* src/profiler.c: Rename sample_profiler_* to profiler_cpu_* and
[emacs.git] / src / alloc.c
blob8c0f99cbb05957137e61f6704ff2e0ddf1140933
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2012
4 Free Software Foundation, Inc.
6 This file is part of GNU Emacs.
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
21 #include <config.h>
23 #define LISP_INLINE EXTERN_INLINE
25 #include <stdio.h>
26 #include <limits.h> /* For CHAR_BIT. */
27 #include <setjmp.h>
29 #include <signal.h>
31 #ifdef HAVE_PTHREAD
32 #include <pthread.h>
33 #endif
35 #include "lisp.h"
36 #include "process.h"
37 #include "intervals.h"
38 #include "puresize.h"
39 #include "character.h"
40 #include "buffer.h"
41 #include "window.h"
42 #include "keyboard.h"
43 #include "frame.h"
44 #include "blockinput.h"
45 #include "syssignal.h"
46 #include "termhooks.h" /* For struct terminal. */
47 #include <setjmp.h>
48 #include <verify.h>
50 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
51 Doable only if GC_MARK_STACK. */
52 #if ! GC_MARK_STACK
53 # undef GC_CHECK_MARKED_OBJECTS
54 #endif
56 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
57 memory. Can do this only if using gmalloc.c and if not checking
58 marked objects. */
60 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
61 || defined GC_CHECK_MARKED_OBJECTS)
62 #undef GC_MALLOC_CHECK
63 #endif
65 #include <unistd.h>
66 #ifndef HAVE_UNISTD_H
67 extern void *sbrk ();
68 #endif
70 #include <fcntl.h>
72 #ifdef WINDOWSNT
73 #include "w32.h"
74 #endif
76 #ifdef DOUG_LEA_MALLOC
78 #include <malloc.h>
80 /* Specify maximum number of areas to mmap. It would be nice to use a
81 value that explicitly means "no limit". */
83 #define MMAP_MAX_AREAS 100000000
85 #else /* not DOUG_LEA_MALLOC */
87 /* The following come from gmalloc.c. */
89 extern size_t _bytes_used;
90 extern size_t __malloc_extra_blocks;
91 extern void *_malloc_internal (size_t);
92 extern void _free_internal (void *);
94 #endif /* not DOUG_LEA_MALLOC */
96 #if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
97 #ifdef HAVE_PTHREAD
99 /* When GTK uses the file chooser dialog, different backends can be loaded
100 dynamically. One such a backend is the Gnome VFS backend that gets loaded
101 if you run Gnome. That backend creates several threads and also allocates
102 memory with malloc.
104 Also, gconf and gsettings may create several threads.
106 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
107 functions below are called from malloc, there is a chance that one
108 of these threads preempts the Emacs main thread and the hook variables
109 end up in an inconsistent state. So we have a mutex to prevent that (note
110 that the backend handles concurrent access to malloc within its own threads
111 but Emacs code running in the main thread is not included in that control).
113 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
114 happens in one of the backend threads we will have two threads that tries
115 to run Emacs code at once, and the code is not prepared for that.
116 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
118 static pthread_mutex_t alloc_mutex;
120 #define BLOCK_INPUT_ALLOC \
121 do \
123 if (pthread_equal (pthread_self (), main_thread)) \
124 BLOCK_INPUT; \
125 pthread_mutex_lock (&alloc_mutex); \
127 while (0)
128 #define UNBLOCK_INPUT_ALLOC \
129 do \
131 pthread_mutex_unlock (&alloc_mutex); \
132 if (pthread_equal (pthread_self (), main_thread)) \
133 UNBLOCK_INPUT; \
135 while (0)
137 #else /* ! defined HAVE_PTHREAD */
139 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
140 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
142 #endif /* ! defined HAVE_PTHREAD */
143 #endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */
145 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
146 to a struct Lisp_String. */
148 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
149 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
150 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
152 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
153 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
154 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
156 /* Default value of gc_cons_threshold (see below). */
158 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
160 /* Global variables. */
161 struct emacs_globals globals;
163 /* Number of bytes of consing done since the last gc. */
165 EMACS_INT consing_since_gc;
167 /* Similar minimum, computed from Vgc_cons_percentage. */
169 EMACS_INT gc_relative_threshold;
171 /* Minimum number of bytes of consing since GC before next GC,
172 when memory is full. */
174 EMACS_INT memory_full_cons_threshold;
176 /* True during GC. */
178 bool gc_in_progress;
180 /* True means abort if try to GC.
181 This is for code which is written on the assumption that
182 no GC will happen, so as to verify that assumption. */
184 bool abort_on_gc;
186 /* Number of live and free conses etc. */
188 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
189 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
190 static EMACS_INT total_free_floats, total_floats;
192 /* Points to memory space allocated as "spare", to be freed if we run
193 out of memory. We keep one large block, four cons-blocks, and
194 two string blocks. */
196 static char *spare_memory[7];
198 /* Amount of spare memory to keep in large reserve block, or to see
199 whether this much is available when malloc fails on a larger request. */
201 #define SPARE_MEMORY (1 << 14)
203 /* Number of extra blocks malloc should get when it needs more core. */
205 static int malloc_hysteresis;
207 /* Initialize it to a nonzero value to force it into data space
208 (rather than bss space). That way unexec will remap it into text
209 space (pure), on some systems. We have not implemented the
210 remapping on more recent systems because this is less important
211 nowadays than in the days of small memories and timesharing. */
213 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
214 #define PUREBEG (char *) pure
216 /* Pointer to the pure area, and its size. */
218 static char *purebeg;
219 static ptrdiff_t pure_size;
221 /* Number of bytes of pure storage used before pure storage overflowed.
222 If this is non-zero, this implies that an overflow occurred. */
224 static ptrdiff_t pure_bytes_used_before_overflow;
226 /* True if P points into pure space. */
228 #define PURE_POINTER_P(P) \
229 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
231 /* Index in pure at which next pure Lisp object will be allocated.. */
233 static ptrdiff_t pure_bytes_used_lisp;
235 /* Number of bytes allocated for non-Lisp objects in pure storage. */
237 static ptrdiff_t pure_bytes_used_non_lisp;
239 /* If nonzero, this is a warning delivered by malloc and not yet
240 displayed. */
242 const char *pending_malloc_warning;
244 /* Maximum amount of C stack to save when a GC happens. */
246 #ifndef MAX_SAVE_STACK
247 #define MAX_SAVE_STACK 16000
248 #endif
250 /* Buffer in which we save a copy of the C stack at each GC. */
252 #if MAX_SAVE_STACK > 0
253 static char *stack_copy;
254 static ptrdiff_t stack_copy_size;
255 #endif
257 static Lisp_Object Qconses;
258 static Lisp_Object Qsymbols;
259 static Lisp_Object Qmiscs;
260 static Lisp_Object Qstrings;
261 static Lisp_Object Qvectors;
262 static Lisp_Object Qfloats;
263 static Lisp_Object Qintervals;
264 static Lisp_Object Qbuffers;
265 static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
266 static Lisp_Object Qgc_cons_threshold;
267 Lisp_Object Qautomatic_gc;
268 Lisp_Object Qchar_table_extra_slots;
270 /* Hook run after GC has finished. */
272 static Lisp_Object Qpost_gc_hook;
274 static void mark_terminals (void);
275 static void gc_sweep (void);
276 static Lisp_Object make_pure_vector (ptrdiff_t);
277 static void mark_glyph_matrix (struct glyph_matrix *);
278 static void mark_face_cache (struct face_cache *);
280 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
281 static void refill_memory_reserve (void);
282 #endif
283 static struct Lisp_String *allocate_string (void);
284 static void compact_small_strings (void);
285 static void free_large_strings (void);
286 static void sweep_strings (void);
287 static void free_misc (Lisp_Object);
288 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
290 /* When scanning the C stack for live Lisp objects, Emacs keeps track
291 of what memory allocated via lisp_malloc is intended for what
292 purpose. This enumeration specifies the type of memory. */
294 enum mem_type
296 MEM_TYPE_NON_LISP,
297 MEM_TYPE_BUFFER,
298 MEM_TYPE_CONS,
299 MEM_TYPE_STRING,
300 MEM_TYPE_MISC,
301 MEM_TYPE_SYMBOL,
302 MEM_TYPE_FLOAT,
303 /* We used to keep separate mem_types for subtypes of vectors such as
304 process, hash_table, frame, terminal, and window, but we never made
305 use of the distinction, so it only caused source-code complexity
306 and runtime slowdown. Minor but pointless. */
307 MEM_TYPE_VECTORLIKE,
308 /* Special type to denote vector blocks. */
309 MEM_TYPE_VECTOR_BLOCK
312 static void *lisp_malloc (size_t, enum mem_type);
315 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
317 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
318 #include <stdio.h> /* For fprintf. */
319 #endif
321 /* A unique object in pure space used to make some Lisp objects
322 on free lists recognizable in O(1). */
324 static Lisp_Object Vdead;
325 #define DEADP(x) EQ (x, Vdead)
327 #ifdef GC_MALLOC_CHECK
329 enum mem_type allocated_mem_type;
331 #endif /* GC_MALLOC_CHECK */
333 /* A node in the red-black tree describing allocated memory containing
334 Lisp data. Each such block is recorded with its start and end
335 address when it is allocated, and removed from the tree when it
336 is freed.
338 A red-black tree is a balanced binary tree with the following
339 properties:
341 1. Every node is either red or black.
342 2. Every leaf is black.
343 3. If a node is red, then both of its children are black.
344 4. Every simple path from a node to a descendant leaf contains
345 the same number of black nodes.
346 5. The root is always black.
348 When nodes are inserted into the tree, or deleted from the tree,
349 the tree is "fixed" so that these properties are always true.
351 A red-black tree with N internal nodes has height at most 2
352 log(N+1). Searches, insertions and deletions are done in O(log N).
353 Please see a text book about data structures for a detailed
354 description of red-black trees. Any book worth its salt should
355 describe them. */
357 struct mem_node
359 /* Children of this node. These pointers are never NULL. When there
360 is no child, the value is MEM_NIL, which points to a dummy node. */
361 struct mem_node *left, *right;
363 /* The parent of this node. In the root node, this is NULL. */
364 struct mem_node *parent;
366 /* Start and end of allocated region. */
367 void *start, *end;
369 /* Node color. */
370 enum {MEM_BLACK, MEM_RED} color;
372 /* Memory type. */
373 enum mem_type type;
376 /* Base address of stack. Set in main. */
378 Lisp_Object *stack_base;
380 /* Root of the tree describing allocated Lisp memory. */
382 static struct mem_node *mem_root;
384 /* Lowest and highest known address in the heap. */
386 static void *min_heap_address, *max_heap_address;
388 /* Sentinel node of the tree. */
390 static struct mem_node mem_z;
391 #define MEM_NIL &mem_z
393 static struct Lisp_Vector *allocate_vectorlike (ptrdiff_t);
394 static void lisp_free (void *);
395 static void mark_stack (void);
396 static bool live_vector_p (struct mem_node *, void *);
397 static bool live_buffer_p (struct mem_node *, void *);
398 static bool live_string_p (struct mem_node *, void *);
399 static bool live_cons_p (struct mem_node *, void *);
400 static bool live_symbol_p (struct mem_node *, void *);
401 static bool live_float_p (struct mem_node *, void *);
402 static bool live_misc_p (struct mem_node *, void *);
403 static void mark_maybe_object (Lisp_Object);
404 static void mark_memory (void *, void *);
405 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
406 static void mem_init (void);
407 static struct mem_node *mem_insert (void *, void *, enum mem_type);
408 static void mem_insert_fixup (struct mem_node *);
409 #endif
410 static void mem_rotate_left (struct mem_node *);
411 static void mem_rotate_right (struct mem_node *);
412 static void mem_delete (struct mem_node *);
413 static void mem_delete_fixup (struct mem_node *);
414 static inline struct mem_node *mem_find (void *);
417 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
418 static void check_gcpros (void);
419 #endif
421 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
423 #ifndef DEADP
424 # define DEADP(x) 0
425 #endif
427 /* Recording what needs to be marked for gc. */
429 struct gcpro *gcprolist;
431 /* Addresses of staticpro'd variables. Initialize it to a nonzero
432 value; otherwise some compilers put it into BSS. */
434 #define NSTATICS 0x650
435 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
437 /* Index of next unused slot in staticvec. */
439 static int staticidx;
441 static void *pure_alloc (size_t, int);
444 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
445 ALIGNMENT must be a power of 2. */
447 #define ALIGN(ptr, ALIGNMENT) \
448 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
449 & ~ ((ALIGNMENT) - 1)))
453 /************************************************************************
454 Malloc
455 ************************************************************************/
457 /* Function malloc calls this if it finds we are near exhausting storage. */
459 void
460 malloc_warning (const char *str)
462 pending_malloc_warning = str;
466 /* Display an already-pending malloc warning. */
468 void
469 display_malloc_warning (void)
471 call3 (intern ("display-warning"),
472 intern ("alloc"),
473 build_string (pending_malloc_warning),
474 intern ("emergency"));
475 pending_malloc_warning = 0;
478 /* Called if we can't allocate relocatable space for a buffer. */
480 void
481 buffer_memory_full (ptrdiff_t nbytes)
483 /* If buffers use the relocating allocator, no need to free
484 spare_memory, because we may have plenty of malloc space left
485 that we could get, and if we don't, the malloc that fails will
486 itself cause spare_memory to be freed. If buffers don't use the
487 relocating allocator, treat this like any other failing
488 malloc. */
490 #ifndef REL_ALLOC
491 memory_full (nbytes);
492 #endif
494 /* This used to call error, but if we've run out of memory, we could
495 get infinite recursion trying to build the string. */
496 xsignal (Qnil, Vmemory_signal_data);
499 /* A common multiple of the positive integers A and B. Ideally this
500 would be the least common multiple, but there's no way to do that
501 as a constant expression in C, so do the best that we can easily do. */
502 #define COMMON_MULTIPLE(a, b) \
503 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
505 #ifndef XMALLOC_OVERRUN_CHECK
506 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
507 #else
509 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
510 around each block.
512 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
513 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
514 block size in little-endian order. The trailer consists of
515 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
517 The header is used to detect whether this block has been allocated
518 through these functions, as some low-level libc functions may
519 bypass the malloc hooks. */
521 #define XMALLOC_OVERRUN_CHECK_SIZE 16
522 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
523 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
525 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
526 hold a size_t value and (2) the header size is a multiple of the
527 alignment that Emacs needs for C types and for USE_LSB_TAG. */
528 #define XMALLOC_BASE_ALIGNMENT \
529 alignof (union { long double d; intmax_t i; void *p; })
531 #if USE_LSB_TAG
532 # define XMALLOC_HEADER_ALIGNMENT \
533 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
534 #else
535 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
536 #endif
537 #define XMALLOC_OVERRUN_SIZE_SIZE \
538 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
539 + XMALLOC_HEADER_ALIGNMENT - 1) \
540 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
541 - XMALLOC_OVERRUN_CHECK_SIZE)
543 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
544 { '\x9a', '\x9b', '\xae', '\xaf',
545 '\xbf', '\xbe', '\xce', '\xcf',
546 '\xea', '\xeb', '\xec', '\xed',
547 '\xdf', '\xde', '\x9c', '\x9d' };
549 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
550 { '\xaa', '\xab', '\xac', '\xad',
551 '\xba', '\xbb', '\xbc', '\xbd',
552 '\xca', '\xcb', '\xcc', '\xcd',
553 '\xda', '\xdb', '\xdc', '\xdd' };
555 /* Insert and extract the block size in the header. */
557 static void
558 xmalloc_put_size (unsigned char *ptr, size_t size)
560 int i;
561 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
563 *--ptr = size & ((1 << CHAR_BIT) - 1);
564 size >>= CHAR_BIT;
568 static size_t
569 xmalloc_get_size (unsigned char *ptr)
571 size_t size = 0;
572 int i;
573 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
574 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
576 size <<= CHAR_BIT;
577 size += *ptr++;
579 return size;
583 /* The call depth in overrun_check functions. For example, this might happen:
584 xmalloc()
585 overrun_check_malloc()
586 -> malloc -> (via hook)_-> emacs_blocked_malloc
587 -> overrun_check_malloc
588 call malloc (hooks are NULL, so real malloc is called).
589 malloc returns 10000.
590 add overhead, return 10016.
591 <- (back in overrun_check_malloc)
592 add overhead again, return 10032
593 xmalloc returns 10032.
595 (time passes).
597 xfree(10032)
598 overrun_check_free(10032)
599 decrease overhead
600 free(10016) <- crash, because 10000 is the original pointer. */
602 static ptrdiff_t check_depth;
604 /* Like malloc, but wraps allocated block with header and trailer. */
606 static void *
607 overrun_check_malloc (size_t size)
609 register unsigned char *val;
610 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
611 if (SIZE_MAX - overhead < size)
612 abort ();
614 val = malloc (size + overhead);
615 if (val && check_depth == 1)
617 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
618 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
619 xmalloc_put_size (val, size);
620 memcpy (val + size, xmalloc_overrun_check_trailer,
621 XMALLOC_OVERRUN_CHECK_SIZE);
623 --check_depth;
624 return val;
628 /* Like realloc, but checks old block for overrun, and wraps new block
629 with header and trailer. */
631 static void *
632 overrun_check_realloc (void *block, size_t size)
634 register unsigned char *val = (unsigned char *) block;
635 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
636 if (SIZE_MAX - overhead < size)
637 abort ();
639 if (val
640 && check_depth == 1
641 && memcmp (xmalloc_overrun_check_header,
642 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
643 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
645 size_t osize = xmalloc_get_size (val);
646 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
647 XMALLOC_OVERRUN_CHECK_SIZE))
648 abort ();
649 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
650 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
651 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
654 val = realloc (val, size + overhead);
656 if (val && check_depth == 1)
658 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
659 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
660 xmalloc_put_size (val, size);
661 memcpy (val + size, xmalloc_overrun_check_trailer,
662 XMALLOC_OVERRUN_CHECK_SIZE);
664 --check_depth;
665 return val;
668 /* Like free, but checks block for overrun. */
670 static void
671 overrun_check_free (void *block)
673 unsigned char *val = (unsigned char *) block;
675 ++check_depth;
676 if (val
677 && check_depth == 1
678 && memcmp (xmalloc_overrun_check_header,
679 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
680 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
682 size_t osize = xmalloc_get_size (val);
683 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
684 XMALLOC_OVERRUN_CHECK_SIZE))
685 abort ();
686 #ifdef XMALLOC_CLEAR_FREE_MEMORY
687 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
688 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
689 #else
690 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
691 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
692 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
693 #endif
696 free (val);
697 --check_depth;
700 #undef malloc
701 #undef realloc
702 #undef free
703 #define malloc overrun_check_malloc
704 #define realloc overrun_check_realloc
705 #define free overrun_check_free
706 #endif
708 #ifdef SYNC_INPUT
709 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
710 there's no need to block input around malloc. */
711 #define MALLOC_BLOCK_INPUT ((void)0)
712 #define MALLOC_UNBLOCK_INPUT ((void)0)
713 #else
714 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
715 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
716 #endif
718 /* Like malloc but check for no memory and block interrupt input.. */
720 void *
721 xmalloc (size_t size)
723 void *val;
725 MALLOC_BLOCK_INPUT;
726 val = malloc (size);
727 MALLOC_UNBLOCK_INPUT;
729 if (!val && size)
730 memory_full (size);
731 MALLOC_PROBE (size);
732 return val;
735 /* Like the above, but zeroes out the memory just allocated. */
737 void *
738 xzalloc (size_t size)
740 void *val;
742 MALLOC_BLOCK_INPUT;
743 val = malloc (size);
744 MALLOC_UNBLOCK_INPUT;
746 if (!val && size)
747 memory_full (size);
748 memset (val, 0, size);
749 MALLOC_PROBE (size);
750 return val;
753 /* Like realloc but check for no memory and block interrupt input.. */
755 void *
756 xrealloc (void *block, size_t size)
758 void *val;
760 MALLOC_BLOCK_INPUT;
761 /* We must call malloc explicitly when BLOCK is 0, since some
762 reallocs don't do this. */
763 if (! block)
764 val = malloc (size);
765 else
766 val = realloc (block, size);
767 MALLOC_UNBLOCK_INPUT;
769 if (!val && size)
770 memory_full (size);
771 MALLOC_PROBE (size);
772 return val;
776 /* Like free but block interrupt input. */
778 void
779 xfree (void *block)
781 if (!block)
782 return;
783 MALLOC_BLOCK_INPUT;
784 free (block);
785 MALLOC_UNBLOCK_INPUT;
786 /* We don't call refill_memory_reserve here
787 because that duplicates doing so in emacs_blocked_free
788 and the criterion should go there. */
792 /* Other parts of Emacs pass large int values to allocator functions
793 expecting ptrdiff_t. This is portable in practice, but check it to
794 be safe. */
795 verify (INT_MAX <= PTRDIFF_MAX);
798 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
799 Signal an error on memory exhaustion, and block interrupt input. */
801 void *
802 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
804 eassert (0 <= nitems && 0 < item_size);
805 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
806 memory_full (SIZE_MAX);
807 return xmalloc (nitems * item_size);
811 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
812 Signal an error on memory exhaustion, and block interrupt input. */
814 void *
815 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
817 eassert (0 <= nitems && 0 < item_size);
818 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
819 memory_full (SIZE_MAX);
820 return xrealloc (pa, nitems * item_size);
824 /* Grow PA, which points to an array of *NITEMS items, and return the
825 location of the reallocated array, updating *NITEMS to reflect its
826 new size. The new array will contain at least NITEMS_INCR_MIN more
827 items, but will not contain more than NITEMS_MAX items total.
828 ITEM_SIZE is the size of each item, in bytes.
830 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
831 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
832 infinity.
834 If PA is null, then allocate a new array instead of reallocating
835 the old one. Thus, to grow an array A without saving its old
836 contents, invoke xfree (A) immediately followed by xgrowalloc (0,
837 &NITEMS, ...).
839 Block interrupt input as needed. If memory exhaustion occurs, set
840 *NITEMS to zero if PA is null, and signal an error (i.e., do not
841 return). */
843 void *
844 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
845 ptrdiff_t nitems_max, ptrdiff_t item_size)
847 /* The approximate size to use for initial small allocation
848 requests. This is the largest "small" request for the GNU C
849 library malloc. */
850 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
852 /* If the array is tiny, grow it to about (but no greater than)
853 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
854 ptrdiff_t n = *nitems;
855 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
856 ptrdiff_t half_again = n >> 1;
857 ptrdiff_t incr_estimate = max (tiny_max, half_again);
859 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
860 NITEMS_MAX, and what the C language can represent safely. */
861 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
862 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
863 ? nitems_max : C_language_max);
864 ptrdiff_t nitems_incr_max = n_max - n;
865 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
867 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
868 if (! pa)
869 *nitems = 0;
870 if (nitems_incr_max < incr)
871 memory_full (SIZE_MAX);
872 n += incr;
873 pa = xrealloc (pa, n * item_size);
874 *nitems = n;
875 return pa;
879 /* Like strdup, but uses xmalloc. */
881 char *
882 xstrdup (const char *s)
884 size_t len = strlen (s) + 1;
885 char *p = xmalloc (len);
886 memcpy (p, s, len);
887 return p;
891 /* Unwind for SAFE_ALLOCA */
893 Lisp_Object
894 safe_alloca_unwind (Lisp_Object arg)
896 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
898 p->dogc = 0;
899 xfree (p->pointer);
900 p->pointer = 0;
901 free_misc (arg);
902 return Qnil;
905 /* Return a newly allocated memory block of SIZE bytes, remembering
906 to free it when unwinding. */
907 void *
908 record_xmalloc (size_t size)
910 void *p = xmalloc (size);
911 record_unwind_protect (safe_alloca_unwind, make_save_value (p, 0));
912 return p;
916 /* Like malloc but used for allocating Lisp data. NBYTES is the
917 number of bytes to allocate, TYPE describes the intended use of the
918 allocated memory block (for strings, for conses, ...). */
920 #if ! USE_LSB_TAG
921 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
922 #endif
924 static void *
925 lisp_malloc (size_t nbytes, enum mem_type type)
927 register void *val;
929 MALLOC_BLOCK_INPUT;
931 #ifdef GC_MALLOC_CHECK
932 allocated_mem_type = type;
933 #endif
935 val = malloc (nbytes);
937 #if ! USE_LSB_TAG
938 /* If the memory just allocated cannot be addressed thru a Lisp
939 object's pointer, and it needs to be,
940 that's equivalent to running out of memory. */
941 if (val && type != MEM_TYPE_NON_LISP)
943 Lisp_Object tem;
944 XSETCONS (tem, (char *) val + nbytes - 1);
945 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
947 lisp_malloc_loser = val;
948 free (val);
949 val = 0;
952 #endif
954 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
955 if (val && type != MEM_TYPE_NON_LISP)
956 mem_insert (val, (char *) val + nbytes, type);
957 #endif
959 MALLOC_UNBLOCK_INPUT;
960 if (!val && nbytes)
961 memory_full (nbytes);
962 MALLOC_PROBE (nbytes);
963 return val;
966 /* Free BLOCK. This must be called to free memory allocated with a
967 call to lisp_malloc. */
969 static void
970 lisp_free (void *block)
972 MALLOC_BLOCK_INPUT;
973 free (block);
974 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
975 mem_delete (mem_find (block));
976 #endif
977 MALLOC_UNBLOCK_INPUT;
980 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
982 /* The entry point is lisp_align_malloc which returns blocks of at most
983 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
985 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
986 #define USE_POSIX_MEMALIGN 1
987 #endif
989 /* BLOCK_ALIGN has to be a power of 2. */
990 #define BLOCK_ALIGN (1 << 10)
992 /* Padding to leave at the end of a malloc'd block. This is to give
993 malloc a chance to minimize the amount of memory wasted to alignment.
994 It should be tuned to the particular malloc library used.
995 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
996 posix_memalign on the other hand would ideally prefer a value of 4
997 because otherwise, there's 1020 bytes wasted between each ablocks.
998 In Emacs, testing shows that those 1020 can most of the time be
999 efficiently used by malloc to place other objects, so a value of 0 can
1000 still preferable unless you have a lot of aligned blocks and virtually
1001 nothing else. */
1002 #define BLOCK_PADDING 0
1003 #define BLOCK_BYTES \
1004 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
1006 /* Internal data structures and constants. */
1008 #define ABLOCKS_SIZE 16
1010 /* An aligned block of memory. */
1011 struct ablock
1013 union
1015 char payload[BLOCK_BYTES];
1016 struct ablock *next_free;
1017 } x;
1018 /* `abase' is the aligned base of the ablocks. */
1019 /* It is overloaded to hold the virtual `busy' field that counts
1020 the number of used ablock in the parent ablocks.
1021 The first ablock has the `busy' field, the others have the `abase'
1022 field. To tell the difference, we assume that pointers will have
1023 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1024 is used to tell whether the real base of the parent ablocks is `abase'
1025 (if not, the word before the first ablock holds a pointer to the
1026 real base). */
1027 struct ablocks *abase;
1028 /* The padding of all but the last ablock is unused. The padding of
1029 the last ablock in an ablocks is not allocated. */
1030 #if BLOCK_PADDING
1031 char padding[BLOCK_PADDING];
1032 #endif
1035 /* A bunch of consecutive aligned blocks. */
1036 struct ablocks
1038 struct ablock blocks[ABLOCKS_SIZE];
1041 /* Size of the block requested from malloc or posix_memalign. */
1042 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1044 #define ABLOCK_ABASE(block) \
1045 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1046 ? (struct ablocks *)(block) \
1047 : (block)->abase)
1049 /* Virtual `busy' field. */
1050 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1052 /* Pointer to the (not necessarily aligned) malloc block. */
1053 #ifdef USE_POSIX_MEMALIGN
1054 #define ABLOCKS_BASE(abase) (abase)
1055 #else
1056 #define ABLOCKS_BASE(abase) \
1057 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
1058 #endif
1060 /* The list of free ablock. */
1061 static struct ablock *free_ablock;
1063 /* Allocate an aligned block of nbytes.
1064 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1065 smaller or equal to BLOCK_BYTES. */
1066 static void *
1067 lisp_align_malloc (size_t nbytes, enum mem_type type)
1069 void *base, *val;
1070 struct ablocks *abase;
1072 eassert (nbytes <= BLOCK_BYTES);
1074 MALLOC_BLOCK_INPUT;
1076 #ifdef GC_MALLOC_CHECK
1077 allocated_mem_type = type;
1078 #endif
1080 if (!free_ablock)
1082 int i;
1083 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1085 #ifdef DOUG_LEA_MALLOC
1086 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1087 because mapped region contents are not preserved in
1088 a dumped Emacs. */
1089 mallopt (M_MMAP_MAX, 0);
1090 #endif
1092 #ifdef USE_POSIX_MEMALIGN
1094 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1095 if (err)
1096 base = NULL;
1097 abase = base;
1099 #else
1100 base = malloc (ABLOCKS_BYTES);
1101 abase = ALIGN (base, BLOCK_ALIGN);
1102 #endif
1104 if (base == 0)
1106 MALLOC_UNBLOCK_INPUT;
1107 memory_full (ABLOCKS_BYTES);
1110 aligned = (base == abase);
1111 if (!aligned)
1112 ((void**)abase)[-1] = base;
1114 #ifdef DOUG_LEA_MALLOC
1115 /* Back to a reasonable maximum of mmap'ed areas. */
1116 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1117 #endif
1119 #if ! USE_LSB_TAG
1120 /* If the memory just allocated cannot be addressed thru a Lisp
1121 object's pointer, and it needs to be, that's equivalent to
1122 running out of memory. */
1123 if (type != MEM_TYPE_NON_LISP)
1125 Lisp_Object tem;
1126 char *end = (char *) base + ABLOCKS_BYTES - 1;
1127 XSETCONS (tem, end);
1128 if ((char *) XCONS (tem) != end)
1130 lisp_malloc_loser = base;
1131 free (base);
1132 MALLOC_UNBLOCK_INPUT;
1133 memory_full (SIZE_MAX);
1136 #endif
1138 /* Initialize the blocks and put them on the free list.
1139 If `base' was not properly aligned, we can't use the last block. */
1140 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1142 abase->blocks[i].abase = abase;
1143 abase->blocks[i].x.next_free = free_ablock;
1144 free_ablock = &abase->blocks[i];
1146 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1148 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1149 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1150 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1151 eassert (ABLOCKS_BASE (abase) == base);
1152 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1155 abase = ABLOCK_ABASE (free_ablock);
1156 ABLOCKS_BUSY (abase) =
1157 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1158 val = free_ablock;
1159 free_ablock = free_ablock->x.next_free;
1161 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1162 if (type != MEM_TYPE_NON_LISP)
1163 mem_insert (val, (char *) val + nbytes, type);
1164 #endif
1166 MALLOC_UNBLOCK_INPUT;
1168 MALLOC_PROBE (nbytes);
1170 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1171 return val;
1174 static void
1175 lisp_align_free (void *block)
1177 struct ablock *ablock = block;
1178 struct ablocks *abase = ABLOCK_ABASE (ablock);
1180 MALLOC_BLOCK_INPUT;
1181 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1182 mem_delete (mem_find (block));
1183 #endif
1184 /* Put on free list. */
1185 ablock->x.next_free = free_ablock;
1186 free_ablock = ablock;
1187 /* Update busy count. */
1188 ABLOCKS_BUSY (abase)
1189 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1191 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1192 { /* All the blocks are free. */
1193 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1194 struct ablock **tem = &free_ablock;
1195 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1197 while (*tem)
1199 if (*tem >= (struct ablock *) abase && *tem < atop)
1201 i++;
1202 *tem = (*tem)->x.next_free;
1204 else
1205 tem = &(*tem)->x.next_free;
1207 eassert ((aligned & 1) == aligned);
1208 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1209 #ifdef USE_POSIX_MEMALIGN
1210 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1211 #endif
1212 free (ABLOCKS_BASE (abase));
1214 MALLOC_UNBLOCK_INPUT;
1218 #ifndef SYSTEM_MALLOC
1220 /* Arranging to disable input signals while we're in malloc.
1222 This only works with GNU malloc. To help out systems which can't
1223 use GNU malloc, all the calls to malloc, realloc, and free
1224 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1225 pair; unfortunately, we have no idea what C library functions
1226 might call malloc, so we can't really protect them unless you're
1227 using GNU malloc. Fortunately, most of the major operating systems
1228 can use GNU malloc. */
1230 #ifndef SYNC_INPUT
1231 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1232 there's no need to block input around malloc. */
1234 #ifndef DOUG_LEA_MALLOC
1235 extern void * (*__malloc_hook) (size_t, const void *);
1236 extern void * (*__realloc_hook) (void *, size_t, const void *);
1237 extern void (*__free_hook) (void *, const void *);
1238 /* Else declared in malloc.h, perhaps with an extra arg. */
1239 #endif /* DOUG_LEA_MALLOC */
1240 static void * (*old_malloc_hook) (size_t, const void *);
1241 static void * (*old_realloc_hook) (void *, size_t, const void*);
1242 static void (*old_free_hook) (void*, const void*);
1244 #ifdef DOUG_LEA_MALLOC
1245 # define BYTES_USED (mallinfo ().uordblks)
1246 #else
1247 # define BYTES_USED _bytes_used
1248 #endif
1250 #ifdef GC_MALLOC_CHECK
1251 static bool dont_register_blocks;
1252 #endif
1254 static size_t bytes_used_when_reconsidered;
1256 /* Value of _bytes_used, when spare_memory was freed. */
1258 static size_t bytes_used_when_full;
1260 /* This function is used as the hook for free to call. */
1262 static void
1263 emacs_blocked_free (void *ptr, const void *ptr2)
1265 BLOCK_INPUT_ALLOC;
1267 #ifdef GC_MALLOC_CHECK
1268 if (ptr)
1270 struct mem_node *m;
1272 m = mem_find (ptr);
1273 if (m == MEM_NIL || m->start != ptr)
1275 fprintf (stderr,
1276 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1277 abort ();
1279 else
1281 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1282 mem_delete (m);
1285 #endif /* GC_MALLOC_CHECK */
1287 __free_hook = old_free_hook;
1288 free (ptr);
1290 /* If we released our reserve (due to running out of memory),
1291 and we have a fair amount free once again,
1292 try to set aside another reserve in case we run out once more. */
1293 if (! NILP (Vmemory_full)
1294 /* Verify there is enough space that even with the malloc
1295 hysteresis this call won't run out again.
1296 The code here is correct as long as SPARE_MEMORY
1297 is substantially larger than the block size malloc uses. */
1298 && (bytes_used_when_full
1299 > ((bytes_used_when_reconsidered = BYTES_USED)
1300 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1301 refill_memory_reserve ();
1303 __free_hook = emacs_blocked_free;
1304 UNBLOCK_INPUT_ALLOC;
1308 /* This function is the malloc hook that Emacs uses. */
1310 static void *
1311 emacs_blocked_malloc (size_t size, const void *ptr)
1313 void *value;
1315 BLOCK_INPUT_ALLOC;
1316 __malloc_hook = old_malloc_hook;
1317 #ifdef DOUG_LEA_MALLOC
1318 /* Segfaults on my system. --lorentey */
1319 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1320 #else
1321 __malloc_extra_blocks = malloc_hysteresis;
1322 #endif
1324 value = malloc (size);
1326 #ifdef GC_MALLOC_CHECK
1328 struct mem_node *m = mem_find (value);
1329 if (m != MEM_NIL)
1331 fprintf (stderr, "Malloc returned %p which is already in use\n",
1332 value);
1333 fprintf (stderr, "Region in use is %p...%p, %td bytes, type %d\n",
1334 m->start, m->end, (char *) m->end - (char *) m->start,
1335 m->type);
1336 abort ();
1339 if (!dont_register_blocks)
1341 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1342 allocated_mem_type = MEM_TYPE_NON_LISP;
1345 #endif /* GC_MALLOC_CHECK */
1347 __malloc_hook = emacs_blocked_malloc;
1348 UNBLOCK_INPUT_ALLOC;
1350 /* fprintf (stderr, "%p malloc\n", value); */
1351 return value;
1355 /* This function is the realloc hook that Emacs uses. */
1357 static void *
1358 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1360 void *value;
1362 BLOCK_INPUT_ALLOC;
1363 __realloc_hook = old_realloc_hook;
1365 #ifdef GC_MALLOC_CHECK
1366 if (ptr)
1368 struct mem_node *m = mem_find (ptr);
1369 if (m == MEM_NIL || m->start != ptr)
1371 fprintf (stderr,
1372 "Realloc of %p which wasn't allocated with malloc\n",
1373 ptr);
1374 abort ();
1377 mem_delete (m);
1380 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1382 /* Prevent malloc from registering blocks. */
1383 dont_register_blocks = 1;
1384 #endif /* GC_MALLOC_CHECK */
1386 value = realloc (ptr, size);
1388 #ifdef GC_MALLOC_CHECK
1389 dont_register_blocks = 0;
1392 struct mem_node *m = mem_find (value);
1393 if (m != MEM_NIL)
1395 fprintf (stderr, "Realloc returns memory that is already in use\n");
1396 abort ();
1399 /* Can't handle zero size regions in the red-black tree. */
1400 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1403 /* fprintf (stderr, "%p <- realloc\n", value); */
1404 #endif /* GC_MALLOC_CHECK */
1406 __realloc_hook = emacs_blocked_realloc;
1407 UNBLOCK_INPUT_ALLOC;
1409 return value;
1413 #ifdef HAVE_PTHREAD
1414 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1415 normal malloc. Some thread implementations need this as they call
1416 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1417 calls malloc because it is the first call, and we have an endless loop. */
1419 void
1420 reset_malloc_hooks (void)
1422 __free_hook = old_free_hook;
1423 __malloc_hook = old_malloc_hook;
1424 __realloc_hook = old_realloc_hook;
1426 #endif /* HAVE_PTHREAD */
1429 /* Called from main to set up malloc to use our hooks. */
1431 void
1432 uninterrupt_malloc (void)
1434 #ifdef HAVE_PTHREAD
1435 #ifdef DOUG_LEA_MALLOC
1436 pthread_mutexattr_t attr;
1438 /* GLIBC has a faster way to do this, but let's keep it portable.
1439 This is according to the Single UNIX Specification. */
1440 pthread_mutexattr_init (&attr);
1441 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1442 pthread_mutex_init (&alloc_mutex, &attr);
1443 #else /* !DOUG_LEA_MALLOC */
1444 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1445 and the bundled gmalloc.c doesn't require it. */
1446 pthread_mutex_init (&alloc_mutex, NULL);
1447 #endif /* !DOUG_LEA_MALLOC */
1448 #endif /* HAVE_PTHREAD */
1450 if (__free_hook != emacs_blocked_free)
1451 old_free_hook = __free_hook;
1452 __free_hook = emacs_blocked_free;
1454 if (__malloc_hook != emacs_blocked_malloc)
1455 old_malloc_hook = __malloc_hook;
1456 __malloc_hook = emacs_blocked_malloc;
1458 if (__realloc_hook != emacs_blocked_realloc)
1459 old_realloc_hook = __realloc_hook;
1460 __realloc_hook = emacs_blocked_realloc;
1463 #endif /* not SYNC_INPUT */
1464 #endif /* not SYSTEM_MALLOC */
1468 /***********************************************************************
1469 Interval Allocation
1470 ***********************************************************************/
1472 /* Number of intervals allocated in an interval_block structure.
1473 The 1020 is 1024 minus malloc overhead. */
1475 #define INTERVAL_BLOCK_SIZE \
1476 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1478 /* Intervals are allocated in chunks in form of an interval_block
1479 structure. */
1481 struct interval_block
1483 /* Place `intervals' first, to preserve alignment. */
1484 struct interval intervals[INTERVAL_BLOCK_SIZE];
1485 struct interval_block *next;
1488 /* Current interval block. Its `next' pointer points to older
1489 blocks. */
1491 static struct interval_block *interval_block;
1493 /* Index in interval_block above of the next unused interval
1494 structure. */
1496 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1498 /* Number of free and live intervals. */
1500 static EMACS_INT total_free_intervals, total_intervals;
1502 /* List of free intervals. */
1504 static INTERVAL interval_free_list;
1506 /* Return a new interval. */
1508 INTERVAL
1509 make_interval (void)
1511 INTERVAL val;
1513 /* eassert (!handling_signal); */
1515 MALLOC_BLOCK_INPUT;
1517 if (interval_free_list)
1519 val = interval_free_list;
1520 interval_free_list = INTERVAL_PARENT (interval_free_list);
1522 else
1524 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1526 struct interval_block *newi
1527 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1529 newi->next = interval_block;
1530 interval_block = newi;
1531 interval_block_index = 0;
1532 total_free_intervals += INTERVAL_BLOCK_SIZE;
1534 val = &interval_block->intervals[interval_block_index++];
1537 MALLOC_UNBLOCK_INPUT;
1539 consing_since_gc += sizeof (struct interval);
1540 intervals_consed++;
1541 total_free_intervals--;
1542 RESET_INTERVAL (val);
1543 val->gcmarkbit = 0;
1544 return val;
1548 /* Mark Lisp objects in interval I. */
1550 static void
1551 mark_interval (register INTERVAL i, Lisp_Object dummy)
1553 /* Intervals should never be shared. So, if extra internal checking is
1554 enabled, GC aborts if it seems to have visited an interval twice. */
1555 eassert (!i->gcmarkbit);
1556 i->gcmarkbit = 1;
1557 mark_object (i->plist);
1560 /* Mark the interval tree rooted in I. */
1562 #define MARK_INTERVAL_TREE(i) \
1563 do { \
1564 if (i && !i->gcmarkbit) \
1565 traverse_intervals_noorder (i, mark_interval, Qnil); \
1566 } while (0)
1568 /***********************************************************************
1569 String Allocation
1570 ***********************************************************************/
1572 /* Lisp_Strings are allocated in string_block structures. When a new
1573 string_block is allocated, all the Lisp_Strings it contains are
1574 added to a free-list string_free_list. When a new Lisp_String is
1575 needed, it is taken from that list. During the sweep phase of GC,
1576 string_blocks that are entirely free are freed, except two which
1577 we keep.
1579 String data is allocated from sblock structures. Strings larger
1580 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1581 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1583 Sblocks consist internally of sdata structures, one for each
1584 Lisp_String. The sdata structure points to the Lisp_String it
1585 belongs to. The Lisp_String points back to the `u.data' member of
1586 its sdata structure.
1588 When a Lisp_String is freed during GC, it is put back on
1589 string_free_list, and its `data' member and its sdata's `string'
1590 pointer is set to null. The size of the string is recorded in the
1591 `u.nbytes' member of the sdata. So, sdata structures that are no
1592 longer used, can be easily recognized, and it's easy to compact the
1593 sblocks of small strings which we do in compact_small_strings. */
1595 /* Size in bytes of an sblock structure used for small strings. This
1596 is 8192 minus malloc overhead. */
1598 #define SBLOCK_SIZE 8188
1600 /* Strings larger than this are considered large strings. String data
1601 for large strings is allocated from individual sblocks. */
1603 #define LARGE_STRING_BYTES 1024
1605 /* Structure describing string memory sub-allocated from an sblock.
1606 This is where the contents of Lisp strings are stored. */
1608 struct sdata
1610 /* Back-pointer to the string this sdata belongs to. If null, this
1611 structure is free, and the NBYTES member of the union below
1612 contains the string's byte size (the same value that STRING_BYTES
1613 would return if STRING were non-null). If non-null, STRING_BYTES
1614 (STRING) is the size of the data, and DATA contains the string's
1615 contents. */
1616 struct Lisp_String *string;
1618 #ifdef GC_CHECK_STRING_BYTES
1620 ptrdiff_t nbytes;
1621 unsigned char data[1];
1623 #define SDATA_NBYTES(S) (S)->nbytes
1624 #define SDATA_DATA(S) (S)->data
1625 #define SDATA_SELECTOR(member) member
1627 #else /* not GC_CHECK_STRING_BYTES */
1629 union
1631 /* When STRING is non-null. */
1632 unsigned char data[1];
1634 /* When STRING is null. */
1635 ptrdiff_t nbytes;
1636 } u;
1638 #define SDATA_NBYTES(S) (S)->u.nbytes
1639 #define SDATA_DATA(S) (S)->u.data
1640 #define SDATA_SELECTOR(member) u.member
1642 #endif /* not GC_CHECK_STRING_BYTES */
1644 #define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
1648 /* Structure describing a block of memory which is sub-allocated to
1649 obtain string data memory for strings. Blocks for small strings
1650 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1651 as large as needed. */
1653 struct sblock
1655 /* Next in list. */
1656 struct sblock *next;
1658 /* Pointer to the next free sdata block. This points past the end
1659 of the sblock if there isn't any space left in this block. */
1660 struct sdata *next_free;
1662 /* Start of data. */
1663 struct sdata first_data;
1666 /* Number of Lisp strings in a string_block structure. The 1020 is
1667 1024 minus malloc overhead. */
1669 #define STRING_BLOCK_SIZE \
1670 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1672 /* Structure describing a block from which Lisp_String structures
1673 are allocated. */
1675 struct string_block
1677 /* Place `strings' first, to preserve alignment. */
1678 struct Lisp_String strings[STRING_BLOCK_SIZE];
1679 struct string_block *next;
1682 /* Head and tail of the list of sblock structures holding Lisp string
1683 data. We always allocate from current_sblock. The NEXT pointers
1684 in the sblock structures go from oldest_sblock to current_sblock. */
1686 static struct sblock *oldest_sblock, *current_sblock;
1688 /* List of sblocks for large strings. */
1690 static struct sblock *large_sblocks;
1692 /* List of string_block structures. */
1694 static struct string_block *string_blocks;
1696 /* Free-list of Lisp_Strings. */
1698 static struct Lisp_String *string_free_list;
1700 /* Number of live and free Lisp_Strings. */
1702 static EMACS_INT total_strings, total_free_strings;
1704 /* Number of bytes used by live strings. */
1706 static EMACS_INT total_string_bytes;
1708 /* Given a pointer to a Lisp_String S which is on the free-list
1709 string_free_list, return a pointer to its successor in the
1710 free-list. */
1712 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1714 /* Return a pointer to the sdata structure belonging to Lisp string S.
1715 S must be live, i.e. S->data must not be null. S->data is actually
1716 a pointer to the `u.data' member of its sdata structure; the
1717 structure starts at a constant offset in front of that. */
1719 #define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
1722 #ifdef GC_CHECK_STRING_OVERRUN
1724 /* We check for overrun in string data blocks by appending a small
1725 "cookie" after each allocated string data block, and check for the
1726 presence of this cookie during GC. */
1728 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1729 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1730 { '\xde', '\xad', '\xbe', '\xef' };
1732 #else
1733 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1734 #endif
1736 /* Value is the size of an sdata structure large enough to hold NBYTES
1737 bytes of string data. The value returned includes a terminating
1738 NUL byte, the size of the sdata structure, and padding. */
1740 #ifdef GC_CHECK_STRING_BYTES
1742 #define SDATA_SIZE(NBYTES) \
1743 ((SDATA_DATA_OFFSET \
1744 + (NBYTES) + 1 \
1745 + sizeof (ptrdiff_t) - 1) \
1746 & ~(sizeof (ptrdiff_t) - 1))
1748 #else /* not GC_CHECK_STRING_BYTES */
1750 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1751 less than the size of that member. The 'max' is not needed when
1752 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1753 alignment code reserves enough space. */
1755 #define SDATA_SIZE(NBYTES) \
1756 ((SDATA_DATA_OFFSET \
1757 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1758 ? NBYTES \
1759 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1760 + 1 \
1761 + sizeof (ptrdiff_t) - 1) \
1762 & ~(sizeof (ptrdiff_t) - 1))
1764 #endif /* not GC_CHECK_STRING_BYTES */
1766 /* Extra bytes to allocate for each string. */
1768 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1770 /* Exact bound on the number of bytes in a string, not counting the
1771 terminating null. A string cannot contain more bytes than
1772 STRING_BYTES_BOUND, nor can it be so long that the size_t
1773 arithmetic in allocate_string_data would overflow while it is
1774 calculating a value to be passed to malloc. */
1775 static ptrdiff_t const STRING_BYTES_MAX =
1776 min (STRING_BYTES_BOUND,
1777 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1778 - GC_STRING_EXTRA
1779 - offsetof (struct sblock, first_data)
1780 - SDATA_DATA_OFFSET)
1781 & ~(sizeof (EMACS_INT) - 1)));
1783 /* Initialize string allocation. Called from init_alloc_once. */
1785 static void
1786 init_strings (void)
1788 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1789 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1793 #ifdef GC_CHECK_STRING_BYTES
1795 static int check_string_bytes_count;
1797 /* Like STRING_BYTES, but with debugging check. Can be
1798 called during GC, so pay attention to the mark bit. */
1800 ptrdiff_t
1801 string_bytes (struct Lisp_String *s)
1803 ptrdiff_t nbytes =
1804 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1806 if (!PURE_POINTER_P (s)
1807 && s->data
1808 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1809 abort ();
1810 return nbytes;
1813 /* Check validity of Lisp strings' string_bytes member in B. */
1815 static void
1816 check_sblock (struct sblock *b)
1818 struct sdata *from, *end, *from_end;
1820 end = b->next_free;
1822 for (from = &b->first_data; from < end; from = from_end)
1824 /* Compute the next FROM here because copying below may
1825 overwrite data we need to compute it. */
1826 ptrdiff_t nbytes;
1828 /* Check that the string size recorded in the string is the
1829 same as the one recorded in the sdata structure. */
1830 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1831 : SDATA_NBYTES (from));
1832 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1837 /* Check validity of Lisp strings' string_bytes member. ALL_P
1838 means check all strings, otherwise check only most
1839 recently allocated strings. Used for hunting a bug. */
1841 static void
1842 check_string_bytes (bool all_p)
1844 if (all_p)
1846 struct sblock *b;
1848 for (b = large_sblocks; b; b = b->next)
1850 struct Lisp_String *s = b->first_data.string;
1851 if (s)
1852 string_bytes (s);
1855 for (b = oldest_sblock; b; b = b->next)
1856 check_sblock (b);
1858 else if (current_sblock)
1859 check_sblock (current_sblock);
1862 #else /* not GC_CHECK_STRING_BYTES */
1864 #define check_string_bytes(all) ((void) 0)
1866 #endif /* GC_CHECK_STRING_BYTES */
1868 #ifdef GC_CHECK_STRING_FREE_LIST
1870 /* Walk through the string free list looking for bogus next pointers.
1871 This may catch buffer overrun from a previous string. */
1873 static void
1874 check_string_free_list (void)
1876 struct Lisp_String *s;
1878 /* Pop a Lisp_String off the free-list. */
1879 s = string_free_list;
1880 while (s != NULL)
1882 if ((uintptr_t) s < 1024)
1883 abort ();
1884 s = NEXT_FREE_LISP_STRING (s);
1887 #else
1888 #define check_string_free_list()
1889 #endif
1891 /* Return a new Lisp_String. */
1893 static struct Lisp_String *
1894 allocate_string (void)
1896 struct Lisp_String *s;
1898 /* eassert (!handling_signal); */
1900 MALLOC_BLOCK_INPUT;
1902 /* If the free-list is empty, allocate a new string_block, and
1903 add all the Lisp_Strings in it to the free-list. */
1904 if (string_free_list == NULL)
1906 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1907 int i;
1909 b->next = string_blocks;
1910 string_blocks = b;
1912 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1914 s = b->strings + i;
1915 /* Every string on a free list should have NULL data pointer. */
1916 s->data = NULL;
1917 NEXT_FREE_LISP_STRING (s) = string_free_list;
1918 string_free_list = s;
1921 total_free_strings += STRING_BLOCK_SIZE;
1924 check_string_free_list ();
1926 /* Pop a Lisp_String off the free-list. */
1927 s = string_free_list;
1928 string_free_list = NEXT_FREE_LISP_STRING (s);
1930 MALLOC_UNBLOCK_INPUT;
1932 --total_free_strings;
1933 ++total_strings;
1934 ++strings_consed;
1935 consing_since_gc += sizeof *s;
1937 #ifdef GC_CHECK_STRING_BYTES
1938 if (!noninteractive)
1940 if (++check_string_bytes_count == 200)
1942 check_string_bytes_count = 0;
1943 check_string_bytes (1);
1945 else
1946 check_string_bytes (0);
1948 #endif /* GC_CHECK_STRING_BYTES */
1950 return s;
1954 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1955 plus a NUL byte at the end. Allocate an sdata structure for S, and
1956 set S->data to its `u.data' member. Store a NUL byte at the end of
1957 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1958 S->data if it was initially non-null. */
1960 void
1961 allocate_string_data (struct Lisp_String *s,
1962 EMACS_INT nchars, EMACS_INT nbytes)
1964 struct sdata *data, *old_data;
1965 struct sblock *b;
1966 ptrdiff_t needed, old_nbytes;
1968 if (STRING_BYTES_MAX < nbytes)
1969 string_overflow ();
1971 /* Determine the number of bytes needed to store NBYTES bytes
1972 of string data. */
1973 needed = SDATA_SIZE (nbytes);
1974 if (s->data)
1976 old_data = SDATA_OF_STRING (s);
1977 old_nbytes = STRING_BYTES (s);
1979 else
1980 old_data = NULL;
1982 MALLOC_BLOCK_INPUT;
1984 if (nbytes > LARGE_STRING_BYTES)
1986 size_t size = offsetof (struct sblock, first_data) + needed;
1988 #ifdef DOUG_LEA_MALLOC
1989 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1990 because mapped region contents are not preserved in
1991 a dumped Emacs.
1993 In case you think of allowing it in a dumped Emacs at the
1994 cost of not being able to re-dump, there's another reason:
1995 mmap'ed data typically have an address towards the top of the
1996 address space, which won't fit into an EMACS_INT (at least on
1997 32-bit systems with the current tagging scheme). --fx */
1998 mallopt (M_MMAP_MAX, 0);
1999 #endif
2001 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
2003 #ifdef DOUG_LEA_MALLOC
2004 /* Back to a reasonable maximum of mmap'ed areas. */
2005 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2006 #endif
2008 b->next_free = &b->first_data;
2009 b->first_data.string = NULL;
2010 b->next = large_sblocks;
2011 large_sblocks = b;
2013 else if (current_sblock == NULL
2014 || (((char *) current_sblock + SBLOCK_SIZE
2015 - (char *) current_sblock->next_free)
2016 < (needed + GC_STRING_EXTRA)))
2018 /* Not enough room in the current sblock. */
2019 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2020 b->next_free = &b->first_data;
2021 b->first_data.string = NULL;
2022 b->next = NULL;
2024 if (current_sblock)
2025 current_sblock->next = b;
2026 else
2027 oldest_sblock = b;
2028 current_sblock = b;
2030 else
2031 b = current_sblock;
2033 data = b->next_free;
2034 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2036 MALLOC_UNBLOCK_INPUT;
2038 data->string = s;
2039 s->data = SDATA_DATA (data);
2040 #ifdef GC_CHECK_STRING_BYTES
2041 SDATA_NBYTES (data) = nbytes;
2042 #endif
2043 s->size = nchars;
2044 s->size_byte = nbytes;
2045 s->data[nbytes] = '\0';
2046 #ifdef GC_CHECK_STRING_OVERRUN
2047 memcpy ((char *) data + needed, string_overrun_cookie,
2048 GC_STRING_OVERRUN_COOKIE_SIZE);
2049 #endif
2051 /* Note that Faset may call to this function when S has already data
2052 assigned. In this case, mark data as free by setting it's string
2053 back-pointer to null, and record the size of the data in it. */
2054 if (old_data)
2056 SDATA_NBYTES (old_data) = old_nbytes;
2057 old_data->string = NULL;
2060 consing_since_gc += needed;
2064 /* Sweep and compact strings. */
2066 static void
2067 sweep_strings (void)
2069 struct string_block *b, *next;
2070 struct string_block *live_blocks = NULL;
2072 string_free_list = NULL;
2073 total_strings = total_free_strings = 0;
2074 total_string_bytes = 0;
2076 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2077 for (b = string_blocks; b; b = next)
2079 int i, nfree = 0;
2080 struct Lisp_String *free_list_before = string_free_list;
2082 next = b->next;
2084 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2086 struct Lisp_String *s = b->strings + i;
2088 if (s->data)
2090 /* String was not on free-list before. */
2091 if (STRING_MARKED_P (s))
2093 /* String is live; unmark it and its intervals. */
2094 UNMARK_STRING (s);
2096 /* Do not use string_(set|get)_intervals here. */
2097 s->intervals = balance_intervals (s->intervals);
2099 ++total_strings;
2100 total_string_bytes += STRING_BYTES (s);
2102 else
2104 /* String is dead. Put it on the free-list. */
2105 struct sdata *data = SDATA_OF_STRING (s);
2107 /* Save the size of S in its sdata so that we know
2108 how large that is. Reset the sdata's string
2109 back-pointer so that we know it's free. */
2110 #ifdef GC_CHECK_STRING_BYTES
2111 if (string_bytes (s) != SDATA_NBYTES (data))
2112 abort ();
2113 #else
2114 data->u.nbytes = STRING_BYTES (s);
2115 #endif
2116 data->string = NULL;
2118 /* Reset the strings's `data' member so that we
2119 know it's free. */
2120 s->data = NULL;
2122 /* Put the string on the free-list. */
2123 NEXT_FREE_LISP_STRING (s) = string_free_list;
2124 string_free_list = s;
2125 ++nfree;
2128 else
2130 /* S was on the free-list before. Put it there again. */
2131 NEXT_FREE_LISP_STRING (s) = string_free_list;
2132 string_free_list = s;
2133 ++nfree;
2137 /* Free blocks that contain free Lisp_Strings only, except
2138 the first two of them. */
2139 if (nfree == STRING_BLOCK_SIZE
2140 && total_free_strings > STRING_BLOCK_SIZE)
2142 lisp_free (b);
2143 string_free_list = free_list_before;
2145 else
2147 total_free_strings += nfree;
2148 b->next = live_blocks;
2149 live_blocks = b;
2153 check_string_free_list ();
2155 string_blocks = live_blocks;
2156 free_large_strings ();
2157 compact_small_strings ();
2159 check_string_free_list ();
2163 /* Free dead large strings. */
2165 static void
2166 free_large_strings (void)
2168 struct sblock *b, *next;
2169 struct sblock *live_blocks = NULL;
2171 for (b = large_sblocks; b; b = next)
2173 next = b->next;
2175 if (b->first_data.string == NULL)
2176 lisp_free (b);
2177 else
2179 b->next = live_blocks;
2180 live_blocks = b;
2184 large_sblocks = live_blocks;
2188 /* Compact data of small strings. Free sblocks that don't contain
2189 data of live strings after compaction. */
2191 static void
2192 compact_small_strings (void)
2194 struct sblock *b, *tb, *next;
2195 struct sdata *from, *to, *end, *tb_end;
2196 struct sdata *to_end, *from_end;
2198 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2199 to, and TB_END is the end of TB. */
2200 tb = oldest_sblock;
2201 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2202 to = &tb->first_data;
2204 /* Step through the blocks from the oldest to the youngest. We
2205 expect that old blocks will stabilize over time, so that less
2206 copying will happen this way. */
2207 for (b = oldest_sblock; b; b = b->next)
2209 end = b->next_free;
2210 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2212 for (from = &b->first_data; from < end; from = from_end)
2214 /* Compute the next FROM here because copying below may
2215 overwrite data we need to compute it. */
2216 ptrdiff_t nbytes;
2217 struct Lisp_String *s = from->string;
2219 #ifdef GC_CHECK_STRING_BYTES
2220 /* Check that the string size recorded in the string is the
2221 same as the one recorded in the sdata structure. */
2222 if (s && string_bytes (s) != SDATA_NBYTES (from))
2223 abort ();
2224 #endif /* GC_CHECK_STRING_BYTES */
2226 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
2227 eassert (nbytes <= LARGE_STRING_BYTES);
2229 nbytes = SDATA_SIZE (nbytes);
2230 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2232 #ifdef GC_CHECK_STRING_OVERRUN
2233 if (memcmp (string_overrun_cookie,
2234 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2235 GC_STRING_OVERRUN_COOKIE_SIZE))
2236 abort ();
2237 #endif
2239 /* Non-NULL S means it's alive. Copy its data. */
2240 if (s)
2242 /* If TB is full, proceed with the next sblock. */
2243 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2244 if (to_end > tb_end)
2246 tb->next_free = to;
2247 tb = tb->next;
2248 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2249 to = &tb->first_data;
2250 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2253 /* Copy, and update the string's `data' pointer. */
2254 if (from != to)
2256 eassert (tb != b || to < from);
2257 memmove (to, from, nbytes + GC_STRING_EXTRA);
2258 to->string->data = SDATA_DATA (to);
2261 /* Advance past the sdata we copied to. */
2262 to = to_end;
2267 /* The rest of the sblocks following TB don't contain live data, so
2268 we can free them. */
2269 for (b = tb->next; b; b = next)
2271 next = b->next;
2272 lisp_free (b);
2275 tb->next_free = to;
2276 tb->next = NULL;
2277 current_sblock = tb;
2280 void
2281 string_overflow (void)
2283 error ("Maximum string size exceeded");
2286 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2287 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2288 LENGTH must be an integer.
2289 INIT must be an integer that represents a character. */)
2290 (Lisp_Object length, Lisp_Object init)
2292 register Lisp_Object val;
2293 register unsigned char *p, *end;
2294 int c;
2295 EMACS_INT nbytes;
2297 CHECK_NATNUM (length);
2298 CHECK_CHARACTER (init);
2300 c = XFASTINT (init);
2301 if (ASCII_CHAR_P (c))
2303 nbytes = XINT (length);
2304 val = make_uninit_string (nbytes);
2305 p = SDATA (val);
2306 end = p + SCHARS (val);
2307 while (p != end)
2308 *p++ = c;
2310 else
2312 unsigned char str[MAX_MULTIBYTE_LENGTH];
2313 int len = CHAR_STRING (c, str);
2314 EMACS_INT string_len = XINT (length);
2316 if (string_len > STRING_BYTES_MAX / len)
2317 string_overflow ();
2318 nbytes = len * string_len;
2319 val = make_uninit_multibyte_string (string_len, nbytes);
2320 p = SDATA (val);
2321 end = p + nbytes;
2322 while (p != end)
2324 memcpy (p, str, len);
2325 p += len;
2329 *p = 0;
2330 return val;
2334 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2335 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2336 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2337 (Lisp_Object length, Lisp_Object init)
2339 register Lisp_Object val;
2340 struct Lisp_Bool_Vector *p;
2341 ptrdiff_t length_in_chars;
2342 EMACS_INT length_in_elts;
2343 int bits_per_value;
2344 int extra_bool_elts = ((bool_header_size - header_size + word_size - 1)
2345 / word_size);
2347 CHECK_NATNUM (length);
2349 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2351 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2353 val = Fmake_vector (make_number (length_in_elts + extra_bool_elts), Qnil);
2355 /* No Lisp_Object to trace in there. */
2356 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0);
2358 p = XBOOL_VECTOR (val);
2359 p->size = XFASTINT (length);
2361 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2362 / BOOL_VECTOR_BITS_PER_CHAR);
2363 if (length_in_chars)
2365 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
2367 /* Clear any extraneous bits in the last byte. */
2368 p->data[length_in_chars - 1]
2369 &= (1 << ((XFASTINT (length) - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1)) - 1;
2372 return val;
2376 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2377 of characters from the contents. This string may be unibyte or
2378 multibyte, depending on the contents. */
2380 Lisp_Object
2381 make_string (const char *contents, ptrdiff_t nbytes)
2383 register Lisp_Object val;
2384 ptrdiff_t nchars, multibyte_nbytes;
2386 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2387 &nchars, &multibyte_nbytes);
2388 if (nbytes == nchars || nbytes != multibyte_nbytes)
2389 /* CONTENTS contains no multibyte sequences or contains an invalid
2390 multibyte sequence. We must make unibyte string. */
2391 val = make_unibyte_string (contents, nbytes);
2392 else
2393 val = make_multibyte_string (contents, nchars, nbytes);
2394 return val;
2398 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2400 Lisp_Object
2401 make_unibyte_string (const char *contents, ptrdiff_t length)
2403 register Lisp_Object val;
2404 val = make_uninit_string (length);
2405 memcpy (SDATA (val), contents, length);
2406 return val;
2410 /* Make a multibyte string from NCHARS characters occupying NBYTES
2411 bytes at CONTENTS. */
2413 Lisp_Object
2414 make_multibyte_string (const char *contents,
2415 ptrdiff_t nchars, ptrdiff_t nbytes)
2417 register Lisp_Object val;
2418 val = make_uninit_multibyte_string (nchars, nbytes);
2419 memcpy (SDATA (val), contents, nbytes);
2420 return val;
2424 /* Make a string from NCHARS characters occupying NBYTES bytes at
2425 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2427 Lisp_Object
2428 make_string_from_bytes (const char *contents,
2429 ptrdiff_t nchars, ptrdiff_t nbytes)
2431 register Lisp_Object val;
2432 val = make_uninit_multibyte_string (nchars, nbytes);
2433 memcpy (SDATA (val), contents, nbytes);
2434 if (SBYTES (val) == SCHARS (val))
2435 STRING_SET_UNIBYTE (val);
2436 return val;
2440 /* Make a string from NCHARS characters occupying NBYTES bytes at
2441 CONTENTS. The argument MULTIBYTE controls whether to label the
2442 string as multibyte. If NCHARS is negative, it counts the number of
2443 characters by itself. */
2445 Lisp_Object
2446 make_specified_string (const char *contents,
2447 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2449 Lisp_Object val;
2451 if (nchars < 0)
2453 if (multibyte)
2454 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2455 nbytes);
2456 else
2457 nchars = nbytes;
2459 val = make_uninit_multibyte_string (nchars, nbytes);
2460 memcpy (SDATA (val), contents, nbytes);
2461 if (!multibyte)
2462 STRING_SET_UNIBYTE (val);
2463 return val;
2467 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2468 occupying LENGTH bytes. */
2470 Lisp_Object
2471 make_uninit_string (EMACS_INT length)
2473 Lisp_Object val;
2475 if (!length)
2476 return empty_unibyte_string;
2477 val = make_uninit_multibyte_string (length, length);
2478 STRING_SET_UNIBYTE (val);
2479 return val;
2483 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2484 which occupy NBYTES bytes. */
2486 Lisp_Object
2487 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2489 Lisp_Object string;
2490 struct Lisp_String *s;
2492 if (nchars < 0)
2493 abort ();
2494 if (!nbytes)
2495 return empty_multibyte_string;
2497 s = allocate_string ();
2498 s->intervals = NULL;
2499 allocate_string_data (s, nchars, nbytes);
2500 XSETSTRING (string, s);
2501 string_chars_consed += nbytes;
2502 return string;
2505 /* Print arguments to BUF according to a FORMAT, then return
2506 a Lisp_String initialized with the data from BUF. */
2508 Lisp_Object
2509 make_formatted_string (char *buf, const char *format, ...)
2511 va_list ap;
2512 int length;
2514 va_start (ap, format);
2515 length = vsprintf (buf, format, ap);
2516 va_end (ap);
2517 return make_string (buf, length);
2521 /***********************************************************************
2522 Float Allocation
2523 ***********************************************************************/
2525 /* We store float cells inside of float_blocks, allocating a new
2526 float_block with malloc whenever necessary. Float cells reclaimed
2527 by GC are put on a free list to be reallocated before allocating
2528 any new float cells from the latest float_block. */
2530 #define FLOAT_BLOCK_SIZE \
2531 (((BLOCK_BYTES - sizeof (struct float_block *) \
2532 /* The compiler might add padding at the end. */ \
2533 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2534 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2536 #define GETMARKBIT(block,n) \
2537 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2538 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2539 & 1)
2541 #define SETMARKBIT(block,n) \
2542 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2543 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2545 #define UNSETMARKBIT(block,n) \
2546 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2547 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2549 #define FLOAT_BLOCK(fptr) \
2550 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2552 #define FLOAT_INDEX(fptr) \
2553 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2555 struct float_block
2557 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2558 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2559 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2560 struct float_block *next;
2563 #define FLOAT_MARKED_P(fptr) \
2564 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2566 #define FLOAT_MARK(fptr) \
2567 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2569 #define FLOAT_UNMARK(fptr) \
2570 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2572 /* Current float_block. */
2574 static struct float_block *float_block;
2576 /* Index of first unused Lisp_Float in the current float_block. */
2578 static int float_block_index = FLOAT_BLOCK_SIZE;
2580 /* Free-list of Lisp_Floats. */
2582 static struct Lisp_Float *float_free_list;
2584 /* Return a new float object with value FLOAT_VALUE. */
2586 Lisp_Object
2587 make_float (double float_value)
2589 register Lisp_Object val;
2591 /* eassert (!handling_signal); */
2593 MALLOC_BLOCK_INPUT;
2595 if (float_free_list)
2597 /* We use the data field for chaining the free list
2598 so that we won't use the same field that has the mark bit. */
2599 XSETFLOAT (val, float_free_list);
2600 float_free_list = float_free_list->u.chain;
2602 else
2604 if (float_block_index == FLOAT_BLOCK_SIZE)
2606 struct float_block *new
2607 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2608 new->next = float_block;
2609 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2610 float_block = new;
2611 float_block_index = 0;
2612 total_free_floats += FLOAT_BLOCK_SIZE;
2614 XSETFLOAT (val, &float_block->floats[float_block_index]);
2615 float_block_index++;
2618 MALLOC_UNBLOCK_INPUT;
2620 XFLOAT_INIT (val, float_value);
2621 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2622 consing_since_gc += sizeof (struct Lisp_Float);
2623 floats_consed++;
2624 total_free_floats--;
2625 return val;
2630 /***********************************************************************
2631 Cons Allocation
2632 ***********************************************************************/
2634 /* We store cons cells inside of cons_blocks, allocating a new
2635 cons_block with malloc whenever necessary. Cons cells reclaimed by
2636 GC are put on a free list to be reallocated before allocating
2637 any new cons cells from the latest cons_block. */
2639 #define CONS_BLOCK_SIZE \
2640 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2641 /* The compiler might add padding at the end. */ \
2642 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2643 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2645 #define CONS_BLOCK(fptr) \
2646 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2648 #define CONS_INDEX(fptr) \
2649 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2651 struct cons_block
2653 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2654 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2655 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2656 struct cons_block *next;
2659 #define CONS_MARKED_P(fptr) \
2660 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2662 #define CONS_MARK(fptr) \
2663 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2665 #define CONS_UNMARK(fptr) \
2666 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2668 /* Current cons_block. */
2670 static struct cons_block *cons_block;
2672 /* Index of first unused Lisp_Cons in the current block. */
2674 static int cons_block_index = CONS_BLOCK_SIZE;
2676 /* Free-list of Lisp_Cons structures. */
2678 static struct Lisp_Cons *cons_free_list;
2680 /* Explicitly free a cons cell by putting it on the free-list. */
2682 void
2683 free_cons (struct Lisp_Cons *ptr)
2685 ptr->u.chain = cons_free_list;
2686 #if GC_MARK_STACK
2687 ptr->car = Vdead;
2688 #endif
2689 cons_free_list = ptr;
2690 consing_since_gc -= sizeof *ptr;
2691 total_free_conses++;
2694 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2695 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2696 (Lisp_Object car, Lisp_Object cdr)
2698 register Lisp_Object val;
2700 /* eassert (!handling_signal); */
2702 MALLOC_BLOCK_INPUT;
2704 if (cons_free_list)
2706 /* We use the cdr for chaining the free list
2707 so that we won't use the same field that has the mark bit. */
2708 XSETCONS (val, cons_free_list);
2709 cons_free_list = cons_free_list->u.chain;
2711 else
2713 if (cons_block_index == CONS_BLOCK_SIZE)
2715 struct cons_block *new
2716 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2717 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2718 new->next = cons_block;
2719 cons_block = new;
2720 cons_block_index = 0;
2721 total_free_conses += CONS_BLOCK_SIZE;
2723 XSETCONS (val, &cons_block->conses[cons_block_index]);
2724 cons_block_index++;
2727 MALLOC_UNBLOCK_INPUT;
2729 XSETCAR (val, car);
2730 XSETCDR (val, cdr);
2731 eassert (!CONS_MARKED_P (XCONS (val)));
2732 consing_since_gc += sizeof (struct Lisp_Cons);
2733 total_free_conses--;
2734 cons_cells_consed++;
2735 return val;
2738 #ifdef GC_CHECK_CONS_LIST
2739 /* Get an error now if there's any junk in the cons free list. */
2740 void
2741 check_cons_list (void)
2743 struct Lisp_Cons *tail = cons_free_list;
2745 while (tail)
2746 tail = tail->u.chain;
2748 #endif
2750 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2752 Lisp_Object
2753 list1 (Lisp_Object arg1)
2755 return Fcons (arg1, Qnil);
2758 Lisp_Object
2759 list2 (Lisp_Object arg1, Lisp_Object arg2)
2761 return Fcons (arg1, Fcons (arg2, Qnil));
2765 Lisp_Object
2766 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2768 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2772 Lisp_Object
2773 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2775 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2779 Lisp_Object
2780 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2782 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2783 Fcons (arg5, Qnil)))));
2786 /* Make a list of COUNT Lisp_Objects, where ARG is the
2787 first one. Allocate conses from pure space if TYPE
2788 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2790 Lisp_Object
2791 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2793 va_list ap;
2794 ptrdiff_t i;
2795 Lisp_Object val, *objp;
2797 /* Change to SAFE_ALLOCA if you hit this eassert. */
2798 eassert (count <= MAX_ALLOCA / word_size);
2800 objp = alloca (count * word_size);
2801 objp[0] = arg;
2802 va_start (ap, arg);
2803 for (i = 1; i < count; i++)
2804 objp[i] = va_arg (ap, Lisp_Object);
2805 va_end (ap);
2807 for (val = Qnil, i = count - 1; i >= 0; i--)
2809 if (type == CONSTYPE_PURE)
2810 val = pure_cons (objp[i], val);
2811 else if (type == CONSTYPE_HEAP)
2812 val = Fcons (objp[i], val);
2813 else
2814 abort ();
2816 return val;
2819 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2820 doc: /* Return a newly created list with specified arguments as elements.
2821 Any number of arguments, even zero arguments, are allowed.
2822 usage: (list &rest OBJECTS) */)
2823 (ptrdiff_t nargs, Lisp_Object *args)
2825 register Lisp_Object val;
2826 val = Qnil;
2828 while (nargs > 0)
2830 nargs--;
2831 val = Fcons (args[nargs], val);
2833 return val;
2837 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2838 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2839 (register Lisp_Object length, Lisp_Object init)
2841 register Lisp_Object val;
2842 register EMACS_INT size;
2844 CHECK_NATNUM (length);
2845 size = XFASTINT (length);
2847 val = Qnil;
2848 while (size > 0)
2850 val = Fcons (init, val);
2851 --size;
2853 if (size > 0)
2855 val = Fcons (init, val);
2856 --size;
2858 if (size > 0)
2860 val = Fcons (init, val);
2861 --size;
2863 if (size > 0)
2865 val = Fcons (init, val);
2866 --size;
2868 if (size > 0)
2870 val = Fcons (init, val);
2871 --size;
2877 QUIT;
2880 return val;
2885 /***********************************************************************
2886 Vector Allocation
2887 ***********************************************************************/
2889 /* This value is balanced well enough to avoid too much internal overhead
2890 for the most common cases; it's not required to be a power of two, but
2891 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2893 #define VECTOR_BLOCK_SIZE 4096
2895 /* Align allocation request sizes to be a multiple of ROUNDUP_SIZE. */
2896 enum
2898 roundup_size = COMMON_MULTIPLE (word_size, USE_LSB_TAG ? GCALIGNMENT : 1)
2901 /* ROUNDUP_SIZE must be a power of 2. */
2902 verify ((roundup_size & (roundup_size - 1)) == 0);
2904 /* Verify assumptions described above. */
2905 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2906 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2908 /* Round up X to nearest mult-of-ROUNDUP_SIZE. */
2910 #define vroundup(x) (((x) + (roundup_size - 1)) & ~(roundup_size - 1))
2912 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2914 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup (sizeof (void *)))
2916 /* Size of the minimal vector allocated from block. */
2918 #define VBLOCK_BYTES_MIN vroundup (sizeof (struct Lisp_Vector))
2920 /* Size of the largest vector allocated from block. */
2922 #define VBLOCK_BYTES_MAX \
2923 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2925 /* We maintain one free list for each possible block-allocated
2926 vector size, and this is the number of free lists we have. */
2928 #define VECTOR_MAX_FREE_LIST_INDEX \
2929 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2931 /* Common shortcut to advance vector pointer over a block data. */
2933 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2935 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2937 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2939 /* Common shortcut to setup vector on a free list. */
2941 #define SETUP_ON_FREE_LIST(v, nbytes, index) \
2942 do { \
2943 XSETPVECTYPESIZE (v, PVEC_FREE, nbytes); \
2944 eassert ((nbytes) % roundup_size == 0); \
2945 (index) = VINDEX (nbytes); \
2946 eassert ((index) < VECTOR_MAX_FREE_LIST_INDEX); \
2947 (v)->header.next.vector = vector_free_lists[index]; \
2948 vector_free_lists[index] = (v); \
2949 total_free_vector_slots += (nbytes) / word_size; \
2950 } while (0)
2952 struct vector_block
2954 char data[VECTOR_BLOCK_BYTES];
2955 struct vector_block *next;
2958 /* Chain of vector blocks. */
2960 static struct vector_block *vector_blocks;
2962 /* Vector free lists, where NTH item points to a chain of free
2963 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2965 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2967 /* Singly-linked list of large vectors. */
2969 static struct Lisp_Vector *large_vectors;
2971 /* The only vector with 0 slots, allocated from pure space. */
2973 Lisp_Object zero_vector;
2975 /* Number of live vectors. */
2977 static EMACS_INT total_vectors;
2979 /* Total size of live and free vectors, in Lisp_Object units. */
2981 static EMACS_INT total_vector_slots, total_free_vector_slots;
2983 /* Get a new vector block. */
2985 static struct vector_block *
2986 allocate_vector_block (void)
2988 struct vector_block *block = xmalloc (sizeof *block);
2990 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2991 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2992 MEM_TYPE_VECTOR_BLOCK);
2993 #endif
2995 block->next = vector_blocks;
2996 vector_blocks = block;
2997 return block;
3000 /* Called once to initialize vector allocation. */
3002 static void
3003 init_vectors (void)
3005 zero_vector = make_pure_vector (0);
3008 /* Allocate vector from a vector block. */
3010 static struct Lisp_Vector *
3011 allocate_vector_from_block (size_t nbytes)
3013 struct Lisp_Vector *vector, *rest;
3014 struct vector_block *block;
3015 size_t index, restbytes;
3017 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
3018 eassert (nbytes % roundup_size == 0);
3020 /* First, try to allocate from a free list
3021 containing vectors of the requested size. */
3022 index = VINDEX (nbytes);
3023 if (vector_free_lists[index])
3025 vector = vector_free_lists[index];
3026 vector_free_lists[index] = vector->header.next.vector;
3027 vector->header.next.nbytes = nbytes;
3028 total_free_vector_slots -= nbytes / word_size;
3029 return vector;
3032 /* Next, check free lists containing larger vectors. Since
3033 we will split the result, we should have remaining space
3034 large enough to use for one-slot vector at least. */
3035 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
3036 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
3037 if (vector_free_lists[index])
3039 /* This vector is larger than requested. */
3040 vector = vector_free_lists[index];
3041 vector_free_lists[index] = vector->header.next.vector;
3042 vector->header.next.nbytes = nbytes;
3043 total_free_vector_slots -= nbytes / word_size;
3045 /* Excess bytes are used for the smaller vector,
3046 which should be set on an appropriate free list. */
3047 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
3048 eassert (restbytes % roundup_size == 0);
3049 rest = ADVANCE (vector, nbytes);
3050 SETUP_ON_FREE_LIST (rest, restbytes, index);
3051 return vector;
3054 /* Finally, need a new vector block. */
3055 block = allocate_vector_block ();
3057 /* New vector will be at the beginning of this block. */
3058 vector = (struct Lisp_Vector *) block->data;
3059 vector->header.next.nbytes = nbytes;
3061 /* If the rest of space from this block is large enough
3062 for one-slot vector at least, set up it on a free list. */
3063 restbytes = VECTOR_BLOCK_BYTES - nbytes;
3064 if (restbytes >= VBLOCK_BYTES_MIN)
3066 eassert (restbytes % roundup_size == 0);
3067 rest = ADVANCE (vector, nbytes);
3068 SETUP_ON_FREE_LIST (rest, restbytes, index);
3070 return vector;
3073 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
3075 #define VECTOR_IN_BLOCK(vector, block) \
3076 ((char *) (vector) <= (block)->data \
3077 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
3079 /* Number of bytes used by vector-block-allocated object. This is the only
3080 place where we actually use the `nbytes' field of the vector-header.
3081 I.e. we could get rid of the `nbytes' field by computing it based on the
3082 vector-type. */
3084 #define PSEUDOVECTOR_NBYTES(vector) \
3085 (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) \
3086 ? vector->header.size & PSEUDOVECTOR_SIZE_MASK \
3087 : vector->header.next.nbytes)
3089 /* Reclaim space used by unmarked vectors. */
3091 static void
3092 sweep_vectors (void)
3094 struct vector_block *block = vector_blocks, **bprev = &vector_blocks;
3095 struct Lisp_Vector *vector, *next, **vprev = &large_vectors;
3097 total_vectors = total_vector_slots = total_free_vector_slots = 0;
3098 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3100 /* Looking through vector blocks. */
3102 for (block = vector_blocks; block; block = *bprev)
3104 bool free_this_block = 0;
3106 for (vector = (struct Lisp_Vector *) block->data;
3107 VECTOR_IN_BLOCK (vector, block); vector = next)
3109 if (VECTOR_MARKED_P (vector))
3111 VECTOR_UNMARK (vector);
3112 total_vectors++;
3113 total_vector_slots += vector->header.next.nbytes / word_size;
3114 next = ADVANCE (vector, vector->header.next.nbytes);
3116 else
3118 ptrdiff_t nbytes = PSEUDOVECTOR_NBYTES (vector);
3119 ptrdiff_t total_bytes = nbytes;
3121 next = ADVANCE (vector, nbytes);
3123 /* While NEXT is not marked, try to coalesce with VECTOR,
3124 thus making VECTOR of the largest possible size. */
3126 while (VECTOR_IN_BLOCK (next, block))
3128 if (VECTOR_MARKED_P (next))
3129 break;
3130 nbytes = PSEUDOVECTOR_NBYTES (next);
3131 total_bytes += nbytes;
3132 next = ADVANCE (next, nbytes);
3135 eassert (total_bytes % roundup_size == 0);
3137 if (vector == (struct Lisp_Vector *) block->data
3138 && !VECTOR_IN_BLOCK (next, block))
3139 /* This block should be freed because all of it's
3140 space was coalesced into the only free vector. */
3141 free_this_block = 1;
3142 else
3144 int tmp;
3145 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
3150 if (free_this_block)
3152 *bprev = block->next;
3153 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3154 mem_delete (mem_find (block->data));
3155 #endif
3156 xfree (block);
3158 else
3159 bprev = &block->next;
3162 /* Sweep large vectors. */
3164 for (vector = large_vectors; vector; vector = *vprev)
3166 if (VECTOR_MARKED_P (vector))
3168 VECTOR_UNMARK (vector);
3169 total_vectors++;
3170 if (vector->header.size & PSEUDOVECTOR_FLAG)
3172 struct Lisp_Bool_Vector *b = (struct Lisp_Bool_Vector *) vector;
3174 /* All non-bool pseudovectors are small enough to be allocated
3175 from vector blocks. This code should be redesigned if some
3176 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
3177 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
3179 total_vector_slots
3180 += (bool_header_size
3181 + ((b->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
3182 / BOOL_VECTOR_BITS_PER_CHAR)) / word_size;
3184 else
3185 total_vector_slots
3186 += header_size / word_size + vector->header.size;
3187 vprev = &vector->header.next.vector;
3189 else
3191 *vprev = vector->header.next.vector;
3192 lisp_free (vector);
3197 /* Value is a pointer to a newly allocated Lisp_Vector structure
3198 with room for LEN Lisp_Objects. */
3200 static struct Lisp_Vector *
3201 allocate_vectorlike (ptrdiff_t len)
3203 struct Lisp_Vector *p;
3205 MALLOC_BLOCK_INPUT;
3207 /* This gets triggered by code which I haven't bothered to fix. --Stef */
3208 /* eassert (!handling_signal); */
3210 if (len == 0)
3211 p = XVECTOR (zero_vector);
3212 else
3214 size_t nbytes = header_size + len * word_size;
3216 #ifdef DOUG_LEA_MALLOC
3217 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
3218 because mapped region contents are not preserved in
3219 a dumped Emacs. */
3220 mallopt (M_MMAP_MAX, 0);
3221 #endif
3223 if (nbytes <= VBLOCK_BYTES_MAX)
3224 p = allocate_vector_from_block (vroundup (nbytes));
3225 else
3227 p = lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
3228 p->header.next.vector = large_vectors;
3229 large_vectors = p;
3232 #ifdef DOUG_LEA_MALLOC
3233 /* Back to a reasonable maximum of mmap'ed areas. */
3234 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3235 #endif
3237 consing_since_gc += nbytes;
3238 vector_cells_consed += len;
3241 MALLOC_UNBLOCK_INPUT;
3243 return p;
3247 /* Allocate a vector with LEN slots. */
3249 struct Lisp_Vector *
3250 allocate_vector (EMACS_INT len)
3252 struct Lisp_Vector *v;
3253 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3255 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3256 memory_full (SIZE_MAX);
3257 v = allocate_vectorlike (len);
3258 v->header.size = len;
3259 return v;
3263 /* Allocate other vector-like structures. */
3265 struct Lisp_Vector *
3266 allocate_pseudovector (int memlen, int lisplen, int tag)
3268 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3269 int i;
3271 /* Only the first lisplen slots will be traced normally by the GC. */
3272 for (i = 0; i < lisplen; ++i)
3273 v->contents[i] = Qnil;
3275 XSETPVECTYPESIZE (v, tag, lisplen);
3276 return v;
3279 struct buffer *
3280 allocate_buffer (void)
3282 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3284 XSETPVECTYPESIZE (b, PVEC_BUFFER, (offsetof (struct buffer, own_text)
3285 - header_size) / word_size);
3286 /* Note that the fields of B are not initialized. */
3287 return b;
3290 struct Lisp_Hash_Table *
3291 allocate_hash_table (void)
3293 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3296 struct window *
3297 allocate_window (void)
3299 struct window *w;
3301 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3302 /* Users assumes that non-Lisp data is zeroed. */
3303 memset (&w->current_matrix, 0,
3304 sizeof (*w) - offsetof (struct window, current_matrix));
3305 return w;
3308 struct terminal *
3309 allocate_terminal (void)
3311 struct terminal *t;
3313 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3314 /* Users assumes that non-Lisp data is zeroed. */
3315 memset (&t->next_terminal, 0,
3316 sizeof (*t) - offsetof (struct terminal, next_terminal));
3317 return t;
3320 struct frame *
3321 allocate_frame (void)
3323 struct frame *f;
3325 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3326 /* Users assumes that non-Lisp data is zeroed. */
3327 memset (&f->face_cache, 0,
3328 sizeof (*f) - offsetof (struct frame, face_cache));
3329 return f;
3332 struct Lisp_Process *
3333 allocate_process (void)
3335 struct Lisp_Process *p;
3337 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3338 /* Users assumes that non-Lisp data is zeroed. */
3339 memset (&p->pid, 0,
3340 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3341 return p;
3344 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3345 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3346 See also the function `vector'. */)
3347 (register Lisp_Object length, Lisp_Object init)
3349 Lisp_Object vector;
3350 register ptrdiff_t sizei;
3351 register ptrdiff_t i;
3352 register struct Lisp_Vector *p;
3354 CHECK_NATNUM (length);
3356 p = allocate_vector (XFASTINT (length));
3357 sizei = XFASTINT (length);
3358 for (i = 0; i < sizei; i++)
3359 p->contents[i] = init;
3361 XSETVECTOR (vector, p);
3362 return vector;
3366 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3367 doc: /* Return a newly created vector with specified arguments as elements.
3368 Any number of arguments, even zero arguments, are allowed.
3369 usage: (vector &rest OBJECTS) */)
3370 (ptrdiff_t nargs, Lisp_Object *args)
3372 register Lisp_Object len, val;
3373 ptrdiff_t i;
3374 register struct Lisp_Vector *p;
3376 XSETFASTINT (len, nargs);
3377 val = Fmake_vector (len, Qnil);
3378 p = XVECTOR (val);
3379 for (i = 0; i < nargs; i++)
3380 p->contents[i] = args[i];
3381 return val;
3384 void
3385 make_byte_code (struct Lisp_Vector *v)
3387 if (v->header.size > 1 && STRINGP (v->contents[1])
3388 && STRING_MULTIBYTE (v->contents[1]))
3389 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3390 earlier because they produced a raw 8-bit string for byte-code
3391 and now such a byte-code string is loaded as multibyte while
3392 raw 8-bit characters converted to multibyte form. Thus, now we
3393 must convert them back to the original unibyte form. */
3394 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3395 XSETPVECTYPE (v, PVEC_COMPILED);
3398 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3399 doc: /* Create a byte-code object with specified arguments as elements.
3400 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3401 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3402 and (optional) INTERACTIVE-SPEC.
3403 The first four arguments are required; at most six have any
3404 significance.
3405 The ARGLIST can be either like the one of `lambda', in which case the arguments
3406 will be dynamically bound before executing the byte code, or it can be an
3407 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3408 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3409 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3410 argument to catch the left-over arguments. If such an integer is used, the
3411 arguments will not be dynamically bound but will be instead pushed on the
3412 stack before executing the byte-code.
3413 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3414 (ptrdiff_t nargs, Lisp_Object *args)
3416 register Lisp_Object len, val;
3417 ptrdiff_t i;
3418 register struct Lisp_Vector *p;
3420 /* We used to purecopy everything here, if purify-flga was set. This worked
3421 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3422 dangerous, since make-byte-code is used during execution to build
3423 closures, so any closure built during the preload phase would end up
3424 copied into pure space, including its free variables, which is sometimes
3425 just wasteful and other times plainly wrong (e.g. those free vars may want
3426 to be setcar'd). */
3428 XSETFASTINT (len, nargs);
3429 val = Fmake_vector (len, Qnil);
3431 p = XVECTOR (val);
3432 for (i = 0; i < nargs; i++)
3433 p->contents[i] = args[i];
3434 make_byte_code (p);
3435 XSETCOMPILED (val, p);
3436 return val;
3441 /***********************************************************************
3442 Symbol Allocation
3443 ***********************************************************************/
3445 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3446 of the required alignment if LSB tags are used. */
3448 union aligned_Lisp_Symbol
3450 struct Lisp_Symbol s;
3451 #if USE_LSB_TAG
3452 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3453 & -GCALIGNMENT];
3454 #endif
3457 /* Each symbol_block is just under 1020 bytes long, since malloc
3458 really allocates in units of powers of two and uses 4 bytes for its
3459 own overhead. */
3461 #define SYMBOL_BLOCK_SIZE \
3462 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3464 struct symbol_block
3466 /* Place `symbols' first, to preserve alignment. */
3467 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3468 struct symbol_block *next;
3471 /* Current symbol block and index of first unused Lisp_Symbol
3472 structure in it. */
3474 static struct symbol_block *symbol_block;
3475 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3477 /* List of free symbols. */
3479 static struct Lisp_Symbol *symbol_free_list;
3481 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3482 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3483 Its value and function definition are void, and its property list is nil. */)
3484 (Lisp_Object name)
3486 register Lisp_Object val;
3487 register struct Lisp_Symbol *p;
3489 CHECK_STRING (name);
3491 /* eassert (!handling_signal); */
3493 MALLOC_BLOCK_INPUT;
3495 if (symbol_free_list)
3497 XSETSYMBOL (val, symbol_free_list);
3498 symbol_free_list = symbol_free_list->next;
3500 else
3502 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3504 struct symbol_block *new
3505 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3506 new->next = symbol_block;
3507 symbol_block = new;
3508 symbol_block_index = 0;
3509 total_free_symbols += SYMBOL_BLOCK_SIZE;
3511 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3512 symbol_block_index++;
3515 MALLOC_UNBLOCK_INPUT;
3517 p = XSYMBOL (val);
3518 set_symbol_name (val, name);
3519 set_symbol_plist (val, Qnil);
3520 p->redirect = SYMBOL_PLAINVAL;
3521 SET_SYMBOL_VAL (p, Qunbound);
3522 set_symbol_function (val, Qunbound);
3523 set_symbol_next (val, NULL);
3524 p->gcmarkbit = 0;
3525 p->interned = SYMBOL_UNINTERNED;
3526 p->constant = 0;
3527 p->declared_special = 0;
3528 consing_since_gc += sizeof (struct Lisp_Symbol);
3529 symbols_consed++;
3530 total_free_symbols--;
3531 return val;
3536 /***********************************************************************
3537 Marker (Misc) Allocation
3538 ***********************************************************************/
3540 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3541 the required alignment when LSB tags are used. */
3543 union aligned_Lisp_Misc
3545 union Lisp_Misc m;
3546 #if USE_LSB_TAG
3547 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3548 & -GCALIGNMENT];
3549 #endif
3552 /* Allocation of markers and other objects that share that structure.
3553 Works like allocation of conses. */
3555 #define MARKER_BLOCK_SIZE \
3556 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3558 struct marker_block
3560 /* Place `markers' first, to preserve alignment. */
3561 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3562 struct marker_block *next;
3565 static struct marker_block *marker_block;
3566 static int marker_block_index = MARKER_BLOCK_SIZE;
3568 static union Lisp_Misc *marker_free_list;
3570 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3572 static Lisp_Object
3573 allocate_misc (enum Lisp_Misc_Type type)
3575 Lisp_Object val;
3577 /* eassert (!handling_signal); */
3579 MALLOC_BLOCK_INPUT;
3581 if (marker_free_list)
3583 XSETMISC (val, marker_free_list);
3584 marker_free_list = marker_free_list->u_free.chain;
3586 else
3588 if (marker_block_index == MARKER_BLOCK_SIZE)
3590 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3591 new->next = marker_block;
3592 marker_block = new;
3593 marker_block_index = 0;
3594 total_free_markers += MARKER_BLOCK_SIZE;
3596 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3597 marker_block_index++;
3600 MALLOC_UNBLOCK_INPUT;
3602 --total_free_markers;
3603 consing_since_gc += sizeof (union Lisp_Misc);
3604 misc_objects_consed++;
3605 XMISCTYPE (val) = type;
3606 XMISCANY (val)->gcmarkbit = 0;
3607 return val;
3610 /* Free a Lisp_Misc object */
3612 static void
3613 free_misc (Lisp_Object misc)
3615 XMISCTYPE (misc) = Lisp_Misc_Free;
3616 XMISC (misc)->u_free.chain = marker_free_list;
3617 marker_free_list = XMISC (misc);
3618 consing_since_gc -= sizeof (union Lisp_Misc);
3619 total_free_markers++;
3622 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3623 INTEGER. This is used to package C values to call record_unwind_protect.
3624 The unwind function can get the C values back using XSAVE_VALUE. */
3626 Lisp_Object
3627 make_save_value (void *pointer, ptrdiff_t integer)
3629 register Lisp_Object val;
3630 register struct Lisp_Save_Value *p;
3632 val = allocate_misc (Lisp_Misc_Save_Value);
3633 p = XSAVE_VALUE (val);
3634 p->pointer = pointer;
3635 p->integer = integer;
3636 p->dogc = 0;
3637 return val;
3640 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3642 Lisp_Object
3643 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3645 register Lisp_Object overlay;
3647 overlay = allocate_misc (Lisp_Misc_Overlay);
3648 OVERLAY_START (overlay) = start;
3649 OVERLAY_END (overlay) = end;
3650 set_overlay_plist (overlay, plist);
3651 XOVERLAY (overlay)->next = NULL;
3652 return overlay;
3655 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3656 doc: /* Return a newly allocated marker which does not point at any place. */)
3657 (void)
3659 register Lisp_Object val;
3660 register struct Lisp_Marker *p;
3662 val = allocate_misc (Lisp_Misc_Marker);
3663 p = XMARKER (val);
3664 p->buffer = 0;
3665 p->bytepos = 0;
3666 p->charpos = 0;
3667 p->next = NULL;
3668 p->insertion_type = 0;
3669 return val;
3672 /* Return a newly allocated marker which points into BUF
3673 at character position CHARPOS and byte position BYTEPOS. */
3675 Lisp_Object
3676 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3678 Lisp_Object obj;
3679 struct Lisp_Marker *m;
3681 /* No dead buffers here. */
3682 eassert (!NILP (BVAR (buf, name)));
3684 /* Every character is at least one byte. */
3685 eassert (charpos <= bytepos);
3687 obj = allocate_misc (Lisp_Misc_Marker);
3688 m = XMARKER (obj);
3689 m->buffer = buf;
3690 m->charpos = charpos;
3691 m->bytepos = bytepos;
3692 m->insertion_type = 0;
3693 m->next = BUF_MARKERS (buf);
3694 BUF_MARKERS (buf) = m;
3695 return obj;
3698 /* Put MARKER back on the free list after using it temporarily. */
3700 void
3701 free_marker (Lisp_Object marker)
3703 unchain_marker (XMARKER (marker));
3704 free_misc (marker);
3708 /* Return a newly created vector or string with specified arguments as
3709 elements. If all the arguments are characters that can fit
3710 in a string of events, make a string; otherwise, make a vector.
3712 Any number of arguments, even zero arguments, are allowed. */
3714 Lisp_Object
3715 make_event_array (register int nargs, Lisp_Object *args)
3717 int i;
3719 for (i = 0; i < nargs; i++)
3720 /* The things that fit in a string
3721 are characters that are in 0...127,
3722 after discarding the meta bit and all the bits above it. */
3723 if (!INTEGERP (args[i])
3724 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3725 return Fvector (nargs, args);
3727 /* Since the loop exited, we know that all the things in it are
3728 characters, so we can make a string. */
3730 Lisp_Object result;
3732 result = Fmake_string (make_number (nargs), make_number (0));
3733 for (i = 0; i < nargs; i++)
3735 SSET (result, i, XINT (args[i]));
3736 /* Move the meta bit to the right place for a string char. */
3737 if (XINT (args[i]) & CHAR_META)
3738 SSET (result, i, SREF (result, i) | 0x80);
3741 return result;
3747 /************************************************************************
3748 Memory Full Handling
3749 ************************************************************************/
3752 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3753 there may have been size_t overflow so that malloc was never
3754 called, or perhaps malloc was invoked successfully but the
3755 resulting pointer had problems fitting into a tagged EMACS_INT. In
3756 either case this counts as memory being full even though malloc did
3757 not fail. */
3759 void
3760 memory_full (size_t nbytes)
3762 /* Do not go into hysterics merely because a large request failed. */
3763 bool enough_free_memory = 0;
3764 if (SPARE_MEMORY < nbytes)
3766 void *p;
3768 MALLOC_BLOCK_INPUT;
3769 p = malloc (SPARE_MEMORY);
3770 if (p)
3772 free (p);
3773 enough_free_memory = 1;
3775 MALLOC_UNBLOCK_INPUT;
3778 if (! enough_free_memory)
3780 int i;
3782 Vmemory_full = Qt;
3784 memory_full_cons_threshold = sizeof (struct cons_block);
3786 /* The first time we get here, free the spare memory. */
3787 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3788 if (spare_memory[i])
3790 if (i == 0)
3791 free (spare_memory[i]);
3792 else if (i >= 1 && i <= 4)
3793 lisp_align_free (spare_memory[i]);
3794 else
3795 lisp_free (spare_memory[i]);
3796 spare_memory[i] = 0;
3799 /* Record the space now used. When it decreases substantially,
3800 we can refill the memory reserve. */
3801 #if !defined SYSTEM_MALLOC && !defined SYNC_INPUT
3802 bytes_used_when_full = BYTES_USED;
3803 #endif
3806 /* This used to call error, but if we've run out of memory, we could
3807 get infinite recursion trying to build the string. */
3808 xsignal (Qnil, Vmemory_signal_data);
3811 /* If we released our reserve (due to running out of memory),
3812 and we have a fair amount free once again,
3813 try to set aside another reserve in case we run out once more.
3815 This is called when a relocatable block is freed in ralloc.c,
3816 and also directly from this file, in case we're not using ralloc.c. */
3818 void
3819 refill_memory_reserve (void)
3821 #ifndef SYSTEM_MALLOC
3822 if (spare_memory[0] == 0)
3823 spare_memory[0] = malloc (SPARE_MEMORY);
3824 if (spare_memory[1] == 0)
3825 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3826 MEM_TYPE_CONS);
3827 if (spare_memory[2] == 0)
3828 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3829 MEM_TYPE_CONS);
3830 if (spare_memory[3] == 0)
3831 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3832 MEM_TYPE_CONS);
3833 if (spare_memory[4] == 0)
3834 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3835 MEM_TYPE_CONS);
3836 if (spare_memory[5] == 0)
3837 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3838 MEM_TYPE_STRING);
3839 if (spare_memory[6] == 0)
3840 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3841 MEM_TYPE_STRING);
3842 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3843 Vmemory_full = Qnil;
3844 #endif
3847 /************************************************************************
3848 C Stack Marking
3849 ************************************************************************/
3851 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3853 /* Conservative C stack marking requires a method to identify possibly
3854 live Lisp objects given a pointer value. We do this by keeping
3855 track of blocks of Lisp data that are allocated in a red-black tree
3856 (see also the comment of mem_node which is the type of nodes in
3857 that tree). Function lisp_malloc adds information for an allocated
3858 block to the red-black tree with calls to mem_insert, and function
3859 lisp_free removes it with mem_delete. Functions live_string_p etc
3860 call mem_find to lookup information about a given pointer in the
3861 tree, and use that to determine if the pointer points to a Lisp
3862 object or not. */
3864 /* Initialize this part of alloc.c. */
3866 static void
3867 mem_init (void)
3869 mem_z.left = mem_z.right = MEM_NIL;
3870 mem_z.parent = NULL;
3871 mem_z.color = MEM_BLACK;
3872 mem_z.start = mem_z.end = NULL;
3873 mem_root = MEM_NIL;
3877 /* Value is a pointer to the mem_node containing START. Value is
3878 MEM_NIL if there is no node in the tree containing START. */
3880 static inline struct mem_node *
3881 mem_find (void *start)
3883 struct mem_node *p;
3885 if (start < min_heap_address || start > max_heap_address)
3886 return MEM_NIL;
3888 /* Make the search always successful to speed up the loop below. */
3889 mem_z.start = start;
3890 mem_z.end = (char *) start + 1;
3892 p = mem_root;
3893 while (start < p->start || start >= p->end)
3894 p = start < p->start ? p->left : p->right;
3895 return p;
3899 /* Insert a new node into the tree for a block of memory with start
3900 address START, end address END, and type TYPE. Value is a
3901 pointer to the node that was inserted. */
3903 static struct mem_node *
3904 mem_insert (void *start, void *end, enum mem_type type)
3906 struct mem_node *c, *parent, *x;
3908 if (min_heap_address == NULL || start < min_heap_address)
3909 min_heap_address = start;
3910 if (max_heap_address == NULL || end > max_heap_address)
3911 max_heap_address = end;
3913 /* See where in the tree a node for START belongs. In this
3914 particular application, it shouldn't happen that a node is already
3915 present. For debugging purposes, let's check that. */
3916 c = mem_root;
3917 parent = NULL;
3919 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3921 while (c != MEM_NIL)
3923 if (start >= c->start && start < c->end)
3924 abort ();
3925 parent = c;
3926 c = start < c->start ? c->left : c->right;
3929 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3931 while (c != MEM_NIL)
3933 parent = c;
3934 c = start < c->start ? c->left : c->right;
3937 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3939 /* Create a new node. */
3940 #ifdef GC_MALLOC_CHECK
3941 x = _malloc_internal (sizeof *x);
3942 if (x == NULL)
3943 abort ();
3944 #else
3945 x = xmalloc (sizeof *x);
3946 #endif
3947 x->start = start;
3948 x->end = end;
3949 x->type = type;
3950 x->parent = parent;
3951 x->left = x->right = MEM_NIL;
3952 x->color = MEM_RED;
3954 /* Insert it as child of PARENT or install it as root. */
3955 if (parent)
3957 if (start < parent->start)
3958 parent->left = x;
3959 else
3960 parent->right = x;
3962 else
3963 mem_root = x;
3965 /* Re-establish red-black tree properties. */
3966 mem_insert_fixup (x);
3968 return x;
3972 /* Re-establish the red-black properties of the tree, and thereby
3973 balance the tree, after node X has been inserted; X is always red. */
3975 static void
3976 mem_insert_fixup (struct mem_node *x)
3978 while (x != mem_root && x->parent->color == MEM_RED)
3980 /* X is red and its parent is red. This is a violation of
3981 red-black tree property #3. */
3983 if (x->parent == x->parent->parent->left)
3985 /* We're on the left side of our grandparent, and Y is our
3986 "uncle". */
3987 struct mem_node *y = x->parent->parent->right;
3989 if (y->color == MEM_RED)
3991 /* Uncle and parent are red but should be black because
3992 X is red. Change the colors accordingly and proceed
3993 with the grandparent. */
3994 x->parent->color = MEM_BLACK;
3995 y->color = MEM_BLACK;
3996 x->parent->parent->color = MEM_RED;
3997 x = x->parent->parent;
3999 else
4001 /* Parent and uncle have different colors; parent is
4002 red, uncle is black. */
4003 if (x == x->parent->right)
4005 x = x->parent;
4006 mem_rotate_left (x);
4009 x->parent->color = MEM_BLACK;
4010 x->parent->parent->color = MEM_RED;
4011 mem_rotate_right (x->parent->parent);
4014 else
4016 /* This is the symmetrical case of above. */
4017 struct mem_node *y = x->parent->parent->left;
4019 if (y->color == MEM_RED)
4021 x->parent->color = MEM_BLACK;
4022 y->color = MEM_BLACK;
4023 x->parent->parent->color = MEM_RED;
4024 x = x->parent->parent;
4026 else
4028 if (x == x->parent->left)
4030 x = x->parent;
4031 mem_rotate_right (x);
4034 x->parent->color = MEM_BLACK;
4035 x->parent->parent->color = MEM_RED;
4036 mem_rotate_left (x->parent->parent);
4041 /* The root may have been changed to red due to the algorithm. Set
4042 it to black so that property #5 is satisfied. */
4043 mem_root->color = MEM_BLACK;
4047 /* (x) (y)
4048 / \ / \
4049 a (y) ===> (x) c
4050 / \ / \
4051 b c a b */
4053 static void
4054 mem_rotate_left (struct mem_node *x)
4056 struct mem_node *y;
4058 /* Turn y's left sub-tree into x's right sub-tree. */
4059 y = x->right;
4060 x->right = y->left;
4061 if (y->left != MEM_NIL)
4062 y->left->parent = x;
4064 /* Y's parent was x's parent. */
4065 if (y != MEM_NIL)
4066 y->parent = x->parent;
4068 /* Get the parent to point to y instead of x. */
4069 if (x->parent)
4071 if (x == x->parent->left)
4072 x->parent->left = y;
4073 else
4074 x->parent->right = y;
4076 else
4077 mem_root = y;
4079 /* Put x on y's left. */
4080 y->left = x;
4081 if (x != MEM_NIL)
4082 x->parent = y;
4086 /* (x) (Y)
4087 / \ / \
4088 (y) c ===> a (x)
4089 / \ / \
4090 a b b c */
4092 static void
4093 mem_rotate_right (struct mem_node *x)
4095 struct mem_node *y = x->left;
4097 x->left = y->right;
4098 if (y->right != MEM_NIL)
4099 y->right->parent = x;
4101 if (y != MEM_NIL)
4102 y->parent = x->parent;
4103 if (x->parent)
4105 if (x == x->parent->right)
4106 x->parent->right = y;
4107 else
4108 x->parent->left = y;
4110 else
4111 mem_root = y;
4113 y->right = x;
4114 if (x != MEM_NIL)
4115 x->parent = y;
4119 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4121 static void
4122 mem_delete (struct mem_node *z)
4124 struct mem_node *x, *y;
4126 if (!z || z == MEM_NIL)
4127 return;
4129 if (z->left == MEM_NIL || z->right == MEM_NIL)
4130 y = z;
4131 else
4133 y = z->right;
4134 while (y->left != MEM_NIL)
4135 y = y->left;
4138 if (y->left != MEM_NIL)
4139 x = y->left;
4140 else
4141 x = y->right;
4143 x->parent = y->parent;
4144 if (y->parent)
4146 if (y == y->parent->left)
4147 y->parent->left = x;
4148 else
4149 y->parent->right = x;
4151 else
4152 mem_root = x;
4154 if (y != z)
4156 z->start = y->start;
4157 z->end = y->end;
4158 z->type = y->type;
4161 if (y->color == MEM_BLACK)
4162 mem_delete_fixup (x);
4164 #ifdef GC_MALLOC_CHECK
4165 _free_internal (y);
4166 #else
4167 xfree (y);
4168 #endif
4172 /* Re-establish the red-black properties of the tree, after a
4173 deletion. */
4175 static void
4176 mem_delete_fixup (struct mem_node *x)
4178 while (x != mem_root && x->color == MEM_BLACK)
4180 if (x == x->parent->left)
4182 struct mem_node *w = x->parent->right;
4184 if (w->color == MEM_RED)
4186 w->color = MEM_BLACK;
4187 x->parent->color = MEM_RED;
4188 mem_rotate_left (x->parent);
4189 w = x->parent->right;
4192 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4194 w->color = MEM_RED;
4195 x = x->parent;
4197 else
4199 if (w->right->color == MEM_BLACK)
4201 w->left->color = MEM_BLACK;
4202 w->color = MEM_RED;
4203 mem_rotate_right (w);
4204 w = x->parent->right;
4206 w->color = x->parent->color;
4207 x->parent->color = MEM_BLACK;
4208 w->right->color = MEM_BLACK;
4209 mem_rotate_left (x->parent);
4210 x = mem_root;
4213 else
4215 struct mem_node *w = x->parent->left;
4217 if (w->color == MEM_RED)
4219 w->color = MEM_BLACK;
4220 x->parent->color = MEM_RED;
4221 mem_rotate_right (x->parent);
4222 w = x->parent->left;
4225 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4227 w->color = MEM_RED;
4228 x = x->parent;
4230 else
4232 if (w->left->color == MEM_BLACK)
4234 w->right->color = MEM_BLACK;
4235 w->color = MEM_RED;
4236 mem_rotate_left (w);
4237 w = x->parent->left;
4240 w->color = x->parent->color;
4241 x->parent->color = MEM_BLACK;
4242 w->left->color = MEM_BLACK;
4243 mem_rotate_right (x->parent);
4244 x = mem_root;
4249 x->color = MEM_BLACK;
4253 /* Value is non-zero if P is a pointer to a live Lisp string on
4254 the heap. M is a pointer to the mem_block for P. */
4256 static inline bool
4257 live_string_p (struct mem_node *m, void *p)
4259 if (m->type == MEM_TYPE_STRING)
4261 struct string_block *b = (struct string_block *) m->start;
4262 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4264 /* P must point to the start of a Lisp_String structure, and it
4265 must not be on the free-list. */
4266 return (offset >= 0
4267 && offset % sizeof b->strings[0] == 0
4268 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4269 && ((struct Lisp_String *) p)->data != NULL);
4271 else
4272 return 0;
4276 /* Value is non-zero if P is a pointer to a live Lisp cons on
4277 the heap. M is a pointer to the mem_block for P. */
4279 static inline bool
4280 live_cons_p (struct mem_node *m, void *p)
4282 if (m->type == MEM_TYPE_CONS)
4284 struct cons_block *b = (struct cons_block *) m->start;
4285 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4287 /* P must point to the start of a Lisp_Cons, not be
4288 one of the unused cells in the current cons block,
4289 and not be on the free-list. */
4290 return (offset >= 0
4291 && offset % sizeof b->conses[0] == 0
4292 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4293 && (b != cons_block
4294 || offset / sizeof b->conses[0] < cons_block_index)
4295 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4297 else
4298 return 0;
4302 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4303 the heap. M is a pointer to the mem_block for P. */
4305 static inline bool
4306 live_symbol_p (struct mem_node *m, void *p)
4308 if (m->type == MEM_TYPE_SYMBOL)
4310 struct symbol_block *b = (struct symbol_block *) m->start;
4311 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4313 /* P must point to the start of a Lisp_Symbol, not be
4314 one of the unused cells in the current symbol block,
4315 and not be on the free-list. */
4316 return (offset >= 0
4317 && offset % sizeof b->symbols[0] == 0
4318 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4319 && (b != symbol_block
4320 || offset / sizeof b->symbols[0] < symbol_block_index)
4321 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4323 else
4324 return 0;
4328 /* Value is non-zero if P is a pointer to a live Lisp float on
4329 the heap. M is a pointer to the mem_block for P. */
4331 static inline bool
4332 live_float_p (struct mem_node *m, void *p)
4334 if (m->type == MEM_TYPE_FLOAT)
4336 struct float_block *b = (struct float_block *) m->start;
4337 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4339 /* P must point to the start of a Lisp_Float and not be
4340 one of the unused cells in the current float block. */
4341 return (offset >= 0
4342 && offset % sizeof b->floats[0] == 0
4343 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4344 && (b != float_block
4345 || offset / sizeof b->floats[0] < float_block_index));
4347 else
4348 return 0;
4352 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4353 the heap. M is a pointer to the mem_block for P. */
4355 static inline bool
4356 live_misc_p (struct mem_node *m, void *p)
4358 if (m->type == MEM_TYPE_MISC)
4360 struct marker_block *b = (struct marker_block *) m->start;
4361 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4363 /* P must point to the start of a Lisp_Misc, not be
4364 one of the unused cells in the current misc block,
4365 and not be on the free-list. */
4366 return (offset >= 0
4367 && offset % sizeof b->markers[0] == 0
4368 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4369 && (b != marker_block
4370 || offset / sizeof b->markers[0] < marker_block_index)
4371 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4373 else
4374 return 0;
4378 /* Value is non-zero if P is a pointer to a live vector-like object.
4379 M is a pointer to the mem_block for P. */
4381 static inline bool
4382 live_vector_p (struct mem_node *m, void *p)
4384 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4386 /* This memory node corresponds to a vector block. */
4387 struct vector_block *block = (struct vector_block *) m->start;
4388 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4390 /* P is in the block's allocation range. Scan the block
4391 up to P and see whether P points to the start of some
4392 vector which is not on a free list. FIXME: check whether
4393 some allocation patterns (probably a lot of short vectors)
4394 may cause a substantial overhead of this loop. */
4395 while (VECTOR_IN_BLOCK (vector, block)
4396 && vector <= (struct Lisp_Vector *) p)
4398 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE))
4399 vector = ADVANCE (vector, (vector->header.size
4400 & PSEUDOVECTOR_SIZE_MASK));
4401 else if (vector == p)
4402 return 1;
4403 else
4404 vector = ADVANCE (vector, vector->header.next.nbytes);
4407 else if (m->type == MEM_TYPE_VECTORLIKE && p == m->start)
4408 /* This memory node corresponds to a large vector. */
4409 return 1;
4410 return 0;
4414 /* Value is non-zero if P is a pointer to a live buffer. M is a
4415 pointer to the mem_block for P. */
4417 static inline bool
4418 live_buffer_p (struct mem_node *m, void *p)
4420 /* P must point to the start of the block, and the buffer
4421 must not have been killed. */
4422 return (m->type == MEM_TYPE_BUFFER
4423 && p == m->start
4424 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
4427 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4429 #if GC_MARK_STACK
4431 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4433 /* Array of objects that are kept alive because the C stack contains
4434 a pattern that looks like a reference to them . */
4436 #define MAX_ZOMBIES 10
4437 static Lisp_Object zombies[MAX_ZOMBIES];
4439 /* Number of zombie objects. */
4441 static EMACS_INT nzombies;
4443 /* Number of garbage collections. */
4445 static EMACS_INT ngcs;
4447 /* Average percentage of zombies per collection. */
4449 static double avg_zombies;
4451 /* Max. number of live and zombie objects. */
4453 static EMACS_INT max_live, max_zombies;
4455 /* Average number of live objects per GC. */
4457 static double avg_live;
4459 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4460 doc: /* Show information about live and zombie objects. */)
4461 (void)
4463 Lisp_Object args[8], zombie_list = Qnil;
4464 EMACS_INT i;
4465 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4466 zombie_list = Fcons (zombies[i], zombie_list);
4467 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4468 args[1] = make_number (ngcs);
4469 args[2] = make_float (avg_live);
4470 args[3] = make_float (avg_zombies);
4471 args[4] = make_float (avg_zombies / avg_live / 100);
4472 args[5] = make_number (max_live);
4473 args[6] = make_number (max_zombies);
4474 args[7] = zombie_list;
4475 return Fmessage (8, args);
4478 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4481 /* Mark OBJ if we can prove it's a Lisp_Object. */
4483 static inline void
4484 mark_maybe_object (Lisp_Object obj)
4486 void *po;
4487 struct mem_node *m;
4489 if (INTEGERP (obj))
4490 return;
4492 po = (void *) XPNTR (obj);
4493 m = mem_find (po);
4495 if (m != MEM_NIL)
4497 bool mark_p = 0;
4499 switch (XTYPE (obj))
4501 case Lisp_String:
4502 mark_p = (live_string_p (m, po)
4503 && !STRING_MARKED_P ((struct Lisp_String *) po));
4504 break;
4506 case Lisp_Cons:
4507 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4508 break;
4510 case Lisp_Symbol:
4511 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4512 break;
4514 case Lisp_Float:
4515 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4516 break;
4518 case Lisp_Vectorlike:
4519 /* Note: can't check BUFFERP before we know it's a
4520 buffer because checking that dereferences the pointer
4521 PO which might point anywhere. */
4522 if (live_vector_p (m, po))
4523 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4524 else if (live_buffer_p (m, po))
4525 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4526 break;
4528 case Lisp_Misc:
4529 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4530 break;
4532 default:
4533 break;
4536 if (mark_p)
4538 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4539 if (nzombies < MAX_ZOMBIES)
4540 zombies[nzombies] = obj;
4541 ++nzombies;
4542 #endif
4543 mark_object (obj);
4549 /* If P points to Lisp data, mark that as live if it isn't already
4550 marked. */
4552 static inline void
4553 mark_maybe_pointer (void *p)
4555 struct mem_node *m;
4557 /* Quickly rule out some values which can't point to Lisp data.
4558 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4559 Otherwise, assume that Lisp data is aligned on even addresses. */
4560 if ((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2))
4561 return;
4563 m = mem_find (p);
4564 if (m != MEM_NIL)
4566 Lisp_Object obj = Qnil;
4568 switch (m->type)
4570 case MEM_TYPE_NON_LISP:
4571 /* Nothing to do; not a pointer to Lisp memory. */
4572 break;
4574 case MEM_TYPE_BUFFER:
4575 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4576 XSETVECTOR (obj, p);
4577 break;
4579 case MEM_TYPE_CONS:
4580 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4581 XSETCONS (obj, p);
4582 break;
4584 case MEM_TYPE_STRING:
4585 if (live_string_p (m, p)
4586 && !STRING_MARKED_P ((struct Lisp_String *) p))
4587 XSETSTRING (obj, p);
4588 break;
4590 case MEM_TYPE_MISC:
4591 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4592 XSETMISC (obj, p);
4593 break;
4595 case MEM_TYPE_SYMBOL:
4596 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4597 XSETSYMBOL (obj, p);
4598 break;
4600 case MEM_TYPE_FLOAT:
4601 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4602 XSETFLOAT (obj, p);
4603 break;
4605 case MEM_TYPE_VECTORLIKE:
4606 case MEM_TYPE_VECTOR_BLOCK:
4607 if (live_vector_p (m, p))
4609 Lisp_Object tem;
4610 XSETVECTOR (tem, p);
4611 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4612 obj = tem;
4614 break;
4616 default:
4617 abort ();
4620 if (!NILP (obj))
4621 mark_object (obj);
4626 /* Alignment of pointer values. Use alignof, as it sometimes returns
4627 a smaller alignment than GCC's __alignof__ and mark_memory might
4628 miss objects if __alignof__ were used. */
4629 #define GC_POINTER_ALIGNMENT alignof (void *)
4631 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4632 not suffice, which is the typical case. A host where a Lisp_Object is
4633 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4634 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4635 suffice to widen it to to a Lisp_Object and check it that way. */
4636 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4637 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4638 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4639 nor mark_maybe_object can follow the pointers. This should not occur on
4640 any practical porting target. */
4641 # error "MSB type bits straddle pointer-word boundaries"
4642 # endif
4643 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4644 pointer words that hold pointers ORed with type bits. */
4645 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4646 #else
4647 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4648 words that hold unmodified pointers. */
4649 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4650 #endif
4652 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4653 or END+OFFSET..START. */
4655 static void
4656 mark_memory (void *start, void *end)
4657 #if defined (__clang__) && defined (__has_feature)
4658 #if __has_feature(address_sanitizer)
4659 /* Do not allow -faddress-sanitizer to check this function, since it
4660 crosses the function stack boundary, and thus would yield many
4661 false positives. */
4662 __attribute__((no_address_safety_analysis))
4663 #endif
4664 #endif
4666 void **pp;
4667 int i;
4669 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4670 nzombies = 0;
4671 #endif
4673 /* Make START the pointer to the start of the memory region,
4674 if it isn't already. */
4675 if (end < start)
4677 void *tem = start;
4678 start = end;
4679 end = tem;
4682 /* Mark Lisp data pointed to. This is necessary because, in some
4683 situations, the C compiler optimizes Lisp objects away, so that
4684 only a pointer to them remains. Example:
4686 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4689 Lisp_Object obj = build_string ("test");
4690 struct Lisp_String *s = XSTRING (obj);
4691 Fgarbage_collect ();
4692 fprintf (stderr, "test `%s'\n", s->data);
4693 return Qnil;
4696 Here, `obj' isn't really used, and the compiler optimizes it
4697 away. The only reference to the life string is through the
4698 pointer `s'. */
4700 for (pp = start; (void *) pp < end; pp++)
4701 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4703 void *p = *(void **) ((char *) pp + i);
4704 mark_maybe_pointer (p);
4705 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4706 mark_maybe_object (XIL ((intptr_t) p));
4710 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4711 the GCC system configuration. In gcc 3.2, the only systems for
4712 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4713 by others?) and ns32k-pc532-min. */
4715 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4717 static bool setjmp_tested_p;
4718 static int longjmps_done;
4720 #define SETJMP_WILL_LIKELY_WORK "\
4722 Emacs garbage collector has been changed to use conservative stack\n\
4723 marking. Emacs has determined that the method it uses to do the\n\
4724 marking will likely work on your system, but this isn't sure.\n\
4726 If you are a system-programmer, or can get the help of a local wizard\n\
4727 who is, please take a look at the function mark_stack in alloc.c, and\n\
4728 verify that the methods used are appropriate for your system.\n\
4730 Please mail the result to <emacs-devel@gnu.org>.\n\
4733 #define SETJMP_WILL_NOT_WORK "\
4735 Emacs garbage collector has been changed to use conservative stack\n\
4736 marking. Emacs has determined that the default method it uses to do the\n\
4737 marking will not work on your system. We will need a system-dependent\n\
4738 solution for your system.\n\
4740 Please take a look at the function mark_stack in alloc.c, and\n\
4741 try to find a way to make it work on your system.\n\
4743 Note that you may get false negatives, depending on the compiler.\n\
4744 In particular, you need to use -O with GCC for this test.\n\
4746 Please mail the result to <emacs-devel@gnu.org>.\n\
4750 /* Perform a quick check if it looks like setjmp saves registers in a
4751 jmp_buf. Print a message to stderr saying so. When this test
4752 succeeds, this is _not_ a proof that setjmp is sufficient for
4753 conservative stack marking. Only the sources or a disassembly
4754 can prove that. */
4756 static void
4757 test_setjmp (void)
4759 char buf[10];
4760 register int x;
4761 jmp_buf jbuf;
4763 /* Arrange for X to be put in a register. */
4764 sprintf (buf, "1");
4765 x = strlen (buf);
4766 x = 2 * x - 1;
4768 setjmp (jbuf);
4769 if (longjmps_done == 1)
4771 /* Came here after the longjmp at the end of the function.
4773 If x == 1, the longjmp has restored the register to its
4774 value before the setjmp, and we can hope that setjmp
4775 saves all such registers in the jmp_buf, although that
4776 isn't sure.
4778 For other values of X, either something really strange is
4779 taking place, or the setjmp just didn't save the register. */
4781 if (x == 1)
4782 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4783 else
4785 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4786 exit (1);
4790 ++longjmps_done;
4791 x = 2;
4792 if (longjmps_done == 1)
4793 longjmp (jbuf, 1);
4796 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4799 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4801 /* Abort if anything GCPRO'd doesn't survive the GC. */
4803 static void
4804 check_gcpros (void)
4806 struct gcpro *p;
4807 ptrdiff_t i;
4809 for (p = gcprolist; p; p = p->next)
4810 for (i = 0; i < p->nvars; ++i)
4811 if (!survives_gc_p (p->var[i]))
4812 /* FIXME: It's not necessarily a bug. It might just be that the
4813 GCPRO is unnecessary or should release the object sooner. */
4814 abort ();
4817 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4819 static void
4820 dump_zombies (void)
4822 int i;
4824 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4825 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4827 fprintf (stderr, " %d = ", i);
4828 debug_print (zombies[i]);
4832 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4835 /* Mark live Lisp objects on the C stack.
4837 There are several system-dependent problems to consider when
4838 porting this to new architectures:
4840 Processor Registers
4842 We have to mark Lisp objects in CPU registers that can hold local
4843 variables or are used to pass parameters.
4845 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4846 something that either saves relevant registers on the stack, or
4847 calls mark_maybe_object passing it each register's contents.
4849 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4850 implementation assumes that calling setjmp saves registers we need
4851 to see in a jmp_buf which itself lies on the stack. This doesn't
4852 have to be true! It must be verified for each system, possibly
4853 by taking a look at the source code of setjmp.
4855 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4856 can use it as a machine independent method to store all registers
4857 to the stack. In this case the macros described in the previous
4858 two paragraphs are not used.
4860 Stack Layout
4862 Architectures differ in the way their processor stack is organized.
4863 For example, the stack might look like this
4865 +----------------+
4866 | Lisp_Object | size = 4
4867 +----------------+
4868 | something else | size = 2
4869 +----------------+
4870 | Lisp_Object | size = 4
4871 +----------------+
4872 | ... |
4874 In such a case, not every Lisp_Object will be aligned equally. To
4875 find all Lisp_Object on the stack it won't be sufficient to walk
4876 the stack in steps of 4 bytes. Instead, two passes will be
4877 necessary, one starting at the start of the stack, and a second
4878 pass starting at the start of the stack + 2. Likewise, if the
4879 minimal alignment of Lisp_Objects on the stack is 1, four passes
4880 would be necessary, each one starting with one byte more offset
4881 from the stack start. */
4883 static void
4884 mark_stack (void)
4886 void *end;
4888 #ifdef HAVE___BUILTIN_UNWIND_INIT
4889 /* Force callee-saved registers and register windows onto the stack.
4890 This is the preferred method if available, obviating the need for
4891 machine dependent methods. */
4892 __builtin_unwind_init ();
4893 end = &end;
4894 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4895 #ifndef GC_SAVE_REGISTERS_ON_STACK
4896 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4897 union aligned_jmpbuf {
4898 Lisp_Object o;
4899 jmp_buf j;
4900 } j;
4901 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
4902 #endif
4903 /* This trick flushes the register windows so that all the state of
4904 the process is contained in the stack. */
4905 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4906 needed on ia64 too. See mach_dep.c, where it also says inline
4907 assembler doesn't work with relevant proprietary compilers. */
4908 #ifdef __sparc__
4909 #if defined (__sparc64__) && defined (__FreeBSD__)
4910 /* FreeBSD does not have a ta 3 handler. */
4911 asm ("flushw");
4912 #else
4913 asm ("ta 3");
4914 #endif
4915 #endif
4917 /* Save registers that we need to see on the stack. We need to see
4918 registers used to hold register variables and registers used to
4919 pass parameters. */
4920 #ifdef GC_SAVE_REGISTERS_ON_STACK
4921 GC_SAVE_REGISTERS_ON_STACK (end);
4922 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4924 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4925 setjmp will definitely work, test it
4926 and print a message with the result
4927 of the test. */
4928 if (!setjmp_tested_p)
4930 setjmp_tested_p = 1;
4931 test_setjmp ();
4933 #endif /* GC_SETJMP_WORKS */
4935 setjmp (j.j);
4936 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4937 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4938 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4940 /* This assumes that the stack is a contiguous region in memory. If
4941 that's not the case, something has to be done here to iterate
4942 over the stack segments. */
4943 mark_memory (stack_base, end);
4945 /* Allow for marking a secondary stack, like the register stack on the
4946 ia64. */
4947 #ifdef GC_MARK_SECONDARY_STACK
4948 GC_MARK_SECONDARY_STACK ();
4949 #endif
4951 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4952 check_gcpros ();
4953 #endif
4956 #endif /* GC_MARK_STACK != 0 */
4959 /* Determine whether it is safe to access memory at address P. */
4960 static int
4961 valid_pointer_p (void *p)
4963 #ifdef WINDOWSNT
4964 return w32_valid_pointer_p (p, 16);
4965 #else
4966 int fd[2];
4968 /* Obviously, we cannot just access it (we would SEGV trying), so we
4969 trick the o/s to tell us whether p is a valid pointer.
4970 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4971 not validate p in that case. */
4973 if (pipe (fd) == 0)
4975 bool valid = emacs_write (fd[1], (char *) p, 16) == 16;
4976 emacs_close (fd[1]);
4977 emacs_close (fd[0]);
4978 return valid;
4981 return -1;
4982 #endif
4985 /* Return 1 if OBJ is a valid lisp object.
4986 Return 0 if OBJ is NOT a valid lisp object.
4987 Return -1 if we cannot validate OBJ.
4988 This function can be quite slow,
4989 so it should only be used in code for manual debugging. */
4992 valid_lisp_object_p (Lisp_Object obj)
4994 void *p;
4995 #if GC_MARK_STACK
4996 struct mem_node *m;
4997 #endif
4999 if (INTEGERP (obj))
5000 return 1;
5002 p = (void *) XPNTR (obj);
5003 if (PURE_POINTER_P (p))
5004 return 1;
5006 #if !GC_MARK_STACK
5007 return valid_pointer_p (p);
5008 #else
5010 m = mem_find (p);
5012 if (m == MEM_NIL)
5014 int valid = valid_pointer_p (p);
5015 if (valid <= 0)
5016 return valid;
5018 if (SUBRP (obj))
5019 return 1;
5021 return 0;
5024 switch (m->type)
5026 case MEM_TYPE_NON_LISP:
5027 return 0;
5029 case MEM_TYPE_BUFFER:
5030 return live_buffer_p (m, p);
5032 case MEM_TYPE_CONS:
5033 return live_cons_p (m, p);
5035 case MEM_TYPE_STRING:
5036 return live_string_p (m, p);
5038 case MEM_TYPE_MISC:
5039 return live_misc_p (m, p);
5041 case MEM_TYPE_SYMBOL:
5042 return live_symbol_p (m, p);
5044 case MEM_TYPE_FLOAT:
5045 return live_float_p (m, p);
5047 case MEM_TYPE_VECTORLIKE:
5048 case MEM_TYPE_VECTOR_BLOCK:
5049 return live_vector_p (m, p);
5051 default:
5052 break;
5055 return 0;
5056 #endif
5062 /***********************************************************************
5063 Pure Storage Management
5064 ***********************************************************************/
5066 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5067 pointer to it. TYPE is the Lisp type for which the memory is
5068 allocated. TYPE < 0 means it's not used for a Lisp object. */
5070 static void *
5071 pure_alloc (size_t size, int type)
5073 void *result;
5074 #if USE_LSB_TAG
5075 size_t alignment = GCALIGNMENT;
5076 #else
5077 size_t alignment = alignof (EMACS_INT);
5079 /* Give Lisp_Floats an extra alignment. */
5080 if (type == Lisp_Float)
5081 alignment = alignof (struct Lisp_Float);
5082 #endif
5084 again:
5085 if (type >= 0)
5087 /* Allocate space for a Lisp object from the beginning of the free
5088 space with taking account of alignment. */
5089 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
5090 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5092 else
5094 /* Allocate space for a non-Lisp object from the end of the free
5095 space. */
5096 pure_bytes_used_non_lisp += size;
5097 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5099 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5101 if (pure_bytes_used <= pure_size)
5102 return result;
5104 /* Don't allocate a large amount here,
5105 because it might get mmap'd and then its address
5106 might not be usable. */
5107 purebeg = xmalloc (10000);
5108 pure_size = 10000;
5109 pure_bytes_used_before_overflow += pure_bytes_used - size;
5110 pure_bytes_used = 0;
5111 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5112 goto again;
5116 /* Print a warning if PURESIZE is too small. */
5118 void
5119 check_pure_size (void)
5121 if (pure_bytes_used_before_overflow)
5122 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5123 " bytes needed)"),
5124 pure_bytes_used + pure_bytes_used_before_overflow);
5128 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5129 the non-Lisp data pool of the pure storage, and return its start
5130 address. Return NULL if not found. */
5132 static char *
5133 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5135 int i;
5136 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5137 const unsigned char *p;
5138 char *non_lisp_beg;
5140 if (pure_bytes_used_non_lisp <= nbytes)
5141 return NULL;
5143 /* Set up the Boyer-Moore table. */
5144 skip = nbytes + 1;
5145 for (i = 0; i < 256; i++)
5146 bm_skip[i] = skip;
5148 p = (const unsigned char *) data;
5149 while (--skip > 0)
5150 bm_skip[*p++] = skip;
5152 last_char_skip = bm_skip['\0'];
5154 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5155 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5157 /* See the comments in the function `boyer_moore' (search.c) for the
5158 use of `infinity'. */
5159 infinity = pure_bytes_used_non_lisp + 1;
5160 bm_skip['\0'] = infinity;
5162 p = (const unsigned char *) non_lisp_beg + nbytes;
5163 start = 0;
5166 /* Check the last character (== '\0'). */
5169 start += bm_skip[*(p + start)];
5171 while (start <= start_max);
5173 if (start < infinity)
5174 /* Couldn't find the last character. */
5175 return NULL;
5177 /* No less than `infinity' means we could find the last
5178 character at `p[start - infinity]'. */
5179 start -= infinity;
5181 /* Check the remaining characters. */
5182 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5183 /* Found. */
5184 return non_lisp_beg + start;
5186 start += last_char_skip;
5188 while (start <= start_max);
5190 return NULL;
5194 /* Return a string allocated in pure space. DATA is a buffer holding
5195 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5196 means make the result string multibyte.
5198 Must get an error if pure storage is full, since if it cannot hold
5199 a large string it may be able to hold conses that point to that
5200 string; then the string is not protected from gc. */
5202 Lisp_Object
5203 make_pure_string (const char *data,
5204 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5206 Lisp_Object string;
5207 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5208 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5209 if (s->data == NULL)
5211 s->data = pure_alloc (nbytes + 1, -1);
5212 memcpy (s->data, data, nbytes);
5213 s->data[nbytes] = '\0';
5215 s->size = nchars;
5216 s->size_byte = multibyte ? nbytes : -1;
5217 s->intervals = NULL;
5218 XSETSTRING (string, s);
5219 return string;
5222 /* Return a string allocated in pure space. Do not
5223 allocate the string data, just point to DATA. */
5225 Lisp_Object
5226 make_pure_c_string (const char *data, ptrdiff_t nchars)
5228 Lisp_Object string;
5229 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5230 s->size = nchars;
5231 s->size_byte = -1;
5232 s->data = (unsigned char *) data;
5233 s->intervals = NULL;
5234 XSETSTRING (string, s);
5235 return string;
5238 /* Return a cons allocated from pure space. Give it pure copies
5239 of CAR as car and CDR as cdr. */
5241 Lisp_Object
5242 pure_cons (Lisp_Object car, Lisp_Object cdr)
5244 Lisp_Object new;
5245 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5246 XSETCONS (new, p);
5247 XSETCAR (new, Fpurecopy (car));
5248 XSETCDR (new, Fpurecopy (cdr));
5249 return new;
5253 /* Value is a float object with value NUM allocated from pure space. */
5255 static Lisp_Object
5256 make_pure_float (double num)
5258 Lisp_Object new;
5259 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5260 XSETFLOAT (new, p);
5261 XFLOAT_INIT (new, num);
5262 return new;
5266 /* Return a vector with room for LEN Lisp_Objects allocated from
5267 pure space. */
5269 static Lisp_Object
5270 make_pure_vector (ptrdiff_t len)
5272 Lisp_Object new;
5273 size_t size = header_size + len * word_size;
5274 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5275 XSETVECTOR (new, p);
5276 XVECTOR (new)->header.size = len;
5277 return new;
5281 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5282 doc: /* Make a copy of object OBJ in pure storage.
5283 Recursively copies contents of vectors and cons cells.
5284 Does not copy symbols. Copies strings without text properties. */)
5285 (register Lisp_Object obj)
5287 if (NILP (Vpurify_flag))
5288 return obj;
5290 if (PURE_POINTER_P (XPNTR (obj)))
5291 return obj;
5293 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5295 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5296 if (!NILP (tmp))
5297 return tmp;
5300 if (CONSP (obj))
5301 obj = pure_cons (XCAR (obj), XCDR (obj));
5302 else if (FLOATP (obj))
5303 obj = make_pure_float (XFLOAT_DATA (obj));
5304 else if (STRINGP (obj))
5305 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5306 SBYTES (obj),
5307 STRING_MULTIBYTE (obj));
5308 else if (COMPILEDP (obj) || VECTORP (obj))
5310 register struct Lisp_Vector *vec;
5311 register ptrdiff_t i;
5312 ptrdiff_t size;
5314 size = ASIZE (obj);
5315 if (size & PSEUDOVECTOR_FLAG)
5316 size &= PSEUDOVECTOR_SIZE_MASK;
5317 vec = XVECTOR (make_pure_vector (size));
5318 for (i = 0; i < size; i++)
5319 vec->contents[i] = Fpurecopy (AREF (obj, i));
5320 if (COMPILEDP (obj))
5322 XSETPVECTYPE (vec, PVEC_COMPILED);
5323 XSETCOMPILED (obj, vec);
5325 else
5326 XSETVECTOR (obj, vec);
5328 else if (MARKERP (obj))
5329 error ("Attempt to copy a marker to pure storage");
5330 else
5331 /* Not purified, don't hash-cons. */
5332 return obj;
5334 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5335 Fputhash (obj, obj, Vpurify_flag);
5337 return obj;
5342 /***********************************************************************
5343 Protection from GC
5344 ***********************************************************************/
5346 /* Put an entry in staticvec, pointing at the variable with address
5347 VARADDRESS. */
5349 void
5350 staticpro (Lisp_Object *varaddress)
5352 staticvec[staticidx++] = varaddress;
5353 if (staticidx >= NSTATICS)
5354 abort ();
5358 /***********************************************************************
5359 Protection from GC
5360 ***********************************************************************/
5362 /* Temporarily prevent garbage collection. */
5364 ptrdiff_t
5365 inhibit_garbage_collection (void)
5367 ptrdiff_t count = SPECPDL_INDEX ();
5369 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5370 return count;
5373 /* Used to avoid possible overflows when
5374 converting from C to Lisp integers. */
5376 static inline Lisp_Object
5377 bounded_number (EMACS_INT number)
5379 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5382 /* Calculate total bytes of live objects. */
5384 static size_t
5385 total_bytes_of_live_objects (void)
5387 size_t tot = 0;
5388 tot += total_conses * sizeof (struct Lisp_Cons);
5389 tot += total_symbols * sizeof (struct Lisp_Symbol);
5390 tot += total_markers * sizeof (union Lisp_Misc);
5391 tot += total_string_bytes;
5392 tot += total_vector_slots * word_size;
5393 tot += total_floats * sizeof (struct Lisp_Float);
5394 tot += total_intervals * sizeof (struct interval);
5395 tot += total_strings * sizeof (struct Lisp_String);
5396 return tot;
5399 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5400 doc: /* Reclaim storage for Lisp objects no longer needed.
5401 Garbage collection happens automatically if you cons more than
5402 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5403 `garbage-collect' normally returns a list with info on amount of space in use,
5404 where each entry has the form (NAME SIZE USED FREE), where:
5405 - NAME is a symbol describing the kind of objects this entry represents,
5406 - SIZE is the number of bytes used by each one,
5407 - USED is the number of those objects that were found live in the heap,
5408 - FREE is the number of those objects that are not live but that Emacs
5409 keeps around for future allocations (maybe because it does not know how
5410 to return them to the OS).
5411 However, if there was overflow in pure space, `garbage-collect'
5412 returns nil, because real GC can't be done.
5413 See Info node `(elisp)Garbage Collection'. */)
5414 (void)
5416 struct specbinding *bind;
5417 struct buffer *nextb;
5418 char stack_top_variable;
5419 ptrdiff_t i;
5420 bool message_p;
5421 ptrdiff_t count = SPECPDL_INDEX ();
5422 EMACS_TIME start;
5423 Lisp_Object retval = Qnil;
5424 size_t tot_before = 0;
5425 struct backtrace backtrace;
5427 if (abort_on_gc)
5428 abort ();
5430 /* Can't GC if pure storage overflowed because we can't determine
5431 if something is a pure object or not. */
5432 if (pure_bytes_used_before_overflow)
5433 return Qnil;
5435 /* Record this function, so it appears on the profiler's backtraces. */
5436 backtrace.next = backtrace_list;
5437 backtrace.function = &Qautomatic_gc;
5438 backtrace.args = &Qautomatic_gc;
5439 backtrace.nargs = 0;
5440 backtrace.debug_on_exit = 0;
5441 backtrace_list = &backtrace;
5443 check_cons_list ();
5445 /* Don't keep undo information around forever.
5446 Do this early on, so it is no problem if the user quits. */
5447 FOR_EACH_BUFFER (nextb)
5448 compact_buffer (nextb);
5450 if (profiler_memory_running)
5451 tot_before = total_bytes_of_live_objects ();
5453 start = current_emacs_time ();
5455 /* In case user calls debug_print during GC,
5456 don't let that cause a recursive GC. */
5457 consing_since_gc = 0;
5459 /* Save what's currently displayed in the echo area. */
5460 message_p = push_message ();
5461 record_unwind_protect (pop_message_unwind, Qnil);
5463 /* Save a copy of the contents of the stack, for debugging. */
5464 #if MAX_SAVE_STACK > 0
5465 if (NILP (Vpurify_flag))
5467 char *stack;
5468 ptrdiff_t stack_size;
5469 if (&stack_top_variable < stack_bottom)
5471 stack = &stack_top_variable;
5472 stack_size = stack_bottom - &stack_top_variable;
5474 else
5476 stack = stack_bottom;
5477 stack_size = &stack_top_variable - stack_bottom;
5479 if (stack_size <= MAX_SAVE_STACK)
5481 if (stack_copy_size < stack_size)
5483 stack_copy = xrealloc (stack_copy, stack_size);
5484 stack_copy_size = stack_size;
5486 memcpy (stack_copy, stack, stack_size);
5489 #endif /* MAX_SAVE_STACK > 0 */
5491 if (garbage_collection_messages)
5492 message1_nolog ("Garbage collecting...");
5494 BLOCK_INPUT;
5496 shrink_regexp_cache ();
5498 gc_in_progress = 1;
5500 /* Mark all the special slots that serve as the roots of accessibility. */
5502 for (i = 0; i < staticidx; i++)
5503 mark_object (*staticvec[i]);
5505 for (bind = specpdl; bind != specpdl_ptr; bind++)
5507 mark_object (bind->symbol);
5508 mark_object (bind->old_value);
5510 mark_terminals ();
5511 mark_kboards ();
5512 mark_ttys ();
5514 #ifdef USE_GTK
5516 extern void xg_mark_data (void);
5517 xg_mark_data ();
5519 #endif
5521 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5522 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5523 mark_stack ();
5524 #else
5526 register struct gcpro *tail;
5527 for (tail = gcprolist; tail; tail = tail->next)
5528 for (i = 0; i < tail->nvars; i++)
5529 mark_object (tail->var[i]);
5531 mark_byte_stack ();
5533 struct catchtag *catch;
5534 struct handler *handler;
5536 for (catch = catchlist; catch; catch = catch->next)
5538 mark_object (catch->tag);
5539 mark_object (catch->val);
5541 for (handler = handlerlist; handler; handler = handler->next)
5543 mark_object (handler->handler);
5544 mark_object (handler->var);
5547 mark_backtrace ();
5548 #endif
5550 #ifdef HAVE_WINDOW_SYSTEM
5551 mark_fringe_data ();
5552 #endif
5554 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5555 mark_stack ();
5556 #endif
5558 /* Everything is now marked, except for the things that require special
5559 finalization, i.e. the undo_list.
5560 Look thru every buffer's undo list
5561 for elements that update markers that were not marked,
5562 and delete them. */
5563 FOR_EACH_BUFFER (nextb)
5565 /* If a buffer's undo list is Qt, that means that undo is
5566 turned off in that buffer. Calling truncate_undo_list on
5567 Qt tends to return NULL, which effectively turns undo back on.
5568 So don't call truncate_undo_list if undo_list is Qt. */
5569 if (! EQ (nextb->INTERNAL_FIELD (undo_list), Qt))
5571 Lisp_Object tail, prev;
5572 tail = nextb->INTERNAL_FIELD (undo_list);
5573 prev = Qnil;
5574 while (CONSP (tail))
5576 if (CONSP (XCAR (tail))
5577 && MARKERP (XCAR (XCAR (tail)))
5578 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5580 if (NILP (prev))
5581 nextb->INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5582 else
5584 tail = XCDR (tail);
5585 XSETCDR (prev, tail);
5588 else
5590 prev = tail;
5591 tail = XCDR (tail);
5595 /* Now that we have stripped the elements that need not be in the
5596 undo_list any more, we can finally mark the list. */
5597 mark_object (nextb->INTERNAL_FIELD (undo_list));
5600 gc_sweep ();
5602 /* Clear the mark bits that we set in certain root slots. */
5604 unmark_byte_stack ();
5605 VECTOR_UNMARK (&buffer_defaults);
5606 VECTOR_UNMARK (&buffer_local_symbols);
5608 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5609 dump_zombies ();
5610 #endif
5612 UNBLOCK_INPUT;
5614 check_cons_list ();
5616 gc_in_progress = 0;
5618 consing_since_gc = 0;
5619 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5620 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5622 gc_relative_threshold = 0;
5623 if (FLOATP (Vgc_cons_percentage))
5624 { /* Set gc_cons_combined_threshold. */
5625 double tot = total_bytes_of_live_objects ();
5627 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5628 if (0 < tot)
5630 if (tot < TYPE_MAXIMUM (EMACS_INT))
5631 gc_relative_threshold = tot;
5632 else
5633 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5637 if (garbage_collection_messages)
5639 if (message_p || minibuf_level > 0)
5640 restore_message ();
5641 else
5642 message1_nolog ("Garbage collecting...done");
5645 unbind_to (count, Qnil);
5647 Lisp_Object total[11];
5648 int total_size = 10;
5650 total[0] = list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5651 bounded_number (total_conses),
5652 bounded_number (total_free_conses));
5654 total[1] = list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5655 bounded_number (total_symbols),
5656 bounded_number (total_free_symbols));
5658 total[2] = list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5659 bounded_number (total_markers),
5660 bounded_number (total_free_markers));
5662 total[3] = list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5663 bounded_number (total_strings),
5664 bounded_number (total_free_strings));
5666 total[4] = list3 (Qstring_bytes, make_number (1),
5667 bounded_number (total_string_bytes));
5669 total[5] = list3 (Qvectors, make_number (sizeof (struct Lisp_Vector)),
5670 bounded_number (total_vectors));
5672 total[6] = list4 (Qvector_slots, make_number (word_size),
5673 bounded_number (total_vector_slots),
5674 bounded_number (total_free_vector_slots));
5676 total[7] = list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5677 bounded_number (total_floats),
5678 bounded_number (total_free_floats));
5680 total[8] = list4 (Qintervals, make_number (sizeof (struct interval)),
5681 bounded_number (total_intervals),
5682 bounded_number (total_free_intervals));
5684 total[9] = list3 (Qbuffers, make_number (sizeof (struct buffer)),
5685 bounded_number (total_buffers));
5687 #ifdef DOUG_LEA_MALLOC
5688 total_size++;
5689 total[10] = list4 (Qheap, make_number (1024),
5690 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5691 bounded_number ((mallinfo ().fordblks + 1023) >> 10));
5692 #endif
5693 retval = Flist (total_size, total);
5696 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5698 /* Compute average percentage of zombies. */
5699 double nlive
5700 = (total_conses + total_symbols + total_markers + total_strings
5701 + total_vectors + total_floats + total_intervals + total_buffers);
5703 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5704 max_live = max (nlive, max_live);
5705 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5706 max_zombies = max (nzombies, max_zombies);
5707 ++ngcs;
5709 #endif
5711 if (!NILP (Vpost_gc_hook))
5713 ptrdiff_t gc_count = inhibit_garbage_collection ();
5714 safe_run_hooks (Qpost_gc_hook);
5715 unbind_to (gc_count, Qnil);
5718 /* Accumulate statistics. */
5719 if (FLOATP (Vgc_elapsed))
5721 EMACS_TIME since_start = sub_emacs_time (current_emacs_time (), start);
5722 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5723 + EMACS_TIME_TO_DOUBLE (since_start));
5726 gcs_done++;
5728 /* Collect profiling data. */
5729 if (profiler_memory_running)
5731 size_t swept = 0;
5732 size_t tot_after = total_bytes_of_live_objects ();
5733 if (tot_before > tot_after)
5734 swept = tot_before - tot_after;
5735 malloc_probe (swept);
5738 backtrace_list = backtrace.next;
5739 return retval;
5743 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5744 only interesting objects referenced from glyphs are strings. */
5746 static void
5747 mark_glyph_matrix (struct glyph_matrix *matrix)
5749 struct glyph_row *row = matrix->rows;
5750 struct glyph_row *end = row + matrix->nrows;
5752 for (; row < end; ++row)
5753 if (row->enabled_p)
5755 int area;
5756 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5758 struct glyph *glyph = row->glyphs[area];
5759 struct glyph *end_glyph = glyph + row->used[area];
5761 for (; glyph < end_glyph; ++glyph)
5762 if (STRINGP (glyph->object)
5763 && !STRING_MARKED_P (XSTRING (glyph->object)))
5764 mark_object (glyph->object);
5770 /* Mark Lisp faces in the face cache C. */
5772 static void
5773 mark_face_cache (struct face_cache *c)
5775 if (c)
5777 int i, j;
5778 for (i = 0; i < c->used; ++i)
5780 struct face *face = FACE_FROM_ID (c->f, i);
5782 if (face)
5784 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5785 mark_object (face->lface[j]);
5793 /* Mark reference to a Lisp_Object.
5794 If the object referred to has not been seen yet, recursively mark
5795 all the references contained in it. */
5797 #define LAST_MARKED_SIZE 500
5798 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5799 static int last_marked_index;
5801 /* For debugging--call abort when we cdr down this many
5802 links of a list, in mark_object. In debugging,
5803 the call to abort will hit a breakpoint.
5804 Normally this is zero and the check never goes off. */
5805 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5807 static void
5808 mark_vectorlike (struct Lisp_Vector *ptr)
5810 ptrdiff_t size = ptr->header.size;
5811 ptrdiff_t i;
5813 eassert (!VECTOR_MARKED_P (ptr));
5814 VECTOR_MARK (ptr); /* Else mark it. */
5815 if (size & PSEUDOVECTOR_FLAG)
5816 size &= PSEUDOVECTOR_SIZE_MASK;
5818 /* Note that this size is not the memory-footprint size, but only
5819 the number of Lisp_Object fields that we should trace.
5820 The distinction is used e.g. by Lisp_Process which places extra
5821 non-Lisp_Object fields at the end of the structure... */
5822 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5823 mark_object (ptr->contents[i]);
5826 /* Like mark_vectorlike but optimized for char-tables (and
5827 sub-char-tables) assuming that the contents are mostly integers or
5828 symbols. */
5830 static void
5831 mark_char_table (struct Lisp_Vector *ptr)
5833 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5834 int i;
5836 eassert (!VECTOR_MARKED_P (ptr));
5837 VECTOR_MARK (ptr);
5838 for (i = 0; i < size; i++)
5840 Lisp_Object val = ptr->contents[i];
5842 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5843 continue;
5844 if (SUB_CHAR_TABLE_P (val))
5846 if (! VECTOR_MARKED_P (XVECTOR (val)))
5847 mark_char_table (XVECTOR (val));
5849 else
5850 mark_object (val);
5854 /* Mark the chain of overlays starting at PTR. */
5856 static void
5857 mark_overlay (struct Lisp_Overlay *ptr)
5859 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5861 ptr->gcmarkbit = 1;
5862 mark_object (ptr->start);
5863 mark_object (ptr->end);
5864 mark_object (ptr->plist);
5868 /* Mark Lisp_Objects and special pointers in BUFFER. */
5870 static void
5871 mark_buffer (struct buffer *buffer)
5873 /* This is handled much like other pseudovectors... */
5874 mark_vectorlike ((struct Lisp_Vector *) buffer);
5876 /* ...but there are some buffer-specific things. */
5878 MARK_INTERVAL_TREE (buffer_intervals (buffer));
5880 /* For now, we just don't mark the undo_list. It's done later in
5881 a special way just before the sweep phase, and after stripping
5882 some of its elements that are not needed any more. */
5884 mark_overlay (buffer->overlays_before);
5885 mark_overlay (buffer->overlays_after);
5887 /* If this is an indirect buffer, mark its base buffer. */
5888 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5889 mark_buffer (buffer->base_buffer);
5892 /* Determine type of generic Lisp_Object and mark it accordingly. */
5894 void
5895 mark_object (Lisp_Object arg)
5897 register Lisp_Object obj = arg;
5898 #ifdef GC_CHECK_MARKED_OBJECTS
5899 void *po;
5900 struct mem_node *m;
5901 #endif
5902 ptrdiff_t cdr_count = 0;
5904 loop:
5906 if (PURE_POINTER_P (XPNTR (obj)))
5907 return;
5909 last_marked[last_marked_index++] = obj;
5910 if (last_marked_index == LAST_MARKED_SIZE)
5911 last_marked_index = 0;
5913 /* Perform some sanity checks on the objects marked here. Abort if
5914 we encounter an object we know is bogus. This increases GC time
5915 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5916 #ifdef GC_CHECK_MARKED_OBJECTS
5918 po = (void *) XPNTR (obj);
5920 /* Check that the object pointed to by PO is known to be a Lisp
5921 structure allocated from the heap. */
5922 #define CHECK_ALLOCATED() \
5923 do { \
5924 m = mem_find (po); \
5925 if (m == MEM_NIL) \
5926 abort (); \
5927 } while (0)
5929 /* Check that the object pointed to by PO is live, using predicate
5930 function LIVEP. */
5931 #define CHECK_LIVE(LIVEP) \
5932 do { \
5933 if (!LIVEP (m, po)) \
5934 abort (); \
5935 } while (0)
5937 /* Check both of the above conditions. */
5938 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5939 do { \
5940 CHECK_ALLOCATED (); \
5941 CHECK_LIVE (LIVEP); \
5942 } while (0) \
5944 #else /* not GC_CHECK_MARKED_OBJECTS */
5946 #define CHECK_LIVE(LIVEP) (void) 0
5947 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5949 #endif /* not GC_CHECK_MARKED_OBJECTS */
5951 switch (XTYPE (obj))
5953 case Lisp_String:
5955 register struct Lisp_String *ptr = XSTRING (obj);
5956 if (STRING_MARKED_P (ptr))
5957 break;
5958 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5959 MARK_STRING (ptr);
5960 MARK_INTERVAL_TREE (ptr->intervals);
5961 #ifdef GC_CHECK_STRING_BYTES
5962 /* Check that the string size recorded in the string is the
5963 same as the one recorded in the sdata structure. */
5964 string_bytes (ptr);
5965 #endif /* GC_CHECK_STRING_BYTES */
5967 break;
5969 case Lisp_Vectorlike:
5971 register struct Lisp_Vector *ptr = XVECTOR (obj);
5972 register ptrdiff_t pvectype;
5974 if (VECTOR_MARKED_P (ptr))
5975 break;
5977 #ifdef GC_CHECK_MARKED_OBJECTS
5978 m = mem_find (po);
5979 if (m == MEM_NIL && !SUBRP (obj)
5980 && po != &buffer_defaults
5981 && po != &buffer_local_symbols)
5982 abort ();
5983 #endif /* GC_CHECK_MARKED_OBJECTS */
5985 if (ptr->header.size & PSEUDOVECTOR_FLAG)
5986 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
5987 >> PSEUDOVECTOR_SIZE_BITS);
5988 else
5989 pvectype = 0;
5991 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
5992 CHECK_LIVE (live_vector_p);
5994 switch (pvectype)
5996 case PVEC_BUFFER:
5997 #ifdef GC_CHECK_MARKED_OBJECTS
5998 if (po != &buffer_defaults && po != &buffer_local_symbols)
6000 struct buffer *b;
6001 FOR_EACH_BUFFER (b)
6002 if (b == po)
6003 break;
6004 if (b == NULL)
6005 abort ();
6007 #endif /* GC_CHECK_MARKED_OBJECTS */
6008 mark_buffer ((struct buffer *) ptr);
6009 break;
6011 case PVEC_COMPILED:
6012 { /* We could treat this just like a vector, but it is better
6013 to save the COMPILED_CONSTANTS element for last and avoid
6014 recursion there. */
6015 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6016 int i;
6018 VECTOR_MARK (ptr);
6019 for (i = 0; i < size; i++)
6020 if (i != COMPILED_CONSTANTS)
6021 mark_object (ptr->contents[i]);
6022 if (size > COMPILED_CONSTANTS)
6024 obj = ptr->contents[COMPILED_CONSTANTS];
6025 goto loop;
6028 break;
6030 case PVEC_FRAME:
6032 mark_vectorlike (ptr);
6033 mark_face_cache (((struct frame *) ptr)->face_cache);
6035 break;
6037 case PVEC_WINDOW:
6039 struct window *w = (struct window *) ptr;
6041 mark_vectorlike (ptr);
6042 /* Mark glyphs for leaf windows. Marking window
6043 matrices is sufficient because frame matrices
6044 use the same glyph memory. */
6045 if (NILP (w->hchild) && NILP (w->vchild)
6046 && w->current_matrix)
6048 mark_glyph_matrix (w->current_matrix);
6049 mark_glyph_matrix (w->desired_matrix);
6052 break;
6054 case PVEC_HASH_TABLE:
6056 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6058 mark_vectorlike (ptr);
6059 /* If hash table is not weak, mark all keys and values.
6060 For weak tables, mark only the vector. */
6061 if (NILP (h->weak))
6062 mark_object (h->key_and_value);
6063 else
6064 VECTOR_MARK (XVECTOR (h->key_and_value));
6066 break;
6068 case PVEC_CHAR_TABLE:
6069 mark_char_table (ptr);
6070 break;
6072 case PVEC_BOOL_VECTOR:
6073 /* No Lisp_Objects to mark in a bool vector. */
6074 VECTOR_MARK (ptr);
6075 break;
6077 case PVEC_SUBR:
6078 break;
6080 case PVEC_FREE:
6081 abort ();
6083 default:
6084 mark_vectorlike (ptr);
6087 break;
6089 case Lisp_Symbol:
6091 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6092 struct Lisp_Symbol *ptrx;
6094 if (ptr->gcmarkbit)
6095 break;
6096 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
6097 ptr->gcmarkbit = 1;
6098 mark_object (ptr->function);
6099 mark_object (ptr->plist);
6100 switch (ptr->redirect)
6102 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6103 case SYMBOL_VARALIAS:
6105 Lisp_Object tem;
6106 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6107 mark_object (tem);
6108 break;
6110 case SYMBOL_LOCALIZED:
6112 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6113 /* If the value is forwarded to a buffer or keyboard field,
6114 these are marked when we see the corresponding object.
6115 And if it's forwarded to a C variable, either it's not
6116 a Lisp_Object var, or it's staticpro'd already. */
6117 mark_object (blv->where);
6118 mark_object (blv->valcell);
6119 mark_object (blv->defcell);
6120 break;
6122 case SYMBOL_FORWARDED:
6123 /* If the value is forwarded to a buffer or keyboard field,
6124 these are marked when we see the corresponding object.
6125 And if it's forwarded to a C variable, either it's not
6126 a Lisp_Object var, or it's staticpro'd already. */
6127 break;
6128 default: abort ();
6130 if (!PURE_POINTER_P (XSTRING (ptr->name)))
6131 MARK_STRING (XSTRING (ptr->name));
6132 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6134 ptr = ptr->next;
6135 if (ptr)
6137 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
6138 XSETSYMBOL (obj, ptrx);
6139 goto loop;
6142 break;
6144 case Lisp_Misc:
6145 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6147 if (XMISCANY (obj)->gcmarkbit)
6148 break;
6150 switch (XMISCTYPE (obj))
6152 case Lisp_Misc_Marker:
6153 /* DO NOT mark thru the marker's chain.
6154 The buffer's markers chain does not preserve markers from gc;
6155 instead, markers are removed from the chain when freed by gc. */
6156 XMISCANY (obj)->gcmarkbit = 1;
6157 break;
6159 case Lisp_Misc_Save_Value:
6160 XMISCANY (obj)->gcmarkbit = 1;
6161 #if GC_MARK_STACK
6163 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6164 /* If DOGC is set, POINTER is the address of a memory
6165 area containing INTEGER potential Lisp_Objects. */
6166 if (ptr->dogc)
6168 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
6169 ptrdiff_t nelt;
6170 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
6171 mark_maybe_object (*p);
6174 #endif
6175 break;
6177 case Lisp_Misc_Overlay:
6178 mark_overlay (XOVERLAY (obj));
6179 break;
6181 default:
6182 abort ();
6184 break;
6186 case Lisp_Cons:
6188 register struct Lisp_Cons *ptr = XCONS (obj);
6189 if (CONS_MARKED_P (ptr))
6190 break;
6191 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6192 CONS_MARK (ptr);
6193 /* If the cdr is nil, avoid recursion for the car. */
6194 if (EQ (ptr->u.cdr, Qnil))
6196 obj = ptr->car;
6197 cdr_count = 0;
6198 goto loop;
6200 mark_object (ptr->car);
6201 obj = ptr->u.cdr;
6202 cdr_count++;
6203 if (cdr_count == mark_object_loop_halt)
6204 abort ();
6205 goto loop;
6208 case Lisp_Float:
6209 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6210 FLOAT_MARK (XFLOAT (obj));
6211 break;
6213 case_Lisp_Int:
6214 break;
6216 default:
6217 abort ();
6220 #undef CHECK_LIVE
6221 #undef CHECK_ALLOCATED
6222 #undef CHECK_ALLOCATED_AND_LIVE
6224 /* Mark the Lisp pointers in the terminal objects.
6225 Called by Fgarbage_collect. */
6227 static void
6228 mark_terminals (void)
6230 struct terminal *t;
6231 for (t = terminal_list; t; t = t->next_terminal)
6233 eassert (t->name != NULL);
6234 #ifdef HAVE_WINDOW_SYSTEM
6235 /* If a terminal object is reachable from a stacpro'ed object,
6236 it might have been marked already. Make sure the image cache
6237 gets marked. */
6238 mark_image_cache (t->image_cache);
6239 #endif /* HAVE_WINDOW_SYSTEM */
6240 if (!VECTOR_MARKED_P (t))
6241 mark_vectorlike ((struct Lisp_Vector *)t);
6247 /* Value is non-zero if OBJ will survive the current GC because it's
6248 either marked or does not need to be marked to survive. */
6250 bool
6251 survives_gc_p (Lisp_Object obj)
6253 bool survives_p;
6255 switch (XTYPE (obj))
6257 case_Lisp_Int:
6258 survives_p = 1;
6259 break;
6261 case Lisp_Symbol:
6262 survives_p = XSYMBOL (obj)->gcmarkbit;
6263 break;
6265 case Lisp_Misc:
6266 survives_p = XMISCANY (obj)->gcmarkbit;
6267 break;
6269 case Lisp_String:
6270 survives_p = STRING_MARKED_P (XSTRING (obj));
6271 break;
6273 case Lisp_Vectorlike:
6274 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6275 break;
6277 case Lisp_Cons:
6278 survives_p = CONS_MARKED_P (XCONS (obj));
6279 break;
6281 case Lisp_Float:
6282 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6283 break;
6285 default:
6286 abort ();
6289 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6294 /* Sweep: find all structures not marked, and free them. */
6296 static void
6297 gc_sweep (void)
6299 /* Remove or mark entries in weak hash tables.
6300 This must be done before any object is unmarked. */
6301 sweep_weak_hash_tables ();
6303 sweep_strings ();
6304 check_string_bytes (!noninteractive);
6306 /* Put all unmarked conses on free list */
6308 register struct cons_block *cblk;
6309 struct cons_block **cprev = &cons_block;
6310 register int lim = cons_block_index;
6311 EMACS_INT num_free = 0, num_used = 0;
6313 cons_free_list = 0;
6315 for (cblk = cons_block; cblk; cblk = *cprev)
6317 register int i = 0;
6318 int this_free = 0;
6319 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6321 /* Scan the mark bits an int at a time. */
6322 for (i = 0; i < ilim; i++)
6324 if (cblk->gcmarkbits[i] == -1)
6326 /* Fast path - all cons cells for this int are marked. */
6327 cblk->gcmarkbits[i] = 0;
6328 num_used += BITS_PER_INT;
6330 else
6332 /* Some cons cells for this int are not marked.
6333 Find which ones, and free them. */
6334 int start, pos, stop;
6336 start = i * BITS_PER_INT;
6337 stop = lim - start;
6338 if (stop > BITS_PER_INT)
6339 stop = BITS_PER_INT;
6340 stop += start;
6342 for (pos = start; pos < stop; pos++)
6344 if (!CONS_MARKED_P (&cblk->conses[pos]))
6346 this_free++;
6347 cblk->conses[pos].u.chain = cons_free_list;
6348 cons_free_list = &cblk->conses[pos];
6349 #if GC_MARK_STACK
6350 cons_free_list->car = Vdead;
6351 #endif
6353 else
6355 num_used++;
6356 CONS_UNMARK (&cblk->conses[pos]);
6362 lim = CONS_BLOCK_SIZE;
6363 /* If this block contains only free conses and we have already
6364 seen more than two blocks worth of free conses then deallocate
6365 this block. */
6366 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6368 *cprev = cblk->next;
6369 /* Unhook from the free list. */
6370 cons_free_list = cblk->conses[0].u.chain;
6371 lisp_align_free (cblk);
6373 else
6375 num_free += this_free;
6376 cprev = &cblk->next;
6379 total_conses = num_used;
6380 total_free_conses = num_free;
6383 /* Put all unmarked floats on free list */
6385 register struct float_block *fblk;
6386 struct float_block **fprev = &float_block;
6387 register int lim = float_block_index;
6388 EMACS_INT num_free = 0, num_used = 0;
6390 float_free_list = 0;
6392 for (fblk = float_block; fblk; fblk = *fprev)
6394 register int i;
6395 int this_free = 0;
6396 for (i = 0; i < lim; i++)
6397 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6399 this_free++;
6400 fblk->floats[i].u.chain = float_free_list;
6401 float_free_list = &fblk->floats[i];
6403 else
6405 num_used++;
6406 FLOAT_UNMARK (&fblk->floats[i]);
6408 lim = FLOAT_BLOCK_SIZE;
6409 /* If this block contains only free floats and we have already
6410 seen more than two blocks worth of free floats then deallocate
6411 this block. */
6412 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6414 *fprev = fblk->next;
6415 /* Unhook from the free list. */
6416 float_free_list = fblk->floats[0].u.chain;
6417 lisp_align_free (fblk);
6419 else
6421 num_free += this_free;
6422 fprev = &fblk->next;
6425 total_floats = num_used;
6426 total_free_floats = num_free;
6429 /* Put all unmarked intervals on free list */
6431 register struct interval_block *iblk;
6432 struct interval_block **iprev = &interval_block;
6433 register int lim = interval_block_index;
6434 EMACS_INT num_free = 0, num_used = 0;
6436 interval_free_list = 0;
6438 for (iblk = interval_block; iblk; iblk = *iprev)
6440 register int i;
6441 int this_free = 0;
6443 for (i = 0; i < lim; i++)
6445 if (!iblk->intervals[i].gcmarkbit)
6447 set_interval_parent (&iblk->intervals[i], interval_free_list);
6448 interval_free_list = &iblk->intervals[i];
6449 this_free++;
6451 else
6453 num_used++;
6454 iblk->intervals[i].gcmarkbit = 0;
6457 lim = INTERVAL_BLOCK_SIZE;
6458 /* If this block contains only free intervals and we have already
6459 seen more than two blocks worth of free intervals then
6460 deallocate this block. */
6461 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6463 *iprev = iblk->next;
6464 /* Unhook from the free list. */
6465 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6466 lisp_free (iblk);
6468 else
6470 num_free += this_free;
6471 iprev = &iblk->next;
6474 total_intervals = num_used;
6475 total_free_intervals = num_free;
6478 /* Put all unmarked symbols on free list */
6480 register struct symbol_block *sblk;
6481 struct symbol_block **sprev = &symbol_block;
6482 register int lim = symbol_block_index;
6483 EMACS_INT num_free = 0, num_used = 0;
6485 symbol_free_list = NULL;
6487 for (sblk = symbol_block; sblk; sblk = *sprev)
6489 int this_free = 0;
6490 union aligned_Lisp_Symbol *sym = sblk->symbols;
6491 union aligned_Lisp_Symbol *end = sym + lim;
6493 for (; sym < end; ++sym)
6495 /* Check if the symbol was created during loadup. In such a case
6496 it might be pointed to by pure bytecode which we don't trace,
6497 so we conservatively assume that it is live. */
6498 bool pure_p = PURE_POINTER_P (XSTRING (sym->s.name));
6500 if (!sym->s.gcmarkbit && !pure_p)
6502 if (sym->s.redirect == SYMBOL_LOCALIZED)
6503 xfree (SYMBOL_BLV (&sym->s));
6504 sym->s.next = symbol_free_list;
6505 symbol_free_list = &sym->s;
6506 #if GC_MARK_STACK
6507 symbol_free_list->function = Vdead;
6508 #endif
6509 ++this_free;
6511 else
6513 ++num_used;
6514 if (!pure_p)
6515 UNMARK_STRING (XSTRING (sym->s.name));
6516 sym->s.gcmarkbit = 0;
6520 lim = SYMBOL_BLOCK_SIZE;
6521 /* If this block contains only free symbols and we have already
6522 seen more than two blocks worth of free symbols then deallocate
6523 this block. */
6524 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6526 *sprev = sblk->next;
6527 /* Unhook from the free list. */
6528 symbol_free_list = sblk->symbols[0].s.next;
6529 lisp_free (sblk);
6531 else
6533 num_free += this_free;
6534 sprev = &sblk->next;
6537 total_symbols = num_used;
6538 total_free_symbols = num_free;
6541 /* Put all unmarked misc's on free list.
6542 For a marker, first unchain it from the buffer it points into. */
6544 register struct marker_block *mblk;
6545 struct marker_block **mprev = &marker_block;
6546 register int lim = marker_block_index;
6547 EMACS_INT num_free = 0, num_used = 0;
6549 marker_free_list = 0;
6551 for (mblk = marker_block; mblk; mblk = *mprev)
6553 register int i;
6554 int this_free = 0;
6556 for (i = 0; i < lim; i++)
6558 if (!mblk->markers[i].m.u_any.gcmarkbit)
6560 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6561 unchain_marker (&mblk->markers[i].m.u_marker);
6562 /* Set the type of the freed object to Lisp_Misc_Free.
6563 We could leave the type alone, since nobody checks it,
6564 but this might catch bugs faster. */
6565 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6566 mblk->markers[i].m.u_free.chain = marker_free_list;
6567 marker_free_list = &mblk->markers[i].m;
6568 this_free++;
6570 else
6572 num_used++;
6573 mblk->markers[i].m.u_any.gcmarkbit = 0;
6576 lim = MARKER_BLOCK_SIZE;
6577 /* If this block contains only free markers and we have already
6578 seen more than two blocks worth of free markers then deallocate
6579 this block. */
6580 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6582 *mprev = mblk->next;
6583 /* Unhook from the free list. */
6584 marker_free_list = mblk->markers[0].m.u_free.chain;
6585 lisp_free (mblk);
6587 else
6589 num_free += this_free;
6590 mprev = &mblk->next;
6594 total_markers = num_used;
6595 total_free_markers = num_free;
6598 /* Free all unmarked buffers */
6600 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6602 total_buffers = 0;
6603 while (buffer)
6604 if (!VECTOR_MARKED_P (buffer))
6606 if (prev)
6607 prev->header.next = buffer->header.next;
6608 else
6609 all_buffers = buffer->header.next.buffer;
6610 next = buffer->header.next.buffer;
6611 lisp_free (buffer);
6612 buffer = next;
6614 else
6616 VECTOR_UNMARK (buffer);
6617 /* Do not use buffer_(set|get)_intervals here. */
6618 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6619 total_buffers++;
6620 prev = buffer, buffer = buffer->header.next.buffer;
6624 sweep_vectors ();
6625 check_string_bytes (!noninteractive);
6631 /* Debugging aids. */
6633 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6634 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6635 This may be helpful in debugging Emacs's memory usage.
6636 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6637 (void)
6639 Lisp_Object end;
6641 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6643 return end;
6646 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6647 doc: /* Return a list of counters that measure how much consing there has been.
6648 Each of these counters increments for a certain kind of object.
6649 The counters wrap around from the largest positive integer to zero.
6650 Garbage collection does not decrease them.
6651 The elements of the value are as follows:
6652 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6653 All are in units of 1 = one object consed
6654 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6655 objects consed.
6656 MISCS include overlays, markers, and some internal types.
6657 Frames, windows, buffers, and subprocesses count as vectors
6658 (but the contents of a buffer's text do not count here). */)
6659 (void)
6661 return listn (CONSTYPE_HEAP, 8,
6662 bounded_number (cons_cells_consed),
6663 bounded_number (floats_consed),
6664 bounded_number (vector_cells_consed),
6665 bounded_number (symbols_consed),
6666 bounded_number (string_chars_consed),
6667 bounded_number (misc_objects_consed),
6668 bounded_number (intervals_consed),
6669 bounded_number (strings_consed));
6672 /* Find at most FIND_MAX symbols which have OBJ as their value or
6673 function. This is used in gdbinit's `xwhichsymbols' command. */
6675 Lisp_Object
6676 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6678 struct symbol_block *sblk;
6679 ptrdiff_t gc_count = inhibit_garbage_collection ();
6680 Lisp_Object found = Qnil;
6682 if (! DEADP (obj))
6684 for (sblk = symbol_block; sblk; sblk = sblk->next)
6686 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6687 int bn;
6689 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6691 struct Lisp_Symbol *sym = &aligned_sym->s;
6692 Lisp_Object val;
6693 Lisp_Object tem;
6695 if (sblk == symbol_block && bn >= symbol_block_index)
6696 break;
6698 XSETSYMBOL (tem, sym);
6699 val = find_symbol_value (tem);
6700 if (EQ (val, obj)
6701 || EQ (sym->function, obj)
6702 || (!NILP (sym->function)
6703 && COMPILEDP (sym->function)
6704 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6705 || (!NILP (val)
6706 && COMPILEDP (val)
6707 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6709 found = Fcons (tem, found);
6710 if (--find_max == 0)
6711 goto out;
6717 out:
6718 unbind_to (gc_count, Qnil);
6719 return found;
6722 #ifdef ENABLE_CHECKING
6723 bool suppress_checking;
6725 void
6726 die (const char *msg, const char *file, int line)
6728 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6729 file, line, msg);
6730 abort ();
6732 #endif
6734 /* Initialization */
6736 void
6737 init_alloc_once (void)
6739 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6740 purebeg = PUREBEG;
6741 pure_size = PURESIZE;
6743 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6744 mem_init ();
6745 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6746 #endif
6748 #ifdef DOUG_LEA_MALLOC
6749 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6750 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6751 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6752 #endif
6753 init_strings ();
6754 init_vectors ();
6756 #ifdef REL_ALLOC
6757 malloc_hysteresis = 32;
6758 #else
6759 malloc_hysteresis = 0;
6760 #endif
6762 refill_memory_reserve ();
6763 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
6766 void
6767 init_alloc (void)
6769 gcprolist = 0;
6770 byte_stack_list = 0;
6771 #if GC_MARK_STACK
6772 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6773 setjmp_tested_p = longjmps_done = 0;
6774 #endif
6775 #endif
6776 Vgc_elapsed = make_float (0.0);
6777 gcs_done = 0;
6780 void
6781 syms_of_alloc (void)
6783 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6784 doc: /* Number of bytes of consing between garbage collections.
6785 Garbage collection can happen automatically once this many bytes have been
6786 allocated since the last garbage collection. All data types count.
6788 Garbage collection happens automatically only when `eval' is called.
6790 By binding this temporarily to a large number, you can effectively
6791 prevent garbage collection during a part of the program.
6792 See also `gc-cons-percentage'. */);
6794 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6795 doc: /* Portion of the heap used for allocation.
6796 Garbage collection can happen automatically once this portion of the heap
6797 has been allocated since the last garbage collection.
6798 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6799 Vgc_cons_percentage = make_float (0.1);
6801 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6802 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6804 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6805 doc: /* Number of cons cells that have been consed so far. */);
6807 DEFVAR_INT ("floats-consed", floats_consed,
6808 doc: /* Number of floats that have been consed so far. */);
6810 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6811 doc: /* Number of vector cells that have been consed so far. */);
6813 DEFVAR_INT ("symbols-consed", symbols_consed,
6814 doc: /* Number of symbols that have been consed so far. */);
6816 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6817 doc: /* Number of string characters that have been consed so far. */);
6819 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6820 doc: /* Number of miscellaneous objects that have been consed so far.
6821 These include markers and overlays, plus certain objects not visible
6822 to users. */);
6824 DEFVAR_INT ("intervals-consed", intervals_consed,
6825 doc: /* Number of intervals that have been consed so far. */);
6827 DEFVAR_INT ("strings-consed", strings_consed,
6828 doc: /* Number of strings that have been consed so far. */);
6830 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6831 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6832 This means that certain objects should be allocated in shared (pure) space.
6833 It can also be set to a hash-table, in which case this table is used to
6834 do hash-consing of the objects allocated to pure space. */);
6836 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6837 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6838 garbage_collection_messages = 0;
6840 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6841 doc: /* Hook run after garbage collection has finished. */);
6842 Vpost_gc_hook = Qnil;
6843 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6845 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6846 doc: /* Precomputed `signal' argument for memory-full error. */);
6847 /* We build this in advance because if we wait until we need it, we might
6848 not be able to allocate the memory to hold it. */
6849 Vmemory_signal_data
6850 = listn (CONSTYPE_PURE, 2, Qerror,
6851 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6853 DEFVAR_LISP ("memory-full", Vmemory_full,
6854 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6855 Vmemory_full = Qnil;
6857 DEFSYM (Qconses, "conses");
6858 DEFSYM (Qsymbols, "symbols");
6859 DEFSYM (Qmiscs, "miscs");
6860 DEFSYM (Qstrings, "strings");
6861 DEFSYM (Qvectors, "vectors");
6862 DEFSYM (Qfloats, "floats");
6863 DEFSYM (Qintervals, "intervals");
6864 DEFSYM (Qbuffers, "buffers");
6865 DEFSYM (Qstring_bytes, "string-bytes");
6866 DEFSYM (Qvector_slots, "vector-slots");
6867 DEFSYM (Qheap, "heap");
6868 DEFSYM (Qautomatic_gc, "Automatic GC");
6870 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6871 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6873 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6874 doc: /* Accumulated time elapsed in garbage collections.
6875 The time is in seconds as a floating point value. */);
6876 DEFVAR_INT ("gcs-done", gcs_done,
6877 doc: /* Accumulated number of garbage collections done. */);
6879 defsubr (&Scons);
6880 defsubr (&Slist);
6881 defsubr (&Svector);
6882 defsubr (&Smake_byte_code);
6883 defsubr (&Smake_list);
6884 defsubr (&Smake_vector);
6885 defsubr (&Smake_string);
6886 defsubr (&Smake_bool_vector);
6887 defsubr (&Smake_symbol);
6888 defsubr (&Smake_marker);
6889 defsubr (&Spurecopy);
6890 defsubr (&Sgarbage_collect);
6891 defsubr (&Smemory_limit);
6892 defsubr (&Smemory_use_counts);
6894 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6895 defsubr (&Sgc_status);
6896 #endif
6899 /* When compiled with GCC, GDB might say "No enum type named
6900 pvec_type" if we don't have at least one symbol with that type, and
6901 then xbacktrace could fail. Similarly for the other enums and
6902 their values. */
6903 union
6905 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
6906 enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS;
6907 enum char_bits char_bits;
6908 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
6909 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
6910 enum enum_USE_LSB_TAG enum_USE_LSB_TAG;
6911 enum FLOAT_TO_STRING_BUFSIZE FLOAT_TO_STRING_BUFSIZE;
6912 enum Lisp_Bits Lisp_Bits;
6913 enum Lisp_Compiled Lisp_Compiled;
6914 enum maxargs maxargs;
6915 enum MAX_ALLOCA MAX_ALLOCA;
6916 enum More_Lisp_Bits More_Lisp_Bits;
6917 enum pvec_type pvec_type;
6918 #if USE_LSB_TAG
6919 enum lsb_bits lsb_bits;
6920 #endif
6921 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};