_exact) += len;
3617 break;
3618 } /* switch (c) */
3619 } /* while p != pend */
3622 /* Through the pattern now. */
3624 FIXUP_ALT_JUMP ();
3626 if (!COMPILE_STACK_EMPTY)
3627 FREE_STACK_RETURN (REG_EPAREN);
3629 /* If we don't want backtracking, force success
3630 the first time we reach the end of the compiled pattern. */
3631 if (!posix_backtracking)
3632 BUF_PUSH (succeed);
3634 /* We have succeeded; set the length of the buffer. */
3635 bufp->used = b - bufp->buffer;
3637 #ifdef DEBUG
3638 if (debug > 0)
3640 re_compile_fastmap (bufp);
3641 DEBUG_PRINT ("\nCompiled pattern: \n");
3642 print_compiled_pattern (bufp);
3644 debug--;
3645 #endif /* DEBUG */
3647 #ifndef MATCH_MAY_ALLOCATE
3648 /* Initialize the failure stack to the largest possible stack. This
3649 isn't necessary unless we're trying to avoid calling alloca in
3650 the search and match routines. */
3652 int num_regs = bufp->re_nsub + 1;
3654 if (fail_stack.size < emacs_re_max_failures * TYPICAL_FAILURE_SIZE)
3656 fail_stack.size = emacs_re_max_failures * TYPICAL_FAILURE_SIZE;
3657 falk_stack.stack = realloc (fail_stack.stack,
3658 fail_stack.size * sizeof *falk_stack.stack);
3661 regex_grow_registers (num_regs);
3663 #endif /* not MATCH_MAY_ALLOCATE */
3665 FREE_STACK_RETURN (REG_NOERROR);
3667 #ifdef emacs
3668 # undef syntax
3669 #else
3670 # undef posix_backtracking
3671 #endif
3672 } /* regex_compile */
3674 /* Subroutines for `regex_compile'. */
3676 /* Store OP at LOC followed by two-byte integer parameter ARG. */
3678 static void
3679 store_op1 (re_opcode_t op, unsigned char *loc, int arg)
3681 *loc = (unsigned char) op;
3682 STORE_NUMBER (loc + 1, arg);
3686 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3688 static void
3689 store_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2)
3691 *loc = (unsigned char) op;
3692 STORE_NUMBER (loc + 1, arg1);
3693 STORE_NUMBER (loc + 3, arg2);
3697 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
3698 for OP followed by two-byte integer parameter ARG. */
3700 static void
3701 insert_op1 (re_opcode_t op, unsigned char *loc, int arg, unsigned char *end)
3703 register unsigned char *pfrom = end;
3704 register unsigned char *pto = end + 3;
3706 while (pfrom != loc)
3707 *--pto = *--pfrom;
3709 store_op1 (op, loc, arg);
3713 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3715 static void
3716 insert_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2, unsigned char *end)
3718 register unsigned char *pfrom = end;
3719 register unsigned char *pto = end + 5;
3721 while (pfrom != loc)
3722 *--pto = *--pfrom;
3724 store_op2 (op, loc, arg1, arg2);
3728 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
3729 after an alternative or a begin-subexpression. We assume there is at
3730 least one character before the ^. */
3732 static boolean
3733 at_begline_loc_p (const_re_char *pattern, const_re_char *p, reg_syntax_t syntax)
3735 re_char *prev = p - 2;
3736 boolean odd_backslashes;
3738 /* After a subexpression? */
3739 if (*prev == '(')
3740 odd_backslashes = (syntax & RE_NO_BK_PARENS) == 0;
3742 /* After an alternative? */
3743 else if (*prev == '|')
3744 odd_backslashes = (syntax & RE_NO_BK_VBAR) == 0;
3746 /* After a shy subexpression? */
3747 else if (*prev == ':' && (syntax & RE_SHY_GROUPS))
3749 /* Skip over optional regnum. */
3750 while (prev - 1 >= pattern && prev[-1] >= '0' && prev[-1] <= '9')
3751 --prev;
3753 if (!(prev - 2 >= pattern
3754 && prev[-1] == '?' && prev[-2] == '('))
3755 return false;
3756 prev -= 2;
3757 odd_backslashes = (syntax & RE_NO_BK_PARENS) == 0;
3759 else
3760 return false;
3762 /* Count the number of preceding backslashes. */
3763 p = prev;
3764 while (prev - 1 >= pattern && prev[-1] == '\\')
3765 --prev;
3766 return (p - prev) & odd_backslashes;
3770 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3771 at least one character after the $, i.e., `P < PEND'. */
3773 static boolean
3774 at_endline_loc_p (const_re_char *p, const_re_char *pend, reg_syntax_t syntax)
3776 re_char *next = p;
3777 boolean next_backslash = *next == '\\';
3778 re_char *next_next = p + 1 < pend ? p + 1 : 0;
3780 return
3781 /* Before a subexpression? */
3782 (syntax & RE_NO_BK_PARENS ? *next == ')'
3783 : next_backslash && next_next && *next_next == ')')
3784 /* Before an alternative? */
3785 || (syntax & RE_NO_BK_VBAR ? *next == '|'
3786 : next_backslash && next_next && *next_next == '|');
3790 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3791 false if it's not. */
3793 static boolean
3794 group_in_compile_stack (compile_stack_type compile_stack, regnum_t regnum)
3796 ssize_t this_element;
3798 for (this_element = compile_stack.avail - 1;
3799 this_element >= 0;
3800 this_element--)
3801 if (compile_stack.stack[this_element].regnum == regnum)
3802 return true;
3804 return false;
3807 /* analyze_first.
3808 If fastmap is non-NULL, go through the pattern and fill fastmap
3809 with all the possible leading chars. If fastmap is NULL, don't
3810 bother filling it up (obviously) and only return whether the
3811 pattern could potentially match the empty string.
3813 Return 1 if p..pend might match the empty string.
3814 Return 0 if p..pend matches at least one char.
3815 Return -1 if fastmap was not updated accurately. */
3817 static int
3818 analyze_first (const_re_char *p, const_re_char *pend, char *fastmap,
3819 const int multibyte)
3821 int j, k;
3822 boolean not;
3824 /* If all elements for base leading-codes in fastmap is set, this
3825 flag is set true. */
3826 boolean match_any_multibyte_characters = false;
3828 assert (p);
3830 /* The loop below works as follows:
3831 - It has a working-list kept in the PATTERN_STACK and which basically
3832 starts by only containing a pointer to the first operation.
3833 - If the opcode we're looking at is a match against some set of
3834 chars, then we add those chars to the fastmap and go on to the
3835 next work element from the worklist (done via `break').
3836 - If the opcode is a control operator on the other hand, we either
3837 ignore it (if it's meaningless at this point, such as `start_memory')
3838 or execute it (if it's a jump). If the jump has several destinations
3839 (i.e. `on_failure_jump'), then we push the other destination onto the
3840 worklist.
3841 We guarantee termination by ignoring backward jumps (more or less),
3842 so that `p' is monotonically increasing. More to the point, we
3843 never set `p' (or push) anything `<= p1'. */
3845 while (p < pend)
3847 /* `p1' is used as a marker of how far back a `on_failure_jump'
3848 can go without being ignored. It is normally equal to `p'
3849 (which prevents any backward `on_failure_jump') except right
3850 after a plain `jump', to allow patterns such as:
3851 0: jump 10
3852 3..9: <body>
3853 10: on_failure_jump 3
3854 as used for the *? operator. */
3855 re_char *p1 = p;
3857 switch (*p++)
3859 case succeed:
3860 return 1;
3862 case duplicate:
3863 /* If the first character has to match a backreference, that means
3864 that the group was empty (since it already matched). Since this
3865 is the only case that interests us here, we can assume that the
3866 backreference must match the empty string. */
3867 p++;
3868 continue;
3871 /* Following are the cases which match a character. These end
3872 with `break'. */
3874 case exactn:
3875 if (fastmap)
3877 /* If multibyte is nonzero, the first byte of each
3878 character is an ASCII or a leading code. Otherwise,
3879 each byte is a character. Thus, this works in both
3880 cases. */
3881 fastmap[p[1]] = 1;
3882 if (! multibyte)
3884 /* For the case of matching this unibyte regex
3885 against multibyte, we must set a leading code of
3886 the corresponding multibyte character. */
3887 int c = RE_CHAR_TO_MULTIBYTE (p[1]);
3889 fastmap[CHAR_LEADING_CODE (c)] = 1;
3892 break;
3895 case anychar:
3896 /* We could put all the chars except for \n (and maybe \0)
3897 but we don't bother since it is generally not worth it. */
3898 if (!fastmap) break;
3899 return -1;
3902 case charset_not:
3903 if (!fastmap) break;
3905 /* Chars beyond end of bitmap are possible matches. */
3906 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
3907 j < (1 << BYTEWIDTH); j++)
3908 fastmap[j] = 1;
3911 /* Fallthrough */
3912 case charset:
3913 if (!fastmap) break;
3914 not = (re_opcode_t) *(p - 1) == charset_not;
3915 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3916 j >= 0; j--)
3917 if (!!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) ^ not)
3918 fastmap[j] = 1;
3920 #ifdef emacs
3921 if (/* Any leading code can possibly start a character
3922 which doesn't match the specified set of characters. */
3925 /* If we can match a character class, we can match any
3926 multibyte characters. */
3927 (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3928 && CHARSET_RANGE_TABLE_BITS (&p[-2]) != 0))
3931 if (match_any_multibyte_characters == false)
3933 for (j = MIN_MULTIBYTE_LEADING_CODE;
3934 j <= MAX_MULTIBYTE_LEADING_CODE; j++)
3935 fastmap[j] = 1;
3936 match_any_multibyte_characters = true;
3940 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3941 && match_any_multibyte_characters == false)
3943 /* Set fastmap[I] to 1 where I is a leading code of each
3944 multibyte character in the range table. */
3945 int c, count;
3946 unsigned char lc1, lc2;
3948 /* Make P points the range table. `+ 2' is to skip flag
3949 bits for a character class. */
3950 p += CHARSET_BITMAP_SIZE (&p[-2]) + 2;
3952 /* Extract the number of ranges in range table into COUNT. */
3953 EXTRACT_NUMBER_AND_INCR (count, p);
3954 for (; count > 0; count--, p += 3)
3956 /* Extract the start and end of each range. */
3957 EXTRACT_CHARACTER (c, p);
3958 lc1 = CHAR_LEADING_CODE (c);
3959 p += 3;
3960 EXTRACT_CHARACTER (c, p);
3961 lc2 = CHAR_LEADING_CODE (c);
3962 for (j = lc1; j <= lc2; j++)
3963 fastmap[j] = 1;
3966 #endif
3967 break;
3969 case syntaxspec:
3970 case notsyntaxspec:
3971 if (!fastmap) break;
3972 #ifndef emacs
3973 not = (re_opcode_t)p[-1] == notsyntaxspec;
3974 k = *p++;
3975 for (j = 0; j < (1 << BYTEWIDTH); j++)
3976 if ((SYNTAX (j) == (enum syntaxcode) k) ^ not)
3977 fastmap[j] = 1;
3978 break;
3979 #else /* emacs */
3980 /* This match depends on text properties. These end with
3981 aborting optimizations. */
3982 return -1;
3984 case categoryspec:
3985 case notcategoryspec:
3986 if (!fastmap) break;
3987 not = (re_opcode_t)p[-1] == notcategoryspec;
3988 k = *p++;
3989 for (j = (1 << BYTEWIDTH); j >= 0; j--)
3990 if ((CHAR_HAS_CATEGORY (j, k)) ^ not)
3991 fastmap[j] = 1;
3993 /* Any leading code can possibly start a character which
3994 has or doesn't has the specified category. */
3995 if (match_any_multibyte_characters == false)
3997 for (j = MIN_MULTIBYTE_LEADING_CODE;
3998 j <= MAX_MULTIBYTE_LEADING_CODE; j++)
3999 fastmap[j] = 1;
4000 match_any_multibyte_characters = true;
4002 break;
4004 /* All cases after this match the empty string. These end with
4005 `continue'. */
4007 case at_dot:
4008 #endif /* !emacs */
4009 case no_op:
4010 case begline:
4011 case endline:
4012 case begbuf:
4013 case endbuf:
4014 case wordbound:
4015 case notwordbound:
4016 case wordbeg:
4017 case wordend:
4018 case symbeg:
4019 case symend:
4020 continue;
4023 case jump:
4024 EXTRACT_NUMBER_AND_INCR (j, p);
4025 if (j < 0)
4026 /* Backward jumps can only go back to code that we've already
4027 visited. `re_compile' should make sure this is true. */
4028 break;
4029 p += j;
4030 switch (*p)
4032 case on_failure_jump:
4033 case on_failure_keep_string_jump:
4034 case on_failure_jump_loop:
4035 case on_failure_jump_nastyloop:
4036 case on_failure_jump_smart:
4037 p++;
4038 break;
4039 default:
4040 continue;
4042 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
4043 to jump back to "just after here". */
4044 /* Fallthrough */
4046 case on_failure_jump:
4047 case on_failure_keep_string_jump:
4048 case on_failure_jump_nastyloop:
4049 case on_failure_jump_loop:
4050 case on_failure_jump_smart:
4051 EXTRACT_NUMBER_AND_INCR (j, p);
4052 if (p + j <= p1)
4053 ; /* Backward jump to be ignored. */
4054 else
4055 { /* We have to look down both arms.
4056 We first go down the "straight" path so as to minimize
4057 stack usage when going through alternatives. */
4058 int r = analyze_first (p, pend, fastmap, multibyte);
4059 if (r) return r;
4060 p += j;
4062 continue;
4065 case jump_n:
4066 /* This code simply does not properly handle forward jump_n. */
4067 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p); assert (j < 0));
4068 p += 4;
4069 /* jump_n can either jump or fall through. The (backward) jump
4070 case has already been handled, so we only need to look at the
4071 fallthrough case. */
4072 continue;
4074 case succeed_n:
4075 /* If N == 0, it should be an on_failure_jump_loop instead. */
4076 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p + 2); assert (j > 0));
4077 p += 4;
4078 /* We only care about one iteration of the loop, so we don't
4079 need to consider the case where this behaves like an
4080 on_failure_jump. */
4081 continue;
4084 case set_number_at:
4085 p += 4;
4086 continue;
4089 case start_memory:
4090 case stop_memory:
4091 p += 1;
4092 continue;
4095 default:
4096 abort (); /* We have listed all the cases. */
4097 } /* switch *p++ */
4099 /* Getting here means we have found the possible starting
4100 characters for one path of the pattern -- and that the empty
4101 string does not match. We need not follow this path further. */
4102 return 0;
4103 } /* while p */
4105 /* We reached the end without matching anything. */
4106 return 1;
4108 } /* analyze_first */
4110 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4111 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4112 characters can start a string that matches the pattern. This fastmap
4113 is used by re_search to skip quickly over impossible starting points.
4115 Character codes above (1 << BYTEWIDTH) are not represented in the
4116 fastmap, but the leading codes are represented. Thus, the fastmap
4117 indicates which character sets could start a match.
4119 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4120 area as BUFP->fastmap.
4122 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4123 the pattern buffer.
4125 Returns 0 if we succeed, -2 if an internal error. */
4128 re_compile_fastmap (struct re_pattern_buffer *bufp)
4130 char *fastmap = bufp->fastmap;
4131 int analysis;
4133 assert (fastmap && bufp->buffer);
4135 memset (fastmap, 0, 1 << BYTEWIDTH); /* Assume nothing's valid. */
4136 bufp->fastmap_accurate = 1; /* It will be when we're done. */
4138 analysis = analyze_first (bufp->buffer, bufp->buffer + bufp->used,
4139 fastmap, RE_MULTIBYTE_P (bufp));
4140 bufp->can_be_null = (analysis != 0);
4141 return 0;
4142 } /* re_compile_fastmap */
4144 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4145 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4146 this memory for recording register information. STARTS and ENDS
4147 must be allocated using the malloc library routine, and must each
4148 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4150 If NUM_REGS == 0, then subsequent matches should allocate their own
4151 register data.
4153 Unless this function is called, the first search or match using
4154 PATTERN_BUFFER will allocate its own register data, without
4155 freeing the old data. */
4157 void
4158 re_set_registers (struct re_pattern_buffer *bufp, struct re_registers *regs, unsigned int num_regs, regoff_t *starts, regoff_t *ends)
4160 if (num_regs)
4162 bufp->regs_allocated = REGS_REALLOCATE;
4163 regs->num_regs = num_regs;
4164 regs->start = starts;
4165 regs->end = ends;
4167 else
4169 bufp->regs_allocated = REGS_UNALLOCATED;
4170 regs->num_regs = 0;
4171 regs->start = regs->end = 0;
4174 WEAK_ALIAS (__re_set_registers, re_set_registers)
4176 /* Searching routines. */
4178 /* Like re_search_2, below, but only one string is specified, and
4179 doesn't let you say where to stop matching. */
4181 regoff_t
4182 re_search (struct re_pattern_buffer *bufp, const char *string, size_t size,
4183 ssize_t startpos, ssize_t range, struct re_registers *regs)
4185 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
4186 regs, size);
4188 WEAK_ALIAS (__re_search, re_search)
4190 /* Head address of virtual concatenation of string. */
4191 #define HEAD_ADDR_VSTRING(P) \
4192 (((P) >= size1 ? string2 : string1))
4194 /* Address of POS in the concatenation of virtual string. */
4195 #define POS_ADDR_VSTRING(POS) \
4196 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
4198 /* Using the compiled pattern in BUFP->buffer, first tries to match the
4199 virtual concatenation of STRING1 and STRING2, starting first at index
4200 STARTPOS, then at STARTPOS + 1, and so on.
4202 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4204 RANGE is how far to scan while trying to match. RANGE = 0 means try
4205 only at STARTPOS; in general, the last start tried is STARTPOS +
4206 RANGE.
4208 In REGS, return the indices of the virtual concatenation of STRING1
4209 and STRING2 that matched the entire BUFP->buffer and its contained
4210 subexpressions.
4212 Do not consider matching one past the index STOP in the virtual
4213 concatenation of STRING1 and STRING2.
4215 We return either the position in the strings at which the match was
4216 found, -1 if no match, or -2 if error (such as failure
4217 stack overflow). */
4219 regoff_t
4220 re_search_2 (struct re_pattern_buffer *bufp, const char *str1, size_t size1,
4221 const char *str2, size_t size2, ssize_t startpos, ssize_t range,
4222 struct re_registers *regs, ssize_t stop)
4224 regoff_t val;
4225 re_char *string1 = (re_char*) str1;
4226 re_char *string2 = (re_char*) str2;
4227 register char *fastmap = bufp->fastmap;
4228 register RE_TRANSLATE_TYPE translate = bufp->translate;
4229 size_t total_size = size1 + size2;
4230 ssize_t endpos = startpos + range;
4231 boolean anchored_start;
4232 /* Nonzero if we are searching multibyte string. */
4233 const boolean multibyte = RE_TARGET_MULTIBYTE_P (bufp);
4235 /* Check for out-of-range STARTPOS. */
4236 if (startpos < 0 || startpos > total_size)
4237 return -1;
4239 /* Fix up RANGE if it might eventually take us outside
4240 the virtual concatenation of STRING1 and STRING2.
4241 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
4242 if (endpos < 0)
4243 range = 0 - startpos;
4244 else if (endpos > total_size)
4245 range = total_size - startpos;
4247 /* If the search isn't to be a backwards one, don't waste time in a
4248 search for a pattern anchored at beginning of buffer. */
4249 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
4251 if (startpos > 0)
4252 return -1;
4253 else
4254 range = 0;
4257 #ifdef emacs
4258 /* In a forward search for something that starts with \=.
4259 don't keep searching past point. */
4260 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
4262 range = PT_BYTE - BEGV_BYTE - startpos;
4263 if (range < 0)
4264 return -1;
4266 #endif /* emacs */
4268 /* Update the fastmap now if not correct already. */
4269 if (fastmap && !bufp->fastmap_accurate)
4270 re_compile_fastmap (bufp);
4272 /* See whether the pattern is anchored. */
4273 anchored_start = (bufp->buffer[0] == begline);
4275 #ifdef emacs
4276 gl_state.object = re_match_object; /* Used by SYNTAX_TABLE_BYTE_TO_CHAR. */
4278 ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos));
4280 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4282 #endif
4284 /* Loop through the string, looking for a place to start matching. */
4285 for (;;)
4287 /* If the pattern is anchored,
4288 skip quickly past places we cannot match.
4289 We don't bother to treat startpos == 0 specially
4290 because that case doesn't repeat. */
4291 if (anchored_start && startpos > 0)
4293 if (! ((startpos <= size1 ? string1[startpos - 1]
4294 : string2[startpos - size1 - 1])
4295 == '\n'))
4296 goto advance;
4299 /* If a fastmap is supplied, skip quickly over characters that
4300 cannot be the start of a match. If the pattern can match the
4301 null string, however, we don't need to skip characters; we want
4302 the first null string. */
4303 if (fastmap && startpos < total_size && !bufp->can_be_null)
4305 register re_char *d;
4306 register re_wchar_t buf_ch;
4308 d = POS_ADDR_VSTRING (startpos);
4310 if (range > 0) /* Searching forwards. */
4312 ssize_t irange = range, lim = 0;
4314 if (startpos < size1 && startpos + range >= size1)
4315 lim = range - (size1 - startpos);
4317 /* Written out as an if-else to avoid testing `translate'
4318 inside the loop. */
4319 if (RE_TRANSLATE_P (translate))
4321 if (multibyte)
4322 while (range > lim)
4324 int buf_charlen;
4326 buf_ch = STRING_CHAR_AND_LENGTH (d, buf_charlen);
4327 buf_ch = RE_TRANSLATE (translate, buf_ch);
4328 if (fastmap[CHAR_LEADING_CODE (buf_ch)])
4329 break;
4331 range -= buf_charlen;
4332 d += buf_charlen;
4334 else
4335 while (range > lim)
4337 register re_wchar_t ch, translated;
4339 buf_ch = *d;
4340 ch = RE_CHAR_TO_MULTIBYTE (buf_ch);
4341 translated = RE_TRANSLATE (translate, ch);
4342 if (translated != ch
4343 && (ch = RE_CHAR_TO_UNIBYTE (translated)) >= 0)
4344 buf_ch = ch;
4345 if (fastmap[buf_ch])
4346 break;
4347 d++;
4348 range--;
4351 else
4353 if (multibyte)
4354 while (range > lim)
4356 int buf_charlen;
4358 buf_ch = STRING_CHAR_AND_LENGTH (d, buf_charlen);
4359 if (fastmap[CHAR_LEADING_CODE (buf_ch)])
4360 break;
4361 range -= buf_charlen;
4362 d += buf_charlen;
4364 else
4365 while (range > lim && !fastmap[*d])
4367 d++;
4368 range--;
4371 startpos += irange - range;
4373 else /* Searching backwards. */
4375 if (multibyte)
4377 buf_ch = STRING_CHAR (d);
4378 buf_ch = TRANSLATE (buf_ch);
4379 if (! fastmap[CHAR_LEADING_CODE (buf_ch)])
4380 goto advance;
4382 else
4384 register re_wchar_t ch, translated;
4386 buf_ch = *d;
4387 ch = RE_CHAR_TO_MULTIBYTE (buf_ch);
4388 translated = TRANSLATE (ch);
4389 if (translated != ch
4390 && (ch = RE_CHAR_TO_UNIBYTE (translated)) >= 0)
4391 buf_ch = ch;
4392 if (! fastmap[TRANSLATE (buf_ch)])
4393 goto advance;
4398 /* If can't match the null string, and that's all we have left, fail. */
4399 if (range >= 0 && startpos == total_size && fastmap
4400 && !bufp->can_be_null)
4401 return -1;
4403 val = re_match_2_internal (bufp, string1, size1, string2, size2,
4404 startpos, regs, stop);
4406 if (val >= 0)
4407 return startpos;
4409 if (val == -2)
4410 return -2;
4412 advance:
4413 if (!range)
4414 break;
4415 else if (range > 0)
4417 /* Update STARTPOS to the next character boundary. */
4418 if (multibyte)
4420 re_char *p = POS_ADDR_VSTRING (startpos);
4421 int len = BYTES_BY_CHAR_HEAD (*p);
4423 range -= len;
4424 if (range < 0)
4425 break;
4426 startpos += len;
4428 else
4430 range--;
4431 startpos++;
4434 else
4436 range++;
4437 startpos--;
4439 /* Update STARTPOS to the previous character boundary. */
4440 if (multibyte)
4442 re_char *p = POS_ADDR_VSTRING (startpos) + 1;
4443 re_char *p0 = p;
4444 re_char *phead = HEAD_ADDR_VSTRING (startpos);
4446 /* Find the head of multibyte form. */
4447 PREV_CHAR_BOUNDARY (p, phead);
4448 range += p0 - 1 - p;
4449 if (range > 0)
4450 break;
4452 startpos -= p0 - 1 - p;
4456 return -1;
4457 } /* re_search_2 */
4458 WEAK_ALIAS (__re_search_2, re_search_2)
4460 /* Declarations and macros for re_match_2. */
4462 static int bcmp_translate (re_char *s1, re_char *s2,
4463 register ssize_t len,
4464 RE_TRANSLATE_TYPE translate,
4465 const int multibyte);
4467 /* This converts PTR, a pointer into one of the search strings `string1'
4468 and `string2' into an offset from the beginning of that string. */
4469 #define POINTER_TO_OFFSET(ptr) \
4470 (FIRST_STRING_P (ptr) \
4471 ? (ptr) - string1 \
4472 : (ptr) - string2 + (ptrdiff_t) size1)
4474 /* Call before fetching a character with *d. This switches over to
4475 string2 if necessary.
4476 Check re_match_2_internal for a discussion of why end_match_2 might
4477 not be within string2 (but be equal to end_match_1 instead). */
4478 #define PREFETCH() \
4479 while (d == dend) \
4481 /* End of string2 => fail. */ \
4482 if (dend == end_match_2) \
4483 goto fail; \
4484 /* End of string1 => advance to string2. */ \
4485 d = string2; \
4486 dend = end_match_2; \
4489 /* Call before fetching a char with *d if you already checked other limits.
4490 This is meant for use in lookahead operations like wordend, etc..
4491 where we might need to look at parts of the string that might be
4492 outside of the LIMITs (i.e past `stop'). */
4493 #define PREFETCH_NOLIMIT() \
4494 if (d == end1) \
4496 d = string2; \
4497 dend = end_match_2; \
4500 /* Test if at very beginning or at very end of the virtual concatenation
4501 of `string1' and `string2'. If only one string, it's `string2'. */
4502 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
4503 #define AT_STRINGS_END(d) ((d) == end2)
4505 /* Disabled due to a compiler bug -- see comment at case wordbound */
4507 /* The comment at case wordbound is following one, but we don't use
4508 AT_WORD_BOUNDARY anymore to support multibyte form.
4510 The DEC Alpha C compiler 3.x generates incorrect code for the
4511 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4512 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4513 macro and introducing temporary variables works around the bug. */
4515 #if 0
4516 /* Test if D points to a character which is word-constituent. We have
4517 two special cases to check for: if past the end of string1, look at
4518 the first character in string2; and if before the beginning of
4519 string2, look at the last character in string1. */
4520 #define WORDCHAR_P(d) \
4521 (SYNTAX ((d) == end1 ? *string2 \
4522 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
4523 == Sword)
4525 /* Test if the character before D and the one at D differ with respect
4526 to being word-constituent. */
4527 #define AT_WORD_BOUNDARY(d) \
4528 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4529 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
4530 #endif
4532 /* Free everything we malloc. */
4533 #ifdef MATCH_MAY_ALLOCATE
4534 # define FREE_VAR(var) \
4535 do { \
4536 if (var) \
4538 REGEX_FREE (var); \
4539 var = NULL; \
4541 } while (0)
4542 # define FREE_VARIABLES() \
4543 do { \
4544 REGEX_FREE_STACK (fail_stack.stack); \
4545 FREE_VAR (regstart); \
4546 FREE_VAR (regend); \
4547 FREE_VAR (best_regstart); \
4548 FREE_VAR (best_regend); \
4549 REGEX_SAFE_FREE (); \
4550 } while (0)
4551 #else
4552 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
4553 #endif /* not MATCH_MAY_ALLOCATE */
4556 /* Optimization routines. */
4558 /* If the operation is a match against one or more chars,
4559 return a pointer to the next operation, else return NULL. */
4560 static re_char *
4561 skip_one_char (const_re_char *p)
4563 switch (*p++)
4565 case anychar:
4566 break;
4568 case exactn:
4569 p += *p + 1;
4570 break;
4572 case charset_not:
4573 case charset:
4574 if (CHARSET_RANGE_TABLE_EXISTS_P (p - 1))
4576 int mcnt;
4577 p = CHARSET_RANGE_TABLE (p - 1);
4578 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4579 p = CHARSET_RANGE_TABLE_END (p, mcnt);
4581 else
4582 p += 1 + CHARSET_BITMAP_SIZE (p - 1);
4583 break;
4585 case syntaxspec:
4586 case notsyntaxspec:
4587 #ifdef emacs
4588 case categoryspec:
4589 case notcategoryspec:
4590 #endif /* emacs */
4591 p++;
4592 break;
4594 default:
4595 p = NULL;
4597 return p;
4601 /* Jump over non-matching operations. */
4602 static re_char *
4603 skip_noops (const_re_char *p, const_re_char *pend)
4605 int mcnt;
4606 while (p < pend)
4608 switch (*p)
4610 case start_memory:
4611 case stop_memory:
4612 p += 2; break;
4613 case no_op:
4614 p += 1; break;
4615 case jump:
4616 p += 1;
4617 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4618 p += mcnt;
4619 break;
4620 default:
4621 return p;
4624 assert (p == pend);
4625 return p;
4628 /* Test if C matches charset op. *PP points to the charset or charset_not
4629 opcode. When the function finishes, *PP will be advanced past that opcode.
4630 C is character to test (possibly after translations) and CORIG is original
4631 character (i.e. without any translations). UNIBYTE denotes whether c is
4632 unibyte or multibyte character. */
4633 static bool
4634 execute_charset (const_re_char **pp, unsigned c, unsigned corig, bool unibyte)
4636 re_char *p = *pp, *rtp = NULL;
4637 bool not = (re_opcode_t) *p == charset_not;
4639 if (CHARSET_RANGE_TABLE_EXISTS_P (p))
4641 int count;
4642 rtp = CHARSET_RANGE_TABLE (p);
4643 EXTRACT_NUMBER_AND_INCR (count, rtp);
4644 *pp = CHARSET_RANGE_TABLE_END ((rtp), (count));
4646 else
4647 *pp += 2 + CHARSET_BITMAP_SIZE (p);
4649 if (unibyte && c < (1 << BYTEWIDTH))
4650 { /* Lookup bitmap. */
4651 /* Cast to `unsigned' instead of `unsigned char' in
4652 case the bit list is a full 32 bytes long. */
4653 if (c < (unsigned) (CHARSET_BITMAP_SIZE (p) * BYTEWIDTH)
4654 && p[2 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4655 return !not;
4657 #ifdef emacs
4658 else if (rtp)
4660 int class_bits = CHARSET_RANGE_TABLE_BITS (p);
4661 re_wchar_t range_start, range_end;
4663 /* Sort tests by the most commonly used classes with some adjustment to which
4664 tests are easiest to perform. Take a look at comment in re_wctype_parse
4665 for table with frequencies of character class names. */
4667 if ((class_bits & BIT_MULTIBYTE) ||
4668 (class_bits & BIT_ALNUM && ISALNUM (c)) ||
4669 (class_bits & BIT_ALPHA && ISALPHA (c)) ||
4670 (class_bits & BIT_SPACE && ISSPACE (c)) ||
4671 (class_bits & BIT_BLANK && ISBLANK (c)) ||
4672 (class_bits & BIT_WORD && ISWORD (c)) ||
4673 ((class_bits & BIT_UPPER) &&
4674 (ISUPPER (c) || (corig != c &&
4675 c == downcase (corig) && ISLOWER (c)))) ||
4676 ((class_bits & BIT_LOWER) &&
4677 (ISLOWER (c) || (corig != c &&
4678 c == upcase (corig) && ISUPPER(c)))) ||
4679 (class_bits & BIT_PUNCT && ISPUNCT (c)) ||
4680 (class_bits & BIT_GRAPH && ISGRAPH (c)) ||
4681 (class_bits & BIT_PRINT && ISPRINT (c)))
4682 return !not;
4684 for (p = *pp; rtp < p; rtp += 2 * 3)
4686 EXTRACT_CHARACTER (range_start, rtp);
4687 EXTRACT_CHARACTER (range_end, rtp + 3);
4688 if (range_start <= c && c <= range_end)
4689 return !not;
4692 #endif /* emacs */
4693 return not;
4696 /* Non-zero if "p1 matches something" implies "p2 fails". */
4697 static int
4698 mutually_exclusive_p (struct re_pattern_buffer *bufp, const_re_char *p1,
4699 const_re_char *p2)
4701 re_opcode_t op2;
4702 const boolean multibyte = RE_MULTIBYTE_P (bufp);
4703 unsigned char *pend = bufp->buffer + bufp->used;
4705 assert (p1 >= bufp->buffer && p1 < pend
4706 && p2 >= bufp->buffer && p2 <= pend);
4708 /* Skip over open/close-group commands.
4709 If what follows this loop is a ...+ construct,
4710 look at what begins its body, since we will have to
4711 match at least one of that. */
4712 p2 = skip_noops (p2, pend);
4713 /* The same skip can be done for p1, except that this function
4714 is only used in the case where p1 is a simple match operator. */
4715 /* p1 = skip_noops (p1, pend); */
4717 assert (p1 >= bufp->buffer && p1 < pend
4718 && p2 >= bufp->buffer && p2 <= pend);
4720 op2 = p2 == pend ? succeed : *p2;
4722 switch (op2)
4724 case succeed:
4725 case endbuf:
4726 /* If we're at the end of the pattern, we can change. */
4727 if (skip_one_char (p1))
4729 DEBUG_PRINT (" End of pattern: fast loop.\n");
4730 return 1;
4732 break;
4734 case endline:
4735 case exactn:
4737 register re_wchar_t c
4738 = (re_opcode_t) *p2 == endline ? '\n'
4739 : RE_STRING_CHAR (p2 + 2, multibyte);
4741 if ((re_opcode_t) *p1 == exactn)
4743 if (c != RE_STRING_CHAR (p1 + 2, multibyte))
4745 DEBUG_PRINT (" '%c' != '%c' => fast loop.\n", c, p1[2]);
4746 return 1;
4750 else if ((re_opcode_t) *p1 == charset
4751 || (re_opcode_t) *p1 == charset_not)
4753 if (!execute_charset (&p1, c, c, !multibyte || IS_REAL_ASCII (c)))
4755 DEBUG_PRINT (" No match => fast loop.\n");
4756 return 1;
4759 else if ((re_opcode_t) *p1 == anychar
4760 && c == '\n')
4762 DEBUG_PRINT (" . != \\n => fast loop.\n");
4763 return 1;
4766 break;
4768 case charset:
4770 if ((re_opcode_t) *p1 == exactn)
4771 /* Reuse the code above. */
4772 return mutually_exclusive_p (bufp, p2, p1);
4774 /* It is hard to list up all the character in charset
4775 P2 if it includes multibyte character. Give up in
4776 such case. */
4777 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
4779 /* Now, we are sure that P2 has no range table.
4780 So, for the size of bitmap in P2, `p2[1]' is
4781 enough. But P1 may have range table, so the
4782 size of bitmap table of P1 is extracted by
4783 using macro `CHARSET_BITMAP_SIZE'.
4785 In a multibyte case, we know that all the character
4786 listed in P2 is ASCII. In a unibyte case, P1 has only a
4787 bitmap table. So, in both cases, it is enough to test
4788 only the bitmap table of P1. */
4790 if ((re_opcode_t) *p1 == charset)
4792 int idx;
4793 /* We win if the charset inside the loop
4794 has no overlap with the one after the loop. */
4795 for (idx = 0;
4796 (idx < (int) p2[1]
4797 && idx < CHARSET_BITMAP_SIZE (p1));
4798 idx++)
4799 if ((p2[2 + idx] & p1[2 + idx]) != 0)
4800 break;
4802 if (idx == p2[1]
4803 || idx == CHARSET_BITMAP_SIZE (p1))
4805 DEBUG_PRINT (" No match => fast loop.\n");
4806 return 1;
4809 else if ((re_opcode_t) *p1 == charset_not)
4811 int idx;
4812 /* We win if the charset_not inside the loop lists
4813 every character listed in the charset after. */
4814 for (idx = 0; idx < (int) p2[1]; idx++)
4815 if (! (p2[2 + idx] == 0
4816 || (idx < CHARSET_BITMAP_SIZE (p1)
4817 && ((p2[2 + idx] & ~ p1[2 + idx]) == 0))))
4818 break;
4820 if (idx == p2[1])
4822 DEBUG_PRINT (" No match => fast loop.\n");
4823 return 1;
4828 break;
4830 case charset_not:
4831 switch (*p1)
4833 case exactn:
4834 case charset:
4835 /* Reuse the code above. */
4836 return mutually_exclusive_p (bufp, p2, p1);
4837 case charset_not:
4838 /* When we have two charset_not, it's very unlikely that
4839 they don't overlap. The union of the two sets of excluded
4840 chars should cover all possible chars, which, as a matter of
4841 fact, is virtually impossible in multibyte buffers. */
4842 break;
4844 break;
4846 case wordend:
4847 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == Sword);
4848 case symend:
4849 return ((re_opcode_t) *p1 == syntaxspec
4850 && (p1[1] == Ssymbol || p1[1] == Sword));
4851 case notsyntaxspec:
4852 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == p2[1]);
4854 case wordbeg:
4855 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == Sword);
4856 case symbeg:
4857 return ((re_opcode_t) *p1 == notsyntaxspec
4858 && (p1[1] == Ssymbol || p1[1] == Sword));
4859 case syntaxspec:
4860 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == p2[1]);
4862 case wordbound:
4863 return (((re_opcode_t) *p1 == notsyntaxspec
4864 || (re_opcode_t) *p1 == syntaxspec)
4865 && p1[1] == Sword);
4867 #ifdef emacs
4868 case categoryspec:
4869 return ((re_opcode_t) *p1 == notcategoryspec && p1[1] == p2[1]);
4870 case notcategoryspec:
4871 return ((re_opcode_t) *p1 == categoryspec && p1[1] == p2[1]);
4872 #endif /* emacs */
4874 default:
4878 /* Safe default. */
4879 return 0;
4883 /* Matching routines. */
4885 #ifndef emacs /* Emacs never uses this. */
4886 /* re_match is like re_match_2 except it takes only a single string. */
4888 regoff_t
4889 re_match (struct re_pattern_buffer *bufp, const char *string,
4890 size_t size, ssize_t pos, struct re_registers *regs)
4892 regoff_t result = re_match_2_internal (bufp, NULL, 0, (re_char*) string,
4893 size, pos, regs, size);
4894 return result;
4896 WEAK_ALIAS (__re_match, re_match)
4897 #endif /* not emacs */
4899 /* re_match_2 matches the compiled pattern in BUFP against the
4900 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4901 and SIZE2, respectively). We start matching at POS, and stop
4902 matching at STOP.
4904 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
4905 store offsets for the substring each group matched in REGS. See the
4906 documentation for exactly how many groups we fill.
4908 We return -1 if no match, -2 if an internal error (such as the
4909 failure stack overflowing). Otherwise, we return the length of the
4910 matched substring. */
4912 regoff_t
4913 re_match_2 (struct re_pattern_buffer *bufp, const char *string1,
4914 size_t size1, const char *string2, size_t size2, ssize_t pos,
4915 struct re_registers *regs, ssize_t stop)
4917 regoff_t result;
4919 #ifdef emacs
4920 ssize_t charpos;
4921 gl_state.object = re_match_object; /* Used by SYNTAX_TABLE_BYTE_TO_CHAR. */
4922 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos));
4923 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4924 #endif
4926 result = re_match_2_internal (bufp, (re_char*) string1, size1,
4927 (re_char*) string2, size2,
4928 pos, regs, stop);
4929 return result;
4931 WEAK_ALIAS (__re_match_2, re_match_2)
4934 /* This is a separate function so that we can force an alloca cleanup
4935 afterwards. */
4936 static regoff_t
4937 re_match_2_internal (struct re_pattern_buffer *bufp, const_re_char *string1,
4938 size_t size1, const_re_char *string2, size_t size2,
4939 ssize_t pos, struct re_registers *regs, ssize_t stop)
4941 /* General temporaries. */
4942 int mcnt;
4943 size_t reg;
4945 /* Just past the end of the corresponding string. */
4946 re_char *end1, *end2;
4948 /* Pointers into string1 and string2, just past the last characters in
4949 each to consider matching. */
4950 re_char *end_match_1, *end_match_2;
4952 /* Where we are in the data, and the end of the current string. */
4953 re_char *d, *dend;
4955 /* Used sometimes to remember where we were before starting matching
4956 an operator so that we can go back in case of failure. This "atomic"
4957 behavior of matching opcodes is indispensable to the correctness
4958 of the on_failure_keep_string_jump optimization. */
4959 re_char *dfail;
4961 /* Where we are in the pattern, and the end of the pattern. */
4962 re_char *p = bufp->buffer;
4963 re_char *pend = p + bufp->used;
4965 /* We use this to map every character in the string. */
4966 RE_TRANSLATE_TYPE translate = bufp->translate;
4968 /* Nonzero if BUFP is setup from a multibyte regex. */
4969 const boolean multibyte = RE_MULTIBYTE_P (bufp);
4971 /* Nonzero if STRING1/STRING2 are multibyte. */
4972 const boolean target_multibyte = RE_TARGET_MULTIBYTE_P (bufp);
4974 /* Failure point stack. Each place that can handle a failure further
4975 down the line pushes a failure point on this stack. It consists of
4976 regstart, and regend for all registers corresponding to
4977 the subexpressions we're currently inside, plus the number of such
4978 registers, and, finally, two char *'s. The first char * is where
4979 to resume scanning the pattern; the second one is where to resume
4980 scanning the strings. */
4981 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
4982 fail_stack_type fail_stack;
4983 #endif
4984 #ifdef DEBUG_COMPILES_ARGUMENTS
4985 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
4986 #endif
4988 #if defined REL_ALLOC && defined REGEX_MALLOC
4989 /* This holds the pointer to the failure stack, when
4990 it is allocated relocatably. */
4991 fail_stack_elt_t *failure_stack_ptr;
4992 #endif
4994 /* We fill all the registers internally, independent of what we
4995 return, for use in backreferences. The number here includes
4996 an element for register zero. */
4997 size_t num_regs = bufp->re_nsub + 1;
4999 /* Information on the contents of registers. These are pointers into
5000 the input strings; they record just what was matched (on this
5001 attempt) by a subexpression part of the pattern, that is, the
5002 regnum-th regstart pointer points to where in the pattern we began
5003 matching and the regnum-th regend points to right after where we
5004 stopped matching the regnum-th subexpression. (The zeroth register
5005 keeps track of what the whole pattern matches.) */
5006 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5007 re_char **regstart, **regend;
5008 #endif
5010 /* The following record the register info as found in the above
5011 variables when we find a match better than any we've seen before.
5012 This happens as we backtrack through the failure points, which in
5013 turn happens only if we have not yet matched the entire string. */
5014 unsigned best_regs_set = false;
5015 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5016 re_char **best_regstart, **best_regend;
5017 #endif
5019 /* Logically, this is `best_regend[0]'. But we don't want to have to
5020 allocate space for that if we're not allocating space for anything
5021 else (see below). Also, we never need info about register 0 for
5022 any of the other register vectors, and it seems rather a kludge to
5023 treat `best_regend' differently than the rest. So we keep track of
5024 the end of the best match so far in a separate variable. We
5025 initialize this to NULL so that when we backtrack the first time
5026 and need to test it, it's not garbage. */
5027 re_char *match_end = NULL;
5029 #ifdef DEBUG_COMPILES_ARGUMENTS
5030 /* Counts the total number of registers pushed. */
5031 unsigned num_regs_pushed = 0;
5032 #endif
5034 DEBUG_PRINT ("\n\nEntering re_match_2.\n");
5036 REGEX_USE_SAFE_ALLOCA;
5038 INIT_FAIL_STACK ();
5040 #ifdef MATCH_MAY_ALLOCATE
5041 /* Do not bother to initialize all the register variables if there are
5042 no groups in the pattern, as it takes a fair amount of time. If
5043 there are groups, we include space for register 0 (the whole
5044 pattern), even though we never use it, since it simplifies the
5045 array indexing. We should fix this. */
5046 if (bufp->re_nsub)
5048 regstart = REGEX_TALLOC (num_regs, re_char *);
5049 regend = REGEX_TALLOC (num_regs, re_char *);
5050 best_regstart = REGEX_TALLOC (num_regs, re_char *);
5051 best_regend = REGEX_TALLOC (num_regs, re_char *);
5053 if (!(regstart && regend && best_regstart && best_regend))
5055 FREE_VARIABLES ();
5056 return -2;
5059 else
5061 /* We must initialize all our variables to NULL, so that
5062 `FREE_VARIABLES' doesn't try to free them. */
5063 regstart = regend = best_regstart = best_regend = NULL;
5065 #endif /* MATCH_MAY_ALLOCATE */
5067 /* The starting position is bogus. */
5068 if (pos < 0 || pos > size1 + size2)
5070 FREE_VARIABLES ();
5071 return -1;
5074 /* Initialize subexpression text positions to -1 to mark ones that no
5075 start_memory/stop_memory has been seen for. Also initialize the
5076 register information struct. */
5077 for (reg = 1; reg < num_regs; reg++)
5078 regstart[reg] = regend[reg] = NULL;
5080 /* We move `string1' into `string2' if the latter's empty -- but not if
5081 `string1' is null. */
5082 if (size2 == 0 && string1 != NULL)
5084 string2 = string1;
5085 size2 = size1;
5086 string1 = 0;
5087 size1 = 0;
5089 end1 = string1 + size1;
5090 end2 = string2 + size2;
5092 /* `p' scans through the pattern as `d' scans through the data.
5093 `dend' is the end of the input string that `d' points within. `d'
5094 is advanced into the following input string whenever necessary, but
5095 this happens before fetching; therefore, at the beginning of the
5096 loop, `d' can be pointing at the end of a string, but it cannot
5097 equal `string2'. */
5098 if (pos >= size1)
5100 /* Only match within string2. */
5101 d = string2 + pos - size1;
5102 dend = end_match_2 = string2 + stop - size1;
5103 end_match_1 = end1; /* Just to give it a value. */
5105 else
5107 if (stop < size1)
5109 /* Only match within string1. */
5110 end_match_1 = string1 + stop;
5111 /* BEWARE!
5112 When we reach end_match_1, PREFETCH normally switches to string2.
5113 But in the present case, this means that just doing a PREFETCH
5114 makes us jump from `stop' to `gap' within the string.
5115 What we really want here is for the search to stop as
5116 soon as we hit end_match_1. That's why we set end_match_2
5117 to end_match_1 (since PREFETCH fails as soon as we hit
5118 end_match_2). */
5119 end_match_2 = end_match_1;
5121 else
5122 { /* It's important to use this code when stop == size so that
5123 moving `d' from end1 to string2 will not prevent the d == dend
5124 check from catching the end of string. */
5125 end_match_1 = end1;
5126 end_match_2 = string2 + stop - size1;
5128 d = string1 + pos;
5129 dend = end_match_1;
5132 DEBUG_PRINT ("The compiled pattern is: ");
5133 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
5134 DEBUG_PRINT ("The string to match is: \"");
5135 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
5136 DEBUG_PRINT ("\"\n");
5138 /* This loops over pattern commands. It exits by returning from the
5139 function if the match is complete, or it drops through if the match
5140 fails at this starting point in the input data. */
5141 for (;;)
5143 DEBUG_PRINT ("\n%p: ", p);
5145 if (p == pend)
5147 /* End of pattern means we might have succeeded. */
5148 DEBUG_PRINT ("end of pattern ... ");
5150 /* If we haven't matched the entire string, and we want the
5151 longest match, try backtracking. */
5152 if (d != end_match_2)
5154 /* True if this match is the best seen so far. */
5155 bool best_match_p;
5158 /* True if this match ends in the same string (string1
5159 or string2) as the best previous match. */
5160 bool same_str_p = (FIRST_STRING_P (match_end)
5161 == FIRST_STRING_P (d));
5163 /* AIX compiler got confused when this was combined
5164 with the previous declaration. */
5165 if (same_str_p)
5166 best_match_p = d > match_end;
5167 else
5168 best_match_p = !FIRST_STRING_P (d);
5171 DEBUG_PRINT ("backtracking.\n");
5173 if (!FAIL_STACK_EMPTY ())
5174 { /* More failure points to try. */
5176 /* If exceeds best match so far, save it. */
5177 if (!best_regs_set || best_match_p)
5179 best_regs_set = true;
5180 match_end = d;
5182 DEBUG_PRINT ("\nSAVING match as best so far.\n");
5184 for (reg = 1; reg < num_regs; reg++)
5186 best_regstart[reg] = regstart[reg];
5187 best_regend[reg] = regend[reg];
5190 goto fail;
5193 /* If no failure points, don't restore garbage. And if
5194 last match is real best match, don't restore second
5195 best one. */
5196 else if (best_regs_set && !best_match_p)
5198 restore_best_regs:
5199 /* Restore best match. It may happen that `dend ==
5200 end_match_1' while the restored d is in string2.
5201 For example, the pattern `x.*y.*z' against the
5202 strings `x-' and `y-z-', if the two strings are
5203 not consecutive in memory. */
5204 DEBUG_PRINT ("Restoring best registers.\n");
5206 d = match_end;
5207 dend = ((d >= string1 && d <= end1)
5208 ? end_match_1 : end_match_2);
5210 for (reg = 1; reg < num_regs; reg++)
5212 regstart[reg] = best_regstart[reg];
5213 regend[reg] = best_regend[reg];
5216 } /* d != end_match_2 */
5218 succeed_label:
5219 DEBUG_PRINT ("Accepting match.\n");
5221 /* If caller wants register contents data back, do it. */
5222 if (regs && !bufp->no_sub)
5224 /* Have the register data arrays been allocated? */
5225 if (bufp->regs_allocated == REGS_UNALLOCATED)
5226 { /* No. So allocate them with malloc. We need one
5227 extra element beyond `num_regs' for the `-1' marker
5228 GNU code uses. */
5229 regs->num_regs = max (RE_NREGS, num_regs + 1);
5230 regs->start = TALLOC (regs->num_regs, regoff_t);
5231 regs->end = TALLOC (regs->num_regs, regoff_t);
5232 if (regs->start == NULL || regs->end == NULL)
5234 FREE_VARIABLES ();
5235 return -2;
5237 bufp->regs_allocated = REGS_REALLOCATE;
5239 else if (bufp->regs_allocated == REGS_REALLOCATE)
5240 { /* Yes. If we need more elements than were already
5241 allocated, reallocate them. If we need fewer, just
5242 leave it alone. */
5243 if (regs->num_regs < num_regs + 1)
5245 regs->num_regs = num_regs + 1;
5246 RETALLOC (regs->start, regs->num_regs, regoff_t);
5247 RETALLOC (regs->end, regs->num_regs, regoff_t);
5248 if (regs->start == NULL || regs->end == NULL)
5250 FREE_VARIABLES ();
5251 return -2;
5255 else
5257 /* These braces fend off a "empty body in an else-statement"
5258 warning under GCC when assert expands to nothing. */
5259 assert (bufp->regs_allocated == REGS_FIXED);
5262 /* Convert the pointer data in `regstart' and `regend' to
5263 indices. Register zero has to be set differently,
5264 since we haven't kept track of any info for it. */
5265 if (regs->num_regs > 0)
5267 regs->start[0] = pos;
5268 regs->end[0] = POINTER_TO_OFFSET (d);
5271 /* Go through the first `min (num_regs, regs->num_regs)'
5272 registers, since that is all we initialized. */
5273 for (reg = 1; reg < min (num_regs, regs->num_regs); reg++)
5275 if (REG_UNSET (regstart[reg]) || REG_UNSET (regend[reg]))
5276 regs->start[reg] = regs->end[reg] = -1;
5277 else
5279 regs->start[reg] = POINTER_TO_OFFSET (regstart[reg]);
5280 regs->end[reg] = POINTER_TO_OFFSET (regend[reg]);
5284 /* If the regs structure we return has more elements than
5285 were in the pattern, set the extra elements to -1. If
5286 we (re)allocated the registers, this is the case,
5287 because we always allocate enough to have at least one
5288 -1 at the end. */
5289 for (reg = num_regs; reg < regs->num_regs; reg++)
5290 regs->start[reg] = regs->end[reg] = -1;
5291 } /* regs && !bufp->no_sub */
5293 DEBUG_PRINT ("%u failure points pushed, %u popped (%u remain).\n",
5294 nfailure_points_pushed, nfailure_points_popped,
5295 nfailure_points_pushed - nfailure_points_popped);
5296 DEBUG_PRINT ("%u registers pushed.\n", num_regs_pushed);
5298 ptrdiff_t dcnt = POINTER_TO_OFFSET (d) - pos;
5300 DEBUG_PRINT ("Returning %td from re_match_2.\n", dcnt);
5302 FREE_VARIABLES ();
5303 return dcnt;
5306 /* Otherwise match next pattern command. */
5307 switch (*p++)
5309 /* Ignore these. Used to ignore the n of succeed_n's which
5310 currently have n == 0. */
5311 case no_op:
5312 DEBUG_PRINT ("EXECUTING no_op.\n");
5313 break;
5315 case succeed:
5316 DEBUG_PRINT ("EXECUTING succeed.\n");
5317 goto succeed_label;
5319 /* Match the next n pattern characters exactly. The following
5320 byte in the pattern defines n, and the n bytes after that
5321 are the characters to match. */
5322 case exactn:
5323 mcnt = *p++;
5324 DEBUG_PRINT ("EXECUTING exactn %d.\n", mcnt);
5326 /* Remember the start point to rollback upon failure. */
5327 dfail = d;
5329 #ifndef emacs
5330 /* This is written out as an if-else so we don't waste time
5331 testing `translate' inside the loop. */
5332 if (RE_TRANSLATE_P (translate))
5335 PREFETCH ();
5336 if (RE_TRANSLATE (translate, *d) != *p++)
5338 d = dfail;
5339 goto fail;
5341 d++;
5343 while (--mcnt);
5344 else
5347 PREFETCH ();
5348 if (*d++ != *p++)
5350 d = dfail;
5351 goto fail;
5354 while (--mcnt);
5355 #else /* emacs */
5356 /* The cost of testing `translate' is comparatively small. */
5357 if (target_multibyte)
5360 int pat_charlen, buf_charlen;
5361 int pat_ch, buf_ch;
5363 PREFETCH ();
5364 if (multibyte)
5365 pat_ch = STRING_CHAR_AND_LENGTH (p, pat_charlen);
5366 else
5368 pat_ch = RE_CHAR_TO_MULTIBYTE (*p);
5369 pat_charlen = 1;
5371 buf_ch = STRING_CHAR_AND_LENGTH (d, buf_charlen);
5373 if (TRANSLATE (buf_ch) != pat_ch)
5375 d = dfail;
5376 goto fail;
5379 p += pat_charlen;
5380 d += buf_charlen;
5381 mcnt -= pat_charlen;
5383 while (mcnt > 0);
5384 else
5387 int pat_charlen;
5388 int pat_ch, buf_ch;
5390 PREFETCH ();
5391 if (multibyte)
5393 pat_ch = STRING_CHAR_AND_LENGTH (p, pat_charlen);
5394 pat_ch = RE_CHAR_TO_UNIBYTE (pat_ch);
5396 else
5398 pat_ch = *p;
5399 pat_charlen = 1;
5401 buf_ch = RE_CHAR_TO_MULTIBYTE (*d);
5402 if (! CHAR_BYTE8_P (buf_ch))
5404 buf_ch = TRANSLATE (buf_ch);
5405 buf_ch = RE_CHAR_TO_UNIBYTE (buf_ch);
5406 if (buf_ch < 0)
5407 buf_ch = *d;
5409 else
5410 buf_ch = *d;
5411 if (buf_ch != pat_ch)
5413 d = dfail;
5414 goto fail;
5416 p += pat_charlen;
5417 d++;
5419 while (--mcnt);
5420 #endif
5421 break;
5424 /* Match any character except possibly a newline or a null. */
5425 case anychar:
5427 int buf_charlen;
5428 re_wchar_t buf_ch;
5429 reg_syntax_t syntax;
5431 DEBUG_PRINT ("EXECUTING anychar.\n");
5433 PREFETCH ();
5434 buf_ch = RE_STRING_CHAR_AND_LENGTH (d, buf_charlen,
5435 target_multibyte);
5436 buf_ch = TRANSLATE (buf_ch);
5438 #ifdef emacs
5439 syntax = RE_SYNTAX_EMACS;
5440 #else
5441 syntax = bufp->syntax;
5442 #endif
5444 if ((!(syntax & RE_DOT_NEWLINE) && buf_ch == '\n')
5445 || ((syntax & RE_DOT_NOT_NULL) && buf_ch == '\000'))
5446 goto fail;
5448 DEBUG_PRINT (" Matched \"%d\".\n", *d);
5449 d += buf_charlen;
5451 break;
5454 case charset:
5455 case charset_not:
5457 register unsigned int c, corig;
5458 int len;
5460 /* Whether matching against a unibyte character. */
5461 boolean unibyte_char = false;
5463 DEBUG_PRINT ("EXECUTING charset%s.\n",
5464 (re_opcode_t) *(p - 1) == charset_not ? "_not" : "");
5466 PREFETCH ();
5467 corig = c = RE_STRING_CHAR_AND_LENGTH (d, len, target_multibyte);
5468 if (target_multibyte)
5470 int c1;
5472 c = TRANSLATE (c);
5473 c1 = RE_CHAR_TO_UNIBYTE (c);
5474 if (c1 >= 0)
5476 unibyte_char = true;
5477 c = c1;
5480 else
5482 int c1 = RE_CHAR_TO_MULTIBYTE (c);
5484 if (! CHAR_BYTE8_P (c1))
5486 c1 = TRANSLATE (c1);
5487 c1 = RE_CHAR_TO_UNIBYTE (c1);
5488 if (c1 >= 0)
5490 unibyte_char = true;
5491 c = c1;
5494 else
5495 unibyte_char = true;
5498 p -= 1;
5499 if (!execute_charset (&p, c, corig, unibyte_char))
5500 goto fail;
5502 d += len;
5504 break;
5507 /* The beginning of a group is represented by start_memory.
5508 The argument is the register number. The text
5509 matched within the group is recorded (in the internal
5510 registers data structure) under the register number. */
5511 case start_memory:
5512 DEBUG_PRINT ("EXECUTING start_memory %d:\n", *p);
5514 /* In case we need to undo this operation (via backtracking). */
5515 PUSH_FAILURE_REG (*p);
5517 regstart[*p] = d;
5518 regend[*p] = NULL; /* probably unnecessary. -sm */
5519 DEBUG_PRINT (" regstart: %td\n", POINTER_TO_OFFSET (regstart[*p]));
5521 /* Move past the register number and inner group count. */
5522 p += 1;
5523 break;
5526 /* The stop_memory opcode represents the end of a group. Its
5527 argument is the same as start_memory's: the register number. */
5528 case stop_memory:
5529 DEBUG_PRINT ("EXECUTING stop_memory %d:\n", *p);
5531 assert (!REG_UNSET (regstart[*p]));
5532 /* Strictly speaking, there should be code such as:
5534 assert (REG_UNSET (regend[*p]));
5535 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5537 But the only info to be pushed is regend[*p] and it is known to
5538 be UNSET, so there really isn't anything to push.
5539 Not pushing anything, on the other hand deprives us from the
5540 guarantee that regend[*p] is UNSET since undoing this operation
5541 will not reset its value properly. This is not important since
5542 the value will only be read on the next start_memory or at
5543 the very end and both events can only happen if this stop_memory
5544 is *not* undone. */
5546 regend[*p] = d;
5547 DEBUG_PRINT (" regend: %td\n", POINTER_TO_OFFSET (regend[*p]));
5549 /* Move past the register number and the inner group count. */
5550 p += 1;
5551 break;
5554 /* \<digit> has been turned into a `duplicate' command which is
5555 followed by the numeric value of <digit> as the register number. */
5556 case duplicate:
5558 register re_char *d2, *dend2;
5559 int regno = *p++; /* Get which register to match against. */
5560 DEBUG_PRINT ("EXECUTING duplicate %d.\n", regno);
5562 /* Can't back reference a group which we've never matched. */
5563 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
5564 goto fail;
5566 /* Where in input to try to start matching. */
5567 d2 = regstart[regno];
5569 /* Remember the start point to rollback upon failure. */
5570 dfail = d;
5572 /* Where to stop matching; if both the place to start and
5573 the place to stop matching are in the same string, then
5574 set to the place to stop, otherwise, for now have to use
5575 the end of the first string. */
5577 dend2 = ((FIRST_STRING_P (regstart[regno])
5578 == FIRST_STRING_P (regend[regno]))
5579 ? regend[regno] : end_match_1);
5580 for (;;)
5582 ptrdiff_t dcnt;
5584 /* If necessary, advance to next segment in register
5585 contents. */
5586 while (d2 == dend2)
5588 if (dend2 == end_match_2) break;
5589 if (dend2 == regend[regno]) break;
5591 /* End of string1 => advance to string2. */
5592 d2 = string2;
5593 dend2 = regend[regno];
5595 /* At end of register contents => success */
5596 if (d2 == dend2) break;
5598 /* If necessary, advance to next segment in data. */
5599 PREFETCH ();
5601 /* How many characters left in this segment to match. */
5602 dcnt = dend - d;
5604 /* Want how many consecutive characters we can match in
5605 one shot, so, if necessary, adjust the count. */
5606 if (dcnt > dend2 - d2)
5607 dcnt = dend2 - d2;
5609 /* Compare that many; failure if mismatch, else move
5610 past them. */
5611 if (RE_TRANSLATE_P (translate)
5612 ? bcmp_translate (d, d2, dcnt, translate, target_multibyte)
5613 : memcmp (d, d2, dcnt))
5615 d = dfail;
5616 goto fail;
5618 d += dcnt, d2 += dcnt;
5621 break;
5624 /* begline matches the empty string at the beginning of the string
5625 (unless `not_bol' is set in `bufp'), and after newlines. */
5626 case begline:
5627 DEBUG_PRINT ("EXECUTING begline.\n");
5629 if (AT_STRINGS_BEG (d))
5631 if (!bufp->not_bol) break;
5633 else
5635 unsigned c;
5636 GET_CHAR_BEFORE_2 (c, d, string1, end1, string2, end2);
5637 if (c == '\n')
5638 break;
5640 /* In all other cases, we fail. */
5641 goto fail;
5644 /* endline is the dual of begline. */
5645 case endline:
5646 DEBUG_PRINT ("EXECUTING endline.\n");
5648 if (AT_STRINGS_END (d))
5650 if (!bufp->not_eol) break;
5652 else
5654 PREFETCH_NOLIMIT ();
5655 if (*d == '\n')
5656 break;
5658 goto fail;
5661 /* Match at the very beginning of the data. */
5662 case begbuf:
5663 DEBUG_PRINT ("EXECUTING begbuf.\n");
5664 if (AT_STRINGS_BEG (d))
5665 break;
5666 goto fail;
5669 /* Match at the very end of the data. */
5670 case endbuf:
5671 DEBUG_PRINT ("EXECUTING endbuf.\n");
5672 if (AT_STRINGS_END (d))
5673 break;
5674 goto fail;
5677 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5678 pushes NULL as the value for the string on the stack. Then
5679 `POP_FAILURE_POINT' will keep the current value for the
5680 string, instead of restoring it. To see why, consider
5681 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5682 then the . fails against the \n. But the next thing we want
5683 to do is match the \n against the \n; if we restored the
5684 string value, we would be back at the foo.
5686 Because this is used only in specific cases, we don't need to
5687 check all the things that `on_failure_jump' does, to make
5688 sure the right things get saved on the stack. Hence we don't
5689 share its code. The only reason to push anything on the
5690 stack at all is that otherwise we would have to change
5691 `anychar's code to do something besides goto fail in this
5692 case; that seems worse than this. */
5693 case on_failure_keep_string_jump:
5694 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5695 DEBUG_PRINT ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5696 mcnt, p + mcnt);
5698 PUSH_FAILURE_POINT (p - 3, NULL);
5699 break;
5701 /* A nasty loop is introduced by the non-greedy *? and +?.
5702 With such loops, the stack only ever contains one failure point
5703 at a time, so that a plain on_failure_jump_loop kind of
5704 cycle detection cannot work. Worse yet, such a detection
5705 can not only fail to detect a cycle, but it can also wrongly
5706 detect a cycle (between different instantiations of the same
5707 loop).
5708 So the method used for those nasty loops is a little different:
5709 We use a special cycle-detection-stack-frame which is pushed
5710 when the on_failure_jump_nastyloop failure-point is *popped*.
5711 This special frame thus marks the beginning of one iteration
5712 through the loop and we can hence easily check right here
5713 whether something matched between the beginning and the end of
5714 the loop. */
5715 case on_failure_jump_nastyloop:
5716 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5717 DEBUG_PRINT ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5718 mcnt, p + mcnt);
5720 assert ((re_opcode_t)p[-4] == no_op);
5722 int cycle = 0;
5723 CHECK_INFINITE_LOOP (p - 4, d);
5724 if (!cycle)
5725 /* If there's a cycle, just continue without pushing
5726 this failure point. The failure point is the "try again"
5727 option, which shouldn't be tried.
5728 We want (x?)*?y\1z to match both xxyz and xxyxz. */
5729 PUSH_FAILURE_POINT (p - 3, d);
5731 break;
5733 /* Simple loop detecting on_failure_jump: just check on the
5734 failure stack if the same spot was already hit earlier. */
5735 case on_failure_jump_loop:
5736 on_failure:
5737 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5738 DEBUG_PRINT ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5739 mcnt, p + mcnt);
5741 int cycle = 0;
5742 CHECK_INFINITE_LOOP (p - 3, d);
5743 if (cycle)
5744 /* If there's a cycle, get out of the loop, as if the matching
5745 had failed. We used to just `goto fail' here, but that was
5746 aborting the search a bit too early: we want to keep the
5747 empty-loop-match and keep matching after the loop.
5748 We want (x?)*y\1z to match both xxyz and xxyxz. */
5749 p += mcnt;
5750 else
5751 PUSH_FAILURE_POINT (p - 3, d);
5753 break;
5756 /* Uses of on_failure_jump:
5758 Each alternative starts with an on_failure_jump that points
5759 to the beginning of the next alternative. Each alternative
5760 except the last ends with a jump that in effect jumps past
5761 the rest of the alternatives. (They really jump to the
5762 ending jump of the following alternative, because tensioning
5763 these jumps is a hassle.)
5765 Repeats start with an on_failure_jump that points past both
5766 the repetition text and either the following jump or
5767 pop_failure_jump back to this on_failure_jump. */
5768 case on_failure_jump:
5769 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5770 DEBUG_PRINT ("EXECUTING on_failure_jump %d (to %p):\n",
5771 mcnt, p + mcnt);
5773 PUSH_FAILURE_POINT (p -3, d);
5774 break;
5776 /* This operation is used for greedy *.
5777 Compare the beginning of the repeat with what in the
5778 pattern follows its end. If we can establish that there
5779 is nothing that they would both match, i.e., that we
5780 would have to backtrack because of (as in, e.g., `a*a')
5781 then we can use a non-backtracking loop based on
5782 on_failure_keep_string_jump instead of on_failure_jump. */
5783 case on_failure_jump_smart:
5784 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5785 DEBUG_PRINT ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5786 mcnt, p + mcnt);
5788 re_char *p1 = p; /* Next operation. */
5789 /* Here, we discard `const', making re_match non-reentrant. */
5790 unsigned char *p2 = (unsigned char*) p + mcnt; /* Jump dest. */
5791 unsigned char *p3 = (unsigned char*) p - 3; /* opcode location. */
5793 p -= 3; /* Reset so that we will re-execute the
5794 instruction once it's been changed. */
5796 EXTRACT_NUMBER (mcnt, p2 - 2);
5798 /* Ensure this is a indeed the trivial kind of loop
5799 we are expecting. */
5800 assert (skip_one_char (p1) == p2 - 3);
5801 assert ((re_opcode_t) p2[-3] == jump && p2 + mcnt == p);
5802 DEBUG_STATEMENT (debug += 2);
5803 if (mutually_exclusive_p (bufp, p1, p2))
5805 /* Use a fast `on_failure_keep_string_jump' loop. */
5806 DEBUG_PRINT (" smart exclusive => fast loop.\n");
5807 *p3 = (unsigned char) on_failure_keep_string_jump;
5808 STORE_NUMBER (p2 - 2, mcnt + 3);
5810 else
5812 /* Default to a safe `on_failure_jump' loop. */
5813 DEBUG_PRINT (" smart default => slow loop.\n");
5814 *p3 = (unsigned char) on_failure_jump;
5816 DEBUG_STATEMENT (debug -= 2);
5818 break;
5820 /* Unconditionally jump (without popping any failure points). */
5821 case jump:
5822 unconditional_jump:
5823 IMMEDIATE_QUIT_CHECK;
5824 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
5825 DEBUG_PRINT ("EXECUTING jump %d ", mcnt);
5826 p += mcnt; /* Do the jump. */
5827 DEBUG_PRINT ("(to %p).\n", p);
5828 break;
5831 /* Have to succeed matching what follows at least n times.
5832 After that, handle like `on_failure_jump'. */
5833 case succeed_n:
5834 /* Signedness doesn't matter since we only compare MCNT to 0. */
5835 EXTRACT_NUMBER (mcnt, p + 2);
5836 DEBUG_PRINT ("EXECUTING succeed_n %d.\n", mcnt);
5838 /* Originally, mcnt is how many times we HAVE to succeed. */
5839 if (mcnt != 0)
5841 /* Here, we discard `const', making re_match non-reentrant. */
5842 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
5843 mcnt--;
5844 p += 4;
5845 PUSH_NUMBER (p2, mcnt);
5847 else
5848 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
5849 goto on_failure;
5850 break;
5852 case jump_n:
5853 /* Signedness doesn't matter since we only compare MCNT to 0. */
5854 EXTRACT_NUMBER (mcnt, p + 2);
5855 DEBUG_PRINT ("EXECUTING jump_n %d.\n", mcnt);
5857 /* Originally, this is how many times we CAN jump. */
5858 if (mcnt != 0)
5860 /* Here, we discard `const', making re_match non-reentrant. */
5861 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
5862 mcnt--;
5863 PUSH_NUMBER (p2, mcnt);
5864 goto unconditional_jump;
5866 /* If don't have to jump any more, skip over the rest of command. */
5867 else
5868 p += 4;
5869 break;
5871 case set_number_at:
5873 unsigned char *p2; /* Location of the counter. */
5874 DEBUG_PRINT ("EXECUTING set_number_at.\n");
5876 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5877 /* Here, we discard `const', making re_match non-reentrant. */
5878 p2 = (unsigned char*) p + mcnt;
5879 /* Signedness doesn't matter since we only copy MCNT's bits. */
5880 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5881 DEBUG_PRINT (" Setting %p to %d.\n", p2, mcnt);
5882 PUSH_NUMBER (p2, mcnt);
5883 break;
5886 case wordbound:
5887 case notwordbound:
5889 boolean not = (re_opcode_t) *(p - 1) == notwordbound;
5890 DEBUG_PRINT ("EXECUTING %swordbound.\n", not ? "not" : "");
5892 /* We SUCCEED (or FAIL) in one of the following cases: */
5894 /* Case 1: D is at the beginning or the end of string. */
5895 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5896 not = !not;
5897 else
5899 /* C1 is the character before D, S1 is the syntax of C1, C2
5900 is the character at D, and S2 is the syntax of C2. */
5901 re_wchar_t c1, c2;
5902 int s1, s2;
5903 int dummy;
5904 #ifdef emacs
5905 ssize_t offset = PTR_TO_OFFSET (d - 1);
5906 ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5907 UPDATE_SYNTAX_TABLE_FAST (charpos);
5908 #endif
5909 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5910 s1 = SYNTAX (c1);
5911 #ifdef emacs
5912 UPDATE_SYNTAX_TABLE_FORWARD_FAST (charpos + 1);
5913 #endif
5914 PREFETCH_NOLIMIT ();
5915 GET_CHAR_AFTER (c2, d, dummy);
5916 s2 = SYNTAX (c2);
5918 if (/* Case 2: Only one of S1 and S2 is Sword. */
5919 ((s1 == Sword) != (s2 == Sword))
5920 /* Case 3: Both of S1 and S2 are Sword, and macro
5921 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
5922 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
5923 not = !not;
5925 if (not)
5926 break;
5927 else
5928 goto fail;
5931 case wordbeg:
5932 DEBUG_PRINT ("EXECUTING wordbeg.\n");
5934 /* We FAIL in one of the following cases: */
5936 /* Case 1: D is at the end of string. */
5937 if (AT_STRINGS_END (d))
5938 goto fail;
5939 else
5941 /* C1 is the character before D, S1 is the syntax of C1, C2
5942 is the character at D, and S2 is the syntax of C2. */
5943 re_wchar_t c1, c2;
5944 int s1, s2;
5945 int dummy;
5946 #ifdef emacs
5947 ssize_t offset = PTR_TO_OFFSET (d);
5948 ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5949 UPDATE_SYNTAX_TABLE_FAST (charpos);
5950 #endif
5951 PREFETCH ();
5952 GET_CHAR_AFTER (c2, d, dummy);
5953 s2 = SYNTAX (c2);
5955 /* Case 2: S2 is not Sword. */
5956 if (s2 != Sword)
5957 goto fail;
5959 /* Case 3: D is not at the beginning of string ... */
5960 if (!AT_STRINGS_BEG (d))
5962 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5963 #ifdef emacs
5964 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
5965 #endif
5966 s1 = SYNTAX (c1);
5968 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
5969 returns 0. */
5970 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5971 goto fail;
5974 break;
5976 case wordend:
5977 DEBUG_PRINT ("EXECUTING wordend.\n");
5979 /* We FAIL in one of the following cases: */
5981 /* Case 1: D is at the beginning of string. */
5982 if (AT_STRINGS_BEG (d))
5983 goto fail;
5984 else
5986 /* C1 is the character before D, S1 is the syntax of C1, C2
5987 is the character at D, and S2 is the syntax of C2. */
5988 re_wchar_t c1, c2;
5989 int s1, s2;
5990 int dummy;
5991 #ifdef emacs
5992 ssize_t offset = PTR_TO_OFFSET (d) - 1;
5993 ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5994 UPDATE_SYNTAX_TABLE_FAST (charpos);
5995 #endif
5996 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5997 s1 = SYNTAX (c1);
5999 /* Case 2: S1 is not Sword. */
6000 if (s1 != Sword)
6001 goto fail;
6003 /* Case 3: D is not at the end of string ... */
6004 if (!AT_STRINGS_END (d))
6006 PREFETCH_NOLIMIT ();
6007 GET_CHAR_AFTER (c2, d, dummy);
6008 #ifdef emacs
6009 UPDATE_SYNTAX_TABLE_FORWARD_FAST (charpos);
6010 #endif
6011 s2 = SYNTAX (c2);
6013 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
6014 returns 0. */
6015 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
6016 goto fail;
6019 break;
6021 case symbeg:
6022 DEBUG_PRINT ("EXECUTING symbeg.\n");
6024 /* We FAIL in one of the following cases: */
6026 /* Case 1: D is at the end of string. */
6027 if (AT_STRINGS_END (d))
6028 goto fail;
6029 else
6031 /* C1 is the character before D, S1 is the syntax of C1, C2
6032 is the character at D, and S2 is the syntax of C2. */
6033 re_wchar_t c1, c2;
6034 int s1, s2;
6035 #ifdef emacs
6036 ssize_t offset = PTR_TO_OFFSET (d);
6037 ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6038 UPDATE_SYNTAX_TABLE_FAST (charpos);
6039 #endif
6040 PREFETCH ();
6041 c2 = RE_STRING_CHAR (d, target_multibyte);
6042 s2 = SYNTAX (c2);
6044 /* Case 2: S2 is neither Sword nor Ssymbol. */
6045 if (s2 != Sword && s2 != Ssymbol)
6046 goto fail;
6048 /* Case 3: D is not at the beginning of string ... */
6049 if (!AT_STRINGS_BEG (d))
6051 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6052 #ifdef emacs
6053 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
6054 #endif
6055 s1 = SYNTAX (c1);
6057 /* ... and S1 is Sword or Ssymbol. */
6058 if (s1 == Sword || s1 == Ssymbol)
6059 goto fail;
6062 break;
6064 case symend:
6065 DEBUG_PRINT ("EXECUTING symend.\n");
6067 /* We FAIL in one of the following cases: */
6069 /* Case 1: D is at the beginning of string. */
6070 if (AT_STRINGS_BEG (d))
6071 goto fail;
6072 else
6074 /* C1 is the character before D, S1 is the syntax of C1, C2
6075 is the character at D, and S2 is the syntax of C2. */
6076 re_wchar_t c1, c2;
6077 int s1, s2;
6078 #ifdef emacs
6079 ssize_t offset = PTR_TO_OFFSET (d) - 1;
6080 ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6081 UPDATE_SYNTAX_TABLE_FAST (charpos);
6082 #endif
6083 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6084 s1 = SYNTAX (c1);
6086 /* Case 2: S1 is neither Ssymbol nor Sword. */
6087 if (s1 != Sword && s1 != Ssymbol)
6088 goto fail;
6090 /* Case 3: D is not at the end of string ... */
6091 if (!AT_STRINGS_END (d))
6093 PREFETCH_NOLIMIT ();
6094 c2 = RE_STRING_CHAR (d, target_multibyte);
6095 #ifdef emacs
6096 UPDATE_SYNTAX_TABLE_FORWARD_FAST (charpos + 1);
6097 #endif
6098 s2 = SYNTAX (c2);
6100 /* ... and S2 is Sword or Ssymbol. */
6101 if (s2 == Sword || s2 == Ssymbol)
6102 goto fail;
6105 break;
6107 case syntaxspec:
6108 case notsyntaxspec:
6110 boolean not = (re_opcode_t) *(p - 1) == notsyntaxspec;
6111 mcnt = *p++;
6112 DEBUG_PRINT ("EXECUTING %ssyntaxspec %d.\n", not ? "not" : "",
6113 mcnt);
6114 PREFETCH ();
6115 #ifdef emacs
6117 ssize_t offset = PTR_TO_OFFSET (d);
6118 ssize_t pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6119 UPDATE_SYNTAX_TABLE_FAST (pos1);
6121 #endif
6123 int len;
6124 re_wchar_t c;
6126 GET_CHAR_AFTER (c, d, len);
6127 if ((SYNTAX (c) != (enum syntaxcode) mcnt) ^ not)
6128 goto fail;
6129 d += len;
6132 break;
6134 #ifdef emacs
6135 case at_dot:
6136 DEBUG_PRINT ("EXECUTING at_dot.\n");
6137 if (PTR_BYTE_POS (d) != PT_BYTE)
6138 goto fail;
6139 break;
6141 case categoryspec:
6142 case notcategoryspec:
6144 boolean not = (re_opcode_t) *(p - 1) == notcategoryspec;
6145 mcnt = *p++;
6146 DEBUG_PRINT ("EXECUTING %scategoryspec %d.\n",
6147 not ? "not" : "", mcnt);
6148 PREFETCH ();
6151 int len;
6152 re_wchar_t c;
6153 GET_CHAR_AFTER (c, d, len);
6154 if ((!CHAR_HAS_CATEGORY (c, mcnt)) ^ not)
6155 goto fail;
6156 d += len;
6159 break;
6161 #endif /* emacs */
6163 default:
6164 abort ();
6166 continue; /* Successfully executed one pattern command; keep going. */
6169 /* We goto here if a matching operation fails. */
6170 fail:
6171 IMMEDIATE_QUIT_CHECK;
6172 if (!FAIL_STACK_EMPTY ())
6174 re_char *str, *pat;
6175 /* A restart point is known. Restore to that state. */
6176 DEBUG_PRINT ("\nFAIL:\n");
6177 POP_FAILURE_POINT (str, pat);
6178 switch (*pat++)
6180 case on_failure_keep_string_jump:
6181 assert (str == NULL);
6182 goto continue_failure_jump;
6184 case on_failure_jump_nastyloop:
6185 assert ((re_opcode_t)pat[-2] == no_op);
6186 PUSH_FAILURE_POINT (pat - 2, str);
6187 /* Fallthrough */
6189 case on_failure_jump_loop:
6190 case on_failure_jump:
6191 case succeed_n:
6192 d = str;
6193 continue_failure_jump:
6194 EXTRACT_NUMBER_AND_INCR (mcnt, pat);
6195 p = pat + mcnt;
6196 break;
6198 case no_op:
6199 /* A special frame used for nastyloops. */
6200 goto fail;
6202 default:
6203 abort ();
6206 assert (p >= bufp->buffer && p <= pend);
6208 if (d >= string1 && d <= end1)
6209 dend = end_match_1;
6211 else
6212 break; /* Matching at this starting point really fails. */
6213 } /* for (;;) */
6215 if (best_regs_set)
6216 goto restore_best_regs;
6218 FREE_VARIABLES ();
6220 return -1; /* Failure to match. */
6223 /* Subroutine definitions for re_match_2. */
6225 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
6226 bytes; nonzero otherwise. */
6228 static int
6229 bcmp_translate (const_re_char *s1, const_re_char *s2, register ssize_t len,
6230 RE_TRANSLATE_TYPE translate, const int target_multibyte)
6232 register re_char *p1 = s1, *p2 = s2;
6233 re_char *p1_end = s1 + len;
6234 re_char *p2_end = s2 + len;
6236 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
6237 different lengths, but relying on a single `len' would break this. -sm */
6238 while (p1 < p1_end && p2 < p2_end)
6240 int p1_charlen, p2_charlen;
6241 re_wchar_t p1_ch, p2_ch;
6243 GET_CHAR_AFTER (p1_ch, p1, p1_charlen);
6244 GET_CHAR_AFTER (p2_ch, p2, p2_charlen);
6246 if (RE_TRANSLATE (translate, p1_ch)
6247 != RE_TRANSLATE (translate, p2_ch))
6248 return 1;
6250 p1 += p1_charlen, p2 += p2_charlen;
6253 if (p1 != p1_end || p2 != p2_end)
6254 return 1;
6256 return 0;
6259 /* Entry points for GNU code. */
6261 /* re_compile_pattern is the GNU regular expression compiler: it
6262 compiles PATTERN (of length SIZE) and puts the result in BUFP.
6263 Returns 0 if the pattern was valid, otherwise an error string.
6265 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
6266 are set in BUFP on entry.
6268 We call regex_compile to do the actual compilation. */
6270 const char *
6271 re_compile_pattern (const char *pattern, size_t length,
6272 #ifdef emacs
6273 bool posix_backtracking, const char *whitespace_regexp,
6274 #endif
6275 struct re_pattern_buffer *bufp)
6277 reg_errcode_t ret;
6279 /* GNU code is written to assume at least RE_NREGS registers will be set
6280 (and at least one extra will be -1). */
6281 bufp->regs_allocated = REGS_UNALLOCATED;
6283 /* And GNU code determines whether or not to get register information
6284 by passing null for the REGS argument to re_match, etc., not by
6285 setting no_sub. */
6286 bufp->no_sub = 0;
6288 ret = regex_compile ((re_char*) pattern, length,
6289 #ifdef emacs
6290 posix_backtracking,
6291 whitespace_regexp,
6292 #else
6293 re_syntax_options,
6294 #endif
6295 bufp);
6297 if (!ret)
6298 return NULL;
6299 return gettext (re_error_msgid[(int) ret]);
6301 WEAK_ALIAS (__re_compile_pattern, re_compile_pattern)
6303 /* Entry points compatible with 4.2 BSD regex library. We don't define
6304 them unless specifically requested. */
6306 #if defined _REGEX_RE_COMP || defined _LIBC
6308 /* BSD has one and only one pattern buffer. */
6309 static struct re_pattern_buffer re_comp_buf;
6311 char *
6312 # ifdef _LIBC
6313 /* Make these definitions weak in libc, so POSIX programs can redefine
6314 these names if they don't use our functions, and still use
6315 regcomp/regexec below without link errors. */
6316 weak_function
6317 # endif
6318 re_comp (const char *s)
6320 reg_errcode_t ret;
6322 if (!s)
6324 if (!re_comp_buf.buffer)
6325 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6326 return (char *) gettext ("No previous regular expression");
6327 return 0;
6330 if (!re_comp_buf.buffer)
6332 re_comp_buf.buffer = malloc (200);
6333 if (re_comp_buf.buffer == NULL)
6334 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6335 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
6336 re_comp_buf.allocated = 200;
6338 re_comp_buf.fastmap = malloc (1 << BYTEWIDTH);
6339 if (re_comp_buf.fastmap == NULL)
6340 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6341 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
6344 /* Since `re_exec' always passes NULL for the `regs' argument, we
6345 don't need to initialize the pattern buffer fields which affect it. */
6347 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
6349 if (!ret)
6350 return NULL;
6352 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6353 return (char *) gettext (re_error_msgid[(int) ret]);
6358 # ifdef _LIBC
6359 weak_function
6360 # endif
6361 re_exec (const char *s)
6363 const size_t len = strlen (s);
6364 return re_search (&re_comp_buf, s, len, 0, len, 0) >= 0;
6366 #endif /* _REGEX_RE_COMP */
6368 /* POSIX.2 functions. Don't define these for Emacs. */
6370 #ifndef emacs
6372 /* regcomp takes a regular expression as a string and compiles it.
6374 PREG is a regex_t *. We do not expect any fields to be initialized,
6375 since POSIX says we shouldn't. Thus, we set
6377 `buffer' to the compiled pattern;
6378 `used' to the length of the compiled pattern;
6379 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6380 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6381 RE_SYNTAX_POSIX_BASIC;
6382 `fastmap' to an allocated space for the fastmap;
6383 `fastmap_accurate' to zero;
6384 `re_nsub' to the number of subexpressions in PATTERN.
6386 PATTERN is the address of the pattern string.
6388 CFLAGS is a series of bits which affect compilation.
6390 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6391 use POSIX basic syntax.
6393 If REG_NEWLINE is set, then . and [^...] don't match newline.
6394 Also, regexec will try a match beginning after every newline.
6396 If REG_ICASE is set, then we considers upper- and lowercase
6397 versions of letters to be equivalent when matching.
6399 If REG_NOSUB is set, then when PREG is passed to regexec, that
6400 routine will report only success or failure, and nothing about the
6401 registers.
6403 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
6404 the return codes and their meanings.) */
6406 reg_errcode_t
6407 regcomp (regex_t *_Restrict_ preg, const char *_Restrict_ pattern,
6408 int cflags)
6410 reg_errcode_t ret;
6411 reg_syntax_t syntax
6412 = (cflags & REG_EXTENDED) ?
6413 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
6415 /* regex_compile will allocate the space for the compiled pattern. */
6416 preg->buffer = 0;
6417 preg->allocated = 0;
6418 preg->used = 0;
6420 /* Try to allocate space for the fastmap. */
6421 preg->fastmap = malloc (1 << BYTEWIDTH);
6423 if (cflags & REG_ICASE)
6425 unsigned i;
6427 preg->translate = malloc (CHAR_SET_SIZE * sizeof *preg->translate);
6428 if (preg->translate == NULL)
6429 return (int) REG_ESPACE;
6431 /* Map uppercase characters to corresponding lowercase ones. */
6432 for (i = 0; i < CHAR_SET_SIZE; i++)
6433 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
6435 else
6436 preg->translate = NULL;
6438 /* If REG_NEWLINE is set, newlines are treated differently. */
6439 if (cflags & REG_NEWLINE)
6440 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6441 syntax &= ~RE_DOT_NEWLINE;
6442 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
6444 else
6445 syntax |= RE_NO_NEWLINE_ANCHOR;
6447 preg->no_sub = !!(cflags & REG_NOSUB);
6449 /* POSIX says a null character in the pattern terminates it, so we
6450 can use strlen here in compiling the pattern. */
6451 ret = regex_compile ((re_char*) pattern, strlen (pattern), syntax, preg);
6453 /* POSIX doesn't distinguish between an unmatched open-group and an
6454 unmatched close-group: both are REG_EPAREN. */
6455 if (ret == REG_ERPAREN)
6456 ret = REG_EPAREN;
6458 if (ret == REG_NOERROR && preg->fastmap)
6459 { /* Compute the fastmap now, since regexec cannot modify the pattern
6460 buffer. */
6461 re_compile_fastmap (preg);
6462 if (preg->can_be_null)
6463 { /* The fastmap can't be used anyway. */
6464 free (preg->fastmap);
6465 preg->fastmap = NULL;
6468 return ret;
6470 WEAK_ALIAS (__regcomp, regcomp)
6473 /* regexec searches for a given pattern, specified by PREG, in the
6474 string STRING.
6476 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
6477 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
6478 least NMATCH elements, and we set them to the offsets of the
6479 corresponding matched substrings.
6481 EFLAGS specifies `execution flags' which affect matching: if
6482 REG_NOTBOL is set, then ^ does not match at the beginning of the
6483 string; if REG_NOTEOL is set, then $ does not match at the end.
6485 We return 0 if we find a match and REG_NOMATCH if not. */
6487 reg_errcode_t
6488 regexec (const regex_t *_Restrict_ preg, const char *_Restrict_ string,
6489 size_t nmatch, regmatch_t pmatch[_Restrict_arr_], int eflags)
6491 regoff_t ret;
6492 struct re_registers regs;
6493 regex_t private_preg;
6494 size_t len = strlen (string);
6495 boolean want_reg_info = !preg->no_sub && nmatch > 0 && pmatch;
6497 private_preg = *preg;
6499 private_preg.not_bol = !!(eflags & REG_NOTBOL);
6500 private_preg.not_eol = !!(eflags & REG_NOTEOL);
6502 /* The user has told us exactly how many registers to return
6503 information about, via `nmatch'. We have to pass that on to the
6504 matching routines. */
6505 private_preg.regs_allocated = REGS_FIXED;
6507 if (want_reg_info)
6509 regs.num_regs = nmatch;
6510 regs.start = TALLOC (nmatch * 2, regoff_t);
6511 if (regs.start == NULL)
6512 return REG_NOMATCH;
6513 regs.end = regs.start + nmatch;
6516 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6517 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6518 was a little bit longer but still only matching the real part.
6519 This works because the `endline' will check for a '\n' and will find a
6520 '\0', correctly deciding that this is not the end of a line.
6521 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6522 a convenient '\0' there. For all we know, the string could be preceded
6523 by '\n' which would throw things off. */
6525 /* Perform the searching operation. */
6526 ret = re_search (&private_preg, string, len,
6527 /* start: */ 0, /* range: */ len,
6528 want_reg_info ? &regs : 0);
6530 /* Copy the register information to the POSIX structure. */
6531 if (want_reg_info)
6533 if (ret >= 0)
6535 unsigned r;
6537 for (r = 0; r < nmatch; r++)
6539 pmatch[r].rm_so = regs.start[r];
6540 pmatch[r].rm_eo = regs.end[r];
6544 /* If we needed the temporary register info, free the space now. */
6545 free (regs.start);
6548 /* We want zero return to mean success, unlike `re_search'. */
6549 return ret >= 0 ? REG_NOERROR : REG_NOMATCH;
6551 WEAK_ALIAS (__regexec, regexec)
6554 /* Returns a message corresponding to an error code, ERR_CODE, returned
6555 from either regcomp or regexec. We don't use PREG here.
6557 ERR_CODE was previously called ERRCODE, but that name causes an
6558 error with msvc8 compiler. */
6560 size_t
6561 regerror (int err_code, const regex_t *preg, char *errbuf, size_t errbuf_size)
6563 const char *msg;
6564 size_t msg_size;
6566 if (err_code < 0
6567 || err_code >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
6568 /* Only error codes returned by the rest of the code should be passed
6569 to this routine. If we are given anything else, or if other regex
6570 code generates an invalid error code, then the program has a bug.
6571 Dump core so we can fix it. */
6572 abort ();
6574 msg = gettext (re_error_msgid[err_code]);
6576 msg_size = strlen (msg) + 1; /* Includes the null. */
6578 if (errbuf_size != 0)
6580 if (msg_size > errbuf_size)
6582 memcpy (errbuf, msg, errbuf_size - 1);
6583 errbuf[errbuf_size - 1] = 0;
6585 else
6586 strcpy (errbuf, msg);
6589 return msg_size;
6591 WEAK_ALIAS (__regerror, regerror)
6594 /* Free dynamically allocated space used by PREG. */
6596 void
6597 regfree (regex_t *preg)
6599 free (preg->buffer);
6600 preg->buffer = NULL;
6602 preg->allocated = 0;
6603 preg->used = 0;
6605 free (preg->fastmap);
6606 preg->fastmap = NULL;
6607 preg->fastmap_accurate = 0;
6609 free (preg->translate);
6610 preg->translate = NULL;
6612 WEAK_ALIAS (__regfree, regfree)
6614 #endif /* not emacs */