(BYTES_USED): Use uordblks, not arena.
[emacs.git] / src / alloc.c
blob5f4026b4cfb7cbfe6d78fe461e92b90191dc4f5d
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
22 #include <config.h>
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
26 #ifdef ALLOC_DEBUG
27 #undef INLINE
28 #endif
30 /* Note that this declares bzero on OSF/1. How dumb. */
32 #include <signal.h>
34 #ifdef HAVE_GTK_AND_PTHREAD
35 #include <pthread.h>
36 #endif
38 /* This file is part of the core Lisp implementation, and thus must
39 deal with the real data structures. If the Lisp implementation is
40 replaced, this file likely will not be used. */
42 #undef HIDE_LISP_IMPLEMENTATION
43 #include "lisp.h"
44 #include "process.h"
45 #include "intervals.h"
46 #include "puresize.h"
47 #include "buffer.h"
48 #include "window.h"
49 #include "keyboard.h"
50 #include "frame.h"
51 #include "blockinput.h"
52 #include "charset.h"
53 #include "syssignal.h"
54 #include <setjmp.h>
56 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
57 memory. Can do this only if using gmalloc.c. */
59 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
60 #undef GC_MALLOC_CHECK
61 #endif
63 #ifdef HAVE_UNISTD_H
64 #include <unistd.h>
65 #else
66 extern POINTER_TYPE *sbrk ();
67 #endif
69 #ifdef DOUG_LEA_MALLOC
71 #include <malloc.h>
72 /* malloc.h #defines this as size_t, at least in glibc2. */
73 #ifndef __malloc_size_t
74 #define __malloc_size_t int
75 #endif
77 /* Specify maximum number of areas to mmap. It would be nice to use a
78 value that explicitly means "no limit". */
80 #define MMAP_MAX_AREAS 100000000
82 #else /* not DOUG_LEA_MALLOC */
84 /* The following come from gmalloc.c. */
86 #define __malloc_size_t size_t
87 extern __malloc_size_t _bytes_used;
88 extern __malloc_size_t __malloc_extra_blocks;
90 #endif /* not DOUG_LEA_MALLOC */
92 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
94 /* When GTK uses the file chooser dialog, different backends can be loaded
95 dynamically. One such a backend is the Gnome VFS backend that gets loaded
96 if you run Gnome. That backend creates several threads and also allocates
97 memory with malloc.
99 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
100 functions below are called from malloc, there is a chance that one
101 of these threads preempts the Emacs main thread and the hook variables
102 end up in an inconsistent state. So we have a mutex to prevent that (note
103 that the backend handles concurrent access to malloc within its own threads
104 but Emacs code running in the main thread is not included in that control).
106 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
107 happens in one of the backend threads we will have two threads that tries
108 to run Emacs code at once, and the code is not prepared for that.
109 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
111 static pthread_mutex_t alloc_mutex;
113 #define BLOCK_INPUT_ALLOC \
114 do \
116 pthread_mutex_lock (&alloc_mutex); \
117 if (pthread_self () == main_thread) \
118 BLOCK_INPUT; \
120 while (0)
121 #define UNBLOCK_INPUT_ALLOC \
122 do \
124 if (pthread_self () == main_thread) \
125 UNBLOCK_INPUT; \
126 pthread_mutex_unlock (&alloc_mutex); \
128 while (0)
130 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
132 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
133 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
135 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
137 /* Value of _bytes_used, when spare_memory was freed. */
139 static __malloc_size_t bytes_used_when_full;
141 static __malloc_size_t bytes_used_when_reconsidered;
143 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
144 to a struct Lisp_String. */
146 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
147 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
148 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
150 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
151 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
152 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
154 /* Value is the number of bytes/chars of S, a pointer to a struct
155 Lisp_String. This must be used instead of STRING_BYTES (S) or
156 S->size during GC, because S->size contains the mark bit for
157 strings. */
159 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
160 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
162 /* Number of bytes of consing done since the last gc. */
164 int consing_since_gc;
166 /* Count the amount of consing of various sorts of space. */
168 EMACS_INT cons_cells_consed;
169 EMACS_INT floats_consed;
170 EMACS_INT vector_cells_consed;
171 EMACS_INT symbols_consed;
172 EMACS_INT string_chars_consed;
173 EMACS_INT misc_objects_consed;
174 EMACS_INT intervals_consed;
175 EMACS_INT strings_consed;
177 /* Minimum number of bytes of consing since GC before next GC. */
179 EMACS_INT gc_cons_threshold;
181 /* Similar minimum, computed from Vgc_cons_percentage. */
183 EMACS_INT gc_relative_threshold;
185 static Lisp_Object Vgc_cons_percentage;
187 /* Minimum number of bytes of consing since GC before next GC,
188 when memory is full. */
190 EMACS_INT memory_full_cons_threshold;
192 /* Nonzero during GC. */
194 int gc_in_progress;
196 /* Nonzero means abort if try to GC.
197 This is for code which is written on the assumption that
198 no GC will happen, so as to verify that assumption. */
200 int abort_on_gc;
202 /* Nonzero means display messages at beginning and end of GC. */
204 int garbage_collection_messages;
206 #ifndef VIRT_ADDR_VARIES
207 extern
208 #endif /* VIRT_ADDR_VARIES */
209 int malloc_sbrk_used;
211 #ifndef VIRT_ADDR_VARIES
212 extern
213 #endif /* VIRT_ADDR_VARIES */
214 int malloc_sbrk_unused;
216 /* Number of live and free conses etc. */
218 static int total_conses, total_markers, total_symbols, total_vector_size;
219 static int total_free_conses, total_free_markers, total_free_symbols;
220 static int total_free_floats, total_floats;
222 /* Points to memory space allocated as "spare", to be freed if we run
223 out of memory. We keep one large block, four cons-blocks, and
224 two string blocks. */
226 char *spare_memory[7];
228 /* Amount of spare memory to keep in large reserve block. */
230 #define SPARE_MEMORY (1 << 14)
232 /* Number of extra blocks malloc should get when it needs more core. */
234 static int malloc_hysteresis;
236 /* Non-nil means defun should do purecopy on the function definition. */
238 Lisp_Object Vpurify_flag;
240 /* Non-nil means we are handling a memory-full error. */
242 Lisp_Object Vmemory_full;
244 #ifndef HAVE_SHM
246 /* Initialize it to a nonzero value to force it into data space
247 (rather than bss space). That way unexec will remap it into text
248 space (pure), on some systems. We have not implemented the
249 remapping on more recent systems because this is less important
250 nowadays than in the days of small memories and timesharing. */
252 EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {1,};
253 #define PUREBEG (char *) pure
255 #else /* HAVE_SHM */
257 #define pure PURE_SEG_BITS /* Use shared memory segment */
258 #define PUREBEG (char *)PURE_SEG_BITS
260 #endif /* HAVE_SHM */
262 /* Pointer to the pure area, and its size. */
264 static char *purebeg;
265 static size_t pure_size;
267 /* Number of bytes of pure storage used before pure storage overflowed.
268 If this is non-zero, this implies that an overflow occurred. */
270 static size_t pure_bytes_used_before_overflow;
272 /* Value is non-zero if P points into pure space. */
274 #define PURE_POINTER_P(P) \
275 (((PNTR_COMPARISON_TYPE) (P) \
276 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
277 && ((PNTR_COMPARISON_TYPE) (P) \
278 >= (PNTR_COMPARISON_TYPE) purebeg))
280 /* Index in pure at which next pure object will be allocated.. */
282 EMACS_INT pure_bytes_used;
284 /* If nonzero, this is a warning delivered by malloc and not yet
285 displayed. */
287 char *pending_malloc_warning;
289 /* Pre-computed signal argument for use when memory is exhausted. */
291 Lisp_Object Vmemory_signal_data;
293 /* Maximum amount of C stack to save when a GC happens. */
295 #ifndef MAX_SAVE_STACK
296 #define MAX_SAVE_STACK 16000
297 #endif
299 /* Buffer in which we save a copy of the C stack at each GC. */
301 char *stack_copy;
302 int stack_copy_size;
304 /* Non-zero means ignore malloc warnings. Set during initialization.
305 Currently not used. */
307 int ignore_warnings;
309 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
311 /* Hook run after GC has finished. */
313 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
315 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
316 EMACS_INT gcs_done; /* accumulated GCs */
318 static void mark_buffer P_ ((Lisp_Object));
319 extern void mark_kboards P_ ((void));
320 extern void mark_backtrace P_ ((void));
321 static void gc_sweep P_ ((void));
322 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
323 static void mark_face_cache P_ ((struct face_cache *));
325 #ifdef HAVE_WINDOW_SYSTEM
326 extern void mark_fringe_data P_ ((void));
327 static void mark_image P_ ((struct image *));
328 static void mark_image_cache P_ ((struct frame *));
329 #endif /* HAVE_WINDOW_SYSTEM */
331 static struct Lisp_String *allocate_string P_ ((void));
332 static void compact_small_strings P_ ((void));
333 static void free_large_strings P_ ((void));
334 static void sweep_strings P_ ((void));
336 extern int message_enable_multibyte;
338 /* When scanning the C stack for live Lisp objects, Emacs keeps track
339 of what memory allocated via lisp_malloc is intended for what
340 purpose. This enumeration specifies the type of memory. */
342 enum mem_type
344 MEM_TYPE_NON_LISP,
345 MEM_TYPE_BUFFER,
346 MEM_TYPE_CONS,
347 MEM_TYPE_STRING,
348 MEM_TYPE_MISC,
349 MEM_TYPE_SYMBOL,
350 MEM_TYPE_FLOAT,
351 /* Keep the following vector-like types together, with
352 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
353 first. Or change the code of live_vector_p, for instance. */
354 MEM_TYPE_VECTOR,
355 MEM_TYPE_PROCESS,
356 MEM_TYPE_HASH_TABLE,
357 MEM_TYPE_FRAME,
358 MEM_TYPE_WINDOW
361 static POINTER_TYPE *lisp_align_malloc P_ ((size_t, enum mem_type));
362 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
364 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
366 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
367 #include <stdio.h> /* For fprintf. */
368 #endif
370 /* A unique object in pure space used to make some Lisp objects
371 on free lists recognizable in O(1). */
373 Lisp_Object Vdead;
375 #ifdef GC_MALLOC_CHECK
377 enum mem_type allocated_mem_type;
378 int dont_register_blocks;
380 #endif /* GC_MALLOC_CHECK */
382 /* A node in the red-black tree describing allocated memory containing
383 Lisp data. Each such block is recorded with its start and end
384 address when it is allocated, and removed from the tree when it
385 is freed.
387 A red-black tree is a balanced binary tree with the following
388 properties:
390 1. Every node is either red or black.
391 2. Every leaf is black.
392 3. If a node is red, then both of its children are black.
393 4. Every simple path from a node to a descendant leaf contains
394 the same number of black nodes.
395 5. The root is always black.
397 When nodes are inserted into the tree, or deleted from the tree,
398 the tree is "fixed" so that these properties are always true.
400 A red-black tree with N internal nodes has height at most 2
401 log(N+1). Searches, insertions and deletions are done in O(log N).
402 Please see a text book about data structures for a detailed
403 description of red-black trees. Any book worth its salt should
404 describe them. */
406 struct mem_node
408 /* Children of this node. These pointers are never NULL. When there
409 is no child, the value is MEM_NIL, which points to a dummy node. */
410 struct mem_node *left, *right;
412 /* The parent of this node. In the root node, this is NULL. */
413 struct mem_node *parent;
415 /* Start and end of allocated region. */
416 void *start, *end;
418 /* Node color. */
419 enum {MEM_BLACK, MEM_RED} color;
421 /* Memory type. */
422 enum mem_type type;
425 /* Base address of stack. Set in main. */
427 Lisp_Object *stack_base;
429 /* Root of the tree describing allocated Lisp memory. */
431 static struct mem_node *mem_root;
433 /* Lowest and highest known address in the heap. */
435 static void *min_heap_address, *max_heap_address;
437 /* Sentinel node of the tree. */
439 static struct mem_node mem_z;
440 #define MEM_NIL &mem_z
442 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
443 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
444 static void lisp_free P_ ((POINTER_TYPE *));
445 static void mark_stack P_ ((void));
446 static int live_vector_p P_ ((struct mem_node *, void *));
447 static int live_buffer_p P_ ((struct mem_node *, void *));
448 static int live_string_p P_ ((struct mem_node *, void *));
449 static int live_cons_p P_ ((struct mem_node *, void *));
450 static int live_symbol_p P_ ((struct mem_node *, void *));
451 static int live_float_p P_ ((struct mem_node *, void *));
452 static int live_misc_p P_ ((struct mem_node *, void *));
453 static void mark_maybe_object P_ ((Lisp_Object));
454 static void mark_memory P_ ((void *, void *));
455 static void mem_init P_ ((void));
456 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
457 static void mem_insert_fixup P_ ((struct mem_node *));
458 static void mem_rotate_left P_ ((struct mem_node *));
459 static void mem_rotate_right P_ ((struct mem_node *));
460 static void mem_delete P_ ((struct mem_node *));
461 static void mem_delete_fixup P_ ((struct mem_node *));
462 static INLINE struct mem_node *mem_find P_ ((void *));
463 void refill_memory_reserve ();
466 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
467 static void check_gcpros P_ ((void));
468 #endif
470 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
472 /* Recording what needs to be marked for gc. */
474 struct gcpro *gcprolist;
476 /* Addresses of staticpro'd variables. Initialize it to a nonzero
477 value; otherwise some compilers put it into BSS. */
479 #define NSTATICS 1280
480 Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
482 /* Index of next unused slot in staticvec. */
484 int staticidx = 0;
486 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
489 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
490 ALIGNMENT must be a power of 2. */
492 #define ALIGN(ptr, ALIGNMENT) \
493 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
494 & ~((ALIGNMENT) - 1)))
498 /************************************************************************
499 Malloc
500 ************************************************************************/
502 /* Function malloc calls this if it finds we are near exhausting storage. */
504 void
505 malloc_warning (str)
506 char *str;
508 pending_malloc_warning = str;
512 /* Display an already-pending malloc warning. */
514 void
515 display_malloc_warning ()
517 call3 (intern ("display-warning"),
518 intern ("alloc"),
519 build_string (pending_malloc_warning),
520 intern ("emergency"));
521 pending_malloc_warning = 0;
525 #ifdef DOUG_LEA_MALLOC
526 # define BYTES_USED (mallinfo ().uordblks)
527 #else
528 # define BYTES_USED _bytes_used
529 #endif
531 /* Called if we can't allocate relocatable space for a buffer. */
533 void
534 buffer_memory_full ()
536 /* If buffers use the relocating allocator, no need to free
537 spare_memory, because we may have plenty of malloc space left
538 that we could get, and if we don't, the malloc that fails will
539 itself cause spare_memory to be freed. If buffers don't use the
540 relocating allocator, treat this like any other failing
541 malloc. */
543 #ifndef REL_ALLOC
544 memory_full ();
545 #endif
547 /* This used to call error, but if we've run out of memory, we could
548 get infinite recursion trying to build the string. */
549 while (1)
550 Fsignal (Qnil, Vmemory_signal_data);
554 #ifdef XMALLOC_OVERRUN_CHECK
556 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
557 and a 16 byte trailer around each block.
559 The header consists of 12 fixed bytes + a 4 byte integer contaning the
560 original block size, while the trailer consists of 16 fixed bytes.
562 The header is used to detect whether this block has been allocated
563 through these functions -- as it seems that some low-level libc
564 functions may bypass the malloc hooks.
568 #define XMALLOC_OVERRUN_CHECK_SIZE 16
570 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
571 { 0x9a, 0x9b, 0xae, 0xaf,
572 0xbf, 0xbe, 0xce, 0xcf,
573 0xea, 0xeb, 0xec, 0xed };
575 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
576 { 0xaa, 0xab, 0xac, 0xad,
577 0xba, 0xbb, 0xbc, 0xbd,
578 0xca, 0xcb, 0xcc, 0xcd,
579 0xda, 0xdb, 0xdc, 0xdd };
581 /* Macros to insert and extract the block size in the header. */
583 #define XMALLOC_PUT_SIZE(ptr, size) \
584 (ptr[-1] = (size & 0xff), \
585 ptr[-2] = ((size >> 8) & 0xff), \
586 ptr[-3] = ((size >> 16) & 0xff), \
587 ptr[-4] = ((size >> 24) & 0xff))
589 #define XMALLOC_GET_SIZE(ptr) \
590 (size_t)((unsigned)(ptr[-1]) | \
591 ((unsigned)(ptr[-2]) << 8) | \
592 ((unsigned)(ptr[-3]) << 16) | \
593 ((unsigned)(ptr[-4]) << 24))
596 /* The call depth in overrun_check functions. For example, this might happen:
597 xmalloc()
598 overrun_check_malloc()
599 -> malloc -> (via hook)_-> emacs_blocked_malloc
600 -> overrun_check_malloc
601 call malloc (hooks are NULL, so real malloc is called).
602 malloc returns 10000.
603 add overhead, return 10016.
604 <- (back in overrun_check_malloc)
605 add overhead again, return 10032
606 xmalloc returns 10032.
608 (time passes).
610 xfree(10032)
611 overrun_check_free(10032)
612 decrease overhed
613 free(10016) <- crash, because 10000 is the original pointer. */
615 static int check_depth;
617 /* Like malloc, but wraps allocated block with header and trailer. */
619 POINTER_TYPE *
620 overrun_check_malloc (size)
621 size_t size;
623 register unsigned char *val;
624 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
626 val = (unsigned char *) malloc (size + overhead);
627 if (val && check_depth == 1)
629 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
630 val += XMALLOC_OVERRUN_CHECK_SIZE;
631 XMALLOC_PUT_SIZE(val, size);
632 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
634 --check_depth;
635 return (POINTER_TYPE *)val;
639 /* Like realloc, but checks old block for overrun, and wraps new block
640 with header and trailer. */
642 POINTER_TYPE *
643 overrun_check_realloc (block, size)
644 POINTER_TYPE *block;
645 size_t size;
647 register unsigned char *val = (unsigned char *)block;
648 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
650 if (val
651 && check_depth == 1
652 && bcmp (xmalloc_overrun_check_header,
653 val - XMALLOC_OVERRUN_CHECK_SIZE,
654 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
656 size_t osize = XMALLOC_GET_SIZE (val);
657 if (bcmp (xmalloc_overrun_check_trailer,
658 val + osize,
659 XMALLOC_OVERRUN_CHECK_SIZE))
660 abort ();
661 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
662 val -= XMALLOC_OVERRUN_CHECK_SIZE;
663 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
666 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
668 if (val && check_depth == 1)
670 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
671 val += XMALLOC_OVERRUN_CHECK_SIZE;
672 XMALLOC_PUT_SIZE(val, size);
673 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
675 --check_depth;
676 return (POINTER_TYPE *)val;
679 /* Like free, but checks block for overrun. */
681 void
682 overrun_check_free (block)
683 POINTER_TYPE *block;
685 unsigned char *val = (unsigned char *)block;
687 ++check_depth;
688 if (val
689 && check_depth == 1
690 && bcmp (xmalloc_overrun_check_header,
691 val - XMALLOC_OVERRUN_CHECK_SIZE,
692 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
694 size_t osize = XMALLOC_GET_SIZE (val);
695 if (bcmp (xmalloc_overrun_check_trailer,
696 val + osize,
697 XMALLOC_OVERRUN_CHECK_SIZE))
698 abort ();
699 #ifdef XMALLOC_CLEAR_FREE_MEMORY
700 val -= XMALLOC_OVERRUN_CHECK_SIZE;
701 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
702 #else
703 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
704 val -= XMALLOC_OVERRUN_CHECK_SIZE;
705 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
706 #endif
709 free (val);
710 --check_depth;
713 #undef malloc
714 #undef realloc
715 #undef free
716 #define malloc overrun_check_malloc
717 #define realloc overrun_check_realloc
718 #define free overrun_check_free
719 #endif
722 /* Like malloc but check for no memory and block interrupt input.. */
724 POINTER_TYPE *
725 xmalloc (size)
726 size_t size;
728 register POINTER_TYPE *val;
730 BLOCK_INPUT;
731 val = (POINTER_TYPE *) malloc (size);
732 UNBLOCK_INPUT;
734 if (!val && size)
735 memory_full ();
736 return val;
740 /* Like realloc but check for no memory and block interrupt input.. */
742 POINTER_TYPE *
743 xrealloc (block, size)
744 POINTER_TYPE *block;
745 size_t size;
747 register POINTER_TYPE *val;
749 BLOCK_INPUT;
750 /* We must call malloc explicitly when BLOCK is 0, since some
751 reallocs don't do this. */
752 if (! block)
753 val = (POINTER_TYPE *) malloc (size);
754 else
755 val = (POINTER_TYPE *) realloc (block, size);
756 UNBLOCK_INPUT;
758 if (!val && size) memory_full ();
759 return val;
763 /* Like free but block interrupt input. */
765 void
766 xfree (block)
767 POINTER_TYPE *block;
769 BLOCK_INPUT;
770 free (block);
771 UNBLOCK_INPUT;
772 /* We don't call refill_memory_reserve here
773 because that duplicates doing so in emacs_blocked_free
774 and the criterion should go there. */
778 /* Like strdup, but uses xmalloc. */
780 char *
781 xstrdup (s)
782 const char *s;
784 size_t len = strlen (s) + 1;
785 char *p = (char *) xmalloc (len);
786 bcopy (s, p, len);
787 return p;
791 /* Unwind for SAFE_ALLOCA */
793 Lisp_Object
794 safe_alloca_unwind (arg)
795 Lisp_Object arg;
797 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
799 p->dogc = 0;
800 xfree (p->pointer);
801 p->pointer = 0;
802 free_misc (arg);
803 return Qnil;
807 /* Like malloc but used for allocating Lisp data. NBYTES is the
808 number of bytes to allocate, TYPE describes the intended use of the
809 allcated memory block (for strings, for conses, ...). */
811 #ifndef USE_LSB_TAG
812 static void *lisp_malloc_loser;
813 #endif
815 static POINTER_TYPE *
816 lisp_malloc (nbytes, type)
817 size_t nbytes;
818 enum mem_type type;
820 register void *val;
822 BLOCK_INPUT;
824 #ifdef GC_MALLOC_CHECK
825 allocated_mem_type = type;
826 #endif
828 val = (void *) malloc (nbytes);
830 #ifndef USE_LSB_TAG
831 /* If the memory just allocated cannot be addressed thru a Lisp
832 object's pointer, and it needs to be,
833 that's equivalent to running out of memory. */
834 if (val && type != MEM_TYPE_NON_LISP)
836 Lisp_Object tem;
837 XSETCONS (tem, (char *) val + nbytes - 1);
838 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
840 lisp_malloc_loser = val;
841 free (val);
842 val = 0;
845 #endif
847 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
848 if (val && type != MEM_TYPE_NON_LISP)
849 mem_insert (val, (char *) val + nbytes, type);
850 #endif
852 UNBLOCK_INPUT;
853 if (!val && nbytes)
854 memory_full ();
855 return val;
858 /* Free BLOCK. This must be called to free memory allocated with a
859 call to lisp_malloc. */
861 static void
862 lisp_free (block)
863 POINTER_TYPE *block;
865 BLOCK_INPUT;
866 free (block);
867 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
868 mem_delete (mem_find (block));
869 #endif
870 UNBLOCK_INPUT;
873 /* Allocation of aligned blocks of memory to store Lisp data. */
874 /* The entry point is lisp_align_malloc which returns blocks of at most */
875 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
878 /* BLOCK_ALIGN has to be a power of 2. */
879 #define BLOCK_ALIGN (1 << 10)
881 /* Padding to leave at the end of a malloc'd block. This is to give
882 malloc a chance to minimize the amount of memory wasted to alignment.
883 It should be tuned to the particular malloc library used.
884 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
885 posix_memalign on the other hand would ideally prefer a value of 4
886 because otherwise, there's 1020 bytes wasted between each ablocks.
887 In Emacs, testing shows that those 1020 can most of the time be
888 efficiently used by malloc to place other objects, so a value of 0 can
889 still preferable unless you have a lot of aligned blocks and virtually
890 nothing else. */
891 #define BLOCK_PADDING 0
892 #define BLOCK_BYTES \
893 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
895 /* Internal data structures and constants. */
897 #define ABLOCKS_SIZE 16
899 /* An aligned block of memory. */
900 struct ablock
902 union
904 char payload[BLOCK_BYTES];
905 struct ablock *next_free;
906 } x;
907 /* `abase' is the aligned base of the ablocks. */
908 /* It is overloaded to hold the virtual `busy' field that counts
909 the number of used ablock in the parent ablocks.
910 The first ablock has the `busy' field, the others have the `abase'
911 field. To tell the difference, we assume that pointers will have
912 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
913 is used to tell whether the real base of the parent ablocks is `abase'
914 (if not, the word before the first ablock holds a pointer to the
915 real base). */
916 struct ablocks *abase;
917 /* The padding of all but the last ablock is unused. The padding of
918 the last ablock in an ablocks is not allocated. */
919 #if BLOCK_PADDING
920 char padding[BLOCK_PADDING];
921 #endif
924 /* A bunch of consecutive aligned blocks. */
925 struct ablocks
927 struct ablock blocks[ABLOCKS_SIZE];
930 /* Size of the block requested from malloc or memalign. */
931 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
933 #define ABLOCK_ABASE(block) \
934 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
935 ? (struct ablocks *)(block) \
936 : (block)->abase)
938 /* Virtual `busy' field. */
939 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
941 /* Pointer to the (not necessarily aligned) malloc block. */
942 #ifdef HAVE_POSIX_MEMALIGN
943 #define ABLOCKS_BASE(abase) (abase)
944 #else
945 #define ABLOCKS_BASE(abase) \
946 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
947 #endif
949 /* The list of free ablock. */
950 static struct ablock *free_ablock;
952 /* Allocate an aligned block of nbytes.
953 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
954 smaller or equal to BLOCK_BYTES. */
955 static POINTER_TYPE *
956 lisp_align_malloc (nbytes, type)
957 size_t nbytes;
958 enum mem_type type;
960 void *base, *val;
961 struct ablocks *abase;
963 eassert (nbytes <= BLOCK_BYTES);
965 BLOCK_INPUT;
967 #ifdef GC_MALLOC_CHECK
968 allocated_mem_type = type;
969 #endif
971 if (!free_ablock)
973 int i;
974 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
976 #ifdef DOUG_LEA_MALLOC
977 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
978 because mapped region contents are not preserved in
979 a dumped Emacs. */
980 mallopt (M_MMAP_MAX, 0);
981 #endif
983 #ifdef HAVE_POSIX_MEMALIGN
985 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
986 if (err)
987 base = NULL;
988 abase = base;
990 #else
991 base = malloc (ABLOCKS_BYTES);
992 abase = ALIGN (base, BLOCK_ALIGN);
993 #endif
995 if (base == 0)
997 UNBLOCK_INPUT;
998 memory_full ();
1001 aligned = (base == abase);
1002 if (!aligned)
1003 ((void**)abase)[-1] = base;
1005 #ifdef DOUG_LEA_MALLOC
1006 /* Back to a reasonable maximum of mmap'ed areas. */
1007 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1008 #endif
1010 #ifndef USE_LSB_TAG
1011 /* If the memory just allocated cannot be addressed thru a Lisp
1012 object's pointer, and it needs to be, that's equivalent to
1013 running out of memory. */
1014 if (type != MEM_TYPE_NON_LISP)
1016 Lisp_Object tem;
1017 char *end = (char *) base + ABLOCKS_BYTES - 1;
1018 XSETCONS (tem, end);
1019 if ((char *) XCONS (tem) != end)
1021 lisp_malloc_loser = base;
1022 free (base);
1023 UNBLOCK_INPUT;
1024 memory_full ();
1027 #endif
1029 /* Initialize the blocks and put them on the free list.
1030 Is `base' was not properly aligned, we can't use the last block. */
1031 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1033 abase->blocks[i].abase = abase;
1034 abase->blocks[i].x.next_free = free_ablock;
1035 free_ablock = &abase->blocks[i];
1037 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
1039 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
1040 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1041 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1042 eassert (ABLOCKS_BASE (abase) == base);
1043 eassert (aligned == (long) ABLOCKS_BUSY (abase));
1046 abase = ABLOCK_ABASE (free_ablock);
1047 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1048 val = free_ablock;
1049 free_ablock = free_ablock->x.next_free;
1051 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1052 if (val && type != MEM_TYPE_NON_LISP)
1053 mem_insert (val, (char *) val + nbytes, type);
1054 #endif
1056 UNBLOCK_INPUT;
1057 if (!val && nbytes)
1058 memory_full ();
1060 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1061 return val;
1064 static void
1065 lisp_align_free (block)
1066 POINTER_TYPE *block;
1068 struct ablock *ablock = block;
1069 struct ablocks *abase = ABLOCK_ABASE (ablock);
1071 BLOCK_INPUT;
1072 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1073 mem_delete (mem_find (block));
1074 #endif
1075 /* Put on free list. */
1076 ablock->x.next_free = free_ablock;
1077 free_ablock = ablock;
1078 /* Update busy count. */
1079 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1081 if (2 > (long) ABLOCKS_BUSY (abase))
1082 { /* All the blocks are free. */
1083 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1084 struct ablock **tem = &free_ablock;
1085 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1087 while (*tem)
1089 if (*tem >= (struct ablock *) abase && *tem < atop)
1091 i++;
1092 *tem = (*tem)->x.next_free;
1094 else
1095 tem = &(*tem)->x.next_free;
1097 eassert ((aligned & 1) == aligned);
1098 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1099 free (ABLOCKS_BASE (abase));
1101 UNBLOCK_INPUT;
1104 /* Return a new buffer structure allocated from the heap with
1105 a call to lisp_malloc. */
1107 struct buffer *
1108 allocate_buffer ()
1110 struct buffer *b
1111 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1112 MEM_TYPE_BUFFER);
1113 return b;
1117 #ifndef SYSTEM_MALLOC
1119 /* Arranging to disable input signals while we're in malloc.
1121 This only works with GNU malloc. To help out systems which can't
1122 use GNU malloc, all the calls to malloc, realloc, and free
1123 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1124 pair; unfortunately, we have no idea what C library functions
1125 might call malloc, so we can't really protect them unless you're
1126 using GNU malloc. Fortunately, most of the major operating systems
1127 can use GNU malloc. */
1129 #ifndef SYNC_INPUT
1131 #ifndef DOUG_LEA_MALLOC
1132 extern void * (*__malloc_hook) P_ ((size_t, const void *));
1133 extern void * (*__realloc_hook) P_ ((void *, size_t, const void *));
1134 extern void (*__free_hook) P_ ((void *, const void *));
1135 /* Else declared in malloc.h, perhaps with an extra arg. */
1136 #endif /* DOUG_LEA_MALLOC */
1137 static void * (*old_malloc_hook) P_ ((size_t, const void *));
1138 static void * (*old_realloc_hook) P_ ((void *, size_t, const void*));
1139 static void (*old_free_hook) P_ ((void*, const void*));
1141 /* This function is used as the hook for free to call. */
1143 static void
1144 emacs_blocked_free (ptr, ptr2)
1145 void *ptr;
1146 const void *ptr2;
1148 EMACS_INT bytes_used_now;
1150 BLOCK_INPUT_ALLOC;
1152 #ifdef GC_MALLOC_CHECK
1153 if (ptr)
1155 struct mem_node *m;
1157 m = mem_find (ptr);
1158 if (m == MEM_NIL || m->start != ptr)
1160 fprintf (stderr,
1161 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1162 abort ();
1164 else
1166 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1167 mem_delete (m);
1170 #endif /* GC_MALLOC_CHECK */
1172 __free_hook = old_free_hook;
1173 free (ptr);
1175 /* If we released our reserve (due to running out of memory),
1176 and we have a fair amount free once again,
1177 try to set aside another reserve in case we run out once more. */
1178 if (! NILP (Vmemory_full)
1179 /* Verify there is enough space that even with the malloc
1180 hysteresis this call won't run out again.
1181 The code here is correct as long as SPARE_MEMORY
1182 is substantially larger than the block size malloc uses. */
1183 && (bytes_used_when_full
1184 > ((bytes_used_when_reconsidered = BYTES_USED)
1185 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1186 refill_memory_reserve ();
1188 __free_hook = emacs_blocked_free;
1189 UNBLOCK_INPUT_ALLOC;
1193 /* This function is the malloc hook that Emacs uses. */
1195 static void *
1196 emacs_blocked_malloc (size, ptr)
1197 size_t size;
1198 const void *ptr;
1200 void *value;
1202 BLOCK_INPUT_ALLOC;
1203 __malloc_hook = old_malloc_hook;
1204 #ifdef DOUG_LEA_MALLOC
1205 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
1206 #else
1207 __malloc_extra_blocks = malloc_hysteresis;
1208 #endif
1210 value = (void *) malloc (size);
1212 #ifdef GC_MALLOC_CHECK
1214 struct mem_node *m = mem_find (value);
1215 if (m != MEM_NIL)
1217 fprintf (stderr, "Malloc returned %p which is already in use\n",
1218 value);
1219 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1220 m->start, m->end, (char *) m->end - (char *) m->start,
1221 m->type);
1222 abort ();
1225 if (!dont_register_blocks)
1227 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1228 allocated_mem_type = MEM_TYPE_NON_LISP;
1231 #endif /* GC_MALLOC_CHECK */
1233 __malloc_hook = emacs_blocked_malloc;
1234 UNBLOCK_INPUT_ALLOC;
1236 /* fprintf (stderr, "%p malloc\n", value); */
1237 return value;
1241 /* This function is the realloc hook that Emacs uses. */
1243 static void *
1244 emacs_blocked_realloc (ptr, size, ptr2)
1245 void *ptr;
1246 size_t size;
1247 const void *ptr2;
1249 void *value;
1251 BLOCK_INPUT_ALLOC;
1252 __realloc_hook = old_realloc_hook;
1254 #ifdef GC_MALLOC_CHECK
1255 if (ptr)
1257 struct mem_node *m = mem_find (ptr);
1258 if (m == MEM_NIL || m->start != ptr)
1260 fprintf (stderr,
1261 "Realloc of %p which wasn't allocated with malloc\n",
1262 ptr);
1263 abort ();
1266 mem_delete (m);
1269 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1271 /* Prevent malloc from registering blocks. */
1272 dont_register_blocks = 1;
1273 #endif /* GC_MALLOC_CHECK */
1275 value = (void *) realloc (ptr, size);
1277 #ifdef GC_MALLOC_CHECK
1278 dont_register_blocks = 0;
1281 struct mem_node *m = mem_find (value);
1282 if (m != MEM_NIL)
1284 fprintf (stderr, "Realloc returns memory that is already in use\n");
1285 abort ();
1288 /* Can't handle zero size regions in the red-black tree. */
1289 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1292 /* fprintf (stderr, "%p <- realloc\n", value); */
1293 #endif /* GC_MALLOC_CHECK */
1295 __realloc_hook = emacs_blocked_realloc;
1296 UNBLOCK_INPUT_ALLOC;
1298 return value;
1302 #ifdef HAVE_GTK_AND_PTHREAD
1303 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1304 normal malloc. Some thread implementations need this as they call
1305 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1306 calls malloc because it is the first call, and we have an endless loop. */
1308 void
1309 reset_malloc_hooks ()
1311 __free_hook = 0;
1312 __malloc_hook = 0;
1313 __realloc_hook = 0;
1315 #endif /* HAVE_GTK_AND_PTHREAD */
1318 /* Called from main to set up malloc to use our hooks. */
1320 void
1321 uninterrupt_malloc ()
1323 #ifdef HAVE_GTK_AND_PTHREAD
1324 pthread_mutexattr_t attr;
1326 /* GLIBC has a faster way to do this, but lets keep it portable.
1327 This is according to the Single UNIX Specification. */
1328 pthread_mutexattr_init (&attr);
1329 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1330 pthread_mutex_init (&alloc_mutex, &attr);
1331 #endif /* HAVE_GTK_AND_PTHREAD */
1333 if (__free_hook != emacs_blocked_free)
1334 old_free_hook = __free_hook;
1335 __free_hook = emacs_blocked_free;
1337 if (__malloc_hook != emacs_blocked_malloc)
1338 old_malloc_hook = __malloc_hook;
1339 __malloc_hook = emacs_blocked_malloc;
1341 if (__realloc_hook != emacs_blocked_realloc)
1342 old_realloc_hook = __realloc_hook;
1343 __realloc_hook = emacs_blocked_realloc;
1346 #endif /* not SYNC_INPUT */
1347 #endif /* not SYSTEM_MALLOC */
1351 /***********************************************************************
1352 Interval Allocation
1353 ***********************************************************************/
1355 /* Number of intervals allocated in an interval_block structure.
1356 The 1020 is 1024 minus malloc overhead. */
1358 #define INTERVAL_BLOCK_SIZE \
1359 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1361 /* Intervals are allocated in chunks in form of an interval_block
1362 structure. */
1364 struct interval_block
1366 /* Place `intervals' first, to preserve alignment. */
1367 struct interval intervals[INTERVAL_BLOCK_SIZE];
1368 struct interval_block *next;
1371 /* Current interval block. Its `next' pointer points to older
1372 blocks. */
1374 struct interval_block *interval_block;
1376 /* Index in interval_block above of the next unused interval
1377 structure. */
1379 static int interval_block_index;
1381 /* Number of free and live intervals. */
1383 static int total_free_intervals, total_intervals;
1385 /* List of free intervals. */
1387 INTERVAL interval_free_list;
1389 /* Total number of interval blocks now in use. */
1391 int n_interval_blocks;
1394 /* Initialize interval allocation. */
1396 static void
1397 init_intervals ()
1399 interval_block = NULL;
1400 interval_block_index = INTERVAL_BLOCK_SIZE;
1401 interval_free_list = 0;
1402 n_interval_blocks = 0;
1406 /* Return a new interval. */
1408 INTERVAL
1409 make_interval ()
1411 INTERVAL val;
1413 if (interval_free_list)
1415 val = interval_free_list;
1416 interval_free_list = INTERVAL_PARENT (interval_free_list);
1418 else
1420 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1422 register struct interval_block *newi;
1424 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1425 MEM_TYPE_NON_LISP);
1427 newi->next = interval_block;
1428 interval_block = newi;
1429 interval_block_index = 0;
1430 n_interval_blocks++;
1432 val = &interval_block->intervals[interval_block_index++];
1434 consing_since_gc += sizeof (struct interval);
1435 intervals_consed++;
1436 RESET_INTERVAL (val);
1437 val->gcmarkbit = 0;
1438 return val;
1442 /* Mark Lisp objects in interval I. */
1444 static void
1445 mark_interval (i, dummy)
1446 register INTERVAL i;
1447 Lisp_Object dummy;
1449 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1450 i->gcmarkbit = 1;
1451 mark_object (i->plist);
1455 /* Mark the interval tree rooted in TREE. Don't call this directly;
1456 use the macro MARK_INTERVAL_TREE instead. */
1458 static void
1459 mark_interval_tree (tree)
1460 register INTERVAL tree;
1462 /* No need to test if this tree has been marked already; this
1463 function is always called through the MARK_INTERVAL_TREE macro,
1464 which takes care of that. */
1466 traverse_intervals_noorder (tree, mark_interval, Qnil);
1470 /* Mark the interval tree rooted in I. */
1472 #define MARK_INTERVAL_TREE(i) \
1473 do { \
1474 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1475 mark_interval_tree (i); \
1476 } while (0)
1479 #define UNMARK_BALANCE_INTERVALS(i) \
1480 do { \
1481 if (! NULL_INTERVAL_P (i)) \
1482 (i) = balance_intervals (i); \
1483 } while (0)
1486 /* Number support. If NO_UNION_TYPE isn't in effect, we
1487 can't create number objects in macros. */
1488 #ifndef make_number
1489 Lisp_Object
1490 make_number (n)
1491 EMACS_INT n;
1493 Lisp_Object obj;
1494 obj.s.val = n;
1495 obj.s.type = Lisp_Int;
1496 return obj;
1498 #endif
1500 /***********************************************************************
1501 String Allocation
1502 ***********************************************************************/
1504 /* Lisp_Strings are allocated in string_block structures. When a new
1505 string_block is allocated, all the Lisp_Strings it contains are
1506 added to a free-list string_free_list. When a new Lisp_String is
1507 needed, it is taken from that list. During the sweep phase of GC,
1508 string_blocks that are entirely free are freed, except two which
1509 we keep.
1511 String data is allocated from sblock structures. Strings larger
1512 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1513 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1515 Sblocks consist internally of sdata structures, one for each
1516 Lisp_String. The sdata structure points to the Lisp_String it
1517 belongs to. The Lisp_String points back to the `u.data' member of
1518 its sdata structure.
1520 When a Lisp_String is freed during GC, it is put back on
1521 string_free_list, and its `data' member and its sdata's `string'
1522 pointer is set to null. The size of the string is recorded in the
1523 `u.nbytes' member of the sdata. So, sdata structures that are no
1524 longer used, can be easily recognized, and it's easy to compact the
1525 sblocks of small strings which we do in compact_small_strings. */
1527 /* Size in bytes of an sblock structure used for small strings. This
1528 is 8192 minus malloc overhead. */
1530 #define SBLOCK_SIZE 8188
1532 /* Strings larger than this are considered large strings. String data
1533 for large strings is allocated from individual sblocks. */
1535 #define LARGE_STRING_BYTES 1024
1537 /* Structure describing string memory sub-allocated from an sblock.
1538 This is where the contents of Lisp strings are stored. */
1540 struct sdata
1542 /* Back-pointer to the string this sdata belongs to. If null, this
1543 structure is free, and the NBYTES member of the union below
1544 contains the string's byte size (the same value that STRING_BYTES
1545 would return if STRING were non-null). If non-null, STRING_BYTES
1546 (STRING) is the size of the data, and DATA contains the string's
1547 contents. */
1548 struct Lisp_String *string;
1550 #ifdef GC_CHECK_STRING_BYTES
1552 EMACS_INT nbytes;
1553 unsigned char data[1];
1555 #define SDATA_NBYTES(S) (S)->nbytes
1556 #define SDATA_DATA(S) (S)->data
1558 #else /* not GC_CHECK_STRING_BYTES */
1560 union
1562 /* When STRING in non-null. */
1563 unsigned char data[1];
1565 /* When STRING is null. */
1566 EMACS_INT nbytes;
1567 } u;
1570 #define SDATA_NBYTES(S) (S)->u.nbytes
1571 #define SDATA_DATA(S) (S)->u.data
1573 #endif /* not GC_CHECK_STRING_BYTES */
1577 /* Structure describing a block of memory which is sub-allocated to
1578 obtain string data memory for strings. Blocks for small strings
1579 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1580 as large as needed. */
1582 struct sblock
1584 /* Next in list. */
1585 struct sblock *next;
1587 /* Pointer to the next free sdata block. This points past the end
1588 of the sblock if there isn't any space left in this block. */
1589 struct sdata *next_free;
1591 /* Start of data. */
1592 struct sdata first_data;
1595 /* Number of Lisp strings in a string_block structure. The 1020 is
1596 1024 minus malloc overhead. */
1598 #define STRING_BLOCK_SIZE \
1599 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1601 /* Structure describing a block from which Lisp_String structures
1602 are allocated. */
1604 struct string_block
1606 /* Place `strings' first, to preserve alignment. */
1607 struct Lisp_String strings[STRING_BLOCK_SIZE];
1608 struct string_block *next;
1611 /* Head and tail of the list of sblock structures holding Lisp string
1612 data. We always allocate from current_sblock. The NEXT pointers
1613 in the sblock structures go from oldest_sblock to current_sblock. */
1615 static struct sblock *oldest_sblock, *current_sblock;
1617 /* List of sblocks for large strings. */
1619 static struct sblock *large_sblocks;
1621 /* List of string_block structures, and how many there are. */
1623 static struct string_block *string_blocks;
1624 static int n_string_blocks;
1626 /* Free-list of Lisp_Strings. */
1628 static struct Lisp_String *string_free_list;
1630 /* Number of live and free Lisp_Strings. */
1632 static int total_strings, total_free_strings;
1634 /* Number of bytes used by live strings. */
1636 static int total_string_size;
1638 /* Given a pointer to a Lisp_String S which is on the free-list
1639 string_free_list, return a pointer to its successor in the
1640 free-list. */
1642 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1644 /* Return a pointer to the sdata structure belonging to Lisp string S.
1645 S must be live, i.e. S->data must not be null. S->data is actually
1646 a pointer to the `u.data' member of its sdata structure; the
1647 structure starts at a constant offset in front of that. */
1649 #ifdef GC_CHECK_STRING_BYTES
1651 #define SDATA_OF_STRING(S) \
1652 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1653 - sizeof (EMACS_INT)))
1655 #else /* not GC_CHECK_STRING_BYTES */
1657 #define SDATA_OF_STRING(S) \
1658 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1660 #endif /* not GC_CHECK_STRING_BYTES */
1663 #ifdef GC_CHECK_STRING_OVERRUN
1665 /* We check for overrun in string data blocks by appending a small
1666 "cookie" after each allocated string data block, and check for the
1667 presence of this cookie during GC. */
1669 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1670 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1671 { 0xde, 0xad, 0xbe, 0xef };
1673 #else
1674 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1675 #endif
1677 /* Value is the size of an sdata structure large enough to hold NBYTES
1678 bytes of string data. The value returned includes a terminating
1679 NUL byte, the size of the sdata structure, and padding. */
1681 #ifdef GC_CHECK_STRING_BYTES
1683 #define SDATA_SIZE(NBYTES) \
1684 ((sizeof (struct Lisp_String *) \
1685 + (NBYTES) + 1 \
1686 + sizeof (EMACS_INT) \
1687 + sizeof (EMACS_INT) - 1) \
1688 & ~(sizeof (EMACS_INT) - 1))
1690 #else /* not GC_CHECK_STRING_BYTES */
1692 #define SDATA_SIZE(NBYTES) \
1693 ((sizeof (struct Lisp_String *) \
1694 + (NBYTES) + 1 \
1695 + sizeof (EMACS_INT) - 1) \
1696 & ~(sizeof (EMACS_INT) - 1))
1698 #endif /* not GC_CHECK_STRING_BYTES */
1700 /* Extra bytes to allocate for each string. */
1702 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1704 /* Initialize string allocation. Called from init_alloc_once. */
1706 void
1707 init_strings ()
1709 total_strings = total_free_strings = total_string_size = 0;
1710 oldest_sblock = current_sblock = large_sblocks = NULL;
1711 string_blocks = NULL;
1712 n_string_blocks = 0;
1713 string_free_list = NULL;
1717 #ifdef GC_CHECK_STRING_BYTES
1719 static int check_string_bytes_count;
1721 void check_string_bytes P_ ((int));
1722 void check_sblock P_ ((struct sblock *));
1724 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1727 /* Like GC_STRING_BYTES, but with debugging check. */
1730 string_bytes (s)
1731 struct Lisp_String *s;
1733 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1734 if (!PURE_POINTER_P (s)
1735 && s->data
1736 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1737 abort ();
1738 return nbytes;
1741 /* Check validity of Lisp strings' string_bytes member in B. */
1743 void
1744 check_sblock (b)
1745 struct sblock *b;
1747 struct sdata *from, *end, *from_end;
1749 end = b->next_free;
1751 for (from = &b->first_data; from < end; from = from_end)
1753 /* Compute the next FROM here because copying below may
1754 overwrite data we need to compute it. */
1755 int nbytes;
1757 /* Check that the string size recorded in the string is the
1758 same as the one recorded in the sdata structure. */
1759 if (from->string)
1760 CHECK_STRING_BYTES (from->string);
1762 if (from->string)
1763 nbytes = GC_STRING_BYTES (from->string);
1764 else
1765 nbytes = SDATA_NBYTES (from);
1767 nbytes = SDATA_SIZE (nbytes);
1768 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1773 /* Check validity of Lisp strings' string_bytes member. ALL_P
1774 non-zero means check all strings, otherwise check only most
1775 recently allocated strings. Used for hunting a bug. */
1777 void
1778 check_string_bytes (all_p)
1779 int all_p;
1781 if (all_p)
1783 struct sblock *b;
1785 for (b = large_sblocks; b; b = b->next)
1787 struct Lisp_String *s = b->first_data.string;
1788 if (s)
1789 CHECK_STRING_BYTES (s);
1792 for (b = oldest_sblock; b; b = b->next)
1793 check_sblock (b);
1795 else
1796 check_sblock (current_sblock);
1799 #endif /* GC_CHECK_STRING_BYTES */
1801 #ifdef GC_CHECK_STRING_FREE_LIST
1803 /* Walk through the string free list looking for bogus next pointers.
1804 This may catch buffer overrun from a previous string. */
1806 static void
1807 check_string_free_list ()
1809 struct Lisp_String *s;
1811 /* Pop a Lisp_String off the free-list. */
1812 s = string_free_list;
1813 while (s != NULL)
1815 if ((unsigned)s < 1024)
1816 abort();
1817 s = NEXT_FREE_LISP_STRING (s);
1820 #else
1821 #define check_string_free_list()
1822 #endif
1824 /* Return a new Lisp_String. */
1826 static struct Lisp_String *
1827 allocate_string ()
1829 struct Lisp_String *s;
1831 /* If the free-list is empty, allocate a new string_block, and
1832 add all the Lisp_Strings in it to the free-list. */
1833 if (string_free_list == NULL)
1835 struct string_block *b;
1836 int i;
1838 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1839 bzero (b, sizeof *b);
1840 b->next = string_blocks;
1841 string_blocks = b;
1842 ++n_string_blocks;
1844 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1846 s = b->strings + i;
1847 NEXT_FREE_LISP_STRING (s) = string_free_list;
1848 string_free_list = s;
1851 total_free_strings += STRING_BLOCK_SIZE;
1854 check_string_free_list ();
1856 /* Pop a Lisp_String off the free-list. */
1857 s = string_free_list;
1858 string_free_list = NEXT_FREE_LISP_STRING (s);
1860 /* Probably not strictly necessary, but play it safe. */
1861 bzero (s, sizeof *s);
1863 --total_free_strings;
1864 ++total_strings;
1865 ++strings_consed;
1866 consing_since_gc += sizeof *s;
1868 #ifdef GC_CHECK_STRING_BYTES
1869 if (!noninteractive
1870 #ifdef MAC_OS8
1871 && current_sblock
1872 #endif
1875 if (++check_string_bytes_count == 200)
1877 check_string_bytes_count = 0;
1878 check_string_bytes (1);
1880 else
1881 check_string_bytes (0);
1883 #endif /* GC_CHECK_STRING_BYTES */
1885 return s;
1889 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1890 plus a NUL byte at the end. Allocate an sdata structure for S, and
1891 set S->data to its `u.data' member. Store a NUL byte at the end of
1892 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1893 S->data if it was initially non-null. */
1895 void
1896 allocate_string_data (s, nchars, nbytes)
1897 struct Lisp_String *s;
1898 int nchars, nbytes;
1900 struct sdata *data, *old_data;
1901 struct sblock *b;
1902 int needed, old_nbytes;
1904 /* Determine the number of bytes needed to store NBYTES bytes
1905 of string data. */
1906 needed = SDATA_SIZE (nbytes);
1908 if (nbytes > LARGE_STRING_BYTES)
1910 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1912 #ifdef DOUG_LEA_MALLOC
1913 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1914 because mapped region contents are not preserved in
1915 a dumped Emacs.
1917 In case you think of allowing it in a dumped Emacs at the
1918 cost of not being able to re-dump, there's another reason:
1919 mmap'ed data typically have an address towards the top of the
1920 address space, which won't fit into an EMACS_INT (at least on
1921 32-bit systems with the current tagging scheme). --fx */
1922 BLOCK_INPUT;
1923 mallopt (M_MMAP_MAX, 0);
1924 UNBLOCK_INPUT;
1925 #endif
1927 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1929 #ifdef DOUG_LEA_MALLOC
1930 /* Back to a reasonable maximum of mmap'ed areas. */
1931 BLOCK_INPUT;
1932 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1933 UNBLOCK_INPUT;
1934 #endif
1936 b->next_free = &b->first_data;
1937 b->first_data.string = NULL;
1938 b->next = large_sblocks;
1939 large_sblocks = b;
1941 else if (current_sblock == NULL
1942 || (((char *) current_sblock + SBLOCK_SIZE
1943 - (char *) current_sblock->next_free)
1944 < (needed + GC_STRING_EXTRA)))
1946 /* Not enough room in the current sblock. */
1947 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1948 b->next_free = &b->first_data;
1949 b->first_data.string = NULL;
1950 b->next = NULL;
1952 if (current_sblock)
1953 current_sblock->next = b;
1954 else
1955 oldest_sblock = b;
1956 current_sblock = b;
1958 else
1959 b = current_sblock;
1961 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1962 old_nbytes = GC_STRING_BYTES (s);
1964 data = b->next_free;
1965 data->string = s;
1966 s->data = SDATA_DATA (data);
1967 #ifdef GC_CHECK_STRING_BYTES
1968 SDATA_NBYTES (data) = nbytes;
1969 #endif
1970 s->size = nchars;
1971 s->size_byte = nbytes;
1972 s->data[nbytes] = '\0';
1973 #ifdef GC_CHECK_STRING_OVERRUN
1974 bcopy (string_overrun_cookie, (char *) data + needed,
1975 GC_STRING_OVERRUN_COOKIE_SIZE);
1976 #endif
1977 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1979 /* If S had already data assigned, mark that as free by setting its
1980 string back-pointer to null, and recording the size of the data
1981 in it. */
1982 if (old_data)
1984 SDATA_NBYTES (old_data) = old_nbytes;
1985 old_data->string = NULL;
1988 consing_since_gc += needed;
1992 /* Sweep and compact strings. */
1994 static void
1995 sweep_strings ()
1997 struct string_block *b, *next;
1998 struct string_block *live_blocks = NULL;
2000 string_free_list = NULL;
2001 total_strings = total_free_strings = 0;
2002 total_string_size = 0;
2004 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2005 for (b = string_blocks; b; b = next)
2007 int i, nfree = 0;
2008 struct Lisp_String *free_list_before = string_free_list;
2010 next = b->next;
2012 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2014 struct Lisp_String *s = b->strings + i;
2016 if (s->data)
2018 /* String was not on free-list before. */
2019 if (STRING_MARKED_P (s))
2021 /* String is live; unmark it and its intervals. */
2022 UNMARK_STRING (s);
2024 if (!NULL_INTERVAL_P (s->intervals))
2025 UNMARK_BALANCE_INTERVALS (s->intervals);
2027 ++total_strings;
2028 total_string_size += STRING_BYTES (s);
2030 else
2032 /* String is dead. Put it on the free-list. */
2033 struct sdata *data = SDATA_OF_STRING (s);
2035 /* Save the size of S in its sdata so that we know
2036 how large that is. Reset the sdata's string
2037 back-pointer so that we know it's free. */
2038 #ifdef GC_CHECK_STRING_BYTES
2039 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2040 abort ();
2041 #else
2042 data->u.nbytes = GC_STRING_BYTES (s);
2043 #endif
2044 data->string = NULL;
2046 /* Reset the strings's `data' member so that we
2047 know it's free. */
2048 s->data = NULL;
2050 /* Put the string on the free-list. */
2051 NEXT_FREE_LISP_STRING (s) = string_free_list;
2052 string_free_list = s;
2053 ++nfree;
2056 else
2058 /* S was on the free-list before. Put it there again. */
2059 NEXT_FREE_LISP_STRING (s) = string_free_list;
2060 string_free_list = s;
2061 ++nfree;
2065 /* Free blocks that contain free Lisp_Strings only, except
2066 the first two of them. */
2067 if (nfree == STRING_BLOCK_SIZE
2068 && total_free_strings > STRING_BLOCK_SIZE)
2070 lisp_free (b);
2071 --n_string_blocks;
2072 string_free_list = free_list_before;
2074 else
2076 total_free_strings += nfree;
2077 b->next = live_blocks;
2078 live_blocks = b;
2082 check_string_free_list ();
2084 string_blocks = live_blocks;
2085 free_large_strings ();
2086 compact_small_strings ();
2088 check_string_free_list ();
2092 /* Free dead large strings. */
2094 static void
2095 free_large_strings ()
2097 struct sblock *b, *next;
2098 struct sblock *live_blocks = NULL;
2100 for (b = large_sblocks; b; b = next)
2102 next = b->next;
2104 if (b->first_data.string == NULL)
2105 lisp_free (b);
2106 else
2108 b->next = live_blocks;
2109 live_blocks = b;
2113 large_sblocks = live_blocks;
2117 /* Compact data of small strings. Free sblocks that don't contain
2118 data of live strings after compaction. */
2120 static void
2121 compact_small_strings ()
2123 struct sblock *b, *tb, *next;
2124 struct sdata *from, *to, *end, *tb_end;
2125 struct sdata *to_end, *from_end;
2127 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2128 to, and TB_END is the end of TB. */
2129 tb = oldest_sblock;
2130 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2131 to = &tb->first_data;
2133 /* Step through the blocks from the oldest to the youngest. We
2134 expect that old blocks will stabilize over time, so that less
2135 copying will happen this way. */
2136 for (b = oldest_sblock; b; b = b->next)
2138 end = b->next_free;
2139 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2141 for (from = &b->first_data; from < end; from = from_end)
2143 /* Compute the next FROM here because copying below may
2144 overwrite data we need to compute it. */
2145 int nbytes;
2147 #ifdef GC_CHECK_STRING_BYTES
2148 /* Check that the string size recorded in the string is the
2149 same as the one recorded in the sdata structure. */
2150 if (from->string
2151 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2152 abort ();
2153 #endif /* GC_CHECK_STRING_BYTES */
2155 if (from->string)
2156 nbytes = GC_STRING_BYTES (from->string);
2157 else
2158 nbytes = SDATA_NBYTES (from);
2160 if (nbytes > LARGE_STRING_BYTES)
2161 abort ();
2163 nbytes = SDATA_SIZE (nbytes);
2164 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2166 #ifdef GC_CHECK_STRING_OVERRUN
2167 if (bcmp (string_overrun_cookie,
2168 ((char *) from_end) - GC_STRING_OVERRUN_COOKIE_SIZE,
2169 GC_STRING_OVERRUN_COOKIE_SIZE))
2170 abort ();
2171 #endif
2173 /* FROM->string non-null means it's alive. Copy its data. */
2174 if (from->string)
2176 /* If TB is full, proceed with the next sblock. */
2177 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2178 if (to_end > tb_end)
2180 tb->next_free = to;
2181 tb = tb->next;
2182 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2183 to = &tb->first_data;
2184 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2187 /* Copy, and update the string's `data' pointer. */
2188 if (from != to)
2190 xassert (tb != b || to <= from);
2191 safe_bcopy ((char *) from, (char *) to, nbytes + GC_STRING_EXTRA);
2192 to->string->data = SDATA_DATA (to);
2195 /* Advance past the sdata we copied to. */
2196 to = to_end;
2201 /* The rest of the sblocks following TB don't contain live data, so
2202 we can free them. */
2203 for (b = tb->next; b; b = next)
2205 next = b->next;
2206 lisp_free (b);
2209 tb->next_free = to;
2210 tb->next = NULL;
2211 current_sblock = tb;
2215 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2216 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2217 LENGTH must be an integer.
2218 INIT must be an integer that represents a character. */)
2219 (length, init)
2220 Lisp_Object length, init;
2222 register Lisp_Object val;
2223 register unsigned char *p, *end;
2224 int c, nbytes;
2226 CHECK_NATNUM (length);
2227 CHECK_NUMBER (init);
2229 c = XINT (init);
2230 if (SINGLE_BYTE_CHAR_P (c))
2232 nbytes = XINT (length);
2233 val = make_uninit_string (nbytes);
2234 p = SDATA (val);
2235 end = p + SCHARS (val);
2236 while (p != end)
2237 *p++ = c;
2239 else
2241 unsigned char str[MAX_MULTIBYTE_LENGTH];
2242 int len = CHAR_STRING (c, str);
2244 nbytes = len * XINT (length);
2245 val = make_uninit_multibyte_string (XINT (length), nbytes);
2246 p = SDATA (val);
2247 end = p + nbytes;
2248 while (p != end)
2250 bcopy (str, p, len);
2251 p += len;
2255 *p = 0;
2256 return val;
2260 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2261 doc: /* Return a new bool-vector of length LENGTH, using INIT for as each element.
2262 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2263 (length, init)
2264 Lisp_Object length, init;
2266 register Lisp_Object val;
2267 struct Lisp_Bool_Vector *p;
2268 int real_init, i;
2269 int length_in_chars, length_in_elts, bits_per_value;
2271 CHECK_NATNUM (length);
2273 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2275 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2276 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2277 / BOOL_VECTOR_BITS_PER_CHAR);
2279 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2280 slot `size' of the struct Lisp_Bool_Vector. */
2281 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2282 p = XBOOL_VECTOR (val);
2284 /* Get rid of any bits that would cause confusion. */
2285 p->vector_size = 0;
2286 XSETBOOL_VECTOR (val, p);
2287 p->size = XFASTINT (length);
2289 real_init = (NILP (init) ? 0 : -1);
2290 for (i = 0; i < length_in_chars ; i++)
2291 p->data[i] = real_init;
2293 /* Clear the extraneous bits in the last byte. */
2294 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2295 XBOOL_VECTOR (val)->data[length_in_chars - 1]
2296 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2298 return val;
2302 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2303 of characters from the contents. This string may be unibyte or
2304 multibyte, depending on the contents. */
2306 Lisp_Object
2307 make_string (contents, nbytes)
2308 const char *contents;
2309 int nbytes;
2311 register Lisp_Object val;
2312 int nchars, multibyte_nbytes;
2314 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2315 if (nbytes == nchars || nbytes != multibyte_nbytes)
2316 /* CONTENTS contains no multibyte sequences or contains an invalid
2317 multibyte sequence. We must make unibyte string. */
2318 val = make_unibyte_string (contents, nbytes);
2319 else
2320 val = make_multibyte_string (contents, nchars, nbytes);
2321 return val;
2325 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2327 Lisp_Object
2328 make_unibyte_string (contents, length)
2329 const char *contents;
2330 int length;
2332 register Lisp_Object val;
2333 val = make_uninit_string (length);
2334 bcopy (contents, SDATA (val), length);
2335 STRING_SET_UNIBYTE (val);
2336 return val;
2340 /* Make a multibyte string from NCHARS characters occupying NBYTES
2341 bytes at CONTENTS. */
2343 Lisp_Object
2344 make_multibyte_string (contents, nchars, nbytes)
2345 const char *contents;
2346 int nchars, nbytes;
2348 register Lisp_Object val;
2349 val = make_uninit_multibyte_string (nchars, nbytes);
2350 bcopy (contents, SDATA (val), nbytes);
2351 return val;
2355 /* Make a string from NCHARS characters occupying NBYTES bytes at
2356 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2358 Lisp_Object
2359 make_string_from_bytes (contents, nchars, nbytes)
2360 const char *contents;
2361 int nchars, nbytes;
2363 register Lisp_Object val;
2364 val = make_uninit_multibyte_string (nchars, nbytes);
2365 bcopy (contents, SDATA (val), nbytes);
2366 if (SBYTES (val) == SCHARS (val))
2367 STRING_SET_UNIBYTE (val);
2368 return val;
2372 /* Make a string from NCHARS characters occupying NBYTES bytes at
2373 CONTENTS. The argument MULTIBYTE controls whether to label the
2374 string as multibyte. If NCHARS is negative, it counts the number of
2375 characters by itself. */
2377 Lisp_Object
2378 make_specified_string (contents, nchars, nbytes, multibyte)
2379 const char *contents;
2380 int nchars, nbytes;
2381 int multibyte;
2383 register Lisp_Object val;
2385 if (nchars < 0)
2387 if (multibyte)
2388 nchars = multibyte_chars_in_text (contents, nbytes);
2389 else
2390 nchars = nbytes;
2392 val = make_uninit_multibyte_string (nchars, nbytes);
2393 bcopy (contents, SDATA (val), nbytes);
2394 if (!multibyte)
2395 STRING_SET_UNIBYTE (val);
2396 return val;
2400 /* Make a string from the data at STR, treating it as multibyte if the
2401 data warrants. */
2403 Lisp_Object
2404 build_string (str)
2405 const char *str;
2407 return make_string (str, strlen (str));
2411 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2412 occupying LENGTH bytes. */
2414 Lisp_Object
2415 make_uninit_string (length)
2416 int length;
2418 Lisp_Object val;
2419 val = make_uninit_multibyte_string (length, length);
2420 STRING_SET_UNIBYTE (val);
2421 return val;
2425 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2426 which occupy NBYTES bytes. */
2428 Lisp_Object
2429 make_uninit_multibyte_string (nchars, nbytes)
2430 int nchars, nbytes;
2432 Lisp_Object string;
2433 struct Lisp_String *s;
2435 if (nchars < 0)
2436 abort ();
2438 s = allocate_string ();
2439 allocate_string_data (s, nchars, nbytes);
2440 XSETSTRING (string, s);
2441 string_chars_consed += nbytes;
2442 return string;
2447 /***********************************************************************
2448 Float Allocation
2449 ***********************************************************************/
2451 /* We store float cells inside of float_blocks, allocating a new
2452 float_block with malloc whenever necessary. Float cells reclaimed
2453 by GC are put on a free list to be reallocated before allocating
2454 any new float cells from the latest float_block. */
2456 #define FLOAT_BLOCK_SIZE \
2457 (((BLOCK_BYTES - sizeof (struct float_block *) \
2458 /* The compiler might add padding at the end. */ \
2459 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2460 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2462 #define GETMARKBIT(block,n) \
2463 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2464 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2465 & 1)
2467 #define SETMARKBIT(block,n) \
2468 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2469 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2471 #define UNSETMARKBIT(block,n) \
2472 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2473 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2475 #define FLOAT_BLOCK(fptr) \
2476 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2478 #define FLOAT_INDEX(fptr) \
2479 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2481 struct float_block
2483 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2484 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2485 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2486 struct float_block *next;
2489 #define FLOAT_MARKED_P(fptr) \
2490 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2492 #define FLOAT_MARK(fptr) \
2493 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2495 #define FLOAT_UNMARK(fptr) \
2496 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2498 /* Current float_block. */
2500 struct float_block *float_block;
2502 /* Index of first unused Lisp_Float in the current float_block. */
2504 int float_block_index;
2506 /* Total number of float blocks now in use. */
2508 int n_float_blocks;
2510 /* Free-list of Lisp_Floats. */
2512 struct Lisp_Float *float_free_list;
2515 /* Initialize float allocation. */
2517 void
2518 init_float ()
2520 float_block = NULL;
2521 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2522 float_free_list = 0;
2523 n_float_blocks = 0;
2527 /* Explicitly free a float cell by putting it on the free-list. */
2529 void
2530 free_float (ptr)
2531 struct Lisp_Float *ptr;
2533 *(struct Lisp_Float **)&ptr->data = float_free_list;
2534 float_free_list = ptr;
2538 /* Return a new float object with value FLOAT_VALUE. */
2540 Lisp_Object
2541 make_float (float_value)
2542 double float_value;
2544 register Lisp_Object val;
2546 if (float_free_list)
2548 /* We use the data field for chaining the free list
2549 so that we won't use the same field that has the mark bit. */
2550 XSETFLOAT (val, float_free_list);
2551 float_free_list = *(struct Lisp_Float **)&float_free_list->data;
2553 else
2555 if (float_block_index == FLOAT_BLOCK_SIZE)
2557 register struct float_block *new;
2559 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2560 MEM_TYPE_FLOAT);
2561 new->next = float_block;
2562 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2563 float_block = new;
2564 float_block_index = 0;
2565 n_float_blocks++;
2567 XSETFLOAT (val, &float_block->floats[float_block_index]);
2568 float_block_index++;
2571 XFLOAT_DATA (val) = float_value;
2572 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2573 consing_since_gc += sizeof (struct Lisp_Float);
2574 floats_consed++;
2575 return val;
2580 /***********************************************************************
2581 Cons Allocation
2582 ***********************************************************************/
2584 /* We store cons cells inside of cons_blocks, allocating a new
2585 cons_block with malloc whenever necessary. Cons cells reclaimed by
2586 GC are put on a free list to be reallocated before allocating
2587 any new cons cells from the latest cons_block. */
2589 #define CONS_BLOCK_SIZE \
2590 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2591 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2593 #define CONS_BLOCK(fptr) \
2594 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2596 #define CONS_INDEX(fptr) \
2597 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2599 struct cons_block
2601 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2602 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2603 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2604 struct cons_block *next;
2607 #define CONS_MARKED_P(fptr) \
2608 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2610 #define CONS_MARK(fptr) \
2611 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2613 #define CONS_UNMARK(fptr) \
2614 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2616 /* Current cons_block. */
2618 struct cons_block *cons_block;
2620 /* Index of first unused Lisp_Cons in the current block. */
2622 int cons_block_index;
2624 /* Free-list of Lisp_Cons structures. */
2626 struct Lisp_Cons *cons_free_list;
2628 /* Total number of cons blocks now in use. */
2630 int n_cons_blocks;
2633 /* Initialize cons allocation. */
2635 void
2636 init_cons ()
2638 cons_block = NULL;
2639 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2640 cons_free_list = 0;
2641 n_cons_blocks = 0;
2645 /* Explicitly free a cons cell by putting it on the free-list. */
2647 void
2648 free_cons (ptr)
2649 struct Lisp_Cons *ptr;
2651 *(struct Lisp_Cons **)&ptr->cdr = cons_free_list;
2652 #if GC_MARK_STACK
2653 ptr->car = Vdead;
2654 #endif
2655 cons_free_list = ptr;
2658 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2659 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2660 (car, cdr)
2661 Lisp_Object car, cdr;
2663 register Lisp_Object val;
2665 if (cons_free_list)
2667 /* We use the cdr for chaining the free list
2668 so that we won't use the same field that has the mark bit. */
2669 XSETCONS (val, cons_free_list);
2670 cons_free_list = *(struct Lisp_Cons **)&cons_free_list->cdr;
2672 else
2674 if (cons_block_index == CONS_BLOCK_SIZE)
2676 register struct cons_block *new;
2677 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2678 MEM_TYPE_CONS);
2679 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2680 new->next = cons_block;
2681 cons_block = new;
2682 cons_block_index = 0;
2683 n_cons_blocks++;
2685 XSETCONS (val, &cons_block->conses[cons_block_index]);
2686 cons_block_index++;
2689 XSETCAR (val, car);
2690 XSETCDR (val, cdr);
2691 eassert (!CONS_MARKED_P (XCONS (val)));
2692 consing_since_gc += sizeof (struct Lisp_Cons);
2693 cons_cells_consed++;
2694 return val;
2697 /* Get an error now if there's any junk in the cons free list. */
2698 void
2699 check_cons_list ()
2701 #ifdef GC_CHECK_CONS_LIST
2702 struct Lisp_Cons *tail = cons_free_list;
2704 while (tail)
2705 tail = *(struct Lisp_Cons **)&tail->cdr;
2706 #endif
2709 /* Make a list of 2, 3, 4 or 5 specified objects. */
2711 Lisp_Object
2712 list2 (arg1, arg2)
2713 Lisp_Object arg1, arg2;
2715 return Fcons (arg1, Fcons (arg2, Qnil));
2719 Lisp_Object
2720 list3 (arg1, arg2, arg3)
2721 Lisp_Object arg1, arg2, arg3;
2723 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2727 Lisp_Object
2728 list4 (arg1, arg2, arg3, arg4)
2729 Lisp_Object arg1, arg2, arg3, arg4;
2731 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2735 Lisp_Object
2736 list5 (arg1, arg2, arg3, arg4, arg5)
2737 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2739 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2740 Fcons (arg5, Qnil)))));
2744 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2745 doc: /* Return a newly created list with specified arguments as elements.
2746 Any number of arguments, even zero arguments, are allowed.
2747 usage: (list &rest OBJECTS) */)
2748 (nargs, args)
2749 int nargs;
2750 register Lisp_Object *args;
2752 register Lisp_Object val;
2753 val = Qnil;
2755 while (nargs > 0)
2757 nargs--;
2758 val = Fcons (args[nargs], val);
2760 return val;
2764 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2765 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2766 (length, init)
2767 register Lisp_Object length, init;
2769 register Lisp_Object val;
2770 register int size;
2772 CHECK_NATNUM (length);
2773 size = XFASTINT (length);
2775 val = Qnil;
2776 while (size > 0)
2778 val = Fcons (init, val);
2779 --size;
2781 if (size > 0)
2783 val = Fcons (init, val);
2784 --size;
2786 if (size > 0)
2788 val = Fcons (init, val);
2789 --size;
2791 if (size > 0)
2793 val = Fcons (init, val);
2794 --size;
2796 if (size > 0)
2798 val = Fcons (init, val);
2799 --size;
2805 QUIT;
2808 return val;
2813 /***********************************************************************
2814 Vector Allocation
2815 ***********************************************************************/
2817 /* Singly-linked list of all vectors. */
2819 struct Lisp_Vector *all_vectors;
2821 /* Total number of vector-like objects now in use. */
2823 int n_vectors;
2826 /* Value is a pointer to a newly allocated Lisp_Vector structure
2827 with room for LEN Lisp_Objects. */
2829 static struct Lisp_Vector *
2830 allocate_vectorlike (len, type)
2831 EMACS_INT len;
2832 enum mem_type type;
2834 struct Lisp_Vector *p;
2835 size_t nbytes;
2837 #ifdef DOUG_LEA_MALLOC
2838 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2839 because mapped region contents are not preserved in
2840 a dumped Emacs. */
2841 BLOCK_INPUT;
2842 mallopt (M_MMAP_MAX, 0);
2843 UNBLOCK_INPUT;
2844 #endif
2846 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2847 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
2849 #ifdef DOUG_LEA_MALLOC
2850 /* Back to a reasonable maximum of mmap'ed areas. */
2851 BLOCK_INPUT;
2852 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2853 UNBLOCK_INPUT;
2854 #endif
2856 consing_since_gc += nbytes;
2857 vector_cells_consed += len;
2859 p->next = all_vectors;
2860 all_vectors = p;
2861 ++n_vectors;
2862 return p;
2866 /* Allocate a vector with NSLOTS slots. */
2868 struct Lisp_Vector *
2869 allocate_vector (nslots)
2870 EMACS_INT nslots;
2872 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2873 v->size = nslots;
2874 return v;
2878 /* Allocate other vector-like structures. */
2880 struct Lisp_Hash_Table *
2881 allocate_hash_table ()
2883 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2884 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2885 EMACS_INT i;
2887 v->size = len;
2888 for (i = 0; i < len; ++i)
2889 v->contents[i] = Qnil;
2891 return (struct Lisp_Hash_Table *) v;
2895 struct window *
2896 allocate_window ()
2898 EMACS_INT len = VECSIZE (struct window);
2899 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
2900 EMACS_INT i;
2902 for (i = 0; i < len; ++i)
2903 v->contents[i] = Qnil;
2904 v->size = len;
2906 return (struct window *) v;
2910 struct frame *
2911 allocate_frame ()
2913 EMACS_INT len = VECSIZE (struct frame);
2914 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
2915 EMACS_INT i;
2917 for (i = 0; i < len; ++i)
2918 v->contents[i] = make_number (0);
2919 v->size = len;
2920 return (struct frame *) v;
2924 struct Lisp_Process *
2925 allocate_process ()
2927 EMACS_INT len = VECSIZE (struct Lisp_Process);
2928 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_PROCESS);
2929 EMACS_INT i;
2931 for (i = 0; i < len; ++i)
2932 v->contents[i] = Qnil;
2933 v->size = len;
2935 return (struct Lisp_Process *) v;
2939 struct Lisp_Vector *
2940 allocate_other_vector (len)
2941 EMACS_INT len;
2943 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
2944 EMACS_INT i;
2946 for (i = 0; i < len; ++i)
2947 v->contents[i] = Qnil;
2948 v->size = len;
2950 return v;
2954 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2955 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2956 See also the function `vector'. */)
2957 (length, init)
2958 register Lisp_Object length, init;
2960 Lisp_Object vector;
2961 register EMACS_INT sizei;
2962 register int index;
2963 register struct Lisp_Vector *p;
2965 CHECK_NATNUM (length);
2966 sizei = XFASTINT (length);
2968 p = allocate_vector (sizei);
2969 for (index = 0; index < sizei; index++)
2970 p->contents[index] = init;
2972 XSETVECTOR (vector, p);
2973 return vector;
2977 DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
2978 doc: /* Return a newly created char-table, with purpose PURPOSE.
2979 Each element is initialized to INIT, which defaults to nil.
2980 PURPOSE should be a symbol which has a `char-table-extra-slots' property.
2981 The property's value should be an integer between 0 and 10. */)
2982 (purpose, init)
2983 register Lisp_Object purpose, init;
2985 Lisp_Object vector;
2986 Lisp_Object n;
2987 CHECK_SYMBOL (purpose);
2988 n = Fget (purpose, Qchar_table_extra_slots);
2989 CHECK_NUMBER (n);
2990 if (XINT (n) < 0 || XINT (n) > 10)
2991 args_out_of_range (n, Qnil);
2992 /* Add 2 to the size for the defalt and parent slots. */
2993 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
2994 init);
2995 XCHAR_TABLE (vector)->top = Qt;
2996 XCHAR_TABLE (vector)->parent = Qnil;
2997 XCHAR_TABLE (vector)->purpose = purpose;
2998 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2999 return vector;
3003 /* Return a newly created sub char table with slots initialized by INIT.
3004 Since a sub char table does not appear as a top level Emacs Lisp
3005 object, we don't need a Lisp interface to make it. */
3007 Lisp_Object
3008 make_sub_char_table (init)
3009 Lisp_Object init;
3011 Lisp_Object vector
3012 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), init);
3013 XCHAR_TABLE (vector)->top = Qnil;
3014 XCHAR_TABLE (vector)->defalt = Qnil;
3015 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
3016 return vector;
3020 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3021 doc: /* Return a newly created vector with specified arguments as elements.
3022 Any number of arguments, even zero arguments, are allowed.
3023 usage: (vector &rest OBJECTS) */)
3024 (nargs, args)
3025 register int nargs;
3026 Lisp_Object *args;
3028 register Lisp_Object len, val;
3029 register int index;
3030 register struct Lisp_Vector *p;
3032 XSETFASTINT (len, nargs);
3033 val = Fmake_vector (len, Qnil);
3034 p = XVECTOR (val);
3035 for (index = 0; index < nargs; index++)
3036 p->contents[index] = args[index];
3037 return val;
3041 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3042 doc: /* Create a byte-code object with specified arguments as elements.
3043 The arguments should be the arglist, bytecode-string, constant vector,
3044 stack size, (optional) doc string, and (optional) interactive spec.
3045 The first four arguments are required; at most six have any
3046 significance.
3047 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3048 (nargs, args)
3049 register int nargs;
3050 Lisp_Object *args;
3052 register Lisp_Object len, val;
3053 register int index;
3054 register struct Lisp_Vector *p;
3056 XSETFASTINT (len, nargs);
3057 if (!NILP (Vpurify_flag))
3058 val = make_pure_vector ((EMACS_INT) nargs);
3059 else
3060 val = Fmake_vector (len, Qnil);
3062 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3063 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3064 earlier because they produced a raw 8-bit string for byte-code
3065 and now such a byte-code string is loaded as multibyte while
3066 raw 8-bit characters converted to multibyte form. Thus, now we
3067 must convert them back to the original unibyte form. */
3068 args[1] = Fstring_as_unibyte (args[1]);
3070 p = XVECTOR (val);
3071 for (index = 0; index < nargs; index++)
3073 if (!NILP (Vpurify_flag))
3074 args[index] = Fpurecopy (args[index]);
3075 p->contents[index] = args[index];
3077 XSETCOMPILED (val, p);
3078 return val;
3083 /***********************************************************************
3084 Symbol Allocation
3085 ***********************************************************************/
3087 /* Each symbol_block is just under 1020 bytes long, since malloc
3088 really allocates in units of powers of two and uses 4 bytes for its
3089 own overhead. */
3091 #define SYMBOL_BLOCK_SIZE \
3092 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3094 struct symbol_block
3096 /* Place `symbols' first, to preserve alignment. */
3097 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3098 struct symbol_block *next;
3101 /* Current symbol block and index of first unused Lisp_Symbol
3102 structure in it. */
3104 struct symbol_block *symbol_block;
3105 int symbol_block_index;
3107 /* List of free symbols. */
3109 struct Lisp_Symbol *symbol_free_list;
3111 /* Total number of symbol blocks now in use. */
3113 int n_symbol_blocks;
3116 /* Initialize symbol allocation. */
3118 void
3119 init_symbol ()
3121 symbol_block = NULL;
3122 symbol_block_index = SYMBOL_BLOCK_SIZE;
3123 symbol_free_list = 0;
3124 n_symbol_blocks = 0;
3128 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3129 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3130 Its value and function definition are void, and its property list is nil. */)
3131 (name)
3132 Lisp_Object name;
3134 register Lisp_Object val;
3135 register struct Lisp_Symbol *p;
3137 CHECK_STRING (name);
3139 if (symbol_free_list)
3141 XSETSYMBOL (val, symbol_free_list);
3142 symbol_free_list = *(struct Lisp_Symbol **)&symbol_free_list->value;
3144 else
3146 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3148 struct symbol_block *new;
3149 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3150 MEM_TYPE_SYMBOL);
3151 new->next = symbol_block;
3152 symbol_block = new;
3153 symbol_block_index = 0;
3154 n_symbol_blocks++;
3156 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3157 symbol_block_index++;
3160 p = XSYMBOL (val);
3161 p->xname = name;
3162 p->plist = Qnil;
3163 p->value = Qunbound;
3164 p->function = Qunbound;
3165 p->next = NULL;
3166 p->gcmarkbit = 0;
3167 p->interned = SYMBOL_UNINTERNED;
3168 p->constant = 0;
3169 p->indirect_variable = 0;
3170 consing_since_gc += sizeof (struct Lisp_Symbol);
3171 symbols_consed++;
3172 return val;
3177 /***********************************************************************
3178 Marker (Misc) Allocation
3179 ***********************************************************************/
3181 /* Allocation of markers and other objects that share that structure.
3182 Works like allocation of conses. */
3184 #define MARKER_BLOCK_SIZE \
3185 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3187 struct marker_block
3189 /* Place `markers' first, to preserve alignment. */
3190 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3191 struct marker_block *next;
3194 struct marker_block *marker_block;
3195 int marker_block_index;
3197 union Lisp_Misc *marker_free_list;
3199 /* Total number of marker blocks now in use. */
3201 int n_marker_blocks;
3203 void
3204 init_marker ()
3206 marker_block = NULL;
3207 marker_block_index = MARKER_BLOCK_SIZE;
3208 marker_free_list = 0;
3209 n_marker_blocks = 0;
3212 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3214 Lisp_Object
3215 allocate_misc ()
3217 Lisp_Object val;
3219 if (marker_free_list)
3221 XSETMISC (val, marker_free_list);
3222 marker_free_list = marker_free_list->u_free.chain;
3224 else
3226 if (marker_block_index == MARKER_BLOCK_SIZE)
3228 struct marker_block *new;
3229 new = (struct marker_block *) lisp_malloc (sizeof *new,
3230 MEM_TYPE_MISC);
3231 new->next = marker_block;
3232 marker_block = new;
3233 marker_block_index = 0;
3234 n_marker_blocks++;
3235 total_free_markers += MARKER_BLOCK_SIZE;
3237 XSETMISC (val, &marker_block->markers[marker_block_index]);
3238 marker_block_index++;
3241 --total_free_markers;
3242 consing_since_gc += sizeof (union Lisp_Misc);
3243 misc_objects_consed++;
3244 XMARKER (val)->gcmarkbit = 0;
3245 return val;
3248 /* Free a Lisp_Misc object */
3250 void
3251 free_misc (misc)
3252 Lisp_Object misc;
3254 XMISC (misc)->u_marker.type = Lisp_Misc_Free;
3255 XMISC (misc)->u_free.chain = marker_free_list;
3256 marker_free_list = XMISC (misc);
3258 total_free_markers++;
3261 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3262 INTEGER. This is used to package C values to call record_unwind_protect.
3263 The unwind function can get the C values back using XSAVE_VALUE. */
3265 Lisp_Object
3266 make_save_value (pointer, integer)
3267 void *pointer;
3268 int integer;
3270 register Lisp_Object val;
3271 register struct Lisp_Save_Value *p;
3273 val = allocate_misc ();
3274 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3275 p = XSAVE_VALUE (val);
3276 p->pointer = pointer;
3277 p->integer = integer;
3278 p->dogc = 0;
3279 return val;
3282 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3283 doc: /* Return a newly allocated marker which does not point at any place. */)
3286 register Lisp_Object val;
3287 register struct Lisp_Marker *p;
3289 val = allocate_misc ();
3290 XMISCTYPE (val) = Lisp_Misc_Marker;
3291 p = XMARKER (val);
3292 p->buffer = 0;
3293 p->bytepos = 0;
3294 p->charpos = 0;
3295 p->next = NULL;
3296 p->insertion_type = 0;
3297 return val;
3300 /* Put MARKER back on the free list after using it temporarily. */
3302 void
3303 free_marker (marker)
3304 Lisp_Object marker;
3306 unchain_marker (XMARKER (marker));
3307 free_misc (marker);
3311 /* Return a newly created vector or string with specified arguments as
3312 elements. If all the arguments are characters that can fit
3313 in a string of events, make a string; otherwise, make a vector.
3315 Any number of arguments, even zero arguments, are allowed. */
3317 Lisp_Object
3318 make_event_array (nargs, args)
3319 register int nargs;
3320 Lisp_Object *args;
3322 int i;
3324 for (i = 0; i < nargs; i++)
3325 /* The things that fit in a string
3326 are characters that are in 0...127,
3327 after discarding the meta bit and all the bits above it. */
3328 if (!INTEGERP (args[i])
3329 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3330 return Fvector (nargs, args);
3332 /* Since the loop exited, we know that all the things in it are
3333 characters, so we can make a string. */
3335 Lisp_Object result;
3337 result = Fmake_string (make_number (nargs), make_number (0));
3338 for (i = 0; i < nargs; i++)
3340 SSET (result, i, XINT (args[i]));
3341 /* Move the meta bit to the right place for a string char. */
3342 if (XINT (args[i]) & CHAR_META)
3343 SSET (result, i, SREF (result, i) | 0x80);
3346 return result;
3352 /************************************************************************
3353 Memory Full Handling
3354 ************************************************************************/
3357 /* Called if malloc returns zero. */
3359 void
3360 memory_full ()
3362 int i;
3364 Vmemory_full = Qt;
3366 memory_full_cons_threshold = sizeof (struct cons_block);
3368 /* The first time we get here, free the spare memory. */
3369 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3370 if (spare_memory[i])
3372 if (i == 0)
3373 free (spare_memory[i]);
3374 else if (i >= 1 && i <= 4)
3375 lisp_align_free (spare_memory[i]);
3376 else
3377 lisp_free (spare_memory[i]);
3378 spare_memory[i] = 0;
3381 /* Record the space now used. When it decreases substantially,
3382 we can refill the memory reserve. */
3383 #ifndef SYSTEM_MALLOC
3384 bytes_used_when_full = BYTES_USED;
3385 #endif
3387 /* This used to call error, but if we've run out of memory, we could
3388 get infinite recursion trying to build the string. */
3389 while (1)
3390 Fsignal (Qnil, Vmemory_signal_data);
3393 /* If we released our reserve (due to running out of memory),
3394 and we have a fair amount free once again,
3395 try to set aside another reserve in case we run out once more.
3397 This is called when a relocatable block is freed in ralloc.c,
3398 and also directly from this file, in case we're not using ralloc.c. */
3400 void
3401 refill_memory_reserve ()
3403 #ifndef SYSTEM_MALLOC
3404 if (spare_memory[0] == 0)
3405 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3406 if (spare_memory[1] == 0)
3407 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3408 MEM_TYPE_CONS);
3409 if (spare_memory[2] == 0)
3410 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3411 MEM_TYPE_CONS);
3412 if (spare_memory[3] == 0)
3413 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3414 MEM_TYPE_CONS);
3415 if (spare_memory[4] == 0)
3416 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3417 MEM_TYPE_CONS);
3418 if (spare_memory[5] == 0)
3419 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3420 MEM_TYPE_STRING);
3421 if (spare_memory[6] == 0)
3422 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3423 MEM_TYPE_STRING);
3424 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3425 Vmemory_full = Qnil;
3426 #endif
3429 /************************************************************************
3430 C Stack Marking
3431 ************************************************************************/
3433 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3435 /* Conservative C stack marking requires a method to identify possibly
3436 live Lisp objects given a pointer value. We do this by keeping
3437 track of blocks of Lisp data that are allocated in a red-black tree
3438 (see also the comment of mem_node which is the type of nodes in
3439 that tree). Function lisp_malloc adds information for an allocated
3440 block to the red-black tree with calls to mem_insert, and function
3441 lisp_free removes it with mem_delete. Functions live_string_p etc
3442 call mem_find to lookup information about a given pointer in the
3443 tree, and use that to determine if the pointer points to a Lisp
3444 object or not. */
3446 /* Initialize this part of alloc.c. */
3448 static void
3449 mem_init ()
3451 mem_z.left = mem_z.right = MEM_NIL;
3452 mem_z.parent = NULL;
3453 mem_z.color = MEM_BLACK;
3454 mem_z.start = mem_z.end = NULL;
3455 mem_root = MEM_NIL;
3459 /* Value is a pointer to the mem_node containing START. Value is
3460 MEM_NIL if there is no node in the tree containing START. */
3462 static INLINE struct mem_node *
3463 mem_find (start)
3464 void *start;
3466 struct mem_node *p;
3468 if (start < min_heap_address || start > max_heap_address)
3469 return MEM_NIL;
3471 /* Make the search always successful to speed up the loop below. */
3472 mem_z.start = start;
3473 mem_z.end = (char *) start + 1;
3475 p = mem_root;
3476 while (start < p->start || start >= p->end)
3477 p = start < p->start ? p->left : p->right;
3478 return p;
3482 /* Insert a new node into the tree for a block of memory with start
3483 address START, end address END, and type TYPE. Value is a
3484 pointer to the node that was inserted. */
3486 static struct mem_node *
3487 mem_insert (start, end, type)
3488 void *start, *end;
3489 enum mem_type type;
3491 struct mem_node *c, *parent, *x;
3493 if (start < min_heap_address)
3494 min_heap_address = start;
3495 if (end > max_heap_address)
3496 max_heap_address = end;
3498 /* See where in the tree a node for START belongs. In this
3499 particular application, it shouldn't happen that a node is already
3500 present. For debugging purposes, let's check that. */
3501 c = mem_root;
3502 parent = NULL;
3504 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3506 while (c != MEM_NIL)
3508 if (start >= c->start && start < c->end)
3509 abort ();
3510 parent = c;
3511 c = start < c->start ? c->left : c->right;
3514 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3516 while (c != MEM_NIL)
3518 parent = c;
3519 c = start < c->start ? c->left : c->right;
3522 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3524 /* Create a new node. */
3525 #ifdef GC_MALLOC_CHECK
3526 x = (struct mem_node *) _malloc_internal (sizeof *x);
3527 if (x == NULL)
3528 abort ();
3529 #else
3530 x = (struct mem_node *) xmalloc (sizeof *x);
3531 #endif
3532 x->start = start;
3533 x->end = end;
3534 x->type = type;
3535 x->parent = parent;
3536 x->left = x->right = MEM_NIL;
3537 x->color = MEM_RED;
3539 /* Insert it as child of PARENT or install it as root. */
3540 if (parent)
3542 if (start < parent->start)
3543 parent->left = x;
3544 else
3545 parent->right = x;
3547 else
3548 mem_root = x;
3550 /* Re-establish red-black tree properties. */
3551 mem_insert_fixup (x);
3553 return x;
3557 /* Re-establish the red-black properties of the tree, and thereby
3558 balance the tree, after node X has been inserted; X is always red. */
3560 static void
3561 mem_insert_fixup (x)
3562 struct mem_node *x;
3564 while (x != mem_root && x->parent->color == MEM_RED)
3566 /* X is red and its parent is red. This is a violation of
3567 red-black tree property #3. */
3569 if (x->parent == x->parent->parent->left)
3571 /* We're on the left side of our grandparent, and Y is our
3572 "uncle". */
3573 struct mem_node *y = x->parent->parent->right;
3575 if (y->color == MEM_RED)
3577 /* Uncle and parent are red but should be black because
3578 X is red. Change the colors accordingly and proceed
3579 with the grandparent. */
3580 x->parent->color = MEM_BLACK;
3581 y->color = MEM_BLACK;
3582 x->parent->parent->color = MEM_RED;
3583 x = x->parent->parent;
3585 else
3587 /* Parent and uncle have different colors; parent is
3588 red, uncle is black. */
3589 if (x == x->parent->right)
3591 x = x->parent;
3592 mem_rotate_left (x);
3595 x->parent->color = MEM_BLACK;
3596 x->parent->parent->color = MEM_RED;
3597 mem_rotate_right (x->parent->parent);
3600 else
3602 /* This is the symmetrical case of above. */
3603 struct mem_node *y = x->parent->parent->left;
3605 if (y->color == MEM_RED)
3607 x->parent->color = MEM_BLACK;
3608 y->color = MEM_BLACK;
3609 x->parent->parent->color = MEM_RED;
3610 x = x->parent->parent;
3612 else
3614 if (x == x->parent->left)
3616 x = x->parent;
3617 mem_rotate_right (x);
3620 x->parent->color = MEM_BLACK;
3621 x->parent->parent->color = MEM_RED;
3622 mem_rotate_left (x->parent->parent);
3627 /* The root may have been changed to red due to the algorithm. Set
3628 it to black so that property #5 is satisfied. */
3629 mem_root->color = MEM_BLACK;
3633 /* (x) (y)
3634 / \ / \
3635 a (y) ===> (x) c
3636 / \ / \
3637 b c a b */
3639 static void
3640 mem_rotate_left (x)
3641 struct mem_node *x;
3643 struct mem_node *y;
3645 /* Turn y's left sub-tree into x's right sub-tree. */
3646 y = x->right;
3647 x->right = y->left;
3648 if (y->left != MEM_NIL)
3649 y->left->parent = x;
3651 /* Y's parent was x's parent. */
3652 if (y != MEM_NIL)
3653 y->parent = x->parent;
3655 /* Get the parent to point to y instead of x. */
3656 if (x->parent)
3658 if (x == x->parent->left)
3659 x->parent->left = y;
3660 else
3661 x->parent->right = y;
3663 else
3664 mem_root = y;
3666 /* Put x on y's left. */
3667 y->left = x;
3668 if (x != MEM_NIL)
3669 x->parent = y;
3673 /* (x) (Y)
3674 / \ / \
3675 (y) c ===> a (x)
3676 / \ / \
3677 a b b c */
3679 static void
3680 mem_rotate_right (x)
3681 struct mem_node *x;
3683 struct mem_node *y = x->left;
3685 x->left = y->right;
3686 if (y->right != MEM_NIL)
3687 y->right->parent = x;
3689 if (y != MEM_NIL)
3690 y->parent = x->parent;
3691 if (x->parent)
3693 if (x == x->parent->right)
3694 x->parent->right = y;
3695 else
3696 x->parent->left = y;
3698 else
3699 mem_root = y;
3701 y->right = x;
3702 if (x != MEM_NIL)
3703 x->parent = y;
3707 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3709 static void
3710 mem_delete (z)
3711 struct mem_node *z;
3713 struct mem_node *x, *y;
3715 if (!z || z == MEM_NIL)
3716 return;
3718 if (z->left == MEM_NIL || z->right == MEM_NIL)
3719 y = z;
3720 else
3722 y = z->right;
3723 while (y->left != MEM_NIL)
3724 y = y->left;
3727 if (y->left != MEM_NIL)
3728 x = y->left;
3729 else
3730 x = y->right;
3732 x->parent = y->parent;
3733 if (y->parent)
3735 if (y == y->parent->left)
3736 y->parent->left = x;
3737 else
3738 y->parent->right = x;
3740 else
3741 mem_root = x;
3743 if (y != z)
3745 z->start = y->start;
3746 z->end = y->end;
3747 z->type = y->type;
3750 if (y->color == MEM_BLACK)
3751 mem_delete_fixup (x);
3753 #ifdef GC_MALLOC_CHECK
3754 _free_internal (y);
3755 #else
3756 xfree (y);
3757 #endif
3761 /* Re-establish the red-black properties of the tree, after a
3762 deletion. */
3764 static void
3765 mem_delete_fixup (x)
3766 struct mem_node *x;
3768 while (x != mem_root && x->color == MEM_BLACK)
3770 if (x == x->parent->left)
3772 struct mem_node *w = x->parent->right;
3774 if (w->color == MEM_RED)
3776 w->color = MEM_BLACK;
3777 x->parent->color = MEM_RED;
3778 mem_rotate_left (x->parent);
3779 w = x->parent->right;
3782 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3784 w->color = MEM_RED;
3785 x = x->parent;
3787 else
3789 if (w->right->color == MEM_BLACK)
3791 w->left->color = MEM_BLACK;
3792 w->color = MEM_RED;
3793 mem_rotate_right (w);
3794 w = x->parent->right;
3796 w->color = x->parent->color;
3797 x->parent->color = MEM_BLACK;
3798 w->right->color = MEM_BLACK;
3799 mem_rotate_left (x->parent);
3800 x = mem_root;
3803 else
3805 struct mem_node *w = x->parent->left;
3807 if (w->color == MEM_RED)
3809 w->color = MEM_BLACK;
3810 x->parent->color = MEM_RED;
3811 mem_rotate_right (x->parent);
3812 w = x->parent->left;
3815 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3817 w->color = MEM_RED;
3818 x = x->parent;
3820 else
3822 if (w->left->color == MEM_BLACK)
3824 w->right->color = MEM_BLACK;
3825 w->color = MEM_RED;
3826 mem_rotate_left (w);
3827 w = x->parent->left;
3830 w->color = x->parent->color;
3831 x->parent->color = MEM_BLACK;
3832 w->left->color = MEM_BLACK;
3833 mem_rotate_right (x->parent);
3834 x = mem_root;
3839 x->color = MEM_BLACK;
3843 /* Value is non-zero if P is a pointer to a live Lisp string on
3844 the heap. M is a pointer to the mem_block for P. */
3846 static INLINE int
3847 live_string_p (m, p)
3848 struct mem_node *m;
3849 void *p;
3851 if (m->type == MEM_TYPE_STRING)
3853 struct string_block *b = (struct string_block *) m->start;
3854 int offset = (char *) p - (char *) &b->strings[0];
3856 /* P must point to the start of a Lisp_String structure, and it
3857 must not be on the free-list. */
3858 return (offset >= 0
3859 && offset % sizeof b->strings[0] == 0
3860 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3861 && ((struct Lisp_String *) p)->data != NULL);
3863 else
3864 return 0;
3868 /* Value is non-zero if P is a pointer to a live Lisp cons on
3869 the heap. M is a pointer to the mem_block for P. */
3871 static INLINE int
3872 live_cons_p (m, p)
3873 struct mem_node *m;
3874 void *p;
3876 if (m->type == MEM_TYPE_CONS)
3878 struct cons_block *b = (struct cons_block *) m->start;
3879 int offset = (char *) p - (char *) &b->conses[0];
3881 /* P must point to the start of a Lisp_Cons, not be
3882 one of the unused cells in the current cons block,
3883 and not be on the free-list. */
3884 return (offset >= 0
3885 && offset % sizeof b->conses[0] == 0
3886 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3887 && (b != cons_block
3888 || offset / sizeof b->conses[0] < cons_block_index)
3889 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3891 else
3892 return 0;
3896 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3897 the heap. M is a pointer to the mem_block for P. */
3899 static INLINE int
3900 live_symbol_p (m, p)
3901 struct mem_node *m;
3902 void *p;
3904 if (m->type == MEM_TYPE_SYMBOL)
3906 struct symbol_block *b = (struct symbol_block *) m->start;
3907 int offset = (char *) p - (char *) &b->symbols[0];
3909 /* P must point to the start of a Lisp_Symbol, not be
3910 one of the unused cells in the current symbol block,
3911 and not be on the free-list. */
3912 return (offset >= 0
3913 && offset % sizeof b->symbols[0] == 0
3914 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3915 && (b != symbol_block
3916 || offset / sizeof b->symbols[0] < symbol_block_index)
3917 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3919 else
3920 return 0;
3924 /* Value is non-zero if P is a pointer to a live Lisp float on
3925 the heap. M is a pointer to the mem_block for P. */
3927 static INLINE int
3928 live_float_p (m, p)
3929 struct mem_node *m;
3930 void *p;
3932 if (m->type == MEM_TYPE_FLOAT)
3934 struct float_block *b = (struct float_block *) m->start;
3935 int offset = (char *) p - (char *) &b->floats[0];
3937 /* P must point to the start of a Lisp_Float and not be
3938 one of the unused cells in the current float block. */
3939 return (offset >= 0
3940 && offset % sizeof b->floats[0] == 0
3941 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3942 && (b != float_block
3943 || offset / sizeof b->floats[0] < float_block_index));
3945 else
3946 return 0;
3950 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3951 the heap. M is a pointer to the mem_block for P. */
3953 static INLINE int
3954 live_misc_p (m, p)
3955 struct mem_node *m;
3956 void *p;
3958 if (m->type == MEM_TYPE_MISC)
3960 struct marker_block *b = (struct marker_block *) m->start;
3961 int offset = (char *) p - (char *) &b->markers[0];
3963 /* P must point to the start of a Lisp_Misc, not be
3964 one of the unused cells in the current misc block,
3965 and not be on the free-list. */
3966 return (offset >= 0
3967 && offset % sizeof b->markers[0] == 0
3968 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3969 && (b != marker_block
3970 || offset / sizeof b->markers[0] < marker_block_index)
3971 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
3973 else
3974 return 0;
3978 /* Value is non-zero if P is a pointer to a live vector-like object.
3979 M is a pointer to the mem_block for P. */
3981 static INLINE int
3982 live_vector_p (m, p)
3983 struct mem_node *m;
3984 void *p;
3986 return (p == m->start
3987 && m->type >= MEM_TYPE_VECTOR
3988 && m->type <= MEM_TYPE_WINDOW);
3992 /* Value is non-zero if P is a pointer to a live buffer. M is a
3993 pointer to the mem_block for P. */
3995 static INLINE int
3996 live_buffer_p (m, p)
3997 struct mem_node *m;
3998 void *p;
4000 /* P must point to the start of the block, and the buffer
4001 must not have been killed. */
4002 return (m->type == MEM_TYPE_BUFFER
4003 && p == m->start
4004 && !NILP (((struct buffer *) p)->name));
4007 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4009 #if GC_MARK_STACK
4011 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4013 /* Array of objects that are kept alive because the C stack contains
4014 a pattern that looks like a reference to them . */
4016 #define MAX_ZOMBIES 10
4017 static Lisp_Object zombies[MAX_ZOMBIES];
4019 /* Number of zombie objects. */
4021 static int nzombies;
4023 /* Number of garbage collections. */
4025 static int ngcs;
4027 /* Average percentage of zombies per collection. */
4029 static double avg_zombies;
4031 /* Max. number of live and zombie objects. */
4033 static int max_live, max_zombies;
4035 /* Average number of live objects per GC. */
4037 static double avg_live;
4039 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4040 doc: /* Show information about live and zombie objects. */)
4043 Lisp_Object args[8], zombie_list = Qnil;
4044 int i;
4045 for (i = 0; i < nzombies; i++)
4046 zombie_list = Fcons (zombies[i], zombie_list);
4047 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4048 args[1] = make_number (ngcs);
4049 args[2] = make_float (avg_live);
4050 args[3] = make_float (avg_zombies);
4051 args[4] = make_float (avg_zombies / avg_live / 100);
4052 args[5] = make_number (max_live);
4053 args[6] = make_number (max_zombies);
4054 args[7] = zombie_list;
4055 return Fmessage (8, args);
4058 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4061 /* Mark OBJ if we can prove it's a Lisp_Object. */
4063 static INLINE void
4064 mark_maybe_object (obj)
4065 Lisp_Object obj;
4067 void *po = (void *) XPNTR (obj);
4068 struct mem_node *m = mem_find (po);
4070 if (m != MEM_NIL)
4072 int mark_p = 0;
4074 switch (XGCTYPE (obj))
4076 case Lisp_String:
4077 mark_p = (live_string_p (m, po)
4078 && !STRING_MARKED_P ((struct Lisp_String *) po));
4079 break;
4081 case Lisp_Cons:
4082 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4083 break;
4085 case Lisp_Symbol:
4086 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4087 break;
4089 case Lisp_Float:
4090 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4091 break;
4093 case Lisp_Vectorlike:
4094 /* Note: can't check GC_BUFFERP before we know it's a
4095 buffer because checking that dereferences the pointer
4096 PO which might point anywhere. */
4097 if (live_vector_p (m, po))
4098 mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4099 else if (live_buffer_p (m, po))
4100 mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4101 break;
4103 case Lisp_Misc:
4104 mark_p = (live_misc_p (m, po) && !XMARKER (obj)->gcmarkbit);
4105 break;
4107 case Lisp_Int:
4108 case Lisp_Type_Limit:
4109 break;
4112 if (mark_p)
4114 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4115 if (nzombies < MAX_ZOMBIES)
4116 zombies[nzombies] = obj;
4117 ++nzombies;
4118 #endif
4119 mark_object (obj);
4125 /* If P points to Lisp data, mark that as live if it isn't already
4126 marked. */
4128 static INLINE void
4129 mark_maybe_pointer (p)
4130 void *p;
4132 struct mem_node *m;
4134 /* Quickly rule out some values which can't point to Lisp data. We
4135 assume that Lisp data is aligned on even addresses. */
4136 if ((EMACS_INT) p & 1)
4137 return;
4139 m = mem_find (p);
4140 if (m != MEM_NIL)
4142 Lisp_Object obj = Qnil;
4144 switch (m->type)
4146 case MEM_TYPE_NON_LISP:
4147 /* Nothing to do; not a pointer to Lisp memory. */
4148 break;
4150 case MEM_TYPE_BUFFER:
4151 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4152 XSETVECTOR (obj, p);
4153 break;
4155 case MEM_TYPE_CONS:
4156 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4157 XSETCONS (obj, p);
4158 break;
4160 case MEM_TYPE_STRING:
4161 if (live_string_p (m, p)
4162 && !STRING_MARKED_P ((struct Lisp_String *) p))
4163 XSETSTRING (obj, p);
4164 break;
4166 case MEM_TYPE_MISC:
4167 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4168 XSETMISC (obj, p);
4169 break;
4171 case MEM_TYPE_SYMBOL:
4172 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4173 XSETSYMBOL (obj, p);
4174 break;
4176 case MEM_TYPE_FLOAT:
4177 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4178 XSETFLOAT (obj, p);
4179 break;
4181 case MEM_TYPE_VECTOR:
4182 case MEM_TYPE_PROCESS:
4183 case MEM_TYPE_HASH_TABLE:
4184 case MEM_TYPE_FRAME:
4185 case MEM_TYPE_WINDOW:
4186 if (live_vector_p (m, p))
4188 Lisp_Object tem;
4189 XSETVECTOR (tem, p);
4190 if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4191 obj = tem;
4193 break;
4195 default:
4196 abort ();
4199 if (!GC_NILP (obj))
4200 mark_object (obj);
4205 /* Mark Lisp objects referenced from the address range START..END. */
4207 static void
4208 mark_memory (start, end)
4209 void *start, *end;
4211 Lisp_Object *p;
4212 void **pp;
4214 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4215 nzombies = 0;
4216 #endif
4218 /* Make START the pointer to the start of the memory region,
4219 if it isn't already. */
4220 if (end < start)
4222 void *tem = start;
4223 start = end;
4224 end = tem;
4227 /* Mark Lisp_Objects. */
4228 for (p = (Lisp_Object *) start; (void *) p < end; ++p)
4229 mark_maybe_object (*p);
4231 /* Mark Lisp data pointed to. This is necessary because, in some
4232 situations, the C compiler optimizes Lisp objects away, so that
4233 only a pointer to them remains. Example:
4235 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4238 Lisp_Object obj = build_string ("test");
4239 struct Lisp_String *s = XSTRING (obj);
4240 Fgarbage_collect ();
4241 fprintf (stderr, "test `%s'\n", s->data);
4242 return Qnil;
4245 Here, `obj' isn't really used, and the compiler optimizes it
4246 away. The only reference to the life string is through the
4247 pointer `s'. */
4249 for (pp = (void **) start; (void *) pp < end; ++pp)
4250 mark_maybe_pointer (*pp);
4253 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4254 the GCC system configuration. In gcc 3.2, the only systems for
4255 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4256 by others?) and ns32k-pc532-min. */
4258 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4260 static int setjmp_tested_p, longjmps_done;
4262 #define SETJMP_WILL_LIKELY_WORK "\
4264 Emacs garbage collector has been changed to use conservative stack\n\
4265 marking. Emacs has determined that the method it uses to do the\n\
4266 marking will likely work on your system, but this isn't sure.\n\
4268 If you are a system-programmer, or can get the help of a local wizard\n\
4269 who is, please take a look at the function mark_stack in alloc.c, and\n\
4270 verify that the methods used are appropriate for your system.\n\
4272 Please mail the result to <emacs-devel@gnu.org>.\n\
4275 #define SETJMP_WILL_NOT_WORK "\
4277 Emacs garbage collector has been changed to use conservative stack\n\
4278 marking. Emacs has determined that the default method it uses to do the\n\
4279 marking will not work on your system. We will need a system-dependent\n\
4280 solution for your system.\n\
4282 Please take a look at the function mark_stack in alloc.c, and\n\
4283 try to find a way to make it work on your system.\n\
4285 Note that you may get false negatives, depending on the compiler.\n\
4286 In particular, you need to use -O with GCC for this test.\n\
4288 Please mail the result to <emacs-devel@gnu.org>.\n\
4292 /* Perform a quick check if it looks like setjmp saves registers in a
4293 jmp_buf. Print a message to stderr saying so. When this test
4294 succeeds, this is _not_ a proof that setjmp is sufficient for
4295 conservative stack marking. Only the sources or a disassembly
4296 can prove that. */
4298 static void
4299 test_setjmp ()
4301 char buf[10];
4302 register int x;
4303 jmp_buf jbuf;
4304 int result = 0;
4306 /* Arrange for X to be put in a register. */
4307 sprintf (buf, "1");
4308 x = strlen (buf);
4309 x = 2 * x - 1;
4311 setjmp (jbuf);
4312 if (longjmps_done == 1)
4314 /* Came here after the longjmp at the end of the function.
4316 If x == 1, the longjmp has restored the register to its
4317 value before the setjmp, and we can hope that setjmp
4318 saves all such registers in the jmp_buf, although that
4319 isn't sure.
4321 For other values of X, either something really strange is
4322 taking place, or the setjmp just didn't save the register. */
4324 if (x == 1)
4325 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4326 else
4328 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4329 exit (1);
4333 ++longjmps_done;
4334 x = 2;
4335 if (longjmps_done == 1)
4336 longjmp (jbuf, 1);
4339 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4342 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4344 /* Abort if anything GCPRO'd doesn't survive the GC. */
4346 static void
4347 check_gcpros ()
4349 struct gcpro *p;
4350 int i;
4352 for (p = gcprolist; p; p = p->next)
4353 for (i = 0; i < p->nvars; ++i)
4354 if (!survives_gc_p (p->var[i]))
4355 /* FIXME: It's not necessarily a bug. It might just be that the
4356 GCPRO is unnecessary or should release the object sooner. */
4357 abort ();
4360 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4362 static void
4363 dump_zombies ()
4365 int i;
4367 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4368 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4370 fprintf (stderr, " %d = ", i);
4371 debug_print (zombies[i]);
4375 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4378 /* Mark live Lisp objects on the C stack.
4380 There are several system-dependent problems to consider when
4381 porting this to new architectures:
4383 Processor Registers
4385 We have to mark Lisp objects in CPU registers that can hold local
4386 variables or are used to pass parameters.
4388 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4389 something that either saves relevant registers on the stack, or
4390 calls mark_maybe_object passing it each register's contents.
4392 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4393 implementation assumes that calling setjmp saves registers we need
4394 to see in a jmp_buf which itself lies on the stack. This doesn't
4395 have to be true! It must be verified for each system, possibly
4396 by taking a look at the source code of setjmp.
4398 Stack Layout
4400 Architectures differ in the way their processor stack is organized.
4401 For example, the stack might look like this
4403 +----------------+
4404 | Lisp_Object | size = 4
4405 +----------------+
4406 | something else | size = 2
4407 +----------------+
4408 | Lisp_Object | size = 4
4409 +----------------+
4410 | ... |
4412 In such a case, not every Lisp_Object will be aligned equally. To
4413 find all Lisp_Object on the stack it won't be sufficient to walk
4414 the stack in steps of 4 bytes. Instead, two passes will be
4415 necessary, one starting at the start of the stack, and a second
4416 pass starting at the start of the stack + 2. Likewise, if the
4417 minimal alignment of Lisp_Objects on the stack is 1, four passes
4418 would be necessary, each one starting with one byte more offset
4419 from the stack start.
4421 The current code assumes by default that Lisp_Objects are aligned
4422 equally on the stack. */
4424 static void
4425 mark_stack ()
4427 int i;
4428 jmp_buf j;
4429 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4430 void *end;
4432 /* This trick flushes the register windows so that all the state of
4433 the process is contained in the stack. */
4434 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4435 needed on ia64 too. See mach_dep.c, where it also says inline
4436 assembler doesn't work with relevant proprietary compilers. */
4437 #ifdef sparc
4438 asm ("ta 3");
4439 #endif
4441 /* Save registers that we need to see on the stack. We need to see
4442 registers used to hold register variables and registers used to
4443 pass parameters. */
4444 #ifdef GC_SAVE_REGISTERS_ON_STACK
4445 GC_SAVE_REGISTERS_ON_STACK (end);
4446 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4448 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4449 setjmp will definitely work, test it
4450 and print a message with the result
4451 of the test. */
4452 if (!setjmp_tested_p)
4454 setjmp_tested_p = 1;
4455 test_setjmp ();
4457 #endif /* GC_SETJMP_WORKS */
4459 setjmp (j);
4460 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4461 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4463 /* This assumes that the stack is a contiguous region in memory. If
4464 that's not the case, something has to be done here to iterate
4465 over the stack segments. */
4466 #ifndef GC_LISP_OBJECT_ALIGNMENT
4467 #ifdef __GNUC__
4468 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4469 #else
4470 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4471 #endif
4472 #endif
4473 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4474 mark_memory ((char *) stack_base + i, end);
4475 /* Allow for marking a secondary stack, like the register stack on the
4476 ia64. */
4477 #ifdef GC_MARK_SECONDARY_STACK
4478 GC_MARK_SECONDARY_STACK ();
4479 #endif
4481 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4482 check_gcpros ();
4483 #endif
4487 #endif /* GC_MARK_STACK != 0 */
4491 /***********************************************************************
4492 Pure Storage Management
4493 ***********************************************************************/
4495 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4496 pointer to it. TYPE is the Lisp type for which the memory is
4497 allocated. TYPE < 0 means it's not used for a Lisp object.
4499 If store_pure_type_info is set and TYPE is >= 0, the type of
4500 the allocated object is recorded in pure_types. */
4502 static POINTER_TYPE *
4503 pure_alloc (size, type)
4504 size_t size;
4505 int type;
4507 POINTER_TYPE *result;
4508 #ifdef USE_LSB_TAG
4509 size_t alignment = (1 << GCTYPEBITS);
4510 #else
4511 size_t alignment = sizeof (EMACS_INT);
4513 /* Give Lisp_Floats an extra alignment. */
4514 if (type == Lisp_Float)
4516 #if defined __GNUC__ && __GNUC__ >= 2
4517 alignment = __alignof (struct Lisp_Float);
4518 #else
4519 alignment = sizeof (struct Lisp_Float);
4520 #endif
4522 #endif
4524 again:
4525 result = ALIGN (purebeg + pure_bytes_used, alignment);
4526 pure_bytes_used = ((char *)result - (char *)purebeg) + size;
4528 if (pure_bytes_used <= pure_size)
4529 return result;
4531 /* Don't allocate a large amount here,
4532 because it might get mmap'd and then its address
4533 might not be usable. */
4534 purebeg = (char *) xmalloc (10000);
4535 pure_size = 10000;
4536 pure_bytes_used_before_overflow += pure_bytes_used - size;
4537 pure_bytes_used = 0;
4538 goto again;
4542 /* Print a warning if PURESIZE is too small. */
4544 void
4545 check_pure_size ()
4547 if (pure_bytes_used_before_overflow)
4548 message ("Pure Lisp storage overflow (approx. %d bytes needed)",
4549 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4553 /* Return a string allocated in pure space. DATA is a buffer holding
4554 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4555 non-zero means make the result string multibyte.
4557 Must get an error if pure storage is full, since if it cannot hold
4558 a large string it may be able to hold conses that point to that
4559 string; then the string is not protected from gc. */
4561 Lisp_Object
4562 make_pure_string (data, nchars, nbytes, multibyte)
4563 char *data;
4564 int nchars, nbytes;
4565 int multibyte;
4567 Lisp_Object string;
4568 struct Lisp_String *s;
4570 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4571 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4572 s->size = nchars;
4573 s->size_byte = multibyte ? nbytes : -1;
4574 bcopy (data, s->data, nbytes);
4575 s->data[nbytes] = '\0';
4576 s->intervals = NULL_INTERVAL;
4577 XSETSTRING (string, s);
4578 return string;
4582 /* Return a cons allocated from pure space. Give it pure copies
4583 of CAR as car and CDR as cdr. */
4585 Lisp_Object
4586 pure_cons (car, cdr)
4587 Lisp_Object car, cdr;
4589 register Lisp_Object new;
4590 struct Lisp_Cons *p;
4592 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4593 XSETCONS (new, p);
4594 XSETCAR (new, Fpurecopy (car));
4595 XSETCDR (new, Fpurecopy (cdr));
4596 return new;
4600 /* Value is a float object with value NUM allocated from pure space. */
4602 Lisp_Object
4603 make_pure_float (num)
4604 double num;
4606 register Lisp_Object new;
4607 struct Lisp_Float *p;
4609 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4610 XSETFLOAT (new, p);
4611 XFLOAT_DATA (new) = num;
4612 return new;
4616 /* Return a vector with room for LEN Lisp_Objects allocated from
4617 pure space. */
4619 Lisp_Object
4620 make_pure_vector (len)
4621 EMACS_INT len;
4623 Lisp_Object new;
4624 struct Lisp_Vector *p;
4625 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4627 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4628 XSETVECTOR (new, p);
4629 XVECTOR (new)->size = len;
4630 return new;
4634 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4635 doc: /* Make a copy of OBJECT in pure storage.
4636 Recursively copies contents of vectors and cons cells.
4637 Does not copy symbols. Copies strings without text properties. */)
4638 (obj)
4639 register Lisp_Object obj;
4641 if (NILP (Vpurify_flag))
4642 return obj;
4644 if (PURE_POINTER_P (XPNTR (obj)))
4645 return obj;
4647 if (CONSP (obj))
4648 return pure_cons (XCAR (obj), XCDR (obj));
4649 else if (FLOATP (obj))
4650 return make_pure_float (XFLOAT_DATA (obj));
4651 else if (STRINGP (obj))
4652 return make_pure_string (SDATA (obj), SCHARS (obj),
4653 SBYTES (obj),
4654 STRING_MULTIBYTE (obj));
4655 else if (COMPILEDP (obj) || VECTORP (obj))
4657 register struct Lisp_Vector *vec;
4658 register int i;
4659 EMACS_INT size;
4661 size = XVECTOR (obj)->size;
4662 if (size & PSEUDOVECTOR_FLAG)
4663 size &= PSEUDOVECTOR_SIZE_MASK;
4664 vec = XVECTOR (make_pure_vector (size));
4665 for (i = 0; i < size; i++)
4666 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4667 if (COMPILEDP (obj))
4668 XSETCOMPILED (obj, vec);
4669 else
4670 XSETVECTOR (obj, vec);
4671 return obj;
4673 else if (MARKERP (obj))
4674 error ("Attempt to copy a marker to pure storage");
4676 return obj;
4681 /***********************************************************************
4682 Protection from GC
4683 ***********************************************************************/
4685 /* Put an entry in staticvec, pointing at the variable with address
4686 VARADDRESS. */
4688 void
4689 staticpro (varaddress)
4690 Lisp_Object *varaddress;
4692 staticvec[staticidx++] = varaddress;
4693 if (staticidx >= NSTATICS)
4694 abort ();
4697 struct catchtag
4699 Lisp_Object tag;
4700 Lisp_Object val;
4701 struct catchtag *next;
4705 /***********************************************************************
4706 Protection from GC
4707 ***********************************************************************/
4709 /* Temporarily prevent garbage collection. */
4712 inhibit_garbage_collection ()
4714 int count = SPECPDL_INDEX ();
4715 int nbits = min (VALBITS, BITS_PER_INT);
4717 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4718 return count;
4722 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4723 doc: /* Reclaim storage for Lisp objects no longer needed.
4724 Garbage collection happens automatically if you cons more than
4725 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4726 `garbage-collect' normally returns a list with info on amount of space in use:
4727 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4728 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4729 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4730 (USED-STRINGS . FREE-STRINGS))
4731 However, if there was overflow in pure space, `garbage-collect'
4732 returns nil, because real GC can't be done. */)
4735 register struct specbinding *bind;
4736 struct catchtag *catch;
4737 struct handler *handler;
4738 char stack_top_variable;
4739 register int i;
4740 int message_p;
4741 Lisp_Object total[8];
4742 int count = SPECPDL_INDEX ();
4743 EMACS_TIME t1, t2, t3;
4745 if (abort_on_gc)
4746 abort ();
4748 /* Can't GC if pure storage overflowed because we can't determine
4749 if something is a pure object or not. */
4750 if (pure_bytes_used_before_overflow)
4751 return Qnil;
4753 CHECK_CONS_LIST ();
4755 /* Don't keep undo information around forever.
4756 Do this early on, so it is no problem if the user quits. */
4758 register struct buffer *nextb = all_buffers;
4760 while (nextb)
4762 /* If a buffer's undo list is Qt, that means that undo is
4763 turned off in that buffer. Calling truncate_undo_list on
4764 Qt tends to return NULL, which effectively turns undo back on.
4765 So don't call truncate_undo_list if undo_list is Qt. */
4766 if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
4767 truncate_undo_list (nextb);
4769 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4770 if (nextb->base_buffer == 0 && !NILP (nextb->name))
4772 /* If a buffer's gap size is more than 10% of the buffer
4773 size, or larger than 2000 bytes, then shrink it
4774 accordingly. Keep a minimum size of 20 bytes. */
4775 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4777 if (nextb->text->gap_size > size)
4779 struct buffer *save_current = current_buffer;
4780 current_buffer = nextb;
4781 make_gap (-(nextb->text->gap_size - size));
4782 current_buffer = save_current;
4786 nextb = nextb->next;
4790 EMACS_GET_TIME (t1);
4792 /* In case user calls debug_print during GC,
4793 don't let that cause a recursive GC. */
4794 consing_since_gc = 0;
4796 /* Save what's currently displayed in the echo area. */
4797 message_p = push_message ();
4798 record_unwind_protect (pop_message_unwind, Qnil);
4800 /* Save a copy of the contents of the stack, for debugging. */
4801 #if MAX_SAVE_STACK > 0
4802 if (NILP (Vpurify_flag))
4804 i = &stack_top_variable - stack_bottom;
4805 if (i < 0) i = -i;
4806 if (i < MAX_SAVE_STACK)
4808 if (stack_copy == 0)
4809 stack_copy = (char *) xmalloc (stack_copy_size = i);
4810 else if (stack_copy_size < i)
4811 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4812 if (stack_copy)
4814 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4815 bcopy (stack_bottom, stack_copy, i);
4816 else
4817 bcopy (&stack_top_variable, stack_copy, i);
4821 #endif /* MAX_SAVE_STACK > 0 */
4823 if (garbage_collection_messages)
4824 message1_nolog ("Garbage collecting...");
4826 BLOCK_INPUT;
4828 shrink_regexp_cache ();
4830 gc_in_progress = 1;
4832 /* clear_marks (); */
4834 /* Mark all the special slots that serve as the roots of accessibility. */
4836 for (i = 0; i < staticidx; i++)
4837 mark_object (*staticvec[i]);
4839 for (bind = specpdl; bind != specpdl_ptr; bind++)
4841 mark_object (bind->symbol);
4842 mark_object (bind->old_value);
4844 mark_kboards ();
4846 #ifdef USE_GTK
4848 extern void xg_mark_data ();
4849 xg_mark_data ();
4851 #endif
4853 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4854 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4855 mark_stack ();
4856 #else
4858 register struct gcpro *tail;
4859 for (tail = gcprolist; tail; tail = tail->next)
4860 for (i = 0; i < tail->nvars; i++)
4861 mark_object (tail->var[i]);
4863 #endif
4865 mark_byte_stack ();
4866 for (catch = catchlist; catch; catch = catch->next)
4868 mark_object (catch->tag);
4869 mark_object (catch->val);
4871 for (handler = handlerlist; handler; handler = handler->next)
4873 mark_object (handler->handler);
4874 mark_object (handler->var);
4876 mark_backtrace ();
4878 #ifdef HAVE_WINDOW_SYSTEM
4879 mark_fringe_data ();
4880 #endif
4882 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4883 mark_stack ();
4884 #endif
4886 /* Everything is now marked, except for the things that require special
4887 finalization, i.e. the undo_list.
4888 Look thru every buffer's undo list
4889 for elements that update markers that were not marked,
4890 and delete them. */
4892 register struct buffer *nextb = all_buffers;
4894 while (nextb)
4896 /* If a buffer's undo list is Qt, that means that undo is
4897 turned off in that buffer. Calling truncate_undo_list on
4898 Qt tends to return NULL, which effectively turns undo back on.
4899 So don't call truncate_undo_list if undo_list is Qt. */
4900 if (! EQ (nextb->undo_list, Qt))
4902 Lisp_Object tail, prev;
4903 tail = nextb->undo_list;
4904 prev = Qnil;
4905 while (CONSP (tail))
4907 if (GC_CONSP (XCAR (tail))
4908 && GC_MARKERP (XCAR (XCAR (tail)))
4909 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
4911 if (NILP (prev))
4912 nextb->undo_list = tail = XCDR (tail);
4913 else
4915 tail = XCDR (tail);
4916 XSETCDR (prev, tail);
4919 else
4921 prev = tail;
4922 tail = XCDR (tail);
4926 /* Now that we have stripped the elements that need not be in the
4927 undo_list any more, we can finally mark the list. */
4928 mark_object (nextb->undo_list);
4930 nextb = nextb->next;
4934 gc_sweep ();
4936 /* Clear the mark bits that we set in certain root slots. */
4938 unmark_byte_stack ();
4939 VECTOR_UNMARK (&buffer_defaults);
4940 VECTOR_UNMARK (&buffer_local_symbols);
4942 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
4943 dump_zombies ();
4944 #endif
4946 UNBLOCK_INPUT;
4948 CHECK_CONS_LIST ();
4950 /* clear_marks (); */
4951 gc_in_progress = 0;
4953 consing_since_gc = 0;
4954 if (gc_cons_threshold < 10000)
4955 gc_cons_threshold = 10000;
4957 if (FLOATP (Vgc_cons_percentage))
4958 { /* Set gc_cons_combined_threshold. */
4959 EMACS_INT total = 0;
4961 total += total_conses * sizeof (struct Lisp_Cons);
4962 total += total_symbols * sizeof (struct Lisp_Symbol);
4963 total += total_markers * sizeof (union Lisp_Misc);
4964 total += total_string_size;
4965 total += total_vector_size * sizeof (Lisp_Object);
4966 total += total_floats * sizeof (struct Lisp_Float);
4967 total += total_intervals * sizeof (struct interval);
4968 total += total_strings * sizeof (struct Lisp_String);
4970 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
4972 else
4973 gc_relative_threshold = 0;
4975 if (garbage_collection_messages)
4977 if (message_p || minibuf_level > 0)
4978 restore_message ();
4979 else
4980 message1_nolog ("Garbage collecting...done");
4983 unbind_to (count, Qnil);
4985 total[0] = Fcons (make_number (total_conses),
4986 make_number (total_free_conses));
4987 total[1] = Fcons (make_number (total_symbols),
4988 make_number (total_free_symbols));
4989 total[2] = Fcons (make_number (total_markers),
4990 make_number (total_free_markers));
4991 total[3] = make_number (total_string_size);
4992 total[4] = make_number (total_vector_size);
4993 total[5] = Fcons (make_number (total_floats),
4994 make_number (total_free_floats));
4995 total[6] = Fcons (make_number (total_intervals),
4996 make_number (total_free_intervals));
4997 total[7] = Fcons (make_number (total_strings),
4998 make_number (total_free_strings));
5000 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5002 /* Compute average percentage of zombies. */
5003 double nlive = 0;
5005 for (i = 0; i < 7; ++i)
5006 if (CONSP (total[i]))
5007 nlive += XFASTINT (XCAR (total[i]));
5009 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5010 max_live = max (nlive, max_live);
5011 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5012 max_zombies = max (nzombies, max_zombies);
5013 ++ngcs;
5015 #endif
5017 if (!NILP (Vpost_gc_hook))
5019 int count = inhibit_garbage_collection ();
5020 safe_run_hooks (Qpost_gc_hook);
5021 unbind_to (count, Qnil);
5024 /* Accumulate statistics. */
5025 EMACS_GET_TIME (t2);
5026 EMACS_SUB_TIME (t3, t2, t1);
5027 if (FLOATP (Vgc_elapsed))
5028 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5029 EMACS_SECS (t3) +
5030 EMACS_USECS (t3) * 1.0e-6);
5031 gcs_done++;
5033 return Flist (sizeof total / sizeof *total, total);
5037 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5038 only interesting objects referenced from glyphs are strings. */
5040 static void
5041 mark_glyph_matrix (matrix)
5042 struct glyph_matrix *matrix;
5044 struct glyph_row *row = matrix->rows;
5045 struct glyph_row *end = row + matrix->nrows;
5047 for (; row < end; ++row)
5048 if (row->enabled_p)
5050 int area;
5051 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5053 struct glyph *glyph = row->glyphs[area];
5054 struct glyph *end_glyph = glyph + row->used[area];
5056 for (; glyph < end_glyph; ++glyph)
5057 if (GC_STRINGP (glyph->object)
5058 && !STRING_MARKED_P (XSTRING (glyph->object)))
5059 mark_object (glyph->object);
5065 /* Mark Lisp faces in the face cache C. */
5067 static void
5068 mark_face_cache (c)
5069 struct face_cache *c;
5071 if (c)
5073 int i, j;
5074 for (i = 0; i < c->used; ++i)
5076 struct face *face = FACE_FROM_ID (c->f, i);
5078 if (face)
5080 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5081 mark_object (face->lface[j]);
5088 #ifdef HAVE_WINDOW_SYSTEM
5090 /* Mark Lisp objects in image IMG. */
5092 static void
5093 mark_image (img)
5094 struct image *img;
5096 mark_object (img->spec);
5098 if (!NILP (img->data.lisp_val))
5099 mark_object (img->data.lisp_val);
5103 /* Mark Lisp objects in image cache of frame F. It's done this way so
5104 that we don't have to include xterm.h here. */
5106 static void
5107 mark_image_cache (f)
5108 struct frame *f;
5110 forall_images_in_image_cache (f, mark_image);
5113 #endif /* HAVE_X_WINDOWS */
5117 /* Mark reference to a Lisp_Object.
5118 If the object referred to has not been seen yet, recursively mark
5119 all the references contained in it. */
5121 #define LAST_MARKED_SIZE 500
5122 Lisp_Object last_marked[LAST_MARKED_SIZE];
5123 int last_marked_index;
5125 /* For debugging--call abort when we cdr down this many
5126 links of a list, in mark_object. In debugging,
5127 the call to abort will hit a breakpoint.
5128 Normally this is zero and the check never goes off. */
5129 int mark_object_loop_halt;
5131 void
5132 mark_object (arg)
5133 Lisp_Object arg;
5135 register Lisp_Object obj = arg;
5136 #ifdef GC_CHECK_MARKED_OBJECTS
5137 void *po;
5138 struct mem_node *m;
5139 #endif
5140 int cdr_count = 0;
5142 loop:
5144 if (PURE_POINTER_P (XPNTR (obj)))
5145 return;
5147 last_marked[last_marked_index++] = obj;
5148 if (last_marked_index == LAST_MARKED_SIZE)
5149 last_marked_index = 0;
5151 /* Perform some sanity checks on the objects marked here. Abort if
5152 we encounter an object we know is bogus. This increases GC time
5153 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5154 #ifdef GC_CHECK_MARKED_OBJECTS
5156 po = (void *) XPNTR (obj);
5158 /* Check that the object pointed to by PO is known to be a Lisp
5159 structure allocated from the heap. */
5160 #define CHECK_ALLOCATED() \
5161 do { \
5162 m = mem_find (po); \
5163 if (m == MEM_NIL) \
5164 abort (); \
5165 } while (0)
5167 /* Check that the object pointed to by PO is live, using predicate
5168 function LIVEP. */
5169 #define CHECK_LIVE(LIVEP) \
5170 do { \
5171 if (!LIVEP (m, po)) \
5172 abort (); \
5173 } while (0)
5175 /* Check both of the above conditions. */
5176 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5177 do { \
5178 CHECK_ALLOCATED (); \
5179 CHECK_LIVE (LIVEP); \
5180 } while (0) \
5182 #else /* not GC_CHECK_MARKED_OBJECTS */
5184 #define CHECK_ALLOCATED() (void) 0
5185 #define CHECK_LIVE(LIVEP) (void) 0
5186 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5188 #endif /* not GC_CHECK_MARKED_OBJECTS */
5190 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
5192 case Lisp_String:
5194 register struct Lisp_String *ptr = XSTRING (obj);
5195 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5196 MARK_INTERVAL_TREE (ptr->intervals);
5197 MARK_STRING (ptr);
5198 #ifdef GC_CHECK_STRING_BYTES
5199 /* Check that the string size recorded in the string is the
5200 same as the one recorded in the sdata structure. */
5201 CHECK_STRING_BYTES (ptr);
5202 #endif /* GC_CHECK_STRING_BYTES */
5204 break;
5206 case Lisp_Vectorlike:
5207 #ifdef GC_CHECK_MARKED_OBJECTS
5208 m = mem_find (po);
5209 if (m == MEM_NIL && !GC_SUBRP (obj)
5210 && po != &buffer_defaults
5211 && po != &buffer_local_symbols)
5212 abort ();
5213 #endif /* GC_CHECK_MARKED_OBJECTS */
5215 if (GC_BUFFERP (obj))
5217 if (!VECTOR_MARKED_P (XBUFFER (obj)))
5219 #ifdef GC_CHECK_MARKED_OBJECTS
5220 if (po != &buffer_defaults && po != &buffer_local_symbols)
5222 struct buffer *b;
5223 for (b = all_buffers; b && b != po; b = b->next)
5225 if (b == NULL)
5226 abort ();
5228 #endif /* GC_CHECK_MARKED_OBJECTS */
5229 mark_buffer (obj);
5232 else if (GC_SUBRP (obj))
5233 break;
5234 else if (GC_COMPILEDP (obj))
5235 /* We could treat this just like a vector, but it is better to
5236 save the COMPILED_CONSTANTS element for last and avoid
5237 recursion there. */
5239 register struct Lisp_Vector *ptr = XVECTOR (obj);
5240 register EMACS_INT size = ptr->size;
5241 register int i;
5243 if (VECTOR_MARKED_P (ptr))
5244 break; /* Already marked */
5246 CHECK_LIVE (live_vector_p);
5247 VECTOR_MARK (ptr); /* Else mark it */
5248 size &= PSEUDOVECTOR_SIZE_MASK;
5249 for (i = 0; i < size; i++) /* and then mark its elements */
5251 if (i != COMPILED_CONSTANTS)
5252 mark_object (ptr->contents[i]);
5254 obj = ptr->contents[COMPILED_CONSTANTS];
5255 goto loop;
5257 else if (GC_FRAMEP (obj))
5259 register struct frame *ptr = XFRAME (obj);
5261 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
5262 VECTOR_MARK (ptr); /* Else mark it */
5264 CHECK_LIVE (live_vector_p);
5265 mark_object (ptr->name);
5266 mark_object (ptr->icon_name);
5267 mark_object (ptr->title);
5268 mark_object (ptr->focus_frame);
5269 mark_object (ptr->selected_window);
5270 mark_object (ptr->minibuffer_window);
5271 mark_object (ptr->param_alist);
5272 mark_object (ptr->scroll_bars);
5273 mark_object (ptr->condemned_scroll_bars);
5274 mark_object (ptr->menu_bar_items);
5275 mark_object (ptr->face_alist);
5276 mark_object (ptr->menu_bar_vector);
5277 mark_object (ptr->buffer_predicate);
5278 mark_object (ptr->buffer_list);
5279 mark_object (ptr->menu_bar_window);
5280 mark_object (ptr->tool_bar_window);
5281 mark_face_cache (ptr->face_cache);
5282 #ifdef HAVE_WINDOW_SYSTEM
5283 mark_image_cache (ptr);
5284 mark_object (ptr->tool_bar_items);
5285 mark_object (ptr->desired_tool_bar_string);
5286 mark_object (ptr->current_tool_bar_string);
5287 #endif /* HAVE_WINDOW_SYSTEM */
5289 else if (GC_BOOL_VECTOR_P (obj))
5291 register struct Lisp_Vector *ptr = XVECTOR (obj);
5293 if (VECTOR_MARKED_P (ptr))
5294 break; /* Already marked */
5295 CHECK_LIVE (live_vector_p);
5296 VECTOR_MARK (ptr); /* Else mark it */
5298 else if (GC_WINDOWP (obj))
5300 register struct Lisp_Vector *ptr = XVECTOR (obj);
5301 struct window *w = XWINDOW (obj);
5302 register int i;
5304 /* Stop if already marked. */
5305 if (VECTOR_MARKED_P (ptr))
5306 break;
5308 /* Mark it. */
5309 CHECK_LIVE (live_vector_p);
5310 VECTOR_MARK (ptr);
5312 /* There is no Lisp data above The member CURRENT_MATRIX in
5313 struct WINDOW. Stop marking when that slot is reached. */
5314 for (i = 0;
5315 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
5316 i++)
5317 mark_object (ptr->contents[i]);
5319 /* Mark glyphs for leaf windows. Marking window matrices is
5320 sufficient because frame matrices use the same glyph
5321 memory. */
5322 if (NILP (w->hchild)
5323 && NILP (w->vchild)
5324 && w->current_matrix)
5326 mark_glyph_matrix (w->current_matrix);
5327 mark_glyph_matrix (w->desired_matrix);
5330 else if (GC_HASH_TABLE_P (obj))
5332 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5334 /* Stop if already marked. */
5335 if (VECTOR_MARKED_P (h))
5336 break;
5338 /* Mark it. */
5339 CHECK_LIVE (live_vector_p);
5340 VECTOR_MARK (h);
5342 /* Mark contents. */
5343 /* Do not mark next_free or next_weak.
5344 Being in the next_weak chain
5345 should not keep the hash table alive.
5346 No need to mark `count' since it is an integer. */
5347 mark_object (h->test);
5348 mark_object (h->weak);
5349 mark_object (h->rehash_size);
5350 mark_object (h->rehash_threshold);
5351 mark_object (h->hash);
5352 mark_object (h->next);
5353 mark_object (h->index);
5354 mark_object (h->user_hash_function);
5355 mark_object (h->user_cmp_function);
5357 /* If hash table is not weak, mark all keys and values.
5358 For weak tables, mark only the vector. */
5359 if (GC_NILP (h->weak))
5360 mark_object (h->key_and_value);
5361 else
5362 VECTOR_MARK (XVECTOR (h->key_and_value));
5364 else
5366 register struct Lisp_Vector *ptr = XVECTOR (obj);
5367 register EMACS_INT size = ptr->size;
5368 register int i;
5370 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
5371 CHECK_LIVE (live_vector_p);
5372 VECTOR_MARK (ptr); /* Else mark it */
5373 if (size & PSEUDOVECTOR_FLAG)
5374 size &= PSEUDOVECTOR_SIZE_MASK;
5376 for (i = 0; i < size; i++) /* and then mark its elements */
5377 mark_object (ptr->contents[i]);
5379 break;
5381 case Lisp_Symbol:
5383 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5384 struct Lisp_Symbol *ptrx;
5386 if (ptr->gcmarkbit) break;
5387 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5388 ptr->gcmarkbit = 1;
5389 mark_object (ptr->value);
5390 mark_object (ptr->function);
5391 mark_object (ptr->plist);
5393 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5394 MARK_STRING (XSTRING (ptr->xname));
5395 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5397 /* Note that we do not mark the obarray of the symbol.
5398 It is safe not to do so because nothing accesses that
5399 slot except to check whether it is nil. */
5400 ptr = ptr->next;
5401 if (ptr)
5403 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5404 XSETSYMBOL (obj, ptrx);
5405 goto loop;
5408 break;
5410 case Lisp_Misc:
5411 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5412 if (XMARKER (obj)->gcmarkbit)
5413 break;
5414 XMARKER (obj)->gcmarkbit = 1;
5416 switch (XMISCTYPE (obj))
5418 case Lisp_Misc_Buffer_Local_Value:
5419 case Lisp_Misc_Some_Buffer_Local_Value:
5421 register struct Lisp_Buffer_Local_Value *ptr
5422 = XBUFFER_LOCAL_VALUE (obj);
5423 /* If the cdr is nil, avoid recursion for the car. */
5424 if (EQ (ptr->cdr, Qnil))
5426 obj = ptr->realvalue;
5427 goto loop;
5429 mark_object (ptr->realvalue);
5430 mark_object (ptr->buffer);
5431 mark_object (ptr->frame);
5432 obj = ptr->cdr;
5433 goto loop;
5436 case Lisp_Misc_Marker:
5437 /* DO NOT mark thru the marker's chain.
5438 The buffer's markers chain does not preserve markers from gc;
5439 instead, markers are removed from the chain when freed by gc. */
5440 break;
5442 case Lisp_Misc_Intfwd:
5443 case Lisp_Misc_Boolfwd:
5444 case Lisp_Misc_Objfwd:
5445 case Lisp_Misc_Buffer_Objfwd:
5446 case Lisp_Misc_Kboard_Objfwd:
5447 /* Don't bother with Lisp_Buffer_Objfwd,
5448 since all markable slots in current buffer marked anyway. */
5449 /* Don't need to do Lisp_Objfwd, since the places they point
5450 are protected with staticpro. */
5451 break;
5453 case Lisp_Misc_Save_Value:
5454 #if GC_MARK_STACK
5456 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5457 /* If DOGC is set, POINTER is the address of a memory
5458 area containing INTEGER potential Lisp_Objects. */
5459 if (ptr->dogc)
5461 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5462 int nelt;
5463 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5464 mark_maybe_object (*p);
5467 #endif
5468 break;
5470 case Lisp_Misc_Overlay:
5472 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5473 mark_object (ptr->start);
5474 mark_object (ptr->end);
5475 mark_object (ptr->plist);
5476 if (ptr->next)
5478 XSETMISC (obj, ptr->next);
5479 goto loop;
5482 break;
5484 default:
5485 abort ();
5487 break;
5489 case Lisp_Cons:
5491 register struct Lisp_Cons *ptr = XCONS (obj);
5492 if (CONS_MARKED_P (ptr)) break;
5493 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5494 CONS_MARK (ptr);
5495 /* If the cdr is nil, avoid recursion for the car. */
5496 if (EQ (ptr->cdr, Qnil))
5498 obj = ptr->car;
5499 cdr_count = 0;
5500 goto loop;
5502 mark_object (ptr->car);
5503 obj = ptr->cdr;
5504 cdr_count++;
5505 if (cdr_count == mark_object_loop_halt)
5506 abort ();
5507 goto loop;
5510 case Lisp_Float:
5511 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5512 FLOAT_MARK (XFLOAT (obj));
5513 break;
5515 case Lisp_Int:
5516 break;
5518 default:
5519 abort ();
5522 #undef CHECK_LIVE
5523 #undef CHECK_ALLOCATED
5524 #undef CHECK_ALLOCATED_AND_LIVE
5527 /* Mark the pointers in a buffer structure. */
5529 static void
5530 mark_buffer (buf)
5531 Lisp_Object buf;
5533 register struct buffer *buffer = XBUFFER (buf);
5534 register Lisp_Object *ptr, tmp;
5535 Lisp_Object base_buffer;
5537 VECTOR_MARK (buffer);
5539 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5541 /* For now, we just don't mark the undo_list. It's done later in
5542 a special way just before the sweep phase, and after stripping
5543 some of its elements that are not needed any more. */
5545 if (buffer->overlays_before)
5547 XSETMISC (tmp, buffer->overlays_before);
5548 mark_object (tmp);
5550 if (buffer->overlays_after)
5552 XSETMISC (tmp, buffer->overlays_after);
5553 mark_object (tmp);
5556 for (ptr = &buffer->name;
5557 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5558 ptr++)
5559 mark_object (*ptr);
5561 /* If this is an indirect buffer, mark its base buffer. */
5562 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5564 XSETBUFFER (base_buffer, buffer->base_buffer);
5565 mark_buffer (base_buffer);
5570 /* Value is non-zero if OBJ will survive the current GC because it's
5571 either marked or does not need to be marked to survive. */
5574 survives_gc_p (obj)
5575 Lisp_Object obj;
5577 int survives_p;
5579 switch (XGCTYPE (obj))
5581 case Lisp_Int:
5582 survives_p = 1;
5583 break;
5585 case Lisp_Symbol:
5586 survives_p = XSYMBOL (obj)->gcmarkbit;
5587 break;
5589 case Lisp_Misc:
5590 survives_p = XMARKER (obj)->gcmarkbit;
5591 break;
5593 case Lisp_String:
5594 survives_p = STRING_MARKED_P (XSTRING (obj));
5595 break;
5597 case Lisp_Vectorlike:
5598 survives_p = GC_SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5599 break;
5601 case Lisp_Cons:
5602 survives_p = CONS_MARKED_P (XCONS (obj));
5603 break;
5605 case Lisp_Float:
5606 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5607 break;
5609 default:
5610 abort ();
5613 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5618 /* Sweep: find all structures not marked, and free them. */
5620 static void
5621 gc_sweep ()
5623 /* Remove or mark entries in weak hash tables.
5624 This must be done before any object is unmarked. */
5625 sweep_weak_hash_tables ();
5627 sweep_strings ();
5628 #ifdef GC_CHECK_STRING_BYTES
5629 if (!noninteractive)
5630 check_string_bytes (1);
5631 #endif
5633 /* Put all unmarked conses on free list */
5635 register struct cons_block *cblk;
5636 struct cons_block **cprev = &cons_block;
5637 register int lim = cons_block_index;
5638 register int num_free = 0, num_used = 0;
5640 cons_free_list = 0;
5642 for (cblk = cons_block; cblk; cblk = *cprev)
5644 register int i;
5645 int this_free = 0;
5646 for (i = 0; i < lim; i++)
5647 if (!CONS_MARKED_P (&cblk->conses[i]))
5649 this_free++;
5650 *(struct Lisp_Cons **)&cblk->conses[i].cdr = cons_free_list;
5651 cons_free_list = &cblk->conses[i];
5652 #if GC_MARK_STACK
5653 cons_free_list->car = Vdead;
5654 #endif
5656 else
5658 num_used++;
5659 CONS_UNMARK (&cblk->conses[i]);
5661 lim = CONS_BLOCK_SIZE;
5662 /* If this block contains only free conses and we have already
5663 seen more than two blocks worth of free conses then deallocate
5664 this block. */
5665 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5667 *cprev = cblk->next;
5668 /* Unhook from the free list. */
5669 cons_free_list = *(struct Lisp_Cons **) &cblk->conses[0].cdr;
5670 lisp_align_free (cblk);
5671 n_cons_blocks--;
5673 else
5675 num_free += this_free;
5676 cprev = &cblk->next;
5679 total_conses = num_used;
5680 total_free_conses = num_free;
5683 /* Put all unmarked floats on free list */
5685 register struct float_block *fblk;
5686 struct float_block **fprev = &float_block;
5687 register int lim = float_block_index;
5688 register int num_free = 0, num_used = 0;
5690 float_free_list = 0;
5692 for (fblk = float_block; fblk; fblk = *fprev)
5694 register int i;
5695 int this_free = 0;
5696 for (i = 0; i < lim; i++)
5697 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5699 this_free++;
5700 *(struct Lisp_Float **)&fblk->floats[i].data = float_free_list;
5701 float_free_list = &fblk->floats[i];
5703 else
5705 num_used++;
5706 FLOAT_UNMARK (&fblk->floats[i]);
5708 lim = FLOAT_BLOCK_SIZE;
5709 /* If this block contains only free floats and we have already
5710 seen more than two blocks worth of free floats then deallocate
5711 this block. */
5712 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5714 *fprev = fblk->next;
5715 /* Unhook from the free list. */
5716 float_free_list = *(struct Lisp_Float **) &fblk->floats[0].data;
5717 lisp_align_free (fblk);
5718 n_float_blocks--;
5720 else
5722 num_free += this_free;
5723 fprev = &fblk->next;
5726 total_floats = num_used;
5727 total_free_floats = num_free;
5730 /* Put all unmarked intervals on free list */
5732 register struct interval_block *iblk;
5733 struct interval_block **iprev = &interval_block;
5734 register int lim = interval_block_index;
5735 register int num_free = 0, num_used = 0;
5737 interval_free_list = 0;
5739 for (iblk = interval_block; iblk; iblk = *iprev)
5741 register int i;
5742 int this_free = 0;
5744 for (i = 0; i < lim; i++)
5746 if (!iblk->intervals[i].gcmarkbit)
5748 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5749 interval_free_list = &iblk->intervals[i];
5750 this_free++;
5752 else
5754 num_used++;
5755 iblk->intervals[i].gcmarkbit = 0;
5758 lim = INTERVAL_BLOCK_SIZE;
5759 /* If this block contains only free intervals and we have already
5760 seen more than two blocks worth of free intervals then
5761 deallocate this block. */
5762 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5764 *iprev = iblk->next;
5765 /* Unhook from the free list. */
5766 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5767 lisp_free (iblk);
5768 n_interval_blocks--;
5770 else
5772 num_free += this_free;
5773 iprev = &iblk->next;
5776 total_intervals = num_used;
5777 total_free_intervals = num_free;
5780 /* Put all unmarked symbols on free list */
5782 register struct symbol_block *sblk;
5783 struct symbol_block **sprev = &symbol_block;
5784 register int lim = symbol_block_index;
5785 register int num_free = 0, num_used = 0;
5787 symbol_free_list = NULL;
5789 for (sblk = symbol_block; sblk; sblk = *sprev)
5791 int this_free = 0;
5792 struct Lisp_Symbol *sym = sblk->symbols;
5793 struct Lisp_Symbol *end = sym + lim;
5795 for (; sym < end; ++sym)
5797 /* Check if the symbol was created during loadup. In such a case
5798 it might be pointed to by pure bytecode which we don't trace,
5799 so we conservatively assume that it is live. */
5800 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5802 if (!sym->gcmarkbit && !pure_p)
5804 *(struct Lisp_Symbol **) &sym->value = symbol_free_list;
5805 symbol_free_list = sym;
5806 #if GC_MARK_STACK
5807 symbol_free_list->function = Vdead;
5808 #endif
5809 ++this_free;
5811 else
5813 ++num_used;
5814 if (!pure_p)
5815 UNMARK_STRING (XSTRING (sym->xname));
5816 sym->gcmarkbit = 0;
5820 lim = SYMBOL_BLOCK_SIZE;
5821 /* If this block contains only free symbols and we have already
5822 seen more than two blocks worth of free symbols then deallocate
5823 this block. */
5824 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5826 *sprev = sblk->next;
5827 /* Unhook from the free list. */
5828 symbol_free_list = *(struct Lisp_Symbol **)&sblk->symbols[0].value;
5829 lisp_free (sblk);
5830 n_symbol_blocks--;
5832 else
5834 num_free += this_free;
5835 sprev = &sblk->next;
5838 total_symbols = num_used;
5839 total_free_symbols = num_free;
5842 /* Put all unmarked misc's on free list.
5843 For a marker, first unchain it from the buffer it points into. */
5845 register struct marker_block *mblk;
5846 struct marker_block **mprev = &marker_block;
5847 register int lim = marker_block_index;
5848 register int num_free = 0, num_used = 0;
5850 marker_free_list = 0;
5852 for (mblk = marker_block; mblk; mblk = *mprev)
5854 register int i;
5855 int this_free = 0;
5857 for (i = 0; i < lim; i++)
5859 if (!mblk->markers[i].u_marker.gcmarkbit)
5861 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
5862 unchain_marker (&mblk->markers[i].u_marker);
5863 /* Set the type of the freed object to Lisp_Misc_Free.
5864 We could leave the type alone, since nobody checks it,
5865 but this might catch bugs faster. */
5866 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5867 mblk->markers[i].u_free.chain = marker_free_list;
5868 marker_free_list = &mblk->markers[i];
5869 this_free++;
5871 else
5873 num_used++;
5874 mblk->markers[i].u_marker.gcmarkbit = 0;
5877 lim = MARKER_BLOCK_SIZE;
5878 /* If this block contains only free markers and we have already
5879 seen more than two blocks worth of free markers then deallocate
5880 this block. */
5881 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5883 *mprev = mblk->next;
5884 /* Unhook from the free list. */
5885 marker_free_list = mblk->markers[0].u_free.chain;
5886 lisp_free (mblk);
5887 n_marker_blocks--;
5889 else
5891 num_free += this_free;
5892 mprev = &mblk->next;
5896 total_markers = num_used;
5897 total_free_markers = num_free;
5900 /* Free all unmarked buffers */
5902 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5904 while (buffer)
5905 if (!VECTOR_MARKED_P (buffer))
5907 if (prev)
5908 prev->next = buffer->next;
5909 else
5910 all_buffers = buffer->next;
5911 next = buffer->next;
5912 lisp_free (buffer);
5913 buffer = next;
5915 else
5917 VECTOR_UNMARK (buffer);
5918 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
5919 prev = buffer, buffer = buffer->next;
5923 /* Free all unmarked vectors */
5925 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
5926 total_vector_size = 0;
5928 while (vector)
5929 if (!VECTOR_MARKED_P (vector))
5931 if (prev)
5932 prev->next = vector->next;
5933 else
5934 all_vectors = vector->next;
5935 next = vector->next;
5936 lisp_free (vector);
5937 n_vectors--;
5938 vector = next;
5941 else
5943 VECTOR_UNMARK (vector);
5944 if (vector->size & PSEUDOVECTOR_FLAG)
5945 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
5946 else
5947 total_vector_size += vector->size;
5948 prev = vector, vector = vector->next;
5952 #ifdef GC_CHECK_STRING_BYTES
5953 if (!noninteractive)
5954 check_string_bytes (1);
5955 #endif
5961 /* Debugging aids. */
5963 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
5964 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
5965 This may be helpful in debugging Emacs's memory usage.
5966 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5969 Lisp_Object end;
5971 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
5973 return end;
5976 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
5977 doc: /* Return a list of counters that measure how much consing there has been.
5978 Each of these counters increments for a certain kind of object.
5979 The counters wrap around from the largest positive integer to zero.
5980 Garbage collection does not decrease them.
5981 The elements of the value are as follows:
5982 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
5983 All are in units of 1 = one object consed
5984 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
5985 objects consed.
5986 MISCS include overlays, markers, and some internal types.
5987 Frames, windows, buffers, and subprocesses count as vectors
5988 (but the contents of a buffer's text do not count here). */)
5991 Lisp_Object consed[8];
5993 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
5994 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
5995 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
5996 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
5997 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
5998 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
5999 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6000 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6002 return Flist (8, consed);
6005 int suppress_checking;
6006 void
6007 die (msg, file, line)
6008 const char *msg;
6009 const char *file;
6010 int line;
6012 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
6013 file, line, msg);
6014 abort ();
6017 /* Initialization */
6019 void
6020 init_alloc_once ()
6022 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6023 purebeg = PUREBEG;
6024 pure_size = PURESIZE;
6025 pure_bytes_used = 0;
6026 pure_bytes_used_before_overflow = 0;
6028 /* Initialize the list of free aligned blocks. */
6029 free_ablock = NULL;
6031 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6032 mem_init ();
6033 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6034 #endif
6036 all_vectors = 0;
6037 ignore_warnings = 1;
6038 #ifdef DOUG_LEA_MALLOC
6039 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6040 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6041 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6042 #endif
6043 init_strings ();
6044 init_cons ();
6045 init_symbol ();
6046 init_marker ();
6047 init_float ();
6048 init_intervals ();
6050 #ifdef REL_ALLOC
6051 malloc_hysteresis = 32;
6052 #else
6053 malloc_hysteresis = 0;
6054 #endif
6056 refill_memory_reserve ();
6058 ignore_warnings = 0;
6059 gcprolist = 0;
6060 byte_stack_list = 0;
6061 staticidx = 0;
6062 consing_since_gc = 0;
6063 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6064 gc_relative_threshold = 0;
6066 #ifdef VIRT_ADDR_VARIES
6067 malloc_sbrk_unused = 1<<22; /* A large number */
6068 malloc_sbrk_used = 100000; /* as reasonable as any number */
6069 #endif /* VIRT_ADDR_VARIES */
6072 void
6073 init_alloc ()
6075 gcprolist = 0;
6076 byte_stack_list = 0;
6077 #if GC_MARK_STACK
6078 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6079 setjmp_tested_p = longjmps_done = 0;
6080 #endif
6081 #endif
6082 Vgc_elapsed = make_float (0.0);
6083 gcs_done = 0;
6086 void
6087 syms_of_alloc ()
6089 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
6090 doc: /* *Number of bytes of consing between garbage collections.
6091 Garbage collection can happen automatically once this many bytes have been
6092 allocated since the last garbage collection. All data types count.
6094 Garbage collection happens automatically only when `eval' is called.
6096 By binding this temporarily to a large number, you can effectively
6097 prevent garbage collection during a part of the program.
6098 See also `gc-cons-percentage'. */);
6100 DEFVAR_LISP ("gc-cons-percentage", &Vgc_cons_percentage,
6101 doc: /* *Portion of the heap used for allocation.
6102 Garbage collection can happen automatically once this portion of the heap
6103 has been allocated since the last garbage collection.
6104 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6105 Vgc_cons_percentage = make_float (0.1);
6107 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
6108 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6110 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
6111 doc: /* Number of cons cells that have been consed so far. */);
6113 DEFVAR_INT ("floats-consed", &floats_consed,
6114 doc: /* Number of floats that have been consed so far. */);
6116 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
6117 doc: /* Number of vector cells that have been consed so far. */);
6119 DEFVAR_INT ("symbols-consed", &symbols_consed,
6120 doc: /* Number of symbols that have been consed so far. */);
6122 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
6123 doc: /* Number of string characters that have been consed so far. */);
6125 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
6126 doc: /* Number of miscellaneous objects that have been consed so far. */);
6128 DEFVAR_INT ("intervals-consed", &intervals_consed,
6129 doc: /* Number of intervals that have been consed so far. */);
6131 DEFVAR_INT ("strings-consed", &strings_consed,
6132 doc: /* Number of strings that have been consed so far. */);
6134 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
6135 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6136 This means that certain objects should be allocated in shared (pure) space. */);
6138 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
6139 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6140 garbage_collection_messages = 0;
6142 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
6143 doc: /* Hook run after garbage collection has finished. */);
6144 Vpost_gc_hook = Qnil;
6145 Qpost_gc_hook = intern ("post-gc-hook");
6146 staticpro (&Qpost_gc_hook);
6148 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
6149 doc: /* Precomputed `signal' argument for memory-full error. */);
6150 /* We build this in advance because if we wait until we need it, we might
6151 not be able to allocate the memory to hold it. */
6152 Vmemory_signal_data
6153 = list2 (Qerror,
6154 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6156 DEFVAR_LISP ("memory-full", &Vmemory_full,
6157 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6158 Vmemory_full = Qnil;
6160 staticpro (&Qgc_cons_threshold);
6161 Qgc_cons_threshold = intern ("gc-cons-threshold");
6163 staticpro (&Qchar_table_extra_slots);
6164 Qchar_table_extra_slots = intern ("char-table-extra-slots");
6166 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
6167 doc: /* Accumulated time elapsed in garbage collections.
6168 The time is in seconds as a floating point value. */);
6169 DEFVAR_INT ("gcs-done", &gcs_done,
6170 doc: /* Accumulated number of garbage collections done. */);
6172 defsubr (&Scons);
6173 defsubr (&Slist);
6174 defsubr (&Svector);
6175 defsubr (&Smake_byte_code);
6176 defsubr (&Smake_list);
6177 defsubr (&Smake_vector);
6178 defsubr (&Smake_char_table);
6179 defsubr (&Smake_string);
6180 defsubr (&Smake_bool_vector);
6181 defsubr (&Smake_symbol);
6182 defsubr (&Smake_marker);
6183 defsubr (&Spurecopy);
6184 defsubr (&Sgarbage_collect);
6185 defsubr (&Smemory_limit);
6186 defsubr (&Smemory_use_counts);
6188 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6189 defsubr (&Sgc_status);
6190 #endif
6193 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6194 (do not change this comment) */