Cleanup cl-macs namespace. Add macro helpers in macroexp.el.
[emacs.git] / lisp / emacs-lisp / cl-loaddefs.el
blob0e2c97f9c44abc7becbd2b9a09341145fa128ba2
1 ;;; cl-loaddefs.el --- automatically extracted autoloads
2 ;;
3 ;;; Code:
5 \f
6 ;;;### (autoloads (cl-prettyexpand cl-macroexpand-all cl-remprop
7 ;;;;;; cl-do-remf cl-set-getf cl-getf cl-get cl-tailp cl-list-length
8 ;;;;;; cl-nreconc cl-revappend cl-concatenate cl-subseq cl-float-limits
9 ;;;;;; cl-random-state-p cl-make-random-state cl-random cl-signum
10 ;;;;;; cl-rem cl-mod cl-round cl-truncate cl-ceiling cl-floor cl-isqrt
11 ;;;;;; cl-lcm cl-gcd cl-progv-before cl-set-frame-visible-p cl-map-overlays
12 ;;;;;; cl-map-intervals cl-map-keymap-recursively cl-notevery cl-notany
13 ;;;;;; cl-every cl-some cl-mapcon cl-mapcan cl-mapl cl-maplist cl-map
14 ;;;;;; cl-mapcar-many cl-equalp cl-coerce) "cl-extra" "cl-extra.el"
15 ;;;;;; "acc0000b09b27fb51f5ba23a4b9254e2")
16 ;;; Generated autoloads from cl-extra.el
18 (autoload 'cl-coerce "cl-extra" "\
19 Coerce OBJECT to type TYPE.
20 TYPE is a Common Lisp type specifier.
22 \(fn OBJECT TYPE)" nil nil)
24 (autoload 'cl-equalp "cl-extra" "\
25 Return t if two Lisp objects have similar structures and contents.
26 This is like `equal', except that it accepts numerically equal
27 numbers of different types (float vs. integer), and also compares
28 strings case-insensitively.
30 \(fn X Y)" nil nil)
32 (autoload 'cl-mapcar-many "cl-extra" "\
35 \(fn CL-FUNC CL-SEQS)" nil nil)
37 (autoload 'cl-map "cl-extra" "\
38 Map a FUNCTION across one or more SEQUENCEs, returning a sequence.
39 TYPE is the sequence type to return.
41 \(fn TYPE FUNCTION SEQUENCE...)" nil nil)
43 (autoload 'cl-maplist "cl-extra" "\
44 Map FUNCTION to each sublist of LIST or LISTs.
45 Like `mapcar', except applies to lists and their cdr's rather than to
46 the elements themselves.
48 \(fn FUNCTION LIST...)" nil nil)
50 (autoload 'cl-mapl "cl-extra" "\
51 Like `cl-maplist', but does not accumulate values returned by the function.
53 \(fn FUNCTION LIST...)" nil nil)
55 (autoload 'cl-mapcan "cl-extra" "\
56 Like `mapcar', but nconc's together the values returned by the function.
58 \(fn FUNCTION SEQUENCE...)" nil nil)
60 (autoload 'cl-mapcon "cl-extra" "\
61 Like `cl-maplist', but nconc's together the values returned by the function.
63 \(fn FUNCTION LIST...)" nil nil)
65 (autoload 'cl-some "cl-extra" "\
66 Return true if PREDICATE is true of any element of SEQ or SEQs.
67 If so, return the true (non-nil) value returned by PREDICATE.
69 \(fn PREDICATE SEQ...)" nil nil)
71 (autoload 'cl-every "cl-extra" "\
72 Return true if PREDICATE is true of every element of SEQ or SEQs.
74 \(fn PREDICATE SEQ...)" nil nil)
76 (autoload 'cl-notany "cl-extra" "\
77 Return true if PREDICATE is false of every element of SEQ or SEQs.
79 \(fn PREDICATE SEQ...)" nil nil)
81 (autoload 'cl-notevery "cl-extra" "\
82 Return true if PREDICATE is false of some element of SEQ or SEQs.
84 \(fn PREDICATE SEQ...)" nil nil)
86 (defalias 'cl-map-keymap 'map-keymap)
88 (autoload 'cl-map-keymap-recursively "cl-extra" "\
91 \(fn CL-FUNC-REC CL-MAP &optional CL-BASE)" nil nil)
93 (autoload 'cl-map-intervals "cl-extra" "\
96 \(fn CL-FUNC &optional CL-WHAT CL-PROP CL-START CL-END)" nil nil)
98 (autoload 'cl-map-overlays "cl-extra" "\
101 \(fn CL-FUNC &optional CL-BUFFER CL-START CL-END CL-ARG)" nil nil)
103 (autoload 'cl-set-frame-visible-p "cl-extra" "\
106 \(fn FRAME VAL)" nil nil)
108 (autoload 'cl-progv-before "cl-extra" "\
111 \(fn SYMS VALUES)" nil nil)
113 (autoload 'cl-gcd "cl-extra" "\
114 Return the greatest common divisor of the arguments.
116 \(fn &rest ARGS)" nil nil)
118 (autoload 'cl-lcm "cl-extra" "\
119 Return the least common multiple of the arguments.
121 \(fn &rest ARGS)" nil nil)
123 (autoload 'cl-isqrt "cl-extra" "\
124 Return the integer square root of the argument.
126 \(fn X)" nil nil)
128 (autoload 'cl-floor "cl-extra" "\
129 Return a list of the floor of X and the fractional part of X.
130 With two arguments, return floor and remainder of their quotient.
132 \(fn X &optional Y)" nil nil)
134 (autoload 'cl-ceiling "cl-extra" "\
135 Return a list of the ceiling of X and the fractional part of X.
136 With two arguments, return ceiling and remainder of their quotient.
138 \(fn X &optional Y)" nil nil)
140 (autoload 'cl-truncate "cl-extra" "\
141 Return a list of the integer part of X and the fractional part of X.
142 With two arguments, return truncation and remainder of their quotient.
144 \(fn X &optional Y)" nil nil)
146 (autoload 'cl-round "cl-extra" "\
147 Return a list of X rounded to the nearest integer and the remainder.
148 With two arguments, return rounding and remainder of their quotient.
150 \(fn X &optional Y)" nil nil)
152 (autoload 'cl-mod "cl-extra" "\
153 The remainder of X divided by Y, with the same sign as Y.
155 \(fn X Y)" nil nil)
157 (autoload 'cl-rem "cl-extra" "\
158 The remainder of X divided by Y, with the same sign as X.
160 \(fn X Y)" nil nil)
162 (autoload 'cl-signum "cl-extra" "\
163 Return 1 if X is positive, -1 if negative, 0 if zero.
165 \(fn X)" nil nil)
167 (autoload 'cl-random "cl-extra" "\
168 Return a random nonnegative number less than LIM, an integer or float.
169 Optional second arg STATE is a random-state object.
171 \(fn LIM &optional STATE)" nil nil)
173 (autoload 'cl-make-random-state "cl-extra" "\
174 Return a copy of random-state STATE, or of the internal state if omitted.
175 If STATE is t, return a new state object seeded from the time of day.
177 \(fn &optional STATE)" nil nil)
179 (autoload 'cl-random-state-p "cl-extra" "\
180 Return t if OBJECT is a random-state object.
182 \(fn OBJECT)" nil nil)
184 (autoload 'cl-float-limits "cl-extra" "\
185 Initialize the Common Lisp floating-point parameters.
186 This sets the values of: `cl-most-positive-float', `cl-most-negative-float',
187 `cl-least-positive-float', `cl-least-negative-float', `cl-float-epsilon',
188 `cl-float-negative-epsilon', `cl-least-positive-normalized-float', and
189 `cl-least-negative-normalized-float'.
191 \(fn)" nil nil)
193 (autoload 'cl-subseq "cl-extra" "\
194 Return the subsequence of SEQ from START to END.
195 If END is omitted, it defaults to the length of the sequence.
196 If START or END is negative, it counts from the end.
198 \(fn SEQ START &optional END)" nil nil)
200 (autoload 'cl-concatenate "cl-extra" "\
201 Concatenate, into a sequence of type TYPE, the argument SEQUENCEs.
203 \(fn TYPE SEQUENCE...)" nil nil)
205 (autoload 'cl-revappend "cl-extra" "\
206 Equivalent to (append (reverse X) Y).
208 \(fn X Y)" nil nil)
210 (autoload 'cl-nreconc "cl-extra" "\
211 Equivalent to (nconc (nreverse X) Y).
213 \(fn X Y)" nil nil)
215 (autoload 'cl-list-length "cl-extra" "\
216 Return the length of list X. Return nil if list is circular.
218 \(fn X)" nil nil)
220 (autoload 'cl-tailp "cl-extra" "\
221 Return true if SUBLIST is a tail of LIST.
223 \(fn SUBLIST LIST)" nil nil)
225 (autoload 'cl-get "cl-extra" "\
226 Return the value of SYMBOL's PROPNAME property, or DEFAULT if none.
228 \(fn SYMBOL PROPNAME &optional DEFAULT)" nil nil)
230 (autoload 'cl-getf "cl-extra" "\
231 Search PROPLIST for property PROPNAME; return its value or DEFAULT.
232 PROPLIST is a list of the sort returned by `symbol-plist'.
234 \(fn PROPLIST PROPNAME &optional DEFAULT)" nil nil)
236 (autoload 'cl-set-getf "cl-extra" "\
239 \(fn PLIST TAG VAL)" nil nil)
241 (autoload 'cl-do-remf "cl-extra" "\
244 \(fn PLIST TAG)" nil nil)
246 (autoload 'cl-remprop "cl-extra" "\
247 Remove from SYMBOL's plist the property PROPNAME and its value.
249 \(fn SYMBOL PROPNAME)" nil nil)
251 (defalias 'cl-gethash 'gethash)
253 (defalias 'cl-puthash 'puthash)
255 (defalias 'cl-remhash 'remhash)
257 (defalias 'cl-clrhash 'clrhash)
259 (defalias 'cl-maphash 'maphash)
261 (defalias 'cl-make-hash-table 'make-hash-table)
263 (defalias 'cl-hash-table-p 'hash-table-p)
265 (defalias 'cl-hash-table-count 'hash-table-count)
267 (autoload 'cl-macroexpand-all "cl-extra" "\
268 Expand all macro calls through a Lisp FORM.
269 This also does some trivial optimizations to make the form prettier.
271 \(fn FORM &optional ENV)" nil nil)
273 (autoload 'cl-prettyexpand "cl-extra" "\
276 \(fn FORM &optional FULL)" nil nil)
278 ;;;***
280 ;;;### (autoloads (cl-defsubst cl-compiler-macroexpand cl-define-compiler-macro
281 ;;;;;; cl-assert cl-check-type cl-typep cl-deftype cl-struct-setf-expander
282 ;;;;;; cl-defstruct cl-define-modify-macro cl-callf2 cl-callf cl-letf*
283 ;;;;;; cl-letf cl-rotatef cl-shiftf cl-remf cl-do-pop cl-psetf cl-setf
284 ;;;;;; cl-get-setf-method cl-defsetf cl-define-setf-expander cl-declare
285 ;;;;;; cl-the cl-locally cl-multiple-value-setq cl-multiple-value-bind
286 ;;;;;; cl-lexical-let* cl-lexical-let cl-symbol-macrolet cl-macrolet
287 ;;;;;; cl-labels cl-flet cl-progv cl-psetq cl-do-all-symbols cl-do-symbols
288 ;;;;;; cl-dotimes cl-dolist cl-do* cl-do cl-loop cl-return-from
289 ;;;;;; cl-return cl-block cl-etypecase cl-typecase cl-ecase cl-case
290 ;;;;;; cl-load-time-value cl-eval-when cl-destructuring-bind cl-function
291 ;;;;;; cl-defmacro cl-defun cl-gentemp cl-gensym) "cl-macs" "cl-macs.el"
292 ;;;;;; "25086e27342ec0990f35f1748a5b7b4e")
293 ;;; Generated autoloads from cl-macs.el
295 (autoload 'cl-gensym "cl-macs" "\
296 Generate a new uninterned symbol.
297 The name is made by appending a number to PREFIX, default \"G\".
299 \(fn &optional PREFIX)" nil nil)
301 (autoload 'cl-gentemp "cl-macs" "\
302 Generate a new interned symbol with a unique name.
303 The name is made by appending a number to PREFIX, default \"G\".
305 \(fn &optional PREFIX)" nil nil)
307 (autoload 'cl-defun "cl-macs" "\
308 Define NAME as a function.
309 Like normal `defun', except ARGLIST allows full Common Lisp conventions,
310 and BODY is implicitly surrounded by (cl-block NAME ...).
312 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil t)
314 (put 'cl-defun 'doc-string-elt '3)
316 (put 'cl-defun 'lisp-indent-function '2)
318 (autoload 'cl-defmacro "cl-macs" "\
319 Define NAME as a macro.
320 Like normal `defmacro', except ARGLIST allows full Common Lisp conventions,
321 and BODY is implicitly surrounded by (cl-block NAME ...).
323 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil t)
325 (put 'cl-defmacro 'doc-string-elt '3)
327 (put 'cl-defmacro 'lisp-indent-function '2)
329 (autoload 'cl-function "cl-macs" "\
330 Introduce a function.
331 Like normal `function', except that if argument is a lambda form,
332 its argument list allows full Common Lisp conventions.
334 \(fn FUNC)" nil t)
336 (autoload 'cl-destructuring-bind "cl-macs" "\
339 \(fn ARGS EXPR &rest BODY)" nil t)
341 (put 'cl-destructuring-bind 'lisp-indent-function '2)
343 (autoload 'cl-eval-when "cl-macs" "\
344 Control when BODY is evaluated.
345 If `compile' is in WHEN, BODY is evaluated when compiled at top-level.
346 If `load' is in WHEN, BODY is evaluated when loaded after top-level compile.
347 If `eval' is in WHEN, BODY is evaluated when interpreted or at non-top-level.
349 \(fn (WHEN...) BODY...)" nil t)
351 (put 'cl-eval-when 'lisp-indent-function '1)
353 (autoload 'cl-load-time-value "cl-macs" "\
354 Like `progn', but evaluates the body at load time.
355 The result of the body appears to the compiler as a quoted constant.
357 \(fn FORM &optional READ-ONLY)" nil t)
359 (autoload 'cl-case "cl-macs" "\
360 Eval EXPR and choose among clauses on that value.
361 Each clause looks like (KEYLIST BODY...). EXPR is evaluated and compared
362 against each key in each KEYLIST; the corresponding BODY is evaluated.
363 If no clause succeeds, cl-case returns nil. A single atom may be used in
364 place of a KEYLIST of one atom. A KEYLIST of t or `otherwise' is
365 allowed only in the final clause, and matches if no other keys match.
366 Key values are compared by `eql'.
368 \(fn EXPR (KEYLIST BODY...)...)" nil t)
370 (put 'cl-case 'lisp-indent-function '1)
372 (autoload 'cl-ecase "cl-macs" "\
373 Like `cl-case', but error if no cl-case fits.
374 `otherwise'-clauses are not allowed.
376 \(fn EXPR (KEYLIST BODY...)...)" nil t)
378 (put 'cl-ecase 'lisp-indent-function '1)
380 (autoload 'cl-typecase "cl-macs" "\
381 Evals EXPR, chooses among clauses on that value.
382 Each clause looks like (TYPE BODY...). EXPR is evaluated and, if it
383 satisfies TYPE, the corresponding BODY is evaluated. If no clause succeeds,
384 cl-typecase returns nil. A TYPE of t or `otherwise' is allowed only in the
385 final clause, and matches if no other keys match.
387 \(fn EXPR (TYPE BODY...)...)" nil t)
389 (put 'cl-typecase 'lisp-indent-function '1)
391 (autoload 'cl-etypecase "cl-macs" "\
392 Like `cl-typecase', but error if no case fits.
393 `otherwise'-clauses are not allowed.
395 \(fn EXPR (TYPE BODY...)...)" nil t)
397 (put 'cl-etypecase 'lisp-indent-function '1)
399 (autoload 'cl-block "cl-macs" "\
400 Define a lexically-scoped block named NAME.
401 NAME may be any symbol. Code inside the BODY forms can call `cl-return-from'
402 to jump prematurely out of the block. This differs from `catch' and `throw'
403 in two respects: First, the NAME is an unevaluated symbol rather than a
404 quoted symbol or other form; and second, NAME is lexically rather than
405 dynamically scoped: Only references to it within BODY will work. These
406 references may appear inside macro expansions, but not inside functions
407 called from BODY.
409 \(fn NAME &rest BODY)" nil t)
411 (put 'cl-block 'lisp-indent-function '1)
413 (autoload 'cl-return "cl-macs" "\
414 Return from the block named nil.
415 This is equivalent to `(cl-return-from nil RESULT)'.
417 \(fn &optional RESULT)" nil t)
419 (autoload 'cl-return-from "cl-macs" "\
420 Return from the block named NAME.
421 This jumps out to the innermost enclosing `(cl-block NAME ...)' form,
422 returning RESULT from that form (or nil if RESULT is omitted).
423 This is compatible with Common Lisp, but note that `defun' and
424 `defmacro' do not create implicit blocks as they do in Common Lisp.
426 \(fn NAME &optional RESULT)" nil t)
428 (put 'cl-return-from 'lisp-indent-function '1)
430 (autoload 'cl-loop "cl-macs" "\
431 The Common Lisp `cl-loop' macro.
432 Valid clauses are:
433 for VAR from/upfrom/downfrom NUM to/upto/downto/above/below NUM by NUM,
434 for VAR in LIST by FUNC, for VAR on LIST by FUNC, for VAR = INIT then EXPR,
435 for VAR across ARRAY, repeat NUM, with VAR = INIT, while COND, until COND,
436 always COND, never COND, thereis COND, collect EXPR into VAR,
437 append EXPR into VAR, nconc EXPR into VAR, sum EXPR into VAR,
438 count EXPR into VAR, maximize EXPR into VAR, minimize EXPR into VAR,
439 if COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
440 unless COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
441 do EXPRS..., initially EXPRS..., finally EXPRS..., return EXPR,
442 finally return EXPR, named NAME.
444 \(fn CLAUSE...)" nil t)
446 (autoload 'cl-do "cl-macs" "\
447 The Common Lisp `cl-do' loop.
449 \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil t)
451 (put 'cl-do 'lisp-indent-function '2)
453 (autoload 'cl-do* "cl-macs" "\
454 The Common Lisp `cl-do*' loop.
456 \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil t)
458 (put 'cl-do* 'lisp-indent-function '2)
460 (autoload 'cl-dolist "cl-macs" "\
461 Loop over a list.
462 Evaluate BODY with VAR bound to each `car' from LIST, in turn.
463 Then evaluate RESULT to get return value, default nil.
464 An implicit nil block is established around the loop.
466 \(fn (VAR LIST [RESULT]) BODY...)" nil t)
468 (autoload 'cl-dotimes "cl-macs" "\
469 Loop a certain number of times.
470 Evaluate BODY with VAR bound to successive integers from 0, inclusive,
471 to COUNT, exclusive. Then evaluate RESULT to get return value, default
472 nil.
474 \(fn (VAR COUNT [RESULT]) BODY...)" nil t)
476 (autoload 'cl-do-symbols "cl-macs" "\
477 Loop over all symbols.
478 Evaluate BODY with VAR bound to each interned symbol, or to each symbol
479 from OBARRAY.
481 \(fn (VAR [OBARRAY [RESULT]]) BODY...)" nil t)
483 (put 'cl-do-symbols 'lisp-indent-function '1)
485 (autoload 'cl-do-all-symbols "cl-macs" "\
488 \(fn SPEC &rest BODY)" nil t)
490 (put 'cl-do-all-symbols 'lisp-indent-function '1)
492 (autoload 'cl-psetq "cl-macs" "\
493 Set SYMs to the values VALs in parallel.
494 This is like `setq', except that all VAL forms are evaluated (in order)
495 before assigning any symbols SYM to the corresponding values.
497 \(fn SYM VAL SYM VAL ...)" nil t)
499 (autoload 'cl-progv "cl-macs" "\
500 Bind SYMBOLS to VALUES dynamically in BODY.
501 The forms SYMBOLS and VALUES are evaluated, and must evaluate to lists.
502 Each symbol in the first list is bound to the corresponding value in the
503 second list (or made unbound if VALUES is shorter than SYMBOLS); then the
504 BODY forms are executed and their result is returned. This is much like
505 a `let' form, except that the list of symbols can be computed at run-time.
507 \(fn SYMBOLS VALUES &rest BODY)" nil t)
509 (put 'cl-progv 'lisp-indent-function '2)
511 (autoload 'cl-flet "cl-macs" "\
512 Make temporary function definitions.
513 This is an analogue of `let' that operates on the function cell of FUNC
514 rather than its value cell. The FORMs are evaluated with the specified
515 function definitions in place, then the definitions are undone (the FUNCs
516 go back to their previous definitions, or lack thereof).
518 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil t)
520 (put 'cl-flet 'lisp-indent-function '1)
522 (autoload 'cl-labels "cl-macs" "\
523 Make temporary function bindings.
524 This is like `cl-flet', except the bindings are lexical instead of dynamic.
525 Unlike `cl-flet', this macro is fully compliant with the Common Lisp standard.
527 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil t)
529 (put 'cl-labels 'lisp-indent-function '1)
531 (autoload 'cl-macrolet "cl-macs" "\
532 Make temporary macro definitions.
533 This is like `cl-flet', but for macros instead of functions.
535 \(fn ((NAME ARGLIST BODY...) ...) FORM...)" nil t)
537 (put 'cl-macrolet 'lisp-indent-function '1)
539 (autoload 'cl-symbol-macrolet "cl-macs" "\
540 Make symbol macro definitions.
541 Within the body FORMs, references to the variable NAME will be replaced
542 by EXPANSION, and (setq NAME ...) will act like (cl-setf EXPANSION ...).
544 \(fn ((NAME EXPANSION) ...) FORM...)" nil t)
546 (put 'cl-symbol-macrolet 'lisp-indent-function '1)
548 (autoload 'cl-lexical-let "cl-macs" "\
549 Like `let', but lexically scoped.
550 The main visible difference is that lambdas inside BODY will create
551 lexical closures as in Common Lisp.
553 \(fn BINDINGS BODY)" nil t)
555 (put 'cl-lexical-let 'lisp-indent-function '1)
557 (autoload 'cl-lexical-let* "cl-macs" "\
558 Like `let*', but lexically scoped.
559 The main visible difference is that lambdas inside BODY, and in
560 successive bindings within BINDINGS, will create lexical closures
561 as in Common Lisp. This is similar to the behavior of `let*' in
562 Common Lisp.
564 \(fn BINDINGS BODY)" nil t)
566 (put 'cl-lexical-let* 'lisp-indent-function '1)
568 (autoload 'cl-multiple-value-bind "cl-macs" "\
569 Collect multiple return values.
570 FORM must return a list; the BODY is then executed with the first N elements
571 of this list bound (`let'-style) to each of the symbols SYM in turn. This
572 is analogous to the Common Lisp `cl-multiple-value-bind' macro, using lists to
573 simulate true multiple return values. For compatibility, (cl-values A B C) is
574 a synonym for (list A B C).
576 \(fn (SYM...) FORM BODY)" nil t)
578 (put 'cl-multiple-value-bind 'lisp-indent-function '2)
580 (autoload 'cl-multiple-value-setq "cl-macs" "\
581 Collect multiple return values.
582 FORM must return a list; the first N elements of this list are stored in
583 each of the symbols SYM in turn. This is analogous to the Common Lisp
584 `cl-multiple-value-setq' macro, using lists to simulate true multiple return
585 values. For compatibility, (cl-values A B C) is a synonym for (list A B C).
587 \(fn (SYM...) FORM)" nil t)
589 (put 'cl-multiple-value-setq 'lisp-indent-function '1)
591 (autoload 'cl-locally "cl-macs" "\
594 \(fn &rest BODY)" nil t)
596 (autoload 'cl-the "cl-macs" "\
599 \(fn TYPE FORM)" nil t)
601 (put 'cl-the 'lisp-indent-function '1)
603 (autoload 'cl-declare "cl-macs" "\
604 Declare SPECS about the current function while compiling.
605 For instance
607 (cl-declare (warn 0))
609 will turn off byte-compile warnings in the function.
610 See Info node `(cl)Declarations' for details.
612 \(fn &rest SPECS)" nil t)
614 (autoload 'cl-define-setf-expander "cl-macs" "\
615 Define a `cl-setf' method.
616 This method shows how to handle `cl-setf's to places of the form (NAME ARGS...).
617 The argument forms ARGS are bound according to ARGLIST, as if NAME were
618 going to be expanded as a macro, then the BODY forms are executed and must
619 return a list of five elements: a temporary-variables list, a value-forms
620 list, a store-variables list (of length one), a store-form, and an access-
621 form. See `cl-defsetf' for a simpler way to define most setf-methods.
623 \(fn NAME ARGLIST BODY...)" nil t)
625 (autoload 'cl-defsetf "cl-macs" "\
626 Define a `cl-setf' method.
627 This macro is an easy-to-use substitute for `cl-define-setf-expander' that works
628 well for simple place forms. In the simple `cl-defsetf' form, `cl-setf's of
629 the form (cl-setf (NAME ARGS...) VAL) are transformed to function or macro
630 calls of the form (FUNC ARGS... VAL). Example:
632 (cl-defsetf aref aset)
634 Alternate form: (cl-defsetf NAME ARGLIST (STORE) BODY...).
635 Here, the above `cl-setf' call is expanded by binding the argument forms ARGS
636 according to ARGLIST, binding the value form VAL to STORE, then executing
637 BODY, which must return a Lisp form that does the necessary `cl-setf' operation.
638 Actually, ARGLIST and STORE may be bound to temporary variables which are
639 introduced automatically to preserve proper execution order of the arguments.
640 Example:
642 (cl-defsetf nth (n x) (v) `(setcar (nthcdr ,n ,x) ,v))
644 \(fn NAME [FUNC | ARGLIST (STORE) BODY...])" nil t)
646 (autoload 'cl-get-setf-method "cl-macs" "\
647 Return a list of five values describing the setf-method for PLACE.
648 PLACE may be any Lisp form which can appear as the PLACE argument to
649 a macro like `cl-setf' or `cl-incf'.
651 \(fn PLACE &optional ENV)" nil nil)
653 (autoload 'cl-setf "cl-macs" "\
654 Set each PLACE to the value of its VAL.
655 This is a generalized version of `setq'; the PLACEs may be symbolic
656 references such as (car x) or (aref x i), as well as plain symbols.
657 For example, (cl-setf (cl-cadar x) y) is equivalent to (setcar (cdar x) y).
658 The return value is the last VAL in the list.
660 \(fn PLACE VAL PLACE VAL ...)" nil t)
662 (autoload 'cl-psetf "cl-macs" "\
663 Set PLACEs to the values VALs in parallel.
664 This is like `cl-setf', except that all VAL forms are evaluated (in order)
665 before assigning any PLACEs to the corresponding values.
667 \(fn PLACE VAL PLACE VAL ...)" nil t)
669 (autoload 'cl-do-pop "cl-macs" "\
672 \(fn PLACE)" nil nil)
674 (autoload 'cl-remf "cl-macs" "\
675 Remove TAG from property list PLACE.
676 PLACE may be a symbol, or any generalized variable allowed by `cl-setf'.
677 The form returns true if TAG was found and removed, nil otherwise.
679 \(fn PLACE TAG)" nil t)
681 (autoload 'cl-shiftf "cl-macs" "\
682 Shift left among PLACEs.
683 Example: (cl-shiftf A B C) sets A to B, B to C, and returns the old A.
684 Each PLACE may be a symbol, or any generalized variable allowed by `cl-setf'.
686 \(fn PLACE... VAL)" nil t)
688 (autoload 'cl-rotatef "cl-macs" "\
689 Rotate left among PLACEs.
690 Example: (cl-rotatef A B C) sets A to B, B to C, and C to A. It returns nil.
691 Each PLACE may be a symbol, or any generalized variable allowed by `cl-setf'.
693 \(fn PLACE...)" nil t)
695 (autoload 'cl-letf "cl-macs" "\
696 Temporarily bind to PLACEs.
697 This is the analogue of `let', but with generalized variables (in the
698 sense of `cl-setf') for the PLACEs. Each PLACE is set to the corresponding
699 VALUE, then the BODY forms are executed. On exit, either normally or
700 because of a `throw' or error, the PLACEs are set back to their original
701 values. Note that this macro is *not* available in Common Lisp.
702 As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
703 the PLACE is not modified before executing BODY.
705 \(fn ((PLACE VALUE) ...) BODY...)" nil t)
707 (put 'cl-letf 'lisp-indent-function '1)
709 (autoload 'cl-letf* "cl-macs" "\
710 Temporarily bind to PLACEs.
711 This is the analogue of `let*', but with generalized variables (in the
712 sense of `cl-setf') for the PLACEs. Each PLACE is set to the corresponding
713 VALUE, then the BODY forms are executed. On exit, either normally or
714 because of a `throw' or error, the PLACEs are set back to their original
715 values. Note that this macro is *not* available in Common Lisp.
716 As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
717 the PLACE is not modified before executing BODY.
719 \(fn ((PLACE VALUE) ...) BODY...)" nil t)
721 (put 'cl-letf* 'lisp-indent-function '1)
723 (autoload 'cl-callf "cl-macs" "\
724 Set PLACE to (FUNC PLACE ARGS...).
725 FUNC should be an unquoted function name. PLACE may be a symbol,
726 or any generalized variable allowed by `cl-setf'.
728 \(fn FUNC PLACE ARGS...)" nil t)
730 (put 'cl-callf 'lisp-indent-function '2)
732 (autoload 'cl-callf2 "cl-macs" "\
733 Set PLACE to (FUNC ARG1 PLACE ARGS...).
734 Like `cl-callf', but PLACE is the second argument of FUNC, not the first.
736 \(fn FUNC ARG1 PLACE ARGS...)" nil t)
738 (put 'cl-callf2 'lisp-indent-function '3)
740 (autoload 'cl-define-modify-macro "cl-macs" "\
741 Define a `cl-setf'-like modify macro.
742 If NAME is called, it combines its PLACE argument with the other arguments
743 from ARGLIST using FUNC: (cl-define-modify-macro cl-incf (&optional (n 1)) +)
745 \(fn NAME ARGLIST FUNC &optional DOC)" nil t)
747 (autoload 'cl-defstruct "cl-macs" "\
748 Define a struct type.
749 This macro defines a new data type called NAME that stores data
750 in SLOTs. It defines a `make-NAME' constructor, a `copy-NAME'
751 copier, a `NAME-p' predicate, and slot accessors named `NAME-SLOT'.
752 You can use the accessors to set the corresponding slots, via `cl-setf'.
754 NAME may instead take the form (NAME OPTIONS...), where each
755 OPTION is either a single keyword or (KEYWORD VALUE).
756 See Info node `(cl)Structures' for a list of valid keywords.
758 Each SLOT may instead take the form (SLOT SLOT-OPTS...), where
759 SLOT-OPTS are keyword-value pairs for that slot. Currently, only
760 one keyword is supported, `:read-only'. If this has a non-nil
761 value, that slot cannot be set via `cl-setf'.
763 \(fn NAME SLOTS...)" nil t)
765 (put 'cl-defstruct 'doc-string-elt '2)
767 (autoload 'cl-struct-setf-expander "cl-macs" "\
770 \(fn X NAME ACCESSOR PRED-FORM POS)" nil nil)
772 (autoload 'cl-deftype "cl-macs" "\
773 Define NAME as a new data type.
774 The type name can then be used in `cl-typecase', `cl-check-type', etc.
776 \(fn NAME ARGLIST &rest BODY)" nil t)
778 (put 'cl-deftype 'doc-string-elt '3)
780 (autoload 'cl-typep "cl-macs" "\
781 Check that OBJECT is of type TYPE.
782 TYPE is a Common Lisp-style type specifier.
784 \(fn OBJECT TYPE)" nil nil)
786 (autoload 'cl-check-type "cl-macs" "\
787 Verify that FORM is of type TYPE; signal an error if not.
788 STRING is an optional description of the desired type.
790 \(fn FORM TYPE &optional STRING)" nil t)
792 (autoload 'cl-assert "cl-macs" "\
793 Verify that FORM returns non-nil; signal an error if not.
794 Second arg SHOW-ARGS means to include arguments of FORM in message.
795 Other args STRING and ARGS... are arguments to be passed to `error'.
796 They are not evaluated unless the assertion fails. If STRING is
797 omitted, a default message listing FORM itself is used.
799 \(fn FORM &optional SHOW-ARGS STRING &rest ARGS)" nil t)
801 (autoload 'cl-define-compiler-macro "cl-macs" "\
802 Define a compiler-only macro.
803 This is like `defmacro', but macro expansion occurs only if the call to
804 FUNC is compiled (i.e., not interpreted). Compiler macros should be used
805 for optimizing the way calls to FUNC are compiled; the form returned by
806 BODY should do the same thing as a call to the normal function called
807 FUNC, though possibly more efficiently. Note that, like regular macros,
808 compiler macros are expanded repeatedly until no further expansions are
809 possible. Unlike regular macros, BODY can decide to \"punt\" and leave the
810 original function call alone by declaring an initial `&whole foo' parameter
811 and then returning foo.
813 \(fn FUNC ARGS &rest BODY)" nil t)
815 (autoload 'cl-compiler-macroexpand "cl-macs" "\
818 \(fn FORM)" nil nil)
820 (autoload 'cl-defsubst "cl-macs" "\
821 Define NAME as a function.
822 Like `defun', except the function is automatically declared `inline',
823 ARGLIST allows full Common Lisp conventions, and BODY is implicitly
824 surrounded by (cl-block NAME ...).
826 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil t)
828 ;;;***
830 ;;;### (autoloads (cl-tree-equal cl-nsublis cl-sublis cl-nsubst-if-not
831 ;;;;;; cl-nsubst-if cl-nsubst cl-subst-if-not cl-subst-if cl-subsetp
832 ;;;;;; cl-nset-exclusive-or cl-set-exclusive-or cl-nset-difference
833 ;;;;;; cl-set-difference cl-nintersection cl-intersection cl-nunion
834 ;;;;;; cl-union cl-rassoc-if-not cl-rassoc-if cl-rassoc cl-assoc-if-not
835 ;;;;;; cl-assoc-if cl-assoc cl--adjoin cl-member-if-not cl-member-if
836 ;;;;;; cl-member cl-merge cl-stable-sort cl-sort cl-search cl-mismatch
837 ;;;;;; cl-count-if-not cl-count-if cl-count cl-position-if-not cl-position-if
838 ;;;;;; cl-position cl-find-if-not cl-find-if cl-find cl-nsubstitute-if-not
839 ;;;;;; cl-nsubstitute-if cl-nsubstitute cl-substitute-if-not cl-substitute-if
840 ;;;;;; cl-substitute cl-delete-duplicates cl-remove-duplicates cl-delete-if-not
841 ;;;;;; cl-delete-if cl-delete cl-remove-if-not cl-remove-if cl-remove
842 ;;;;;; cl-replace cl-fill cl-reduce) "cl-seq" "cl-seq.el" "d3eaca7a24bdb10b381bb94729c5d7e9")
843 ;;; Generated autoloads from cl-seq.el
845 (autoload 'cl-reduce "cl-seq" "\
846 Reduce two-argument FUNCTION across SEQ.
848 Keywords supported: :start :end :from-end :initial-value :key
850 \(fn FUNCTION SEQ [KEYWORD VALUE]...)" nil nil)
852 (autoload 'cl-fill "cl-seq" "\
853 Fill the elements of SEQ with ITEM.
855 Keywords supported: :start :end
857 \(fn SEQ ITEM [KEYWORD VALUE]...)" nil nil)
859 (autoload 'cl-replace "cl-seq" "\
860 Replace the elements of SEQ1 with the elements of SEQ2.
861 SEQ1 is destructively modified, then returned.
863 Keywords supported: :start1 :end1 :start2 :end2
865 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
867 (autoload 'cl-remove "cl-seq" "\
868 Remove all occurrences of ITEM in SEQ.
869 This is a non-destructive function; it makes a copy of SEQ if necessary
870 to avoid corrupting the original SEQ.
872 Keywords supported: :test :test-not :key :count :start :end :from-end
874 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
876 (autoload 'cl-remove-if "cl-seq" "\
877 Remove all items satisfying PREDICATE in SEQ.
878 This is a non-destructive function; it makes a copy of SEQ if necessary
879 to avoid corrupting the original SEQ.
881 Keywords supported: :key :count :start :end :from-end
883 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
885 (autoload 'cl-remove-if-not "cl-seq" "\
886 Remove all items not satisfying PREDICATE in SEQ.
887 This is a non-destructive function; it makes a copy of SEQ if necessary
888 to avoid corrupting the original SEQ.
890 Keywords supported: :key :count :start :end :from-end
892 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
894 (autoload 'cl-delete "cl-seq" "\
895 Remove all occurrences of ITEM in SEQ.
896 This is a destructive function; it reuses the storage of SEQ whenever possible.
898 Keywords supported: :test :test-not :key :count :start :end :from-end
900 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
902 (autoload 'cl-delete-if "cl-seq" "\
903 Remove all items satisfying PREDICATE in SEQ.
904 This is a destructive function; it reuses the storage of SEQ whenever possible.
906 Keywords supported: :key :count :start :end :from-end
908 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
910 (autoload 'cl-delete-if-not "cl-seq" "\
911 Remove all items not satisfying PREDICATE in SEQ.
912 This is a destructive function; it reuses the storage of SEQ whenever possible.
914 Keywords supported: :key :count :start :end :from-end
916 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
918 (autoload 'cl-remove-duplicates "cl-seq" "\
919 Return a copy of SEQ with all duplicate elements removed.
921 Keywords supported: :test :test-not :key :start :end :from-end
923 \(fn SEQ [KEYWORD VALUE]...)" nil nil)
925 (autoload 'cl-delete-duplicates "cl-seq" "\
926 Remove all duplicate elements from SEQ (destructively).
928 Keywords supported: :test :test-not :key :start :end :from-end
930 \(fn SEQ [KEYWORD VALUE]...)" nil nil)
932 (autoload 'cl-substitute "cl-seq" "\
933 Substitute NEW for OLD in SEQ.
934 This is a non-destructive function; it makes a copy of SEQ if necessary
935 to avoid corrupting the original SEQ.
937 Keywords supported: :test :test-not :key :count :start :end :from-end
939 \(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)
941 (autoload 'cl-substitute-if "cl-seq" "\
942 Substitute NEW for all items satisfying PREDICATE in SEQ.
943 This is a non-destructive function; it makes a copy of SEQ if necessary
944 to avoid corrupting the original SEQ.
946 Keywords supported: :key :count :start :end :from-end
948 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
950 (autoload 'cl-substitute-if-not "cl-seq" "\
951 Substitute NEW for all items not satisfying PREDICATE in SEQ.
952 This is a non-destructive function; it makes a copy of SEQ if necessary
953 to avoid corrupting the original SEQ.
955 Keywords supported: :key :count :start :end :from-end
957 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
959 (autoload 'cl-nsubstitute "cl-seq" "\
960 Substitute NEW for OLD in SEQ.
961 This is a destructive function; it reuses the storage of SEQ whenever possible.
963 Keywords supported: :test :test-not :key :count :start :end :from-end
965 \(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)
967 (autoload 'cl-nsubstitute-if "cl-seq" "\
968 Substitute NEW for all items satisfying PREDICATE in SEQ.
969 This is a destructive function; it reuses the storage of SEQ whenever possible.
971 Keywords supported: :key :count :start :end :from-end
973 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
975 (autoload 'cl-nsubstitute-if-not "cl-seq" "\
976 Substitute NEW for all items not satisfying PREDICATE in SEQ.
977 This is a destructive function; it reuses the storage of SEQ whenever possible.
979 Keywords supported: :key :count :start :end :from-end
981 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
983 (autoload 'cl-find "cl-seq" "\
984 Find the first occurrence of ITEM in SEQ.
985 Return the matching ITEM, or nil if not found.
987 Keywords supported: :test :test-not :key :start :end :from-end
989 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
991 (autoload 'cl-find-if "cl-seq" "\
992 Find the first item satisfying PREDICATE in SEQ.
993 Return the matching item, or nil if not found.
995 Keywords supported: :key :start :end :from-end
997 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
999 (autoload 'cl-find-if-not "cl-seq" "\
1000 Find the first item not satisfying PREDICATE in SEQ.
1001 Return the matching item, or nil if not found.
1003 Keywords supported: :key :start :end :from-end
1005 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
1007 (autoload 'cl-position "cl-seq" "\
1008 Find the first occurrence of ITEM in SEQ.
1009 Return the index of the matching item, or nil if not found.
1011 Keywords supported: :test :test-not :key :start :end :from-end
1013 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
1015 (autoload 'cl-position-if "cl-seq" "\
1016 Find the first item satisfying PREDICATE in SEQ.
1017 Return the index of the matching item, or nil if not found.
1019 Keywords supported: :key :start :end :from-end
1021 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
1023 (autoload 'cl-position-if-not "cl-seq" "\
1024 Find the first item not satisfying PREDICATE in SEQ.
1025 Return the index of the matching item, or nil if not found.
1027 Keywords supported: :key :start :end :from-end
1029 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
1031 (autoload 'cl-count "cl-seq" "\
1032 Count the number of occurrences of ITEM in SEQ.
1034 Keywords supported: :test :test-not :key :start :end
1036 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
1038 (autoload 'cl-count-if "cl-seq" "\
1039 Count the number of items satisfying PREDICATE in SEQ.
1041 Keywords supported: :key :start :end
1043 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
1045 (autoload 'cl-count-if-not "cl-seq" "\
1046 Count the number of items not satisfying PREDICATE in SEQ.
1048 Keywords supported: :key :start :end
1050 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
1052 (autoload 'cl-mismatch "cl-seq" "\
1053 Compare SEQ1 with SEQ2, return index of first mismatching element.
1054 Return nil if the sequences match. If one sequence is a prefix of the
1055 other, the return value indicates the end of the shorter sequence.
1057 Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
1059 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
1061 (autoload 'cl-search "cl-seq" "\
1062 Search for SEQ1 as a subsequence of SEQ2.
1063 Return the index of the leftmost element of the first match found;
1064 return nil if there are no matches.
1066 Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
1068 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
1070 (autoload 'cl-sort "cl-seq" "\
1071 Sort the argument SEQ according to PREDICATE.
1072 This is a destructive function; it reuses the storage of SEQ if possible.
1074 Keywords supported: :key
1076 \(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)
1078 (autoload 'cl-stable-sort "cl-seq" "\
1079 Sort the argument SEQ stably according to PREDICATE.
1080 This is a destructive function; it reuses the storage of SEQ if possible.
1082 Keywords supported: :key
1084 \(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)
1086 (autoload 'cl-merge "cl-seq" "\
1087 Destructively merge the two sequences to produce a new sequence.
1088 TYPE is the sequence type to return, SEQ1 and SEQ2 are the two argument
1089 sequences, and PREDICATE is a `less-than' predicate on the elements.
1091 Keywords supported: :key
1093 \(fn TYPE SEQ1 SEQ2 PREDICATE [KEYWORD VALUE]...)" nil nil)
1095 (autoload 'cl-member "cl-seq" "\
1096 Find the first occurrence of ITEM in LIST.
1097 Return the sublist of LIST whose car is ITEM.
1099 Keywords supported: :test :test-not :key
1101 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1103 (autoload 'cl-member-if "cl-seq" "\
1104 Find the first item satisfying PREDICATE in LIST.
1105 Return the sublist of LIST whose car matches.
1107 Keywords supported: :key
1109 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1111 (autoload 'cl-member-if-not "cl-seq" "\
1112 Find the first item not satisfying PREDICATE in LIST.
1113 Return the sublist of LIST whose car matches.
1115 Keywords supported: :key
1117 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1119 (autoload 'cl--adjoin "cl-seq" "\
1122 \(fn CL-ITEM CL-LIST &rest CL-KEYS)" nil nil)
1124 (autoload 'cl-assoc "cl-seq" "\
1125 Find the first item whose car matches ITEM in LIST.
1127 Keywords supported: :test :test-not :key
1129 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1131 (autoload 'cl-assoc-if "cl-seq" "\
1132 Find the first item whose car satisfies PREDICATE in LIST.
1134 Keywords supported: :key
1136 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1138 (autoload 'cl-assoc-if-not "cl-seq" "\
1139 Find the first item whose car does not satisfy PREDICATE in LIST.
1141 Keywords supported: :key
1143 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1145 (autoload 'cl-rassoc "cl-seq" "\
1146 Find the first item whose cdr matches ITEM in LIST.
1148 Keywords supported: :test :test-not :key
1150 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1152 (autoload 'cl-rassoc-if "cl-seq" "\
1153 Find the first item whose cdr satisfies PREDICATE in LIST.
1155 Keywords supported: :key
1157 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1159 (autoload 'cl-rassoc-if-not "cl-seq" "\
1160 Find the first item whose cdr does not satisfy PREDICATE in LIST.
1162 Keywords supported: :key
1164 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1166 (autoload 'cl-union "cl-seq" "\
1167 Combine LIST1 and LIST2 using a set-union operation.
1168 The resulting list contains all items that appear in either LIST1 or LIST2.
1169 This is a non-destructive function; it makes a copy of the data if necessary
1170 to avoid corrupting the original LIST1 and LIST2.
1172 Keywords supported: :test :test-not :key
1174 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1176 (autoload 'cl-nunion "cl-seq" "\
1177 Combine LIST1 and LIST2 using a set-union operation.
1178 The resulting list contains all items that appear in either LIST1 or LIST2.
1179 This is a destructive function; it reuses the storage of LIST1 and LIST2
1180 whenever possible.
1182 Keywords supported: :test :test-not :key
1184 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1186 (autoload 'cl-intersection "cl-seq" "\
1187 Combine LIST1 and LIST2 using a set-intersection operation.
1188 The resulting list contains all items that appear in both LIST1 and LIST2.
1189 This is a non-destructive function; it makes a copy of the data if necessary
1190 to avoid corrupting the original LIST1 and LIST2.
1192 Keywords supported: :test :test-not :key
1194 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1196 (autoload 'cl-nintersection "cl-seq" "\
1197 Combine LIST1 and LIST2 using a set-intersection operation.
1198 The resulting list contains all items that appear in both LIST1 and LIST2.
1199 This is a destructive function; it reuses the storage of LIST1 and LIST2
1200 whenever possible.
1202 Keywords supported: :test :test-not :key
1204 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1206 (autoload 'cl-set-difference "cl-seq" "\
1207 Combine LIST1 and LIST2 using a set-difference operation.
1208 The resulting list contains all items that appear in LIST1 but not LIST2.
1209 This is a non-destructive function; it makes a copy of the data if necessary
1210 to avoid corrupting the original LIST1 and LIST2.
1212 Keywords supported: :test :test-not :key
1214 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1216 (autoload 'cl-nset-difference "cl-seq" "\
1217 Combine LIST1 and LIST2 using a set-difference operation.
1218 The resulting list contains all items that appear in LIST1 but not LIST2.
1219 This is a destructive function; it reuses the storage of LIST1 and LIST2
1220 whenever possible.
1222 Keywords supported: :test :test-not :key
1224 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1226 (autoload 'cl-set-exclusive-or "cl-seq" "\
1227 Combine LIST1 and LIST2 using a set-exclusive-or operation.
1228 The resulting list contains all items appearing in exactly one of LIST1, LIST2.
1229 This is a non-destructive function; it makes a copy of the data if necessary
1230 to avoid corrupting the original LIST1 and LIST2.
1232 Keywords supported: :test :test-not :key
1234 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1236 (autoload 'cl-nset-exclusive-or "cl-seq" "\
1237 Combine LIST1 and LIST2 using a set-exclusive-or operation.
1238 The resulting list contains all items appearing in exactly one of LIST1, LIST2.
1239 This is a destructive function; it reuses the storage of LIST1 and LIST2
1240 whenever possible.
1242 Keywords supported: :test :test-not :key
1244 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1246 (autoload 'cl-subsetp "cl-seq" "\
1247 Return true if LIST1 is a subset of LIST2.
1248 I.e., if every element of LIST1 also appears in LIST2.
1250 Keywords supported: :test :test-not :key
1252 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1254 (autoload 'cl-subst-if "cl-seq" "\
1255 Substitute NEW for elements matching PREDICATE in TREE (non-destructively).
1256 Return a copy of TREE with all matching elements replaced by NEW.
1258 Keywords supported: :key
1260 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1262 (autoload 'cl-subst-if-not "cl-seq" "\
1263 Substitute NEW for elts not matching PREDICATE in TREE (non-destructively).
1264 Return a copy of TREE with all non-matching elements replaced by NEW.
1266 Keywords supported: :key
1268 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1270 (autoload 'cl-nsubst "cl-seq" "\
1271 Substitute NEW for OLD everywhere in TREE (destructively).
1272 Any element of TREE which is `eql' to OLD is changed to NEW (via a call
1273 to `setcar').
1275 Keywords supported: :test :test-not :key
1277 \(fn NEW OLD TREE [KEYWORD VALUE]...)" nil nil)
1279 (autoload 'cl-nsubst-if "cl-seq" "\
1280 Substitute NEW for elements matching PREDICATE in TREE (destructively).
1281 Any element of TREE which matches is changed to NEW (via a call to `setcar').
1283 Keywords supported: :key
1285 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1287 (autoload 'cl-nsubst-if-not "cl-seq" "\
1288 Substitute NEW for elements not matching PREDICATE in TREE (destructively).
1289 Any element of TREE which matches is changed to NEW (via a call to `setcar').
1291 Keywords supported: :key
1293 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1295 (autoload 'cl-sublis "cl-seq" "\
1296 Perform substitutions indicated by ALIST in TREE (non-destructively).
1297 Return a copy of TREE with all matching elements replaced.
1299 Keywords supported: :test :test-not :key
1301 \(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)
1303 (autoload 'cl-nsublis "cl-seq" "\
1304 Perform substitutions indicated by ALIST in TREE (destructively).
1305 Any matching element of TREE is changed via a call to `setcar'.
1307 Keywords supported: :test :test-not :key
1309 \(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)
1311 (autoload 'cl-tree-equal "cl-seq" "\
1312 Return t if trees TREE1 and TREE2 have `eql' leaves.
1313 Atoms are compared by `eql'; cons cells are compared recursively.
1315 Keywords supported: :test :test-not :key
1317 \(fn TREE1 TREE2 [KEYWORD VALUE]...)" nil nil)
1319 ;;;***
1321 ;; Local Variables:
1322 ;; version-control: never
1323 ;; no-byte-compile: t
1324 ;; no-update-autoloads: t
1325 ;; coding: utf-8
1326 ;; End:
1327 ;;; cl-loaddefs.el ends here