A belated farewell to documenting Emacs 18 features
[emacs.git] / doc / lispref / commands.texi
blobec5a95a3f3b9e7b87b16614dff24a871da6c104a
1 @c -*-texinfo-*-
2 @c This is part of the GNU Emacs Lisp Reference Manual.
3 @c Copyright (C) 1990-1995, 1998-1999, 2001-2012 Free Software Foundation, Inc.
4 @c See the file elisp.texi for copying conditions.
5 @setfilename ../../info/commands
6 @node Command Loop, Keymaps, Minibuffers, Top
7 @chapter Command Loop
8 @cindex editor command loop
9 @cindex command loop
11   When you run Emacs, it enters the @dfn{editor command loop} almost
12 immediately.  This loop reads key sequences, executes their definitions,
13 and displays the results.  In this chapter, we describe how these things
14 are done, and the subroutines that allow Lisp programs to do them.
16 @menu
17 * Command Overview::    How the command loop reads commands.
18 * Defining Commands::   Specifying how a function should read arguments.
19 * Interactive Call::    Calling a command, so that it will read arguments.
20 * Distinguish Interactive::     Making a command distinguish interactive calls.
21 * Command Loop Info::   Variables set by the command loop for you to examine.
22 * Adjusting Point::     Adjustment of point after a command.
23 * Input Events::        What input looks like when you read it.
24 * Reading Input::       How to read input events from the keyboard or mouse.
25 * Special Events::      Events processed immediately and individually.
26 * Waiting::             Waiting for user input or elapsed time.
27 * Quitting::            How @kbd{C-g} works.  How to catch or defer quitting.
28 * Prefix Command Arguments::    How the commands to set prefix args work.
29 * Recursive Editing::   Entering a recursive edit,
30                           and why you usually shouldn't.
31 * Disabling Commands::  How the command loop handles disabled commands.
32 * Command History::     How the command history is set up, and how accessed.
33 * Keyboard Macros::     How keyboard macros are implemented.
34 @end menu
36 @node Command Overview
37 @section Command Loop Overview
39   The first thing the command loop must do is read a key sequence,
40 which is a sequence of input events that translates into a command.
41 It does this by calling the function @code{read-key-sequence}.  Lisp
42 programs can also call this function (@pxref{Key Sequence Input}).
43 They can also read input at a lower level with @code{read-key} or
44 @code{read-event} (@pxref{Reading One Event}), or discard pending
45 input with @code{discard-input} (@pxref{Event Input Misc}).
47   The key sequence is translated into a command through the currently
48 active keymaps.  @xref{Key Lookup}, for information on how this is done.
49 The result should be a keyboard macro or an interactively callable
50 function.  If the key is @kbd{M-x}, then it reads the name of another
51 command, which it then calls.  This is done by the command
52 @code{execute-extended-command} (@pxref{Interactive Call}).
54   Prior to executing the command, Emacs runs @code{undo-boundary} to
55 create an undo boundary.  @xref{Maintaining Undo}.
57   To execute a command, Emacs first reads its arguments by calling
58 @code{command-execute} (@pxref{Interactive Call}).  For commands
59 written in Lisp, the @code{interactive} specification says how to read
60 the arguments.  This may use the prefix argument (@pxref{Prefix
61 Command Arguments}) or may read with prompting in the minibuffer
62 (@pxref{Minibuffers}).  For example, the command @code{find-file} has
63 an @code{interactive} specification which says to read a file name
64 using the minibuffer.  The function body of @code{find-file} does not
65 use the minibuffer, so if you call @code{find-file} as a function from
66 Lisp code, you must supply the file name string as an ordinary Lisp
67 function argument.
69   If the command is a keyboard macro (i.e.@: a string or vector),
70 Emacs executes it using @code{execute-kbd-macro} (@pxref{Keyboard
71 Macros}).
73 @defvar pre-command-hook
74 This normal hook is run by the editor command loop before it executes
75 each command.  At that time, @code{this-command} contains the command
76 that is about to run, and @code{last-command} describes the previous
77 command.  @xref{Command Loop Info}.
78 @end defvar
80 @defvar post-command-hook
81 This normal hook is run by the editor command loop after it executes
82 each command (including commands terminated prematurely by quitting or
83 by errors).  At that time, @code{this-command} refers to the command
84 that just ran, and @code{last-command} refers to the command before
85 that.
87 This hook is also run when Emacs first enters the command loop (at
88 which point @code{this-command} and @code{last-command} are both
89 @code{nil}).
90 @end defvar
92   Quitting is suppressed while running @code{pre-command-hook} and
93 @code{post-command-hook}.  If an error happens while executing one of
94 these hooks, it does not terminate execution of the hook; instead
95 the error is silenced and the function in which the error occurred
96 is removed from the hook.
98   A request coming into the Emacs server (@pxref{Emacs Server,,,
99 emacs, The GNU Emacs Manual}) runs these two hooks just as a keyboard
100 command does.
102 @node Defining Commands
103 @section Defining Commands
104 @cindex defining commands
105 @cindex commands, defining
106 @cindex functions, making them interactive
107 @cindex interactive function
109   The special form @code{interactive} turns a Lisp function into a
110 command.  The @code{interactive} form must be located at top-level in
111 the function body (usually as the first form in the body), or in the
112 @code{interactive-form} property of the function symbol.  When the
113 @code{interactive} form is located in the function body, it does
114 nothing when actually executed.  Its presence serves as a flag, which
115 tells the Emacs command loop that the function can be called
116 interactively.  The argument of the @code{interactive} form controls
117 the reading of arguments for an interactive call.
119 @menu
120 * Using Interactive::     General rules for @code{interactive}.
121 * Interactive Codes::     The standard letter-codes for reading arguments
122                              in various ways.
123 * Interactive Examples::  Examples of how to read interactive arguments.
124 @end menu
126 @node Using Interactive
127 @subsection Using @code{interactive}
128 @cindex arguments, interactive entry
130   This section describes how to write the @code{interactive} form that
131 makes a Lisp function an interactively-callable command, and how to
132 examine a command's @code{interactive} form.
134 @defspec interactive arg-descriptor
135 This special form declares that a function is a command, and that it
136 may therefore be called interactively (via @kbd{M-x} or by entering a
137 key sequence bound to it).  The argument @var{arg-descriptor} declares
138 how to compute the arguments to the command when the command is called
139 interactively.
141 A command may be called from Lisp programs like any other function, but
142 then the caller supplies the arguments and @var{arg-descriptor} has no
143 effect.
145 @cindex @code{interactive-form}, function property
146 The @code{interactive} form must be located at top-level in the
147 function body, or in the function symbol's @code{interactive-form}
148 property (@pxref{Symbol Plists}).  It has its effect because the
149 command loop looks for it before calling the function
150 (@pxref{Interactive Call}).  Once the function is called, all its body
151 forms are executed; at this time, if the @code{interactive} form
152 occurs within the body, the form simply returns @code{nil} without
153 even evaluating its argument.
155 By convention, you should put the @code{interactive} form in the
156 function body, as the first top-level form.  If there is an
157 @code{interactive} form in both the @code{interactive-form} symbol
158 property and the function body, the former takes precedence.  The
159 @code{interactive-form} symbol property can be used to add an
160 interactive form to an existing function, or change how its arguments
161 are processed interactively, without redefining the function.
162 @end defspec
164 There are three possibilities for the argument @var{arg-descriptor}:
166 @itemize @bullet
167 @item
168 It may be omitted or @code{nil}; then the command is called with no
169 arguments.  This leads quickly to an error if the command requires one
170 or more arguments.
172 @item
173 It may be a string; its contents are a sequence of elements separated
174 by newlines, one for each argument@footnote{Some elements actually
175 supply two arguments.}.  Each element consists of a code character
176 (@pxref{Interactive Codes}) optionally followed by a prompt (which
177 some code characters use and some ignore).  Here is an example:
179 @smallexample
180 (interactive "P\nbFrobnicate buffer: ")
181 @end smallexample
183 @noindent
184 The code letter @samp{P} sets the command's first argument to the raw
185 command prefix (@pxref{Prefix Command Arguments}).  @samp{bFrobnicate
186 buffer: } prompts the user with @samp{Frobnicate buffer: } to enter
187 the name of an existing buffer, which becomes the second and final
188 argument.
190 @c Emacs 19 feature
191 The prompt string can use @samp{%} to include previous argument values
192 (starting with the first argument) in the prompt.  This is done using
193 @code{format} (@pxref{Formatting Strings}).  For example, here is how
194 you could read the name of an existing buffer followed by a new name to
195 give to that buffer:
197 @smallexample
198 @group
199 (interactive "bBuffer to rename: \nsRename buffer %s to: ")
200 @end group
201 @end smallexample
203 @cindex @samp{*} in @code{interactive}
204 @cindex read-only buffers in interactive
205 If @samp{*} appears at the beginning of the string, then an error is
206 signaled if the buffer is read-only.
208 @cindex @samp{@@} in @code{interactive}
209 @c Emacs 19 feature
210 If @samp{@@} appears at the beginning of the string, and if the key
211 sequence used to invoke the command includes any mouse events, then
212 the window associated with the first of those events is selected
213 before the command is run.
215 @cindex @samp{^} in @code{interactive}
216 @cindex shift-selection, and @code{interactive} spec
217 If @samp{^} appears at the beginning of the string, and if the command
218 was invoked through @dfn{shift-translation}, set the mark and activate
219 the region temporarily, or extend an already active region, before the
220 command is run.  If the command was invoked without shift-translation,
221 and the region is temporarily active, deactivate the region before the
222 command is run.  Shift-translation is controlled on the user level by
223 @code{shift-select-mode}; see @ref{Shift Selection,,, emacs, The GNU
224 Emacs Manual}.
226 You can use @samp{*}, @samp{@@}, and @code{^} together; the order does
227 not matter.  Actual reading of arguments is controlled by the rest of
228 the prompt string (starting with the first character that is not
229 @samp{*}, @samp{@@}, or @samp{^}).
231 @item
232 It may be a Lisp expression that is not a string; then it should be a
233 form that is evaluated to get a list of arguments to pass to the
234 command.  Usually this form will call various functions to read input
235 from the user, most often through the minibuffer (@pxref{Minibuffers})
236 or directly from the keyboard (@pxref{Reading Input}).
238 Providing point or the mark as an argument value is also common, but
239 if you do this @emph{and} read input (whether using the minibuffer or
240 not), be sure to get the integer values of point or the mark after
241 reading.  The current buffer may be receiving subprocess output; if
242 subprocess output arrives while the command is waiting for input, it
243 could relocate point and the mark.
245 Here's an example of what @emph{not} to do:
247 @smallexample
248 (interactive
249  (list (region-beginning) (region-end)
250        (read-string "Foo: " nil 'my-history)))
251 @end smallexample
253 @noindent
254 Here's how to avoid the problem, by examining point and the mark after
255 reading the keyboard input:
257 @smallexample
258 (interactive
259  (let ((string (read-string "Foo: " nil 'my-history)))
260    (list (region-beginning) (region-end) string)))
261 @end smallexample
263 @strong{Warning:} the argument values should not include any data
264 types that can't be printed and then read.  Some facilities save
265 @code{command-history} in a file to be read in the subsequent
266 sessions; if a command's arguments contain a data type that prints
267 using @samp{#<@dots{}>} syntax, those facilities won't work.
269 There are, however, a few exceptions: it is ok to use a limited set of
270 expressions such as @code{(point)}, @code{(mark)},
271 @code{(region-beginning)}, and @code{(region-end)}, because Emacs
272 recognizes them specially and puts the expression (rather than its
273 value) into the command history.  To see whether the expression you
274 wrote is one of these exceptions, run the command, then examine
275 @code{(car command-history)}.
276 @end itemize
278 @cindex examining the @code{interactive} form
279 @defun interactive-form function
280 This function returns the @code{interactive} form of @var{function}.
281 If @var{function} is an interactively callable function
282 (@pxref{Interactive Call}), the value is the command's
283 @code{interactive} form @code{(interactive @var{spec})}, which
284 specifies how to compute its arguments.  Otherwise, the value is
285 @code{nil}.  If @var{function} is a symbol, its function definition is
286 used.
287 @end defun
289 @node Interactive Codes
290 @comment  node-name,  next,  previous,  up
291 @subsection Code Characters for @code{interactive}
292 @cindex interactive code description
293 @cindex description for interactive codes
294 @cindex codes, interactive, description of
295 @cindex characters for interactive codes
297   The code character descriptions below contain a number of key words,
298 defined here as follows:
300 @table @b
301 @item Completion
302 @cindex interactive completion
303 Provide completion.  @key{TAB}, @key{SPC}, and @key{RET} perform name
304 completion because the argument is read using @code{completing-read}
305 (@pxref{Completion}).  @kbd{?} displays a list of possible completions.
307 @item Existing
308 Require the name of an existing object.  An invalid name is not
309 accepted; the commands to exit the minibuffer do not exit if the current
310 input is not valid.
312 @item Default
313 @cindex default argument string
314 A default value of some sort is used if the user enters no text in the
315 minibuffer.  The default depends on the code character.
317 @item No I/O
318 This code letter computes an argument without reading any input.
319 Therefore, it does not use a prompt string, and any prompt string you
320 supply is ignored.
322 Even though the code letter doesn't use a prompt string, you must follow
323 it with a newline if it is not the last code character in the string.
325 @item Prompt
326 A prompt immediately follows the code character.  The prompt ends either
327 with the end of the string or with a newline.
329 @item Special
330 This code character is meaningful only at the beginning of the
331 interactive string, and it does not look for a prompt or a newline.
332 It is a single, isolated character.
333 @end table
335 @cindex reading interactive arguments
336   Here are the code character descriptions for use with @code{interactive}:
338 @table @samp
339 @item *
340 Signal an error if the current buffer is read-only.  Special.
342 @item @@
343 Select the window mentioned in the first mouse event in the key
344 sequence that invoked this command.  Special.
346 @item ^
347 If the command was invoked through shift-translation, set the mark and
348 activate the region temporarily, or extend an already active region,
349 before the command is run.  If the command was invoked without
350 shift-translation, and the region is temporarily active, deactivate
351 the region before the command is run.  Special.
353 @item a
354 A function name (i.e., a symbol satisfying @code{fboundp}).  Existing,
355 Completion, Prompt.
357 @item b
358 The name of an existing buffer.  By default, uses the name of the
359 current buffer (@pxref{Buffers}).  Existing, Completion, Default,
360 Prompt.
362 @item B
363 A buffer name.  The buffer need not exist.  By default, uses the name of
364 a recently used buffer other than the current buffer.  Completion,
365 Default, Prompt.
367 @item c
368 A character.  The cursor does not move into the echo area.  Prompt.
370 @item C
371 A command name (i.e., a symbol satisfying @code{commandp}).  Existing,
372 Completion, Prompt.
374 @item d
375 @cindex position argument
376 The position of point, as an integer (@pxref{Point}).  No I/O.
378 @item D
379 A directory name.  The default is the current default directory of the
380 current buffer, @code{default-directory} (@pxref{File Name Expansion}).
381 Existing, Completion, Default, Prompt.
383 @item e
384 The first or next mouse event in the key sequence that invoked the command.
385 More precisely, @samp{e} gets events that are lists, so you can look at
386 the data in the lists.  @xref{Input Events}.  No I/O.
388 You can use @samp{e} more than once in a single command's interactive
389 specification.  If the key sequence that invoked the command has
390 @var{n} events that are lists, the @var{n}th @samp{e} provides the
391 @var{n}th such event.  Events that are not lists, such as function keys
392 and @acronym{ASCII} characters, do not count where @samp{e} is concerned.
394 @item f
395 A file name of an existing file (@pxref{File Names}).  The default
396 directory is @code{default-directory}.  Existing, Completion, Default,
397 Prompt.
399 @item F
400 A file name.  The file need not exist.  Completion, Default, Prompt.
402 @item G
403 A file name.  The file need not exist.  If the user enters just a
404 directory name, then the value is just that directory name, with no
405 file name within the directory added.  Completion, Default, Prompt.
407 @item i
408 An irrelevant argument.  This code always supplies @code{nil} as
409 the argument's value.  No I/O.
411 @item k
412 A key sequence (@pxref{Key Sequences}).  This keeps reading events
413 until a command (or undefined command) is found in the current key
414 maps.  The key sequence argument is represented as a string or vector.
415 The cursor does not move into the echo area.  Prompt.
417 If @samp{k} reads a key sequence that ends with a down-event, it also
418 reads and discards the following up-event.  You can get access to that
419 up-event with the @samp{U} code character.
421 This kind of input is used by commands such as @code{describe-key} and
422 @code{global-set-key}.
424 @item K
425 A key sequence, whose definition you intend to change.  This works like
426 @samp{k}, except that it suppresses, for the last input event in the key
427 sequence, the conversions that are normally used (when necessary) to
428 convert an undefined key into a defined one.
430 @item m
431 @cindex marker argument
432 The position of the mark, as an integer.  No I/O.
434 @item M
435 Arbitrary text, read in the minibuffer using the current buffer's input
436 method, and returned as a string (@pxref{Input Methods,,, emacs, The GNU
437 Emacs Manual}).  Prompt.
439 @item n
440 A number, read with the minibuffer.  If the input is not a number, the
441 user has to try again.  @samp{n} never uses the prefix argument.
442 Prompt.
444 @item N
445 The numeric prefix argument; but if there is no prefix argument, read
446 a number as with @kbd{n}.  The value is always a number.  @xref{Prefix
447 Command Arguments}.  Prompt.
449 @item p
450 @cindex numeric prefix argument usage
451 The numeric prefix argument.  (Note that this @samp{p} is lower case.)
452 No I/O.
454 @item P
455 @cindex raw prefix argument usage
456 The raw prefix argument.  (Note that this @samp{P} is upper case.)  No
457 I/O.
459 @item r
460 @cindex region argument
461 Point and the mark, as two numeric arguments, smallest first.  This is
462 the only code letter that specifies two successive arguments rather than
463 one.  No I/O.
465 @item s
466 Arbitrary text, read in the minibuffer and returned as a string
467 (@pxref{Text from Minibuffer}).  Terminate the input with either
468 @kbd{C-j} or @key{RET}.  (@kbd{C-q} may be used to include either of
469 these characters in the input.)  Prompt.
471 @item S
472 An interned symbol whose name is read in the minibuffer.  Any whitespace
473 character terminates the input.  (Use @kbd{C-q} to include whitespace in
474 the string.)  Other characters that normally terminate a symbol (e.g.,
475 parentheses and brackets) do not do so here.  Prompt.
477 @item U
478 A key sequence or @code{nil}.  Can be used after a @samp{k} or
479 @samp{K} argument to get the up-event that was discarded (if any)
480 after @samp{k} or @samp{K} read a down-event.  If no up-event has been
481 discarded, @samp{U} provides @code{nil} as the argument.  No I/O.
483 @item v
484 A variable declared to be a user option (i.e., satisfying the
485 predicate @code{user-variable-p}).  This reads the variable using
486 @code{read-variable}.  @xref{Definition of read-variable}.  Existing,
487 Completion, Prompt.
489 @item x
490 A Lisp object, specified with its read syntax, terminated with a
491 @kbd{C-j} or @key{RET}.  The object is not evaluated.  @xref{Object from
492 Minibuffer}.  Prompt.
494 @item X
495 @cindex evaluated expression argument
496 A Lisp form's value.  @samp{X} reads as @samp{x} does, then evaluates
497 the form so that its value becomes the argument for the command.
498 Prompt.
500 @item z
501 A coding system name (a symbol).  If the user enters null input, the
502 argument value is @code{nil}.  @xref{Coding Systems}.  Completion,
503 Existing, Prompt.
505 @item Z
506 A coding system name (a symbol)---but only if this command has a prefix
507 argument.  With no prefix argument, @samp{Z} provides @code{nil} as the
508 argument value.  Completion, Existing, Prompt.
509 @end table
511 @node Interactive Examples
512 @comment  node-name,  next,  previous,  up
513 @subsection Examples of Using @code{interactive}
514 @cindex examples of using @code{interactive}
515 @cindex @code{interactive}, examples of using
517   Here are some examples of @code{interactive}:
519 @example
520 @group
521 (defun foo1 ()              ; @r{@code{foo1} takes no arguments,}
522     (interactive)           ;   @r{just moves forward two words.}
523     (forward-word 2))
524      @result{} foo1
525 @end group
527 @group
528 (defun foo2 (n)             ; @r{@code{foo2} takes one argument,}
529     (interactive "^p")      ;   @r{which is the numeric prefix.}
530                             ; @r{under @code{shift-select-mode},}
531                             ;   @r{will activate or extend region.}
532     (forward-word (* 2 n)))
533      @result{} foo2
534 @end group
536 @group
537 (defun foo3 (n)             ; @r{@code{foo3} takes one argument,}
538     (interactive "nCount:") ;   @r{which is read with the Minibuffer.}
539     (forward-word (* 2 n)))
540      @result{} foo3
541 @end group
543 @group
544 (defun three-b (b1 b2 b3)
545   "Select three existing buffers.
546 Put them into three windows, selecting the last one."
547 @end group
548     (interactive "bBuffer1:\nbBuffer2:\nbBuffer3:")
549     (delete-other-windows)
550     (split-window (selected-window) 8)
551     (switch-to-buffer b1)
552     (other-window 1)
553     (split-window (selected-window) 8)
554     (switch-to-buffer b2)
555     (other-window 1)
556     (switch-to-buffer b3))
557      @result{} three-b
558 @group
559 (three-b "*scratch*" "declarations.texi" "*mail*")
560      @result{} nil
561 @end group
562 @end example
564 @node Interactive Call
565 @section Interactive Call
566 @cindex interactive call
568   After the command loop has translated a key sequence into a command,
569 it invokes that command using the function @code{command-execute}.  If
570 the command is a function, @code{command-execute} calls
571 @code{call-interactively}, which reads the arguments and calls the
572 command.  You can also call these functions yourself.
574   Note that the term ``command'', in this context, refers to an
575 interactively callable function (or function-like object), or a
576 keyboard macro.  It does not refer to the key sequence used to invoke
577 a command (@pxref{Keymaps}).
579 @defun commandp object &optional for-call-interactively
580 This function returns @code{t} if @var{object} is a command.
581 Otherwise, it returns @code{nil}.
583 Commands include strings and vectors (which are treated as keyboard
584 macros), lambda expressions that contain a top-level
585 @code{interactive} form (@pxref{Using Interactive}), byte-code
586 function objects made from such lambda expressions, autoload objects
587 that are declared as interactive (non-@code{nil} fourth argument to
588 @code{autoload}), and some primitive functions.  Also, a symbol is
589 considered a command if it has a non-@code{nil}
590 @code{interactive-form} property, or if its function definition
591 satisfies @code{commandp}.
593 If @var{for-call-interactively} is non-@code{nil}, then
594 @code{commandp} returns @code{t} only for objects that
595 @code{call-interactively} could call---thus, not for keyboard macros.
597 See @code{documentation} in @ref{Accessing Documentation}, for a
598 realistic example of using @code{commandp}.
599 @end defun
601 @defun call-interactively command &optional record-flag keys
602 This function calls the interactively callable function @var{command},
603 providing arguments according to its interactive calling specifications.
604 It returns whatever @var{command} returns.
606 If, for instance, you have a function with the following signature:
608 @example
609 (defun foo (begin end)
610   (interactive "r")
611   ...)
612 @end example
614 then saying
616 @example
617 (call-interactively 'foo)
618 @end example
620 will call @code{foo} with the region (@code{point} and @code{mark}) as
621 the arguments.
623 An error is signaled if @var{command} is not a function or if it
624 cannot be called interactively (i.e., is not a command).  Note that
625 keyboard macros (strings and vectors) are not accepted, even though
626 they are considered commands, because they are not functions.  If
627 @var{command} is a symbol, then @code{call-interactively} uses its
628 function definition.
630 @cindex record command history
631 If @var{record-flag} is non-@code{nil}, then this command and its
632 arguments are unconditionally added to the list @code{command-history}.
633 Otherwise, the command is added only if it uses the minibuffer to read
634 an argument.  @xref{Command History}.
636 The argument @var{keys}, if given, should be a vector which specifies
637 the sequence of events to supply if the command inquires which events
638 were used to invoke it.  If @var{keys} is omitted or @code{nil}, the
639 default is the return value of @code{this-command-keys-vector}.
640 @xref{Definition of this-command-keys-vector}.
641 @end defun
643 @defun command-execute command &optional record-flag keys special
644 @cindex keyboard macro execution
645 This function executes @var{command}.  The argument @var{command} must
646 satisfy the @code{commandp} predicate; i.e., it must be an interactively
647 callable function or a keyboard macro.
649 A string or vector as @var{command} is executed with
650 @code{execute-kbd-macro}.  A function is passed to
651 @code{call-interactively} (see above), along with the
652 @var{record-flag} and @var{keys} arguments.
654 If @var{command} is a symbol, its function definition is used in its
655 place.  A symbol with an @code{autoload} definition counts as a
656 command if it was declared to stand for an interactively callable
657 function.  Such a definition is handled by loading the specified
658 library and then rechecking the definition of the symbol.
660 The argument @var{special}, if given, means to ignore the prefix
661 argument and not clear it.  This is used for executing special events
662 (@pxref{Special Events}).
663 @end defun
665 @deffn Command execute-extended-command prefix-argument
666 @cindex read command name
667 This function reads a command name from the minibuffer using
668 @code{completing-read} (@pxref{Completion}).  Then it uses
669 @code{command-execute} to call the specified command.  Whatever that
670 command returns becomes the value of @code{execute-extended-command}.
672 @cindex execute with prefix argument
673 If the command asks for a prefix argument, it receives the value
674 @var{prefix-argument}.  If @code{execute-extended-command} is called
675 interactively, the current raw prefix argument is used for
676 @var{prefix-argument}, and thus passed on to whatever command is run.
678 @c !!! Should this be @kindex?
679 @cindex @kbd{M-x}
680 @code{execute-extended-command} is the normal definition of @kbd{M-x},
681 so it uses the string @w{@samp{M-x }} as a prompt.  (It would be better
682 to take the prompt from the events used to invoke
683 @code{execute-extended-command}, but that is painful to implement.)  A
684 description of the value of the prefix argument, if any, also becomes
685 part of the prompt.
687 @example
688 @group
689 (execute-extended-command 3)
690 ---------- Buffer: Minibuffer ----------
691 3 M-x forward-word RET
692 ---------- Buffer: Minibuffer ----------
693      @result{} t
694 @end group
695 @end example
696 @end deffn
698 @node Distinguish Interactive
699 @section Distinguish Interactive Calls
701   Sometimes a command should display additional visual feedback (such
702 as an informative message in the echo area) for interactive calls
703 only.  There are three ways to do this.  The recommended way to test
704 whether the function was called using @code{call-interactively} is to
705 give it an optional argument @code{print-message} and use the
706 @code{interactive} spec to make it non-@code{nil} in interactive
707 calls.  Here's an example:
709 @example
710 (defun foo (&optional print-message)
711   (interactive "p")
712   (when print-message
713     (message "foo")))
714 @end example
716 @noindent
717 We use @code{"p"} because the numeric prefix argument is never
718 @code{nil}.  Defined in this way, the function does display the
719 message when called from a keyboard macro.
721   The above method with the additional argument is usually best,
722 because it allows callers to say ``treat this call as interactive''.
723 But you can also do the job by testing @code{called-interactively-p}.
725 @defun called-interactively-p kind
726 This function returns @code{t} when the calling function was called
727 using @code{call-interactively}.
729 The argument @var{kind} should be either the symbol @code{interactive}
730 or the symbol @code{any}.  If it is @code{interactive}, then
731 @code{called-interactively-p} returns @code{t} only if the call was
732 made directly by the user---e.g., if the user typed a key sequence
733 bound to the calling function, but @emph{not} if the user ran a
734 keyboard macro that called the function (@pxref{Keyboard Macros}).  If
735 @var{kind} is @code{any}, @code{called-interactively-p} returns
736 @code{t} for any kind of interactive call, including keyboard macros.
738 If in doubt, use @code{any}; the only known proper use of
739 @code{interactive} is if you need to decide whether to display a
740 helpful message while a function is running.
742 A function is never considered to be called interactively if it was
743 called via Lisp evaluation (or with @code{apply} or @code{funcall}).
744 @end defun
746 @noindent
747 Here is an example of using @code{called-interactively-p}:
749 @example
750 @group
751 (defun foo ()
752   (interactive)
753   (when (called-interactively-p 'any)
754     (message "Interactive!")
755     'foo-called-interactively))
756 @end group
758 @group
759 ;; @r{Type @kbd{M-x foo}.}
760      @print{} Interactive!
761 @end group
763 @group
764 (foo)
765      @result{} nil
766 @end group
767 @end example
769 @noindent
770 Here is another example that contrasts direct and indirect calls to
771 @code{called-interactively-p}.
773 @example
774 @group
775 (defun bar ()
776   (interactive)
777   (message "%s" (list (foo) (called-interactively-p 'any))))
778 @end group
780 @group
781 ;; @r{Type @kbd{M-x bar}.}
782      @print{} (nil t)
783 @end group
784 @end example
786 @node Command Loop Info
787 @comment  node-name,  next,  previous,  up
788 @section Information from the Command Loop
790 The editor command loop sets several Lisp variables to keep status
791 records for itself and for commands that are run.  With the exception of
792 @code{this-command} and @code{last-command} it's generally a bad idea to
793 change any of these variables in a Lisp program.
795 @defvar last-command
796 This variable records the name of the previous command executed by the
797 command loop (the one before the current command).  Normally the value
798 is a symbol with a function definition, but this is not guaranteed.
800 The value is copied from @code{this-command} when a command returns to
801 the command loop, except when the command has specified a prefix
802 argument for the following command.
804 This variable is always local to the current terminal and cannot be
805 buffer-local.  @xref{Multiple Terminals}.
806 @end defvar
808 @defvar real-last-command
809 This variable is set up by Emacs just like @code{last-command},
810 but never altered by Lisp programs.
811 @end defvar
813 @defvar last-repeatable-command
814 This variable stores the most recently executed command that was not
815 part of an input event.  This is the command @code{repeat} will try to
816 repeat, @xref{Repeating,,, emacs, The GNU Emacs Manual}.
817 @end defvar
819 @defvar this-command
820 @cindex current command
821 This variable records the name of the command now being executed by
822 the editor command loop.  Like @code{last-command}, it is normally a symbol
823 with a function definition.
825 The command loop sets this variable just before running a command, and
826 copies its value into @code{last-command} when the command finishes
827 (unless the command specified a prefix argument for the following
828 command).
830 @cindex kill command repetition
831 Some commands set this variable during their execution, as a flag for
832 whatever command runs next.  In particular, the functions for killing text
833 set @code{this-command} to @code{kill-region} so that any kill commands
834 immediately following will know to append the killed text to the
835 previous kill.
836 @end defvar
838 If you do not want a particular command to be recognized as the previous
839 command in the case where it got an error, you must code that command to
840 prevent this.  One way is to set @code{this-command} to @code{t} at the
841 beginning of the command, and set @code{this-command} back to its proper
842 value at the end, like this:
844 @example
845 (defun foo (args@dots{})
846   (interactive @dots{})
847   (let ((old-this-command this-command))
848     (setq this-command t)
849     @r{@dots{}do the work@dots{}}
850     (setq this-command old-this-command)))
851 @end example
853 @noindent
854 We do not bind @code{this-command} with @code{let} because that would
855 restore the old value in case of error---a feature of @code{let} which
856 in this case does precisely what we want to avoid.
858 @defvar this-original-command
859 This has the same value as @code{this-command} except when command
860 remapping occurs (@pxref{Remapping Commands}).  In that case,
861 @code{this-command} gives the command actually run (the result of
862 remapping), and @code{this-original-command} gives the command that
863 was specified to run but remapped into another command.
864 @end defvar
866 @defun this-command-keys
867 This function returns a string or vector containing the key sequence
868 that invoked the present command, plus any previous commands that
869 generated the prefix argument for this command.  Any events read by the
870 command using @code{read-event} without a timeout get tacked on to the end.
872 However, if the command has called @code{read-key-sequence}, it
873 returns the last read key sequence.  @xref{Key Sequence Input}.  The
874 value is a string if all events in the sequence were characters that
875 fit in a string.  @xref{Input Events}.
877 @example
878 @group
879 (this-command-keys)
880 ;; @r{Now use @kbd{C-u C-x C-e} to evaluate that.}
881      @result{} "^U^X^E"
882 @end group
883 @end example
884 @end defun
886 @defun this-command-keys-vector
887 @anchor{Definition of this-command-keys-vector}
888 Like @code{this-command-keys}, except that it always returns the events
889 in a vector, so you don't need to deal with the complexities of storing
890 input events in a string (@pxref{Strings of Events}).
891 @end defun
893 @defun clear-this-command-keys &optional keep-record
894 This function empties out the table of events for
895 @code{this-command-keys} to return.  Unless @var{keep-record} is
896 non-@code{nil}, it also empties the records that the function
897 @code{recent-keys} (@pxref{Recording Input}) will subsequently return.
898 This is useful after reading a password, to prevent the password from
899 echoing inadvertently as part of the next command in certain cases.
900 @end defun
902 @defvar last-nonmenu-event
903 This variable holds the last input event read as part of a key sequence,
904 not counting events resulting from mouse menus.
906 One use of this variable is for telling @code{x-popup-menu} where to pop
907 up a menu.  It is also used internally by @code{y-or-n-p}
908 (@pxref{Yes-or-No Queries}).
909 @end defvar
911 @defvar last-command-event
912 @defvarx last-command-char
913 This variable is set to the last input event that was read by the
914 command loop as part of a command.  The principal use of this variable
915 is in @code{self-insert-command}, which uses it to decide which
916 character to insert.
918 @example
919 @group
920 last-command-event
921 ;; @r{Now use @kbd{C-u C-x C-e} to evaluate that.}
922      @result{} 5
923 @end group
924 @end example
926 @noindent
927 The value is 5 because that is the @acronym{ASCII} code for @kbd{C-e}.
929 The alias @code{last-command-char} is obsolete.
930 @end defvar
932 @c Emacs 19 feature
933 @defvar last-event-frame
934 This variable records which frame the last input event was directed to.
935 Usually this is the frame that was selected when the event was
936 generated, but if that frame has redirected input focus to another
937 frame, the value is the frame to which the event was redirected.
938 @xref{Input Focus}.
940 If the last event came from a keyboard macro, the value is @code{macro}.
941 @end defvar
943 @node Adjusting Point
944 @section Adjusting Point After Commands
945 @cindex adjusting point
946 @cindex invisible/intangible text, and point
947 @cindex @code{display} property, and point display
948 @cindex @code{composition} property, and point display
950   It is not easy to display a value of point in the middle of a
951 sequence of text that has the @code{display}, @code{composition} or
952 is invisible.  Therefore, after a command finishes and returns to the
953 command loop, if point is within such a sequence, the command loop
954 normally moves point to the edge of the sequence.
956   A command can inhibit this feature by setting the variable
957 @code{disable-point-adjustment}:
959 @defvar disable-point-adjustment
960 If this variable is non-@code{nil} when a command returns to the
961 command loop, then the command loop does not check for those text
962 properties, and does not move point out of sequences that have them.
964 The command loop sets this variable to @code{nil} before each command,
965 so if a command sets it, the effect applies only to that command.
966 @end defvar
968 @defvar global-disable-point-adjustment
969 If you set this variable to a non-@code{nil} value, the feature of
970 moving point out of these sequences is completely turned off.
971 @end defvar
973 @node Input Events
974 @section Input Events
975 @cindex events
976 @cindex input events
978 The Emacs command loop reads a sequence of @dfn{input events} that
979 represent keyboard or mouse activity.  The events for keyboard activity
980 are characters or symbols; mouse events are always lists.  This section
981 describes the representation and meaning of input events in detail.
983 @defun eventp object
984 This function returns non-@code{nil} if @var{object} is an input event
985 or event type.
987 Note that any symbol might be used as an event or an event type.
988 @code{eventp} cannot distinguish whether a symbol is intended by Lisp
989 code to be used as an event.  Instead, it distinguishes whether the
990 symbol has actually been used in an event that has been read as input in
991 the current Emacs session.  If a symbol has not yet been so used,
992 @code{eventp} returns @code{nil}.
993 @end defun
995 @menu
996 * Keyboard Events::             Ordinary characters--keys with symbols on them.
997 * Function Keys::               Function keys--keys with names, not symbols.
998 * Mouse Events::                Overview of mouse events.
999 * Click Events::                Pushing and releasing a mouse button.
1000 * Drag Events::                 Moving the mouse before releasing the button.
1001 * Button-Down Events::          A button was pushed and not yet released.
1002 * Repeat Events::               Double and triple click (or drag, or down).
1003 * Motion Events::               Just moving the mouse, not pushing a button.
1004 * Focus Events::                Moving the mouse between frames.
1005 * Misc Events::                 Other events the system can generate.
1006 * Event Examples::              Examples of the lists for mouse events.
1007 * Classifying Events::          Finding the modifier keys in an event symbol.
1008                                 Event types.
1009 * Accessing Mouse::             Functions to extract info from mouse events.
1010 * Accessing Scroll::            Functions to get info from scroll bar events.
1011 * Strings of Events::           Special considerations for putting
1012                                   keyboard character events in a string.
1013 @end menu
1015 @node Keyboard Events
1016 @subsection Keyboard Events
1017 @cindex keyboard events
1019 There are two kinds of input you can get from the keyboard: ordinary
1020 keys, and function keys.  Ordinary keys correspond to characters; the
1021 events they generate are represented in Lisp as characters.  The event
1022 type of a character event is the character itself (an integer); see
1023 @ref{Classifying Events}.
1025 @cindex modifier bits (of input character)
1026 @cindex basic code (of input character)
1027 An input character event consists of a @dfn{basic code} between 0 and
1028 524287, plus any or all of these @dfn{modifier bits}:
1030 @table @asis
1031 @item meta
1033 @tex
1034 @math{2^{27}}
1035 @end tex
1036 @ifnottex
1037 2**27
1038 @end ifnottex
1039 bit in the character code indicates a character
1040 typed with the meta key held down.
1042 @item control
1044 @tex
1045 @math{2^{26}}
1046 @end tex
1047 @ifnottex
1048 2**26
1049 @end ifnottex
1050 bit in the character code indicates a non-@acronym{ASCII}
1051 control character.
1053 @sc{ascii} control characters such as @kbd{C-a} have special basic
1054 codes of their own, so Emacs needs no special bit to indicate them.
1055 Thus, the code for @kbd{C-a} is just 1.
1057 But if you type a control combination not in @acronym{ASCII}, such as
1058 @kbd{%} with the control key, the numeric value you get is the code
1059 for @kbd{%} plus
1060 @tex
1061 @math{2^{26}}
1062 @end tex
1063 @ifnottex
1064 2**26
1065 @end ifnottex
1066 (assuming the terminal supports non-@acronym{ASCII}
1067 control characters).
1069 @item shift
1071 @tex
1072 @math{2^{25}}
1073 @end tex
1074 @ifnottex
1075 2**25
1076 @end ifnottex
1077 bit in the character code indicates an @acronym{ASCII} control
1078 character typed with the shift key held down.
1080 For letters, the basic code itself indicates upper versus lower case;
1081 for digits and punctuation, the shift key selects an entirely different
1082 character with a different basic code.  In order to keep within the
1083 @acronym{ASCII} character set whenever possible, Emacs avoids using the
1084 @tex
1085 @math{2^{25}}
1086 @end tex
1087 @ifnottex
1088 2**25
1089 @end ifnottex
1090 bit for those characters.
1092 However, @acronym{ASCII} provides no way to distinguish @kbd{C-A} from
1093 @kbd{C-a}, so Emacs uses the
1094 @tex
1095 @math{2^{25}}
1096 @end tex
1097 @ifnottex
1098 2**25
1099 @end ifnottex
1100 bit in @kbd{C-A} and not in
1101 @kbd{C-a}.
1103 @item hyper
1105 @tex
1106 @math{2^{24}}
1107 @end tex
1108 @ifnottex
1109 2**24
1110 @end ifnottex
1111 bit in the character code indicates a character
1112 typed with the hyper key held down.
1114 @item super
1116 @tex
1117 @math{2^{23}}
1118 @end tex
1119 @ifnottex
1120 2**23
1121 @end ifnottex
1122 bit in the character code indicates a character
1123 typed with the super key held down.
1125 @item alt
1127 @tex
1128 @math{2^{22}}
1129 @end tex
1130 @ifnottex
1131 2**22
1132 @end ifnottex
1133 bit in the character code indicates a character typed with the alt key
1134 held down.  (The key labeled @key{Alt} on most keyboards is actually
1135 treated as the meta key, not this.)
1136 @end table
1138   It is best to avoid mentioning specific bit numbers in your program.
1139 To test the modifier bits of a character, use the function
1140 @code{event-modifiers} (@pxref{Classifying Events}).  When making key
1141 bindings, you can use the read syntax for characters with modifier bits
1142 (@samp{\C-}, @samp{\M-}, and so on).  For making key bindings with
1143 @code{define-key}, you can use lists such as @code{(control hyper ?x)} to
1144 specify the characters (@pxref{Changing Key Bindings}).  The function
1145 @code{event-convert-list} converts such a list into an event type
1146 (@pxref{Classifying Events}).
1148 @node Function Keys
1149 @subsection Function Keys
1151 @cindex function keys
1152 Most keyboards also have @dfn{function keys}---keys that have names or
1153 symbols that are not characters.  Function keys are represented in
1154 Emacs Lisp as symbols; the symbol's name is the function key's label,
1155 in lower case.  For example, pressing a key labeled @key{F1} generates
1156 an input event represented by the symbol @code{f1}.
1158 The event type of a function key event is the event symbol itself.
1159 @xref{Classifying Events}.
1161 Here are a few special cases in the symbol-naming convention for
1162 function keys:
1164 @table @asis
1165 @item @code{backspace}, @code{tab}, @code{newline}, @code{return}, @code{delete}
1166 These keys correspond to common @acronym{ASCII} control characters that have
1167 special keys on most keyboards.
1169 In @acronym{ASCII}, @kbd{C-i} and @key{TAB} are the same character.  If the
1170 terminal can distinguish between them, Emacs conveys the distinction to
1171 Lisp programs by representing the former as the integer 9, and the
1172 latter as the symbol @code{tab}.
1174 Most of the time, it's not useful to distinguish the two.  So normally
1175 @code{local-function-key-map} (@pxref{Translation Keymaps}) is set up
1176 to map @code{tab} into 9.  Thus, a key binding for character code 9
1177 (the character @kbd{C-i}) also applies to @code{tab}.  Likewise for
1178 the other symbols in this group.  The function @code{read-char}
1179 likewise converts these events into characters.
1181 In @acronym{ASCII}, @key{BS} is really @kbd{C-h}.  But @code{backspace}
1182 converts into the character code 127 (@key{DEL}), not into code 8
1183 (@key{BS}).  This is what most users prefer.
1185 @item @code{left}, @code{up}, @code{right}, @code{down}
1186 Cursor arrow keys
1187 @item @code{kp-add}, @code{kp-decimal}, @code{kp-divide}, @dots{}
1188 Keypad keys (to the right of the regular keyboard).
1189 @item @code{kp-0}, @code{kp-1}, @dots{}
1190 Keypad keys with digits.
1191 @item @code{kp-f1}, @code{kp-f2}, @code{kp-f3}, @code{kp-f4}
1192 Keypad PF keys.
1193 @item @code{kp-home}, @code{kp-left}, @code{kp-up}, @code{kp-right}, @code{kp-down}
1194 Keypad arrow keys.  Emacs normally translates these into the
1195 corresponding non-keypad keys @code{home}, @code{left}, @dots{}
1196 @item @code{kp-prior}, @code{kp-next}, @code{kp-end}, @code{kp-begin}, @code{kp-insert}, @code{kp-delete}
1197 Additional keypad duplicates of keys ordinarily found elsewhere.  Emacs
1198 normally translates these into the like-named non-keypad keys.
1199 @end table
1201 You can use the modifier keys @key{ALT}, @key{CTRL}, @key{HYPER},
1202 @key{META}, @key{SHIFT}, and @key{SUPER} with function keys.  The way to
1203 represent them is with prefixes in the symbol name:
1205 @table @samp
1206 @item A-
1207 The alt modifier.
1208 @item C-
1209 The control modifier.
1210 @item H-
1211 The hyper modifier.
1212 @item M-
1213 The meta modifier.
1214 @item S-
1215 The shift modifier.
1216 @item s-
1217 The super modifier.
1218 @end table
1220 Thus, the symbol for the key @key{F3} with @key{META} held down is
1221 @code{M-f3}.  When you use more than one prefix, we recommend you
1222 write them in alphabetical order; but the order does not matter in
1223 arguments to the key-binding lookup and modification functions.
1225 @node Mouse Events
1226 @subsection Mouse Events
1228 Emacs supports four kinds of mouse events: click events, drag events,
1229 button-down events, and motion events.  All mouse events are represented
1230 as lists.  The @sc{car} of the list is the event type; this says which
1231 mouse button was involved, and which modifier keys were used with it.
1232 The event type can also distinguish double or triple button presses
1233 (@pxref{Repeat Events}).  The rest of the list elements give position
1234 and time information.
1236 For key lookup, only the event type matters: two events of the same type
1237 necessarily run the same command.  The command can access the full
1238 values of these events using the @samp{e} interactive code.
1239 @xref{Interactive Codes}.
1241 A key sequence that starts with a mouse event is read using the keymaps
1242 of the buffer in the window that the mouse was in, not the current
1243 buffer.  This does not imply that clicking in a window selects that
1244 window or its buffer---that is entirely under the control of the command
1245 binding of the key sequence.
1247 @node Click Events
1248 @subsection Click Events
1249 @cindex click event
1250 @cindex mouse click event
1252 When the user presses a mouse button and releases it at the same
1253 location, that generates a @dfn{click} event.  All mouse click event
1254 share the same format:
1256 @example
1257 (@var{event-type} @var{position} @var{click-count})
1258 @end example
1260 @table @asis
1261 @item @var{event-type}
1262 This is a symbol that indicates which mouse button was used.  It is
1263 one of the symbols @code{mouse-1}, @code{mouse-2}, @dots{}, where the
1264 buttons are numbered left to right.
1266 You can also use prefixes @samp{A-}, @samp{C-}, @samp{H-}, @samp{M-},
1267 @samp{S-} and @samp{s-} for modifiers alt, control, hyper, meta, shift
1268 and super, just as you would with function keys.
1270 This symbol also serves as the event type of the event.  Key bindings
1271 describe events by their types; thus, if there is a key binding for
1272 @code{mouse-1}, that binding would apply to all events whose
1273 @var{event-type} is @code{mouse-1}.
1275 @item @var{position}
1276 This is the position where the mouse click occurred.  The actual
1277 format of @var{position} depends on what part of a window was clicked
1280 For mouse click events in the text area, mode line, header line, or in
1281 the marginal areas, @var{position} has this form:
1283 @example
1284 (@var{window} @var{pos-or-area} (@var{x} . @var{y}) @var{timestamp}
1285  @var{object} @var{text-pos} (@var{col} . @var{row})
1286  @var{image} (@var{dx} . @var{dy}) (@var{width} . @var{height}))
1287 @end example
1289 @noindent
1290 The meanings of these list elements are documented below.
1291 @xref{Accessing Mouse}, for functions that let you easily access these
1292 elements.
1294 @table @asis
1295 @item @var{window}
1296 This is the window in which the click occurred.
1298 @item @var{pos-or-area}
1299 This is the buffer position of the character clicked on in the text
1300 area, or if clicked outside the text area, it is the window area in
1301 which the click occurred.  It is one of the symbols @code{mode-line},
1302 @code{header-line}, @code{vertical-line}, @code{left-margin},
1303 @code{right-margin}, @code{left-fringe}, or @code{right-fringe}.
1305 In one special case, @var{pos-or-area} is a list containing a symbol
1306 (one of the symbols listed above) instead of just the symbol.  This
1307 happens after the imaginary prefix keys for the event are registered
1308 by Emacs.  @xref{Key Sequence Input}.
1310 @item @var{x}, @var{y}
1311 These are the relative pixel coordinates of the click.  For clicks in
1312 the text area of a window, the coordinate origin @code{(0 . 0)} is
1313 taken to be the top left corner of the text area.  @xref{Window
1314 Sizes}.  For clicks in a mode line or header line, the coordinate
1315 origin is the top left corner of the window itself.  For fringes,
1316 margins, and the vertical border, @var{x} does not have meaningful
1317 data.  For fringes and margins, @var{y} is relative to the bottom edge
1318 of the header line.  In all cases, the @var{x} and @var{y} coordinates
1319 increase rightward and downward respectively.
1321 @item @var{timestamp}
1322 This is the time at which the event occurred, in milliseconds.
1324 @item @var{object}
1325 This is either @code{nil} if there is no string-type text property at
1326 the click position, or a cons cell of the form (@var{string}
1327 . @var{string-pos}) if there is one:
1329 @table @asis
1330 @item @var{string}
1331 The string which was clicked on, including any properties.
1333 @item @var{string-pos}
1334 The position in the string where the click occurred.
1335 @end table
1337 @item @var{text-pos}
1338 For clicks on a marginal area or on a fringe, this is the buffer
1339 position of the first visible character in the corresponding line in
1340 the window.  For other events, it is the current buffer position in
1341 the window.
1343 @item @var{col}, @var{row}
1344 These are the actual column and row coordinate numbers of the glyph
1345 under the @var{x}, @var{y} position.  If @var{x} lies beyond the last
1346 column of actual text on its line, @var{col} is reported by adding
1347 fictional extra columns that have the default character width.  Row 0
1348 is taken to be the header line if the window has one, or the topmost
1349 row of the text area otherwise.  Column 0 is taken to be the leftmost
1350 column of the text area for clicks on a window text area, or the
1351 leftmost mode line or header line column for clicks there.  For clicks
1352 on fringes or vertical borders, these have no meaningful data.  For
1353 clicks on margins, @var{col} is measured from the left edge of the
1354 margin area and @var{row} is measured from the top of the margin area.
1356 @item @var{image}
1357 This is the image object on which the click occurred.  It is either
1358 @code{nil} if there is no image at the position clicked on, or it is
1359 an image object as returned by @code{find-image} if click was in an image.
1361 @item @var{dx}, @var{dy}
1362 These are the pixel coordinates of the click, relative to
1363 the top left corner of @var{object}, which is @code{(0 . 0)}.  If
1364 @var{object} is @code{nil}, the coordinates are relative to the top
1365 left corner of the character glyph clicked on.
1367 @item @var{width}, @var{height}
1368 These are the pixel width and height of @var{object} or, if this is
1369 @code{nil}, those of the character glyph clicked on.
1370 @end table
1372 @sp 1
1373 For mouse clicks on a scroll-bar, @var{position} has this form:
1375 @example
1376 (@var{window} @var{area} (@var{portion} . @var{whole}) @var{timestamp} @var{part})
1377 @end example
1379 @table @asis
1380 @item @var{window}
1381 This is the window whose scroll-bar was clicked on.
1383 @item @var{area}
1384 This is the scroll bar where the click occurred.  It is one of the
1385 symbols @code{vertical-scroll-bar} or @code{horizontal-scroll-bar}.
1387 @item @var{portion}
1388 This is the distance of the click from the top or left end of
1389 the scroll bar.
1391 @item @var{whole}
1392 This is the length of the entire scroll bar.
1394 @item @var{timestamp}
1395 This is the time at which the event occurred, in milliseconds.
1397 @item @var{part}
1398 This is the part of the scroll-bar which was clicked on.  It is one
1399 of the symbols @code{above-handle}, @code{handle}, @code{below-handle},
1400 @code{up}, @code{down}, @code{top}, @code{bottom}, and @code{end-scroll}.
1401 @end table
1403 @item @var{click-count}
1404 This is the number of rapid repeated presses so far of the same mouse
1405 button.  @xref{Repeat Events}.
1406 @end table
1408 @node Drag Events
1409 @subsection Drag Events
1410 @cindex drag event
1411 @cindex mouse drag event
1413 With Emacs, you can have a drag event without even changing your
1414 clothes.  A @dfn{drag event} happens every time the user presses a mouse
1415 button and then moves the mouse to a different character position before
1416 releasing the button.  Like all mouse events, drag events are
1417 represented in Lisp as lists.  The lists record both the starting mouse
1418 position and the final position, like this:
1420 @example
1421 (@var{event-type}
1422  (@var{window1} START-POSITION)
1423  (@var{window2} END-POSITION))
1424 @end example
1426 For a drag event, the name of the symbol @var{event-type} contains the
1427 prefix @samp{drag-}.  For example, dragging the mouse with button 2
1428 held down generates a @code{drag-mouse-2} event.  The second and third
1429 elements of the event give the starting and ending position of the
1430 drag.  They have the same form as @var{position} in a click event
1431 (@pxref{Click Events}) that is not on the scroll bar part of the
1432 window.  You can access the second element of any mouse event in the
1433 same way, with no need to distinguish drag events from others.
1435 The @samp{drag-} prefix follows the modifier key prefixes such as
1436 @samp{C-} and @samp{M-}.
1438 If @code{read-key-sequence} receives a drag event that has no key
1439 binding, and the corresponding click event does have a binding, it
1440 changes the drag event into a click event at the drag's starting
1441 position.  This means that you don't have to distinguish between click
1442 and drag events unless you want to.
1444 @node Button-Down Events
1445 @subsection Button-Down Events
1446 @cindex button-down event
1448 Click and drag events happen when the user releases a mouse button.
1449 They cannot happen earlier, because there is no way to distinguish a
1450 click from a drag until the button is released.
1452 If you want to take action as soon as a button is pressed, you need to
1453 handle @dfn{button-down} events.@footnote{Button-down is the
1454 conservative antithesis of drag.}  These occur as soon as a button is
1455 pressed.  They are represented by lists that look exactly like click
1456 events (@pxref{Click Events}), except that the @var{event-type} symbol
1457 name contains the prefix @samp{down-}.  The @samp{down-} prefix follows
1458 modifier key prefixes such as @samp{C-} and @samp{M-}.
1460 The function @code{read-key-sequence} ignores any button-down events
1461 that don't have command bindings; therefore, the Emacs command loop
1462 ignores them too.  This means that you need not worry about defining
1463 button-down events unless you want them to do something.  The usual
1464 reason to define a button-down event is so that you can track mouse
1465 motion (by reading motion events) until the button is released.
1466 @xref{Motion Events}.
1468 @node Repeat Events
1469 @subsection Repeat Events
1470 @cindex repeat events
1471 @cindex double-click events
1472 @cindex triple-click events
1473 @cindex mouse events, repeated
1475 If you press the same mouse button more than once in quick succession
1476 without moving the mouse, Emacs generates special @dfn{repeat} mouse
1477 events for the second and subsequent presses.
1479 The most common repeat events are @dfn{double-click} events.  Emacs
1480 generates a double-click event when you click a button twice; the event
1481 happens when you release the button (as is normal for all click
1482 events).
1484 The event type of a double-click event contains the prefix
1485 @samp{double-}.  Thus, a double click on the second mouse button with
1486 @key{meta} held down comes to the Lisp program as
1487 @code{M-double-mouse-2}.  If a double-click event has no binding, the
1488 binding of the corresponding ordinary click event is used to execute
1489 it.  Thus, you need not pay attention to the double click feature
1490 unless you really want to.
1492 When the user performs a double click, Emacs generates first an ordinary
1493 click event, and then a double-click event.  Therefore, you must design
1494 the command binding of the double click event to assume that the
1495 single-click command has already run.  It must produce the desired
1496 results of a double click, starting from the results of a single click.
1498 This is convenient, if the meaning of a double click somehow ``builds
1499 on'' the meaning of a single click---which is recommended user interface
1500 design practice for double clicks.
1502 If you click a button, then press it down again and start moving the
1503 mouse with the button held down, then you get a @dfn{double-drag} event
1504 when you ultimately release the button.  Its event type contains
1505 @samp{double-drag} instead of just @samp{drag}.  If a double-drag event
1506 has no binding, Emacs looks for an alternate binding as if the event
1507 were an ordinary drag.
1509 Before the double-click or double-drag event, Emacs generates a
1510 @dfn{double-down} event when the user presses the button down for the
1511 second time.  Its event type contains @samp{double-down} instead of just
1512 @samp{down}.  If a double-down event has no binding, Emacs looks for an
1513 alternate binding as if the event were an ordinary button-down event.
1514 If it finds no binding that way either, the double-down event is
1515 ignored.
1517 To summarize, when you click a button and then press it again right
1518 away, Emacs generates a down event and a click event for the first
1519 click, a double-down event when you press the button again, and finally
1520 either a double-click or a double-drag event.
1522 If you click a button twice and then press it again, all in quick
1523 succession, Emacs generates a @dfn{triple-down} event, followed by
1524 either a @dfn{triple-click} or a @dfn{triple-drag}.  The event types of
1525 these events contain @samp{triple} instead of @samp{double}.  If any
1526 triple event has no binding, Emacs uses the binding that it would use
1527 for the corresponding double event.
1529 If you click a button three or more times and then press it again, the
1530 events for the presses beyond the third are all triple events.  Emacs
1531 does not have separate event types for quadruple, quintuple, etc.@:
1532 events.  However, you can look at the event list to find out precisely
1533 how many times the button was pressed.
1535 @defun event-click-count event
1536 This function returns the number of consecutive button presses that led
1537 up to @var{event}.  If @var{event} is a double-down, double-click or
1538 double-drag event, the value is 2.  If @var{event} is a triple event,
1539 the value is 3 or greater.  If @var{event} is an ordinary mouse event
1540 (not a repeat event), the value is 1.
1541 @end defun
1543 @defopt double-click-fuzz
1544 To generate repeat events, successive mouse button presses must be at
1545 approximately the same screen position.  The value of
1546 @code{double-click-fuzz} specifies the maximum number of pixels the
1547 mouse may be moved (horizontally or vertically) between two successive
1548 clicks to make a double-click.
1550 This variable is also the threshold for motion of the mouse to count
1551 as a drag.
1552 @end defopt
1554 @defopt double-click-time
1555 To generate repeat events, the number of milliseconds between
1556 successive button presses must be less than the value of
1557 @code{double-click-time}.  Setting @code{double-click-time} to
1558 @code{nil} disables multi-click detection entirely.  Setting it to
1559 @code{t} removes the time limit; Emacs then detects multi-clicks by
1560 position only.
1561 @end defopt
1563 @node Motion Events
1564 @subsection Motion Events
1565 @cindex motion event
1566 @cindex mouse motion events
1568 Emacs sometimes generates @dfn{mouse motion} events to describe motion
1569 of the mouse without any button activity.  Mouse motion events are
1570 represented by lists that look like this:
1572 @example
1573 (mouse-movement POSITION)
1574 @end example
1576 The second element of the list describes the current position of the
1577 mouse, just as in a click event (@pxref{Click Events}).
1579 The special form @code{track-mouse} enables generation of motion events
1580 within its body.  Outside of @code{track-mouse} forms, Emacs does not
1581 generate events for mere motion of the mouse, and these events do not
1582 appear.  @xref{Mouse Tracking}.
1584 @node Focus Events
1585 @subsection Focus Events
1586 @cindex focus event
1588 Window systems provide general ways for the user to control which window
1589 gets keyboard input.  This choice of window is called the @dfn{focus}.
1590 When the user does something to switch between Emacs frames, that
1591 generates a @dfn{focus event}.  The normal definition of a focus event,
1592 in the global keymap, is to select a new frame within Emacs, as the user
1593 would expect.  @xref{Input Focus}.
1595 Focus events are represented in Lisp as lists that look like this:
1597 @example
1598 (switch-frame @var{new-frame})
1599 @end example
1601 @noindent
1602 where @var{new-frame} is the frame switched to.
1604 Some X window managers are set up so that just moving the mouse into a
1605 window is enough to set the focus there.  Usually, there is no need
1606 for a Lisp program to know about the focus change until some other
1607 kind of input arrives.  Emacs generates a focus event only when the
1608 user actually types a keyboard key or presses a mouse button in the
1609 new frame; just moving the mouse between frames does not generate a
1610 focus event.
1612 A focus event in the middle of a key sequence would garble the
1613 sequence.  So Emacs never generates a focus event in the middle of a key
1614 sequence.  If the user changes focus in the middle of a key
1615 sequence---that is, after a prefix key---then Emacs reorders the events
1616 so that the focus event comes either before or after the multi-event key
1617 sequence, and not within it.
1619 @node Misc Events
1620 @subsection Miscellaneous System Events
1622 A few other event types represent occurrences within the system.
1624 @table @code
1625 @cindex @code{delete-frame} event
1626 @item (delete-frame (@var{frame}))
1627 This kind of event indicates that the user gave the window manager
1628 a command to delete a particular window, which happens to be an Emacs frame.
1630 The standard definition of the @code{delete-frame} event is to delete @var{frame}.
1632 @cindex @code{iconify-frame} event
1633 @item (iconify-frame (@var{frame}))
1634 This kind of event indicates that the user iconified @var{frame} using
1635 the window manager.  Its standard definition is @code{ignore}; since the
1636 frame has already been iconified, Emacs has no work to do.  The purpose
1637 of this event type is so that you can keep track of such events if you
1638 want to.
1640 @cindex @code{make-frame-visible} event
1641 @item (make-frame-visible (@var{frame}))
1642 This kind of event indicates that the user deiconified @var{frame} using
1643 the window manager.  Its standard definition is @code{ignore}; since the
1644 frame has already been made visible, Emacs has no work to do.
1646 @cindex @code{wheel-up} event
1647 @cindex @code{wheel-down} event
1648 @item (wheel-up @var{position})
1649 @item (wheel-down @var{position})
1650 These kinds of event are generated by moving a mouse wheel.  Their
1651 usual meaning is a kind of scroll or zoom.
1653 The element @var{position} is a list describing the position of the
1654 event, in the same format as used in a mouse-click event (@pxref{Click
1655 Events}).
1657 @vindex mouse-wheel-up-event
1658 @vindex mouse-wheel-down-event
1659 This kind of event is generated only on some kinds of systems. On some
1660 systems, @code{mouse-4} and @code{mouse-5} are used instead.  For
1661 portable code, use the variables @code{mouse-wheel-up-event} and
1662 @code{mouse-wheel-down-event} defined in @file{mwheel.el} to determine
1663 what event types to expect for the mouse wheel.
1665 @cindex @code{drag-n-drop} event
1666 @item (drag-n-drop @var{position} @var{files})
1667 This kind of event is generated when a group of files is
1668 selected in an application outside of Emacs, and then dragged and
1669 dropped onto an Emacs frame.
1671 The element @var{position} is a list describing the position of the
1672 event, in the same format as used in a mouse-click event (@pxref{Click
1673 Events}), and @var{files} is the list of file names that were dragged
1674 and dropped.  The usual way to handle this event is by visiting these
1675 files.
1677 This kind of event is generated, at present, only on some kinds of
1678 systems.
1680 @cindex @code{help-echo} event
1681 @item help-echo
1682 This kind of event is generated when a mouse pointer moves onto a
1683 portion of buffer text which has a @code{help-echo} text property.
1684 The generated event has this form:
1686 @example
1687 (help-echo @var{frame} @var{help} @var{window} @var{object} @var{pos})
1688 @end example
1690 @noindent
1691 The precise meaning of the event parameters and the way these
1692 parameters are used to display the help-echo text are described in
1693 @ref{Text help-echo}.
1695 @cindex @code{sigusr1} event
1696 @cindex @code{sigusr2} event
1697 @cindex user signals
1698 @item sigusr1
1699 @itemx sigusr2
1700 These events are generated when the Emacs process receives
1701 the signals @code{SIGUSR1} and @code{SIGUSR2}.  They contain no
1702 additional data because signals do not carry additional information.
1703 They can be useful for debugging (@pxref{Error Debugging}).
1705 To catch a user signal, bind the corresponding event to an interactive
1706 command in the @code{special-event-map} (@pxref{Active Keymaps}).
1707 The command is called with no arguments, and the specific signal event is
1708 available in @code{last-input-event}.  For example:
1710 @smallexample
1711 (defun sigusr-handler ()
1712   (interactive)
1713   (message "Caught signal %S" last-input-event))
1715 (define-key special-event-map [sigusr1] 'sigusr-handler)
1716 @end smallexample
1718 To test the signal handler, you can make Emacs send a signal to itself:
1720 @smallexample
1721 (signal-process (emacs-pid) 'sigusr1)
1722 @end smallexample
1723 @end table
1725   If one of these events arrives in the middle of a key sequence---that
1726 is, after a prefix key---then Emacs reorders the events so that this
1727 event comes either before or after the multi-event key sequence, not
1728 within it.
1730 @node Event Examples
1731 @subsection Event Examples
1733 If the user presses and releases the left mouse button over the same
1734 location, that generates a sequence of events like this:
1736 @smallexample
1737 (down-mouse-1 (#<window 18 on NEWS> 2613 (0 . 38) -864320))
1738 (mouse-1      (#<window 18 on NEWS> 2613 (0 . 38) -864180))
1739 @end smallexample
1741 While holding the control key down, the user might hold down the
1742 second mouse button, and drag the mouse from one line to the next.
1743 That produces two events, as shown here:
1745 @smallexample
1746 (C-down-mouse-2 (#<window 18 on NEWS> 3440 (0 . 27) -731219))
1747 (C-drag-mouse-2 (#<window 18 on NEWS> 3440 (0 . 27) -731219)
1748                 (#<window 18 on NEWS> 3510 (0 . 28) -729648))
1749 @end smallexample
1751 While holding down the meta and shift keys, the user might press the
1752 second mouse button on the window's mode line, and then drag the mouse
1753 into another window.  That produces a pair of events like these:
1755 @smallexample
1756 (M-S-down-mouse-2 (#<window 18 on NEWS> mode-line (33 . 31) -457844))
1757 (M-S-drag-mouse-2 (#<window 18 on NEWS> mode-line (33 . 31) -457844)
1758                   (#<window 20 on carlton-sanskrit.tex> 161 (33 . 3)
1759                    -453816))
1760 @end smallexample
1762 To handle a SIGUSR1 signal, define an interactive function, and
1763 bind it to the @code{signal usr1} event sequence:
1765 @smallexample
1766 (defun usr1-handler ()
1767   (interactive)
1768   (message "Got USR1 signal"))
1769 (global-set-key [signal usr1] 'usr1-handler)
1770 @end smallexample
1772 @node Classifying Events
1773 @subsection Classifying Events
1774 @cindex event type
1776   Every event has an @dfn{event type}, which classifies the event for
1777 key binding purposes.  For a keyboard event, the event type equals the
1778 event value; thus, the event type for a character is the character, and
1779 the event type for a function key symbol is the symbol itself.  For
1780 events that are lists, the event type is the symbol in the @sc{car} of
1781 the list.  Thus, the event type is always a symbol or a character.
1783   Two events of the same type are equivalent where key bindings are
1784 concerned; thus, they always run the same command.  That does not
1785 necessarily mean they do the same things, however, as some commands look
1786 at the whole event to decide what to do.  For example, some commands use
1787 the location of a mouse event to decide where in the buffer to act.
1789   Sometimes broader classifications of events are useful.  For example,
1790 you might want to ask whether an event involved the @key{META} key,
1791 regardless of which other key or mouse button was used.
1793   The functions @code{event-modifiers} and @code{event-basic-type} are
1794 provided to get such information conveniently.
1796 @defun event-modifiers event
1797 This function returns a list of the modifiers that @var{event} has.  The
1798 modifiers are symbols; they include @code{shift}, @code{control},
1799 @code{meta}, @code{alt}, @code{hyper} and @code{super}.  In addition,
1800 the modifiers list of a mouse event symbol always contains one of
1801 @code{click}, @code{drag}, and @code{down}.  For double or triple
1802 events, it also contains @code{double} or @code{triple}.
1804 The argument @var{event} may be an entire event object, or just an
1805 event type.  If @var{event} is a symbol that has never been used in an
1806 event that has been read as input in the current Emacs session, then
1807 @code{event-modifiers} can return @code{nil}, even when @var{event}
1808 actually has modifiers.
1810 Here are some examples:
1812 @example
1813 (event-modifiers ?a)
1814      @result{} nil
1815 (event-modifiers ?A)
1816      @result{} (shift)
1817 (event-modifiers ?\C-a)
1818      @result{} (control)
1819 (event-modifiers ?\C-%)
1820      @result{} (control)
1821 (event-modifiers ?\C-\S-a)
1822      @result{} (control shift)
1823 (event-modifiers 'f5)
1824      @result{} nil
1825 (event-modifiers 's-f5)
1826      @result{} (super)
1827 (event-modifiers 'M-S-f5)
1828      @result{} (meta shift)
1829 (event-modifiers 'mouse-1)
1830      @result{} (click)
1831 (event-modifiers 'down-mouse-1)
1832      @result{} (down)
1833 @end example
1835 The modifiers list for a click event explicitly contains @code{click},
1836 but the event symbol name itself does not contain @samp{click}.
1837 @end defun
1839 @defun event-basic-type event
1840 This function returns the key or mouse button that @var{event}
1841 describes, with all modifiers removed.  The @var{event} argument is as
1842 in @code{event-modifiers}.  For example:
1844 @example
1845 (event-basic-type ?a)
1846      @result{} 97
1847 (event-basic-type ?A)
1848      @result{} 97
1849 (event-basic-type ?\C-a)
1850      @result{} 97
1851 (event-basic-type ?\C-\S-a)
1852      @result{} 97
1853 (event-basic-type 'f5)
1854      @result{} f5
1855 (event-basic-type 's-f5)
1856      @result{} f5
1857 (event-basic-type 'M-S-f5)
1858      @result{} f5
1859 (event-basic-type 'down-mouse-1)
1860      @result{} mouse-1
1861 @end example
1862 @end defun
1864 @defun mouse-movement-p object
1865 This function returns non-@code{nil} if @var{object} is a mouse movement
1866 event.
1867 @end defun
1869 @defun event-convert-list list
1870 This function converts a list of modifier names and a basic event type
1871 to an event type which specifies all of them.  The basic event type
1872 must be the last element of the list.  For example,
1874 @example
1875 (event-convert-list '(control ?a))
1876      @result{} 1
1877 (event-convert-list '(control meta ?a))
1878      @result{} -134217727
1879 (event-convert-list '(control super f1))
1880      @result{} C-s-f1
1881 @end example
1882 @end defun
1884 @node Accessing Mouse
1885 @subsection Accessing Mouse Events
1886 @cindex mouse events, data in
1888   This section describes convenient functions for accessing the data in
1889 a mouse button or motion event.
1891   These two functions return the starting or ending position of a
1892 mouse-button event, as a list of this form (@pxref{Click Events}):
1894 @example
1895 (@var{window} @var{pos-or-area} (@var{x} . @var{y}) @var{timestamp}
1896  @var{object} @var{text-pos} (@var{col} . @var{row})
1897  @var{image} (@var{dx} . @var{dy}) (@var{width} . @var{height}))
1898 @end example
1900 @defun event-start event
1901 This returns the starting position of @var{event}.
1903 If @var{event} is a click or button-down event, this returns the
1904 location of the event.  If @var{event} is a drag event, this returns the
1905 drag's starting position.
1906 @end defun
1908 @defun event-end event
1909 This returns the ending position of @var{event}.
1911 If @var{event} is a drag event, this returns the position where the user
1912 released the mouse button.  If @var{event} is a click or button-down
1913 event, the value is actually the starting position, which is the only
1914 position such events have.
1915 @end defun
1917 @cindex mouse position list, accessing
1918   These functions take a position list as described above, and
1919 return various parts of it.
1921 @defun posn-window position
1922 Return the window that @var{position} is in.
1923 @end defun
1925 @defun posn-area position
1926 Return the window area recorded in @var{position}.  It returns @code{nil}
1927 when the event occurred in the text area of the window; otherwise, it
1928 is a symbol identifying the area in which the event occurred.
1929 @end defun
1931 @defun posn-point position
1932 Return the buffer position in @var{position}.  When the event occurred
1933 in the text area of the window, in a marginal area, or on a fringe,
1934 this is an integer specifying a buffer position.  Otherwise, the value
1935 is undefined.
1936 @end defun
1938 @defun posn-x-y position
1939 Return the pixel-based x and y coordinates in @var{position}, as a
1940 cons cell @code{(@var{x} . @var{y})}.  These coordinates are relative
1941 to the window given by @code{posn-window}.
1943 This example shows how to convert the window-relative coordinates in
1944 the text area of a window into frame-relative coordinates:
1946 @example
1947 (defun frame-relative-coordinates (position)
1948   "Return frame-relative coordinates from POSITION.
1949 POSITION is assumed to lie in a window text area."
1950   (let* ((x-y (posn-x-y position))
1951          (window (posn-window position))
1952          (edges (window-inside-pixel-edges window)))
1953     (cons (+ (car x-y) (car edges))
1954           (+ (cdr x-y) (cadr edges)))))
1955 @end example
1956 @end defun
1958 @defun posn-col-row position
1959 This function returns a cons cell @code{(@var{col} .  @var{row})},
1960 containing the estimated column and row corresponding to buffer
1961 position @var{position}.  The return value is given in units of the
1962 frame's default character width and height, as computed from the
1963 @var{x} and @var{y} values corresponding to @var{position}.  (So, if
1964 the actual characters have non-default sizes, the actual row and
1965 column may differ from these computed values.)
1967 Note that @var{row} is counted from the top of the text area.  If the
1968 window possesses a header line (@pxref{Header Lines}), it is
1969 @emph{not} counted as the first line.
1970 @end defun
1972 @defun posn-actual-col-row position
1973 Return the actual row and column in @var{position}, as a cons cell
1974 @code{(@var{col} . @var{row})}.  The values are the actual row and
1975 column numbers in the window.  @xref{Click Events}, for details.  It
1976 returns @code{nil} if @var{position} does not include actual positions
1977 values.
1978 @end defun
1980 @defun posn-string position
1981 Return the string object in @var{position}, either @code{nil}, or a
1982 cons cell @code{(@var{string} . @var{string-pos})}.
1983 @end defun
1985 @defun posn-image position
1986 Return the image object in @var{position}, either @code{nil}, or an
1987 image @code{(image ...)}.
1988 @end defun
1990 @defun posn-object position
1991 Return the image or string object in @var{position}, either
1992 @code{nil}, an image @code{(image ...)}, or a cons cell
1993 @code{(@var{string} . @var{string-pos})}.
1994 @end defun
1996 @defun posn-object-x-y position
1997 Return the pixel-based x and y coordinates relative to the upper left
1998 corner of the object in @var{position} as a cons cell @code{(@var{dx}
1999 . @var{dy})}.  If the @var{position} is a buffer position, return the
2000 relative position in the character at that position.
2001 @end defun
2003 @defun posn-object-width-height position
2004 Return the pixel width and height of the object in @var{position} as a
2005 cons cell @code{(@var{width} . @var{height})}.  If the @var{position}
2006 is a buffer position, return the size of the character at that position.
2007 @end defun
2009 @cindex timestamp of a mouse event
2010 @defun posn-timestamp position
2011 Return the timestamp in @var{position}.  This is the time at which the
2012 event occurred, in milliseconds.
2013 @end defun
2015   These functions compute a position list given particular buffer
2016 position or screen position.  You can access the data in this position
2017 list with the functions described above.
2019 @defun posn-at-point &optional pos window
2020 This function returns a position list for position @var{pos} in
2021 @var{window}.  @var{pos} defaults to point in @var{window};
2022 @var{window} defaults to the selected window.
2024 @code{posn-at-point} returns @code{nil} if @var{pos} is not visible in
2025 @var{window}.
2026 @end defun
2028 @defun posn-at-x-y x y &optional frame-or-window whole
2029 This function returns position information corresponding to pixel
2030 coordinates @var{x} and @var{y} in a specified frame or window,
2031 @var{frame-or-window}, which defaults to the selected window.
2032 The coordinates @var{x} and @var{y} are relative to the
2033 frame or window used.
2034 If @var{whole} is @code{nil}, the coordinates are relative
2035 to the window text area, otherwise they are relative to
2036 the entire window area including scroll bars, margins and fringes.
2037 @end defun
2039 @node Accessing Scroll
2040 @subsection Accessing Scroll Bar Events
2041 @cindex scroll bar events, data in
2043   These functions are useful for decoding scroll bar events.
2045 @defun scroll-bar-event-ratio event
2046 This function returns the fractional vertical position of a scroll bar
2047 event within the scroll bar.  The value is a cons cell
2048 @code{(@var{portion} . @var{whole})} containing two integers whose ratio
2049 is the fractional position.
2050 @end defun
2052 @defun scroll-bar-scale ratio total
2053 This function multiplies (in effect) @var{ratio} by @var{total},
2054 rounding the result to an integer.  The argument @var{ratio} is not a
2055 number, but rather a pair @code{(@var{num} . @var{denom})}---typically a
2056 value returned by @code{scroll-bar-event-ratio}.
2058 This function is handy for scaling a position on a scroll bar into a
2059 buffer position.  Here's how to do that:
2061 @example
2062 (+ (point-min)
2063    (scroll-bar-scale
2064       (posn-x-y (event-start event))
2065       (- (point-max) (point-min))))
2066 @end example
2068 Recall that scroll bar events have two integers forming a ratio, in place
2069 of a pair of x and y coordinates.
2070 @end defun
2072 @node Strings of Events
2073 @subsection Putting Keyboard Events in Strings
2074 @cindex keyboard events in strings
2075 @cindex strings with keyboard events
2077   In most of the places where strings are used, we conceptualize the
2078 string as containing text characters---the same kind of characters found
2079 in buffers or files.  Occasionally Lisp programs use strings that
2080 conceptually contain keyboard characters; for example, they may be key
2081 sequences or keyboard macro definitions.  However, storing keyboard
2082 characters in a string is a complex matter, for reasons of historical
2083 compatibility, and it is not always possible.
2085   We recommend that new programs avoid dealing with these complexities
2086 by not storing keyboard events in strings.  Here is how to do that:
2088 @itemize @bullet
2089 @item
2090 Use vectors instead of strings for key sequences, when you plan to use
2091 them for anything other than as arguments to @code{lookup-key} and
2092 @code{define-key}.  For example, you can use
2093 @code{read-key-sequence-vector} instead of @code{read-key-sequence}, and
2094 @code{this-command-keys-vector} instead of @code{this-command-keys}.
2096 @item
2097 Use vectors to write key sequence constants containing meta characters,
2098 even when passing them directly to @code{define-key}.
2100 @item
2101 When you have to look at the contents of a key sequence that might be a
2102 string, use @code{listify-key-sequence} (@pxref{Event Input Misc})
2103 first, to convert it to a list.
2104 @end itemize
2106   The complexities stem from the modifier bits that keyboard input
2107 characters can include.  Aside from the Meta modifier, none of these
2108 modifier bits can be included in a string, and the Meta modifier is
2109 allowed only in special cases.
2111   The earliest GNU Emacs versions represented meta characters as codes
2112 in the range of 128 to 255.  At that time, the basic character codes
2113 ranged from 0 to 127, so all keyboard character codes did fit in a
2114 string.  Many Lisp programs used @samp{\M-} in string constants to stand
2115 for meta characters, especially in arguments to @code{define-key} and
2116 similar functions, and key sequences and sequences of events were always
2117 represented as strings.
2119   When we added support for larger basic character codes beyond 127, and
2120 additional modifier bits, we had to change the representation of meta
2121 characters.  Now the flag that represents the Meta modifier in a
2122 character is
2123 @tex
2124 @math{2^{27}}
2125 @end tex
2126 @ifnottex
2127 2**27
2128 @end ifnottex
2129 and such numbers cannot be included in a string.
2131   To support programs with @samp{\M-} in string constants, there are
2132 special rules for including certain meta characters in a string.
2133 Here are the rules for interpreting a string as a sequence of input
2134 characters:
2136 @itemize @bullet
2137 @item
2138 If the keyboard character value is in the range of 0 to 127, it can go
2139 in the string unchanged.
2141 @item
2142 The meta variants of those characters, with codes in the range of
2143 @tex
2144 @math{2^{27}}
2145 @end tex
2146 @ifnottex
2147 2**27
2148 @end ifnottex
2150 @tex
2151 @math{2^{27} + 127},
2152 @end tex
2153 @ifnottex
2154 2**27+127,
2155 @end ifnottex
2156 can also go in the string, but you must change their
2157 numeric values.  You must set the
2158 @tex
2159 @math{2^{7}}
2160 @end tex
2161 @ifnottex
2162 2**7
2163 @end ifnottex
2164 bit instead of the
2165 @tex
2166 @math{2^{27}}
2167 @end tex
2168 @ifnottex
2169 2**27
2170 @end ifnottex
2171 bit, resulting in a value between 128 and 255.  Only a unibyte string
2172 can include these codes.
2174 @item
2175 Non-@acronym{ASCII} characters above 256 can be included in a multibyte string.
2177 @item
2178 Other keyboard character events cannot fit in a string.  This includes
2179 keyboard events in the range of 128 to 255.
2180 @end itemize
2182   Functions such as @code{read-key-sequence} that construct strings of
2183 keyboard input characters follow these rules: they construct vectors
2184 instead of strings, when the events won't fit in a string.
2186   When you use the read syntax @samp{\M-} in a string, it produces a
2187 code in the range of 128 to 255---the same code that you get if you
2188 modify the corresponding keyboard event to put it in the string.  Thus,
2189 meta events in strings work consistently regardless of how they get into
2190 the strings.
2192   However, most programs would do well to avoid these issues by
2193 following the recommendations at the beginning of this section.
2195 @node Reading Input
2196 @section Reading Input
2197 @cindex read input
2198 @cindex keyboard input
2200   The editor command loop reads key sequences using the function
2201 @code{read-key-sequence}, which uses @code{read-event}.  These and other
2202 functions for event input are also available for use in Lisp programs.
2203 See also @code{momentary-string-display} in @ref{Temporary Displays},
2204 and @code{sit-for} in @ref{Waiting}.  @xref{Terminal Input}, for
2205 functions and variables for controlling terminal input modes and
2206 debugging terminal input.
2208   For higher-level input facilities, see @ref{Minibuffers}.
2210 @menu
2211 * Key Sequence Input::          How to read one key sequence.
2212 * Reading One Event::           How to read just one event.
2213 * Event Mod::                   How Emacs modifies events as they are read.
2214 * Invoking the Input Method::   How reading an event uses the input method.
2215 * Quoted Character Input::      Asking the user to specify a character.
2216 * Event Input Misc::            How to reread or throw away input events.
2217 @end menu
2219 @node Key Sequence Input
2220 @subsection Key Sequence Input
2221 @cindex key sequence input
2223   The command loop reads input a key sequence at a time, by calling
2224 @code{read-key-sequence}.  Lisp programs can also call this function;
2225 for example, @code{describe-key} uses it to read the key to describe.
2227 @defun read-key-sequence prompt &optional continue-echo dont-downcase-last switch-frame-ok command-loop
2228 This function reads a key sequence and returns it as a string or
2229 vector.  It keeps reading events until it has accumulated a complete key
2230 sequence; that is, enough to specify a non-prefix command using the
2231 currently active keymaps.  (Remember that a key sequence that starts
2232 with a mouse event is read using the keymaps of the buffer in the
2233 window that the mouse was in, not the current buffer.)
2235 If the events are all characters and all can fit in a string, then
2236 @code{read-key-sequence} returns a string (@pxref{Strings of Events}).
2237 Otherwise, it returns a vector, since a vector can hold all kinds of
2238 events---characters, symbols, and lists.  The elements of the string or
2239 vector are the events in the key sequence.
2241 Reading a key sequence includes translating the events in various
2242 ways.  @xref{Translation Keymaps}.
2244 The argument @var{prompt} is either a string to be displayed in the
2245 echo area as a prompt, or @code{nil}, meaning not to display a prompt.
2246 The argument @var{continue-echo}, if non-@code{nil}, means to echo
2247 this key as a continuation of the previous key.
2249 Normally any upper case event is converted to lower case if the
2250 original event is undefined and the lower case equivalent is defined.
2251 The argument @var{dont-downcase-last}, if non-@code{nil}, means do not
2252 convert the last event to lower case.  This is appropriate for reading
2253 a key sequence to be defined.
2255 The argument @var{switch-frame-ok}, if non-@code{nil}, means that this
2256 function should process a @code{switch-frame} event if the user
2257 switches frames before typing anything.  If the user switches frames
2258 in the middle of a key sequence, or at the start of the sequence but
2259 @var{switch-frame-ok} is @code{nil}, then the event will be put off
2260 until after the current key sequence.
2262 The argument @var{command-loop}, if non-@code{nil}, means that this
2263 key sequence is being read by something that will read commands one
2264 after another.  It should be @code{nil} if the caller will read just
2265 one key sequence.
2267 In the following example, Emacs displays the prompt @samp{?} in the
2268 echo area, and then the user types @kbd{C-x C-f}.
2270 @example
2271 (read-key-sequence "?")
2273 @group
2274 ---------- Echo Area ----------
2275 ?@kbd{C-x C-f}
2276 ---------- Echo Area ----------
2278      @result{} "^X^F"
2279 @end group
2280 @end example
2282 The function @code{read-key-sequence} suppresses quitting: @kbd{C-g}
2283 typed while reading with this function works like any other character,
2284 and does not set @code{quit-flag}.  @xref{Quitting}.
2285 @end defun
2287 @defun read-key-sequence-vector prompt &optional continue-echo dont-downcase-last switch-frame-ok command-loop
2288 This is like @code{read-key-sequence} except that it always
2289 returns the key sequence as a vector, never as a string.
2290 @xref{Strings of Events}.
2291 @end defun
2293 @cindex upper case key sequence
2294 @cindex downcasing in @code{lookup-key}
2295 @cindex shift-translation
2296 If an input character is upper-case (or has the shift modifier) and
2297 has no key binding, but its lower-case equivalent has one, then
2298 @code{read-key-sequence} converts the character to lower case.  Note
2299 that @code{lookup-key} does not perform case conversion in this way.
2301 @vindex this-command-keys-shift-translated
2302 When reading input results in such a @dfn{shift-translation}, Emacs
2303 sets the variable @code{this-command-keys-shift-translated} to a
2304 non-@code{nil} value.  Lisp programs can examine this variable if they
2305 need to modify their behavior when invoked by shift-translated keys.
2306 For example, the function @code{handle-shift-selection} examines the
2307 value of this variable to determine how to activate or deactivate the
2308 region (@pxref{The Mark, handle-shift-selection}).
2310 The function @code{read-key-sequence} also transforms some mouse events.
2311 It converts unbound drag events into click events, and discards unbound
2312 button-down events entirely.  It also reshuffles focus events and
2313 miscellaneous window events so that they never appear in a key sequence
2314 with any other events.
2316 @cindex @code{header-line} prefix key
2317 @cindex @code{mode-line} prefix key
2318 @cindex @code{vertical-line} prefix key
2319 @cindex @code{horizontal-scroll-bar} prefix key
2320 @cindex @code{vertical-scroll-bar} prefix key
2321 @cindex @code{menu-bar} prefix key
2322 @cindex mouse events, in special parts of frame
2323 When mouse events occur in special parts of a window, such as a mode
2324 line or a scroll bar, the event type shows nothing special---it is the
2325 same symbol that would normally represent that combination of mouse
2326 button and modifier keys.  The information about the window part is kept
2327 elsewhere in the event---in the coordinates.  But
2328 @code{read-key-sequence} translates this information into imaginary
2329 ``prefix keys'', all of which are symbols: @code{header-line},
2330 @code{horizontal-scroll-bar}, @code{menu-bar}, @code{mode-line},
2331 @code{vertical-line}, and @code{vertical-scroll-bar}.  You can define
2332 meanings for mouse clicks in special window parts by defining key
2333 sequences using these imaginary prefix keys.
2335 For example, if you call @code{read-key-sequence} and then click the
2336 mouse on the window's mode line, you get two events, like this:
2338 @example
2339 (read-key-sequence "Click on the mode line: ")
2340      @result{} [mode-line
2341          (mouse-1
2342           (#<window 6 on NEWS> mode-line
2343            (40 . 63) 5959987))]
2344 @end example
2346 @defvar num-input-keys
2347 @c Emacs 19 feature
2348 This variable's value is the number of key sequences processed so far in
2349 this Emacs session.  This includes key sequences read from the terminal
2350 and key sequences read from keyboard macros being executed.
2351 @end defvar
2353 @node Reading One Event
2354 @subsection Reading One Event
2355 @cindex reading a single event
2356 @cindex event, reading only one
2358   The lowest level functions for command input are @code{read-event},
2359 @code{read-char}, and @code{read-char-exclusive}.
2361 @defun read-event &optional prompt inherit-input-method seconds
2362 This function reads and returns the next event of command input, waiting
2363 if necessary until an event is available.  Events can come directly from
2364 the user or from a keyboard macro.
2366 If the optional argument @var{prompt} is non-@code{nil}, it should be a
2367 string to display in the echo area as a prompt.  Otherwise,
2368 @code{read-event} does not display any message to indicate it is waiting
2369 for input; instead, it prompts by echoing: it displays descriptions of
2370 the events that led to or were read by the current command.  @xref{The
2371 Echo Area}.
2373 If @var{inherit-input-method} is non-@code{nil}, then the current input
2374 method (if any) is employed to make it possible to enter a
2375 non-@acronym{ASCII} character.  Otherwise, input method handling is disabled
2376 for reading this event.
2378 If @code{cursor-in-echo-area} is non-@code{nil}, then @code{read-event}
2379 moves the cursor temporarily to the echo area, to the end of any message
2380 displayed there.  Otherwise @code{read-event} does not move the cursor.
2382 If @var{seconds} is non-@code{nil}, it should be a number specifying
2383 the maximum time to wait for input, in seconds.  If no input arrives
2384 within that time, @code{read-event} stops waiting and returns
2385 @code{nil}.  A floating-point value for @var{seconds} means to wait
2386 for a fractional number of seconds.  Some systems support only a whole
2387 number of seconds; on these systems, @var{seconds} is rounded down.
2388 If @var{seconds} is @code{nil}, @code{read-event} waits as long as
2389 necessary for input to arrive.
2391 If @var{seconds} is @code{nil}, Emacs is considered idle while waiting
2392 for user input to arrive.  Idle timers---those created with
2393 @code{run-with-idle-timer} (@pxref{Idle Timers})---can run during this
2394 period.  However, if @var{seconds} is non-@code{nil}, the state of
2395 idleness remains unchanged.  If Emacs is non-idle when
2396 @code{read-event} is called, it remains non-idle throughout the
2397 operation of @code{read-event}; if Emacs is idle (which can happen if
2398 the call happens inside an idle timer), it remains idle.
2400 If @code{read-event} gets an event that is defined as a help character,
2401 then in some cases @code{read-event} processes the event directly without
2402 returning.  @xref{Help Functions}.  Certain other events, called
2403 @dfn{special events}, are also processed directly within
2404 @code{read-event} (@pxref{Special Events}).
2406 Here is what happens if you call @code{read-event} and then press the
2407 right-arrow function key:
2409 @example
2410 @group
2411 (read-event)
2412      @result{} right
2413 @end group
2414 @end example
2415 @end defun
2417 @defun read-char &optional prompt inherit-input-method seconds
2418 This function reads and returns a character of command input.  If the
2419 user generates an event which is not a character (i.e. a mouse click or
2420 function key event), @code{read-char} signals an error.  The arguments
2421 work as in @code{read-event}.
2423 In the first example, the user types the character @kbd{1} (@acronym{ASCII}
2424 code 49).  The second example shows a keyboard macro definition that
2425 calls @code{read-char} from the minibuffer using @code{eval-expression}.
2426 @code{read-char} reads the keyboard macro's very next character, which
2427 is @kbd{1}.  Then @code{eval-expression} displays its return value in
2428 the echo area.
2430 @example
2431 @group
2432 (read-char)
2433      @result{} 49
2434 @end group
2436 @group
2437 ;; @r{We assume here you use @kbd{M-:} to evaluate this.}
2438 (symbol-function 'foo)
2439      @result{} "^[:(read-char)^M1"
2440 @end group
2441 @group
2442 (execute-kbd-macro 'foo)
2443      @print{} 49
2444      @result{} nil
2445 @end group
2446 @end example
2447 @end defun
2449 @defun read-char-exclusive &optional prompt inherit-input-method seconds
2450 This function reads and returns a character of command input.  If the
2451 user generates an event which is not a character,
2452 @code{read-char-exclusive} ignores it and reads another event, until it
2453 gets a character.  The arguments work as in @code{read-event}.
2454 @end defun
2456   None of the above functions suppress quitting.
2458 @defvar num-nonmacro-input-events
2459 This variable holds the total number of input events received so far
2460 from the terminal---not counting those generated by keyboard macros.
2461 @end defvar
2463   We emphasize that, unlike @code{read-key-sequence}, the functions
2464 @code{read-event}, @code{read-char}, and @code{read-char-exclusive} do
2465 not perform the translations described in @ref{Translation Keymaps}.
2466 If you wish to read a single key taking these translations into
2467 account, use the function @code{read-key}:
2469 @defun read-key &optional prompt
2470 This function reads a single key.  It is ``intermediate'' between
2471 @code{read-key-sequence} and @code{read-event}.  Unlike the former, it
2472 reads a single key, not a key sequence.  Unlike the latter, it does
2473 not return a raw event, but decodes and translates the user input
2474 according to @code{input-decode-map}, @code{local-function-key-map},
2475 and @code{key-translation-map} (@pxref{Translation Keymaps}).
2477 The argument @var{prompt} is either a string to be displayed in the
2478 echo area as a prompt, or @code{nil}, meaning not to display a prompt.
2479 @end defun
2481 @defun read-char-choice prompt chars &optional inhibit-quit
2482 This function uses @code{read-key} to read and return a single
2483 character.  It ignores any input that is not a member of @var{chars},
2484 a list of accepted characters.  Optionally, it will also ignore
2485 keyboard-quit events while it is waiting for valid input.  If you bind
2486 @code{help-form} (@pxref{Help Functions}) to a non-@code{nil} value
2487 while calling @code{read-char-choice}, then pressing @code{help-char}
2488 causes it to evaluate @code{help-form} and display the result.  It
2489 then continues to wait for a valid input character, or keyboard-quit.
2490 @end defun
2492 @node Event Mod
2493 @subsection Modifying and Translating Input Events
2495   Emacs modifies every event it reads according to
2496 @code{extra-keyboard-modifiers}, then translates it through
2497 @code{keyboard-translate-table} (if applicable), before returning it
2498 from @code{read-event}.
2500 @c Emacs 19 feature
2501 @defvar extra-keyboard-modifiers
2502 This variable lets Lisp programs ``press'' the modifier keys on the
2503 keyboard.  The value is a character.  Only the modifiers of the
2504 character matter.  Each time the user types a keyboard key, it is
2505 altered as if those modifier keys were held down.  For instance, if
2506 you bind @code{extra-keyboard-modifiers} to @code{?\C-\M-a}, then all
2507 keyboard input characters typed during the scope of the binding will
2508 have the control and meta modifiers applied to them.  The character
2509 @code{?\C-@@}, equivalent to the integer 0, does not count as a control
2510 character for this purpose, but as a character with no modifiers.
2511 Thus, setting @code{extra-keyboard-modifiers} to zero cancels any
2512 modification.
2514 When using a window system, the program can ``press'' any of the
2515 modifier keys in this way.  Otherwise, only the @key{CTL} and @key{META}
2516 keys can be virtually pressed.
2518 Note that this variable applies only to events that really come from
2519 the keyboard, and has no effect on mouse events or any other events.
2520 @end defvar
2522 @defvar keyboard-translate-table
2523 This terminal-local variable is the translate table for keyboard
2524 characters.  It lets you reshuffle the keys on the keyboard without
2525 changing any command bindings.  Its value is normally a char-table, or
2526 else @code{nil}.  (It can also be a string or vector, but this is
2527 considered obsolete.)
2529 If @code{keyboard-translate-table} is a char-table
2530 (@pxref{Char-Tables}), then each character read from the keyboard is
2531 looked up in this char-table.  If the value found there is
2532 non-@code{nil}, then it is used instead of the actual input character.
2534 Note that this translation is the first thing that happens to a
2535 character after it is read from the terminal.  Record-keeping features
2536 such as @code{recent-keys} and dribble files record the characters after
2537 translation.
2539 Note also that this translation is done before the characters are
2540 supplied to input methods (@pxref{Input Methods}).  Use
2541 @code{translation-table-for-input} (@pxref{Translation of Characters}),
2542 if you want to translate characters after input methods operate.
2543 @end defvar
2545 @defun keyboard-translate from to
2546 This function modifies @code{keyboard-translate-table} to translate
2547 character code @var{from} into character code @var{to}.  It creates
2548 the keyboard translate table if necessary.
2549 @end defun
2551   Here's an example of using the @code{keyboard-translate-table} to
2552 make @kbd{C-x}, @kbd{C-c} and @kbd{C-v} perform the cut, copy and paste
2553 operations:
2555 @example
2556 (keyboard-translate ?\C-x 'control-x)
2557 (keyboard-translate ?\C-c 'control-c)
2558 (keyboard-translate ?\C-v 'control-v)
2559 (global-set-key [control-x] 'kill-region)
2560 (global-set-key [control-c] 'kill-ring-save)
2561 (global-set-key [control-v] 'yank)
2562 @end example
2564 @noindent
2565 On a graphical terminal that supports extended @acronym{ASCII} input,
2566 you can still get the standard Emacs meanings of one of those
2567 characters by typing it with the shift key.  That makes it a different
2568 character as far as keyboard translation is concerned, but it has the
2569 same usual meaning.
2571   @xref{Translation Keymaps}, for mechanisms that translate event sequences
2572 at the level of @code{read-key-sequence}.
2574 @node Invoking the Input Method
2575 @subsection Invoking the Input Method
2577   The event-reading functions invoke the current input method, if any
2578 (@pxref{Input Methods}).  If the value of @code{input-method-function}
2579 is non-@code{nil}, it should be a function; when @code{read-event} reads
2580 a printing character (including @key{SPC}) with no modifier bits, it
2581 calls that function, passing the character as an argument.
2583 @defvar input-method-function
2584 If this is non-@code{nil}, its value specifies the current input method
2585 function.
2587 @strong{Warning:} don't bind this variable with @code{let}.  It is often
2588 buffer-local, and if you bind it around reading input (which is exactly
2589 when you @emph{would} bind it), switching buffers asynchronously while
2590 Emacs is waiting will cause the value to be restored in the wrong
2591 buffer.
2592 @end defvar
2594   The input method function should return a list of events which should
2595 be used as input.  (If the list is @code{nil}, that means there is no
2596 input, so @code{read-event} waits for another event.)  These events are
2597 processed before the events in @code{unread-command-events}
2598 (@pxref{Event Input Misc}).  Events
2599 returned by the input method function are not passed to the input method
2600 function again, even if they are printing characters with no modifier
2601 bits.
2603   If the input method function calls @code{read-event} or
2604 @code{read-key-sequence}, it should bind @code{input-method-function} to
2605 @code{nil} first, to prevent recursion.
2607   The input method function is not called when reading the second and
2608 subsequent events of a key sequence.  Thus, these characters are not
2609 subject to input method processing.  The input method function should
2610 test the values of @code{overriding-local-map} and
2611 @code{overriding-terminal-local-map}; if either of these variables is
2612 non-@code{nil}, the input method should put its argument into a list and
2613 return that list with no further processing.
2615 @node Quoted Character Input
2616 @subsection Quoted Character Input
2617 @cindex quoted character input
2619   You can use the function @code{read-quoted-char} to ask the user to
2620 specify a character, and allow the user to specify a control or meta
2621 character conveniently, either literally or as an octal character code.
2622 The command @code{quoted-insert} uses this function.
2624 @defun read-quoted-char &optional prompt
2625 @cindex octal character input
2626 @cindex control characters, reading
2627 @cindex nonprinting characters, reading
2628 This function is like @code{read-char}, except that if the first
2629 character read is an octal digit (0-7), it reads any number of octal
2630 digits (but stopping if a non-octal digit is found), and returns the
2631 character represented by that numeric character code.  If the
2632 character that terminates the sequence of octal digits is @key{RET},
2633 it is discarded.  Any other terminating character is used as input
2634 after this function returns.
2636 Quitting is suppressed when the first character is read, so that the
2637 user can enter a @kbd{C-g}.  @xref{Quitting}.
2639 If @var{prompt} is supplied, it specifies a string for prompting the
2640 user.  The prompt string is always displayed in the echo area, followed
2641 by a single @samp{-}.
2643 In the following example, the user types in the octal number 177 (which
2644 is 127 in decimal).
2646 @example
2647 (read-quoted-char "What character")
2649 @group
2650 ---------- Echo Area ----------
2651 What character @kbd{1 7 7}-
2652 ---------- Echo Area ----------
2654      @result{} 127
2655 @end group
2656 @end example
2657 @end defun
2659 @need 2000
2660 @node Event Input Misc
2661 @subsection Miscellaneous Event Input Features
2663 This section describes how to ``peek ahead'' at events without using
2664 them up, how to check for pending input, and how to discard pending
2665 input.  See also the function @code{read-passwd} (@pxref{Reading a
2666 Password}).
2668 @defvar unread-command-events
2669 @cindex next input
2670 @cindex peeking at input
2671 This variable holds a list of events waiting to be read as command
2672 input.  The events are used in the order they appear in the list, and
2673 removed one by one as they are used.
2675 The variable is needed because in some cases a function reads an event
2676 and then decides not to use it.  Storing the event in this variable
2677 causes it to be processed normally, by the command loop or by the
2678 functions to read command input.
2680 @cindex prefix argument unreading
2681 For example, the function that implements numeric prefix arguments reads
2682 any number of digits.  When it finds a non-digit event, it must unread
2683 the event so that it can be read normally by the command loop.
2684 Likewise, incremental search uses this feature to unread events with no
2685 special meaning in a search, because these events should exit the search
2686 and then execute normally.
2688 The reliable and easy way to extract events from a key sequence so as
2689 to put them in @code{unread-command-events} is to use
2690 @code{listify-key-sequence} (see below).
2692 Normally you add events to the front of this list, so that the events
2693 most recently unread will be reread first.
2695 Events read from this list are not normally added to the current
2696 command's key sequence (as returned by e.g. @code{this-command-keys}),
2697 as the events will already have been added once as they were read for
2698 the first time.  An element of the form @code{(@code{t} . @var{event})}
2699 forces @var{event} to be added to the current command's key sequence.
2700 @end defvar
2702 @defun listify-key-sequence key
2703 This function converts the string or vector @var{key} to a list of
2704 individual events, which you can put in @code{unread-command-events}.
2705 @end defun
2707 @ignore
2708 @defvar unread-command-char
2709 This variable holds a character to be read as command input.
2710 A value of -1 means ``empty''.
2712 This variable is mostly obsolete now that you can use
2713 @code{unread-command-events} instead; it exists only to support programs
2714 written for Emacs versions 18 and earlier.
2715 @end defvar
2716 @end ignore
2718 @defun input-pending-p
2719 @cindex waiting for command key input
2720 This function determines whether any command input is currently
2721 available to be read.  It returns immediately, with value @code{t} if
2722 there is available input, @code{nil} otherwise.  On rare occasions it
2723 may return @code{t} when no input is available.
2724 @end defun
2726 @defvar last-input-event
2727 @defvarx last-input-char
2728 This variable records the last terminal input event read, whether
2729 as part of a command or explicitly by a Lisp program.
2731 In the example below, the Lisp program reads the character @kbd{1},
2732 @acronym{ASCII} code 49.  It becomes the value of @code{last-input-event},
2733 while @kbd{C-e} (we assume @kbd{C-x C-e} command is used to evaluate
2734 this expression) remains the value of @code{last-command-event}.
2736 @example
2737 @group
2738 (progn (print (read-char))
2739        (print last-command-event)
2740        last-input-event)
2741      @print{} 49
2742      @print{} 5
2743      @result{} 49
2744 @end group
2745 @end example
2747 The alias @code{last-input-char} is obsolete.
2748 @end defvar
2750 @defmac while-no-input body@dots{}
2751 This construct runs the @var{body} forms and returns the value of the
2752 last one---but only if no input arrives.  If any input arrives during
2753 the execution of the @var{body} forms, it aborts them (working much
2754 like a quit).  The @code{while-no-input} form returns @code{nil} if
2755 aborted by a real quit, and returns @code{t} if aborted by arrival of
2756 other input.
2758 If a part of @var{body} binds @code{inhibit-quit} to non-@code{nil},
2759 arrival of input during those parts won't cause an abort until
2760 the end of that part.
2762 If you want to be able to distinguish all possible values computed
2763 by @var{body} from both kinds of abort conditions, write the code
2764 like this:
2766 @example
2767 (while-no-input
2768   (list
2769     (progn . @var{body})))
2770 @end example
2771 @end defmac
2773 @defun discard-input
2774 @cindex flushing input
2775 @cindex discarding input
2776 @cindex keyboard macro, terminating
2777 This function discards the contents of the terminal input buffer and
2778 cancels any keyboard macro that might be in the process of definition.
2779 It returns @code{nil}.
2781 In the following example, the user may type a number of characters right
2782 after starting the evaluation of the form.  After the @code{sleep-for}
2783 finishes sleeping, @code{discard-input} discards any characters typed
2784 during the sleep.
2786 @example
2787 (progn (sleep-for 2)
2788        (discard-input))
2789      @result{} nil
2790 @end example
2791 @end defun
2793 @node Special Events
2794 @section Special Events
2796 @cindex special events
2797 Certain @dfn{special events} are handled at a very low level---as soon
2798 as they are read.  The @code{read-event} function processes these
2799 events itself, and never returns them.  Instead, it keeps waiting for
2800 the first event that is not special and returns that one.
2802   Special events do not echo, they are never grouped into key
2803 sequences, and they never appear in the value of
2804 @code{last-command-event} or @code{(this-command-keys)}.  They do not
2805 discard a numeric argument, they cannot be unread with
2806 @code{unread-command-events}, they may not appear in a keyboard macro,
2807 and they are not recorded in a keyboard macro while you are defining
2808 one.
2810   Special events do, however, appear in @code{last-input-event}
2811 immediately after they are read, and this is the way for the event's
2812 definition to find the actual event.
2814   The events types @code{iconify-frame}, @code{make-frame-visible},
2815 @code{delete-frame}, @code{drag-n-drop}, and user signals like
2816 @code{sigusr1} are normally handled in this way.  The keymap which
2817 defines how to handle special events---and which events are
2818 special---is in the variable @code{special-event-map} (@pxref{Active
2819 Keymaps}).
2821 @node Waiting
2822 @section Waiting for Elapsed Time or Input
2823 @cindex waiting
2825   The wait functions are designed to wait for a certain amount of time
2826 to pass or until there is input.  For example, you may wish to pause in
2827 the middle of a computation to allow the user time to view the display.
2828 @code{sit-for} pauses and updates the screen, and returns immediately if
2829 input comes in, while @code{sleep-for} pauses without updating the
2830 screen.
2832 @defun sit-for seconds &optional nodisp
2833 This function performs redisplay (provided there is no pending input
2834 from the user), then waits @var{seconds} seconds, or until input is
2835 available.  The usual purpose of @code{sit-for} is to give the user
2836 time to read text that you display.  The value is @code{t} if
2837 @code{sit-for} waited the full time with no input arriving
2838 (@pxref{Event Input Misc}).  Otherwise, the value is @code{nil}.
2840 The argument @var{seconds} need not be an integer.  If it is a floating
2841 point number, @code{sit-for} waits for a fractional number of seconds.
2842 Some systems support only a whole number of seconds; on these systems,
2843 @var{seconds} is rounded down.
2845 The expression @code{(sit-for 0)} is equivalent to @code{(redisplay)},
2846 i.e. it requests a redisplay, without any delay, if there is no pending input.
2847 @xref{Forcing Redisplay}.
2849 If @var{nodisp} is non-@code{nil}, then @code{sit-for} does not
2850 redisplay, but it still returns as soon as input is available (or when
2851 the timeout elapses).
2853 In batch mode (@pxref{Batch Mode}), @code{sit-for} cannot be
2854 interrupted, even by input from the standard input descriptor.  It is
2855 thus equivalent to @code{sleep-for}, which is described below.
2857 It is also possible to call @code{sit-for} with three arguments,
2858 as @code{(sit-for @var{seconds} @var{millisec} @var{nodisp})},
2859 but that is considered obsolete.
2860 @end defun
2862 @defun sleep-for seconds &optional millisec
2863 This function simply pauses for @var{seconds} seconds without updating
2864 the display.  It pays no attention to available input.  It returns
2865 @code{nil}.
2867 The argument @var{seconds} need not be an integer.  If it is a floating
2868 point number, @code{sleep-for} waits for a fractional number of seconds.
2869 Some systems support only a whole number of seconds; on these systems,
2870 @var{seconds} is rounded down.
2872 The optional argument @var{millisec} specifies an additional waiting
2873 period measured in milliseconds.  This adds to the period specified by
2874 @var{seconds}.  If the system doesn't support waiting fractions of a
2875 second, you get an error if you specify nonzero @var{millisec}.
2877 Use @code{sleep-for} when you wish to guarantee a delay.
2878 @end defun
2880   @xref{Time of Day}, for functions to get the current time.
2882 @node Quitting
2883 @section Quitting
2884 @cindex @kbd{C-g}
2885 @cindex quitting
2886 @cindex interrupt Lisp functions
2888   Typing @kbd{C-g} while a Lisp function is running causes Emacs to
2889 @dfn{quit} whatever it is doing.  This means that control returns to the
2890 innermost active command loop.
2892   Typing @kbd{C-g} while the command loop is waiting for keyboard input
2893 does not cause a quit; it acts as an ordinary input character.  In the
2894 simplest case, you cannot tell the difference, because @kbd{C-g}
2895 normally runs the command @code{keyboard-quit}, whose effect is to quit.
2896 However, when @kbd{C-g} follows a prefix key, they combine to form an
2897 undefined key.  The effect is to cancel the prefix key as well as any
2898 prefix argument.
2900   In the minibuffer, @kbd{C-g} has a different definition: it aborts out
2901 of the minibuffer.  This means, in effect, that it exits the minibuffer
2902 and then quits.  (Simply quitting would return to the command loop
2903 @emph{within} the minibuffer.)  The reason why @kbd{C-g} does not quit
2904 directly when the command reader is reading input is so that its meaning
2905 can be redefined in the minibuffer in this way.  @kbd{C-g} following a
2906 prefix key is not redefined in the minibuffer, and it has its normal
2907 effect of canceling the prefix key and prefix argument.  This too
2908 would not be possible if @kbd{C-g} always quit directly.
2910   When @kbd{C-g} does directly quit, it does so by setting the variable
2911 @code{quit-flag} to @code{t}.  Emacs checks this variable at appropriate
2912 times and quits if it is not @code{nil}.  Setting @code{quit-flag}
2913 non-@code{nil} in any way thus causes a quit.
2915   At the level of C code, quitting cannot happen just anywhere; only at the
2916 special places that check @code{quit-flag}.  The reason for this is
2917 that quitting at other places might leave an inconsistency in Emacs's
2918 internal state.  Because quitting is delayed until a safe place, quitting
2919 cannot make Emacs crash.
2921   Certain functions such as @code{read-key-sequence} or
2922 @code{read-quoted-char} prevent quitting entirely even though they wait
2923 for input.  Instead of quitting, @kbd{C-g} serves as the requested
2924 input.  In the case of @code{read-key-sequence}, this serves to bring
2925 about the special behavior of @kbd{C-g} in the command loop.  In the
2926 case of @code{read-quoted-char}, this is so that @kbd{C-q} can be used
2927 to quote a @kbd{C-g}.
2929 @cindex preventing quitting
2930   You can prevent quitting for a portion of a Lisp function by binding
2931 the variable @code{inhibit-quit} to a non-@code{nil} value.  Then,
2932 although @kbd{C-g} still sets @code{quit-flag} to @code{t} as usual, the
2933 usual result of this---a quit---is prevented.  Eventually,
2934 @code{inhibit-quit} will become @code{nil} again, such as when its
2935 binding is unwound at the end of a @code{let} form.  At that time, if
2936 @code{quit-flag} is still non-@code{nil}, the requested quit happens
2937 immediately.  This behavior is ideal when you wish to make sure that
2938 quitting does not happen within a ``critical section'' of the program.
2940 @cindex @code{read-quoted-char} quitting
2941   In some functions (such as @code{read-quoted-char}), @kbd{C-g} is
2942 handled in a special way that does not involve quitting.  This is done
2943 by reading the input with @code{inhibit-quit} bound to @code{t}, and
2944 setting @code{quit-flag} to @code{nil} before @code{inhibit-quit}
2945 becomes @code{nil} again.  This excerpt from the definition of
2946 @code{read-quoted-char} shows how this is done; it also shows that
2947 normal quitting is permitted after the first character of input.
2949 @example
2950 (defun read-quoted-char (&optional prompt)
2951   "@dots{}@var{documentation}@dots{}"
2952   (let ((message-log-max nil) done (first t) (code 0) char)
2953     (while (not done)
2954       (let ((inhibit-quit first)
2955             @dots{})
2956         (and prompt (message "%s-" prompt))
2957         (setq char (read-event))
2958         (if inhibit-quit (setq quit-flag nil)))
2959       @r{@dots{}set the variable @code{code}@dots{}})
2960     code))
2961 @end example
2963 @defvar quit-flag
2964 If this variable is non-@code{nil}, then Emacs quits immediately, unless
2965 @code{inhibit-quit} is non-@code{nil}.  Typing @kbd{C-g} ordinarily sets
2966 @code{quit-flag} non-@code{nil}, regardless of @code{inhibit-quit}.
2967 @end defvar
2969 @defvar inhibit-quit
2970 This variable determines whether Emacs should quit when @code{quit-flag}
2971 is set to a value other than @code{nil}.  If @code{inhibit-quit} is
2972 non-@code{nil}, then @code{quit-flag} has no special effect.
2973 @end defvar
2975 @defmac with-local-quit body@dots{}
2976 This macro executes @var{body} forms in sequence, but allows quitting, at
2977 least locally, within @var{body} even if @code{inhibit-quit} was
2978 non-@code{nil} outside this construct.  It returns the value of the
2979 last form in @var{body}, unless exited by quitting, in which case
2980 it returns @code{nil}.
2982 If @code{inhibit-quit} is @code{nil} on entry to @code{with-local-quit},
2983 it only executes the @var{body}, and setting @code{quit-flag} causes
2984 a normal quit.  However, if @code{inhibit-quit} is non-@code{nil} so
2985 that ordinary quitting is delayed, a non-@code{nil} @code{quit-flag}
2986 triggers a special kind of local quit.  This ends the execution of
2987 @var{body} and exits the @code{with-local-quit} body with
2988 @code{quit-flag} still non-@code{nil}, so that another (ordinary) quit
2989 will happen as soon as that is allowed.  If @code{quit-flag} is
2990 already non-@code{nil} at the beginning of @var{body}, the local quit
2991 happens immediately and the body doesn't execute at all.
2993 This macro is mainly useful in functions that can be called from
2994 timers, process filters, process sentinels, @code{pre-command-hook},
2995 @code{post-command-hook}, and other places where @code{inhibit-quit} is
2996 normally bound to @code{t}.
2997 @end defmac
2999 @deffn Command keyboard-quit
3000 This function signals the @code{quit} condition with @code{(signal 'quit
3001 nil)}.  This is the same thing that quitting does.  (See @code{signal}
3002 in @ref{Errors}.)
3003 @end deffn
3005   You can specify a character other than @kbd{C-g} to use for quitting.
3006 See the function @code{set-input-mode} in @ref{Terminal Input}.
3008 @node Prefix Command Arguments
3009 @section Prefix Command Arguments
3010 @cindex prefix argument
3011 @cindex raw prefix argument
3012 @cindex numeric prefix argument
3014   Most Emacs commands can use a @dfn{prefix argument}, a number
3015 specified before the command itself.  (Don't confuse prefix arguments
3016 with prefix keys.)  The prefix argument is at all times represented by a
3017 value, which may be @code{nil}, meaning there is currently no prefix
3018 argument.  Each command may use the prefix argument or ignore it.
3020   There are two representations of the prefix argument: @dfn{raw} and
3021 @dfn{numeric}.  The editor command loop uses the raw representation
3022 internally, and so do the Lisp variables that store the information, but
3023 commands can request either representation.
3025   Here are the possible values of a raw prefix argument:
3027 @itemize @bullet
3028 @item
3029 @code{nil}, meaning there is no prefix argument.  Its numeric value is
3030 1, but numerous commands make a distinction between @code{nil} and the
3031 integer 1.
3033 @item
3034 An integer, which stands for itself.
3036 @item
3037 A list of one element, which is an integer.  This form of prefix
3038 argument results from one or a succession of @kbd{C-u}s with no
3039 digits.  The numeric value is the integer in the list, but some
3040 commands make a distinction between such a list and an integer alone.
3042 @item
3043 The symbol @code{-}.  This indicates that @kbd{M--} or @kbd{C-u -} was
3044 typed, without following digits.  The equivalent numeric value is
3045 @minus{}1, but some commands make a distinction between the integer
3046 @minus{}1 and the symbol @code{-}.
3047 @end itemize
3049 We illustrate these possibilities by calling the following function with
3050 various prefixes:
3052 @example
3053 @group
3054 (defun display-prefix (arg)
3055   "Display the value of the raw prefix arg."
3056   (interactive "P")
3057   (message "%s" arg))
3058 @end group
3059 @end example
3061 @noindent
3062 Here are the results of calling @code{display-prefix} with various
3063 raw prefix arguments:
3065 @example
3066         M-x display-prefix  @print{} nil
3068 C-u     M-x display-prefix  @print{} (4)
3070 C-u C-u M-x display-prefix  @print{} (16)
3072 C-u 3   M-x display-prefix  @print{} 3
3074 M-3     M-x display-prefix  @print{} 3      ; @r{(Same as @code{C-u 3}.)}
3076 C-u -   M-x display-prefix  @print{} -
3078 M--     M-x display-prefix  @print{} -      ; @r{(Same as @code{C-u -}.)}
3080 C-u - 7 M-x display-prefix  @print{} -7
3082 M-- 7   M-x display-prefix  @print{} -7     ; @r{(Same as @code{C-u -7}.)}
3083 @end example
3085   Emacs uses two variables to store the prefix argument:
3086 @code{prefix-arg} and @code{current-prefix-arg}.  Commands such as
3087 @code{universal-argument} that set up prefix arguments for other
3088 commands store them in @code{prefix-arg}.  In contrast,
3089 @code{current-prefix-arg} conveys the prefix argument to the current
3090 command, so setting it has no effect on the prefix arguments for future
3091 commands.
3093   Normally, commands specify which representation to use for the prefix
3094 argument, either numeric or raw, in the @code{interactive} specification.
3095 (@xref{Using Interactive}.)  Alternatively, functions may look at the
3096 value of the prefix argument directly in the variable
3097 @code{current-prefix-arg}, but this is less clean.
3099 @defun prefix-numeric-value arg
3100 This function returns the numeric meaning of a valid raw prefix argument
3101 value, @var{arg}.  The argument may be a symbol, a number, or a list.
3102 If it is @code{nil}, the value 1 is returned; if it is @code{-}, the
3103 value @minus{}1 is returned; if it is a number, that number is returned;
3104 if it is a list, the @sc{car} of that list (which should be a number) is
3105 returned.
3106 @end defun
3108 @defvar current-prefix-arg
3109 This variable holds the raw prefix argument for the @emph{current}
3110 command.  Commands may examine it directly, but the usual method for
3111 accessing it is with @code{(interactive "P")}.
3112 @end defvar
3114 @defvar prefix-arg
3115 The value of this variable is the raw prefix argument for the
3116 @emph{next} editing command.  Commands such as @code{universal-argument}
3117 that specify prefix arguments for the following command work by setting
3118 this variable.
3119 @end defvar
3121 @defvar last-prefix-arg
3122 The raw prefix argument value used by the previous command.
3123 @end defvar
3125   The following commands exist to set up prefix arguments for the
3126 following command.  Do not call them for any other reason.
3128 @deffn Command universal-argument
3129 This command reads input and specifies a prefix argument for the
3130 following command.  Don't call this command yourself unless you know
3131 what you are doing.
3132 @end deffn
3134 @deffn Command digit-argument arg
3135 This command adds to the prefix argument for the following command.  The
3136 argument @var{arg} is the raw prefix argument as it was before this
3137 command; it is used to compute the updated prefix argument.  Don't call
3138 this command yourself unless you know what you are doing.
3139 @end deffn
3141 @deffn Command negative-argument arg
3142 This command adds to the numeric argument for the next command.  The
3143 argument @var{arg} is the raw prefix argument as it was before this
3144 command; its value is negated to form the new prefix argument.  Don't
3145 call this command yourself unless you know what you are doing.
3146 @end deffn
3148 @node Recursive Editing
3149 @section Recursive Editing
3150 @cindex recursive command loop
3151 @cindex recursive editing level
3152 @cindex command loop, recursive
3154   The Emacs command loop is entered automatically when Emacs starts up.
3155 This top-level invocation of the command loop never exits; it keeps
3156 running as long as Emacs does.  Lisp programs can also invoke the
3157 command loop.  Since this makes more than one activation of the command
3158 loop, we call it @dfn{recursive editing}.  A recursive editing level has
3159 the effect of suspending whatever command invoked it and permitting the
3160 user to do arbitrary editing before resuming that command.
3162   The commands available during recursive editing are the same ones
3163 available in the top-level editing loop and defined in the keymaps.
3164 Only a few special commands exit the recursive editing level; the others
3165 return to the recursive editing level when they finish.  (The special
3166 commands for exiting are always available, but they do nothing when
3167 recursive editing is not in progress.)
3169   All command loops, including recursive ones, set up all-purpose error
3170 handlers so that an error in a command run from the command loop will
3171 not exit the loop.
3173 @cindex minibuffer input
3174   Minibuffer input is a special kind of recursive editing.  It has a few
3175 special wrinkles, such as enabling display of the minibuffer and the
3176 minibuffer window, but fewer than you might suppose.  Certain keys
3177 behave differently in the minibuffer, but that is only because of the
3178 minibuffer's local map; if you switch windows, you get the usual Emacs
3179 commands.
3181 @cindex @code{throw} example
3182 @kindex exit
3183 @cindex exit recursive editing
3184 @cindex aborting
3185   To invoke a recursive editing level, call the function
3186 @code{recursive-edit}.  This function contains the command loop; it also
3187 contains a call to @code{catch} with tag @code{exit}, which makes it
3188 possible to exit the recursive editing level by throwing to @code{exit}
3189 (@pxref{Catch and Throw}).  If you throw a value other than @code{t},
3190 then @code{recursive-edit} returns normally to the function that called
3191 it.  The command @kbd{C-M-c} (@code{exit-recursive-edit}) does this.
3192 Throwing a @code{t} value causes @code{recursive-edit} to quit, so that
3193 control returns to the command loop one level up.  This is called
3194 @dfn{aborting}, and is done by @kbd{C-]} (@code{abort-recursive-edit}).
3196   Most applications should not use recursive editing, except as part of
3197 using the minibuffer.  Usually it is more convenient for the user if you
3198 change the major mode of the current buffer temporarily to a special
3199 major mode, which should have a command to go back to the previous mode.
3200 (The @kbd{e} command in Rmail uses this technique.)  Or, if you wish to
3201 give the user different text to edit ``recursively'', create and select
3202 a new buffer in a special mode.  In this mode, define a command to
3203 complete the processing and go back to the previous buffer.  (The
3204 @kbd{m} command in Rmail does this.)
3206   Recursive edits are useful in debugging.  You can insert a call to
3207 @code{debug} into a function definition as a sort of breakpoint, so that
3208 you can look around when the function gets there.  @code{debug} invokes
3209 a recursive edit but also provides the other features of the debugger.
3211   Recursive editing levels are also used when you type @kbd{C-r} in
3212 @code{query-replace} or use @kbd{C-x q} (@code{kbd-macro-query}).
3214 @defun recursive-edit
3215 @cindex suspend evaluation
3216 This function invokes the editor command loop.  It is called
3217 automatically by the initialization of Emacs, to let the user begin
3218 editing.  When called from a Lisp program, it enters a recursive editing
3219 level.
3221 If the current buffer is not the same as the selected window's buffer,
3222 @code{recursive-edit} saves and restores the current buffer.  Otherwise,
3223 if you switch buffers, the buffer you switched to is current after
3224 @code{recursive-edit} returns.
3226 In the following example, the function @code{simple-rec} first
3227 advances point one word, then enters a recursive edit, printing out a
3228 message in the echo area.  The user can then do any editing desired, and
3229 then type @kbd{C-M-c} to exit and continue executing @code{simple-rec}.
3231 @example
3232 (defun simple-rec ()
3233   (forward-word 1)
3234   (message "Recursive edit in progress")
3235   (recursive-edit)
3236   (forward-word 1))
3237      @result{} simple-rec
3238 (simple-rec)
3239      @result{} nil
3240 @end example
3241 @end defun
3243 @deffn Command exit-recursive-edit
3244 This function exits from the innermost recursive edit (including
3245 minibuffer input).  Its definition is effectively @code{(throw 'exit
3246 nil)}.
3247 @end deffn
3249 @deffn Command abort-recursive-edit
3250 This function aborts the command that requested the innermost recursive
3251 edit (including minibuffer input), by signaling @code{quit}
3252 after exiting the recursive edit.  Its definition is effectively
3253 @code{(throw 'exit t)}.  @xref{Quitting}.
3254 @end deffn
3256 @deffn Command top-level
3257 This function exits all recursive editing levels; it does not return a
3258 value, as it jumps completely out of any computation directly back to
3259 the main command loop.
3260 @end deffn
3262 @defun recursion-depth
3263 This function returns the current depth of recursive edits.  When no
3264 recursive edit is active, it returns 0.
3265 @end defun
3267 @node Disabling Commands
3268 @section Disabling Commands
3269 @cindex disabled command
3271   @dfn{Disabling a command} marks the command as requiring user
3272 confirmation before it can be executed.  Disabling is used for commands
3273 which might be confusing to beginning users, to prevent them from using
3274 the commands by accident.
3276 @kindex disabled
3277   The low-level mechanism for disabling a command is to put a
3278 non-@code{nil} @code{disabled} property on the Lisp symbol for the
3279 command.  These properties are normally set up by the user's
3280 init file (@pxref{Init File}) with Lisp expressions such as this:
3282 @example
3283 (put 'upcase-region 'disabled t)
3284 @end example
3286 @noindent
3287 For a few commands, these properties are present by default (you can
3288 remove them in your init file if you wish).
3290   If the value of the @code{disabled} property is a string, the message
3291 saying the command is disabled includes that string.  For example:
3293 @example
3294 (put 'delete-region 'disabled
3295      "Text deleted this way cannot be yanked back!\n")
3296 @end example
3298   @xref{Disabling,,, emacs, The GNU Emacs Manual}, for the details on
3299 what happens when a disabled command is invoked interactively.
3300 Disabling a command has no effect on calling it as a function from Lisp
3301 programs.
3303 @deffn Command enable-command command
3304 Allow @var{command} (a symbol) to be executed without special
3305 confirmation from now on, and alter the user's init file (@pxref{Init
3306 File}) so that this will apply to future sessions.
3307 @end deffn
3309 @deffn Command disable-command command
3310 Require special confirmation to execute @var{command} from now on, and
3311 alter the user's init file so that this will apply to future sessions.
3312 @end deffn
3314 @defvar disabled-command-function
3315 The value of this variable should be a function.  When the user
3316 invokes a disabled command interactively, this function is called
3317 instead of the disabled command.  It can use @code{this-command-keys}
3318 to determine what the user typed to run the command, and thus find the
3319 command itself.
3321 The value may also be @code{nil}.  Then all commands work normally,
3322 even disabled ones.
3324 By default, the value is a function that asks the user whether to
3325 proceed.
3326 @end defvar
3328 @node Command History
3329 @section Command History
3330 @cindex command history
3331 @cindex complex command
3332 @cindex history of commands
3334   The command loop keeps a history of the complex commands that have
3335 been executed, to make it convenient to repeat these commands.  A
3336 @dfn{complex command} is one for which the interactive argument reading
3337 uses the minibuffer.  This includes any @kbd{M-x} command, any
3338 @kbd{M-:} command, and any command whose @code{interactive}
3339 specification reads an argument from the minibuffer.  Explicit use of
3340 the minibuffer during the execution of the command itself does not cause
3341 the command to be considered complex.
3343 @defvar command-history
3344 This variable's value is a list of recent complex commands, each
3345 represented as a form to evaluate.  It continues to accumulate all
3346 complex commands for the duration of the editing session, but when it
3347 reaches the maximum size (@pxref{Minibuffer History}), the oldest
3348 elements are deleted as new ones are added.
3350 @example
3351 @group
3352 command-history
3353 @result{} ((switch-to-buffer "chistory.texi")
3354     (describe-key "^X^[")
3355     (visit-tags-table "~/emacs/src/")
3356     (find-tag "repeat-complex-command"))
3357 @end group
3358 @end example
3359 @end defvar
3361   This history list is actually a special case of minibuffer history
3362 (@pxref{Minibuffer History}), with one special twist: the elements are
3363 expressions rather than strings.
3365   There are a number of commands devoted to the editing and recall of
3366 previous commands.  The commands @code{repeat-complex-command}, and
3367 @code{list-command-history} are described in the user manual
3368 (@pxref{Repetition,,, emacs, The GNU Emacs Manual}).  Within the
3369 minibuffer, the usual minibuffer history commands are available.
3371 @node Keyboard Macros
3372 @section Keyboard Macros
3373 @cindex keyboard macros
3375   A @dfn{keyboard macro} is a canned sequence of input events that can
3376 be considered a command and made the definition of a key.  The Lisp
3377 representation of a keyboard macro is a string or vector containing the
3378 events.  Don't confuse keyboard macros with Lisp macros
3379 (@pxref{Macros}).
3381 @defun execute-kbd-macro kbdmacro &optional count loopfunc
3382 This function executes @var{kbdmacro} as a sequence of events.  If
3383 @var{kbdmacro} is a string or vector, then the events in it are executed
3384 exactly as if they had been input by the user.  The sequence is
3385 @emph{not} expected to be a single key sequence; normally a keyboard
3386 macro definition consists of several key sequences concatenated.
3388 If @var{kbdmacro} is a symbol, then its function definition is used in
3389 place of @var{kbdmacro}.  If that is another symbol, this process repeats.
3390 Eventually the result should be a string or vector.  If the result is
3391 not a symbol, string, or vector, an error is signaled.
3393 The argument @var{count} is a repeat count; @var{kbdmacro} is executed that
3394 many times.  If @var{count} is omitted or @code{nil}, @var{kbdmacro} is
3395 executed once.  If it is 0, @var{kbdmacro} is executed over and over until it
3396 encounters an error or a failing search.
3398 If @var{loopfunc} is non-@code{nil}, it is a function that is called,
3399 without arguments, prior to each iteration of the macro.  If
3400 @var{loopfunc} returns @code{nil}, then this stops execution of the macro.
3402 @xref{Reading One Event}, for an example of using @code{execute-kbd-macro}.
3403 @end defun
3405 @defvar executing-kbd-macro
3406 This variable contains the string or vector that defines the keyboard
3407 macro that is currently executing.  It is @code{nil} if no macro is
3408 currently executing.  A command can test this variable so as to behave
3409 differently when run from an executing macro.  Do not set this variable
3410 yourself.
3411 @end defvar
3413 @defvar defining-kbd-macro
3414 This variable is non-@code{nil} if and only if a keyboard macro is
3415 being defined.  A command can test this variable so as to behave
3416 differently while a macro is being defined.  The value is
3417 @code{append} while appending to the definition of an existing macro.
3418 The commands @code{start-kbd-macro}, @code{kmacro-start-macro} and
3419 @code{end-kbd-macro} set this variable---do not set it yourself.
3421 The variable is always local to the current terminal and cannot be
3422 buffer-local.  @xref{Multiple Terminals}.
3423 @end defvar
3425 @defvar last-kbd-macro
3426 This variable is the definition of the most recently defined keyboard
3427 macro.  Its value is a string or vector, or @code{nil}.
3429 The variable is always local to the current terminal and cannot be
3430 buffer-local.  @xref{Multiple Terminals}.
3431 @end defvar
3433 @defvar kbd-macro-termination-hook
3434 This normal hook is run when a keyboard macro terminates, regardless
3435 of what caused it to terminate (reaching the macro end or an error
3436 which ended the macro prematurely).
3437 @end defvar