* customize.texi (Composite Types): Move alist/plist from Simple Types (Bug#7545).
[emacs.git] / src / alloc.c
blob77b870f47541e0d7c08ae8dacbe692284d3fa537
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
6 This file is part of GNU Emacs.
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
21 #include <config.h>
22 #include <stdio.h>
23 #include <limits.h> /* For CHAR_BIT. */
24 #include <setjmp.h>
26 #ifdef STDC_HEADERS
27 #include <stddef.h> /* For offsetof, used by PSEUDOVECSIZE. */
28 #endif
30 #ifdef ALLOC_DEBUG
31 #undef INLINE
32 #endif
34 #include <signal.h>
36 #ifdef HAVE_GTK_AND_PTHREAD
37 #include <pthread.h>
38 #endif
40 /* This file is part of the core Lisp implementation, and thus must
41 deal with the real data structures. If the Lisp implementation is
42 replaced, this file likely will not be used. */
44 #undef HIDE_LISP_IMPLEMENTATION
45 #include "lisp.h"
46 #include "process.h"
47 #include "intervals.h"
48 #include "puresize.h"
49 #include "buffer.h"
50 #include "window.h"
51 #include "keyboard.h"
52 #include "frame.h"
53 #include "blockinput.h"
54 #include "character.h"
55 #include "syssignal.h"
56 #include "termhooks.h" /* For struct terminal. */
57 #include <setjmp.h>
59 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
60 memory. Can do this only if using gmalloc.c. */
62 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
63 #undef GC_MALLOC_CHECK
64 #endif
66 #ifdef HAVE_UNISTD_H
67 #include <unistd.h>
68 #else
69 extern POINTER_TYPE *sbrk ();
70 #endif
72 #ifdef HAVE_FCNTL_H
73 #define INCLUDED_FCNTL
74 #include <fcntl.h>
75 #endif
76 #ifndef O_WRONLY
77 #define O_WRONLY 1
78 #endif
80 #ifdef WINDOWSNT
81 #include <fcntl.h>
82 #include "w32.h"
83 #endif
85 #ifdef DOUG_LEA_MALLOC
87 #include <malloc.h>
88 /* malloc.h #defines this as size_t, at least in glibc2. */
89 #ifndef __malloc_size_t
90 #define __malloc_size_t int
91 #endif
93 /* Specify maximum number of areas to mmap. It would be nice to use a
94 value that explicitly means "no limit". */
96 #define MMAP_MAX_AREAS 100000000
98 #else /* not DOUG_LEA_MALLOC */
100 /* The following come from gmalloc.c. */
102 #define __malloc_size_t size_t
103 extern __malloc_size_t _bytes_used;
104 extern __malloc_size_t __malloc_extra_blocks;
106 #endif /* not DOUG_LEA_MALLOC */
108 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
110 /* When GTK uses the file chooser dialog, different backends can be loaded
111 dynamically. One such a backend is the Gnome VFS backend that gets loaded
112 if you run Gnome. That backend creates several threads and also allocates
113 memory with malloc.
115 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
116 functions below are called from malloc, there is a chance that one
117 of these threads preempts the Emacs main thread and the hook variables
118 end up in an inconsistent state. So we have a mutex to prevent that (note
119 that the backend handles concurrent access to malloc within its own threads
120 but Emacs code running in the main thread is not included in that control).
122 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
123 happens in one of the backend threads we will have two threads that tries
124 to run Emacs code at once, and the code is not prepared for that.
125 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
127 static pthread_mutex_t alloc_mutex;
129 #define BLOCK_INPUT_ALLOC \
130 do \
132 if (pthread_equal (pthread_self (), main_thread)) \
133 BLOCK_INPUT; \
134 pthread_mutex_lock (&alloc_mutex); \
136 while (0)
137 #define UNBLOCK_INPUT_ALLOC \
138 do \
140 pthread_mutex_unlock (&alloc_mutex); \
141 if (pthread_equal (pthread_self (), main_thread)) \
142 UNBLOCK_INPUT; \
144 while (0)
146 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
148 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
149 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
151 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
153 /* Value of _bytes_used, when spare_memory was freed. */
155 static __malloc_size_t bytes_used_when_full;
157 static __malloc_size_t bytes_used_when_reconsidered;
159 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
160 to a struct Lisp_String. */
162 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
163 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
164 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
166 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
167 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
168 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
170 /* Value is the number of bytes/chars of S, a pointer to a struct
171 Lisp_String. This must be used instead of STRING_BYTES (S) or
172 S->size during GC, because S->size contains the mark bit for
173 strings. */
175 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
176 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
178 /* Number of bytes of consing done since the last gc. */
180 int consing_since_gc;
182 /* Count the amount of consing of various sorts of space. */
184 EMACS_INT cons_cells_consed;
185 EMACS_INT floats_consed;
186 EMACS_INT vector_cells_consed;
187 EMACS_INT symbols_consed;
188 EMACS_INT string_chars_consed;
189 EMACS_INT misc_objects_consed;
190 EMACS_INT intervals_consed;
191 EMACS_INT strings_consed;
193 /* Minimum number of bytes of consing since GC before next GC. */
195 EMACS_INT gc_cons_threshold;
197 /* Similar minimum, computed from Vgc_cons_percentage. */
199 EMACS_INT gc_relative_threshold;
201 static Lisp_Object Vgc_cons_percentage;
203 /* Minimum number of bytes of consing since GC before next GC,
204 when memory is full. */
206 EMACS_INT memory_full_cons_threshold;
208 /* Nonzero during GC. */
210 int gc_in_progress;
212 /* Nonzero means abort if try to GC.
213 This is for code which is written on the assumption that
214 no GC will happen, so as to verify that assumption. */
216 int abort_on_gc;
218 /* Nonzero means display messages at beginning and end of GC. */
220 int garbage_collection_messages;
222 #ifndef VIRT_ADDR_VARIES
223 extern
224 #endif /* VIRT_ADDR_VARIES */
225 int malloc_sbrk_used;
227 #ifndef VIRT_ADDR_VARIES
228 extern
229 #endif /* VIRT_ADDR_VARIES */
230 int malloc_sbrk_unused;
232 /* Number of live and free conses etc. */
234 static int total_conses, total_markers, total_symbols, total_vector_size;
235 static int total_free_conses, total_free_markers, total_free_symbols;
236 static int total_free_floats, total_floats;
238 /* Points to memory space allocated as "spare", to be freed if we run
239 out of memory. We keep one large block, four cons-blocks, and
240 two string blocks. */
242 static char *spare_memory[7];
244 /* Amount of spare memory to keep in large reserve block. */
246 #define SPARE_MEMORY (1 << 14)
248 /* Number of extra blocks malloc should get when it needs more core. */
250 static int malloc_hysteresis;
252 /* Non-nil means defun should do purecopy on the function definition. */
254 Lisp_Object Vpurify_flag;
256 /* Non-nil means we are handling a memory-full error. */
258 Lisp_Object Vmemory_full;
260 #ifndef HAVE_SHM
262 /* Initialize it to a nonzero value to force it into data space
263 (rather than bss space). That way unexec will remap it into text
264 space (pure), on some systems. We have not implemented the
265 remapping on more recent systems because this is less important
266 nowadays than in the days of small memories and timesharing. */
268 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
269 #define PUREBEG (char *) pure
271 #else /* HAVE_SHM */
273 #define pure PURE_SEG_BITS /* Use shared memory segment */
274 #define PUREBEG (char *)PURE_SEG_BITS
276 #endif /* HAVE_SHM */
278 /* Pointer to the pure area, and its size. */
280 static char *purebeg;
281 static size_t pure_size;
283 /* Number of bytes of pure storage used before pure storage overflowed.
284 If this is non-zero, this implies that an overflow occurred. */
286 static size_t pure_bytes_used_before_overflow;
288 /* Value is non-zero if P points into pure space. */
290 #define PURE_POINTER_P(P) \
291 (((PNTR_COMPARISON_TYPE) (P) \
292 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
293 && ((PNTR_COMPARISON_TYPE) (P) \
294 >= (PNTR_COMPARISON_TYPE) purebeg))
296 /* Total number of bytes allocated in pure storage. */
298 EMACS_INT pure_bytes_used;
300 /* Index in pure at which next pure Lisp object will be allocated.. */
302 static EMACS_INT pure_bytes_used_lisp;
304 /* Number of bytes allocated for non-Lisp objects in pure storage. */
306 static EMACS_INT pure_bytes_used_non_lisp;
308 /* If nonzero, this is a warning delivered by malloc and not yet
309 displayed. */
311 char *pending_malloc_warning;
313 /* Pre-computed signal argument for use when memory is exhausted. */
315 Lisp_Object Vmemory_signal_data;
317 /* Maximum amount of C stack to save when a GC happens. */
319 #ifndef MAX_SAVE_STACK
320 #define MAX_SAVE_STACK 16000
321 #endif
323 /* Buffer in which we save a copy of the C stack at each GC. */
325 static char *stack_copy;
326 static int stack_copy_size;
328 /* Non-zero means ignore malloc warnings. Set during initialization.
329 Currently not used. */
331 static int ignore_warnings;
333 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
335 /* Hook run after GC has finished. */
337 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
339 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
340 EMACS_INT gcs_done; /* accumulated GCs */
342 static void mark_buffer P_ ((Lisp_Object));
343 static void mark_terminals P_ ((void));
344 extern void mark_kboards P_ ((void));
345 extern void mark_ttys P_ ((void));
346 extern void mark_backtrace P_ ((void));
347 static void gc_sweep P_ ((void));
348 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
349 static void mark_face_cache P_ ((struct face_cache *));
351 #ifdef HAVE_WINDOW_SYSTEM
352 extern void mark_fringe_data P_ ((void));
353 #endif /* HAVE_WINDOW_SYSTEM */
355 static struct Lisp_String *allocate_string P_ ((void));
356 static void compact_small_strings P_ ((void));
357 static void free_large_strings P_ ((void));
358 static void sweep_strings P_ ((void));
360 extern int message_enable_multibyte;
362 /* When scanning the C stack for live Lisp objects, Emacs keeps track
363 of what memory allocated via lisp_malloc is intended for what
364 purpose. This enumeration specifies the type of memory. */
366 enum mem_type
368 MEM_TYPE_NON_LISP,
369 MEM_TYPE_BUFFER,
370 MEM_TYPE_CONS,
371 MEM_TYPE_STRING,
372 MEM_TYPE_MISC,
373 MEM_TYPE_SYMBOL,
374 MEM_TYPE_FLOAT,
375 /* We used to keep separate mem_types for subtypes of vectors such as
376 process, hash_table, frame, terminal, and window, but we never made
377 use of the distinction, so it only caused source-code complexity
378 and runtime slowdown. Minor but pointless. */
379 MEM_TYPE_VECTORLIKE
382 static POINTER_TYPE *lisp_align_malloc P_ ((size_t, enum mem_type));
383 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
384 void refill_memory_reserve ();
387 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
389 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
390 #include <stdio.h> /* For fprintf. */
391 #endif
393 /* A unique object in pure space used to make some Lisp objects
394 on free lists recognizable in O(1). */
396 static Lisp_Object Vdead;
398 #ifdef GC_MALLOC_CHECK
400 enum mem_type allocated_mem_type;
401 static int dont_register_blocks;
403 #endif /* GC_MALLOC_CHECK */
405 /* A node in the red-black tree describing allocated memory containing
406 Lisp data. Each such block is recorded with its start and end
407 address when it is allocated, and removed from the tree when it
408 is freed.
410 A red-black tree is a balanced binary tree with the following
411 properties:
413 1. Every node is either red or black.
414 2. Every leaf is black.
415 3. If a node is red, then both of its children are black.
416 4. Every simple path from a node to a descendant leaf contains
417 the same number of black nodes.
418 5. The root is always black.
420 When nodes are inserted into the tree, or deleted from the tree,
421 the tree is "fixed" so that these properties are always true.
423 A red-black tree with N internal nodes has height at most 2
424 log(N+1). Searches, insertions and deletions are done in O(log N).
425 Please see a text book about data structures for a detailed
426 description of red-black trees. Any book worth its salt should
427 describe them. */
429 struct mem_node
431 /* Children of this node. These pointers are never NULL. When there
432 is no child, the value is MEM_NIL, which points to a dummy node. */
433 struct mem_node *left, *right;
435 /* The parent of this node. In the root node, this is NULL. */
436 struct mem_node *parent;
438 /* Start and end of allocated region. */
439 void *start, *end;
441 /* Node color. */
442 enum {MEM_BLACK, MEM_RED} color;
444 /* Memory type. */
445 enum mem_type type;
448 /* Base address of stack. Set in main. */
450 Lisp_Object *stack_base;
452 /* Root of the tree describing allocated Lisp memory. */
454 static struct mem_node *mem_root;
456 /* Lowest and highest known address in the heap. */
458 static void *min_heap_address, *max_heap_address;
460 /* Sentinel node of the tree. */
462 static struct mem_node mem_z;
463 #define MEM_NIL &mem_z
465 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
466 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT));
467 static void lisp_free P_ ((POINTER_TYPE *));
468 static void mark_stack P_ ((void));
469 static int live_vector_p P_ ((struct mem_node *, void *));
470 static int live_buffer_p P_ ((struct mem_node *, void *));
471 static int live_string_p P_ ((struct mem_node *, void *));
472 static int live_cons_p P_ ((struct mem_node *, void *));
473 static int live_symbol_p P_ ((struct mem_node *, void *));
474 static int live_float_p P_ ((struct mem_node *, void *));
475 static int live_misc_p P_ ((struct mem_node *, void *));
476 static void mark_maybe_object P_ ((Lisp_Object));
477 static void mark_memory P_ ((void *, void *, int));
478 static void mem_init P_ ((void));
479 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
480 static void mem_insert_fixup P_ ((struct mem_node *));
481 static void mem_rotate_left P_ ((struct mem_node *));
482 static void mem_rotate_right P_ ((struct mem_node *));
483 static void mem_delete P_ ((struct mem_node *));
484 static void mem_delete_fixup P_ ((struct mem_node *));
485 static INLINE struct mem_node *mem_find P_ ((void *));
488 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
489 static void check_gcpros P_ ((void));
490 #endif
492 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
494 /* Recording what needs to be marked for gc. */
496 struct gcpro *gcprolist;
498 /* Addresses of staticpro'd variables. Initialize it to a nonzero
499 value; otherwise some compilers put it into BSS. */
501 #define NSTATICS 0x640
502 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
504 /* Index of next unused slot in staticvec. */
506 static int staticidx = 0;
508 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
511 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
512 ALIGNMENT must be a power of 2. */
514 #define ALIGN(ptr, ALIGNMENT) \
515 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
516 & ~((ALIGNMENT) - 1)))
520 /************************************************************************
521 Malloc
522 ************************************************************************/
524 /* Function malloc calls this if it finds we are near exhausting storage. */
526 void
527 malloc_warning (str)
528 char *str;
530 pending_malloc_warning = str;
534 /* Display an already-pending malloc warning. */
536 void
537 display_malloc_warning ()
539 call3 (intern ("display-warning"),
540 intern ("alloc"),
541 build_string (pending_malloc_warning),
542 intern ("emergency"));
543 pending_malloc_warning = 0;
547 #ifdef DOUG_LEA_MALLOC
548 # define BYTES_USED (mallinfo ().uordblks)
549 #else
550 # define BYTES_USED _bytes_used
551 #endif
553 /* Called if we can't allocate relocatable space for a buffer. */
555 void
556 buffer_memory_full ()
558 /* If buffers use the relocating allocator, no need to free
559 spare_memory, because we may have plenty of malloc space left
560 that we could get, and if we don't, the malloc that fails will
561 itself cause spare_memory to be freed. If buffers don't use the
562 relocating allocator, treat this like any other failing
563 malloc. */
565 #ifndef REL_ALLOC
566 memory_full ();
567 #endif
569 /* This used to call error, but if we've run out of memory, we could
570 get infinite recursion trying to build the string. */
571 xsignal (Qnil, Vmemory_signal_data);
575 #ifdef XMALLOC_OVERRUN_CHECK
577 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
578 and a 16 byte trailer around each block.
580 The header consists of 12 fixed bytes + a 4 byte integer contaning the
581 original block size, while the trailer consists of 16 fixed bytes.
583 The header is used to detect whether this block has been allocated
584 through these functions -- as it seems that some low-level libc
585 functions may bypass the malloc hooks.
589 #define XMALLOC_OVERRUN_CHECK_SIZE 16
591 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
592 { 0x9a, 0x9b, 0xae, 0xaf,
593 0xbf, 0xbe, 0xce, 0xcf,
594 0xea, 0xeb, 0xec, 0xed };
596 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
597 { 0xaa, 0xab, 0xac, 0xad,
598 0xba, 0xbb, 0xbc, 0xbd,
599 0xca, 0xcb, 0xcc, 0xcd,
600 0xda, 0xdb, 0xdc, 0xdd };
602 /* Macros to insert and extract the block size in the header. */
604 #define XMALLOC_PUT_SIZE(ptr, size) \
605 (ptr[-1] = (size & 0xff), \
606 ptr[-2] = ((size >> 8) & 0xff), \
607 ptr[-3] = ((size >> 16) & 0xff), \
608 ptr[-4] = ((size >> 24) & 0xff))
610 #define XMALLOC_GET_SIZE(ptr) \
611 (size_t)((unsigned)(ptr[-1]) | \
612 ((unsigned)(ptr[-2]) << 8) | \
613 ((unsigned)(ptr[-3]) << 16) | \
614 ((unsigned)(ptr[-4]) << 24))
617 /* The call depth in overrun_check functions. For example, this might happen:
618 xmalloc()
619 overrun_check_malloc()
620 -> malloc -> (via hook)_-> emacs_blocked_malloc
621 -> overrun_check_malloc
622 call malloc (hooks are NULL, so real malloc is called).
623 malloc returns 10000.
624 add overhead, return 10016.
625 <- (back in overrun_check_malloc)
626 add overhead again, return 10032
627 xmalloc returns 10032.
629 (time passes).
631 xfree(10032)
632 overrun_check_free(10032)
633 decrease overhed
634 free(10016) <- crash, because 10000 is the original pointer. */
636 static int check_depth;
638 /* Like malloc, but wraps allocated block with header and trailer. */
640 POINTER_TYPE *
641 overrun_check_malloc (size)
642 size_t size;
644 register unsigned char *val;
645 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
647 val = (unsigned char *) malloc (size + overhead);
648 if (val && check_depth == 1)
650 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
651 val += XMALLOC_OVERRUN_CHECK_SIZE;
652 XMALLOC_PUT_SIZE(val, size);
653 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
655 --check_depth;
656 return (POINTER_TYPE *)val;
660 /* Like realloc, but checks old block for overrun, and wraps new block
661 with header and trailer. */
663 POINTER_TYPE *
664 overrun_check_realloc (block, size)
665 POINTER_TYPE *block;
666 size_t size;
668 register unsigned char *val = (unsigned char *)block;
669 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
671 if (val
672 && check_depth == 1
673 && bcmp (xmalloc_overrun_check_header,
674 val - XMALLOC_OVERRUN_CHECK_SIZE,
675 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
677 size_t osize = XMALLOC_GET_SIZE (val);
678 if (bcmp (xmalloc_overrun_check_trailer,
679 val + osize,
680 XMALLOC_OVERRUN_CHECK_SIZE))
681 abort ();
682 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
683 val -= XMALLOC_OVERRUN_CHECK_SIZE;
684 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
687 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
689 if (val && check_depth == 1)
691 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
692 val += XMALLOC_OVERRUN_CHECK_SIZE;
693 XMALLOC_PUT_SIZE(val, size);
694 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
696 --check_depth;
697 return (POINTER_TYPE *)val;
700 /* Like free, but checks block for overrun. */
702 void
703 overrun_check_free (block)
704 POINTER_TYPE *block;
706 unsigned char *val = (unsigned char *)block;
708 ++check_depth;
709 if (val
710 && check_depth == 1
711 && bcmp (xmalloc_overrun_check_header,
712 val - XMALLOC_OVERRUN_CHECK_SIZE,
713 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
715 size_t osize = XMALLOC_GET_SIZE (val);
716 if (bcmp (xmalloc_overrun_check_trailer,
717 val + osize,
718 XMALLOC_OVERRUN_CHECK_SIZE))
719 abort ();
720 #ifdef XMALLOC_CLEAR_FREE_MEMORY
721 val -= XMALLOC_OVERRUN_CHECK_SIZE;
722 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
723 #else
724 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
725 val -= XMALLOC_OVERRUN_CHECK_SIZE;
726 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
727 #endif
730 free (val);
731 --check_depth;
734 #undef malloc
735 #undef realloc
736 #undef free
737 #define malloc overrun_check_malloc
738 #define realloc overrun_check_realloc
739 #define free overrun_check_free
740 #endif
742 #ifdef SYNC_INPUT
743 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
744 there's no need to block input around malloc. */
745 #define MALLOC_BLOCK_INPUT ((void)0)
746 #define MALLOC_UNBLOCK_INPUT ((void)0)
747 #else
748 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
749 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
750 #endif
752 /* Like malloc but check for no memory and block interrupt input.. */
754 POINTER_TYPE *
755 xmalloc (size)
756 size_t size;
758 register POINTER_TYPE *val;
760 MALLOC_BLOCK_INPUT;
761 val = (POINTER_TYPE *) malloc (size);
762 MALLOC_UNBLOCK_INPUT;
764 if (!val && size)
765 memory_full ();
766 return val;
770 /* Like realloc but check for no memory and block interrupt input.. */
772 POINTER_TYPE *
773 xrealloc (block, size)
774 POINTER_TYPE *block;
775 size_t size;
777 register POINTER_TYPE *val;
779 MALLOC_BLOCK_INPUT;
780 /* We must call malloc explicitly when BLOCK is 0, since some
781 reallocs don't do this. */
782 if (! block)
783 val = (POINTER_TYPE *) malloc (size);
784 else
785 val = (POINTER_TYPE *) realloc (block, size);
786 MALLOC_UNBLOCK_INPUT;
788 if (!val && size) memory_full ();
789 return val;
793 /* Like free but block interrupt input. */
795 void
796 xfree (block)
797 POINTER_TYPE *block;
799 if (!block)
800 return;
801 MALLOC_BLOCK_INPUT;
802 free (block);
803 MALLOC_UNBLOCK_INPUT;
804 /* We don't call refill_memory_reserve here
805 because that duplicates doing so in emacs_blocked_free
806 and the criterion should go there. */
810 /* Like strdup, but uses xmalloc. */
812 char *
813 xstrdup (s)
814 const char *s;
816 size_t len = strlen (s) + 1;
817 char *p = (char *) xmalloc (len);
818 bcopy (s, p, len);
819 return p;
823 /* Unwind for SAFE_ALLOCA */
825 Lisp_Object
826 safe_alloca_unwind (arg)
827 Lisp_Object arg;
829 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
831 p->dogc = 0;
832 xfree (p->pointer);
833 p->pointer = 0;
834 free_misc (arg);
835 return Qnil;
839 /* Like malloc but used for allocating Lisp data. NBYTES is the
840 number of bytes to allocate, TYPE describes the intended use of the
841 allcated memory block (for strings, for conses, ...). */
843 #ifndef USE_LSB_TAG
844 static void *lisp_malloc_loser;
845 #endif
847 static POINTER_TYPE *
848 lisp_malloc (nbytes, type)
849 size_t nbytes;
850 enum mem_type type;
852 register void *val;
854 MALLOC_BLOCK_INPUT;
856 #ifdef GC_MALLOC_CHECK
857 allocated_mem_type = type;
858 #endif
860 val = (void *) malloc (nbytes);
862 #ifndef USE_LSB_TAG
863 /* If the memory just allocated cannot be addressed thru a Lisp
864 object's pointer, and it needs to be,
865 that's equivalent to running out of memory. */
866 if (val && type != MEM_TYPE_NON_LISP)
868 Lisp_Object tem;
869 XSETCONS (tem, (char *) val + nbytes - 1);
870 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
872 lisp_malloc_loser = val;
873 free (val);
874 val = 0;
877 #endif
879 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
880 if (val && type != MEM_TYPE_NON_LISP)
881 mem_insert (val, (char *) val + nbytes, type);
882 #endif
884 MALLOC_UNBLOCK_INPUT;
885 if (!val && nbytes)
886 memory_full ();
887 return val;
890 /* Free BLOCK. This must be called to free memory allocated with a
891 call to lisp_malloc. */
893 static void
894 lisp_free (block)
895 POINTER_TYPE *block;
897 MALLOC_BLOCK_INPUT;
898 free (block);
899 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
900 mem_delete (mem_find (block));
901 #endif
902 MALLOC_UNBLOCK_INPUT;
905 /* Allocation of aligned blocks of memory to store Lisp data. */
906 /* The entry point is lisp_align_malloc which returns blocks of at most */
907 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
909 /* Use posix_memalloc if the system has it and we're using the system's
910 malloc (because our gmalloc.c routines don't have posix_memalign although
911 its memalloc could be used). */
912 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
913 #define USE_POSIX_MEMALIGN 1
914 #endif
916 /* BLOCK_ALIGN has to be a power of 2. */
917 #define BLOCK_ALIGN (1 << 10)
919 /* Padding to leave at the end of a malloc'd block. This is to give
920 malloc a chance to minimize the amount of memory wasted to alignment.
921 It should be tuned to the particular malloc library used.
922 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
923 posix_memalign on the other hand would ideally prefer a value of 4
924 because otherwise, there's 1020 bytes wasted between each ablocks.
925 In Emacs, testing shows that those 1020 can most of the time be
926 efficiently used by malloc to place other objects, so a value of 0 can
927 still preferable unless you have a lot of aligned blocks and virtually
928 nothing else. */
929 #define BLOCK_PADDING 0
930 #define BLOCK_BYTES \
931 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
933 /* Internal data structures and constants. */
935 #define ABLOCKS_SIZE 16
937 /* An aligned block of memory. */
938 struct ablock
940 union
942 char payload[BLOCK_BYTES];
943 struct ablock *next_free;
944 } x;
945 /* `abase' is the aligned base of the ablocks. */
946 /* It is overloaded to hold the virtual `busy' field that counts
947 the number of used ablock in the parent ablocks.
948 The first ablock has the `busy' field, the others have the `abase'
949 field. To tell the difference, we assume that pointers will have
950 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
951 is used to tell whether the real base of the parent ablocks is `abase'
952 (if not, the word before the first ablock holds a pointer to the
953 real base). */
954 struct ablocks *abase;
955 /* The padding of all but the last ablock is unused. The padding of
956 the last ablock in an ablocks is not allocated. */
957 #if BLOCK_PADDING
958 char padding[BLOCK_PADDING];
959 #endif
962 /* A bunch of consecutive aligned blocks. */
963 struct ablocks
965 struct ablock blocks[ABLOCKS_SIZE];
968 /* Size of the block requested from malloc or memalign. */
969 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
971 #define ABLOCK_ABASE(block) \
972 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
973 ? (struct ablocks *)(block) \
974 : (block)->abase)
976 /* Virtual `busy' field. */
977 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
979 /* Pointer to the (not necessarily aligned) malloc block. */
980 #ifdef USE_POSIX_MEMALIGN
981 #define ABLOCKS_BASE(abase) (abase)
982 #else
983 #define ABLOCKS_BASE(abase) \
984 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
985 #endif
987 /* The list of free ablock. */
988 static struct ablock *free_ablock;
990 /* Allocate an aligned block of nbytes.
991 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
992 smaller or equal to BLOCK_BYTES. */
993 static POINTER_TYPE *
994 lisp_align_malloc (nbytes, type)
995 size_t nbytes;
996 enum mem_type type;
998 void *base, *val;
999 struct ablocks *abase;
1001 eassert (nbytes <= BLOCK_BYTES);
1003 MALLOC_BLOCK_INPUT;
1005 #ifdef GC_MALLOC_CHECK
1006 allocated_mem_type = type;
1007 #endif
1009 if (!free_ablock)
1011 int i;
1012 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
1014 #ifdef DOUG_LEA_MALLOC
1015 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1016 because mapped region contents are not preserved in
1017 a dumped Emacs. */
1018 mallopt (M_MMAP_MAX, 0);
1019 #endif
1021 #ifdef USE_POSIX_MEMALIGN
1023 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1024 if (err)
1025 base = NULL;
1026 abase = base;
1028 #else
1029 base = malloc (ABLOCKS_BYTES);
1030 abase = ALIGN (base, BLOCK_ALIGN);
1031 #endif
1033 if (base == 0)
1035 MALLOC_UNBLOCK_INPUT;
1036 memory_full ();
1039 aligned = (base == abase);
1040 if (!aligned)
1041 ((void**)abase)[-1] = base;
1043 #ifdef DOUG_LEA_MALLOC
1044 /* Back to a reasonable maximum of mmap'ed areas. */
1045 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1046 #endif
1048 #ifndef USE_LSB_TAG
1049 /* If the memory just allocated cannot be addressed thru a Lisp
1050 object's pointer, and it needs to be, that's equivalent to
1051 running out of memory. */
1052 if (type != MEM_TYPE_NON_LISP)
1054 Lisp_Object tem;
1055 char *end = (char *) base + ABLOCKS_BYTES - 1;
1056 XSETCONS (tem, end);
1057 if ((char *) XCONS (tem) != end)
1059 lisp_malloc_loser = base;
1060 free (base);
1061 MALLOC_UNBLOCK_INPUT;
1062 memory_full ();
1065 #endif
1067 /* Initialize the blocks and put them on the free list.
1068 Is `base' was not properly aligned, we can't use the last block. */
1069 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1071 abase->blocks[i].abase = abase;
1072 abase->blocks[i].x.next_free = free_ablock;
1073 free_ablock = &abase->blocks[i];
1075 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
1077 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
1078 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1079 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1080 eassert (ABLOCKS_BASE (abase) == base);
1081 eassert (aligned == (long) ABLOCKS_BUSY (abase));
1084 abase = ABLOCK_ABASE (free_ablock);
1085 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1086 val = free_ablock;
1087 free_ablock = free_ablock->x.next_free;
1089 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1090 if (val && type != MEM_TYPE_NON_LISP)
1091 mem_insert (val, (char *) val + nbytes, type);
1092 #endif
1094 MALLOC_UNBLOCK_INPUT;
1095 if (!val && nbytes)
1096 memory_full ();
1098 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1099 return val;
1102 static void
1103 lisp_align_free (block)
1104 POINTER_TYPE *block;
1106 struct ablock *ablock = block;
1107 struct ablocks *abase = ABLOCK_ABASE (ablock);
1109 MALLOC_BLOCK_INPUT;
1110 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1111 mem_delete (mem_find (block));
1112 #endif
1113 /* Put on free list. */
1114 ablock->x.next_free = free_ablock;
1115 free_ablock = ablock;
1116 /* Update busy count. */
1117 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1119 if (2 > (long) ABLOCKS_BUSY (abase))
1120 { /* All the blocks are free. */
1121 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1122 struct ablock **tem = &free_ablock;
1123 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1125 while (*tem)
1127 if (*tem >= (struct ablock *) abase && *tem < atop)
1129 i++;
1130 *tem = (*tem)->x.next_free;
1132 else
1133 tem = &(*tem)->x.next_free;
1135 eassert ((aligned & 1) == aligned);
1136 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1137 #ifdef USE_POSIX_MEMALIGN
1138 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1139 #endif
1140 free (ABLOCKS_BASE (abase));
1142 MALLOC_UNBLOCK_INPUT;
1145 /* Return a new buffer structure allocated from the heap with
1146 a call to lisp_malloc. */
1148 struct buffer *
1149 allocate_buffer ()
1151 struct buffer *b
1152 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1153 MEM_TYPE_BUFFER);
1154 XSETPVECTYPESIZE (b, PVEC_BUFFER,
1155 ((sizeof (struct buffer) + sizeof (EMACS_INT) - 1)
1156 / sizeof (EMACS_INT)));
1157 return b;
1161 #ifndef SYSTEM_MALLOC
1163 /* Arranging to disable input signals while we're in malloc.
1165 This only works with GNU malloc. To help out systems which can't
1166 use GNU malloc, all the calls to malloc, realloc, and free
1167 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1168 pair; unfortunately, we have no idea what C library functions
1169 might call malloc, so we can't really protect them unless you're
1170 using GNU malloc. Fortunately, most of the major operating systems
1171 can use GNU malloc. */
1173 #ifndef SYNC_INPUT
1174 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1175 there's no need to block input around malloc. */
1177 #ifndef DOUG_LEA_MALLOC
1178 extern void * (*__malloc_hook) P_ ((size_t, const void *));
1179 extern void * (*__realloc_hook) P_ ((void *, size_t, const void *));
1180 extern void (*__free_hook) P_ ((void *, const void *));
1181 /* Else declared in malloc.h, perhaps with an extra arg. */
1182 #endif /* DOUG_LEA_MALLOC */
1183 static void * (*old_malloc_hook) P_ ((size_t, const void *));
1184 static void * (*old_realloc_hook) P_ ((void *, size_t, const void*));
1185 static void (*old_free_hook) P_ ((void*, const void*));
1187 /* This function is used as the hook for free to call. */
1189 static void
1190 emacs_blocked_free (ptr, ptr2)
1191 void *ptr;
1192 const void *ptr2;
1194 BLOCK_INPUT_ALLOC;
1196 #ifdef GC_MALLOC_CHECK
1197 if (ptr)
1199 struct mem_node *m;
1201 m = mem_find (ptr);
1202 if (m == MEM_NIL || m->start != ptr)
1204 fprintf (stderr,
1205 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1206 abort ();
1208 else
1210 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1211 mem_delete (m);
1214 #endif /* GC_MALLOC_CHECK */
1216 __free_hook = old_free_hook;
1217 free (ptr);
1219 /* If we released our reserve (due to running out of memory),
1220 and we have a fair amount free once again,
1221 try to set aside another reserve in case we run out once more. */
1222 if (! NILP (Vmemory_full)
1223 /* Verify there is enough space that even with the malloc
1224 hysteresis this call won't run out again.
1225 The code here is correct as long as SPARE_MEMORY
1226 is substantially larger than the block size malloc uses. */
1227 && (bytes_used_when_full
1228 > ((bytes_used_when_reconsidered = BYTES_USED)
1229 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1230 refill_memory_reserve ();
1232 __free_hook = emacs_blocked_free;
1233 UNBLOCK_INPUT_ALLOC;
1237 /* This function is the malloc hook that Emacs uses. */
1239 static void *
1240 emacs_blocked_malloc (size, ptr)
1241 size_t size;
1242 const void *ptr;
1244 void *value;
1246 BLOCK_INPUT_ALLOC;
1247 __malloc_hook = old_malloc_hook;
1248 #ifdef DOUG_LEA_MALLOC
1249 /* Segfaults on my system. --lorentey */
1250 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1251 #else
1252 __malloc_extra_blocks = malloc_hysteresis;
1253 #endif
1255 value = (void *) malloc (size);
1257 #ifdef GC_MALLOC_CHECK
1259 struct mem_node *m = mem_find (value);
1260 if (m != MEM_NIL)
1262 fprintf (stderr, "Malloc returned %p which is already in use\n",
1263 value);
1264 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1265 m->start, m->end, (char *) m->end - (char *) m->start,
1266 m->type);
1267 abort ();
1270 if (!dont_register_blocks)
1272 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1273 allocated_mem_type = MEM_TYPE_NON_LISP;
1276 #endif /* GC_MALLOC_CHECK */
1278 __malloc_hook = emacs_blocked_malloc;
1279 UNBLOCK_INPUT_ALLOC;
1281 /* fprintf (stderr, "%p malloc\n", value); */
1282 return value;
1286 /* This function is the realloc hook that Emacs uses. */
1288 static void *
1289 emacs_blocked_realloc (ptr, size, ptr2)
1290 void *ptr;
1291 size_t size;
1292 const void *ptr2;
1294 void *value;
1296 BLOCK_INPUT_ALLOC;
1297 __realloc_hook = old_realloc_hook;
1299 #ifdef GC_MALLOC_CHECK
1300 if (ptr)
1302 struct mem_node *m = mem_find (ptr);
1303 if (m == MEM_NIL || m->start != ptr)
1305 fprintf (stderr,
1306 "Realloc of %p which wasn't allocated with malloc\n",
1307 ptr);
1308 abort ();
1311 mem_delete (m);
1314 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1316 /* Prevent malloc from registering blocks. */
1317 dont_register_blocks = 1;
1318 #endif /* GC_MALLOC_CHECK */
1320 value = (void *) realloc (ptr, size);
1322 #ifdef GC_MALLOC_CHECK
1323 dont_register_blocks = 0;
1326 struct mem_node *m = mem_find (value);
1327 if (m != MEM_NIL)
1329 fprintf (stderr, "Realloc returns memory that is already in use\n");
1330 abort ();
1333 /* Can't handle zero size regions in the red-black tree. */
1334 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1337 /* fprintf (stderr, "%p <- realloc\n", value); */
1338 #endif /* GC_MALLOC_CHECK */
1340 __realloc_hook = emacs_blocked_realloc;
1341 UNBLOCK_INPUT_ALLOC;
1343 return value;
1347 #ifdef HAVE_GTK_AND_PTHREAD
1348 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1349 normal malloc. Some thread implementations need this as they call
1350 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1351 calls malloc because it is the first call, and we have an endless loop. */
1353 void
1354 reset_malloc_hooks ()
1356 __free_hook = old_free_hook;
1357 __malloc_hook = old_malloc_hook;
1358 __realloc_hook = old_realloc_hook;
1360 #endif /* HAVE_GTK_AND_PTHREAD */
1363 /* Called from main to set up malloc to use our hooks. */
1365 void
1366 uninterrupt_malloc ()
1368 #ifdef HAVE_GTK_AND_PTHREAD
1369 #ifdef DOUG_LEA_MALLOC
1370 pthread_mutexattr_t attr;
1372 /* GLIBC has a faster way to do this, but lets keep it portable.
1373 This is according to the Single UNIX Specification. */
1374 pthread_mutexattr_init (&attr);
1375 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1376 pthread_mutex_init (&alloc_mutex, &attr);
1377 #else /* !DOUG_LEA_MALLOC */
1378 /* Some systems such as Solaris 2.6 doesn't have a recursive mutex,
1379 and the bundled gmalloc.c doesn't require it. */
1380 pthread_mutex_init (&alloc_mutex, NULL);
1381 #endif /* !DOUG_LEA_MALLOC */
1382 #endif /* HAVE_GTK_AND_PTHREAD */
1384 if (__free_hook != emacs_blocked_free)
1385 old_free_hook = __free_hook;
1386 __free_hook = emacs_blocked_free;
1388 if (__malloc_hook != emacs_blocked_malloc)
1389 old_malloc_hook = __malloc_hook;
1390 __malloc_hook = emacs_blocked_malloc;
1392 if (__realloc_hook != emacs_blocked_realloc)
1393 old_realloc_hook = __realloc_hook;
1394 __realloc_hook = emacs_blocked_realloc;
1397 #endif /* not SYNC_INPUT */
1398 #endif /* not SYSTEM_MALLOC */
1402 /***********************************************************************
1403 Interval Allocation
1404 ***********************************************************************/
1406 /* Number of intervals allocated in an interval_block structure.
1407 The 1020 is 1024 minus malloc overhead. */
1409 #define INTERVAL_BLOCK_SIZE \
1410 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1412 /* Intervals are allocated in chunks in form of an interval_block
1413 structure. */
1415 struct interval_block
1417 /* Place `intervals' first, to preserve alignment. */
1418 struct interval intervals[INTERVAL_BLOCK_SIZE];
1419 struct interval_block *next;
1422 /* Current interval block. Its `next' pointer points to older
1423 blocks. */
1425 static struct interval_block *interval_block;
1427 /* Index in interval_block above of the next unused interval
1428 structure. */
1430 static int interval_block_index;
1432 /* Number of free and live intervals. */
1434 static int total_free_intervals, total_intervals;
1436 /* List of free intervals. */
1438 INTERVAL interval_free_list;
1440 /* Total number of interval blocks now in use. */
1442 static int n_interval_blocks;
1445 /* Initialize interval allocation. */
1447 static void
1448 init_intervals ()
1450 interval_block = NULL;
1451 interval_block_index = INTERVAL_BLOCK_SIZE;
1452 interval_free_list = 0;
1453 n_interval_blocks = 0;
1457 /* Return a new interval. */
1459 INTERVAL
1460 make_interval ()
1462 INTERVAL val;
1464 /* eassert (!handling_signal); */
1466 MALLOC_BLOCK_INPUT;
1468 if (interval_free_list)
1470 val = interval_free_list;
1471 interval_free_list = INTERVAL_PARENT (interval_free_list);
1473 else
1475 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1477 register struct interval_block *newi;
1479 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1480 MEM_TYPE_NON_LISP);
1482 newi->next = interval_block;
1483 interval_block = newi;
1484 interval_block_index = 0;
1485 n_interval_blocks++;
1487 val = &interval_block->intervals[interval_block_index++];
1490 MALLOC_UNBLOCK_INPUT;
1492 consing_since_gc += sizeof (struct interval);
1493 intervals_consed++;
1494 RESET_INTERVAL (val);
1495 val->gcmarkbit = 0;
1496 return val;
1500 /* Mark Lisp objects in interval I. */
1502 static void
1503 mark_interval (i, dummy)
1504 register INTERVAL i;
1505 Lisp_Object dummy;
1507 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1508 i->gcmarkbit = 1;
1509 mark_object (i->plist);
1513 /* Mark the interval tree rooted in TREE. Don't call this directly;
1514 use the macro MARK_INTERVAL_TREE instead. */
1516 static void
1517 mark_interval_tree (tree)
1518 register INTERVAL tree;
1520 /* No need to test if this tree has been marked already; this
1521 function is always called through the MARK_INTERVAL_TREE macro,
1522 which takes care of that. */
1524 traverse_intervals_noorder (tree, mark_interval, Qnil);
1528 /* Mark the interval tree rooted in I. */
1530 #define MARK_INTERVAL_TREE(i) \
1531 do { \
1532 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1533 mark_interval_tree (i); \
1534 } while (0)
1537 #define UNMARK_BALANCE_INTERVALS(i) \
1538 do { \
1539 if (! NULL_INTERVAL_P (i)) \
1540 (i) = balance_intervals (i); \
1541 } while (0)
1544 /* Number support. If USE_LISP_UNION_TYPE is in effect, we
1545 can't create number objects in macros. */
1546 #ifndef make_number
1547 Lisp_Object
1548 make_number (n)
1549 EMACS_INT n;
1551 Lisp_Object obj;
1552 obj.s.val = n;
1553 obj.s.type = Lisp_Int;
1554 return obj;
1556 #endif
1558 /***********************************************************************
1559 String Allocation
1560 ***********************************************************************/
1562 /* Lisp_Strings are allocated in string_block structures. When a new
1563 string_block is allocated, all the Lisp_Strings it contains are
1564 added to a free-list string_free_list. When a new Lisp_String is
1565 needed, it is taken from that list. During the sweep phase of GC,
1566 string_blocks that are entirely free are freed, except two which
1567 we keep.
1569 String data is allocated from sblock structures. Strings larger
1570 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1571 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1573 Sblocks consist internally of sdata structures, one for each
1574 Lisp_String. The sdata structure points to the Lisp_String it
1575 belongs to. The Lisp_String points back to the `u.data' member of
1576 its sdata structure.
1578 When a Lisp_String is freed during GC, it is put back on
1579 string_free_list, and its `data' member and its sdata's `string'
1580 pointer is set to null. The size of the string is recorded in the
1581 `u.nbytes' member of the sdata. So, sdata structures that are no
1582 longer used, can be easily recognized, and it's easy to compact the
1583 sblocks of small strings which we do in compact_small_strings. */
1585 /* Size in bytes of an sblock structure used for small strings. This
1586 is 8192 minus malloc overhead. */
1588 #define SBLOCK_SIZE 8188
1590 /* Strings larger than this are considered large strings. String data
1591 for large strings is allocated from individual sblocks. */
1593 #define LARGE_STRING_BYTES 1024
1595 /* Structure describing string memory sub-allocated from an sblock.
1596 This is where the contents of Lisp strings are stored. */
1598 struct sdata
1600 /* Back-pointer to the string this sdata belongs to. If null, this
1601 structure is free, and the NBYTES member of the union below
1602 contains the string's byte size (the same value that STRING_BYTES
1603 would return if STRING were non-null). If non-null, STRING_BYTES
1604 (STRING) is the size of the data, and DATA contains the string's
1605 contents. */
1606 struct Lisp_String *string;
1608 #ifdef GC_CHECK_STRING_BYTES
1610 EMACS_INT nbytes;
1611 unsigned char data[1];
1613 #define SDATA_NBYTES(S) (S)->nbytes
1614 #define SDATA_DATA(S) (S)->data
1616 #else /* not GC_CHECK_STRING_BYTES */
1618 union
1620 /* When STRING in non-null. */
1621 unsigned char data[1];
1623 /* When STRING is null. */
1624 EMACS_INT nbytes;
1625 } u;
1628 #define SDATA_NBYTES(S) (S)->u.nbytes
1629 #define SDATA_DATA(S) (S)->u.data
1631 #endif /* not GC_CHECK_STRING_BYTES */
1635 /* Structure describing a block of memory which is sub-allocated to
1636 obtain string data memory for strings. Blocks for small strings
1637 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1638 as large as needed. */
1640 struct sblock
1642 /* Next in list. */
1643 struct sblock *next;
1645 /* Pointer to the next free sdata block. This points past the end
1646 of the sblock if there isn't any space left in this block. */
1647 struct sdata *next_free;
1649 /* Start of data. */
1650 struct sdata first_data;
1653 /* Number of Lisp strings in a string_block structure. The 1020 is
1654 1024 minus malloc overhead. */
1656 #define STRING_BLOCK_SIZE \
1657 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1659 /* Structure describing a block from which Lisp_String structures
1660 are allocated. */
1662 struct string_block
1664 /* Place `strings' first, to preserve alignment. */
1665 struct Lisp_String strings[STRING_BLOCK_SIZE];
1666 struct string_block *next;
1669 /* Head and tail of the list of sblock structures holding Lisp string
1670 data. We always allocate from current_sblock. The NEXT pointers
1671 in the sblock structures go from oldest_sblock to current_sblock. */
1673 static struct sblock *oldest_sblock, *current_sblock;
1675 /* List of sblocks for large strings. */
1677 static struct sblock *large_sblocks;
1679 /* List of string_block structures, and how many there are. */
1681 static struct string_block *string_blocks;
1682 static int n_string_blocks;
1684 /* Free-list of Lisp_Strings. */
1686 static struct Lisp_String *string_free_list;
1688 /* Number of live and free Lisp_Strings. */
1690 static int total_strings, total_free_strings;
1692 /* Number of bytes used by live strings. */
1694 static int total_string_size;
1696 /* Given a pointer to a Lisp_String S which is on the free-list
1697 string_free_list, return a pointer to its successor in the
1698 free-list. */
1700 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1702 /* Return a pointer to the sdata structure belonging to Lisp string S.
1703 S must be live, i.e. S->data must not be null. S->data is actually
1704 a pointer to the `u.data' member of its sdata structure; the
1705 structure starts at a constant offset in front of that. */
1707 #ifdef GC_CHECK_STRING_BYTES
1709 #define SDATA_OF_STRING(S) \
1710 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1711 - sizeof (EMACS_INT)))
1713 #else /* not GC_CHECK_STRING_BYTES */
1715 #define SDATA_OF_STRING(S) \
1716 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1718 #endif /* not GC_CHECK_STRING_BYTES */
1721 #ifdef GC_CHECK_STRING_OVERRUN
1723 /* We check for overrun in string data blocks by appending a small
1724 "cookie" after each allocated string data block, and check for the
1725 presence of this cookie during GC. */
1727 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1728 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1729 { 0xde, 0xad, 0xbe, 0xef };
1731 #else
1732 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1733 #endif
1735 /* Value is the size of an sdata structure large enough to hold NBYTES
1736 bytes of string data. The value returned includes a terminating
1737 NUL byte, the size of the sdata structure, and padding. */
1739 #ifdef GC_CHECK_STRING_BYTES
1741 #define SDATA_SIZE(NBYTES) \
1742 ((sizeof (struct Lisp_String *) \
1743 + (NBYTES) + 1 \
1744 + sizeof (EMACS_INT) \
1745 + sizeof (EMACS_INT) - 1) \
1746 & ~(sizeof (EMACS_INT) - 1))
1748 #else /* not GC_CHECK_STRING_BYTES */
1750 #define SDATA_SIZE(NBYTES) \
1751 ((sizeof (struct Lisp_String *) \
1752 + (NBYTES) + 1 \
1753 + sizeof (EMACS_INT) - 1) \
1754 & ~(sizeof (EMACS_INT) - 1))
1756 #endif /* not GC_CHECK_STRING_BYTES */
1758 /* Extra bytes to allocate for each string. */
1760 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1762 /* Initialize string allocation. Called from init_alloc_once. */
1764 static void
1765 init_strings ()
1767 total_strings = total_free_strings = total_string_size = 0;
1768 oldest_sblock = current_sblock = large_sblocks = NULL;
1769 string_blocks = NULL;
1770 n_string_blocks = 0;
1771 string_free_list = NULL;
1772 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1773 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1777 #ifdef GC_CHECK_STRING_BYTES
1779 static int check_string_bytes_count;
1781 static void check_string_bytes P_ ((int));
1782 static void check_sblock P_ ((struct sblock *));
1784 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1787 /* Like GC_STRING_BYTES, but with debugging check. */
1790 string_bytes (s)
1791 struct Lisp_String *s;
1793 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1794 if (!PURE_POINTER_P (s)
1795 && s->data
1796 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1797 abort ();
1798 return nbytes;
1801 /* Check validity of Lisp strings' string_bytes member in B. */
1803 static void
1804 check_sblock (b)
1805 struct sblock *b;
1807 struct sdata *from, *end, *from_end;
1809 end = b->next_free;
1811 for (from = &b->first_data; from < end; from = from_end)
1813 /* Compute the next FROM here because copying below may
1814 overwrite data we need to compute it. */
1815 int nbytes;
1817 /* Check that the string size recorded in the string is the
1818 same as the one recorded in the sdata structure. */
1819 if (from->string)
1820 CHECK_STRING_BYTES (from->string);
1822 if (from->string)
1823 nbytes = GC_STRING_BYTES (from->string);
1824 else
1825 nbytes = SDATA_NBYTES (from);
1827 nbytes = SDATA_SIZE (nbytes);
1828 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1833 /* Check validity of Lisp strings' string_bytes member. ALL_P
1834 non-zero means check all strings, otherwise check only most
1835 recently allocated strings. Used for hunting a bug. */
1837 static void
1838 check_string_bytes (all_p)
1839 int all_p;
1841 if (all_p)
1843 struct sblock *b;
1845 for (b = large_sblocks; b; b = b->next)
1847 struct Lisp_String *s = b->first_data.string;
1848 if (s)
1849 CHECK_STRING_BYTES (s);
1852 for (b = oldest_sblock; b; b = b->next)
1853 check_sblock (b);
1855 else
1856 check_sblock (current_sblock);
1859 #endif /* GC_CHECK_STRING_BYTES */
1861 #ifdef GC_CHECK_STRING_FREE_LIST
1863 /* Walk through the string free list looking for bogus next pointers.
1864 This may catch buffer overrun from a previous string. */
1866 static void
1867 check_string_free_list ()
1869 struct Lisp_String *s;
1871 /* Pop a Lisp_String off the free-list. */
1872 s = string_free_list;
1873 while (s != NULL)
1875 if ((unsigned)s < 1024)
1876 abort();
1877 s = NEXT_FREE_LISP_STRING (s);
1880 #else
1881 #define check_string_free_list()
1882 #endif
1884 /* Return a new Lisp_String. */
1886 static struct Lisp_String *
1887 allocate_string ()
1889 struct Lisp_String *s;
1891 /* eassert (!handling_signal); */
1893 MALLOC_BLOCK_INPUT;
1895 /* If the free-list is empty, allocate a new string_block, and
1896 add all the Lisp_Strings in it to the free-list. */
1897 if (string_free_list == NULL)
1899 struct string_block *b;
1900 int i;
1902 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1903 bzero (b, sizeof *b);
1904 b->next = string_blocks;
1905 string_blocks = b;
1906 ++n_string_blocks;
1908 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1910 s = b->strings + i;
1911 NEXT_FREE_LISP_STRING (s) = string_free_list;
1912 string_free_list = s;
1915 total_free_strings += STRING_BLOCK_SIZE;
1918 check_string_free_list ();
1920 /* Pop a Lisp_String off the free-list. */
1921 s = string_free_list;
1922 string_free_list = NEXT_FREE_LISP_STRING (s);
1924 MALLOC_UNBLOCK_INPUT;
1926 /* Probably not strictly necessary, but play it safe. */
1927 bzero (s, sizeof *s);
1929 --total_free_strings;
1930 ++total_strings;
1931 ++strings_consed;
1932 consing_since_gc += sizeof *s;
1934 #ifdef GC_CHECK_STRING_BYTES
1935 if (!noninteractive)
1937 if (++check_string_bytes_count == 200)
1939 check_string_bytes_count = 0;
1940 check_string_bytes (1);
1942 else
1943 check_string_bytes (0);
1945 #endif /* GC_CHECK_STRING_BYTES */
1947 return s;
1951 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1952 plus a NUL byte at the end. Allocate an sdata structure for S, and
1953 set S->data to its `u.data' member. Store a NUL byte at the end of
1954 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1955 S->data if it was initially non-null. */
1957 void
1958 allocate_string_data (s, nchars, nbytes)
1959 struct Lisp_String *s;
1960 int nchars, nbytes;
1962 struct sdata *data, *old_data;
1963 struct sblock *b;
1964 int needed, old_nbytes;
1966 /* Determine the number of bytes needed to store NBYTES bytes
1967 of string data. */
1968 needed = SDATA_SIZE (nbytes);
1969 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1970 old_nbytes = GC_STRING_BYTES (s);
1972 MALLOC_BLOCK_INPUT;
1974 if (nbytes > LARGE_STRING_BYTES)
1976 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1978 #ifdef DOUG_LEA_MALLOC
1979 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1980 because mapped region contents are not preserved in
1981 a dumped Emacs.
1983 In case you think of allowing it in a dumped Emacs at the
1984 cost of not being able to re-dump, there's another reason:
1985 mmap'ed data typically have an address towards the top of the
1986 address space, which won't fit into an EMACS_INT (at least on
1987 32-bit systems with the current tagging scheme). --fx */
1988 mallopt (M_MMAP_MAX, 0);
1989 #endif
1991 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1993 #ifdef DOUG_LEA_MALLOC
1994 /* Back to a reasonable maximum of mmap'ed areas. */
1995 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1996 #endif
1998 b->next_free = &b->first_data;
1999 b->first_data.string = NULL;
2000 b->next = large_sblocks;
2001 large_sblocks = b;
2003 else if (current_sblock == NULL
2004 || (((char *) current_sblock + SBLOCK_SIZE
2005 - (char *) current_sblock->next_free)
2006 < (needed + GC_STRING_EXTRA)))
2008 /* Not enough room in the current sblock. */
2009 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2010 b->next_free = &b->first_data;
2011 b->first_data.string = NULL;
2012 b->next = NULL;
2014 if (current_sblock)
2015 current_sblock->next = b;
2016 else
2017 oldest_sblock = b;
2018 current_sblock = b;
2020 else
2021 b = current_sblock;
2023 data = b->next_free;
2024 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2026 MALLOC_UNBLOCK_INPUT;
2028 data->string = s;
2029 s->data = SDATA_DATA (data);
2030 #ifdef GC_CHECK_STRING_BYTES
2031 SDATA_NBYTES (data) = nbytes;
2032 #endif
2033 s->size = nchars;
2034 s->size_byte = nbytes;
2035 s->data[nbytes] = '\0';
2036 #ifdef GC_CHECK_STRING_OVERRUN
2037 bcopy (string_overrun_cookie, (char *) data + needed,
2038 GC_STRING_OVERRUN_COOKIE_SIZE);
2039 #endif
2041 /* If S had already data assigned, mark that as free by setting its
2042 string back-pointer to null, and recording the size of the data
2043 in it. */
2044 if (old_data)
2046 SDATA_NBYTES (old_data) = old_nbytes;
2047 old_data->string = NULL;
2050 consing_since_gc += needed;
2054 /* Sweep and compact strings. */
2056 static void
2057 sweep_strings ()
2059 struct string_block *b, *next;
2060 struct string_block *live_blocks = NULL;
2062 string_free_list = NULL;
2063 total_strings = total_free_strings = 0;
2064 total_string_size = 0;
2066 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2067 for (b = string_blocks; b; b = next)
2069 int i, nfree = 0;
2070 struct Lisp_String *free_list_before = string_free_list;
2072 next = b->next;
2074 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2076 struct Lisp_String *s = b->strings + i;
2078 if (s->data)
2080 /* String was not on free-list before. */
2081 if (STRING_MARKED_P (s))
2083 /* String is live; unmark it and its intervals. */
2084 UNMARK_STRING (s);
2086 if (!NULL_INTERVAL_P (s->intervals))
2087 UNMARK_BALANCE_INTERVALS (s->intervals);
2089 ++total_strings;
2090 total_string_size += STRING_BYTES (s);
2092 else
2094 /* String is dead. Put it on the free-list. */
2095 struct sdata *data = SDATA_OF_STRING (s);
2097 /* Save the size of S in its sdata so that we know
2098 how large that is. Reset the sdata's string
2099 back-pointer so that we know it's free. */
2100 #ifdef GC_CHECK_STRING_BYTES
2101 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2102 abort ();
2103 #else
2104 data->u.nbytes = GC_STRING_BYTES (s);
2105 #endif
2106 data->string = NULL;
2108 /* Reset the strings's `data' member so that we
2109 know it's free. */
2110 s->data = NULL;
2112 /* Put the string on the free-list. */
2113 NEXT_FREE_LISP_STRING (s) = string_free_list;
2114 string_free_list = s;
2115 ++nfree;
2118 else
2120 /* S was on the free-list before. Put it there again. */
2121 NEXT_FREE_LISP_STRING (s) = string_free_list;
2122 string_free_list = s;
2123 ++nfree;
2127 /* Free blocks that contain free Lisp_Strings only, except
2128 the first two of them. */
2129 if (nfree == STRING_BLOCK_SIZE
2130 && total_free_strings > STRING_BLOCK_SIZE)
2132 lisp_free (b);
2133 --n_string_blocks;
2134 string_free_list = free_list_before;
2136 else
2138 total_free_strings += nfree;
2139 b->next = live_blocks;
2140 live_blocks = b;
2144 check_string_free_list ();
2146 string_blocks = live_blocks;
2147 free_large_strings ();
2148 compact_small_strings ();
2150 check_string_free_list ();
2154 /* Free dead large strings. */
2156 static void
2157 free_large_strings ()
2159 struct sblock *b, *next;
2160 struct sblock *live_blocks = NULL;
2162 for (b = large_sblocks; b; b = next)
2164 next = b->next;
2166 if (b->first_data.string == NULL)
2167 lisp_free (b);
2168 else
2170 b->next = live_blocks;
2171 live_blocks = b;
2175 large_sblocks = live_blocks;
2179 /* Compact data of small strings. Free sblocks that don't contain
2180 data of live strings after compaction. */
2182 static void
2183 compact_small_strings ()
2185 struct sblock *b, *tb, *next;
2186 struct sdata *from, *to, *end, *tb_end;
2187 struct sdata *to_end, *from_end;
2189 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2190 to, and TB_END is the end of TB. */
2191 tb = oldest_sblock;
2192 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2193 to = &tb->first_data;
2195 /* Step through the blocks from the oldest to the youngest. We
2196 expect that old blocks will stabilize over time, so that less
2197 copying will happen this way. */
2198 for (b = oldest_sblock; b; b = b->next)
2200 end = b->next_free;
2201 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2203 for (from = &b->first_data; from < end; from = from_end)
2205 /* Compute the next FROM here because copying below may
2206 overwrite data we need to compute it. */
2207 int nbytes;
2209 #ifdef GC_CHECK_STRING_BYTES
2210 /* Check that the string size recorded in the string is the
2211 same as the one recorded in the sdata structure. */
2212 if (from->string
2213 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2214 abort ();
2215 #endif /* GC_CHECK_STRING_BYTES */
2217 if (from->string)
2218 nbytes = GC_STRING_BYTES (from->string);
2219 else
2220 nbytes = SDATA_NBYTES (from);
2222 if (nbytes > LARGE_STRING_BYTES)
2223 abort ();
2225 nbytes = SDATA_SIZE (nbytes);
2226 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2228 #ifdef GC_CHECK_STRING_OVERRUN
2229 if (bcmp (string_overrun_cookie,
2230 ((char *) from_end) - GC_STRING_OVERRUN_COOKIE_SIZE,
2231 GC_STRING_OVERRUN_COOKIE_SIZE))
2232 abort ();
2233 #endif
2235 /* FROM->string non-null means it's alive. Copy its data. */
2236 if (from->string)
2238 /* If TB is full, proceed with the next sblock. */
2239 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2240 if (to_end > tb_end)
2242 tb->next_free = to;
2243 tb = tb->next;
2244 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2245 to = &tb->first_data;
2246 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2249 /* Copy, and update the string's `data' pointer. */
2250 if (from != to)
2252 xassert (tb != b || to <= from);
2253 safe_bcopy ((char *) from, (char *) to, nbytes + GC_STRING_EXTRA);
2254 to->string->data = SDATA_DATA (to);
2257 /* Advance past the sdata we copied to. */
2258 to = to_end;
2263 /* The rest of the sblocks following TB don't contain live data, so
2264 we can free them. */
2265 for (b = tb->next; b; b = next)
2267 next = b->next;
2268 lisp_free (b);
2271 tb->next_free = to;
2272 tb->next = NULL;
2273 current_sblock = tb;
2277 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2278 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2279 LENGTH must be an integer.
2280 INIT must be an integer that represents a character. */)
2281 (length, init)
2282 Lisp_Object length, init;
2284 register Lisp_Object val;
2285 register unsigned char *p, *end;
2286 int c, nbytes;
2288 CHECK_NATNUM (length);
2289 CHECK_NUMBER (init);
2291 c = XINT (init);
2292 if (ASCII_CHAR_P (c))
2294 nbytes = XINT (length);
2295 val = make_uninit_string (nbytes);
2296 p = SDATA (val);
2297 end = p + SCHARS (val);
2298 while (p != end)
2299 *p++ = c;
2301 else
2303 unsigned char str[MAX_MULTIBYTE_LENGTH];
2304 int len = CHAR_STRING (c, str);
2306 nbytes = len * XINT (length);
2307 val = make_uninit_multibyte_string (XINT (length), nbytes);
2308 p = SDATA (val);
2309 end = p + nbytes;
2310 while (p != end)
2312 bcopy (str, p, len);
2313 p += len;
2317 *p = 0;
2318 return val;
2322 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2323 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2324 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2325 (length, init)
2326 Lisp_Object length, init;
2328 register Lisp_Object val;
2329 struct Lisp_Bool_Vector *p;
2330 int real_init, i;
2331 int length_in_chars, length_in_elts, bits_per_value;
2333 CHECK_NATNUM (length);
2335 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2337 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2338 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2339 / BOOL_VECTOR_BITS_PER_CHAR);
2341 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2342 slot `size' of the struct Lisp_Bool_Vector. */
2343 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2345 /* No Lisp_Object to trace in there. */
2346 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0);
2348 p = XBOOL_VECTOR (val);
2349 p->size = XFASTINT (length);
2351 real_init = (NILP (init) ? 0 : -1);
2352 for (i = 0; i < length_in_chars ; i++)
2353 p->data[i] = real_init;
2355 /* Clear the extraneous bits in the last byte. */
2356 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2357 p->data[length_in_chars - 1]
2358 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2360 return val;
2364 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2365 of characters from the contents. This string may be unibyte or
2366 multibyte, depending on the contents. */
2368 Lisp_Object
2369 make_string (contents, nbytes)
2370 const char *contents;
2371 int nbytes;
2373 register Lisp_Object val;
2374 int nchars, multibyte_nbytes;
2376 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2377 if (nbytes == nchars || nbytes != multibyte_nbytes)
2378 /* CONTENTS contains no multibyte sequences or contains an invalid
2379 multibyte sequence. We must make unibyte string. */
2380 val = make_unibyte_string (contents, nbytes);
2381 else
2382 val = make_multibyte_string (contents, nchars, nbytes);
2383 return val;
2387 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2389 Lisp_Object
2390 make_unibyte_string (contents, length)
2391 const char *contents;
2392 int length;
2394 register Lisp_Object val;
2395 val = make_uninit_string (length);
2396 bcopy (contents, SDATA (val), length);
2397 STRING_SET_UNIBYTE (val);
2398 return val;
2402 /* Make a multibyte string from NCHARS characters occupying NBYTES
2403 bytes at CONTENTS. */
2405 Lisp_Object
2406 make_multibyte_string (contents, nchars, nbytes)
2407 const char *contents;
2408 int nchars, nbytes;
2410 register Lisp_Object val;
2411 val = make_uninit_multibyte_string (nchars, nbytes);
2412 bcopy (contents, SDATA (val), nbytes);
2413 return val;
2417 /* Make a string from NCHARS characters occupying NBYTES bytes at
2418 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2420 Lisp_Object
2421 make_string_from_bytes (contents, nchars, nbytes)
2422 const char *contents;
2423 int nchars, nbytes;
2425 register Lisp_Object val;
2426 val = make_uninit_multibyte_string (nchars, nbytes);
2427 bcopy (contents, SDATA (val), nbytes);
2428 if (SBYTES (val) == SCHARS (val))
2429 STRING_SET_UNIBYTE (val);
2430 return val;
2434 /* Make a string from NCHARS characters occupying NBYTES bytes at
2435 CONTENTS. The argument MULTIBYTE controls whether to label the
2436 string as multibyte. If NCHARS is negative, it counts the number of
2437 characters by itself. */
2439 Lisp_Object
2440 make_specified_string (contents, nchars, nbytes, multibyte)
2441 const char *contents;
2442 int nchars, nbytes;
2443 int multibyte;
2445 register Lisp_Object val;
2447 if (nchars < 0)
2449 if (multibyte)
2450 nchars = multibyte_chars_in_text (contents, nbytes);
2451 else
2452 nchars = nbytes;
2454 val = make_uninit_multibyte_string (nchars, nbytes);
2455 bcopy (contents, SDATA (val), nbytes);
2456 if (!multibyte)
2457 STRING_SET_UNIBYTE (val);
2458 return val;
2462 /* Make a string from the data at STR, treating it as multibyte if the
2463 data warrants. */
2465 Lisp_Object
2466 build_string (str)
2467 const char *str;
2469 return make_string (str, strlen (str));
2473 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2474 occupying LENGTH bytes. */
2476 Lisp_Object
2477 make_uninit_string (length)
2478 int length;
2480 Lisp_Object val;
2482 if (!length)
2483 return empty_unibyte_string;
2484 val = make_uninit_multibyte_string (length, length);
2485 STRING_SET_UNIBYTE (val);
2486 return val;
2490 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2491 which occupy NBYTES bytes. */
2493 Lisp_Object
2494 make_uninit_multibyte_string (nchars, nbytes)
2495 int nchars, nbytes;
2497 Lisp_Object string;
2498 struct Lisp_String *s;
2500 if (nchars < 0)
2501 abort ();
2502 if (!nbytes)
2503 return empty_multibyte_string;
2505 s = allocate_string ();
2506 allocate_string_data (s, nchars, nbytes);
2507 XSETSTRING (string, s);
2508 string_chars_consed += nbytes;
2509 return string;
2514 /***********************************************************************
2515 Float Allocation
2516 ***********************************************************************/
2518 /* We store float cells inside of float_blocks, allocating a new
2519 float_block with malloc whenever necessary. Float cells reclaimed
2520 by GC are put on a free list to be reallocated before allocating
2521 any new float cells from the latest float_block. */
2523 #define FLOAT_BLOCK_SIZE \
2524 (((BLOCK_BYTES - sizeof (struct float_block *) \
2525 /* The compiler might add padding at the end. */ \
2526 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2527 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2529 #define GETMARKBIT(block,n) \
2530 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2531 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2532 & 1)
2534 #define SETMARKBIT(block,n) \
2535 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2536 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2538 #define UNSETMARKBIT(block,n) \
2539 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2540 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2542 #define FLOAT_BLOCK(fptr) \
2543 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2545 #define FLOAT_INDEX(fptr) \
2546 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2548 struct float_block
2550 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2551 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2552 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2553 struct float_block *next;
2556 #define FLOAT_MARKED_P(fptr) \
2557 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2559 #define FLOAT_MARK(fptr) \
2560 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2562 #define FLOAT_UNMARK(fptr) \
2563 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2565 /* Current float_block. */
2567 struct float_block *float_block;
2569 /* Index of first unused Lisp_Float in the current float_block. */
2571 int float_block_index;
2573 /* Total number of float blocks now in use. */
2575 int n_float_blocks;
2577 /* Free-list of Lisp_Floats. */
2579 struct Lisp_Float *float_free_list;
2582 /* Initialize float allocation. */
2584 static void
2585 init_float ()
2587 float_block = NULL;
2588 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2589 float_free_list = 0;
2590 n_float_blocks = 0;
2594 /* Explicitly free a float cell by putting it on the free-list. */
2596 static void
2597 free_float (ptr)
2598 struct Lisp_Float *ptr;
2600 ptr->u.chain = float_free_list;
2601 float_free_list = ptr;
2605 /* Return a new float object with value FLOAT_VALUE. */
2607 Lisp_Object
2608 make_float (float_value)
2609 double float_value;
2611 register Lisp_Object val;
2613 /* eassert (!handling_signal); */
2615 MALLOC_BLOCK_INPUT;
2617 if (float_free_list)
2619 /* We use the data field for chaining the free list
2620 so that we won't use the same field that has the mark bit. */
2621 XSETFLOAT (val, float_free_list);
2622 float_free_list = float_free_list->u.chain;
2624 else
2626 if (float_block_index == FLOAT_BLOCK_SIZE)
2628 register struct float_block *new;
2630 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2631 MEM_TYPE_FLOAT);
2632 new->next = float_block;
2633 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2634 float_block = new;
2635 float_block_index = 0;
2636 n_float_blocks++;
2638 XSETFLOAT (val, &float_block->floats[float_block_index]);
2639 float_block_index++;
2642 MALLOC_UNBLOCK_INPUT;
2644 XFLOAT_INIT (val, float_value);
2645 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2646 consing_since_gc += sizeof (struct Lisp_Float);
2647 floats_consed++;
2648 return val;
2653 /***********************************************************************
2654 Cons Allocation
2655 ***********************************************************************/
2657 /* We store cons cells inside of cons_blocks, allocating a new
2658 cons_block with malloc whenever necessary. Cons cells reclaimed by
2659 GC are put on a free list to be reallocated before allocating
2660 any new cons cells from the latest cons_block. */
2662 #define CONS_BLOCK_SIZE \
2663 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2664 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2666 #define CONS_BLOCK(fptr) \
2667 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2669 #define CONS_INDEX(fptr) \
2670 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2672 struct cons_block
2674 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2675 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2676 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2677 struct cons_block *next;
2680 #define CONS_MARKED_P(fptr) \
2681 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2683 #define CONS_MARK(fptr) \
2684 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2686 #define CONS_UNMARK(fptr) \
2687 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2689 /* Current cons_block. */
2691 struct cons_block *cons_block;
2693 /* Index of first unused Lisp_Cons in the current block. */
2695 int cons_block_index;
2697 /* Free-list of Lisp_Cons structures. */
2699 struct Lisp_Cons *cons_free_list;
2701 /* Total number of cons blocks now in use. */
2703 static int n_cons_blocks;
2706 /* Initialize cons allocation. */
2708 static void
2709 init_cons ()
2711 cons_block = NULL;
2712 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2713 cons_free_list = 0;
2714 n_cons_blocks = 0;
2718 /* Explicitly free a cons cell by putting it on the free-list. */
2720 void
2721 free_cons (ptr)
2722 struct Lisp_Cons *ptr;
2724 ptr->u.chain = cons_free_list;
2725 #if GC_MARK_STACK
2726 ptr->car = Vdead;
2727 #endif
2728 cons_free_list = ptr;
2731 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2732 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2733 (car, cdr)
2734 Lisp_Object car, cdr;
2736 register Lisp_Object val;
2738 /* eassert (!handling_signal); */
2740 MALLOC_BLOCK_INPUT;
2742 if (cons_free_list)
2744 /* We use the cdr for chaining the free list
2745 so that we won't use the same field that has the mark bit. */
2746 XSETCONS (val, cons_free_list);
2747 cons_free_list = cons_free_list->u.chain;
2749 else
2751 if (cons_block_index == CONS_BLOCK_SIZE)
2753 register struct cons_block *new;
2754 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2755 MEM_TYPE_CONS);
2756 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2757 new->next = cons_block;
2758 cons_block = new;
2759 cons_block_index = 0;
2760 n_cons_blocks++;
2762 XSETCONS (val, &cons_block->conses[cons_block_index]);
2763 cons_block_index++;
2766 MALLOC_UNBLOCK_INPUT;
2768 XSETCAR (val, car);
2769 XSETCDR (val, cdr);
2770 eassert (!CONS_MARKED_P (XCONS (val)));
2771 consing_since_gc += sizeof (struct Lisp_Cons);
2772 cons_cells_consed++;
2773 return val;
2776 /* Get an error now if there's any junk in the cons free list. */
2777 void
2778 check_cons_list ()
2780 #ifdef GC_CHECK_CONS_LIST
2781 struct Lisp_Cons *tail = cons_free_list;
2783 while (tail)
2784 tail = tail->u.chain;
2785 #endif
2788 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2790 Lisp_Object
2791 list1 (arg1)
2792 Lisp_Object arg1;
2794 return Fcons (arg1, Qnil);
2797 Lisp_Object
2798 list2 (arg1, arg2)
2799 Lisp_Object arg1, arg2;
2801 return Fcons (arg1, Fcons (arg2, Qnil));
2805 Lisp_Object
2806 list3 (arg1, arg2, arg3)
2807 Lisp_Object arg1, arg2, arg3;
2809 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2813 Lisp_Object
2814 list4 (arg1, arg2, arg3, arg4)
2815 Lisp_Object arg1, arg2, arg3, arg4;
2817 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2821 Lisp_Object
2822 list5 (arg1, arg2, arg3, arg4, arg5)
2823 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2825 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2826 Fcons (arg5, Qnil)))));
2830 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2831 doc: /* Return a newly created list with specified arguments as elements.
2832 Any number of arguments, even zero arguments, are allowed.
2833 usage: (list &rest OBJECTS) */)
2834 (nargs, args)
2835 int nargs;
2836 register Lisp_Object *args;
2838 register Lisp_Object val;
2839 val = Qnil;
2841 while (nargs > 0)
2843 nargs--;
2844 val = Fcons (args[nargs], val);
2846 return val;
2850 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2851 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2852 (length, init)
2853 register Lisp_Object length, init;
2855 register Lisp_Object val;
2856 register int size;
2858 CHECK_NATNUM (length);
2859 size = XFASTINT (length);
2861 val = Qnil;
2862 while (size > 0)
2864 val = Fcons (init, val);
2865 --size;
2867 if (size > 0)
2869 val = Fcons (init, val);
2870 --size;
2872 if (size > 0)
2874 val = Fcons (init, val);
2875 --size;
2877 if (size > 0)
2879 val = Fcons (init, val);
2880 --size;
2882 if (size > 0)
2884 val = Fcons (init, val);
2885 --size;
2891 QUIT;
2894 return val;
2899 /***********************************************************************
2900 Vector Allocation
2901 ***********************************************************************/
2903 /* Singly-linked list of all vectors. */
2905 static struct Lisp_Vector *all_vectors;
2907 /* Total number of vector-like objects now in use. */
2909 static int n_vectors;
2912 /* Value is a pointer to a newly allocated Lisp_Vector structure
2913 with room for LEN Lisp_Objects. */
2915 static struct Lisp_Vector *
2916 allocate_vectorlike (len)
2917 EMACS_INT len;
2919 struct Lisp_Vector *p;
2920 size_t nbytes;
2922 MALLOC_BLOCK_INPUT;
2924 #ifdef DOUG_LEA_MALLOC
2925 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2926 because mapped region contents are not preserved in
2927 a dumped Emacs. */
2928 mallopt (M_MMAP_MAX, 0);
2929 #endif
2931 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2932 /* eassert (!handling_signal); */
2934 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2935 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2937 #ifdef DOUG_LEA_MALLOC
2938 /* Back to a reasonable maximum of mmap'ed areas. */
2939 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2940 #endif
2942 consing_since_gc += nbytes;
2943 vector_cells_consed += len;
2945 p->header.next.vector = all_vectors;
2946 all_vectors = p;
2948 MALLOC_UNBLOCK_INPUT;
2950 ++n_vectors;
2951 return p;
2955 /* Allocate a vector with NSLOTS slots. */
2957 struct Lisp_Vector *
2958 allocate_vector (nslots)
2959 EMACS_INT nslots;
2961 struct Lisp_Vector *v = allocate_vectorlike (nslots);
2962 v->header.size = nslots;
2963 return v;
2967 /* Allocate other vector-like structures. */
2969 struct Lisp_Vector *
2970 allocate_pseudovector (memlen, lisplen, tag)
2971 int memlen, lisplen;
2972 EMACS_INT tag;
2974 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2975 EMACS_INT i;
2977 /* Only the first lisplen slots will be traced normally by the GC. */
2978 for (i = 0; i < lisplen; ++i)
2979 v->contents[i] = Qnil;
2981 XSETPVECTYPESIZE (v, tag, lisplen);
2982 return v;
2985 struct Lisp_Hash_Table *
2986 allocate_hash_table (void)
2988 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2992 struct window *
2993 allocate_window ()
2995 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
2999 struct terminal *
3000 allocate_terminal ()
3002 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
3003 next_terminal, PVEC_TERMINAL);
3004 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3005 bzero (&(t->next_terminal),
3006 ((char*)(t+1)) - ((char*)&(t->next_terminal)));
3008 return t;
3011 struct frame *
3012 allocate_frame ()
3014 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
3015 face_cache, PVEC_FRAME);
3016 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3017 bzero (&(f->face_cache),
3018 ((char*)(f+1)) - ((char*)&(f->face_cache)));
3019 return f;
3023 struct Lisp_Process *
3024 allocate_process ()
3026 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3030 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3031 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3032 See also the function `vector'. */)
3033 (length, init)
3034 register Lisp_Object length, init;
3036 Lisp_Object vector;
3037 register EMACS_INT sizei;
3038 register int index;
3039 register struct Lisp_Vector *p;
3041 CHECK_NATNUM (length);
3042 sizei = XFASTINT (length);
3044 p = allocate_vector (sizei);
3045 for (index = 0; index < sizei; index++)
3046 p->contents[index] = init;
3048 XSETVECTOR (vector, p);
3049 return vector;
3053 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3054 doc: /* Return a newly created vector with specified arguments as elements.
3055 Any number of arguments, even zero arguments, are allowed.
3056 usage: (vector &rest OBJECTS) */)
3057 (nargs, args)
3058 register int nargs;
3059 Lisp_Object *args;
3061 register Lisp_Object len, val;
3062 register int index;
3063 register struct Lisp_Vector *p;
3065 XSETFASTINT (len, nargs);
3066 val = Fmake_vector (len, Qnil);
3067 p = XVECTOR (val);
3068 for (index = 0; index < nargs; index++)
3069 p->contents[index] = args[index];
3070 return val;
3074 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3075 doc: /* Create a byte-code object with specified arguments as elements.
3076 The arguments should be the arglist, bytecode-string, constant vector,
3077 stack size, (optional) doc string, and (optional) interactive spec.
3078 The first four arguments are required; at most six have any
3079 significance.
3080 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3081 (nargs, args)
3082 register int nargs;
3083 Lisp_Object *args;
3085 register Lisp_Object len, val;
3086 register int index;
3087 register struct Lisp_Vector *p;
3089 XSETFASTINT (len, nargs);
3090 if (!NILP (Vpurify_flag))
3091 val = make_pure_vector ((EMACS_INT) nargs);
3092 else
3093 val = Fmake_vector (len, Qnil);
3095 if (nargs > 1 && STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3096 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3097 earlier because they produced a raw 8-bit string for byte-code
3098 and now such a byte-code string is loaded as multibyte while
3099 raw 8-bit characters converted to multibyte form. Thus, now we
3100 must convert them back to the original unibyte form. */
3101 args[1] = Fstring_as_unibyte (args[1]);
3103 p = XVECTOR (val);
3104 for (index = 0; index < nargs; index++)
3106 if (!NILP (Vpurify_flag))
3107 args[index] = Fpurecopy (args[index]);
3108 p->contents[index] = args[index];
3110 XSETPVECTYPE (p, PVEC_COMPILED);
3111 XSETCOMPILED (val, p);
3112 return val;
3117 /***********************************************************************
3118 Symbol Allocation
3119 ***********************************************************************/
3121 /* Each symbol_block is just under 1020 bytes long, since malloc
3122 really allocates in units of powers of two and uses 4 bytes for its
3123 own overhead. */
3125 #define SYMBOL_BLOCK_SIZE \
3126 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3128 struct symbol_block
3130 /* Place `symbols' first, to preserve alignment. */
3131 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3132 struct symbol_block *next;
3135 /* Current symbol block and index of first unused Lisp_Symbol
3136 structure in it. */
3138 static struct symbol_block *symbol_block;
3139 static int symbol_block_index;
3141 /* List of free symbols. */
3143 static struct Lisp_Symbol *symbol_free_list;
3145 /* Total number of symbol blocks now in use. */
3147 static int n_symbol_blocks;
3150 /* Initialize symbol allocation. */
3152 static void
3153 init_symbol ()
3155 symbol_block = NULL;
3156 symbol_block_index = SYMBOL_BLOCK_SIZE;
3157 symbol_free_list = 0;
3158 n_symbol_blocks = 0;
3162 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3163 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3164 Its value and function definition are void, and its property list is nil. */)
3165 (name)
3166 Lisp_Object name;
3168 register Lisp_Object val;
3169 register struct Lisp_Symbol *p;
3171 CHECK_STRING (name);
3173 /* eassert (!handling_signal); */
3175 MALLOC_BLOCK_INPUT;
3177 if (symbol_free_list)
3179 XSETSYMBOL (val, symbol_free_list);
3180 symbol_free_list = symbol_free_list->next;
3182 else
3184 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3186 struct symbol_block *new;
3187 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3188 MEM_TYPE_SYMBOL);
3189 new->next = symbol_block;
3190 symbol_block = new;
3191 symbol_block_index = 0;
3192 n_symbol_blocks++;
3194 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3195 symbol_block_index++;
3198 MALLOC_UNBLOCK_INPUT;
3200 p = XSYMBOL (val);
3201 p->xname = name;
3202 p->plist = Qnil;
3203 p->value = Qunbound;
3204 p->function = Qunbound;
3205 p->next = NULL;
3206 p->gcmarkbit = 0;
3207 p->interned = SYMBOL_UNINTERNED;
3208 p->constant = 0;
3209 p->indirect_variable = 0;
3210 consing_since_gc += sizeof (struct Lisp_Symbol);
3211 symbols_consed++;
3212 return val;
3217 /***********************************************************************
3218 Marker (Misc) Allocation
3219 ***********************************************************************/
3221 /* Allocation of markers and other objects that share that structure.
3222 Works like allocation of conses. */
3224 #define MARKER_BLOCK_SIZE \
3225 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3227 struct marker_block
3229 /* Place `markers' first, to preserve alignment. */
3230 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3231 struct marker_block *next;
3234 static struct marker_block *marker_block;
3235 static int marker_block_index;
3237 static union Lisp_Misc *marker_free_list;
3239 /* Total number of marker blocks now in use. */
3241 static int n_marker_blocks;
3243 static void
3244 init_marker ()
3246 marker_block = NULL;
3247 marker_block_index = MARKER_BLOCK_SIZE;
3248 marker_free_list = 0;
3249 n_marker_blocks = 0;
3252 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3254 Lisp_Object
3255 allocate_misc ()
3257 Lisp_Object val;
3259 /* eassert (!handling_signal); */
3261 MALLOC_BLOCK_INPUT;
3263 if (marker_free_list)
3265 XSETMISC (val, marker_free_list);
3266 marker_free_list = marker_free_list->u_free.chain;
3268 else
3270 if (marker_block_index == MARKER_BLOCK_SIZE)
3272 struct marker_block *new;
3273 new = (struct marker_block *) lisp_malloc (sizeof *new,
3274 MEM_TYPE_MISC);
3275 new->next = marker_block;
3276 marker_block = new;
3277 marker_block_index = 0;
3278 n_marker_blocks++;
3279 total_free_markers += MARKER_BLOCK_SIZE;
3281 XSETMISC (val, &marker_block->markers[marker_block_index]);
3282 marker_block_index++;
3285 MALLOC_UNBLOCK_INPUT;
3287 --total_free_markers;
3288 consing_since_gc += sizeof (union Lisp_Misc);
3289 misc_objects_consed++;
3290 XMISCANY (val)->gcmarkbit = 0;
3291 return val;
3294 /* Free a Lisp_Misc object */
3296 void
3297 free_misc (misc)
3298 Lisp_Object misc;
3300 XMISCTYPE (misc) = Lisp_Misc_Free;
3301 XMISC (misc)->u_free.chain = marker_free_list;
3302 marker_free_list = XMISC (misc);
3304 total_free_markers++;
3307 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3308 INTEGER. This is used to package C values to call record_unwind_protect.
3309 The unwind function can get the C values back using XSAVE_VALUE. */
3311 Lisp_Object
3312 make_save_value (pointer, integer)
3313 void *pointer;
3314 int integer;
3316 register Lisp_Object val;
3317 register struct Lisp_Save_Value *p;
3319 val = allocate_misc ();
3320 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3321 p = XSAVE_VALUE (val);
3322 p->pointer = pointer;
3323 p->integer = integer;
3324 p->dogc = 0;
3325 return val;
3328 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3329 doc: /* Return a newly allocated marker which does not point at any place. */)
3332 register Lisp_Object val;
3333 register struct Lisp_Marker *p;
3335 val = allocate_misc ();
3336 XMISCTYPE (val) = Lisp_Misc_Marker;
3337 p = XMARKER (val);
3338 p->buffer = 0;
3339 p->bytepos = 0;
3340 p->charpos = 0;
3341 p->next = NULL;
3342 p->insertion_type = 0;
3343 return val;
3346 /* Put MARKER back on the free list after using it temporarily. */
3348 void
3349 free_marker (marker)
3350 Lisp_Object marker;
3352 unchain_marker (XMARKER (marker));
3353 free_misc (marker);
3357 /* Return a newly created vector or string with specified arguments as
3358 elements. If all the arguments are characters that can fit
3359 in a string of events, make a string; otherwise, make a vector.
3361 Any number of arguments, even zero arguments, are allowed. */
3363 Lisp_Object
3364 make_event_array (nargs, args)
3365 register int nargs;
3366 Lisp_Object *args;
3368 int i;
3370 for (i = 0; i < nargs; i++)
3371 /* The things that fit in a string
3372 are characters that are in 0...127,
3373 after discarding the meta bit and all the bits above it. */
3374 if (!INTEGERP (args[i])
3375 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3376 return Fvector (nargs, args);
3378 /* Since the loop exited, we know that all the things in it are
3379 characters, so we can make a string. */
3381 Lisp_Object result;
3383 result = Fmake_string (make_number (nargs), make_number (0));
3384 for (i = 0; i < nargs; i++)
3386 SSET (result, i, XINT (args[i]));
3387 /* Move the meta bit to the right place for a string char. */
3388 if (XINT (args[i]) & CHAR_META)
3389 SSET (result, i, SREF (result, i) | 0x80);
3392 return result;
3398 /************************************************************************
3399 Memory Full Handling
3400 ************************************************************************/
3403 /* Called if malloc returns zero. */
3405 void
3406 memory_full ()
3408 int i;
3410 Vmemory_full = Qt;
3412 memory_full_cons_threshold = sizeof (struct cons_block);
3414 /* The first time we get here, free the spare memory. */
3415 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3416 if (spare_memory[i])
3418 if (i == 0)
3419 free (spare_memory[i]);
3420 else if (i >= 1 && i <= 4)
3421 lisp_align_free (spare_memory[i]);
3422 else
3423 lisp_free (spare_memory[i]);
3424 spare_memory[i] = 0;
3427 /* Record the space now used. When it decreases substantially,
3428 we can refill the memory reserve. */
3429 #ifndef SYSTEM_MALLOC
3430 bytes_used_when_full = BYTES_USED;
3431 #endif
3433 /* This used to call error, but if we've run out of memory, we could
3434 get infinite recursion trying to build the string. */
3435 xsignal (Qnil, Vmemory_signal_data);
3438 /* If we released our reserve (due to running out of memory),
3439 and we have a fair amount free once again,
3440 try to set aside another reserve in case we run out once more.
3442 This is called when a relocatable block is freed in ralloc.c,
3443 and also directly from this file, in case we're not using ralloc.c. */
3445 void
3446 refill_memory_reserve ()
3448 #ifndef SYSTEM_MALLOC
3449 if (spare_memory[0] == 0)
3450 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3451 if (spare_memory[1] == 0)
3452 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3453 MEM_TYPE_CONS);
3454 if (spare_memory[2] == 0)
3455 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3456 MEM_TYPE_CONS);
3457 if (spare_memory[3] == 0)
3458 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3459 MEM_TYPE_CONS);
3460 if (spare_memory[4] == 0)
3461 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3462 MEM_TYPE_CONS);
3463 if (spare_memory[5] == 0)
3464 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3465 MEM_TYPE_STRING);
3466 if (spare_memory[6] == 0)
3467 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3468 MEM_TYPE_STRING);
3469 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3470 Vmemory_full = Qnil;
3471 #endif
3474 /************************************************************************
3475 C Stack Marking
3476 ************************************************************************/
3478 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3480 /* Conservative C stack marking requires a method to identify possibly
3481 live Lisp objects given a pointer value. We do this by keeping
3482 track of blocks of Lisp data that are allocated in a red-black tree
3483 (see also the comment of mem_node which is the type of nodes in
3484 that tree). Function lisp_malloc adds information for an allocated
3485 block to the red-black tree with calls to mem_insert, and function
3486 lisp_free removes it with mem_delete. Functions live_string_p etc
3487 call mem_find to lookup information about a given pointer in the
3488 tree, and use that to determine if the pointer points to a Lisp
3489 object or not. */
3491 /* Initialize this part of alloc.c. */
3493 static void
3494 mem_init ()
3496 mem_z.left = mem_z.right = MEM_NIL;
3497 mem_z.parent = NULL;
3498 mem_z.color = MEM_BLACK;
3499 mem_z.start = mem_z.end = NULL;
3500 mem_root = MEM_NIL;
3504 /* Value is a pointer to the mem_node containing START. Value is
3505 MEM_NIL if there is no node in the tree containing START. */
3507 static INLINE struct mem_node *
3508 mem_find (start)
3509 void *start;
3511 struct mem_node *p;
3513 if (start < min_heap_address || start > max_heap_address)
3514 return MEM_NIL;
3516 /* Make the search always successful to speed up the loop below. */
3517 mem_z.start = start;
3518 mem_z.end = (char *) start + 1;
3520 p = mem_root;
3521 while (start < p->start || start >= p->end)
3522 p = start < p->start ? p->left : p->right;
3523 return p;
3527 /* Insert a new node into the tree for a block of memory with start
3528 address START, end address END, and type TYPE. Value is a
3529 pointer to the node that was inserted. */
3531 static struct mem_node *
3532 mem_insert (start, end, type)
3533 void *start, *end;
3534 enum mem_type type;
3536 struct mem_node *c, *parent, *x;
3538 if (min_heap_address == NULL || start < min_heap_address)
3539 min_heap_address = start;
3540 if (max_heap_address == NULL || end > max_heap_address)
3541 max_heap_address = end;
3543 /* See where in the tree a node for START belongs. In this
3544 particular application, it shouldn't happen that a node is already
3545 present. For debugging purposes, let's check that. */
3546 c = mem_root;
3547 parent = NULL;
3549 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3551 while (c != MEM_NIL)
3553 if (start >= c->start && start < c->end)
3554 abort ();
3555 parent = c;
3556 c = start < c->start ? c->left : c->right;
3559 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3561 while (c != MEM_NIL)
3563 parent = c;
3564 c = start < c->start ? c->left : c->right;
3567 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3569 /* Create a new node. */
3570 #ifdef GC_MALLOC_CHECK
3571 x = (struct mem_node *) _malloc_internal (sizeof *x);
3572 if (x == NULL)
3573 abort ();
3574 #else
3575 x = (struct mem_node *) xmalloc (sizeof *x);
3576 #endif
3577 x->start = start;
3578 x->end = end;
3579 x->type = type;
3580 x->parent = parent;
3581 x->left = x->right = MEM_NIL;
3582 x->color = MEM_RED;
3584 /* Insert it as child of PARENT or install it as root. */
3585 if (parent)
3587 if (start < parent->start)
3588 parent->left = x;
3589 else
3590 parent->right = x;
3592 else
3593 mem_root = x;
3595 /* Re-establish red-black tree properties. */
3596 mem_insert_fixup (x);
3598 return x;
3602 /* Re-establish the red-black properties of the tree, and thereby
3603 balance the tree, after node X has been inserted; X is always red. */
3605 static void
3606 mem_insert_fixup (x)
3607 struct mem_node *x;
3609 while (x != mem_root && x->parent->color == MEM_RED)
3611 /* X is red and its parent is red. This is a violation of
3612 red-black tree property #3. */
3614 if (x->parent == x->parent->parent->left)
3616 /* We're on the left side of our grandparent, and Y is our
3617 "uncle". */
3618 struct mem_node *y = x->parent->parent->right;
3620 if (y->color == MEM_RED)
3622 /* Uncle and parent are red but should be black because
3623 X is red. Change the colors accordingly and proceed
3624 with the grandparent. */
3625 x->parent->color = MEM_BLACK;
3626 y->color = MEM_BLACK;
3627 x->parent->parent->color = MEM_RED;
3628 x = x->parent->parent;
3630 else
3632 /* Parent and uncle have different colors; parent is
3633 red, uncle is black. */
3634 if (x == x->parent->right)
3636 x = x->parent;
3637 mem_rotate_left (x);
3640 x->parent->color = MEM_BLACK;
3641 x->parent->parent->color = MEM_RED;
3642 mem_rotate_right (x->parent->parent);
3645 else
3647 /* This is the symmetrical case of above. */
3648 struct mem_node *y = x->parent->parent->left;
3650 if (y->color == MEM_RED)
3652 x->parent->color = MEM_BLACK;
3653 y->color = MEM_BLACK;
3654 x->parent->parent->color = MEM_RED;
3655 x = x->parent->parent;
3657 else
3659 if (x == x->parent->left)
3661 x = x->parent;
3662 mem_rotate_right (x);
3665 x->parent->color = MEM_BLACK;
3666 x->parent->parent->color = MEM_RED;
3667 mem_rotate_left (x->parent->parent);
3672 /* The root may have been changed to red due to the algorithm. Set
3673 it to black so that property #5 is satisfied. */
3674 mem_root->color = MEM_BLACK;
3678 /* (x) (y)
3679 / \ / \
3680 a (y) ===> (x) c
3681 / \ / \
3682 b c a b */
3684 static void
3685 mem_rotate_left (x)
3686 struct mem_node *x;
3688 struct mem_node *y;
3690 /* Turn y's left sub-tree into x's right sub-tree. */
3691 y = x->right;
3692 x->right = y->left;
3693 if (y->left != MEM_NIL)
3694 y->left->parent = x;
3696 /* Y's parent was x's parent. */
3697 if (y != MEM_NIL)
3698 y->parent = x->parent;
3700 /* Get the parent to point to y instead of x. */
3701 if (x->parent)
3703 if (x == x->parent->left)
3704 x->parent->left = y;
3705 else
3706 x->parent->right = y;
3708 else
3709 mem_root = y;
3711 /* Put x on y's left. */
3712 y->left = x;
3713 if (x != MEM_NIL)
3714 x->parent = y;
3718 /* (x) (Y)
3719 / \ / \
3720 (y) c ===> a (x)
3721 / \ / \
3722 a b b c */
3724 static void
3725 mem_rotate_right (x)
3726 struct mem_node *x;
3728 struct mem_node *y = x->left;
3730 x->left = y->right;
3731 if (y->right != MEM_NIL)
3732 y->right->parent = x;
3734 if (y != MEM_NIL)
3735 y->parent = x->parent;
3736 if (x->parent)
3738 if (x == x->parent->right)
3739 x->parent->right = y;
3740 else
3741 x->parent->left = y;
3743 else
3744 mem_root = y;
3746 y->right = x;
3747 if (x != MEM_NIL)
3748 x->parent = y;
3752 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3754 static void
3755 mem_delete (z)
3756 struct mem_node *z;
3758 struct mem_node *x, *y;
3760 if (!z || z == MEM_NIL)
3761 return;
3763 if (z->left == MEM_NIL || z->right == MEM_NIL)
3764 y = z;
3765 else
3767 y = z->right;
3768 while (y->left != MEM_NIL)
3769 y = y->left;
3772 if (y->left != MEM_NIL)
3773 x = y->left;
3774 else
3775 x = y->right;
3777 x->parent = y->parent;
3778 if (y->parent)
3780 if (y == y->parent->left)
3781 y->parent->left = x;
3782 else
3783 y->parent->right = x;
3785 else
3786 mem_root = x;
3788 if (y != z)
3790 z->start = y->start;
3791 z->end = y->end;
3792 z->type = y->type;
3795 if (y->color == MEM_BLACK)
3796 mem_delete_fixup (x);
3798 #ifdef GC_MALLOC_CHECK
3799 _free_internal (y);
3800 #else
3801 xfree (y);
3802 #endif
3806 /* Re-establish the red-black properties of the tree, after a
3807 deletion. */
3809 static void
3810 mem_delete_fixup (x)
3811 struct mem_node *x;
3813 while (x != mem_root && x->color == MEM_BLACK)
3815 if (x == x->parent->left)
3817 struct mem_node *w = x->parent->right;
3819 if (w->color == MEM_RED)
3821 w->color = MEM_BLACK;
3822 x->parent->color = MEM_RED;
3823 mem_rotate_left (x->parent);
3824 w = x->parent->right;
3827 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3829 w->color = MEM_RED;
3830 x = x->parent;
3832 else
3834 if (w->right->color == MEM_BLACK)
3836 w->left->color = MEM_BLACK;
3837 w->color = MEM_RED;
3838 mem_rotate_right (w);
3839 w = x->parent->right;
3841 w->color = x->parent->color;
3842 x->parent->color = MEM_BLACK;
3843 w->right->color = MEM_BLACK;
3844 mem_rotate_left (x->parent);
3845 x = mem_root;
3848 else
3850 struct mem_node *w = x->parent->left;
3852 if (w->color == MEM_RED)
3854 w->color = MEM_BLACK;
3855 x->parent->color = MEM_RED;
3856 mem_rotate_right (x->parent);
3857 w = x->parent->left;
3860 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3862 w->color = MEM_RED;
3863 x = x->parent;
3865 else
3867 if (w->left->color == MEM_BLACK)
3869 w->right->color = MEM_BLACK;
3870 w->color = MEM_RED;
3871 mem_rotate_left (w);
3872 w = x->parent->left;
3875 w->color = x->parent->color;
3876 x->parent->color = MEM_BLACK;
3877 w->left->color = MEM_BLACK;
3878 mem_rotate_right (x->parent);
3879 x = mem_root;
3884 x->color = MEM_BLACK;
3888 /* Value is non-zero if P is a pointer to a live Lisp string on
3889 the heap. M is a pointer to the mem_block for P. */
3891 static INLINE int
3892 live_string_p (m, p)
3893 struct mem_node *m;
3894 void *p;
3896 if (m->type == MEM_TYPE_STRING)
3898 struct string_block *b = (struct string_block *) m->start;
3899 int offset = (char *) p - (char *) &b->strings[0];
3901 /* P must point to the start of a Lisp_String structure, and it
3902 must not be on the free-list. */
3903 return (offset >= 0
3904 && offset % sizeof b->strings[0] == 0
3905 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3906 && ((struct Lisp_String *) p)->data != NULL);
3908 else
3909 return 0;
3913 /* Value is non-zero if P is a pointer to a live Lisp cons on
3914 the heap. M is a pointer to the mem_block for P. */
3916 static INLINE int
3917 live_cons_p (m, p)
3918 struct mem_node *m;
3919 void *p;
3921 if (m->type == MEM_TYPE_CONS)
3923 struct cons_block *b = (struct cons_block *) m->start;
3924 int offset = (char *) p - (char *) &b->conses[0];
3926 /* P must point to the start of a Lisp_Cons, not be
3927 one of the unused cells in the current cons block,
3928 and not be on the free-list. */
3929 return (offset >= 0
3930 && offset % sizeof b->conses[0] == 0
3931 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3932 && (b != cons_block
3933 || offset / sizeof b->conses[0] < cons_block_index)
3934 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3936 else
3937 return 0;
3941 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3942 the heap. M is a pointer to the mem_block for P. */
3944 static INLINE int
3945 live_symbol_p (m, p)
3946 struct mem_node *m;
3947 void *p;
3949 if (m->type == MEM_TYPE_SYMBOL)
3951 struct symbol_block *b = (struct symbol_block *) m->start;
3952 int offset = (char *) p - (char *) &b->symbols[0];
3954 /* P must point to the start of a Lisp_Symbol, not be
3955 one of the unused cells in the current symbol block,
3956 and not be on the free-list. */
3957 return (offset >= 0
3958 && offset % sizeof b->symbols[0] == 0
3959 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3960 && (b != symbol_block
3961 || offset / sizeof b->symbols[0] < symbol_block_index)
3962 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3964 else
3965 return 0;
3969 /* Value is non-zero if P is a pointer to a live Lisp float on
3970 the heap. M is a pointer to the mem_block for P. */
3972 static INLINE int
3973 live_float_p (m, p)
3974 struct mem_node *m;
3975 void *p;
3977 if (m->type == MEM_TYPE_FLOAT)
3979 struct float_block *b = (struct float_block *) m->start;
3980 int offset = (char *) p - (char *) &b->floats[0];
3982 /* P must point to the start of a Lisp_Float and not be
3983 one of the unused cells in the current float block. */
3984 return (offset >= 0
3985 && offset % sizeof b->floats[0] == 0
3986 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3987 && (b != float_block
3988 || offset / sizeof b->floats[0] < float_block_index));
3990 else
3991 return 0;
3995 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3996 the heap. M is a pointer to the mem_block for P. */
3998 static INLINE int
3999 live_misc_p (m, p)
4000 struct mem_node *m;
4001 void *p;
4003 if (m->type == MEM_TYPE_MISC)
4005 struct marker_block *b = (struct marker_block *) m->start;
4006 int offset = (char *) p - (char *) &b->markers[0];
4008 /* P must point to the start of a Lisp_Misc, not be
4009 one of the unused cells in the current misc block,
4010 and not be on the free-list. */
4011 return (offset >= 0
4012 && offset % sizeof b->markers[0] == 0
4013 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4014 && (b != marker_block
4015 || offset / sizeof b->markers[0] < marker_block_index)
4016 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4018 else
4019 return 0;
4023 /* Value is non-zero if P is a pointer to a live vector-like object.
4024 M is a pointer to the mem_block for P. */
4026 static INLINE int
4027 live_vector_p (m, p)
4028 struct mem_node *m;
4029 void *p;
4031 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
4035 /* Value is non-zero if P is a pointer to a live buffer. M is a
4036 pointer to the mem_block for P. */
4038 static INLINE int
4039 live_buffer_p (m, p)
4040 struct mem_node *m;
4041 void *p;
4043 /* P must point to the start of the block, and the buffer
4044 must not have been killed. */
4045 return (m->type == MEM_TYPE_BUFFER
4046 && p == m->start
4047 && !NILP (((struct buffer *) p)->name));
4050 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4052 #if GC_MARK_STACK
4054 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4056 /* Array of objects that are kept alive because the C stack contains
4057 a pattern that looks like a reference to them . */
4059 #define MAX_ZOMBIES 10
4060 static Lisp_Object zombies[MAX_ZOMBIES];
4062 /* Number of zombie objects. */
4064 static int nzombies;
4066 /* Number of garbage collections. */
4068 static int ngcs;
4070 /* Average percentage of zombies per collection. */
4072 static double avg_zombies;
4074 /* Max. number of live and zombie objects. */
4076 static int max_live, max_zombies;
4078 /* Average number of live objects per GC. */
4080 static double avg_live;
4082 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4083 doc: /* Show information about live and zombie objects. */)
4086 Lisp_Object args[8], zombie_list = Qnil;
4087 int i;
4088 for (i = 0; i < nzombies; i++)
4089 zombie_list = Fcons (zombies[i], zombie_list);
4090 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4091 args[1] = make_number (ngcs);
4092 args[2] = make_float (avg_live);
4093 args[3] = make_float (avg_zombies);
4094 args[4] = make_float (avg_zombies / avg_live / 100);
4095 args[5] = make_number (max_live);
4096 args[6] = make_number (max_zombies);
4097 args[7] = zombie_list;
4098 return Fmessage (8, args);
4101 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4104 /* Mark OBJ if we can prove it's a Lisp_Object. */
4106 static INLINE void
4107 mark_maybe_object (obj)
4108 Lisp_Object obj;
4110 void *po = (void *) XPNTR (obj);
4111 struct mem_node *m = mem_find (po);
4113 if (m != MEM_NIL)
4115 int mark_p = 0;
4117 switch (XTYPE (obj))
4119 case Lisp_String:
4120 mark_p = (live_string_p (m, po)
4121 && !STRING_MARKED_P ((struct Lisp_String *) po));
4122 break;
4124 case Lisp_Cons:
4125 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4126 break;
4128 case Lisp_Symbol:
4129 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4130 break;
4132 case Lisp_Float:
4133 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4134 break;
4136 case Lisp_Vectorlike:
4137 /* Note: can't check BUFFERP before we know it's a
4138 buffer because checking that dereferences the pointer
4139 PO which might point anywhere. */
4140 if (live_vector_p (m, po))
4141 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4142 else if (live_buffer_p (m, po))
4143 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4144 break;
4146 case Lisp_Misc:
4147 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4148 break;
4150 default:
4151 break;
4154 if (mark_p)
4156 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4157 if (nzombies < MAX_ZOMBIES)
4158 zombies[nzombies] = obj;
4159 ++nzombies;
4160 #endif
4161 mark_object (obj);
4167 /* If P points to Lisp data, mark that as live if it isn't already
4168 marked. */
4170 static INLINE void
4171 mark_maybe_pointer (p)
4172 void *p;
4174 struct mem_node *m;
4176 /* Quickly rule out some values which can't point to Lisp data. */
4177 if ((EMACS_INT) p %
4178 #ifdef USE_LSB_TAG
4179 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4180 #else
4181 2 /* We assume that Lisp data is aligned on even addresses. */
4182 #endif
4184 return;
4186 m = mem_find (p);
4187 if (m != MEM_NIL)
4189 Lisp_Object obj = Qnil;
4191 switch (m->type)
4193 case MEM_TYPE_NON_LISP:
4194 /* Nothing to do; not a pointer to Lisp memory. */
4195 break;
4197 case MEM_TYPE_BUFFER:
4198 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4199 XSETVECTOR (obj, p);
4200 break;
4202 case MEM_TYPE_CONS:
4203 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4204 XSETCONS (obj, p);
4205 break;
4207 case MEM_TYPE_STRING:
4208 if (live_string_p (m, p)
4209 && !STRING_MARKED_P ((struct Lisp_String *) p))
4210 XSETSTRING (obj, p);
4211 break;
4213 case MEM_TYPE_MISC:
4214 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4215 XSETMISC (obj, p);
4216 break;
4218 case MEM_TYPE_SYMBOL:
4219 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4220 XSETSYMBOL (obj, p);
4221 break;
4223 case MEM_TYPE_FLOAT:
4224 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4225 XSETFLOAT (obj, p);
4226 break;
4228 case MEM_TYPE_VECTORLIKE:
4229 if (live_vector_p (m, p))
4231 Lisp_Object tem;
4232 XSETVECTOR (tem, p);
4233 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4234 obj = tem;
4236 break;
4238 default:
4239 abort ();
4242 if (!NILP (obj))
4243 mark_object (obj);
4248 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4249 or END+OFFSET..START. */
4251 static void
4252 mark_memory (start, end, offset)
4253 void *start, *end;
4254 int offset;
4256 Lisp_Object *p;
4257 void **pp;
4259 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4260 nzombies = 0;
4261 #endif
4263 /* Make START the pointer to the start of the memory region,
4264 if it isn't already. */
4265 if (end < start)
4267 void *tem = start;
4268 start = end;
4269 end = tem;
4272 /* Mark Lisp_Objects. */
4273 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4274 mark_maybe_object (*p);
4276 /* Mark Lisp data pointed to. This is necessary because, in some
4277 situations, the C compiler optimizes Lisp objects away, so that
4278 only a pointer to them remains. Example:
4280 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4283 Lisp_Object obj = build_string ("test");
4284 struct Lisp_String *s = XSTRING (obj);
4285 Fgarbage_collect ();
4286 fprintf (stderr, "test `%s'\n", s->data);
4287 return Qnil;
4290 Here, `obj' isn't really used, and the compiler optimizes it
4291 away. The only reference to the life string is through the
4292 pointer `s'. */
4294 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4295 mark_maybe_pointer (*pp);
4298 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4299 the GCC system configuration. In gcc 3.2, the only systems for
4300 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4301 by others?) and ns32k-pc532-min. */
4303 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4305 static int setjmp_tested_p, longjmps_done;
4307 #define SETJMP_WILL_LIKELY_WORK "\
4309 Emacs garbage collector has been changed to use conservative stack\n\
4310 marking. Emacs has determined that the method it uses to do the\n\
4311 marking will likely work on your system, but this isn't sure.\n\
4313 If you are a system-programmer, or can get the help of a local wizard\n\
4314 who is, please take a look at the function mark_stack in alloc.c, and\n\
4315 verify that the methods used are appropriate for your system.\n\
4317 Please mail the result to <emacs-devel@gnu.org>.\n\
4320 #define SETJMP_WILL_NOT_WORK "\
4322 Emacs garbage collector has been changed to use conservative stack\n\
4323 marking. Emacs has determined that the default method it uses to do the\n\
4324 marking will not work on your system. We will need a system-dependent\n\
4325 solution for your system.\n\
4327 Please take a look at the function mark_stack in alloc.c, and\n\
4328 try to find a way to make it work on your system.\n\
4330 Note that you may get false negatives, depending on the compiler.\n\
4331 In particular, you need to use -O with GCC for this test.\n\
4333 Please mail the result to <emacs-devel@gnu.org>.\n\
4337 /* Perform a quick check if it looks like setjmp saves registers in a
4338 jmp_buf. Print a message to stderr saying so. When this test
4339 succeeds, this is _not_ a proof that setjmp is sufficient for
4340 conservative stack marking. Only the sources or a disassembly
4341 can prove that. */
4343 static void
4344 test_setjmp ()
4346 char buf[10];
4347 register int x;
4348 jmp_buf jbuf;
4349 int result = 0;
4351 /* Arrange for X to be put in a register. */
4352 sprintf (buf, "1");
4353 x = strlen (buf);
4354 x = 2 * x - 1;
4356 setjmp (jbuf);
4357 if (longjmps_done == 1)
4359 /* Came here after the longjmp at the end of the function.
4361 If x == 1, the longjmp has restored the register to its
4362 value before the setjmp, and we can hope that setjmp
4363 saves all such registers in the jmp_buf, although that
4364 isn't sure.
4366 For other values of X, either something really strange is
4367 taking place, or the setjmp just didn't save the register. */
4369 if (x == 1)
4370 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4371 else
4373 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4374 exit (1);
4378 ++longjmps_done;
4379 x = 2;
4380 if (longjmps_done == 1)
4381 longjmp (jbuf, 1);
4384 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4387 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4389 /* Abort if anything GCPRO'd doesn't survive the GC. */
4391 static void
4392 check_gcpros ()
4394 struct gcpro *p;
4395 int i;
4397 for (p = gcprolist; p; p = p->next)
4398 for (i = 0; i < p->nvars; ++i)
4399 if (!survives_gc_p (p->var[i]))
4400 /* FIXME: It's not necessarily a bug. It might just be that the
4401 GCPRO is unnecessary or should release the object sooner. */
4402 abort ();
4405 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4407 static void
4408 dump_zombies ()
4410 int i;
4412 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4413 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4415 fprintf (stderr, " %d = ", i);
4416 debug_print (zombies[i]);
4420 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4423 /* Mark live Lisp objects on the C stack.
4425 There are several system-dependent problems to consider when
4426 porting this to new architectures:
4428 Processor Registers
4430 We have to mark Lisp objects in CPU registers that can hold local
4431 variables or are used to pass parameters.
4433 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4434 something that either saves relevant registers on the stack, or
4435 calls mark_maybe_object passing it each register's contents.
4437 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4438 implementation assumes that calling setjmp saves registers we need
4439 to see in a jmp_buf which itself lies on the stack. This doesn't
4440 have to be true! It must be verified for each system, possibly
4441 by taking a look at the source code of setjmp.
4443 Stack Layout
4445 Architectures differ in the way their processor stack is organized.
4446 For example, the stack might look like this
4448 +----------------+
4449 | Lisp_Object | size = 4
4450 +----------------+
4451 | something else | size = 2
4452 +----------------+
4453 | Lisp_Object | size = 4
4454 +----------------+
4455 | ... |
4457 In such a case, not every Lisp_Object will be aligned equally. To
4458 find all Lisp_Object on the stack it won't be sufficient to walk
4459 the stack in steps of 4 bytes. Instead, two passes will be
4460 necessary, one starting at the start of the stack, and a second
4461 pass starting at the start of the stack + 2. Likewise, if the
4462 minimal alignment of Lisp_Objects on the stack is 1, four passes
4463 would be necessary, each one starting with one byte more offset
4464 from the stack start.
4466 The current code assumes by default that Lisp_Objects are aligned
4467 equally on the stack. */
4469 static void
4470 mark_stack ()
4472 int i;
4473 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4474 union aligned_jmpbuf {
4475 Lisp_Object o;
4476 jmp_buf j;
4477 } j;
4478 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4479 void *end;
4481 /* This trick flushes the register windows so that all the state of
4482 the process is contained in the stack. */
4483 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4484 needed on ia64 too. See mach_dep.c, where it also says inline
4485 assembler doesn't work with relevant proprietary compilers. */
4486 #ifdef __sparc__
4487 #if defined (__sparc64__) && defined (__FreeBSD__)
4488 /* FreeBSD does not have a ta 3 handler. */
4489 asm ("flushw");
4490 #else
4491 asm ("ta 3");
4492 #endif
4493 #endif
4495 /* Save registers that we need to see on the stack. We need to see
4496 registers used to hold register variables and registers used to
4497 pass parameters. */
4498 #ifdef GC_SAVE_REGISTERS_ON_STACK
4499 GC_SAVE_REGISTERS_ON_STACK (end);
4500 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4502 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4503 setjmp will definitely work, test it
4504 and print a message with the result
4505 of the test. */
4506 if (!setjmp_tested_p)
4508 setjmp_tested_p = 1;
4509 test_setjmp ();
4511 #endif /* GC_SETJMP_WORKS */
4513 setjmp (j.j);
4514 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4515 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4517 /* This assumes that the stack is a contiguous region in memory. If
4518 that's not the case, something has to be done here to iterate
4519 over the stack segments. */
4520 #ifndef GC_LISP_OBJECT_ALIGNMENT
4521 #ifdef __GNUC__
4522 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4523 #else
4524 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4525 #endif
4526 #endif
4527 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4528 mark_memory (stack_base, end, i);
4529 /* Allow for marking a secondary stack, like the register stack on the
4530 ia64. */
4531 #ifdef GC_MARK_SECONDARY_STACK
4532 GC_MARK_SECONDARY_STACK ();
4533 #endif
4535 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4536 check_gcpros ();
4537 #endif
4540 #endif /* GC_MARK_STACK != 0 */
4543 /* Determine whether it is safe to access memory at address P. */
4544 static int
4545 valid_pointer_p (p)
4546 void *p;
4548 #ifdef WINDOWSNT
4549 return w32_valid_pointer_p (p, 16);
4550 #else
4551 int fd;
4553 /* Obviously, we cannot just access it (we would SEGV trying), so we
4554 trick the o/s to tell us whether p is a valid pointer.
4555 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4556 not validate p in that case. */
4558 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4560 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4561 emacs_close (fd);
4562 unlink ("__Valid__Lisp__Object__");
4563 return valid;
4566 return -1;
4567 #endif
4570 /* Return 1 if OBJ is a valid lisp object.
4571 Return 0 if OBJ is NOT a valid lisp object.
4572 Return -1 if we cannot validate OBJ.
4573 This function can be quite slow,
4574 so it should only be used in code for manual debugging. */
4577 valid_lisp_object_p (obj)
4578 Lisp_Object obj;
4580 void *p;
4581 #if GC_MARK_STACK
4582 struct mem_node *m;
4583 #endif
4585 if (INTEGERP (obj))
4586 return 1;
4588 p = (void *) XPNTR (obj);
4589 if (PURE_POINTER_P (p))
4590 return 1;
4592 #if !GC_MARK_STACK
4593 return valid_pointer_p (p);
4594 #else
4596 m = mem_find (p);
4598 if (m == MEM_NIL)
4600 int valid = valid_pointer_p (p);
4601 if (valid <= 0)
4602 return valid;
4604 if (SUBRP (obj))
4605 return 1;
4607 return 0;
4610 switch (m->type)
4612 case MEM_TYPE_NON_LISP:
4613 return 0;
4615 case MEM_TYPE_BUFFER:
4616 return live_buffer_p (m, p);
4618 case MEM_TYPE_CONS:
4619 return live_cons_p (m, p);
4621 case MEM_TYPE_STRING:
4622 return live_string_p (m, p);
4624 case MEM_TYPE_MISC:
4625 return live_misc_p (m, p);
4627 case MEM_TYPE_SYMBOL:
4628 return live_symbol_p (m, p);
4630 case MEM_TYPE_FLOAT:
4631 return live_float_p (m, p);
4633 case MEM_TYPE_VECTORLIKE:
4634 return live_vector_p (m, p);
4636 default:
4637 break;
4640 return 0;
4641 #endif
4647 /***********************************************************************
4648 Pure Storage Management
4649 ***********************************************************************/
4651 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4652 pointer to it. TYPE is the Lisp type for which the memory is
4653 allocated. TYPE < 0 means it's not used for a Lisp object. */
4655 static POINTER_TYPE *
4656 pure_alloc (size, type)
4657 size_t size;
4658 int type;
4660 POINTER_TYPE *result;
4661 #ifdef USE_LSB_TAG
4662 size_t alignment = (1 << GCTYPEBITS);
4663 #else
4664 size_t alignment = sizeof (EMACS_INT);
4666 /* Give Lisp_Floats an extra alignment. */
4667 if (type == Lisp_Float)
4669 #if defined __GNUC__ && __GNUC__ >= 2
4670 alignment = __alignof (struct Lisp_Float);
4671 #else
4672 alignment = sizeof (struct Lisp_Float);
4673 #endif
4675 #endif
4677 again:
4678 if (type >= 0)
4680 /* Allocate space for a Lisp object from the beginning of the free
4681 space with taking account of alignment. */
4682 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4683 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4685 else
4687 /* Allocate space for a non-Lisp object from the end of the free
4688 space. */
4689 pure_bytes_used_non_lisp += size;
4690 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4692 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4694 if (pure_bytes_used <= pure_size)
4695 return result;
4697 /* Don't allocate a large amount here,
4698 because it might get mmap'd and then its address
4699 might not be usable. */
4700 purebeg = (char *) xmalloc (10000);
4701 pure_size = 10000;
4702 pure_bytes_used_before_overflow += pure_bytes_used - size;
4703 pure_bytes_used = 0;
4704 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4705 goto again;
4709 /* Print a warning if PURESIZE is too small. */
4711 void
4712 check_pure_size ()
4714 if (pure_bytes_used_before_overflow)
4715 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
4716 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4720 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4721 the non-Lisp data pool of the pure storage, and return its start
4722 address. Return NULL if not found. */
4724 static char *
4725 find_string_data_in_pure (data, nbytes)
4726 const char *data;
4727 int nbytes;
4729 int i, skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4730 const unsigned char *p;
4731 char *non_lisp_beg;
4733 if (pure_bytes_used_non_lisp < nbytes + 1)
4734 return NULL;
4736 /* Set up the Boyer-Moore table. */
4737 skip = nbytes + 1;
4738 for (i = 0; i < 256; i++)
4739 bm_skip[i] = skip;
4741 p = (const unsigned char *) data;
4742 while (--skip > 0)
4743 bm_skip[*p++] = skip;
4745 last_char_skip = bm_skip['\0'];
4747 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4748 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4750 /* See the comments in the function `boyer_moore' (search.c) for the
4751 use of `infinity'. */
4752 infinity = pure_bytes_used_non_lisp + 1;
4753 bm_skip['\0'] = infinity;
4755 p = (const unsigned char *) non_lisp_beg + nbytes;
4756 start = 0;
4759 /* Check the last character (== '\0'). */
4762 start += bm_skip[*(p + start)];
4764 while (start <= start_max);
4766 if (start < infinity)
4767 /* Couldn't find the last character. */
4768 return NULL;
4770 /* No less than `infinity' means we could find the last
4771 character at `p[start - infinity]'. */
4772 start -= infinity;
4774 /* Check the remaining characters. */
4775 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4776 /* Found. */
4777 return non_lisp_beg + start;
4779 start += last_char_skip;
4781 while (start <= start_max);
4783 return NULL;
4787 /* Return a string allocated in pure space. DATA is a buffer holding
4788 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4789 non-zero means make the result string multibyte.
4791 Must get an error if pure storage is full, since if it cannot hold
4792 a large string it may be able to hold conses that point to that
4793 string; then the string is not protected from gc. */
4795 Lisp_Object
4796 make_pure_string (data, nchars, nbytes, multibyte)
4797 const char *data;
4798 int nchars, nbytes;
4799 int multibyte;
4801 Lisp_Object string;
4802 struct Lisp_String *s;
4804 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4805 s->data = find_string_data_in_pure (data, nbytes);
4806 if (s->data == NULL)
4808 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4809 bcopy (data, s->data, nbytes);
4810 s->data[nbytes] = '\0';
4812 s->size = nchars;
4813 s->size_byte = multibyte ? nbytes : -1;
4814 s->intervals = NULL_INTERVAL;
4815 XSETSTRING (string, s);
4816 return string;
4819 /* Return a string a string allocated in pure space. Do not allocate
4820 the string data, just point to DATA. */
4822 Lisp_Object
4823 make_pure_c_string (const char *data)
4825 Lisp_Object string;
4826 struct Lisp_String *s;
4827 int nchars = strlen (data);
4829 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4830 s->size = nchars;
4831 s->size_byte = -1;
4832 s->data = (unsigned char *) data;
4833 s->intervals = NULL_INTERVAL;
4834 XSETSTRING (string, s);
4835 return string;
4838 /* Return a cons allocated from pure space. Give it pure copies
4839 of CAR as car and CDR as cdr. */
4841 Lisp_Object
4842 pure_cons (car, cdr)
4843 Lisp_Object car, cdr;
4845 register Lisp_Object new;
4846 struct Lisp_Cons *p;
4848 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4849 XSETCONS (new, p);
4850 XSETCAR (new, Fpurecopy (car));
4851 XSETCDR (new, Fpurecopy (cdr));
4852 return new;
4856 /* Value is a float object with value NUM allocated from pure space. */
4858 static Lisp_Object
4859 make_pure_float (num)
4860 double num;
4862 register Lisp_Object new;
4863 struct Lisp_Float *p;
4865 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4866 XSETFLOAT (new, p);
4867 XFLOAT_INIT (new, num);
4868 return new;
4872 /* Return a vector with room for LEN Lisp_Objects allocated from
4873 pure space. */
4875 Lisp_Object
4876 make_pure_vector (len)
4877 EMACS_INT len;
4879 Lisp_Object new;
4880 struct Lisp_Vector *p;
4881 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4883 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4884 XSETVECTOR (new, p);
4885 XVECTOR (new)->header.size = len;
4886 return new;
4890 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4891 doc: /* Make a copy of object OBJ in pure storage.
4892 Recursively copies contents of vectors and cons cells.
4893 Does not copy symbols. Copies strings without text properties. */)
4894 (obj)
4895 register Lisp_Object obj;
4897 if (NILP (Vpurify_flag))
4898 return obj;
4900 if (PURE_POINTER_P (XPNTR (obj)))
4901 return obj;
4903 if (CONSP (obj))
4904 return pure_cons (XCAR (obj), XCDR (obj));
4905 else if (FLOATP (obj))
4906 return make_pure_float (XFLOAT_DATA (obj));
4907 else if (STRINGP (obj))
4908 return make_pure_string (SDATA (obj), SCHARS (obj),
4909 SBYTES (obj),
4910 STRING_MULTIBYTE (obj));
4911 else if (COMPILEDP (obj) || VECTORP (obj))
4913 register struct Lisp_Vector *vec;
4914 register int i;
4915 EMACS_INT size;
4917 size = XVECTOR_SIZE (obj);
4918 if (size & PSEUDOVECTOR_FLAG)
4919 size &= PSEUDOVECTOR_SIZE_MASK;
4920 vec = XVECTOR (make_pure_vector (size));
4921 for (i = 0; i < size; i++)
4922 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4923 if (COMPILEDP (obj))
4925 XSETPVECTYPE (vec, PVEC_COMPILED);
4926 XSETCOMPILED (obj, vec);
4928 else
4929 XSETVECTOR (obj, vec);
4930 return obj;
4932 else if (MARKERP (obj))
4933 error ("Attempt to copy a marker to pure storage");
4935 return obj;
4940 /***********************************************************************
4941 Protection from GC
4942 ***********************************************************************/
4944 /* Put an entry in staticvec, pointing at the variable with address
4945 VARADDRESS. */
4947 void
4948 staticpro (varaddress)
4949 Lisp_Object *varaddress;
4951 staticvec[staticidx++] = varaddress;
4952 if (staticidx >= NSTATICS)
4953 abort ();
4957 /***********************************************************************
4958 Protection from GC
4959 ***********************************************************************/
4961 /* Temporarily prevent garbage collection. */
4964 inhibit_garbage_collection ()
4966 int count = SPECPDL_INDEX ();
4967 int nbits = min (VALBITS, BITS_PER_INT);
4969 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4970 return count;
4974 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4975 doc: /* Reclaim storage for Lisp objects no longer needed.
4976 Garbage collection happens automatically if you cons more than
4977 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4978 `garbage-collect' normally returns a list with info on amount of space in use:
4979 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4980 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4981 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4982 (USED-STRINGS . FREE-STRINGS))
4983 However, if there was overflow in pure space, `garbage-collect'
4984 returns nil, because real GC can't be done. */)
4987 register struct specbinding *bind;
4988 struct catchtag *catch;
4989 struct handler *handler;
4990 char stack_top_variable;
4991 register int i;
4992 int message_p;
4993 Lisp_Object total[8];
4994 int count = SPECPDL_INDEX ();
4995 EMACS_TIME t1, t2, t3;
4997 if (abort_on_gc)
4998 abort ();
5000 /* Can't GC if pure storage overflowed because we can't determine
5001 if something is a pure object or not. */
5002 if (pure_bytes_used_before_overflow)
5003 return Qnil;
5005 CHECK_CONS_LIST ();
5007 /* Don't keep undo information around forever.
5008 Do this early on, so it is no problem if the user quits. */
5010 register struct buffer *nextb = all_buffers;
5012 while (nextb)
5014 /* If a buffer's undo list is Qt, that means that undo is
5015 turned off in that buffer. Calling truncate_undo_list on
5016 Qt tends to return NULL, which effectively turns undo back on.
5017 So don't call truncate_undo_list if undo_list is Qt. */
5018 if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
5019 truncate_undo_list (nextb);
5021 /* Shrink buffer gaps, but skip indirect and dead buffers. */
5022 if (nextb->base_buffer == 0 && !NILP (nextb->name)
5023 && ! nextb->text->inhibit_shrinking)
5025 /* If a buffer's gap size is more than 10% of the buffer
5026 size, or larger than 2000 bytes, then shrink it
5027 accordingly. Keep a minimum size of 20 bytes. */
5028 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
5030 if (nextb->text->gap_size > size)
5032 struct buffer *save_current = current_buffer;
5033 current_buffer = nextb;
5034 make_gap (-(nextb->text->gap_size - size));
5035 current_buffer = save_current;
5039 nextb = nextb->header.next.buffer;
5043 EMACS_GET_TIME (t1);
5045 /* In case user calls debug_print during GC,
5046 don't let that cause a recursive GC. */
5047 consing_since_gc = 0;
5049 /* Save what's currently displayed in the echo area. */
5050 message_p = push_message ();
5051 record_unwind_protect (pop_message_unwind, Qnil);
5053 /* Save a copy of the contents of the stack, for debugging. */
5054 #if MAX_SAVE_STACK > 0
5055 if (NILP (Vpurify_flag))
5057 i = &stack_top_variable - stack_bottom;
5058 if (i < 0) i = -i;
5059 if (i < MAX_SAVE_STACK)
5061 if (stack_copy == 0)
5062 stack_copy = (char *) xmalloc (stack_copy_size = i);
5063 else if (stack_copy_size < i)
5064 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
5065 if (stack_copy)
5067 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
5068 bcopy (stack_bottom, stack_copy, i);
5069 else
5070 bcopy (&stack_top_variable, stack_copy, i);
5074 #endif /* MAX_SAVE_STACK > 0 */
5076 if (garbage_collection_messages)
5077 message1_nolog ("Garbage collecting...");
5079 BLOCK_INPUT;
5081 shrink_regexp_cache ();
5083 gc_in_progress = 1;
5085 /* clear_marks (); */
5087 /* Mark all the special slots that serve as the roots of accessibility. */
5089 for (i = 0; i < staticidx; i++)
5090 mark_object (*staticvec[i]);
5092 for (bind = specpdl; bind != specpdl_ptr; bind++)
5094 mark_object (bind->symbol);
5095 mark_object (bind->old_value);
5097 mark_terminals ();
5098 mark_kboards ();
5099 mark_ttys ();
5101 #ifdef USE_GTK
5103 extern void xg_mark_data ();
5104 xg_mark_data ();
5106 #endif
5108 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5109 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5110 mark_stack ();
5111 #else
5113 register struct gcpro *tail;
5114 for (tail = gcprolist; tail; tail = tail->next)
5115 for (i = 0; i < tail->nvars; i++)
5116 mark_object (tail->var[i]);
5118 #endif
5120 mark_byte_stack ();
5121 for (catch = catchlist; catch; catch = catch->next)
5123 mark_object (catch->tag);
5124 mark_object (catch->val);
5126 for (handler = handlerlist; handler; handler = handler->next)
5128 mark_object (handler->handler);
5129 mark_object (handler->var);
5131 mark_backtrace ();
5133 #ifdef HAVE_WINDOW_SYSTEM
5134 mark_fringe_data ();
5135 #endif
5137 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5138 mark_stack ();
5139 #endif
5141 /* Everything is now marked, except for the things that require special
5142 finalization, i.e. the undo_list.
5143 Look thru every buffer's undo list
5144 for elements that update markers that were not marked,
5145 and delete them. */
5147 register struct buffer *nextb = all_buffers;
5149 while (nextb)
5151 /* If a buffer's undo list is Qt, that means that undo is
5152 turned off in that buffer. Calling truncate_undo_list on
5153 Qt tends to return NULL, which effectively turns undo back on.
5154 So don't call truncate_undo_list if undo_list is Qt. */
5155 if (! EQ (nextb->undo_list, Qt))
5157 Lisp_Object tail, prev;
5158 tail = nextb->undo_list;
5159 prev = Qnil;
5160 while (CONSP (tail))
5162 if (CONSP (XCAR (tail))
5163 && MARKERP (XCAR (XCAR (tail)))
5164 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5166 if (NILP (prev))
5167 nextb->undo_list = tail = XCDR (tail);
5168 else
5170 tail = XCDR (tail);
5171 XSETCDR (prev, tail);
5174 else
5176 prev = tail;
5177 tail = XCDR (tail);
5181 /* Now that we have stripped the elements that need not be in the
5182 undo_list any more, we can finally mark the list. */
5183 mark_object (nextb->undo_list);
5185 nextb = nextb->header.next.buffer;
5189 gc_sweep ();
5191 /* Clear the mark bits that we set in certain root slots. */
5193 unmark_byte_stack ();
5194 VECTOR_UNMARK (&buffer_defaults);
5195 VECTOR_UNMARK (&buffer_local_symbols);
5197 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5198 dump_zombies ();
5199 #endif
5201 UNBLOCK_INPUT;
5203 CHECK_CONS_LIST ();
5205 /* clear_marks (); */
5206 gc_in_progress = 0;
5208 consing_since_gc = 0;
5209 if (gc_cons_threshold < 10000)
5210 gc_cons_threshold = 10000;
5212 if (FLOATP (Vgc_cons_percentage))
5213 { /* Set gc_cons_combined_threshold. */
5214 EMACS_INT total = 0;
5216 total += total_conses * sizeof (struct Lisp_Cons);
5217 total += total_symbols * sizeof (struct Lisp_Symbol);
5218 total += total_markers * sizeof (union Lisp_Misc);
5219 total += total_string_size;
5220 total += total_vector_size * sizeof (Lisp_Object);
5221 total += total_floats * sizeof (struct Lisp_Float);
5222 total += total_intervals * sizeof (struct interval);
5223 total += total_strings * sizeof (struct Lisp_String);
5225 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
5227 else
5228 gc_relative_threshold = 0;
5230 if (garbage_collection_messages)
5232 if (message_p || minibuf_level > 0)
5233 restore_message ();
5234 else
5235 message1_nolog ("Garbage collecting...done");
5238 unbind_to (count, Qnil);
5240 total[0] = Fcons (make_number (total_conses),
5241 make_number (total_free_conses));
5242 total[1] = Fcons (make_number (total_symbols),
5243 make_number (total_free_symbols));
5244 total[2] = Fcons (make_number (total_markers),
5245 make_number (total_free_markers));
5246 total[3] = make_number (total_string_size);
5247 total[4] = make_number (total_vector_size);
5248 total[5] = Fcons (make_number (total_floats),
5249 make_number (total_free_floats));
5250 total[6] = Fcons (make_number (total_intervals),
5251 make_number (total_free_intervals));
5252 total[7] = Fcons (make_number (total_strings),
5253 make_number (total_free_strings));
5255 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5257 /* Compute average percentage of zombies. */
5258 double nlive = 0;
5260 for (i = 0; i < 7; ++i)
5261 if (CONSP (total[i]))
5262 nlive += XFASTINT (XCAR (total[i]));
5264 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5265 max_live = max (nlive, max_live);
5266 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5267 max_zombies = max (nzombies, max_zombies);
5268 ++ngcs;
5270 #endif
5272 if (!NILP (Vpost_gc_hook))
5274 int count = inhibit_garbage_collection ();
5275 safe_run_hooks (Qpost_gc_hook);
5276 unbind_to (count, Qnil);
5279 /* Accumulate statistics. */
5280 EMACS_GET_TIME (t2);
5281 EMACS_SUB_TIME (t3, t2, t1);
5282 if (FLOATP (Vgc_elapsed))
5283 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5284 EMACS_SECS (t3) +
5285 EMACS_USECS (t3) * 1.0e-6);
5286 gcs_done++;
5288 return Flist (sizeof total / sizeof *total, total);
5292 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5293 only interesting objects referenced from glyphs are strings. */
5295 static void
5296 mark_glyph_matrix (matrix)
5297 struct glyph_matrix *matrix;
5299 struct glyph_row *row = matrix->rows;
5300 struct glyph_row *end = row + matrix->nrows;
5302 for (; row < end; ++row)
5303 if (row->enabled_p)
5305 int area;
5306 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5308 struct glyph *glyph = row->glyphs[area];
5309 struct glyph *end_glyph = glyph + row->used[area];
5311 for (; glyph < end_glyph; ++glyph)
5312 if (STRINGP (glyph->object)
5313 && !STRING_MARKED_P (XSTRING (glyph->object)))
5314 mark_object (glyph->object);
5320 /* Mark Lisp faces in the face cache C. */
5322 static void
5323 mark_face_cache (c)
5324 struct face_cache *c;
5326 if (c)
5328 int i, j;
5329 for (i = 0; i < c->used; ++i)
5331 struct face *face = FACE_FROM_ID (c->f, i);
5333 if (face)
5335 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5336 mark_object (face->lface[j]);
5344 /* Mark reference to a Lisp_Object.
5345 If the object referred to has not been seen yet, recursively mark
5346 all the references contained in it. */
5348 #define LAST_MARKED_SIZE 500
5349 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5350 int last_marked_index;
5352 /* For debugging--call abort when we cdr down this many
5353 links of a list, in mark_object. In debugging,
5354 the call to abort will hit a breakpoint.
5355 Normally this is zero and the check never goes off. */
5356 static int mark_object_loop_halt;
5358 static void
5359 mark_vectorlike (ptr)
5360 struct Lisp_Vector *ptr;
5362 register EMACS_UINT size = ptr->header.size;
5363 register int i;
5365 eassert (!VECTOR_MARKED_P (ptr));
5366 VECTOR_MARK (ptr); /* Else mark it */
5367 if (size & PSEUDOVECTOR_FLAG)
5368 size &= PSEUDOVECTOR_SIZE_MASK;
5370 /* Note that this size is not the memory-footprint size, but only
5371 the number of Lisp_Object fields that we should trace.
5372 The distinction is used e.g. by Lisp_Process which places extra
5373 non-Lisp_Object fields at the end of the structure. */
5374 for (i = 0; i < size; i++) /* and then mark its elements */
5375 mark_object (ptr->contents[i]);
5378 /* Like mark_vectorlike but optimized for char-tables (and
5379 sub-char-tables) assuming that the contents are mostly integers or
5380 symbols. */
5382 static void
5383 mark_char_table (ptr)
5384 struct Lisp_Vector *ptr;
5386 register EMACS_UINT size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5387 register int i;
5389 eassert (!VECTOR_MARKED_P (ptr));
5390 VECTOR_MARK (ptr);
5391 for (i = 0; i < size; i++)
5393 Lisp_Object val = ptr->contents[i];
5395 if (INTEGERP (val) || SYMBOLP (val) && XSYMBOL (val)->gcmarkbit)
5396 continue;
5397 if (SUB_CHAR_TABLE_P (val))
5399 if (! VECTOR_MARKED_P (XVECTOR (val)))
5400 mark_char_table (XVECTOR (val));
5402 else
5403 mark_object (val);
5407 void
5408 mark_object (arg)
5409 Lisp_Object arg;
5411 register Lisp_Object obj = arg;
5412 #ifdef GC_CHECK_MARKED_OBJECTS
5413 void *po;
5414 struct mem_node *m;
5415 #endif
5416 int cdr_count = 0;
5418 loop:
5420 if (PURE_POINTER_P (XPNTR (obj)))
5421 return;
5423 last_marked[last_marked_index++] = obj;
5424 if (last_marked_index == LAST_MARKED_SIZE)
5425 last_marked_index = 0;
5427 /* Perform some sanity checks on the objects marked here. Abort if
5428 we encounter an object we know is bogus. This increases GC time
5429 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5430 #ifdef GC_CHECK_MARKED_OBJECTS
5432 po = (void *) XPNTR (obj);
5434 /* Check that the object pointed to by PO is known to be a Lisp
5435 structure allocated from the heap. */
5436 #define CHECK_ALLOCATED() \
5437 do { \
5438 m = mem_find (po); \
5439 if (m == MEM_NIL) \
5440 abort (); \
5441 } while (0)
5443 /* Check that the object pointed to by PO is live, using predicate
5444 function LIVEP. */
5445 #define CHECK_LIVE(LIVEP) \
5446 do { \
5447 if (!LIVEP (m, po)) \
5448 abort (); \
5449 } while (0)
5451 /* Check both of the above conditions. */
5452 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5453 do { \
5454 CHECK_ALLOCATED (); \
5455 CHECK_LIVE (LIVEP); \
5456 } while (0) \
5458 #else /* not GC_CHECK_MARKED_OBJECTS */
5460 #define CHECK_ALLOCATED() (void) 0
5461 #define CHECK_LIVE(LIVEP) (void) 0
5462 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5464 #endif /* not GC_CHECK_MARKED_OBJECTS */
5466 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5468 case Lisp_String:
5470 register struct Lisp_String *ptr = XSTRING (obj);
5471 if (STRING_MARKED_P (ptr))
5472 break;
5473 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5474 MARK_INTERVAL_TREE (ptr->intervals);
5475 MARK_STRING (ptr);
5476 #ifdef GC_CHECK_STRING_BYTES
5477 /* Check that the string size recorded in the string is the
5478 same as the one recorded in the sdata structure. */
5479 CHECK_STRING_BYTES (ptr);
5480 #endif /* GC_CHECK_STRING_BYTES */
5482 break;
5484 case Lisp_Vectorlike:
5485 if (VECTOR_MARKED_P (XVECTOR (obj)))
5486 break;
5487 #ifdef GC_CHECK_MARKED_OBJECTS
5488 m = mem_find (po);
5489 if (m == MEM_NIL && !SUBRP (obj)
5490 && po != &buffer_defaults
5491 && po != &buffer_local_symbols)
5492 abort ();
5493 #endif /* GC_CHECK_MARKED_OBJECTS */
5495 if (BUFFERP (obj))
5497 #ifdef GC_CHECK_MARKED_OBJECTS
5498 if (po != &buffer_defaults && po != &buffer_local_symbols)
5500 struct buffer *b;
5501 for (b = all_buffers; b && b != po; b = b->header.next.buffer)
5503 if (b == NULL)
5504 abort ();
5506 #endif /* GC_CHECK_MARKED_OBJECTS */
5507 mark_buffer (obj);
5509 else if (SUBRP (obj))
5510 break;
5511 else if (COMPILEDP (obj))
5512 /* We could treat this just like a vector, but it is better to
5513 save the COMPILED_CONSTANTS element for last and avoid
5514 recursion there. */
5516 register struct Lisp_Vector *ptr = XVECTOR (obj);
5517 register EMACS_UINT size = ptr->header.size;
5518 register int i;
5520 CHECK_LIVE (live_vector_p);
5521 VECTOR_MARK (ptr); /* Else mark it */
5522 size &= PSEUDOVECTOR_SIZE_MASK;
5523 for (i = 0; i < size; i++) /* and then mark its elements */
5525 if (i != COMPILED_CONSTANTS)
5526 mark_object (ptr->contents[i]);
5528 obj = ptr->contents[COMPILED_CONSTANTS];
5529 goto loop;
5531 else if (FRAMEP (obj))
5533 register struct frame *ptr = XFRAME (obj);
5534 mark_vectorlike (XVECTOR (obj));
5535 mark_face_cache (ptr->face_cache);
5537 else if (WINDOWP (obj))
5539 register struct Lisp_Vector *ptr = XVECTOR (obj);
5540 struct window *w = XWINDOW (obj);
5541 mark_vectorlike (ptr);
5542 /* Mark glyphs for leaf windows. Marking window matrices is
5543 sufficient because frame matrices use the same glyph
5544 memory. */
5545 if (NILP (w->hchild)
5546 && NILP (w->vchild)
5547 && w->current_matrix)
5549 mark_glyph_matrix (w->current_matrix);
5550 mark_glyph_matrix (w->desired_matrix);
5553 else if (HASH_TABLE_P (obj))
5555 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5556 mark_vectorlike ((struct Lisp_Vector *)h);
5557 /* If hash table is not weak, mark all keys and values.
5558 For weak tables, mark only the vector. */
5559 if (NILP (h->weak))
5560 mark_object (h->key_and_value);
5561 else
5562 VECTOR_MARK (XVECTOR (h->key_and_value));
5564 else if (CHAR_TABLE_P (obj))
5565 mark_char_table (XVECTOR (obj));
5566 else
5567 mark_vectorlike (XVECTOR (obj));
5568 break;
5570 case Lisp_Symbol:
5572 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5573 struct Lisp_Symbol *ptrx;
5575 if (ptr->gcmarkbit)
5576 break;
5577 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5578 ptr->gcmarkbit = 1;
5579 mark_object (ptr->value);
5580 mark_object (ptr->function);
5581 mark_object (ptr->plist);
5583 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5584 MARK_STRING (XSTRING (ptr->xname));
5585 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5587 /* Note that we do not mark the obarray of the symbol.
5588 It is safe not to do so because nothing accesses that
5589 slot except to check whether it is nil. */
5590 ptr = ptr->next;
5591 if (ptr)
5593 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5594 XSETSYMBOL (obj, ptrx);
5595 goto loop;
5598 break;
5600 case Lisp_Misc:
5601 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5602 if (XMISCANY (obj)->gcmarkbit)
5603 break;
5604 XMISCANY (obj)->gcmarkbit = 1;
5606 switch (XMISCTYPE (obj))
5608 case Lisp_Misc_Buffer_Local_Value:
5610 register struct Lisp_Buffer_Local_Value *ptr
5611 = XBUFFER_LOCAL_VALUE (obj);
5612 /* If the cdr is nil, avoid recursion for the car. */
5613 if (EQ (ptr->cdr, Qnil))
5615 obj = ptr->realvalue;
5616 goto loop;
5618 mark_object (ptr->realvalue);
5619 mark_object (ptr->buffer);
5620 mark_object (ptr->frame);
5621 obj = ptr->cdr;
5622 goto loop;
5625 case Lisp_Misc_Marker:
5626 /* DO NOT mark thru the marker's chain.
5627 The buffer's markers chain does not preserve markers from gc;
5628 instead, markers are removed from the chain when freed by gc. */
5629 break;
5631 case Lisp_Misc_Intfwd:
5632 case Lisp_Misc_Boolfwd:
5633 case Lisp_Misc_Objfwd:
5634 case Lisp_Misc_Buffer_Objfwd:
5635 case Lisp_Misc_Kboard_Objfwd:
5636 /* Don't bother with Lisp_Buffer_Objfwd,
5637 since all markable slots in current buffer marked anyway. */
5638 /* Don't need to do Lisp_Objfwd, since the places they point
5639 are protected with staticpro. */
5640 break;
5642 case Lisp_Misc_Save_Value:
5643 #if GC_MARK_STACK
5645 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5646 /* If DOGC is set, POINTER is the address of a memory
5647 area containing INTEGER potential Lisp_Objects. */
5648 if (ptr->dogc)
5650 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5651 int nelt;
5652 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5653 mark_maybe_object (*p);
5656 #endif
5657 break;
5659 case Lisp_Misc_Overlay:
5661 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5662 mark_object (ptr->start);
5663 mark_object (ptr->end);
5664 mark_object (ptr->plist);
5665 if (ptr->next)
5667 XSETMISC (obj, ptr->next);
5668 goto loop;
5671 break;
5673 default:
5674 abort ();
5676 break;
5678 case Lisp_Cons:
5680 register struct Lisp_Cons *ptr = XCONS (obj);
5681 if (CONS_MARKED_P (ptr))
5682 break;
5683 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5684 CONS_MARK (ptr);
5685 /* If the cdr is nil, avoid recursion for the car. */
5686 if (EQ (ptr->u.cdr, Qnil))
5688 obj = ptr->car;
5689 cdr_count = 0;
5690 goto loop;
5692 mark_object (ptr->car);
5693 obj = ptr->u.cdr;
5694 cdr_count++;
5695 if (cdr_count == mark_object_loop_halt)
5696 abort ();
5697 goto loop;
5700 case Lisp_Float:
5701 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5702 FLOAT_MARK (XFLOAT (obj));
5703 break;
5705 case_Lisp_Int:
5706 break;
5708 default:
5709 abort ();
5712 #undef CHECK_LIVE
5713 #undef CHECK_ALLOCATED
5714 #undef CHECK_ALLOCATED_AND_LIVE
5717 /* Mark the pointers in a buffer structure. */
5719 static void
5720 mark_buffer (buf)
5721 Lisp_Object buf;
5723 register struct buffer *buffer = XBUFFER (buf);
5724 register Lisp_Object *ptr, tmp;
5725 Lisp_Object base_buffer;
5727 eassert (!VECTOR_MARKED_P (buffer));
5728 VECTOR_MARK (buffer);
5730 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5732 /* For now, we just don't mark the undo_list. It's done later in
5733 a special way just before the sweep phase, and after stripping
5734 some of its elements that are not needed any more. */
5736 if (buffer->overlays_before)
5738 XSETMISC (tmp, buffer->overlays_before);
5739 mark_object (tmp);
5741 if (buffer->overlays_after)
5743 XSETMISC (tmp, buffer->overlays_after);
5744 mark_object (tmp);
5747 /* buffer-local Lisp variables start at `undo_list',
5748 tho only the ones from `name' on are GC'd normally. */
5749 for (ptr = &buffer->name;
5750 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5751 ptr++)
5752 mark_object (*ptr);
5754 /* If this is an indirect buffer, mark its base buffer. */
5755 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5757 XSETBUFFER (base_buffer, buffer->base_buffer);
5758 mark_buffer (base_buffer);
5762 /* Mark the Lisp pointers in the terminal objects.
5763 Called by the Fgarbage_collector. */
5765 static void
5766 mark_terminals (void)
5768 struct terminal *t;
5769 for (t = terminal_list; t; t = t->next_terminal)
5771 eassert (t->name != NULL);
5772 #ifdef HAVE_WINDOW_SYSTEM
5773 /* If a terminal object is reachable from a stacpro'ed object,
5774 it might have been marked already. Make sure the image cache
5775 gets marked. */
5776 mark_image_cache (t->image_cache);
5777 #endif /* HAVE_WINDOW_SYSTEM */
5778 if (!VECTOR_MARKED_P (t))
5779 mark_vectorlike ((struct Lisp_Vector *)t);
5785 /* Value is non-zero if OBJ will survive the current GC because it's
5786 either marked or does not need to be marked to survive. */
5789 survives_gc_p (obj)
5790 Lisp_Object obj;
5792 int survives_p;
5794 switch (XTYPE (obj))
5796 case_Lisp_Int:
5797 survives_p = 1;
5798 break;
5800 case Lisp_Symbol:
5801 survives_p = XSYMBOL (obj)->gcmarkbit;
5802 break;
5804 case Lisp_Misc:
5805 survives_p = XMISCANY (obj)->gcmarkbit;
5806 break;
5808 case Lisp_String:
5809 survives_p = STRING_MARKED_P (XSTRING (obj));
5810 break;
5812 case Lisp_Vectorlike:
5813 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5814 break;
5816 case Lisp_Cons:
5817 survives_p = CONS_MARKED_P (XCONS (obj));
5818 break;
5820 case Lisp_Float:
5821 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5822 break;
5824 default:
5825 abort ();
5828 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5833 /* Sweep: find all structures not marked, and free them. */
5835 static void
5836 gc_sweep ()
5838 /* Remove or mark entries in weak hash tables.
5839 This must be done before any object is unmarked. */
5840 sweep_weak_hash_tables ();
5842 sweep_strings ();
5843 #ifdef GC_CHECK_STRING_BYTES
5844 if (!noninteractive)
5845 check_string_bytes (1);
5846 #endif
5848 /* Put all unmarked conses on free list */
5850 register struct cons_block *cblk;
5851 struct cons_block **cprev = &cons_block;
5852 register int lim = cons_block_index;
5853 register int num_free = 0, num_used = 0;
5855 cons_free_list = 0;
5857 for (cblk = cons_block; cblk; cblk = *cprev)
5859 register int i = 0;
5860 int this_free = 0;
5861 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5863 /* Scan the mark bits an int at a time. */
5864 for (i = 0; i <= ilim; i++)
5866 if (cblk->gcmarkbits[i] == -1)
5868 /* Fast path - all cons cells for this int are marked. */
5869 cblk->gcmarkbits[i] = 0;
5870 num_used += BITS_PER_INT;
5872 else
5874 /* Some cons cells for this int are not marked.
5875 Find which ones, and free them. */
5876 int start, pos, stop;
5878 start = i * BITS_PER_INT;
5879 stop = lim - start;
5880 if (stop > BITS_PER_INT)
5881 stop = BITS_PER_INT;
5882 stop += start;
5884 for (pos = start; pos < stop; pos++)
5886 if (!CONS_MARKED_P (&cblk->conses[pos]))
5888 this_free++;
5889 cblk->conses[pos].u.chain = cons_free_list;
5890 cons_free_list = &cblk->conses[pos];
5891 #if GC_MARK_STACK
5892 cons_free_list->car = Vdead;
5893 #endif
5895 else
5897 num_used++;
5898 CONS_UNMARK (&cblk->conses[pos]);
5904 lim = CONS_BLOCK_SIZE;
5905 /* If this block contains only free conses and we have already
5906 seen more than two blocks worth of free conses then deallocate
5907 this block. */
5908 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5910 *cprev = cblk->next;
5911 /* Unhook from the free list. */
5912 cons_free_list = cblk->conses[0].u.chain;
5913 lisp_align_free (cblk);
5914 n_cons_blocks--;
5916 else
5918 num_free += this_free;
5919 cprev = &cblk->next;
5922 total_conses = num_used;
5923 total_free_conses = num_free;
5926 /* Put all unmarked floats on free list */
5928 register struct float_block *fblk;
5929 struct float_block **fprev = &float_block;
5930 register int lim = float_block_index;
5931 register int num_free = 0, num_used = 0;
5933 float_free_list = 0;
5935 for (fblk = float_block; fblk; fblk = *fprev)
5937 register int i;
5938 int this_free = 0;
5939 for (i = 0; i < lim; i++)
5940 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5942 this_free++;
5943 fblk->floats[i].u.chain = float_free_list;
5944 float_free_list = &fblk->floats[i];
5946 else
5948 num_used++;
5949 FLOAT_UNMARK (&fblk->floats[i]);
5951 lim = FLOAT_BLOCK_SIZE;
5952 /* If this block contains only free floats and we have already
5953 seen more than two blocks worth of free floats then deallocate
5954 this block. */
5955 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5957 *fprev = fblk->next;
5958 /* Unhook from the free list. */
5959 float_free_list = fblk->floats[0].u.chain;
5960 lisp_align_free (fblk);
5961 n_float_blocks--;
5963 else
5965 num_free += this_free;
5966 fprev = &fblk->next;
5969 total_floats = num_used;
5970 total_free_floats = num_free;
5973 /* Put all unmarked intervals on free list */
5975 register struct interval_block *iblk;
5976 struct interval_block **iprev = &interval_block;
5977 register int lim = interval_block_index;
5978 register int num_free = 0, num_used = 0;
5980 interval_free_list = 0;
5982 for (iblk = interval_block; iblk; iblk = *iprev)
5984 register int i;
5985 int this_free = 0;
5987 for (i = 0; i < lim; i++)
5989 if (!iblk->intervals[i].gcmarkbit)
5991 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5992 interval_free_list = &iblk->intervals[i];
5993 this_free++;
5995 else
5997 num_used++;
5998 iblk->intervals[i].gcmarkbit = 0;
6001 lim = INTERVAL_BLOCK_SIZE;
6002 /* If this block contains only free intervals and we have already
6003 seen more than two blocks worth of free intervals then
6004 deallocate this block. */
6005 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6007 *iprev = iblk->next;
6008 /* Unhook from the free list. */
6009 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6010 lisp_free (iblk);
6011 n_interval_blocks--;
6013 else
6015 num_free += this_free;
6016 iprev = &iblk->next;
6019 total_intervals = num_used;
6020 total_free_intervals = num_free;
6023 /* Put all unmarked symbols on free list */
6025 register struct symbol_block *sblk;
6026 struct symbol_block **sprev = &symbol_block;
6027 register int lim = symbol_block_index;
6028 register int num_free = 0, num_used = 0;
6030 symbol_free_list = NULL;
6032 for (sblk = symbol_block; sblk; sblk = *sprev)
6034 int this_free = 0;
6035 struct Lisp_Symbol *sym = sblk->symbols;
6036 struct Lisp_Symbol *end = sym + lim;
6038 for (; sym < end; ++sym)
6040 /* Check if the symbol was created during loadup. In such a case
6041 it might be pointed to by pure bytecode which we don't trace,
6042 so we conservatively assume that it is live. */
6043 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
6045 if (!sym->gcmarkbit && !pure_p)
6047 sym->next = symbol_free_list;
6048 symbol_free_list = sym;
6049 #if GC_MARK_STACK
6050 symbol_free_list->function = Vdead;
6051 #endif
6052 ++this_free;
6054 else
6056 ++num_used;
6057 if (!pure_p)
6058 UNMARK_STRING (XSTRING (sym->xname));
6059 sym->gcmarkbit = 0;
6063 lim = SYMBOL_BLOCK_SIZE;
6064 /* If this block contains only free symbols and we have already
6065 seen more than two blocks worth of free symbols then deallocate
6066 this block. */
6067 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6069 *sprev = sblk->next;
6070 /* Unhook from the free list. */
6071 symbol_free_list = sblk->symbols[0].next;
6072 lisp_free (sblk);
6073 n_symbol_blocks--;
6075 else
6077 num_free += this_free;
6078 sprev = &sblk->next;
6081 total_symbols = num_used;
6082 total_free_symbols = num_free;
6085 /* Put all unmarked misc's on free list.
6086 For a marker, first unchain it from the buffer it points into. */
6088 register struct marker_block *mblk;
6089 struct marker_block **mprev = &marker_block;
6090 register int lim = marker_block_index;
6091 register int num_free = 0, num_used = 0;
6093 marker_free_list = 0;
6095 for (mblk = marker_block; mblk; mblk = *mprev)
6097 register int i;
6098 int this_free = 0;
6100 for (i = 0; i < lim; i++)
6102 if (!mblk->markers[i].u_any.gcmarkbit)
6104 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
6105 unchain_marker (&mblk->markers[i].u_marker);
6106 /* Set the type of the freed object to Lisp_Misc_Free.
6107 We could leave the type alone, since nobody checks it,
6108 but this might catch bugs faster. */
6109 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
6110 mblk->markers[i].u_free.chain = marker_free_list;
6111 marker_free_list = &mblk->markers[i];
6112 this_free++;
6114 else
6116 num_used++;
6117 mblk->markers[i].u_any.gcmarkbit = 0;
6120 lim = MARKER_BLOCK_SIZE;
6121 /* If this block contains only free markers and we have already
6122 seen more than two blocks worth of free markers then deallocate
6123 this block. */
6124 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6126 *mprev = mblk->next;
6127 /* Unhook from the free list. */
6128 marker_free_list = mblk->markers[0].u_free.chain;
6129 lisp_free (mblk);
6130 n_marker_blocks--;
6132 else
6134 num_free += this_free;
6135 mprev = &mblk->next;
6139 total_markers = num_used;
6140 total_free_markers = num_free;
6143 /* Free all unmarked buffers */
6145 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6147 while (buffer)
6148 if (!VECTOR_MARKED_P (buffer))
6150 if (prev)
6151 prev->header.next = buffer->header.next;
6152 else
6153 all_buffers = buffer->header.next.buffer;
6154 next = buffer->header.next.buffer;
6155 lisp_free (buffer);
6156 buffer = next;
6158 else
6160 VECTOR_UNMARK (buffer);
6161 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6162 prev = buffer, buffer = buffer->header.next.buffer;
6166 /* Free all unmarked vectors */
6168 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6169 total_vector_size = 0;
6171 while (vector)
6172 if (!VECTOR_MARKED_P (vector))
6174 if (prev)
6175 prev->header.next = vector->header.next;
6176 else
6177 all_vectors = vector->header.next.vector;
6178 next = vector->header.next.vector;
6179 lisp_free (vector);
6180 n_vectors--;
6181 vector = next;
6184 else
6186 VECTOR_UNMARK (vector);
6187 if (vector->header.size & PSEUDOVECTOR_FLAG)
6188 total_vector_size += PSEUDOVECTOR_SIZE_MASK & vector->header.size;
6189 else
6190 total_vector_size += vector->header.size;
6191 prev = vector, vector = vector->header.next.vector;
6195 #ifdef GC_CHECK_STRING_BYTES
6196 if (!noninteractive)
6197 check_string_bytes (1);
6198 #endif
6204 /* Debugging aids. */
6206 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6207 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6208 This may be helpful in debugging Emacs's memory usage.
6209 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6212 Lisp_Object end;
6214 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
6216 return end;
6219 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6220 doc: /* Return a list of counters that measure how much consing there has been.
6221 Each of these counters increments for a certain kind of object.
6222 The counters wrap around from the largest positive integer to zero.
6223 Garbage collection does not decrease them.
6224 The elements of the value are as follows:
6225 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6226 All are in units of 1 = one object consed
6227 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6228 objects consed.
6229 MISCS include overlays, markers, and some internal types.
6230 Frames, windows, buffers, and subprocesses count as vectors
6231 (but the contents of a buffer's text do not count here). */)
6234 Lisp_Object consed[8];
6236 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6237 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6238 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6239 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6240 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6241 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6242 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6243 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6245 return Flist (8, consed);
6248 int suppress_checking;
6250 void
6251 die (msg, file, line)
6252 const char *msg;
6253 const char *file;
6254 int line;
6256 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6257 file, line, msg);
6258 abort ();
6261 /* Initialization */
6263 void
6264 init_alloc_once ()
6266 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6267 purebeg = PUREBEG;
6268 pure_size = PURESIZE;
6269 pure_bytes_used = 0;
6270 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6271 pure_bytes_used_before_overflow = 0;
6273 /* Initialize the list of free aligned blocks. */
6274 free_ablock = NULL;
6276 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6277 mem_init ();
6278 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6279 #endif
6281 all_vectors = 0;
6282 ignore_warnings = 1;
6283 #ifdef DOUG_LEA_MALLOC
6284 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6285 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6286 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6287 #endif
6288 init_strings ();
6289 init_cons ();
6290 init_symbol ();
6291 init_marker ();
6292 init_float ();
6293 init_intervals ();
6294 init_weak_hash_tables ();
6296 #ifdef REL_ALLOC
6297 malloc_hysteresis = 32;
6298 #else
6299 malloc_hysteresis = 0;
6300 #endif
6302 refill_memory_reserve ();
6304 ignore_warnings = 0;
6305 gcprolist = 0;
6306 byte_stack_list = 0;
6307 staticidx = 0;
6308 consing_since_gc = 0;
6309 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6310 gc_relative_threshold = 0;
6312 #ifdef VIRT_ADDR_VARIES
6313 malloc_sbrk_unused = 1<<22; /* A large number */
6314 malloc_sbrk_used = 100000; /* as reasonable as any number */
6315 #endif /* VIRT_ADDR_VARIES */
6318 void
6319 init_alloc ()
6321 gcprolist = 0;
6322 byte_stack_list = 0;
6323 #if GC_MARK_STACK
6324 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6325 setjmp_tested_p = longjmps_done = 0;
6326 #endif
6327 #endif
6328 Vgc_elapsed = make_float (0.0);
6329 gcs_done = 0;
6332 void
6333 syms_of_alloc ()
6335 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
6336 doc: /* *Number of bytes of consing between garbage collections.
6337 Garbage collection can happen automatically once this many bytes have been
6338 allocated since the last garbage collection. All data types count.
6340 Garbage collection happens automatically only when `eval' is called.
6342 By binding this temporarily to a large number, you can effectively
6343 prevent garbage collection during a part of the program.
6344 See also `gc-cons-percentage'. */);
6346 DEFVAR_LISP ("gc-cons-percentage", &Vgc_cons_percentage,
6347 doc: /* *Portion of the heap used for allocation.
6348 Garbage collection can happen automatically once this portion of the heap
6349 has been allocated since the last garbage collection.
6350 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6351 Vgc_cons_percentage = make_float (0.1);
6353 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
6354 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6356 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
6357 doc: /* Number of cons cells that have been consed so far. */);
6359 DEFVAR_INT ("floats-consed", &floats_consed,
6360 doc: /* Number of floats that have been consed so far. */);
6362 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
6363 doc: /* Number of vector cells that have been consed so far. */);
6365 DEFVAR_INT ("symbols-consed", &symbols_consed,
6366 doc: /* Number of symbols that have been consed so far. */);
6368 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
6369 doc: /* Number of string characters that have been consed so far. */);
6371 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
6372 doc: /* Number of miscellaneous objects that have been consed so far. */);
6374 DEFVAR_INT ("intervals-consed", &intervals_consed,
6375 doc: /* Number of intervals that have been consed so far. */);
6377 DEFVAR_INT ("strings-consed", &strings_consed,
6378 doc: /* Number of strings that have been consed so far. */);
6380 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
6381 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6382 This means that certain objects should be allocated in shared (pure) space. */);
6384 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
6385 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6386 garbage_collection_messages = 0;
6388 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
6389 doc: /* Hook run after garbage collection has finished. */);
6390 Vpost_gc_hook = Qnil;
6391 Qpost_gc_hook = intern_c_string ("post-gc-hook");
6392 staticpro (&Qpost_gc_hook);
6394 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
6395 doc: /* Precomputed `signal' argument for memory-full error. */);
6396 /* We build this in advance because if we wait until we need it, we might
6397 not be able to allocate the memory to hold it. */
6398 Vmemory_signal_data
6399 = pure_cons (Qerror,
6400 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6402 DEFVAR_LISP ("memory-full", &Vmemory_full,
6403 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6404 Vmemory_full = Qnil;
6406 staticpro (&Qgc_cons_threshold);
6407 Qgc_cons_threshold = intern_c_string ("gc-cons-threshold");
6409 staticpro (&Qchar_table_extra_slots);
6410 Qchar_table_extra_slots = intern_c_string ("char-table-extra-slots");
6412 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
6413 doc: /* Accumulated time elapsed in garbage collections.
6414 The time is in seconds as a floating point value. */);
6415 DEFVAR_INT ("gcs-done", &gcs_done,
6416 doc: /* Accumulated number of garbage collections done. */);
6418 defsubr (&Scons);
6419 defsubr (&Slist);
6420 defsubr (&Svector);
6421 defsubr (&Smake_byte_code);
6422 defsubr (&Smake_list);
6423 defsubr (&Smake_vector);
6424 defsubr (&Smake_string);
6425 defsubr (&Smake_bool_vector);
6426 defsubr (&Smake_symbol);
6427 defsubr (&Smake_marker);
6428 defsubr (&Spurecopy);
6429 defsubr (&Sgarbage_collect);
6430 defsubr (&Smemory_limit);
6431 defsubr (&Smemory_use_counts);
6433 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6434 defsubr (&Sgc_status);
6435 #endif
6438 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6439 (do not change this comment) */