Merge from mainline.
[emacs.git] / src / alloc.c
blob3c48f8762f81b32cc34489ee93b16ab3eec8558b
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GNU Emacs.
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
21 #include <config.h>
22 #include <stdio.h>
23 #include <limits.h> /* For CHAR_BIT. */
24 #include <setjmp.h>
26 #ifdef STDC_HEADERS
27 #include <stddef.h> /* For offsetof, used by PSEUDOVECSIZE. */
28 #endif
30 #ifdef ALLOC_DEBUG
31 #undef INLINE
32 #endif
34 #include <signal.h>
36 #ifdef HAVE_GTK_AND_PTHREAD
37 #include <pthread.h>
38 #endif
40 /* This file is part of the core Lisp implementation, and thus must
41 deal with the real data structures. If the Lisp implementation is
42 replaced, this file likely will not be used. */
44 #undef HIDE_LISP_IMPLEMENTATION
45 #include "lisp.h"
46 #include "process.h"
47 #include "intervals.h"
48 #include "puresize.h"
49 #include "buffer.h"
50 #include "window.h"
51 #include "keyboard.h"
52 #include "frame.h"
53 #include "blockinput.h"
54 #include "character.h"
55 #include "syssignal.h"
56 #include "termhooks.h" /* For struct terminal. */
57 #include <setjmp.h>
59 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
60 memory. Can do this only if using gmalloc.c. */
62 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
63 #undef GC_MALLOC_CHECK
64 #endif
66 #ifdef HAVE_UNISTD_H
67 #include <unistd.h>
68 #else
69 extern POINTER_TYPE *sbrk ();
70 #endif
72 #ifdef HAVE_FCNTL_H
73 #define INCLUDED_FCNTL
74 #include <fcntl.h>
75 #endif
76 #ifndef O_WRONLY
77 #define O_WRONLY 1
78 #endif
80 #ifdef WINDOWSNT
81 #include <fcntl.h>
82 #include "w32.h"
83 #endif
85 #ifdef DOUG_LEA_MALLOC
87 #include <malloc.h>
88 /* malloc.h #defines this as size_t, at least in glibc2. */
89 #ifndef __malloc_size_t
90 #define __malloc_size_t int
91 #endif
93 /* Specify maximum number of areas to mmap. It would be nice to use a
94 value that explicitly means "no limit". */
96 #define MMAP_MAX_AREAS 100000000
98 #else /* not DOUG_LEA_MALLOC */
100 /* The following come from gmalloc.c. */
102 #define __malloc_size_t size_t
103 extern __malloc_size_t _bytes_used;
104 extern __malloc_size_t __malloc_extra_blocks;
106 #endif /* not DOUG_LEA_MALLOC */
108 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
110 /* When GTK uses the file chooser dialog, different backends can be loaded
111 dynamically. One such a backend is the Gnome VFS backend that gets loaded
112 if you run Gnome. That backend creates several threads and also allocates
113 memory with malloc.
115 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
116 functions below are called from malloc, there is a chance that one
117 of these threads preempts the Emacs main thread and the hook variables
118 end up in an inconsistent state. So we have a mutex to prevent that (note
119 that the backend handles concurrent access to malloc within its own threads
120 but Emacs code running in the main thread is not included in that control).
122 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
123 happens in one of the backend threads we will have two threads that tries
124 to run Emacs code at once, and the code is not prepared for that.
125 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
127 static pthread_mutex_t alloc_mutex;
129 #define BLOCK_INPUT_ALLOC \
130 do \
132 if (pthread_equal (pthread_self (), main_thread)) \
133 BLOCK_INPUT; \
134 pthread_mutex_lock (&alloc_mutex); \
136 while (0)
137 #define UNBLOCK_INPUT_ALLOC \
138 do \
140 pthread_mutex_unlock (&alloc_mutex); \
141 if (pthread_equal (pthread_self (), main_thread)) \
142 UNBLOCK_INPUT; \
144 while (0)
146 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
148 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
149 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
151 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
153 /* Value of _bytes_used, when spare_memory was freed. */
155 static __malloc_size_t bytes_used_when_full;
157 static __malloc_size_t bytes_used_when_reconsidered;
159 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
160 to a struct Lisp_String. */
162 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
163 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
164 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
166 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
167 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
168 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
170 /* Value is the number of bytes/chars of S, a pointer to a struct
171 Lisp_String. This must be used instead of STRING_BYTES (S) or
172 S->size during GC, because S->size contains the mark bit for
173 strings. */
175 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
176 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
178 /* Number of bytes of consing done since the last gc. */
180 int consing_since_gc;
182 /* Count the amount of consing of various sorts of space. */
184 EMACS_INT cons_cells_consed;
185 EMACS_INT floats_consed;
186 EMACS_INT vector_cells_consed;
187 EMACS_INT symbols_consed;
188 EMACS_INT string_chars_consed;
189 EMACS_INT misc_objects_consed;
190 EMACS_INT intervals_consed;
191 EMACS_INT strings_consed;
193 /* Minimum number of bytes of consing since GC before next GC. */
195 EMACS_INT gc_cons_threshold;
197 /* Similar minimum, computed from Vgc_cons_percentage. */
199 EMACS_INT gc_relative_threshold;
201 static Lisp_Object Vgc_cons_percentage;
203 /* Minimum number of bytes of consing since GC before next GC,
204 when memory is full. */
206 EMACS_INT memory_full_cons_threshold;
208 /* Nonzero during GC. */
210 int gc_in_progress;
212 /* Nonzero means abort if try to GC.
213 This is for code which is written on the assumption that
214 no GC will happen, so as to verify that assumption. */
216 int abort_on_gc;
218 /* Nonzero means display messages at beginning and end of GC. */
220 int garbage_collection_messages;
222 #ifndef VIRT_ADDR_VARIES
223 extern
224 #endif /* VIRT_ADDR_VARIES */
225 int malloc_sbrk_used;
227 #ifndef VIRT_ADDR_VARIES
228 extern
229 #endif /* VIRT_ADDR_VARIES */
230 int malloc_sbrk_unused;
232 /* Number of live and free conses etc. */
234 static int total_conses, total_markers, total_symbols, total_vector_size;
235 static int total_free_conses, total_free_markers, total_free_symbols;
236 static int total_free_floats, total_floats;
238 /* Points to memory space allocated as "spare", to be freed if we run
239 out of memory. We keep one large block, four cons-blocks, and
240 two string blocks. */
242 static char *spare_memory[7];
244 /* Amount of spare memory to keep in large reserve block. */
246 #define SPARE_MEMORY (1 << 14)
248 /* Number of extra blocks malloc should get when it needs more core. */
250 static int malloc_hysteresis;
252 /* Non-nil means defun should do purecopy on the function definition. */
254 Lisp_Object Vpurify_flag;
256 /* Non-nil means we are handling a memory-full error. */
258 Lisp_Object Vmemory_full;
260 #ifndef HAVE_SHM
262 /* Initialize it to a nonzero value to force it into data space
263 (rather than bss space). That way unexec will remap it into text
264 space (pure), on some systems. We have not implemented the
265 remapping on more recent systems because this is less important
266 nowadays than in the days of small memories and timesharing. */
268 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
269 #define PUREBEG (char *) pure
271 #else /* HAVE_SHM */
273 #define pure PURE_SEG_BITS /* Use shared memory segment */
274 #define PUREBEG (char *)PURE_SEG_BITS
276 #endif /* HAVE_SHM */
278 /* Pointer to the pure area, and its size. */
280 static char *purebeg;
281 static size_t pure_size;
283 /* Number of bytes of pure storage used before pure storage overflowed.
284 If this is non-zero, this implies that an overflow occurred. */
286 static size_t pure_bytes_used_before_overflow;
288 /* Value is non-zero if P points into pure space. */
290 #define PURE_POINTER_P(P) \
291 (((PNTR_COMPARISON_TYPE) (P) \
292 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
293 && ((PNTR_COMPARISON_TYPE) (P) \
294 >= (PNTR_COMPARISON_TYPE) purebeg))
296 /* Total number of bytes allocated in pure storage. */
298 EMACS_INT pure_bytes_used;
300 /* Index in pure at which next pure Lisp object will be allocated.. */
302 static EMACS_INT pure_bytes_used_lisp;
304 /* Number of bytes allocated for non-Lisp objects in pure storage. */
306 static EMACS_INT pure_bytes_used_non_lisp;
308 /* If nonzero, this is a warning delivered by malloc and not yet
309 displayed. */
311 char *pending_malloc_warning;
313 /* Pre-computed signal argument for use when memory is exhausted. */
315 Lisp_Object Vmemory_signal_data;
317 /* Maximum amount of C stack to save when a GC happens. */
319 #ifndef MAX_SAVE_STACK
320 #define MAX_SAVE_STACK 16000
321 #endif
323 /* Buffer in which we save a copy of the C stack at each GC. */
325 static char *stack_copy;
326 static int stack_copy_size;
328 /* Non-zero means ignore malloc warnings. Set during initialization.
329 Currently not used. */
331 static int ignore_warnings;
333 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
335 /* Hook run after GC has finished. */
337 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
339 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
340 EMACS_INT gcs_done; /* accumulated GCs */
342 static void mark_buffer P_ ((Lisp_Object));
343 static void mark_terminals P_ ((void));
344 extern void mark_kboards P_ ((void));
345 extern void mark_ttys P_ ((void));
346 extern void mark_backtrace P_ ((void));
347 static void gc_sweep P_ ((void));
348 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
349 static void mark_face_cache P_ ((struct face_cache *));
351 #ifdef HAVE_WINDOW_SYSTEM
352 extern void mark_fringe_data P_ ((void));
353 #endif /* HAVE_WINDOW_SYSTEM */
355 static struct Lisp_String *allocate_string P_ ((void));
356 static void compact_small_strings P_ ((void));
357 static void free_large_strings P_ ((void));
358 static void sweep_strings P_ ((void));
360 extern int message_enable_multibyte;
362 /* When scanning the C stack for live Lisp objects, Emacs keeps track
363 of what memory allocated via lisp_malloc is intended for what
364 purpose. This enumeration specifies the type of memory. */
366 enum mem_type
368 MEM_TYPE_NON_LISP,
369 MEM_TYPE_BUFFER,
370 MEM_TYPE_CONS,
371 MEM_TYPE_STRING,
372 MEM_TYPE_MISC,
373 MEM_TYPE_SYMBOL,
374 MEM_TYPE_FLOAT,
375 /* We used to keep separate mem_types for subtypes of vectors such as
376 process, hash_table, frame, terminal, and window, but we never made
377 use of the distinction, so it only caused source-code complexity
378 and runtime slowdown. Minor but pointless. */
379 MEM_TYPE_VECTORLIKE
382 static POINTER_TYPE *lisp_align_malloc P_ ((size_t, enum mem_type));
383 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
384 void refill_memory_reserve ();
387 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
389 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
390 #include <stdio.h> /* For fprintf. */
391 #endif
393 /* A unique object in pure space used to make some Lisp objects
394 on free lists recognizable in O(1). */
396 static Lisp_Object Vdead;
398 #ifdef GC_MALLOC_CHECK
400 enum mem_type allocated_mem_type;
401 static int dont_register_blocks;
403 #endif /* GC_MALLOC_CHECK */
405 /* A node in the red-black tree describing allocated memory containing
406 Lisp data. Each such block is recorded with its start and end
407 address when it is allocated, and removed from the tree when it
408 is freed.
410 A red-black tree is a balanced binary tree with the following
411 properties:
413 1. Every node is either red or black.
414 2. Every leaf is black.
415 3. If a node is red, then both of its children are black.
416 4. Every simple path from a node to a descendant leaf contains
417 the same number of black nodes.
418 5. The root is always black.
420 When nodes are inserted into the tree, or deleted from the tree,
421 the tree is "fixed" so that these properties are always true.
423 A red-black tree with N internal nodes has height at most 2
424 log(N+1). Searches, insertions and deletions are done in O(log N).
425 Please see a text book about data structures for a detailed
426 description of red-black trees. Any book worth its salt should
427 describe them. */
429 struct mem_node
431 /* Children of this node. These pointers are never NULL. When there
432 is no child, the value is MEM_NIL, which points to a dummy node. */
433 struct mem_node *left, *right;
435 /* The parent of this node. In the root node, this is NULL. */
436 struct mem_node *parent;
438 /* Start and end of allocated region. */
439 void *start, *end;
441 /* Node color. */
442 enum {MEM_BLACK, MEM_RED} color;
444 /* Memory type. */
445 enum mem_type type;
448 /* Base address of stack. Set in main. */
450 Lisp_Object *stack_base;
452 /* Root of the tree describing allocated Lisp memory. */
454 static struct mem_node *mem_root;
456 /* Lowest and highest known address in the heap. */
458 static void *min_heap_address, *max_heap_address;
460 /* Sentinel node of the tree. */
462 static struct mem_node mem_z;
463 #define MEM_NIL &mem_z
465 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
466 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT));
467 static void lisp_free P_ ((POINTER_TYPE *));
468 static void mark_stack P_ ((void));
469 static int live_vector_p P_ ((struct mem_node *, void *));
470 static int live_buffer_p P_ ((struct mem_node *, void *));
471 static int live_string_p P_ ((struct mem_node *, void *));
472 static int live_cons_p P_ ((struct mem_node *, void *));
473 static int live_symbol_p P_ ((struct mem_node *, void *));
474 static int live_float_p P_ ((struct mem_node *, void *));
475 static int live_misc_p P_ ((struct mem_node *, void *));
476 static void mark_maybe_object P_ ((Lisp_Object));
477 static void mark_memory P_ ((void *, void *, int));
478 static void mem_init P_ ((void));
479 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
480 static void mem_insert_fixup P_ ((struct mem_node *));
481 static void mem_rotate_left P_ ((struct mem_node *));
482 static void mem_rotate_right P_ ((struct mem_node *));
483 static void mem_delete P_ ((struct mem_node *));
484 static void mem_delete_fixup P_ ((struct mem_node *));
485 static INLINE struct mem_node *mem_find P_ ((void *));
488 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
489 static void check_gcpros P_ ((void));
490 #endif
492 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
494 /* Recording what needs to be marked for gc. */
496 struct gcpro *gcprolist;
498 /* Addresses of staticpro'd variables. Initialize it to a nonzero
499 value; otherwise some compilers put it into BSS. */
501 #define NSTATICS 0x640
502 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
504 /* Index of next unused slot in staticvec. */
506 static int staticidx = 0;
508 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
511 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
512 ALIGNMENT must be a power of 2. */
514 #define ALIGN(ptr, ALIGNMENT) \
515 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
516 & ~((ALIGNMENT) - 1)))
520 /************************************************************************
521 Malloc
522 ************************************************************************/
524 /* Function malloc calls this if it finds we are near exhausting storage. */
526 void
527 malloc_warning (str)
528 char *str;
530 pending_malloc_warning = str;
534 /* Display an already-pending malloc warning. */
536 void
537 display_malloc_warning ()
539 call3 (intern ("display-warning"),
540 intern ("alloc"),
541 build_string (pending_malloc_warning),
542 intern ("emergency"));
543 pending_malloc_warning = 0;
547 #ifdef DOUG_LEA_MALLOC
548 # define BYTES_USED (mallinfo ().uordblks)
549 #else
550 # define BYTES_USED _bytes_used
551 #endif
553 /* Called if we can't allocate relocatable space for a buffer. */
555 void
556 buffer_memory_full ()
558 /* If buffers use the relocating allocator, no need to free
559 spare_memory, because we may have plenty of malloc space left
560 that we could get, and if we don't, the malloc that fails will
561 itself cause spare_memory to be freed. If buffers don't use the
562 relocating allocator, treat this like any other failing
563 malloc. */
565 #ifndef REL_ALLOC
566 memory_full ();
567 #endif
569 /* This used to call error, but if we've run out of memory, we could
570 get infinite recursion trying to build the string. */
571 xsignal (Qnil, Vmemory_signal_data);
575 #ifdef XMALLOC_OVERRUN_CHECK
577 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
578 and a 16 byte trailer around each block.
580 The header consists of 12 fixed bytes + a 4 byte integer contaning the
581 original block size, while the trailer consists of 16 fixed bytes.
583 The header is used to detect whether this block has been allocated
584 through these functions -- as it seems that some low-level libc
585 functions may bypass the malloc hooks.
589 #define XMALLOC_OVERRUN_CHECK_SIZE 16
591 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
592 { 0x9a, 0x9b, 0xae, 0xaf,
593 0xbf, 0xbe, 0xce, 0xcf,
594 0xea, 0xeb, 0xec, 0xed };
596 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
597 { 0xaa, 0xab, 0xac, 0xad,
598 0xba, 0xbb, 0xbc, 0xbd,
599 0xca, 0xcb, 0xcc, 0xcd,
600 0xda, 0xdb, 0xdc, 0xdd };
602 /* Macros to insert and extract the block size in the header. */
604 #define XMALLOC_PUT_SIZE(ptr, size) \
605 (ptr[-1] = (size & 0xff), \
606 ptr[-2] = ((size >> 8) & 0xff), \
607 ptr[-3] = ((size >> 16) & 0xff), \
608 ptr[-4] = ((size >> 24) & 0xff))
610 #define XMALLOC_GET_SIZE(ptr) \
611 (size_t)((unsigned)(ptr[-1]) | \
612 ((unsigned)(ptr[-2]) << 8) | \
613 ((unsigned)(ptr[-3]) << 16) | \
614 ((unsigned)(ptr[-4]) << 24))
617 /* The call depth in overrun_check functions. For example, this might happen:
618 xmalloc()
619 overrun_check_malloc()
620 -> malloc -> (via hook)_-> emacs_blocked_malloc
621 -> overrun_check_malloc
622 call malloc (hooks are NULL, so real malloc is called).
623 malloc returns 10000.
624 add overhead, return 10016.
625 <- (back in overrun_check_malloc)
626 add overhead again, return 10032
627 xmalloc returns 10032.
629 (time passes).
631 xfree(10032)
632 overrun_check_free(10032)
633 decrease overhed
634 free(10016) <- crash, because 10000 is the original pointer. */
636 static int check_depth;
638 /* Like malloc, but wraps allocated block with header and trailer. */
640 POINTER_TYPE *
641 overrun_check_malloc (size)
642 size_t size;
644 register unsigned char *val;
645 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
647 val = (unsigned char *) malloc (size + overhead);
648 if (val && check_depth == 1)
650 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
651 val += XMALLOC_OVERRUN_CHECK_SIZE;
652 XMALLOC_PUT_SIZE(val, size);
653 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
655 --check_depth;
656 return (POINTER_TYPE *)val;
660 /* Like realloc, but checks old block for overrun, and wraps new block
661 with header and trailer. */
663 POINTER_TYPE *
664 overrun_check_realloc (block, size)
665 POINTER_TYPE *block;
666 size_t size;
668 register unsigned char *val = (unsigned char *)block;
669 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
671 if (val
672 && check_depth == 1
673 && bcmp (xmalloc_overrun_check_header,
674 val - XMALLOC_OVERRUN_CHECK_SIZE,
675 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
677 size_t osize = XMALLOC_GET_SIZE (val);
678 if (bcmp (xmalloc_overrun_check_trailer,
679 val + osize,
680 XMALLOC_OVERRUN_CHECK_SIZE))
681 abort ();
682 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
683 val -= XMALLOC_OVERRUN_CHECK_SIZE;
684 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
687 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
689 if (val && check_depth == 1)
691 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
692 val += XMALLOC_OVERRUN_CHECK_SIZE;
693 XMALLOC_PUT_SIZE(val, size);
694 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
696 --check_depth;
697 return (POINTER_TYPE *)val;
700 /* Like free, but checks block for overrun. */
702 void
703 overrun_check_free (block)
704 POINTER_TYPE *block;
706 unsigned char *val = (unsigned char *)block;
708 ++check_depth;
709 if (val
710 && check_depth == 1
711 && bcmp (xmalloc_overrun_check_header,
712 val - XMALLOC_OVERRUN_CHECK_SIZE,
713 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
715 size_t osize = XMALLOC_GET_SIZE (val);
716 if (bcmp (xmalloc_overrun_check_trailer,
717 val + osize,
718 XMALLOC_OVERRUN_CHECK_SIZE))
719 abort ();
720 #ifdef XMALLOC_CLEAR_FREE_MEMORY
721 val -= XMALLOC_OVERRUN_CHECK_SIZE;
722 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
723 #else
724 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
725 val -= XMALLOC_OVERRUN_CHECK_SIZE;
726 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
727 #endif
730 free (val);
731 --check_depth;
734 #undef malloc
735 #undef realloc
736 #undef free
737 #define malloc overrun_check_malloc
738 #define realloc overrun_check_realloc
739 #define free overrun_check_free
740 #endif
742 #ifdef SYNC_INPUT
743 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
744 there's no need to block input around malloc. */
745 #define MALLOC_BLOCK_INPUT ((void)0)
746 #define MALLOC_UNBLOCK_INPUT ((void)0)
747 #else
748 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
749 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
750 #endif
752 /* Like malloc but check for no memory and block interrupt input.. */
754 POINTER_TYPE *
755 xmalloc (size)
756 size_t size;
758 register POINTER_TYPE *val;
760 MALLOC_BLOCK_INPUT;
761 val = (POINTER_TYPE *) malloc (size);
762 MALLOC_UNBLOCK_INPUT;
764 if (!val && size)
765 memory_full ();
766 return val;
770 /* Like realloc but check for no memory and block interrupt input.. */
772 POINTER_TYPE *
773 xrealloc (block, size)
774 POINTER_TYPE *block;
775 size_t size;
777 register POINTER_TYPE *val;
779 MALLOC_BLOCK_INPUT;
780 /* We must call malloc explicitly when BLOCK is 0, since some
781 reallocs don't do this. */
782 if (! block)
783 val = (POINTER_TYPE *) malloc (size);
784 else
785 val = (POINTER_TYPE *) realloc (block, size);
786 MALLOC_UNBLOCK_INPUT;
788 if (!val && size) memory_full ();
789 return val;
793 /* Like free but block interrupt input. */
795 void
796 xfree (block)
797 POINTER_TYPE *block;
799 if (!block)
800 return;
801 MALLOC_BLOCK_INPUT;
802 free (block);
803 MALLOC_UNBLOCK_INPUT;
804 /* We don't call refill_memory_reserve here
805 because that duplicates doing so in emacs_blocked_free
806 and the criterion should go there. */
810 /* Like strdup, but uses xmalloc. */
812 char *
813 xstrdup (s)
814 const char *s;
816 size_t len = strlen (s) + 1;
817 char *p = (char *) xmalloc (len);
818 bcopy (s, p, len);
819 return p;
823 /* Unwind for SAFE_ALLOCA */
825 Lisp_Object
826 safe_alloca_unwind (arg)
827 Lisp_Object arg;
829 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
831 p->dogc = 0;
832 xfree (p->pointer);
833 p->pointer = 0;
834 free_misc (arg);
835 return Qnil;
839 /* Like malloc but used for allocating Lisp data. NBYTES is the
840 number of bytes to allocate, TYPE describes the intended use of the
841 allcated memory block (for strings, for conses, ...). */
843 #ifndef USE_LSB_TAG
844 static void *lisp_malloc_loser;
845 #endif
847 static POINTER_TYPE *
848 lisp_malloc (nbytes, type)
849 size_t nbytes;
850 enum mem_type type;
852 register void *val;
854 MALLOC_BLOCK_INPUT;
856 #ifdef GC_MALLOC_CHECK
857 allocated_mem_type = type;
858 #endif
860 val = (void *) malloc (nbytes);
862 #ifndef USE_LSB_TAG
863 /* If the memory just allocated cannot be addressed thru a Lisp
864 object's pointer, and it needs to be,
865 that's equivalent to running out of memory. */
866 if (val && type != MEM_TYPE_NON_LISP)
868 Lisp_Object tem;
869 XSETCONS (tem, (char *) val + nbytes - 1);
870 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
872 lisp_malloc_loser = val;
873 free (val);
874 val = 0;
877 #endif
879 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
880 if (val && type != MEM_TYPE_NON_LISP)
881 mem_insert (val, (char *) val + nbytes, type);
882 #endif
884 MALLOC_UNBLOCK_INPUT;
885 if (!val && nbytes)
886 memory_full ();
887 return val;
890 /* Free BLOCK. This must be called to free memory allocated with a
891 call to lisp_malloc. */
893 static void
894 lisp_free (block)
895 POINTER_TYPE *block;
897 MALLOC_BLOCK_INPUT;
898 free (block);
899 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
900 mem_delete (mem_find (block));
901 #endif
902 MALLOC_UNBLOCK_INPUT;
905 /* Allocation of aligned blocks of memory to store Lisp data. */
906 /* The entry point is lisp_align_malloc which returns blocks of at most */
907 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
909 /* Use posix_memalloc if the system has it and we're using the system's
910 malloc (because our gmalloc.c routines don't have posix_memalign although
911 its memalloc could be used). */
912 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
913 #define USE_POSIX_MEMALIGN 1
914 #endif
916 /* BLOCK_ALIGN has to be a power of 2. */
917 #define BLOCK_ALIGN (1 << 10)
919 /* Padding to leave at the end of a malloc'd block. This is to give
920 malloc a chance to minimize the amount of memory wasted to alignment.
921 It should be tuned to the particular malloc library used.
922 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
923 posix_memalign on the other hand would ideally prefer a value of 4
924 because otherwise, there's 1020 bytes wasted between each ablocks.
925 In Emacs, testing shows that those 1020 can most of the time be
926 efficiently used by malloc to place other objects, so a value of 0 can
927 still preferable unless you have a lot of aligned blocks and virtually
928 nothing else. */
929 #define BLOCK_PADDING 0
930 #define BLOCK_BYTES \
931 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
933 /* Internal data structures and constants. */
935 #define ABLOCKS_SIZE 16
937 /* An aligned block of memory. */
938 struct ablock
940 union
942 char payload[BLOCK_BYTES];
943 struct ablock *next_free;
944 } x;
945 /* `abase' is the aligned base of the ablocks. */
946 /* It is overloaded to hold the virtual `busy' field that counts
947 the number of used ablock in the parent ablocks.
948 The first ablock has the `busy' field, the others have the `abase'
949 field. To tell the difference, we assume that pointers will have
950 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
951 is used to tell whether the real base of the parent ablocks is `abase'
952 (if not, the word before the first ablock holds a pointer to the
953 real base). */
954 struct ablocks *abase;
955 /* The padding of all but the last ablock is unused. The padding of
956 the last ablock in an ablocks is not allocated. */
957 #if BLOCK_PADDING
958 char padding[BLOCK_PADDING];
959 #endif
962 /* A bunch of consecutive aligned blocks. */
963 struct ablocks
965 struct ablock blocks[ABLOCKS_SIZE];
968 /* Size of the block requested from malloc or memalign. */
969 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
971 #define ABLOCK_ABASE(block) \
972 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
973 ? (struct ablocks *)(block) \
974 : (block)->abase)
976 /* Virtual `busy' field. */
977 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
979 /* Pointer to the (not necessarily aligned) malloc block. */
980 #ifdef USE_POSIX_MEMALIGN
981 #define ABLOCKS_BASE(abase) (abase)
982 #else
983 #define ABLOCKS_BASE(abase) \
984 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
985 #endif
987 /* The list of free ablock. */
988 static struct ablock *free_ablock;
990 /* Allocate an aligned block of nbytes.
991 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
992 smaller or equal to BLOCK_BYTES. */
993 static POINTER_TYPE *
994 lisp_align_malloc (nbytes, type)
995 size_t nbytes;
996 enum mem_type type;
998 void *base, *val;
999 struct ablocks *abase;
1001 eassert (nbytes <= BLOCK_BYTES);
1003 MALLOC_BLOCK_INPUT;
1005 #ifdef GC_MALLOC_CHECK
1006 allocated_mem_type = type;
1007 #endif
1009 if (!free_ablock)
1011 int i;
1012 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
1014 #ifdef DOUG_LEA_MALLOC
1015 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1016 because mapped region contents are not preserved in
1017 a dumped Emacs. */
1018 mallopt (M_MMAP_MAX, 0);
1019 #endif
1021 #ifdef USE_POSIX_MEMALIGN
1023 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1024 if (err)
1025 base = NULL;
1026 abase = base;
1028 #else
1029 base = malloc (ABLOCKS_BYTES);
1030 abase = ALIGN (base, BLOCK_ALIGN);
1031 #endif
1033 if (base == 0)
1035 MALLOC_UNBLOCK_INPUT;
1036 memory_full ();
1039 aligned = (base == abase);
1040 if (!aligned)
1041 ((void**)abase)[-1] = base;
1043 #ifdef DOUG_LEA_MALLOC
1044 /* Back to a reasonable maximum of mmap'ed areas. */
1045 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1046 #endif
1048 #ifndef USE_LSB_TAG
1049 /* If the memory just allocated cannot be addressed thru a Lisp
1050 object's pointer, and it needs to be, that's equivalent to
1051 running out of memory. */
1052 if (type != MEM_TYPE_NON_LISP)
1054 Lisp_Object tem;
1055 char *end = (char *) base + ABLOCKS_BYTES - 1;
1056 XSETCONS (tem, end);
1057 if ((char *) XCONS (tem) != end)
1059 lisp_malloc_loser = base;
1060 free (base);
1061 MALLOC_UNBLOCK_INPUT;
1062 memory_full ();
1065 #endif
1067 /* Initialize the blocks and put them on the free list.
1068 Is `base' was not properly aligned, we can't use the last block. */
1069 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1071 abase->blocks[i].abase = abase;
1072 abase->blocks[i].x.next_free = free_ablock;
1073 free_ablock = &abase->blocks[i];
1075 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
1077 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
1078 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1079 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1080 eassert (ABLOCKS_BASE (abase) == base);
1081 eassert (aligned == (long) ABLOCKS_BUSY (abase));
1084 abase = ABLOCK_ABASE (free_ablock);
1085 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1086 val = free_ablock;
1087 free_ablock = free_ablock->x.next_free;
1089 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1090 if (val && type != MEM_TYPE_NON_LISP)
1091 mem_insert (val, (char *) val + nbytes, type);
1092 #endif
1094 MALLOC_UNBLOCK_INPUT;
1095 if (!val && nbytes)
1096 memory_full ();
1098 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1099 return val;
1102 static void
1103 lisp_align_free (block)
1104 POINTER_TYPE *block;
1106 struct ablock *ablock = block;
1107 struct ablocks *abase = ABLOCK_ABASE (ablock);
1109 MALLOC_BLOCK_INPUT;
1110 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1111 mem_delete (mem_find (block));
1112 #endif
1113 /* Put on free list. */
1114 ablock->x.next_free = free_ablock;
1115 free_ablock = ablock;
1116 /* Update busy count. */
1117 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1119 if (2 > (long) ABLOCKS_BUSY (abase))
1120 { /* All the blocks are free. */
1121 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1122 struct ablock **tem = &free_ablock;
1123 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1125 while (*tem)
1127 if (*tem >= (struct ablock *) abase && *tem < atop)
1129 i++;
1130 *tem = (*tem)->x.next_free;
1132 else
1133 tem = &(*tem)->x.next_free;
1135 eassert ((aligned & 1) == aligned);
1136 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1137 #ifdef USE_POSIX_MEMALIGN
1138 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1139 #endif
1140 free (ABLOCKS_BASE (abase));
1142 MALLOC_UNBLOCK_INPUT;
1145 /* Return a new buffer structure allocated from the heap with
1146 a call to lisp_malloc. */
1148 struct buffer *
1149 allocate_buffer ()
1151 struct buffer *b
1152 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1153 MEM_TYPE_BUFFER);
1154 b->size = sizeof (struct buffer) / sizeof (EMACS_INT);
1155 XSETPVECTYPE (b, PVEC_BUFFER);
1156 return b;
1160 #ifndef SYSTEM_MALLOC
1162 /* Arranging to disable input signals while we're in malloc.
1164 This only works with GNU malloc. To help out systems which can't
1165 use GNU malloc, all the calls to malloc, realloc, and free
1166 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1167 pair; unfortunately, we have no idea what C library functions
1168 might call malloc, so we can't really protect them unless you're
1169 using GNU malloc. Fortunately, most of the major operating systems
1170 can use GNU malloc. */
1172 #ifndef SYNC_INPUT
1173 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1174 there's no need to block input around malloc. */
1176 #ifndef DOUG_LEA_MALLOC
1177 extern void * (*__malloc_hook) P_ ((size_t, const void *));
1178 extern void * (*__realloc_hook) P_ ((void *, size_t, const void *));
1179 extern void (*__free_hook) P_ ((void *, const void *));
1180 /* Else declared in malloc.h, perhaps with an extra arg. */
1181 #endif /* DOUG_LEA_MALLOC */
1182 static void * (*old_malloc_hook) P_ ((size_t, const void *));
1183 static void * (*old_realloc_hook) P_ ((void *, size_t, const void*));
1184 static void (*old_free_hook) P_ ((void*, const void*));
1186 /* This function is used as the hook for free to call. */
1188 static void
1189 emacs_blocked_free (ptr, ptr2)
1190 void *ptr;
1191 const void *ptr2;
1193 BLOCK_INPUT_ALLOC;
1195 #ifdef GC_MALLOC_CHECK
1196 if (ptr)
1198 struct mem_node *m;
1200 m = mem_find (ptr);
1201 if (m == MEM_NIL || m->start != ptr)
1203 fprintf (stderr,
1204 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1205 abort ();
1207 else
1209 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1210 mem_delete (m);
1213 #endif /* GC_MALLOC_CHECK */
1215 __free_hook = old_free_hook;
1216 free (ptr);
1218 /* If we released our reserve (due to running out of memory),
1219 and we have a fair amount free once again,
1220 try to set aside another reserve in case we run out once more. */
1221 if (! NILP (Vmemory_full)
1222 /* Verify there is enough space that even with the malloc
1223 hysteresis this call won't run out again.
1224 The code here is correct as long as SPARE_MEMORY
1225 is substantially larger than the block size malloc uses. */
1226 && (bytes_used_when_full
1227 > ((bytes_used_when_reconsidered = BYTES_USED)
1228 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1229 refill_memory_reserve ();
1231 __free_hook = emacs_blocked_free;
1232 UNBLOCK_INPUT_ALLOC;
1236 /* This function is the malloc hook that Emacs uses. */
1238 static void *
1239 emacs_blocked_malloc (size, ptr)
1240 size_t size;
1241 const void *ptr;
1243 void *value;
1245 BLOCK_INPUT_ALLOC;
1246 __malloc_hook = old_malloc_hook;
1247 #ifdef DOUG_LEA_MALLOC
1248 /* Segfaults on my system. --lorentey */
1249 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1250 #else
1251 __malloc_extra_blocks = malloc_hysteresis;
1252 #endif
1254 value = (void *) malloc (size);
1256 #ifdef GC_MALLOC_CHECK
1258 struct mem_node *m = mem_find (value);
1259 if (m != MEM_NIL)
1261 fprintf (stderr, "Malloc returned %p which is already in use\n",
1262 value);
1263 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1264 m->start, m->end, (char *) m->end - (char *) m->start,
1265 m->type);
1266 abort ();
1269 if (!dont_register_blocks)
1271 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1272 allocated_mem_type = MEM_TYPE_NON_LISP;
1275 #endif /* GC_MALLOC_CHECK */
1277 __malloc_hook = emacs_blocked_malloc;
1278 UNBLOCK_INPUT_ALLOC;
1280 /* fprintf (stderr, "%p malloc\n", value); */
1281 return value;
1285 /* This function is the realloc hook that Emacs uses. */
1287 static void *
1288 emacs_blocked_realloc (ptr, size, ptr2)
1289 void *ptr;
1290 size_t size;
1291 const void *ptr2;
1293 void *value;
1295 BLOCK_INPUT_ALLOC;
1296 __realloc_hook = old_realloc_hook;
1298 #ifdef GC_MALLOC_CHECK
1299 if (ptr)
1301 struct mem_node *m = mem_find (ptr);
1302 if (m == MEM_NIL || m->start != ptr)
1304 fprintf (stderr,
1305 "Realloc of %p which wasn't allocated with malloc\n",
1306 ptr);
1307 abort ();
1310 mem_delete (m);
1313 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1315 /* Prevent malloc from registering blocks. */
1316 dont_register_blocks = 1;
1317 #endif /* GC_MALLOC_CHECK */
1319 value = (void *) realloc (ptr, size);
1321 #ifdef GC_MALLOC_CHECK
1322 dont_register_blocks = 0;
1325 struct mem_node *m = mem_find (value);
1326 if (m != MEM_NIL)
1328 fprintf (stderr, "Realloc returns memory that is already in use\n");
1329 abort ();
1332 /* Can't handle zero size regions in the red-black tree. */
1333 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1336 /* fprintf (stderr, "%p <- realloc\n", value); */
1337 #endif /* GC_MALLOC_CHECK */
1339 __realloc_hook = emacs_blocked_realloc;
1340 UNBLOCK_INPUT_ALLOC;
1342 return value;
1346 #ifdef HAVE_GTK_AND_PTHREAD
1347 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1348 normal malloc. Some thread implementations need this as they call
1349 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1350 calls malloc because it is the first call, and we have an endless loop. */
1352 void
1353 reset_malloc_hooks ()
1355 __free_hook = old_free_hook;
1356 __malloc_hook = old_malloc_hook;
1357 __realloc_hook = old_realloc_hook;
1359 #endif /* HAVE_GTK_AND_PTHREAD */
1362 /* Called from main to set up malloc to use our hooks. */
1364 void
1365 uninterrupt_malloc ()
1367 #ifdef HAVE_GTK_AND_PTHREAD
1368 #ifdef DOUG_LEA_MALLOC
1369 pthread_mutexattr_t attr;
1371 /* GLIBC has a faster way to do this, but lets keep it portable.
1372 This is according to the Single UNIX Specification. */
1373 pthread_mutexattr_init (&attr);
1374 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1375 pthread_mutex_init (&alloc_mutex, &attr);
1376 #else /* !DOUG_LEA_MALLOC */
1377 /* Some systems such as Solaris 2.6 doesn't have a recursive mutex,
1378 and the bundled gmalloc.c doesn't require it. */
1379 pthread_mutex_init (&alloc_mutex, NULL);
1380 #endif /* !DOUG_LEA_MALLOC */
1381 #endif /* HAVE_GTK_AND_PTHREAD */
1383 if (__free_hook != emacs_blocked_free)
1384 old_free_hook = __free_hook;
1385 __free_hook = emacs_blocked_free;
1387 if (__malloc_hook != emacs_blocked_malloc)
1388 old_malloc_hook = __malloc_hook;
1389 __malloc_hook = emacs_blocked_malloc;
1391 if (__realloc_hook != emacs_blocked_realloc)
1392 old_realloc_hook = __realloc_hook;
1393 __realloc_hook = emacs_blocked_realloc;
1396 #endif /* not SYNC_INPUT */
1397 #endif /* not SYSTEM_MALLOC */
1401 /***********************************************************************
1402 Interval Allocation
1403 ***********************************************************************/
1405 /* Number of intervals allocated in an interval_block structure.
1406 The 1020 is 1024 minus malloc overhead. */
1408 #define INTERVAL_BLOCK_SIZE \
1409 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1411 /* Intervals are allocated in chunks in form of an interval_block
1412 structure. */
1414 struct interval_block
1416 /* Place `intervals' first, to preserve alignment. */
1417 struct interval intervals[INTERVAL_BLOCK_SIZE];
1418 struct interval_block *next;
1421 /* Current interval block. Its `next' pointer points to older
1422 blocks. */
1424 static struct interval_block *interval_block;
1426 /* Index in interval_block above of the next unused interval
1427 structure. */
1429 static int interval_block_index;
1431 /* Number of free and live intervals. */
1433 static int total_free_intervals, total_intervals;
1435 /* List of free intervals. */
1437 INTERVAL interval_free_list;
1439 /* Total number of interval blocks now in use. */
1441 static int n_interval_blocks;
1444 /* Initialize interval allocation. */
1446 static void
1447 init_intervals ()
1449 interval_block = NULL;
1450 interval_block_index = INTERVAL_BLOCK_SIZE;
1451 interval_free_list = 0;
1452 n_interval_blocks = 0;
1456 /* Return a new interval. */
1458 INTERVAL
1459 make_interval ()
1461 INTERVAL val;
1463 /* eassert (!handling_signal); */
1465 MALLOC_BLOCK_INPUT;
1467 if (interval_free_list)
1469 val = interval_free_list;
1470 interval_free_list = INTERVAL_PARENT (interval_free_list);
1472 else
1474 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1476 register struct interval_block *newi;
1478 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1479 MEM_TYPE_NON_LISP);
1481 newi->next = interval_block;
1482 interval_block = newi;
1483 interval_block_index = 0;
1484 n_interval_blocks++;
1486 val = &interval_block->intervals[interval_block_index++];
1489 MALLOC_UNBLOCK_INPUT;
1491 consing_since_gc += sizeof (struct interval);
1492 intervals_consed++;
1493 RESET_INTERVAL (val);
1494 val->gcmarkbit = 0;
1495 return val;
1499 /* Mark Lisp objects in interval I. */
1501 static void
1502 mark_interval (i, dummy)
1503 register INTERVAL i;
1504 Lisp_Object dummy;
1506 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1507 i->gcmarkbit = 1;
1508 mark_object (i->plist);
1512 /* Mark the interval tree rooted in TREE. Don't call this directly;
1513 use the macro MARK_INTERVAL_TREE instead. */
1515 static void
1516 mark_interval_tree (tree)
1517 register INTERVAL tree;
1519 /* No need to test if this tree has been marked already; this
1520 function is always called through the MARK_INTERVAL_TREE macro,
1521 which takes care of that. */
1523 traverse_intervals_noorder (tree, mark_interval, Qnil);
1527 /* Mark the interval tree rooted in I. */
1529 #define MARK_INTERVAL_TREE(i) \
1530 do { \
1531 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1532 mark_interval_tree (i); \
1533 } while (0)
1536 #define UNMARK_BALANCE_INTERVALS(i) \
1537 do { \
1538 if (! NULL_INTERVAL_P (i)) \
1539 (i) = balance_intervals (i); \
1540 } while (0)
1543 /* Number support. If USE_LISP_UNION_TYPE is in effect, we
1544 can't create number objects in macros. */
1545 #ifndef make_number
1546 Lisp_Object
1547 make_number (n)
1548 EMACS_INT n;
1550 Lisp_Object obj;
1551 obj.s.val = n;
1552 obj.s.type = Lisp_Int;
1553 return obj;
1555 #endif
1557 /***********************************************************************
1558 String Allocation
1559 ***********************************************************************/
1561 /* Lisp_Strings are allocated in string_block structures. When a new
1562 string_block is allocated, all the Lisp_Strings it contains are
1563 added to a free-list string_free_list. When a new Lisp_String is
1564 needed, it is taken from that list. During the sweep phase of GC,
1565 string_blocks that are entirely free are freed, except two which
1566 we keep.
1568 String data is allocated from sblock structures. Strings larger
1569 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1570 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1572 Sblocks consist internally of sdata structures, one for each
1573 Lisp_String. The sdata structure points to the Lisp_String it
1574 belongs to. The Lisp_String points back to the `u.data' member of
1575 its sdata structure.
1577 When a Lisp_String is freed during GC, it is put back on
1578 string_free_list, and its `data' member and its sdata's `string'
1579 pointer is set to null. The size of the string is recorded in the
1580 `u.nbytes' member of the sdata. So, sdata structures that are no
1581 longer used, can be easily recognized, and it's easy to compact the
1582 sblocks of small strings which we do in compact_small_strings. */
1584 /* Size in bytes of an sblock structure used for small strings. This
1585 is 8192 minus malloc overhead. */
1587 #define SBLOCK_SIZE 8188
1589 /* Strings larger than this are considered large strings. String data
1590 for large strings is allocated from individual sblocks. */
1592 #define LARGE_STRING_BYTES 1024
1594 /* Structure describing string memory sub-allocated from an sblock.
1595 This is where the contents of Lisp strings are stored. */
1597 struct sdata
1599 /* Back-pointer to the string this sdata belongs to. If null, this
1600 structure is free, and the NBYTES member of the union below
1601 contains the string's byte size (the same value that STRING_BYTES
1602 would return if STRING were non-null). If non-null, STRING_BYTES
1603 (STRING) is the size of the data, and DATA contains the string's
1604 contents. */
1605 struct Lisp_String *string;
1607 #ifdef GC_CHECK_STRING_BYTES
1609 EMACS_INT nbytes;
1610 unsigned char data[1];
1612 #define SDATA_NBYTES(S) (S)->nbytes
1613 #define SDATA_DATA(S) (S)->data
1615 #else /* not GC_CHECK_STRING_BYTES */
1617 union
1619 /* When STRING in non-null. */
1620 unsigned char data[1];
1622 /* When STRING is null. */
1623 EMACS_INT nbytes;
1624 } u;
1627 #define SDATA_NBYTES(S) (S)->u.nbytes
1628 #define SDATA_DATA(S) (S)->u.data
1630 #endif /* not GC_CHECK_STRING_BYTES */
1634 /* Structure describing a block of memory which is sub-allocated to
1635 obtain string data memory for strings. Blocks for small strings
1636 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1637 as large as needed. */
1639 struct sblock
1641 /* Next in list. */
1642 struct sblock *next;
1644 /* Pointer to the next free sdata block. This points past the end
1645 of the sblock if there isn't any space left in this block. */
1646 struct sdata *next_free;
1648 /* Start of data. */
1649 struct sdata first_data;
1652 /* Number of Lisp strings in a string_block structure. The 1020 is
1653 1024 minus malloc overhead. */
1655 #define STRING_BLOCK_SIZE \
1656 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1658 /* Structure describing a block from which Lisp_String structures
1659 are allocated. */
1661 struct string_block
1663 /* Place `strings' first, to preserve alignment. */
1664 struct Lisp_String strings[STRING_BLOCK_SIZE];
1665 struct string_block *next;
1668 /* Head and tail of the list of sblock structures holding Lisp string
1669 data. We always allocate from current_sblock. The NEXT pointers
1670 in the sblock structures go from oldest_sblock to current_sblock. */
1672 static struct sblock *oldest_sblock, *current_sblock;
1674 /* List of sblocks for large strings. */
1676 static struct sblock *large_sblocks;
1678 /* List of string_block structures, and how many there are. */
1680 static struct string_block *string_blocks;
1681 static int n_string_blocks;
1683 /* Free-list of Lisp_Strings. */
1685 static struct Lisp_String *string_free_list;
1687 /* Number of live and free Lisp_Strings. */
1689 static int total_strings, total_free_strings;
1691 /* Number of bytes used by live strings. */
1693 static int total_string_size;
1695 /* Given a pointer to a Lisp_String S which is on the free-list
1696 string_free_list, return a pointer to its successor in the
1697 free-list. */
1699 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1701 /* Return a pointer to the sdata structure belonging to Lisp string S.
1702 S must be live, i.e. S->data must not be null. S->data is actually
1703 a pointer to the `u.data' member of its sdata structure; the
1704 structure starts at a constant offset in front of that. */
1706 #ifdef GC_CHECK_STRING_BYTES
1708 #define SDATA_OF_STRING(S) \
1709 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1710 - sizeof (EMACS_INT)))
1712 #else /* not GC_CHECK_STRING_BYTES */
1714 #define SDATA_OF_STRING(S) \
1715 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1717 #endif /* not GC_CHECK_STRING_BYTES */
1720 #ifdef GC_CHECK_STRING_OVERRUN
1722 /* We check for overrun in string data blocks by appending a small
1723 "cookie" after each allocated string data block, and check for the
1724 presence of this cookie during GC. */
1726 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1727 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1728 { 0xde, 0xad, 0xbe, 0xef };
1730 #else
1731 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1732 #endif
1734 /* Value is the size of an sdata structure large enough to hold NBYTES
1735 bytes of string data. The value returned includes a terminating
1736 NUL byte, the size of the sdata structure, and padding. */
1738 #ifdef GC_CHECK_STRING_BYTES
1740 #define SDATA_SIZE(NBYTES) \
1741 ((sizeof (struct Lisp_String *) \
1742 + (NBYTES) + 1 \
1743 + sizeof (EMACS_INT) \
1744 + sizeof (EMACS_INT) - 1) \
1745 & ~(sizeof (EMACS_INT) - 1))
1747 #else /* not GC_CHECK_STRING_BYTES */
1749 #define SDATA_SIZE(NBYTES) \
1750 ((sizeof (struct Lisp_String *) \
1751 + (NBYTES) + 1 \
1752 + sizeof (EMACS_INT) - 1) \
1753 & ~(sizeof (EMACS_INT) - 1))
1755 #endif /* not GC_CHECK_STRING_BYTES */
1757 /* Extra bytes to allocate for each string. */
1759 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1761 /* Initialize string allocation. Called from init_alloc_once. */
1763 static void
1764 init_strings ()
1766 total_strings = total_free_strings = total_string_size = 0;
1767 oldest_sblock = current_sblock = large_sblocks = NULL;
1768 string_blocks = NULL;
1769 n_string_blocks = 0;
1770 string_free_list = NULL;
1771 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1772 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1776 #ifdef GC_CHECK_STRING_BYTES
1778 static int check_string_bytes_count;
1780 static void check_string_bytes P_ ((int));
1781 static void check_sblock P_ ((struct sblock *));
1783 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1786 /* Like GC_STRING_BYTES, but with debugging check. */
1789 string_bytes (s)
1790 struct Lisp_String *s;
1792 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1793 if (!PURE_POINTER_P (s)
1794 && s->data
1795 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1796 abort ();
1797 return nbytes;
1800 /* Check validity of Lisp strings' string_bytes member in B. */
1802 static void
1803 check_sblock (b)
1804 struct sblock *b;
1806 struct sdata *from, *end, *from_end;
1808 end = b->next_free;
1810 for (from = &b->first_data; from < end; from = from_end)
1812 /* Compute the next FROM here because copying below may
1813 overwrite data we need to compute it. */
1814 int nbytes;
1816 /* Check that the string size recorded in the string is the
1817 same as the one recorded in the sdata structure. */
1818 if (from->string)
1819 CHECK_STRING_BYTES (from->string);
1821 if (from->string)
1822 nbytes = GC_STRING_BYTES (from->string);
1823 else
1824 nbytes = SDATA_NBYTES (from);
1826 nbytes = SDATA_SIZE (nbytes);
1827 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1832 /* Check validity of Lisp strings' string_bytes member. ALL_P
1833 non-zero means check all strings, otherwise check only most
1834 recently allocated strings. Used for hunting a bug. */
1836 static void
1837 check_string_bytes (all_p)
1838 int all_p;
1840 if (all_p)
1842 struct sblock *b;
1844 for (b = large_sblocks; b; b = b->next)
1846 struct Lisp_String *s = b->first_data.string;
1847 if (s)
1848 CHECK_STRING_BYTES (s);
1851 for (b = oldest_sblock; b; b = b->next)
1852 check_sblock (b);
1854 else
1855 check_sblock (current_sblock);
1858 #endif /* GC_CHECK_STRING_BYTES */
1860 #ifdef GC_CHECK_STRING_FREE_LIST
1862 /* Walk through the string free list looking for bogus next pointers.
1863 This may catch buffer overrun from a previous string. */
1865 static void
1866 check_string_free_list ()
1868 struct Lisp_String *s;
1870 /* Pop a Lisp_String off the free-list. */
1871 s = string_free_list;
1872 while (s != NULL)
1874 if ((unsigned)s < 1024)
1875 abort();
1876 s = NEXT_FREE_LISP_STRING (s);
1879 #else
1880 #define check_string_free_list()
1881 #endif
1883 /* Return a new Lisp_String. */
1885 static struct Lisp_String *
1886 allocate_string ()
1888 struct Lisp_String *s;
1890 /* eassert (!handling_signal); */
1892 MALLOC_BLOCK_INPUT;
1894 /* If the free-list is empty, allocate a new string_block, and
1895 add all the Lisp_Strings in it to the free-list. */
1896 if (string_free_list == NULL)
1898 struct string_block *b;
1899 int i;
1901 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1902 bzero (b, sizeof *b);
1903 b->next = string_blocks;
1904 string_blocks = b;
1905 ++n_string_blocks;
1907 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1909 s = b->strings + i;
1910 NEXT_FREE_LISP_STRING (s) = string_free_list;
1911 string_free_list = s;
1914 total_free_strings += STRING_BLOCK_SIZE;
1917 check_string_free_list ();
1919 /* Pop a Lisp_String off the free-list. */
1920 s = string_free_list;
1921 string_free_list = NEXT_FREE_LISP_STRING (s);
1923 MALLOC_UNBLOCK_INPUT;
1925 /* Probably not strictly necessary, but play it safe. */
1926 bzero (s, sizeof *s);
1928 --total_free_strings;
1929 ++total_strings;
1930 ++strings_consed;
1931 consing_since_gc += sizeof *s;
1933 #ifdef GC_CHECK_STRING_BYTES
1934 if (!noninteractive)
1936 if (++check_string_bytes_count == 200)
1938 check_string_bytes_count = 0;
1939 check_string_bytes (1);
1941 else
1942 check_string_bytes (0);
1944 #endif /* GC_CHECK_STRING_BYTES */
1946 return s;
1950 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1951 plus a NUL byte at the end. Allocate an sdata structure for S, and
1952 set S->data to its `u.data' member. Store a NUL byte at the end of
1953 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1954 S->data if it was initially non-null. */
1956 void
1957 allocate_string_data (s, nchars, nbytes)
1958 struct Lisp_String *s;
1959 int nchars, nbytes;
1961 struct sdata *data, *old_data;
1962 struct sblock *b;
1963 int needed, old_nbytes;
1965 /* Determine the number of bytes needed to store NBYTES bytes
1966 of string data. */
1967 needed = SDATA_SIZE (nbytes);
1968 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1969 old_nbytes = GC_STRING_BYTES (s);
1971 MALLOC_BLOCK_INPUT;
1973 if (nbytes > LARGE_STRING_BYTES)
1975 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1977 #ifdef DOUG_LEA_MALLOC
1978 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1979 because mapped region contents are not preserved in
1980 a dumped Emacs.
1982 In case you think of allowing it in a dumped Emacs at the
1983 cost of not being able to re-dump, there's another reason:
1984 mmap'ed data typically have an address towards the top of the
1985 address space, which won't fit into an EMACS_INT (at least on
1986 32-bit systems with the current tagging scheme). --fx */
1987 mallopt (M_MMAP_MAX, 0);
1988 #endif
1990 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1992 #ifdef DOUG_LEA_MALLOC
1993 /* Back to a reasonable maximum of mmap'ed areas. */
1994 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1995 #endif
1997 b->next_free = &b->first_data;
1998 b->first_data.string = NULL;
1999 b->next = large_sblocks;
2000 large_sblocks = b;
2002 else if (current_sblock == NULL
2003 || (((char *) current_sblock + SBLOCK_SIZE
2004 - (char *) current_sblock->next_free)
2005 < (needed + GC_STRING_EXTRA)))
2007 /* Not enough room in the current sblock. */
2008 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2009 b->next_free = &b->first_data;
2010 b->first_data.string = NULL;
2011 b->next = NULL;
2013 if (current_sblock)
2014 current_sblock->next = b;
2015 else
2016 oldest_sblock = b;
2017 current_sblock = b;
2019 else
2020 b = current_sblock;
2022 data = b->next_free;
2023 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2025 MALLOC_UNBLOCK_INPUT;
2027 data->string = s;
2028 s->data = SDATA_DATA (data);
2029 #ifdef GC_CHECK_STRING_BYTES
2030 SDATA_NBYTES (data) = nbytes;
2031 #endif
2032 s->size = nchars;
2033 s->size_byte = nbytes;
2034 s->data[nbytes] = '\0';
2035 #ifdef GC_CHECK_STRING_OVERRUN
2036 bcopy (string_overrun_cookie, (char *) data + needed,
2037 GC_STRING_OVERRUN_COOKIE_SIZE);
2038 #endif
2040 /* If S had already data assigned, mark that as free by setting its
2041 string back-pointer to null, and recording the size of the data
2042 in it. */
2043 if (old_data)
2045 SDATA_NBYTES (old_data) = old_nbytes;
2046 old_data->string = NULL;
2049 consing_since_gc += needed;
2053 /* Sweep and compact strings. */
2055 static void
2056 sweep_strings ()
2058 struct string_block *b, *next;
2059 struct string_block *live_blocks = NULL;
2061 string_free_list = NULL;
2062 total_strings = total_free_strings = 0;
2063 total_string_size = 0;
2065 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2066 for (b = string_blocks; b; b = next)
2068 int i, nfree = 0;
2069 struct Lisp_String *free_list_before = string_free_list;
2071 next = b->next;
2073 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2075 struct Lisp_String *s = b->strings + i;
2077 if (s->data)
2079 /* String was not on free-list before. */
2080 if (STRING_MARKED_P (s))
2082 /* String is live; unmark it and its intervals. */
2083 UNMARK_STRING (s);
2085 if (!NULL_INTERVAL_P (s->intervals))
2086 UNMARK_BALANCE_INTERVALS (s->intervals);
2088 ++total_strings;
2089 total_string_size += STRING_BYTES (s);
2091 else
2093 /* String is dead. Put it on the free-list. */
2094 struct sdata *data = SDATA_OF_STRING (s);
2096 /* Save the size of S in its sdata so that we know
2097 how large that is. Reset the sdata's string
2098 back-pointer so that we know it's free. */
2099 #ifdef GC_CHECK_STRING_BYTES
2100 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2101 abort ();
2102 #else
2103 data->u.nbytes = GC_STRING_BYTES (s);
2104 #endif
2105 data->string = NULL;
2107 /* Reset the strings's `data' member so that we
2108 know it's free. */
2109 s->data = NULL;
2111 /* Put the string on the free-list. */
2112 NEXT_FREE_LISP_STRING (s) = string_free_list;
2113 string_free_list = s;
2114 ++nfree;
2117 else
2119 /* S was on the free-list before. Put it there again. */
2120 NEXT_FREE_LISP_STRING (s) = string_free_list;
2121 string_free_list = s;
2122 ++nfree;
2126 /* Free blocks that contain free Lisp_Strings only, except
2127 the first two of them. */
2128 if (nfree == STRING_BLOCK_SIZE
2129 && total_free_strings > STRING_BLOCK_SIZE)
2131 lisp_free (b);
2132 --n_string_blocks;
2133 string_free_list = free_list_before;
2135 else
2137 total_free_strings += nfree;
2138 b->next = live_blocks;
2139 live_blocks = b;
2143 check_string_free_list ();
2145 string_blocks = live_blocks;
2146 free_large_strings ();
2147 compact_small_strings ();
2149 check_string_free_list ();
2153 /* Free dead large strings. */
2155 static void
2156 free_large_strings ()
2158 struct sblock *b, *next;
2159 struct sblock *live_blocks = NULL;
2161 for (b = large_sblocks; b; b = next)
2163 next = b->next;
2165 if (b->first_data.string == NULL)
2166 lisp_free (b);
2167 else
2169 b->next = live_blocks;
2170 live_blocks = b;
2174 large_sblocks = live_blocks;
2178 /* Compact data of small strings. Free sblocks that don't contain
2179 data of live strings after compaction. */
2181 static void
2182 compact_small_strings ()
2184 struct sblock *b, *tb, *next;
2185 struct sdata *from, *to, *end, *tb_end;
2186 struct sdata *to_end, *from_end;
2188 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2189 to, and TB_END is the end of TB. */
2190 tb = oldest_sblock;
2191 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2192 to = &tb->first_data;
2194 /* Step through the blocks from the oldest to the youngest. We
2195 expect that old blocks will stabilize over time, so that less
2196 copying will happen this way. */
2197 for (b = oldest_sblock; b; b = b->next)
2199 end = b->next_free;
2200 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2202 for (from = &b->first_data; from < end; from = from_end)
2204 /* Compute the next FROM here because copying below may
2205 overwrite data we need to compute it. */
2206 int nbytes;
2208 #ifdef GC_CHECK_STRING_BYTES
2209 /* Check that the string size recorded in the string is the
2210 same as the one recorded in the sdata structure. */
2211 if (from->string
2212 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2213 abort ();
2214 #endif /* GC_CHECK_STRING_BYTES */
2216 if (from->string)
2217 nbytes = GC_STRING_BYTES (from->string);
2218 else
2219 nbytes = SDATA_NBYTES (from);
2221 if (nbytes > LARGE_STRING_BYTES)
2222 abort ();
2224 nbytes = SDATA_SIZE (nbytes);
2225 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2227 #ifdef GC_CHECK_STRING_OVERRUN
2228 if (bcmp (string_overrun_cookie,
2229 ((char *) from_end) - GC_STRING_OVERRUN_COOKIE_SIZE,
2230 GC_STRING_OVERRUN_COOKIE_SIZE))
2231 abort ();
2232 #endif
2234 /* FROM->string non-null means it's alive. Copy its data. */
2235 if (from->string)
2237 /* If TB is full, proceed with the next sblock. */
2238 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2239 if (to_end > tb_end)
2241 tb->next_free = to;
2242 tb = tb->next;
2243 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2244 to = &tb->first_data;
2245 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2248 /* Copy, and update the string's `data' pointer. */
2249 if (from != to)
2251 xassert (tb != b || to <= from);
2252 safe_bcopy ((char *) from, (char *) to, nbytes + GC_STRING_EXTRA);
2253 to->string->data = SDATA_DATA (to);
2256 /* Advance past the sdata we copied to. */
2257 to = to_end;
2262 /* The rest of the sblocks following TB don't contain live data, so
2263 we can free them. */
2264 for (b = tb->next; b; b = next)
2266 next = b->next;
2267 lisp_free (b);
2270 tb->next_free = to;
2271 tb->next = NULL;
2272 current_sblock = tb;
2276 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2277 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2278 LENGTH must be an integer.
2279 INIT must be an integer that represents a character. */)
2280 (length, init)
2281 Lisp_Object length, init;
2283 register Lisp_Object val;
2284 register unsigned char *p, *end;
2285 int c, nbytes;
2287 CHECK_NATNUM (length);
2288 CHECK_NUMBER (init);
2290 c = XINT (init);
2291 if (ASCII_CHAR_P (c))
2293 nbytes = XINT (length);
2294 val = make_uninit_string (nbytes);
2295 p = SDATA (val);
2296 end = p + SCHARS (val);
2297 while (p != end)
2298 *p++ = c;
2300 else
2302 unsigned char str[MAX_MULTIBYTE_LENGTH];
2303 int len = CHAR_STRING (c, str);
2305 nbytes = len * XINT (length);
2306 val = make_uninit_multibyte_string (XINT (length), nbytes);
2307 p = SDATA (val);
2308 end = p + nbytes;
2309 while (p != end)
2311 bcopy (str, p, len);
2312 p += len;
2316 *p = 0;
2317 return val;
2321 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2322 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2323 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2324 (length, init)
2325 Lisp_Object length, init;
2327 register Lisp_Object val;
2328 struct Lisp_Bool_Vector *p;
2329 int real_init, i;
2330 int length_in_chars, length_in_elts, bits_per_value;
2332 CHECK_NATNUM (length);
2334 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2336 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2337 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2338 / BOOL_VECTOR_BITS_PER_CHAR);
2340 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2341 slot `size' of the struct Lisp_Bool_Vector. */
2342 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2344 /* Get rid of any bits that would cause confusion. */
2345 XVECTOR (val)->size = 0; /* No Lisp_Object to trace in there. */
2346 /* Use XVECTOR (val) rather than `p' because p->size is not TRT. */
2347 XSETPVECTYPE (XVECTOR (val), PVEC_BOOL_VECTOR);
2349 p = XBOOL_VECTOR (val);
2350 p->size = XFASTINT (length);
2352 real_init = (NILP (init) ? 0 : -1);
2353 for (i = 0; i < length_in_chars ; i++)
2354 p->data[i] = real_init;
2356 /* Clear the extraneous bits in the last byte. */
2357 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2358 p->data[length_in_chars - 1]
2359 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2361 return val;
2365 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2366 of characters from the contents. This string may be unibyte or
2367 multibyte, depending on the contents. */
2369 Lisp_Object
2370 make_string (contents, nbytes)
2371 const char *contents;
2372 int nbytes;
2374 register Lisp_Object val;
2375 int nchars, multibyte_nbytes;
2377 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2378 if (nbytes == nchars || nbytes != multibyte_nbytes)
2379 /* CONTENTS contains no multibyte sequences or contains an invalid
2380 multibyte sequence. We must make unibyte string. */
2381 val = make_unibyte_string (contents, nbytes);
2382 else
2383 val = make_multibyte_string (contents, nchars, nbytes);
2384 return val;
2388 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2390 Lisp_Object
2391 make_unibyte_string (contents, length)
2392 const char *contents;
2393 int length;
2395 register Lisp_Object val;
2396 val = make_uninit_string (length);
2397 bcopy (contents, SDATA (val), length);
2398 STRING_SET_UNIBYTE (val);
2399 return val;
2403 /* Make a multibyte string from NCHARS characters occupying NBYTES
2404 bytes at CONTENTS. */
2406 Lisp_Object
2407 make_multibyte_string (contents, nchars, nbytes)
2408 const char *contents;
2409 int nchars, nbytes;
2411 register Lisp_Object val;
2412 val = make_uninit_multibyte_string (nchars, nbytes);
2413 bcopy (contents, SDATA (val), nbytes);
2414 return val;
2418 /* Make a string from NCHARS characters occupying NBYTES bytes at
2419 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2421 Lisp_Object
2422 make_string_from_bytes (contents, nchars, nbytes)
2423 const char *contents;
2424 int nchars, nbytes;
2426 register Lisp_Object val;
2427 val = make_uninit_multibyte_string (nchars, nbytes);
2428 bcopy (contents, SDATA (val), nbytes);
2429 if (SBYTES (val) == SCHARS (val))
2430 STRING_SET_UNIBYTE (val);
2431 return val;
2435 /* Make a string from NCHARS characters occupying NBYTES bytes at
2436 CONTENTS. The argument MULTIBYTE controls whether to label the
2437 string as multibyte. If NCHARS is negative, it counts the number of
2438 characters by itself. */
2440 Lisp_Object
2441 make_specified_string (contents, nchars, nbytes, multibyte)
2442 const char *contents;
2443 int nchars, nbytes;
2444 int multibyte;
2446 register Lisp_Object val;
2448 if (nchars < 0)
2450 if (multibyte)
2451 nchars = multibyte_chars_in_text (contents, nbytes);
2452 else
2453 nchars = nbytes;
2455 val = make_uninit_multibyte_string (nchars, nbytes);
2456 bcopy (contents, SDATA (val), nbytes);
2457 if (!multibyte)
2458 STRING_SET_UNIBYTE (val);
2459 return val;
2463 /* Make a string from the data at STR, treating it as multibyte if the
2464 data warrants. */
2466 Lisp_Object
2467 build_string (str)
2468 const char *str;
2470 return make_string (str, strlen (str));
2474 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2475 occupying LENGTH bytes. */
2477 Lisp_Object
2478 make_uninit_string (length)
2479 int length;
2481 Lisp_Object val;
2483 if (!length)
2484 return empty_unibyte_string;
2485 val = make_uninit_multibyte_string (length, length);
2486 STRING_SET_UNIBYTE (val);
2487 return val;
2491 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2492 which occupy NBYTES bytes. */
2494 Lisp_Object
2495 make_uninit_multibyte_string (nchars, nbytes)
2496 int nchars, nbytes;
2498 Lisp_Object string;
2499 struct Lisp_String *s;
2501 if (nchars < 0)
2502 abort ();
2503 if (!nbytes)
2504 return empty_multibyte_string;
2506 s = allocate_string ();
2507 allocate_string_data (s, nchars, nbytes);
2508 XSETSTRING (string, s);
2509 string_chars_consed += nbytes;
2510 return string;
2515 /***********************************************************************
2516 Float Allocation
2517 ***********************************************************************/
2519 /* We store float cells inside of float_blocks, allocating a new
2520 float_block with malloc whenever necessary. Float cells reclaimed
2521 by GC are put on a free list to be reallocated before allocating
2522 any new float cells from the latest float_block. */
2524 #define FLOAT_BLOCK_SIZE \
2525 (((BLOCK_BYTES - sizeof (struct float_block *) \
2526 /* The compiler might add padding at the end. */ \
2527 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2528 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2530 #define GETMARKBIT(block,n) \
2531 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2532 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2533 & 1)
2535 #define SETMARKBIT(block,n) \
2536 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2537 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2539 #define UNSETMARKBIT(block,n) \
2540 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2541 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2543 #define FLOAT_BLOCK(fptr) \
2544 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2546 #define FLOAT_INDEX(fptr) \
2547 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2549 struct float_block
2551 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2552 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2553 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2554 struct float_block *next;
2557 #define FLOAT_MARKED_P(fptr) \
2558 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2560 #define FLOAT_MARK(fptr) \
2561 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2563 #define FLOAT_UNMARK(fptr) \
2564 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2566 /* Current float_block. */
2568 struct float_block *float_block;
2570 /* Index of first unused Lisp_Float in the current float_block. */
2572 int float_block_index;
2574 /* Total number of float blocks now in use. */
2576 int n_float_blocks;
2578 /* Free-list of Lisp_Floats. */
2580 struct Lisp_Float *float_free_list;
2583 /* Initialize float allocation. */
2585 static void
2586 init_float ()
2588 float_block = NULL;
2589 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2590 float_free_list = 0;
2591 n_float_blocks = 0;
2595 /* Explicitly free a float cell by putting it on the free-list. */
2597 static void
2598 free_float (ptr)
2599 struct Lisp_Float *ptr;
2601 ptr->u.chain = float_free_list;
2602 float_free_list = ptr;
2606 /* Return a new float object with value FLOAT_VALUE. */
2608 Lisp_Object
2609 make_float (float_value)
2610 double float_value;
2612 register Lisp_Object val;
2614 /* eassert (!handling_signal); */
2616 MALLOC_BLOCK_INPUT;
2618 if (float_free_list)
2620 /* We use the data field for chaining the free list
2621 so that we won't use the same field that has the mark bit. */
2622 XSETFLOAT (val, float_free_list);
2623 float_free_list = float_free_list->u.chain;
2625 else
2627 if (float_block_index == FLOAT_BLOCK_SIZE)
2629 register struct float_block *new;
2631 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2632 MEM_TYPE_FLOAT);
2633 new->next = float_block;
2634 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2635 float_block = new;
2636 float_block_index = 0;
2637 n_float_blocks++;
2639 XSETFLOAT (val, &float_block->floats[float_block_index]);
2640 float_block_index++;
2643 MALLOC_UNBLOCK_INPUT;
2645 XFLOAT_INIT (val, float_value);
2646 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2647 consing_since_gc += sizeof (struct Lisp_Float);
2648 floats_consed++;
2649 return val;
2654 /***********************************************************************
2655 Cons Allocation
2656 ***********************************************************************/
2658 /* We store cons cells inside of cons_blocks, allocating a new
2659 cons_block with malloc whenever necessary. Cons cells reclaimed by
2660 GC are put on a free list to be reallocated before allocating
2661 any new cons cells from the latest cons_block. */
2663 #define CONS_BLOCK_SIZE \
2664 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2665 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2667 #define CONS_BLOCK(fptr) \
2668 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2670 #define CONS_INDEX(fptr) \
2671 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2673 struct cons_block
2675 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2676 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2677 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2678 struct cons_block *next;
2681 #define CONS_MARKED_P(fptr) \
2682 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2684 #define CONS_MARK(fptr) \
2685 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2687 #define CONS_UNMARK(fptr) \
2688 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2690 /* Current cons_block. */
2692 struct cons_block *cons_block;
2694 /* Index of first unused Lisp_Cons in the current block. */
2696 int cons_block_index;
2698 /* Free-list of Lisp_Cons structures. */
2700 struct Lisp_Cons *cons_free_list;
2702 /* Total number of cons blocks now in use. */
2704 static int n_cons_blocks;
2707 /* Initialize cons allocation. */
2709 static void
2710 init_cons ()
2712 cons_block = NULL;
2713 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2714 cons_free_list = 0;
2715 n_cons_blocks = 0;
2719 /* Explicitly free a cons cell by putting it on the free-list. */
2721 void
2722 free_cons (ptr)
2723 struct Lisp_Cons *ptr;
2725 ptr->u.chain = cons_free_list;
2726 #if GC_MARK_STACK
2727 ptr->car = Vdead;
2728 #endif
2729 cons_free_list = ptr;
2732 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2733 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2734 (car, cdr)
2735 Lisp_Object car, cdr;
2737 register Lisp_Object val;
2739 /* eassert (!handling_signal); */
2741 MALLOC_BLOCK_INPUT;
2743 if (cons_free_list)
2745 /* We use the cdr for chaining the free list
2746 so that we won't use the same field that has the mark bit. */
2747 XSETCONS (val, cons_free_list);
2748 cons_free_list = cons_free_list->u.chain;
2750 else
2752 if (cons_block_index == CONS_BLOCK_SIZE)
2754 register struct cons_block *new;
2755 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2756 MEM_TYPE_CONS);
2757 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2758 new->next = cons_block;
2759 cons_block = new;
2760 cons_block_index = 0;
2761 n_cons_blocks++;
2763 XSETCONS (val, &cons_block->conses[cons_block_index]);
2764 cons_block_index++;
2767 MALLOC_UNBLOCK_INPUT;
2769 XSETCAR (val, car);
2770 XSETCDR (val, cdr);
2771 eassert (!CONS_MARKED_P (XCONS (val)));
2772 consing_since_gc += sizeof (struct Lisp_Cons);
2773 cons_cells_consed++;
2774 return val;
2777 /* Get an error now if there's any junk in the cons free list. */
2778 void
2779 check_cons_list ()
2781 #ifdef GC_CHECK_CONS_LIST
2782 struct Lisp_Cons *tail = cons_free_list;
2784 while (tail)
2785 tail = tail->u.chain;
2786 #endif
2789 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2791 Lisp_Object
2792 list1 (arg1)
2793 Lisp_Object arg1;
2795 return Fcons (arg1, Qnil);
2798 Lisp_Object
2799 list2 (arg1, arg2)
2800 Lisp_Object arg1, arg2;
2802 return Fcons (arg1, Fcons (arg2, Qnil));
2806 Lisp_Object
2807 list3 (arg1, arg2, arg3)
2808 Lisp_Object arg1, arg2, arg3;
2810 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2814 Lisp_Object
2815 list4 (arg1, arg2, arg3, arg4)
2816 Lisp_Object arg1, arg2, arg3, arg4;
2818 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2822 Lisp_Object
2823 list5 (arg1, arg2, arg3, arg4, arg5)
2824 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2826 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2827 Fcons (arg5, Qnil)))));
2831 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2832 doc: /* Return a newly created list with specified arguments as elements.
2833 Any number of arguments, even zero arguments, are allowed.
2834 usage: (list &rest OBJECTS) */)
2835 (nargs, args)
2836 int nargs;
2837 register Lisp_Object *args;
2839 register Lisp_Object val;
2840 val = Qnil;
2842 while (nargs > 0)
2844 nargs--;
2845 val = Fcons (args[nargs], val);
2847 return val;
2851 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2852 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2853 (length, init)
2854 register Lisp_Object length, init;
2856 register Lisp_Object val;
2857 register int size;
2859 CHECK_NATNUM (length);
2860 size = XFASTINT (length);
2862 val = Qnil;
2863 while (size > 0)
2865 val = Fcons (init, val);
2866 --size;
2868 if (size > 0)
2870 val = Fcons (init, val);
2871 --size;
2873 if (size > 0)
2875 val = Fcons (init, val);
2876 --size;
2878 if (size > 0)
2880 val = Fcons (init, val);
2881 --size;
2883 if (size > 0)
2885 val = Fcons (init, val);
2886 --size;
2892 QUIT;
2895 return val;
2900 /***********************************************************************
2901 Vector Allocation
2902 ***********************************************************************/
2904 /* Singly-linked list of all vectors. */
2906 static struct Lisp_Vector *all_vectors;
2908 /* Total number of vector-like objects now in use. */
2910 static int n_vectors;
2913 /* Value is a pointer to a newly allocated Lisp_Vector structure
2914 with room for LEN Lisp_Objects. */
2916 static struct Lisp_Vector *
2917 allocate_vectorlike (len)
2918 EMACS_INT len;
2920 struct Lisp_Vector *p;
2921 size_t nbytes;
2923 MALLOC_BLOCK_INPUT;
2925 #ifdef DOUG_LEA_MALLOC
2926 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2927 because mapped region contents are not preserved in
2928 a dumped Emacs. */
2929 mallopt (M_MMAP_MAX, 0);
2930 #endif
2932 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2933 /* eassert (!handling_signal); */
2935 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2936 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2938 #ifdef DOUG_LEA_MALLOC
2939 /* Back to a reasonable maximum of mmap'ed areas. */
2940 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2941 #endif
2943 consing_since_gc += nbytes;
2944 vector_cells_consed += len;
2946 p->next = all_vectors;
2947 all_vectors = p;
2949 MALLOC_UNBLOCK_INPUT;
2951 ++n_vectors;
2952 return p;
2956 /* Allocate a vector with NSLOTS slots. */
2958 struct Lisp_Vector *
2959 allocate_vector (nslots)
2960 EMACS_INT nslots;
2962 struct Lisp_Vector *v = allocate_vectorlike (nslots);
2963 v->size = nslots;
2964 return v;
2968 /* Allocate other vector-like structures. */
2970 struct Lisp_Vector *
2971 allocate_pseudovector (memlen, lisplen, tag)
2972 int memlen, lisplen;
2973 EMACS_INT tag;
2975 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2976 EMACS_INT i;
2978 /* Only the first lisplen slots will be traced normally by the GC. */
2979 v->size = lisplen;
2980 for (i = 0; i < lisplen; ++i)
2981 v->contents[i] = Qnil;
2983 XSETPVECTYPE (v, tag); /* Add the appropriate tag. */
2984 return v;
2987 struct Lisp_Hash_Table *
2988 allocate_hash_table (void)
2990 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2994 struct window *
2995 allocate_window ()
2997 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
3001 struct terminal *
3002 allocate_terminal ()
3004 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
3005 next_terminal, PVEC_TERMINAL);
3006 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3007 bzero (&(t->next_terminal),
3008 ((char*)(t+1)) - ((char*)&(t->next_terminal)));
3010 return t;
3013 struct frame *
3014 allocate_frame ()
3016 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
3017 face_cache, PVEC_FRAME);
3018 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3019 bzero (&(f->face_cache),
3020 ((char*)(f+1)) - ((char*)&(f->face_cache)));
3021 return f;
3025 struct Lisp_Process *
3026 allocate_process ()
3028 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3032 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3033 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3034 See also the function `vector'. */)
3035 (length, init)
3036 register Lisp_Object length, init;
3038 Lisp_Object vector;
3039 register EMACS_INT sizei;
3040 register int index;
3041 register struct Lisp_Vector *p;
3043 CHECK_NATNUM (length);
3044 sizei = XFASTINT (length);
3046 p = allocate_vector (sizei);
3047 for (index = 0; index < sizei; index++)
3048 p->contents[index] = init;
3050 XSETVECTOR (vector, p);
3051 return vector;
3055 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3056 doc: /* Return a newly created vector with specified arguments as elements.
3057 Any number of arguments, even zero arguments, are allowed.
3058 usage: (vector &rest OBJECTS) */)
3059 (nargs, args)
3060 register int nargs;
3061 Lisp_Object *args;
3063 register Lisp_Object len, val;
3064 register int index;
3065 register struct Lisp_Vector *p;
3067 XSETFASTINT (len, nargs);
3068 val = Fmake_vector (len, Qnil);
3069 p = XVECTOR (val);
3070 for (index = 0; index < nargs; index++)
3071 p->contents[index] = args[index];
3072 return val;
3076 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3077 doc: /* Create a byte-code object with specified arguments as elements.
3078 The arguments should be the arglist, bytecode-string, constant vector,
3079 stack size, (optional) doc string, and (optional) interactive spec.
3080 The first four arguments are required; at most six have any
3081 significance.
3082 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3083 (nargs, args)
3084 register int nargs;
3085 Lisp_Object *args;
3087 register Lisp_Object len, val;
3088 register int index;
3089 register struct Lisp_Vector *p;
3091 XSETFASTINT (len, nargs);
3092 if (!NILP (Vpurify_flag))
3093 val = make_pure_vector ((EMACS_INT) nargs);
3094 else
3095 val = Fmake_vector (len, Qnil);
3097 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3098 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3099 earlier because they produced a raw 8-bit string for byte-code
3100 and now such a byte-code string is loaded as multibyte while
3101 raw 8-bit characters converted to multibyte form. Thus, now we
3102 must convert them back to the original unibyte form. */
3103 args[1] = Fstring_as_unibyte (args[1]);
3105 p = XVECTOR (val);
3106 for (index = 0; index < nargs; index++)
3108 if (!NILP (Vpurify_flag))
3109 args[index] = Fpurecopy (args[index]);
3110 p->contents[index] = args[index];
3112 XSETPVECTYPE (p, PVEC_COMPILED);
3113 XSETCOMPILED (val, p);
3114 return val;
3119 /***********************************************************************
3120 Symbol Allocation
3121 ***********************************************************************/
3123 /* Each symbol_block is just under 1020 bytes long, since malloc
3124 really allocates in units of powers of two and uses 4 bytes for its
3125 own overhead. */
3127 #define SYMBOL_BLOCK_SIZE \
3128 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3130 struct symbol_block
3132 /* Place `symbols' first, to preserve alignment. */
3133 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3134 struct symbol_block *next;
3137 /* Current symbol block and index of first unused Lisp_Symbol
3138 structure in it. */
3140 static struct symbol_block *symbol_block;
3141 static int symbol_block_index;
3143 /* List of free symbols. */
3145 static struct Lisp_Symbol *symbol_free_list;
3147 /* Total number of symbol blocks now in use. */
3149 static int n_symbol_blocks;
3152 /* Initialize symbol allocation. */
3154 static void
3155 init_symbol ()
3157 symbol_block = NULL;
3158 symbol_block_index = SYMBOL_BLOCK_SIZE;
3159 symbol_free_list = 0;
3160 n_symbol_blocks = 0;
3164 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3165 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3166 Its value and function definition are void, and its property list is nil. */)
3167 (name)
3168 Lisp_Object name;
3170 register Lisp_Object val;
3171 register struct Lisp_Symbol *p;
3173 CHECK_STRING (name);
3175 /* eassert (!handling_signal); */
3177 MALLOC_BLOCK_INPUT;
3179 if (symbol_free_list)
3181 XSETSYMBOL (val, symbol_free_list);
3182 symbol_free_list = symbol_free_list->next;
3184 else
3186 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3188 struct symbol_block *new;
3189 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3190 MEM_TYPE_SYMBOL);
3191 new->next = symbol_block;
3192 symbol_block = new;
3193 symbol_block_index = 0;
3194 n_symbol_blocks++;
3196 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3197 symbol_block_index++;
3200 MALLOC_UNBLOCK_INPUT;
3202 p = XSYMBOL (val);
3203 p->xname = name;
3204 p->plist = Qnil;
3205 p->value = Qunbound;
3206 p->function = Qunbound;
3207 p->next = NULL;
3208 p->gcmarkbit = 0;
3209 p->interned = SYMBOL_UNINTERNED;
3210 p->constant = 0;
3211 p->indirect_variable = 0;
3212 consing_since_gc += sizeof (struct Lisp_Symbol);
3213 symbols_consed++;
3214 return val;
3219 /***********************************************************************
3220 Marker (Misc) Allocation
3221 ***********************************************************************/
3223 /* Allocation of markers and other objects that share that structure.
3224 Works like allocation of conses. */
3226 #define MARKER_BLOCK_SIZE \
3227 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3229 struct marker_block
3231 /* Place `markers' first, to preserve alignment. */
3232 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3233 struct marker_block *next;
3236 static struct marker_block *marker_block;
3237 static int marker_block_index;
3239 static union Lisp_Misc *marker_free_list;
3241 /* Total number of marker blocks now in use. */
3243 static int n_marker_blocks;
3245 static void
3246 init_marker ()
3248 marker_block = NULL;
3249 marker_block_index = MARKER_BLOCK_SIZE;
3250 marker_free_list = 0;
3251 n_marker_blocks = 0;
3254 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3256 Lisp_Object
3257 allocate_misc ()
3259 Lisp_Object val;
3261 /* eassert (!handling_signal); */
3263 MALLOC_BLOCK_INPUT;
3265 if (marker_free_list)
3267 XSETMISC (val, marker_free_list);
3268 marker_free_list = marker_free_list->u_free.chain;
3270 else
3272 if (marker_block_index == MARKER_BLOCK_SIZE)
3274 struct marker_block *new;
3275 new = (struct marker_block *) lisp_malloc (sizeof *new,
3276 MEM_TYPE_MISC);
3277 new->next = marker_block;
3278 marker_block = new;
3279 marker_block_index = 0;
3280 n_marker_blocks++;
3281 total_free_markers += MARKER_BLOCK_SIZE;
3283 XSETMISC (val, &marker_block->markers[marker_block_index]);
3284 marker_block_index++;
3287 MALLOC_UNBLOCK_INPUT;
3289 --total_free_markers;
3290 consing_since_gc += sizeof (union Lisp_Misc);
3291 misc_objects_consed++;
3292 XMISCANY (val)->gcmarkbit = 0;
3293 return val;
3296 /* Free a Lisp_Misc object */
3298 void
3299 free_misc (misc)
3300 Lisp_Object misc;
3302 XMISCTYPE (misc) = Lisp_Misc_Free;
3303 XMISC (misc)->u_free.chain = marker_free_list;
3304 marker_free_list = XMISC (misc);
3306 total_free_markers++;
3309 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3310 INTEGER. This is used to package C values to call record_unwind_protect.
3311 The unwind function can get the C values back using XSAVE_VALUE. */
3313 Lisp_Object
3314 make_save_value (pointer, integer)
3315 void *pointer;
3316 int integer;
3318 register Lisp_Object val;
3319 register struct Lisp_Save_Value *p;
3321 val = allocate_misc ();
3322 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3323 p = XSAVE_VALUE (val);
3324 p->pointer = pointer;
3325 p->integer = integer;
3326 p->dogc = 0;
3327 return val;
3330 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3331 doc: /* Return a newly allocated marker which does not point at any place. */)
3334 register Lisp_Object val;
3335 register struct Lisp_Marker *p;
3337 val = allocate_misc ();
3338 XMISCTYPE (val) = Lisp_Misc_Marker;
3339 p = XMARKER (val);
3340 p->buffer = 0;
3341 p->bytepos = 0;
3342 p->charpos = 0;
3343 p->next = NULL;
3344 p->insertion_type = 0;
3345 return val;
3348 /* Put MARKER back on the free list after using it temporarily. */
3350 void
3351 free_marker (marker)
3352 Lisp_Object marker;
3354 unchain_marker (XMARKER (marker));
3355 free_misc (marker);
3359 /* Return a newly created vector or string with specified arguments as
3360 elements. If all the arguments are characters that can fit
3361 in a string of events, make a string; otherwise, make a vector.
3363 Any number of arguments, even zero arguments, are allowed. */
3365 Lisp_Object
3366 make_event_array (nargs, args)
3367 register int nargs;
3368 Lisp_Object *args;
3370 int i;
3372 for (i = 0; i < nargs; i++)
3373 /* The things that fit in a string
3374 are characters that are in 0...127,
3375 after discarding the meta bit and all the bits above it. */
3376 if (!INTEGERP (args[i])
3377 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3378 return Fvector (nargs, args);
3380 /* Since the loop exited, we know that all the things in it are
3381 characters, so we can make a string. */
3383 Lisp_Object result;
3385 result = Fmake_string (make_number (nargs), make_number (0));
3386 for (i = 0; i < nargs; i++)
3388 SSET (result, i, XINT (args[i]));
3389 /* Move the meta bit to the right place for a string char. */
3390 if (XINT (args[i]) & CHAR_META)
3391 SSET (result, i, SREF (result, i) | 0x80);
3394 return result;
3400 /************************************************************************
3401 Memory Full Handling
3402 ************************************************************************/
3405 /* Called if malloc returns zero. */
3407 void
3408 memory_full ()
3410 int i;
3412 Vmemory_full = Qt;
3414 memory_full_cons_threshold = sizeof (struct cons_block);
3416 /* The first time we get here, free the spare memory. */
3417 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3418 if (spare_memory[i])
3420 if (i == 0)
3421 free (spare_memory[i]);
3422 else if (i >= 1 && i <= 4)
3423 lisp_align_free (spare_memory[i]);
3424 else
3425 lisp_free (spare_memory[i]);
3426 spare_memory[i] = 0;
3429 /* Record the space now used. When it decreases substantially,
3430 we can refill the memory reserve. */
3431 #ifndef SYSTEM_MALLOC
3432 bytes_used_when_full = BYTES_USED;
3433 #endif
3435 /* This used to call error, but if we've run out of memory, we could
3436 get infinite recursion trying to build the string. */
3437 xsignal (Qnil, Vmemory_signal_data);
3440 /* If we released our reserve (due to running out of memory),
3441 and we have a fair amount free once again,
3442 try to set aside another reserve in case we run out once more.
3444 This is called when a relocatable block is freed in ralloc.c,
3445 and also directly from this file, in case we're not using ralloc.c. */
3447 void
3448 refill_memory_reserve ()
3450 #ifndef SYSTEM_MALLOC
3451 if (spare_memory[0] == 0)
3452 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3453 if (spare_memory[1] == 0)
3454 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3455 MEM_TYPE_CONS);
3456 if (spare_memory[2] == 0)
3457 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3458 MEM_TYPE_CONS);
3459 if (spare_memory[3] == 0)
3460 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3461 MEM_TYPE_CONS);
3462 if (spare_memory[4] == 0)
3463 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3464 MEM_TYPE_CONS);
3465 if (spare_memory[5] == 0)
3466 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3467 MEM_TYPE_STRING);
3468 if (spare_memory[6] == 0)
3469 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3470 MEM_TYPE_STRING);
3471 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3472 Vmemory_full = Qnil;
3473 #endif
3476 /************************************************************************
3477 C Stack Marking
3478 ************************************************************************/
3480 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3482 /* Conservative C stack marking requires a method to identify possibly
3483 live Lisp objects given a pointer value. We do this by keeping
3484 track of blocks of Lisp data that are allocated in a red-black tree
3485 (see also the comment of mem_node which is the type of nodes in
3486 that tree). Function lisp_malloc adds information for an allocated
3487 block to the red-black tree with calls to mem_insert, and function
3488 lisp_free removes it with mem_delete. Functions live_string_p etc
3489 call mem_find to lookup information about a given pointer in the
3490 tree, and use that to determine if the pointer points to a Lisp
3491 object or not. */
3493 /* Initialize this part of alloc.c. */
3495 static void
3496 mem_init ()
3498 mem_z.left = mem_z.right = MEM_NIL;
3499 mem_z.parent = NULL;
3500 mem_z.color = MEM_BLACK;
3501 mem_z.start = mem_z.end = NULL;
3502 mem_root = MEM_NIL;
3506 /* Value is a pointer to the mem_node containing START. Value is
3507 MEM_NIL if there is no node in the tree containing START. */
3509 static INLINE struct mem_node *
3510 mem_find (start)
3511 void *start;
3513 struct mem_node *p;
3515 if (start < min_heap_address || start > max_heap_address)
3516 return MEM_NIL;
3518 /* Make the search always successful to speed up the loop below. */
3519 mem_z.start = start;
3520 mem_z.end = (char *) start + 1;
3522 p = mem_root;
3523 while (start < p->start || start >= p->end)
3524 p = start < p->start ? p->left : p->right;
3525 return p;
3529 /* Insert a new node into the tree for a block of memory with start
3530 address START, end address END, and type TYPE. Value is a
3531 pointer to the node that was inserted. */
3533 static struct mem_node *
3534 mem_insert (start, end, type)
3535 void *start, *end;
3536 enum mem_type type;
3538 struct mem_node *c, *parent, *x;
3540 if (min_heap_address == NULL || start < min_heap_address)
3541 min_heap_address = start;
3542 if (max_heap_address == NULL || end > max_heap_address)
3543 max_heap_address = end;
3545 /* See where in the tree a node for START belongs. In this
3546 particular application, it shouldn't happen that a node is already
3547 present. For debugging purposes, let's check that. */
3548 c = mem_root;
3549 parent = NULL;
3551 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3553 while (c != MEM_NIL)
3555 if (start >= c->start && start < c->end)
3556 abort ();
3557 parent = c;
3558 c = start < c->start ? c->left : c->right;
3561 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3563 while (c != MEM_NIL)
3565 parent = c;
3566 c = start < c->start ? c->left : c->right;
3569 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3571 /* Create a new node. */
3572 #ifdef GC_MALLOC_CHECK
3573 x = (struct mem_node *) _malloc_internal (sizeof *x);
3574 if (x == NULL)
3575 abort ();
3576 #else
3577 x = (struct mem_node *) xmalloc (sizeof *x);
3578 #endif
3579 x->start = start;
3580 x->end = end;
3581 x->type = type;
3582 x->parent = parent;
3583 x->left = x->right = MEM_NIL;
3584 x->color = MEM_RED;
3586 /* Insert it as child of PARENT or install it as root. */
3587 if (parent)
3589 if (start < parent->start)
3590 parent->left = x;
3591 else
3592 parent->right = x;
3594 else
3595 mem_root = x;
3597 /* Re-establish red-black tree properties. */
3598 mem_insert_fixup (x);
3600 return x;
3604 /* Re-establish the red-black properties of the tree, and thereby
3605 balance the tree, after node X has been inserted; X is always red. */
3607 static void
3608 mem_insert_fixup (x)
3609 struct mem_node *x;
3611 while (x != mem_root && x->parent->color == MEM_RED)
3613 /* X is red and its parent is red. This is a violation of
3614 red-black tree property #3. */
3616 if (x->parent == x->parent->parent->left)
3618 /* We're on the left side of our grandparent, and Y is our
3619 "uncle". */
3620 struct mem_node *y = x->parent->parent->right;
3622 if (y->color == MEM_RED)
3624 /* Uncle and parent are red but should be black because
3625 X is red. Change the colors accordingly and proceed
3626 with the grandparent. */
3627 x->parent->color = MEM_BLACK;
3628 y->color = MEM_BLACK;
3629 x->parent->parent->color = MEM_RED;
3630 x = x->parent->parent;
3632 else
3634 /* Parent and uncle have different colors; parent is
3635 red, uncle is black. */
3636 if (x == x->parent->right)
3638 x = x->parent;
3639 mem_rotate_left (x);
3642 x->parent->color = MEM_BLACK;
3643 x->parent->parent->color = MEM_RED;
3644 mem_rotate_right (x->parent->parent);
3647 else
3649 /* This is the symmetrical case of above. */
3650 struct mem_node *y = x->parent->parent->left;
3652 if (y->color == MEM_RED)
3654 x->parent->color = MEM_BLACK;
3655 y->color = MEM_BLACK;
3656 x->parent->parent->color = MEM_RED;
3657 x = x->parent->parent;
3659 else
3661 if (x == x->parent->left)
3663 x = x->parent;
3664 mem_rotate_right (x);
3667 x->parent->color = MEM_BLACK;
3668 x->parent->parent->color = MEM_RED;
3669 mem_rotate_left (x->parent->parent);
3674 /* The root may have been changed to red due to the algorithm. Set
3675 it to black so that property #5 is satisfied. */
3676 mem_root->color = MEM_BLACK;
3680 /* (x) (y)
3681 / \ / \
3682 a (y) ===> (x) c
3683 / \ / \
3684 b c a b */
3686 static void
3687 mem_rotate_left (x)
3688 struct mem_node *x;
3690 struct mem_node *y;
3692 /* Turn y's left sub-tree into x's right sub-tree. */
3693 y = x->right;
3694 x->right = y->left;
3695 if (y->left != MEM_NIL)
3696 y->left->parent = x;
3698 /* Y's parent was x's parent. */
3699 if (y != MEM_NIL)
3700 y->parent = x->parent;
3702 /* Get the parent to point to y instead of x. */
3703 if (x->parent)
3705 if (x == x->parent->left)
3706 x->parent->left = y;
3707 else
3708 x->parent->right = y;
3710 else
3711 mem_root = y;
3713 /* Put x on y's left. */
3714 y->left = x;
3715 if (x != MEM_NIL)
3716 x->parent = y;
3720 /* (x) (Y)
3721 / \ / \
3722 (y) c ===> a (x)
3723 / \ / \
3724 a b b c */
3726 static void
3727 mem_rotate_right (x)
3728 struct mem_node *x;
3730 struct mem_node *y = x->left;
3732 x->left = y->right;
3733 if (y->right != MEM_NIL)
3734 y->right->parent = x;
3736 if (y != MEM_NIL)
3737 y->parent = x->parent;
3738 if (x->parent)
3740 if (x == x->parent->right)
3741 x->parent->right = y;
3742 else
3743 x->parent->left = y;
3745 else
3746 mem_root = y;
3748 y->right = x;
3749 if (x != MEM_NIL)
3750 x->parent = y;
3754 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3756 static void
3757 mem_delete (z)
3758 struct mem_node *z;
3760 struct mem_node *x, *y;
3762 if (!z || z == MEM_NIL)
3763 return;
3765 if (z->left == MEM_NIL || z->right == MEM_NIL)
3766 y = z;
3767 else
3769 y = z->right;
3770 while (y->left != MEM_NIL)
3771 y = y->left;
3774 if (y->left != MEM_NIL)
3775 x = y->left;
3776 else
3777 x = y->right;
3779 x->parent = y->parent;
3780 if (y->parent)
3782 if (y == y->parent->left)
3783 y->parent->left = x;
3784 else
3785 y->parent->right = x;
3787 else
3788 mem_root = x;
3790 if (y != z)
3792 z->start = y->start;
3793 z->end = y->end;
3794 z->type = y->type;
3797 if (y->color == MEM_BLACK)
3798 mem_delete_fixup (x);
3800 #ifdef GC_MALLOC_CHECK
3801 _free_internal (y);
3802 #else
3803 xfree (y);
3804 #endif
3808 /* Re-establish the red-black properties of the tree, after a
3809 deletion. */
3811 static void
3812 mem_delete_fixup (x)
3813 struct mem_node *x;
3815 while (x != mem_root && x->color == MEM_BLACK)
3817 if (x == x->parent->left)
3819 struct mem_node *w = x->parent->right;
3821 if (w->color == MEM_RED)
3823 w->color = MEM_BLACK;
3824 x->parent->color = MEM_RED;
3825 mem_rotate_left (x->parent);
3826 w = x->parent->right;
3829 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3831 w->color = MEM_RED;
3832 x = x->parent;
3834 else
3836 if (w->right->color == MEM_BLACK)
3838 w->left->color = MEM_BLACK;
3839 w->color = MEM_RED;
3840 mem_rotate_right (w);
3841 w = x->parent->right;
3843 w->color = x->parent->color;
3844 x->parent->color = MEM_BLACK;
3845 w->right->color = MEM_BLACK;
3846 mem_rotate_left (x->parent);
3847 x = mem_root;
3850 else
3852 struct mem_node *w = x->parent->left;
3854 if (w->color == MEM_RED)
3856 w->color = MEM_BLACK;
3857 x->parent->color = MEM_RED;
3858 mem_rotate_right (x->parent);
3859 w = x->parent->left;
3862 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3864 w->color = MEM_RED;
3865 x = x->parent;
3867 else
3869 if (w->left->color == MEM_BLACK)
3871 w->right->color = MEM_BLACK;
3872 w->color = MEM_RED;
3873 mem_rotate_left (w);
3874 w = x->parent->left;
3877 w->color = x->parent->color;
3878 x->parent->color = MEM_BLACK;
3879 w->left->color = MEM_BLACK;
3880 mem_rotate_right (x->parent);
3881 x = mem_root;
3886 x->color = MEM_BLACK;
3890 /* Value is non-zero if P is a pointer to a live Lisp string on
3891 the heap. M is a pointer to the mem_block for P. */
3893 static INLINE int
3894 live_string_p (m, p)
3895 struct mem_node *m;
3896 void *p;
3898 if (m->type == MEM_TYPE_STRING)
3900 struct string_block *b = (struct string_block *) m->start;
3901 int offset = (char *) p - (char *) &b->strings[0];
3903 /* P must point to the start of a Lisp_String structure, and it
3904 must not be on the free-list. */
3905 return (offset >= 0
3906 && offset % sizeof b->strings[0] == 0
3907 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3908 && ((struct Lisp_String *) p)->data != NULL);
3910 else
3911 return 0;
3915 /* Value is non-zero if P is a pointer to a live Lisp cons on
3916 the heap. M is a pointer to the mem_block for P. */
3918 static INLINE int
3919 live_cons_p (m, p)
3920 struct mem_node *m;
3921 void *p;
3923 if (m->type == MEM_TYPE_CONS)
3925 struct cons_block *b = (struct cons_block *) m->start;
3926 int offset = (char *) p - (char *) &b->conses[0];
3928 /* P must point to the start of a Lisp_Cons, not be
3929 one of the unused cells in the current cons block,
3930 and not be on the free-list. */
3931 return (offset >= 0
3932 && offset % sizeof b->conses[0] == 0
3933 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3934 && (b != cons_block
3935 || offset / sizeof b->conses[0] < cons_block_index)
3936 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3938 else
3939 return 0;
3943 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3944 the heap. M is a pointer to the mem_block for P. */
3946 static INLINE int
3947 live_symbol_p (m, p)
3948 struct mem_node *m;
3949 void *p;
3951 if (m->type == MEM_TYPE_SYMBOL)
3953 struct symbol_block *b = (struct symbol_block *) m->start;
3954 int offset = (char *) p - (char *) &b->symbols[0];
3956 /* P must point to the start of a Lisp_Symbol, not be
3957 one of the unused cells in the current symbol block,
3958 and not be on the free-list. */
3959 return (offset >= 0
3960 && offset % sizeof b->symbols[0] == 0
3961 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3962 && (b != symbol_block
3963 || offset / sizeof b->symbols[0] < symbol_block_index)
3964 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3966 else
3967 return 0;
3971 /* Value is non-zero if P is a pointer to a live Lisp float on
3972 the heap. M is a pointer to the mem_block for P. */
3974 static INLINE int
3975 live_float_p (m, p)
3976 struct mem_node *m;
3977 void *p;
3979 if (m->type == MEM_TYPE_FLOAT)
3981 struct float_block *b = (struct float_block *) m->start;
3982 int offset = (char *) p - (char *) &b->floats[0];
3984 /* P must point to the start of a Lisp_Float and not be
3985 one of the unused cells in the current float block. */
3986 return (offset >= 0
3987 && offset % sizeof b->floats[0] == 0
3988 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3989 && (b != float_block
3990 || offset / sizeof b->floats[0] < float_block_index));
3992 else
3993 return 0;
3997 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3998 the heap. M is a pointer to the mem_block for P. */
4000 static INLINE int
4001 live_misc_p (m, p)
4002 struct mem_node *m;
4003 void *p;
4005 if (m->type == MEM_TYPE_MISC)
4007 struct marker_block *b = (struct marker_block *) m->start;
4008 int offset = (char *) p - (char *) &b->markers[0];
4010 /* P must point to the start of a Lisp_Misc, not be
4011 one of the unused cells in the current misc block,
4012 and not be on the free-list. */
4013 return (offset >= 0
4014 && offset % sizeof b->markers[0] == 0
4015 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4016 && (b != marker_block
4017 || offset / sizeof b->markers[0] < marker_block_index)
4018 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4020 else
4021 return 0;
4025 /* Value is non-zero if P is a pointer to a live vector-like object.
4026 M is a pointer to the mem_block for P. */
4028 static INLINE int
4029 live_vector_p (m, p)
4030 struct mem_node *m;
4031 void *p;
4033 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
4037 /* Value is non-zero if P is a pointer to a live buffer. M is a
4038 pointer to the mem_block for P. */
4040 static INLINE int
4041 live_buffer_p (m, p)
4042 struct mem_node *m;
4043 void *p;
4045 /* P must point to the start of the block, and the buffer
4046 must not have been killed. */
4047 return (m->type == MEM_TYPE_BUFFER
4048 && p == m->start
4049 && !NILP (((struct buffer *) p)->name));
4052 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4054 #if GC_MARK_STACK
4056 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4058 /* Array of objects that are kept alive because the C stack contains
4059 a pattern that looks like a reference to them . */
4061 #define MAX_ZOMBIES 10
4062 static Lisp_Object zombies[MAX_ZOMBIES];
4064 /* Number of zombie objects. */
4066 static int nzombies;
4068 /* Number of garbage collections. */
4070 static int ngcs;
4072 /* Average percentage of zombies per collection. */
4074 static double avg_zombies;
4076 /* Max. number of live and zombie objects. */
4078 static int max_live, max_zombies;
4080 /* Average number of live objects per GC. */
4082 static double avg_live;
4084 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4085 doc: /* Show information about live and zombie objects. */)
4088 Lisp_Object args[8], zombie_list = Qnil;
4089 int i;
4090 for (i = 0; i < nzombies; i++)
4091 zombie_list = Fcons (zombies[i], zombie_list);
4092 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4093 args[1] = make_number (ngcs);
4094 args[2] = make_float (avg_live);
4095 args[3] = make_float (avg_zombies);
4096 args[4] = make_float (avg_zombies / avg_live / 100);
4097 args[5] = make_number (max_live);
4098 args[6] = make_number (max_zombies);
4099 args[7] = zombie_list;
4100 return Fmessage (8, args);
4103 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4106 /* Mark OBJ if we can prove it's a Lisp_Object. */
4108 static INLINE void
4109 mark_maybe_object (obj)
4110 Lisp_Object obj;
4112 void *po = (void *) XPNTR (obj);
4113 struct mem_node *m = mem_find (po);
4115 if (m != MEM_NIL)
4117 int mark_p = 0;
4119 switch (XTYPE (obj))
4121 case Lisp_String:
4122 mark_p = (live_string_p (m, po)
4123 && !STRING_MARKED_P ((struct Lisp_String *) po));
4124 break;
4126 case Lisp_Cons:
4127 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4128 break;
4130 case Lisp_Symbol:
4131 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4132 break;
4134 case Lisp_Float:
4135 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4136 break;
4138 case Lisp_Vectorlike:
4139 /* Note: can't check BUFFERP before we know it's a
4140 buffer because checking that dereferences the pointer
4141 PO which might point anywhere. */
4142 if (live_vector_p (m, po))
4143 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4144 else if (live_buffer_p (m, po))
4145 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4146 break;
4148 case Lisp_Misc:
4149 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4150 break;
4152 default:
4153 break;
4156 if (mark_p)
4158 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4159 if (nzombies < MAX_ZOMBIES)
4160 zombies[nzombies] = obj;
4161 ++nzombies;
4162 #endif
4163 mark_object (obj);
4169 /* If P points to Lisp data, mark that as live if it isn't already
4170 marked. */
4172 static INLINE void
4173 mark_maybe_pointer (p)
4174 void *p;
4176 struct mem_node *m;
4178 /* Quickly rule out some values which can't point to Lisp data. */
4179 if ((EMACS_INT) p %
4180 #ifdef USE_LSB_TAG
4181 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4182 #else
4183 2 /* We assume that Lisp data is aligned on even addresses. */
4184 #endif
4186 return;
4188 m = mem_find (p);
4189 if (m != MEM_NIL)
4191 Lisp_Object obj = Qnil;
4193 switch (m->type)
4195 case MEM_TYPE_NON_LISP:
4196 /* Nothing to do; not a pointer to Lisp memory. */
4197 break;
4199 case MEM_TYPE_BUFFER:
4200 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4201 XSETVECTOR (obj, p);
4202 break;
4204 case MEM_TYPE_CONS:
4205 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4206 XSETCONS (obj, p);
4207 break;
4209 case MEM_TYPE_STRING:
4210 if (live_string_p (m, p)
4211 && !STRING_MARKED_P ((struct Lisp_String *) p))
4212 XSETSTRING (obj, p);
4213 break;
4215 case MEM_TYPE_MISC:
4216 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4217 XSETMISC (obj, p);
4218 break;
4220 case MEM_TYPE_SYMBOL:
4221 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4222 XSETSYMBOL (obj, p);
4223 break;
4225 case MEM_TYPE_FLOAT:
4226 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4227 XSETFLOAT (obj, p);
4228 break;
4230 case MEM_TYPE_VECTORLIKE:
4231 if (live_vector_p (m, p))
4233 Lisp_Object tem;
4234 XSETVECTOR (tem, p);
4235 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4236 obj = tem;
4238 break;
4240 default:
4241 abort ();
4244 if (!NILP (obj))
4245 mark_object (obj);
4250 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4251 or END+OFFSET..START. */
4253 static void
4254 mark_memory (start, end, offset)
4255 void *start, *end;
4256 int offset;
4258 Lisp_Object *p;
4259 void **pp;
4261 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4262 nzombies = 0;
4263 #endif
4265 /* Make START the pointer to the start of the memory region,
4266 if it isn't already. */
4267 if (end < start)
4269 void *tem = start;
4270 start = end;
4271 end = tem;
4274 /* Mark Lisp_Objects. */
4275 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4276 mark_maybe_object (*p);
4278 /* Mark Lisp data pointed to. This is necessary because, in some
4279 situations, the C compiler optimizes Lisp objects away, so that
4280 only a pointer to them remains. Example:
4282 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4285 Lisp_Object obj = build_string ("test");
4286 struct Lisp_String *s = XSTRING (obj);
4287 Fgarbage_collect ();
4288 fprintf (stderr, "test `%s'\n", s->data);
4289 return Qnil;
4292 Here, `obj' isn't really used, and the compiler optimizes it
4293 away. The only reference to the life string is through the
4294 pointer `s'. */
4296 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4297 mark_maybe_pointer (*pp);
4300 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4301 the GCC system configuration. In gcc 3.2, the only systems for
4302 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4303 by others?) and ns32k-pc532-min. */
4305 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4307 static int setjmp_tested_p, longjmps_done;
4309 #define SETJMP_WILL_LIKELY_WORK "\
4311 Emacs garbage collector has been changed to use conservative stack\n\
4312 marking. Emacs has determined that the method it uses to do the\n\
4313 marking will likely work on your system, but this isn't sure.\n\
4315 If you are a system-programmer, or can get the help of a local wizard\n\
4316 who is, please take a look at the function mark_stack in alloc.c, and\n\
4317 verify that the methods used are appropriate for your system.\n\
4319 Please mail the result to <emacs-devel@gnu.org>.\n\
4322 #define SETJMP_WILL_NOT_WORK "\
4324 Emacs garbage collector has been changed to use conservative stack\n\
4325 marking. Emacs has determined that the default method it uses to do the\n\
4326 marking will not work on your system. We will need a system-dependent\n\
4327 solution for your system.\n\
4329 Please take a look at the function mark_stack in alloc.c, and\n\
4330 try to find a way to make it work on your system.\n\
4332 Note that you may get false negatives, depending on the compiler.\n\
4333 In particular, you need to use -O with GCC for this test.\n\
4335 Please mail the result to <emacs-devel@gnu.org>.\n\
4339 /* Perform a quick check if it looks like setjmp saves registers in a
4340 jmp_buf. Print a message to stderr saying so. When this test
4341 succeeds, this is _not_ a proof that setjmp is sufficient for
4342 conservative stack marking. Only the sources or a disassembly
4343 can prove that. */
4345 static void
4346 test_setjmp ()
4348 char buf[10];
4349 register int x;
4350 jmp_buf jbuf;
4351 int result = 0;
4353 /* Arrange for X to be put in a register. */
4354 sprintf (buf, "1");
4355 x = strlen (buf);
4356 x = 2 * x - 1;
4358 setjmp (jbuf);
4359 if (longjmps_done == 1)
4361 /* Came here after the longjmp at the end of the function.
4363 If x == 1, the longjmp has restored the register to its
4364 value before the setjmp, and we can hope that setjmp
4365 saves all such registers in the jmp_buf, although that
4366 isn't sure.
4368 For other values of X, either something really strange is
4369 taking place, or the setjmp just didn't save the register. */
4371 if (x == 1)
4372 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4373 else
4375 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4376 exit (1);
4380 ++longjmps_done;
4381 x = 2;
4382 if (longjmps_done == 1)
4383 longjmp (jbuf, 1);
4386 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4389 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4391 /* Abort if anything GCPRO'd doesn't survive the GC. */
4393 static void
4394 check_gcpros ()
4396 struct gcpro *p;
4397 int i;
4399 for (p = gcprolist; p; p = p->next)
4400 for (i = 0; i < p->nvars; ++i)
4401 if (!survives_gc_p (p->var[i]))
4402 /* FIXME: It's not necessarily a bug. It might just be that the
4403 GCPRO is unnecessary or should release the object sooner. */
4404 abort ();
4407 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4409 static void
4410 dump_zombies ()
4412 int i;
4414 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4415 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4417 fprintf (stderr, " %d = ", i);
4418 debug_print (zombies[i]);
4422 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4425 /* Mark live Lisp objects on the C stack.
4427 There are several system-dependent problems to consider when
4428 porting this to new architectures:
4430 Processor Registers
4432 We have to mark Lisp objects in CPU registers that can hold local
4433 variables or are used to pass parameters.
4435 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4436 something that either saves relevant registers on the stack, or
4437 calls mark_maybe_object passing it each register's contents.
4439 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4440 implementation assumes that calling setjmp saves registers we need
4441 to see in a jmp_buf which itself lies on the stack. This doesn't
4442 have to be true! It must be verified for each system, possibly
4443 by taking a look at the source code of setjmp.
4445 Stack Layout
4447 Architectures differ in the way their processor stack is organized.
4448 For example, the stack might look like this
4450 +----------------+
4451 | Lisp_Object | size = 4
4452 +----------------+
4453 | something else | size = 2
4454 +----------------+
4455 | Lisp_Object | size = 4
4456 +----------------+
4457 | ... |
4459 In such a case, not every Lisp_Object will be aligned equally. To
4460 find all Lisp_Object on the stack it won't be sufficient to walk
4461 the stack in steps of 4 bytes. Instead, two passes will be
4462 necessary, one starting at the start of the stack, and a second
4463 pass starting at the start of the stack + 2. Likewise, if the
4464 minimal alignment of Lisp_Objects on the stack is 1, four passes
4465 would be necessary, each one starting with one byte more offset
4466 from the stack start.
4468 The current code assumes by default that Lisp_Objects are aligned
4469 equally on the stack. */
4471 static void
4472 mark_stack ()
4474 int i;
4475 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4476 union aligned_jmpbuf {
4477 Lisp_Object o;
4478 jmp_buf j;
4479 } j;
4480 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4481 void *end;
4483 /* This trick flushes the register windows so that all the state of
4484 the process is contained in the stack. */
4485 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4486 needed on ia64 too. See mach_dep.c, where it also says inline
4487 assembler doesn't work with relevant proprietary compilers. */
4488 #ifdef __sparc__
4489 #if defined (__sparc64__) && defined (__FreeBSD__)
4490 /* FreeBSD does not have a ta 3 handler. */
4491 asm ("flushw");
4492 #else
4493 asm ("ta 3");
4494 #endif
4495 #endif
4497 /* Save registers that we need to see on the stack. We need to see
4498 registers used to hold register variables and registers used to
4499 pass parameters. */
4500 #ifdef GC_SAVE_REGISTERS_ON_STACK
4501 GC_SAVE_REGISTERS_ON_STACK (end);
4502 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4504 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4505 setjmp will definitely work, test it
4506 and print a message with the result
4507 of the test. */
4508 if (!setjmp_tested_p)
4510 setjmp_tested_p = 1;
4511 test_setjmp ();
4513 #endif /* GC_SETJMP_WORKS */
4515 setjmp (j.j);
4516 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4517 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4519 /* This assumes that the stack is a contiguous region in memory. If
4520 that's not the case, something has to be done here to iterate
4521 over the stack segments. */
4522 #ifndef GC_LISP_OBJECT_ALIGNMENT
4523 #ifdef __GNUC__
4524 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4525 #else
4526 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4527 #endif
4528 #endif
4529 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4530 mark_memory (stack_base, end, i);
4531 /* Allow for marking a secondary stack, like the register stack on the
4532 ia64. */
4533 #ifdef GC_MARK_SECONDARY_STACK
4534 GC_MARK_SECONDARY_STACK ();
4535 #endif
4537 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4538 check_gcpros ();
4539 #endif
4542 #endif /* GC_MARK_STACK != 0 */
4545 /* Determine whether it is safe to access memory at address P. */
4546 static int
4547 valid_pointer_p (p)
4548 void *p;
4550 #ifdef WINDOWSNT
4551 return w32_valid_pointer_p (p, 16);
4552 #else
4553 int fd;
4555 /* Obviously, we cannot just access it (we would SEGV trying), so we
4556 trick the o/s to tell us whether p is a valid pointer.
4557 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4558 not validate p in that case. */
4560 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4562 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4563 emacs_close (fd);
4564 unlink ("__Valid__Lisp__Object__");
4565 return valid;
4568 return -1;
4569 #endif
4572 /* Return 1 if OBJ is a valid lisp object.
4573 Return 0 if OBJ is NOT a valid lisp object.
4574 Return -1 if we cannot validate OBJ.
4575 This function can be quite slow,
4576 so it should only be used in code for manual debugging. */
4579 valid_lisp_object_p (obj)
4580 Lisp_Object obj;
4582 void *p;
4583 #if GC_MARK_STACK
4584 struct mem_node *m;
4585 #endif
4587 if (INTEGERP (obj))
4588 return 1;
4590 p = (void *) XPNTR (obj);
4591 if (PURE_POINTER_P (p))
4592 return 1;
4594 #if !GC_MARK_STACK
4595 return valid_pointer_p (p);
4596 #else
4598 m = mem_find (p);
4600 if (m == MEM_NIL)
4602 int valid = valid_pointer_p (p);
4603 if (valid <= 0)
4604 return valid;
4606 if (SUBRP (obj))
4607 return 1;
4609 return 0;
4612 switch (m->type)
4614 case MEM_TYPE_NON_LISP:
4615 return 0;
4617 case MEM_TYPE_BUFFER:
4618 return live_buffer_p (m, p);
4620 case MEM_TYPE_CONS:
4621 return live_cons_p (m, p);
4623 case MEM_TYPE_STRING:
4624 return live_string_p (m, p);
4626 case MEM_TYPE_MISC:
4627 return live_misc_p (m, p);
4629 case MEM_TYPE_SYMBOL:
4630 return live_symbol_p (m, p);
4632 case MEM_TYPE_FLOAT:
4633 return live_float_p (m, p);
4635 case MEM_TYPE_VECTORLIKE:
4636 return live_vector_p (m, p);
4638 default:
4639 break;
4642 return 0;
4643 #endif
4649 /***********************************************************************
4650 Pure Storage Management
4651 ***********************************************************************/
4653 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4654 pointer to it. TYPE is the Lisp type for which the memory is
4655 allocated. TYPE < 0 means it's not used for a Lisp object. */
4657 static POINTER_TYPE *
4658 pure_alloc (size, type)
4659 size_t size;
4660 int type;
4662 POINTER_TYPE *result;
4663 #ifdef USE_LSB_TAG
4664 size_t alignment = (1 << GCTYPEBITS);
4665 #else
4666 size_t alignment = sizeof (EMACS_INT);
4668 /* Give Lisp_Floats an extra alignment. */
4669 if (type == Lisp_Float)
4671 #if defined __GNUC__ && __GNUC__ >= 2
4672 alignment = __alignof (struct Lisp_Float);
4673 #else
4674 alignment = sizeof (struct Lisp_Float);
4675 #endif
4677 #endif
4679 again:
4680 if (type >= 0)
4682 /* Allocate space for a Lisp object from the beginning of the free
4683 space with taking account of alignment. */
4684 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4685 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4687 else
4689 /* Allocate space for a non-Lisp object from the end of the free
4690 space. */
4691 pure_bytes_used_non_lisp += size;
4692 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4694 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4696 if (pure_bytes_used <= pure_size)
4697 return result;
4699 /* Don't allocate a large amount here,
4700 because it might get mmap'd and then its address
4701 might not be usable. */
4702 purebeg = (char *) xmalloc (10000);
4703 pure_size = 10000;
4704 pure_bytes_used_before_overflow += pure_bytes_used - size;
4705 pure_bytes_used = 0;
4706 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4707 goto again;
4711 /* Print a warning if PURESIZE is too small. */
4713 void
4714 check_pure_size ()
4716 if (pure_bytes_used_before_overflow)
4717 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
4718 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4722 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4723 the non-Lisp data pool of the pure storage, and return its start
4724 address. Return NULL if not found. */
4726 static char *
4727 find_string_data_in_pure (data, nbytes)
4728 char *data;
4729 int nbytes;
4731 int i, skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4732 unsigned char *p;
4733 char *non_lisp_beg;
4735 if (pure_bytes_used_non_lisp < nbytes + 1)
4736 return NULL;
4738 /* Set up the Boyer-Moore table. */
4739 skip = nbytes + 1;
4740 for (i = 0; i < 256; i++)
4741 bm_skip[i] = skip;
4743 p = (unsigned char *) data;
4744 while (--skip > 0)
4745 bm_skip[*p++] = skip;
4747 last_char_skip = bm_skip['\0'];
4749 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4750 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4752 /* See the comments in the function `boyer_moore' (search.c) for the
4753 use of `infinity'. */
4754 infinity = pure_bytes_used_non_lisp + 1;
4755 bm_skip['\0'] = infinity;
4757 p = (unsigned char *) non_lisp_beg + nbytes;
4758 start = 0;
4761 /* Check the last character (== '\0'). */
4764 start += bm_skip[*(p + start)];
4766 while (start <= start_max);
4768 if (start < infinity)
4769 /* Couldn't find the last character. */
4770 return NULL;
4772 /* No less than `infinity' means we could find the last
4773 character at `p[start - infinity]'. */
4774 start -= infinity;
4776 /* Check the remaining characters. */
4777 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4778 /* Found. */
4779 return non_lisp_beg + start;
4781 start += last_char_skip;
4783 while (start <= start_max);
4785 return NULL;
4789 /* Return a string allocated in pure space. DATA is a buffer holding
4790 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4791 non-zero means make the result string multibyte.
4793 Must get an error if pure storage is full, since if it cannot hold
4794 a large string it may be able to hold conses that point to that
4795 string; then the string is not protected from gc. */
4797 Lisp_Object
4798 make_pure_string (data, nchars, nbytes, multibyte)
4799 char *data;
4800 int nchars, nbytes;
4801 int multibyte;
4803 Lisp_Object string;
4804 struct Lisp_String *s;
4806 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4807 s->data = find_string_data_in_pure (data, nbytes);
4808 if (s->data == NULL)
4810 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4811 bcopy (data, s->data, nbytes);
4812 s->data[nbytes] = '\0';
4814 s->size = nchars;
4815 s->size_byte = multibyte ? nbytes : -1;
4816 s->intervals = NULL_INTERVAL;
4817 XSETSTRING (string, s);
4818 return string;
4821 /* Return a string a string allocated in pure space. Do not allocate
4822 the string data, just point to DATA. */
4824 Lisp_Object
4825 make_pure_c_string (const char *data)
4827 Lisp_Object string;
4828 struct Lisp_String *s;
4829 int nchars = strlen (data);
4831 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4832 s->size = nchars;
4833 s->size_byte = -1;
4834 s->data = (unsigned char *) data;
4835 s->intervals = NULL_INTERVAL;
4836 XSETSTRING (string, s);
4837 return string;
4840 /* Return a cons allocated from pure space. Give it pure copies
4841 of CAR as car and CDR as cdr. */
4843 Lisp_Object
4844 pure_cons (car, cdr)
4845 Lisp_Object car, cdr;
4847 register Lisp_Object new;
4848 struct Lisp_Cons *p;
4850 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4851 XSETCONS (new, p);
4852 XSETCAR (new, Fpurecopy (car));
4853 XSETCDR (new, Fpurecopy (cdr));
4854 return new;
4858 /* Value is a float object with value NUM allocated from pure space. */
4860 static Lisp_Object
4861 make_pure_float (num)
4862 double num;
4864 register Lisp_Object new;
4865 struct Lisp_Float *p;
4867 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4868 XSETFLOAT (new, p);
4869 XFLOAT_INIT (new, num);
4870 return new;
4874 /* Return a vector with room for LEN Lisp_Objects allocated from
4875 pure space. */
4877 Lisp_Object
4878 make_pure_vector (len)
4879 EMACS_INT len;
4881 Lisp_Object new;
4882 struct Lisp_Vector *p;
4883 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4885 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4886 XSETVECTOR (new, p);
4887 XVECTOR (new)->size = len;
4888 return new;
4892 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4893 doc: /* Make a copy of object OBJ in pure storage.
4894 Recursively copies contents of vectors and cons cells.
4895 Does not copy symbols. Copies strings without text properties. */)
4896 (obj)
4897 register Lisp_Object obj;
4899 if (NILP (Vpurify_flag))
4900 return obj;
4902 if (PURE_POINTER_P (XPNTR (obj)))
4903 return obj;
4905 if (CONSP (obj))
4906 return pure_cons (XCAR (obj), XCDR (obj));
4907 else if (FLOATP (obj))
4908 return make_pure_float (XFLOAT_DATA (obj));
4909 else if (STRINGP (obj))
4910 return make_pure_string (SDATA (obj), SCHARS (obj),
4911 SBYTES (obj),
4912 STRING_MULTIBYTE (obj));
4913 else if (COMPILEDP (obj) || VECTORP (obj))
4915 register struct Lisp_Vector *vec;
4916 register int i;
4917 EMACS_INT size;
4919 size = XVECTOR (obj)->size;
4920 if (size & PSEUDOVECTOR_FLAG)
4921 size &= PSEUDOVECTOR_SIZE_MASK;
4922 vec = XVECTOR (make_pure_vector (size));
4923 for (i = 0; i < size; i++)
4924 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4925 if (COMPILEDP (obj))
4927 XSETPVECTYPE (vec, PVEC_COMPILED);
4928 XSETCOMPILED (obj, vec);
4930 else
4931 XSETVECTOR (obj, vec);
4932 return obj;
4934 else if (MARKERP (obj))
4935 error ("Attempt to copy a marker to pure storage");
4937 return obj;
4942 /***********************************************************************
4943 Protection from GC
4944 ***********************************************************************/
4946 /* Put an entry in staticvec, pointing at the variable with address
4947 VARADDRESS. */
4949 void
4950 staticpro (varaddress)
4951 Lisp_Object *varaddress;
4953 staticvec[staticidx++] = varaddress;
4954 if (staticidx >= NSTATICS)
4955 abort ();
4959 /***********************************************************************
4960 Protection from GC
4961 ***********************************************************************/
4963 /* Temporarily prevent garbage collection. */
4966 inhibit_garbage_collection ()
4968 int count = SPECPDL_INDEX ();
4969 int nbits = min (VALBITS, BITS_PER_INT);
4971 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4972 return count;
4976 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4977 doc: /* Reclaim storage for Lisp objects no longer needed.
4978 Garbage collection happens automatically if you cons more than
4979 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4980 `garbage-collect' normally returns a list with info on amount of space in use:
4981 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4982 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4983 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4984 (USED-STRINGS . FREE-STRINGS))
4985 However, if there was overflow in pure space, `garbage-collect'
4986 returns nil, because real GC can't be done. */)
4989 register struct specbinding *bind;
4990 struct catchtag *catch;
4991 struct handler *handler;
4992 char stack_top_variable;
4993 register int i;
4994 int message_p;
4995 Lisp_Object total[8];
4996 int count = SPECPDL_INDEX ();
4997 EMACS_TIME t1, t2, t3;
4999 if (abort_on_gc)
5000 abort ();
5002 /* Can't GC if pure storage overflowed because we can't determine
5003 if something is a pure object or not. */
5004 if (pure_bytes_used_before_overflow)
5005 return Qnil;
5007 CHECK_CONS_LIST ();
5009 /* Don't keep undo information around forever.
5010 Do this early on, so it is no problem if the user quits. */
5012 register struct buffer *nextb = all_buffers;
5014 while (nextb)
5016 /* If a buffer's undo list is Qt, that means that undo is
5017 turned off in that buffer. Calling truncate_undo_list on
5018 Qt tends to return NULL, which effectively turns undo back on.
5019 So don't call truncate_undo_list if undo_list is Qt. */
5020 if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
5021 truncate_undo_list (nextb);
5023 /* Shrink buffer gaps, but skip indirect and dead buffers. */
5024 if (nextb->base_buffer == 0 && !NILP (nextb->name)
5025 && ! nextb->text->inhibit_shrinking)
5027 /* If a buffer's gap size is more than 10% of the buffer
5028 size, or larger than 2000 bytes, then shrink it
5029 accordingly. Keep a minimum size of 20 bytes. */
5030 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
5032 if (nextb->text->gap_size > size)
5034 struct buffer *save_current = current_buffer;
5035 current_buffer = nextb;
5036 make_gap (-(nextb->text->gap_size - size));
5037 current_buffer = save_current;
5041 nextb = nextb->next;
5045 EMACS_GET_TIME (t1);
5047 /* In case user calls debug_print during GC,
5048 don't let that cause a recursive GC. */
5049 consing_since_gc = 0;
5051 /* Save what's currently displayed in the echo area. */
5052 message_p = push_message ();
5053 record_unwind_protect (pop_message_unwind, Qnil);
5055 /* Save a copy of the contents of the stack, for debugging. */
5056 #if MAX_SAVE_STACK > 0
5057 if (NILP (Vpurify_flag))
5059 i = &stack_top_variable - stack_bottom;
5060 if (i < 0) i = -i;
5061 if (i < MAX_SAVE_STACK)
5063 if (stack_copy == 0)
5064 stack_copy = (char *) xmalloc (stack_copy_size = i);
5065 else if (stack_copy_size < i)
5066 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
5067 if (stack_copy)
5069 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
5070 bcopy (stack_bottom, stack_copy, i);
5071 else
5072 bcopy (&stack_top_variable, stack_copy, i);
5076 #endif /* MAX_SAVE_STACK > 0 */
5078 if (garbage_collection_messages)
5079 message1_nolog ("Garbage collecting...");
5081 BLOCK_INPUT;
5083 shrink_regexp_cache ();
5085 gc_in_progress = 1;
5087 /* clear_marks (); */
5089 /* Mark all the special slots that serve as the roots of accessibility. */
5091 for (i = 0; i < staticidx; i++)
5092 mark_object (*staticvec[i]);
5094 for (bind = specpdl; bind != specpdl_ptr; bind++)
5096 mark_object (bind->symbol);
5097 mark_object (bind->old_value);
5099 mark_terminals ();
5100 mark_kboards ();
5101 mark_ttys ();
5103 #ifdef USE_GTK
5105 extern void xg_mark_data ();
5106 xg_mark_data ();
5108 #endif
5110 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5111 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5112 mark_stack ();
5113 #else
5115 register struct gcpro *tail;
5116 for (tail = gcprolist; tail; tail = tail->next)
5117 for (i = 0; i < tail->nvars; i++)
5118 mark_object (tail->var[i]);
5120 #endif
5122 mark_byte_stack ();
5123 for (catch = catchlist; catch; catch = catch->next)
5125 mark_object (catch->tag);
5126 mark_object (catch->val);
5128 for (handler = handlerlist; handler; handler = handler->next)
5130 mark_object (handler->handler);
5131 mark_object (handler->var);
5133 mark_backtrace ();
5135 #ifdef HAVE_WINDOW_SYSTEM
5136 mark_fringe_data ();
5137 #endif
5139 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5140 mark_stack ();
5141 #endif
5143 /* Everything is now marked, except for the things that require special
5144 finalization, i.e. the undo_list.
5145 Look thru every buffer's undo list
5146 for elements that update markers that were not marked,
5147 and delete them. */
5149 register struct buffer *nextb = all_buffers;
5151 while (nextb)
5153 /* If a buffer's undo list is Qt, that means that undo is
5154 turned off in that buffer. Calling truncate_undo_list on
5155 Qt tends to return NULL, which effectively turns undo back on.
5156 So don't call truncate_undo_list if undo_list is Qt. */
5157 if (! EQ (nextb->undo_list, Qt))
5159 Lisp_Object tail, prev;
5160 tail = nextb->undo_list;
5161 prev = Qnil;
5162 while (CONSP (tail))
5164 if (CONSP (XCAR (tail))
5165 && MARKERP (XCAR (XCAR (tail)))
5166 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5168 if (NILP (prev))
5169 nextb->undo_list = tail = XCDR (tail);
5170 else
5172 tail = XCDR (tail);
5173 XSETCDR (prev, tail);
5176 else
5178 prev = tail;
5179 tail = XCDR (tail);
5183 /* Now that we have stripped the elements that need not be in the
5184 undo_list any more, we can finally mark the list. */
5185 mark_object (nextb->undo_list);
5187 nextb = nextb->next;
5191 gc_sweep ();
5193 /* Clear the mark bits that we set in certain root slots. */
5195 unmark_byte_stack ();
5196 VECTOR_UNMARK (&buffer_defaults);
5197 VECTOR_UNMARK (&buffer_local_symbols);
5199 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5200 dump_zombies ();
5201 #endif
5203 UNBLOCK_INPUT;
5205 CHECK_CONS_LIST ();
5207 /* clear_marks (); */
5208 gc_in_progress = 0;
5210 consing_since_gc = 0;
5211 if (gc_cons_threshold < 10000)
5212 gc_cons_threshold = 10000;
5214 if (FLOATP (Vgc_cons_percentage))
5215 { /* Set gc_cons_combined_threshold. */
5216 EMACS_INT total = 0;
5218 total += total_conses * sizeof (struct Lisp_Cons);
5219 total += total_symbols * sizeof (struct Lisp_Symbol);
5220 total += total_markers * sizeof (union Lisp_Misc);
5221 total += total_string_size;
5222 total += total_vector_size * sizeof (Lisp_Object);
5223 total += total_floats * sizeof (struct Lisp_Float);
5224 total += total_intervals * sizeof (struct interval);
5225 total += total_strings * sizeof (struct Lisp_String);
5227 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
5229 else
5230 gc_relative_threshold = 0;
5232 if (garbage_collection_messages)
5234 if (message_p || minibuf_level > 0)
5235 restore_message ();
5236 else
5237 message1_nolog ("Garbage collecting...done");
5240 unbind_to (count, Qnil);
5242 total[0] = Fcons (make_number (total_conses),
5243 make_number (total_free_conses));
5244 total[1] = Fcons (make_number (total_symbols),
5245 make_number (total_free_symbols));
5246 total[2] = Fcons (make_number (total_markers),
5247 make_number (total_free_markers));
5248 total[3] = make_number (total_string_size);
5249 total[4] = make_number (total_vector_size);
5250 total[5] = Fcons (make_number (total_floats),
5251 make_number (total_free_floats));
5252 total[6] = Fcons (make_number (total_intervals),
5253 make_number (total_free_intervals));
5254 total[7] = Fcons (make_number (total_strings),
5255 make_number (total_free_strings));
5257 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5259 /* Compute average percentage of zombies. */
5260 double nlive = 0;
5262 for (i = 0; i < 7; ++i)
5263 if (CONSP (total[i]))
5264 nlive += XFASTINT (XCAR (total[i]));
5266 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5267 max_live = max (nlive, max_live);
5268 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5269 max_zombies = max (nzombies, max_zombies);
5270 ++ngcs;
5272 #endif
5274 if (!NILP (Vpost_gc_hook))
5276 int count = inhibit_garbage_collection ();
5277 safe_run_hooks (Qpost_gc_hook);
5278 unbind_to (count, Qnil);
5281 /* Accumulate statistics. */
5282 EMACS_GET_TIME (t2);
5283 EMACS_SUB_TIME (t3, t2, t1);
5284 if (FLOATP (Vgc_elapsed))
5285 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5286 EMACS_SECS (t3) +
5287 EMACS_USECS (t3) * 1.0e-6);
5288 gcs_done++;
5290 return Flist (sizeof total / sizeof *total, total);
5294 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5295 only interesting objects referenced from glyphs are strings. */
5297 static void
5298 mark_glyph_matrix (matrix)
5299 struct glyph_matrix *matrix;
5301 struct glyph_row *row = matrix->rows;
5302 struct glyph_row *end = row + matrix->nrows;
5304 for (; row < end; ++row)
5305 if (row->enabled_p)
5307 int area;
5308 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5310 struct glyph *glyph = row->glyphs[area];
5311 struct glyph *end_glyph = glyph + row->used[area];
5313 for (; glyph < end_glyph; ++glyph)
5314 if (STRINGP (glyph->object)
5315 && !STRING_MARKED_P (XSTRING (glyph->object)))
5316 mark_object (glyph->object);
5322 /* Mark Lisp faces in the face cache C. */
5324 static void
5325 mark_face_cache (c)
5326 struct face_cache *c;
5328 if (c)
5330 int i, j;
5331 for (i = 0; i < c->used; ++i)
5333 struct face *face = FACE_FROM_ID (c->f, i);
5335 if (face)
5337 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5338 mark_object (face->lface[j]);
5346 /* Mark reference to a Lisp_Object.
5347 If the object referred to has not been seen yet, recursively mark
5348 all the references contained in it. */
5350 #define LAST_MARKED_SIZE 500
5351 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5352 int last_marked_index;
5354 /* For debugging--call abort when we cdr down this many
5355 links of a list, in mark_object. In debugging,
5356 the call to abort will hit a breakpoint.
5357 Normally this is zero and the check never goes off. */
5358 static int mark_object_loop_halt;
5360 static void
5361 mark_vectorlike (ptr)
5362 struct Lisp_Vector *ptr;
5364 register EMACS_INT size = ptr->size;
5365 register int i;
5367 eassert (!VECTOR_MARKED_P (ptr));
5368 VECTOR_MARK (ptr); /* Else mark it */
5369 if (size & PSEUDOVECTOR_FLAG)
5370 size &= PSEUDOVECTOR_SIZE_MASK;
5372 /* Note that this size is not the memory-footprint size, but only
5373 the number of Lisp_Object fields that we should trace.
5374 The distinction is used e.g. by Lisp_Process which places extra
5375 non-Lisp_Object fields at the end of the structure. */
5376 for (i = 0; i < size; i++) /* and then mark its elements */
5377 mark_object (ptr->contents[i]);
5380 /* Like mark_vectorlike but optimized for char-tables (and
5381 sub-char-tables) assuming that the contents are mostly integers or
5382 symbols. */
5384 static void
5385 mark_char_table (ptr)
5386 struct Lisp_Vector *ptr;
5388 register EMACS_INT size = ptr->size & PSEUDOVECTOR_SIZE_MASK;
5389 register int i;
5391 eassert (!VECTOR_MARKED_P (ptr));
5392 VECTOR_MARK (ptr);
5393 for (i = 0; i < size; i++)
5395 Lisp_Object val = ptr->contents[i];
5397 if (INTEGERP (val) || SYMBOLP (val) && XSYMBOL (val)->gcmarkbit)
5398 continue;
5399 if (SUB_CHAR_TABLE_P (val))
5401 if (! VECTOR_MARKED_P (XVECTOR (val)))
5402 mark_char_table (XVECTOR (val));
5404 else
5405 mark_object (val);
5409 void
5410 mark_object (arg)
5411 Lisp_Object arg;
5413 register Lisp_Object obj = arg;
5414 #ifdef GC_CHECK_MARKED_OBJECTS
5415 void *po;
5416 struct mem_node *m;
5417 #endif
5418 int cdr_count = 0;
5420 loop:
5422 if (PURE_POINTER_P (XPNTR (obj)))
5423 return;
5425 last_marked[last_marked_index++] = obj;
5426 if (last_marked_index == LAST_MARKED_SIZE)
5427 last_marked_index = 0;
5429 /* Perform some sanity checks on the objects marked here. Abort if
5430 we encounter an object we know is bogus. This increases GC time
5431 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5432 #ifdef GC_CHECK_MARKED_OBJECTS
5434 po = (void *) XPNTR (obj);
5436 /* Check that the object pointed to by PO is known to be a Lisp
5437 structure allocated from the heap. */
5438 #define CHECK_ALLOCATED() \
5439 do { \
5440 m = mem_find (po); \
5441 if (m == MEM_NIL) \
5442 abort (); \
5443 } while (0)
5445 /* Check that the object pointed to by PO is live, using predicate
5446 function LIVEP. */
5447 #define CHECK_LIVE(LIVEP) \
5448 do { \
5449 if (!LIVEP (m, po)) \
5450 abort (); \
5451 } while (0)
5453 /* Check both of the above conditions. */
5454 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5455 do { \
5456 CHECK_ALLOCATED (); \
5457 CHECK_LIVE (LIVEP); \
5458 } while (0) \
5460 #else /* not GC_CHECK_MARKED_OBJECTS */
5462 #define CHECK_ALLOCATED() (void) 0
5463 #define CHECK_LIVE(LIVEP) (void) 0
5464 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5466 #endif /* not GC_CHECK_MARKED_OBJECTS */
5468 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5470 case Lisp_String:
5472 register struct Lisp_String *ptr = XSTRING (obj);
5473 if (STRING_MARKED_P (ptr))
5474 break;
5475 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5476 MARK_INTERVAL_TREE (ptr->intervals);
5477 MARK_STRING (ptr);
5478 #ifdef GC_CHECK_STRING_BYTES
5479 /* Check that the string size recorded in the string is the
5480 same as the one recorded in the sdata structure. */
5481 CHECK_STRING_BYTES (ptr);
5482 #endif /* GC_CHECK_STRING_BYTES */
5484 break;
5486 case Lisp_Vectorlike:
5487 if (VECTOR_MARKED_P (XVECTOR (obj)))
5488 break;
5489 #ifdef GC_CHECK_MARKED_OBJECTS
5490 m = mem_find (po);
5491 if (m == MEM_NIL && !SUBRP (obj)
5492 && po != &buffer_defaults
5493 && po != &buffer_local_symbols)
5494 abort ();
5495 #endif /* GC_CHECK_MARKED_OBJECTS */
5497 if (BUFFERP (obj))
5499 #ifdef GC_CHECK_MARKED_OBJECTS
5500 if (po != &buffer_defaults && po != &buffer_local_symbols)
5502 struct buffer *b;
5503 for (b = all_buffers; b && b != po; b = b->next)
5505 if (b == NULL)
5506 abort ();
5508 #endif /* GC_CHECK_MARKED_OBJECTS */
5509 mark_buffer (obj);
5511 else if (SUBRP (obj))
5512 break;
5513 else if (COMPILEDP (obj))
5514 /* We could treat this just like a vector, but it is better to
5515 save the COMPILED_CONSTANTS element for last and avoid
5516 recursion there. */
5518 register struct Lisp_Vector *ptr = XVECTOR (obj);
5519 register EMACS_INT size = ptr->size;
5520 register int i;
5522 CHECK_LIVE (live_vector_p);
5523 VECTOR_MARK (ptr); /* Else mark it */
5524 size &= PSEUDOVECTOR_SIZE_MASK;
5525 for (i = 0; i < size; i++) /* and then mark its elements */
5527 if (i != COMPILED_CONSTANTS)
5528 mark_object (ptr->contents[i]);
5530 obj = ptr->contents[COMPILED_CONSTANTS];
5531 goto loop;
5533 else if (FRAMEP (obj))
5535 register struct frame *ptr = XFRAME (obj);
5536 mark_vectorlike (XVECTOR (obj));
5537 mark_face_cache (ptr->face_cache);
5539 else if (WINDOWP (obj))
5541 register struct Lisp_Vector *ptr = XVECTOR (obj);
5542 struct window *w = XWINDOW (obj);
5543 mark_vectorlike (ptr);
5544 /* Mark glyphs for leaf windows. Marking window matrices is
5545 sufficient because frame matrices use the same glyph
5546 memory. */
5547 if (NILP (w->hchild)
5548 && NILP (w->vchild)
5549 && w->current_matrix)
5551 mark_glyph_matrix (w->current_matrix);
5552 mark_glyph_matrix (w->desired_matrix);
5555 else if (HASH_TABLE_P (obj))
5557 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5558 mark_vectorlike ((struct Lisp_Vector *)h);
5559 /* If hash table is not weak, mark all keys and values.
5560 For weak tables, mark only the vector. */
5561 if (NILP (h->weak))
5562 mark_object (h->key_and_value);
5563 else
5564 VECTOR_MARK (XVECTOR (h->key_and_value));
5566 else if (CHAR_TABLE_P (obj))
5567 mark_char_table (XVECTOR (obj));
5568 else
5569 mark_vectorlike (XVECTOR (obj));
5570 break;
5572 case Lisp_Symbol:
5574 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5575 struct Lisp_Symbol *ptrx;
5577 if (ptr->gcmarkbit)
5578 break;
5579 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5580 ptr->gcmarkbit = 1;
5581 mark_object (ptr->value);
5582 mark_object (ptr->function);
5583 mark_object (ptr->plist);
5585 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5586 MARK_STRING (XSTRING (ptr->xname));
5587 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5589 /* Note that we do not mark the obarray of the symbol.
5590 It is safe not to do so because nothing accesses that
5591 slot except to check whether it is nil. */
5592 ptr = ptr->next;
5593 if (ptr)
5595 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5596 XSETSYMBOL (obj, ptrx);
5597 goto loop;
5600 break;
5602 case Lisp_Misc:
5603 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5604 if (XMISCANY (obj)->gcmarkbit)
5605 break;
5606 XMISCANY (obj)->gcmarkbit = 1;
5608 switch (XMISCTYPE (obj))
5610 case Lisp_Misc_Buffer_Local_Value:
5612 register struct Lisp_Buffer_Local_Value *ptr
5613 = XBUFFER_LOCAL_VALUE (obj);
5614 /* If the cdr is nil, avoid recursion for the car. */
5615 if (EQ (ptr->cdr, Qnil))
5617 obj = ptr->realvalue;
5618 goto loop;
5620 mark_object (ptr->realvalue);
5621 mark_object (ptr->buffer);
5622 mark_object (ptr->frame);
5623 obj = ptr->cdr;
5624 goto loop;
5627 case Lisp_Misc_Marker:
5628 /* DO NOT mark thru the marker's chain.
5629 The buffer's markers chain does not preserve markers from gc;
5630 instead, markers are removed from the chain when freed by gc. */
5631 break;
5633 case Lisp_Misc_Intfwd:
5634 case Lisp_Misc_Boolfwd:
5635 case Lisp_Misc_Objfwd:
5636 case Lisp_Misc_Buffer_Objfwd:
5637 case Lisp_Misc_Kboard_Objfwd:
5638 /* Don't bother with Lisp_Buffer_Objfwd,
5639 since all markable slots in current buffer marked anyway. */
5640 /* Don't need to do Lisp_Objfwd, since the places they point
5641 are protected with staticpro. */
5642 break;
5644 case Lisp_Misc_Save_Value:
5645 #if GC_MARK_STACK
5647 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5648 /* If DOGC is set, POINTER is the address of a memory
5649 area containing INTEGER potential Lisp_Objects. */
5650 if (ptr->dogc)
5652 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5653 int nelt;
5654 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5655 mark_maybe_object (*p);
5658 #endif
5659 break;
5661 case Lisp_Misc_Overlay:
5663 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5664 mark_object (ptr->start);
5665 mark_object (ptr->end);
5666 mark_object (ptr->plist);
5667 if (ptr->next)
5669 XSETMISC (obj, ptr->next);
5670 goto loop;
5673 break;
5675 default:
5676 abort ();
5678 break;
5680 case Lisp_Cons:
5682 register struct Lisp_Cons *ptr = XCONS (obj);
5683 if (CONS_MARKED_P (ptr))
5684 break;
5685 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5686 CONS_MARK (ptr);
5687 /* If the cdr is nil, avoid recursion for the car. */
5688 if (EQ (ptr->u.cdr, Qnil))
5690 obj = ptr->car;
5691 cdr_count = 0;
5692 goto loop;
5694 mark_object (ptr->car);
5695 obj = ptr->u.cdr;
5696 cdr_count++;
5697 if (cdr_count == mark_object_loop_halt)
5698 abort ();
5699 goto loop;
5702 case Lisp_Float:
5703 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5704 FLOAT_MARK (XFLOAT (obj));
5705 break;
5707 case_Lisp_Int:
5708 break;
5710 default:
5711 abort ();
5714 #undef CHECK_LIVE
5715 #undef CHECK_ALLOCATED
5716 #undef CHECK_ALLOCATED_AND_LIVE
5719 /* Mark the pointers in a buffer structure. */
5721 static void
5722 mark_buffer (buf)
5723 Lisp_Object buf;
5725 register struct buffer *buffer = XBUFFER (buf);
5726 register Lisp_Object *ptr, tmp;
5727 Lisp_Object base_buffer;
5729 eassert (!VECTOR_MARKED_P (buffer));
5730 VECTOR_MARK (buffer);
5732 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5734 /* For now, we just don't mark the undo_list. It's done later in
5735 a special way just before the sweep phase, and after stripping
5736 some of its elements that are not needed any more. */
5738 if (buffer->overlays_before)
5740 XSETMISC (tmp, buffer->overlays_before);
5741 mark_object (tmp);
5743 if (buffer->overlays_after)
5745 XSETMISC (tmp, buffer->overlays_after);
5746 mark_object (tmp);
5749 /* buffer-local Lisp variables start at `undo_list',
5750 tho only the ones from `name' on are GC'd normally. */
5751 for (ptr = &buffer->name;
5752 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5753 ptr++)
5754 mark_object (*ptr);
5756 /* If this is an indirect buffer, mark its base buffer. */
5757 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5759 XSETBUFFER (base_buffer, buffer->base_buffer);
5760 mark_buffer (base_buffer);
5764 /* Mark the Lisp pointers in the terminal objects.
5765 Called by the Fgarbage_collector. */
5767 static void
5768 mark_terminals (void)
5770 struct terminal *t;
5771 for (t = terminal_list; t; t = t->next_terminal)
5773 eassert (t->name != NULL);
5774 if (!VECTOR_MARKED_P (t))
5776 #ifdef HAVE_WINDOW_SYSTEM
5777 mark_image_cache (t->image_cache);
5778 #endif /* HAVE_WINDOW_SYSTEM */
5779 mark_vectorlike ((struct Lisp_Vector *)t);
5786 /* Value is non-zero if OBJ will survive the current GC because it's
5787 either marked or does not need to be marked to survive. */
5790 survives_gc_p (obj)
5791 Lisp_Object obj;
5793 int survives_p;
5795 switch (XTYPE (obj))
5797 case_Lisp_Int:
5798 survives_p = 1;
5799 break;
5801 case Lisp_Symbol:
5802 survives_p = XSYMBOL (obj)->gcmarkbit;
5803 break;
5805 case Lisp_Misc:
5806 survives_p = XMISCANY (obj)->gcmarkbit;
5807 break;
5809 case Lisp_String:
5810 survives_p = STRING_MARKED_P (XSTRING (obj));
5811 break;
5813 case Lisp_Vectorlike:
5814 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5815 break;
5817 case Lisp_Cons:
5818 survives_p = CONS_MARKED_P (XCONS (obj));
5819 break;
5821 case Lisp_Float:
5822 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5823 break;
5825 default:
5826 abort ();
5829 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5834 /* Sweep: find all structures not marked, and free them. */
5836 static void
5837 gc_sweep ()
5839 /* Remove or mark entries in weak hash tables.
5840 This must be done before any object is unmarked. */
5841 sweep_weak_hash_tables ();
5843 sweep_strings ();
5844 #ifdef GC_CHECK_STRING_BYTES
5845 if (!noninteractive)
5846 check_string_bytes (1);
5847 #endif
5849 /* Put all unmarked conses on free list */
5851 register struct cons_block *cblk;
5852 struct cons_block **cprev = &cons_block;
5853 register int lim = cons_block_index;
5854 register int num_free = 0, num_used = 0;
5856 cons_free_list = 0;
5858 for (cblk = cons_block; cblk; cblk = *cprev)
5860 register int i = 0;
5861 int this_free = 0;
5862 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5864 /* Scan the mark bits an int at a time. */
5865 for (i = 0; i <= ilim; i++)
5867 if (cblk->gcmarkbits[i] == -1)
5869 /* Fast path - all cons cells for this int are marked. */
5870 cblk->gcmarkbits[i] = 0;
5871 num_used += BITS_PER_INT;
5873 else
5875 /* Some cons cells for this int are not marked.
5876 Find which ones, and free them. */
5877 int start, pos, stop;
5879 start = i * BITS_PER_INT;
5880 stop = lim - start;
5881 if (stop > BITS_PER_INT)
5882 stop = BITS_PER_INT;
5883 stop += start;
5885 for (pos = start; pos < stop; pos++)
5887 if (!CONS_MARKED_P (&cblk->conses[pos]))
5889 this_free++;
5890 cblk->conses[pos].u.chain = cons_free_list;
5891 cons_free_list = &cblk->conses[pos];
5892 #if GC_MARK_STACK
5893 cons_free_list->car = Vdead;
5894 #endif
5896 else
5898 num_used++;
5899 CONS_UNMARK (&cblk->conses[pos]);
5905 lim = CONS_BLOCK_SIZE;
5906 /* If this block contains only free conses and we have already
5907 seen more than two blocks worth of free conses then deallocate
5908 this block. */
5909 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5911 *cprev = cblk->next;
5912 /* Unhook from the free list. */
5913 cons_free_list = cblk->conses[0].u.chain;
5914 lisp_align_free (cblk);
5915 n_cons_blocks--;
5917 else
5919 num_free += this_free;
5920 cprev = &cblk->next;
5923 total_conses = num_used;
5924 total_free_conses = num_free;
5927 /* Put all unmarked floats on free list */
5929 register struct float_block *fblk;
5930 struct float_block **fprev = &float_block;
5931 register int lim = float_block_index;
5932 register int num_free = 0, num_used = 0;
5934 float_free_list = 0;
5936 for (fblk = float_block; fblk; fblk = *fprev)
5938 register int i;
5939 int this_free = 0;
5940 for (i = 0; i < lim; i++)
5941 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5943 this_free++;
5944 fblk->floats[i].u.chain = float_free_list;
5945 float_free_list = &fblk->floats[i];
5947 else
5949 num_used++;
5950 FLOAT_UNMARK (&fblk->floats[i]);
5952 lim = FLOAT_BLOCK_SIZE;
5953 /* If this block contains only free floats and we have already
5954 seen more than two blocks worth of free floats then deallocate
5955 this block. */
5956 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5958 *fprev = fblk->next;
5959 /* Unhook from the free list. */
5960 float_free_list = fblk->floats[0].u.chain;
5961 lisp_align_free (fblk);
5962 n_float_blocks--;
5964 else
5966 num_free += this_free;
5967 fprev = &fblk->next;
5970 total_floats = num_used;
5971 total_free_floats = num_free;
5974 /* Put all unmarked intervals on free list */
5976 register struct interval_block *iblk;
5977 struct interval_block **iprev = &interval_block;
5978 register int lim = interval_block_index;
5979 register int num_free = 0, num_used = 0;
5981 interval_free_list = 0;
5983 for (iblk = interval_block; iblk; iblk = *iprev)
5985 register int i;
5986 int this_free = 0;
5988 for (i = 0; i < lim; i++)
5990 if (!iblk->intervals[i].gcmarkbit)
5992 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5993 interval_free_list = &iblk->intervals[i];
5994 this_free++;
5996 else
5998 num_used++;
5999 iblk->intervals[i].gcmarkbit = 0;
6002 lim = INTERVAL_BLOCK_SIZE;
6003 /* If this block contains only free intervals and we have already
6004 seen more than two blocks worth of free intervals then
6005 deallocate this block. */
6006 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6008 *iprev = iblk->next;
6009 /* Unhook from the free list. */
6010 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6011 lisp_free (iblk);
6012 n_interval_blocks--;
6014 else
6016 num_free += this_free;
6017 iprev = &iblk->next;
6020 total_intervals = num_used;
6021 total_free_intervals = num_free;
6024 /* Put all unmarked symbols on free list */
6026 register struct symbol_block *sblk;
6027 struct symbol_block **sprev = &symbol_block;
6028 register int lim = symbol_block_index;
6029 register int num_free = 0, num_used = 0;
6031 symbol_free_list = NULL;
6033 for (sblk = symbol_block; sblk; sblk = *sprev)
6035 int this_free = 0;
6036 struct Lisp_Symbol *sym = sblk->symbols;
6037 struct Lisp_Symbol *end = sym + lim;
6039 for (; sym < end; ++sym)
6041 /* Check if the symbol was created during loadup. In such a case
6042 it might be pointed to by pure bytecode which we don't trace,
6043 so we conservatively assume that it is live. */
6044 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
6046 if (!sym->gcmarkbit && !pure_p)
6048 sym->next = symbol_free_list;
6049 symbol_free_list = sym;
6050 #if GC_MARK_STACK
6051 symbol_free_list->function = Vdead;
6052 #endif
6053 ++this_free;
6055 else
6057 ++num_used;
6058 if (!pure_p)
6059 UNMARK_STRING (XSTRING (sym->xname));
6060 sym->gcmarkbit = 0;
6064 lim = SYMBOL_BLOCK_SIZE;
6065 /* If this block contains only free symbols and we have already
6066 seen more than two blocks worth of free symbols then deallocate
6067 this block. */
6068 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6070 *sprev = sblk->next;
6071 /* Unhook from the free list. */
6072 symbol_free_list = sblk->symbols[0].next;
6073 lisp_free (sblk);
6074 n_symbol_blocks--;
6076 else
6078 num_free += this_free;
6079 sprev = &sblk->next;
6082 total_symbols = num_used;
6083 total_free_symbols = num_free;
6086 /* Put all unmarked misc's on free list.
6087 For a marker, first unchain it from the buffer it points into. */
6089 register struct marker_block *mblk;
6090 struct marker_block **mprev = &marker_block;
6091 register int lim = marker_block_index;
6092 register int num_free = 0, num_used = 0;
6094 marker_free_list = 0;
6096 for (mblk = marker_block; mblk; mblk = *mprev)
6098 register int i;
6099 int this_free = 0;
6101 for (i = 0; i < lim; i++)
6103 if (!mblk->markers[i].u_any.gcmarkbit)
6105 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
6106 unchain_marker (&mblk->markers[i].u_marker);
6107 /* Set the type of the freed object to Lisp_Misc_Free.
6108 We could leave the type alone, since nobody checks it,
6109 but this might catch bugs faster. */
6110 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
6111 mblk->markers[i].u_free.chain = marker_free_list;
6112 marker_free_list = &mblk->markers[i];
6113 this_free++;
6115 else
6117 num_used++;
6118 mblk->markers[i].u_any.gcmarkbit = 0;
6121 lim = MARKER_BLOCK_SIZE;
6122 /* If this block contains only free markers and we have already
6123 seen more than two blocks worth of free markers then deallocate
6124 this block. */
6125 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6127 *mprev = mblk->next;
6128 /* Unhook from the free list. */
6129 marker_free_list = mblk->markers[0].u_free.chain;
6130 lisp_free (mblk);
6131 n_marker_blocks--;
6133 else
6135 num_free += this_free;
6136 mprev = &mblk->next;
6140 total_markers = num_used;
6141 total_free_markers = num_free;
6144 /* Free all unmarked buffers */
6146 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6148 while (buffer)
6149 if (!VECTOR_MARKED_P (buffer))
6151 if (prev)
6152 prev->next = buffer->next;
6153 else
6154 all_buffers = buffer->next;
6155 next = buffer->next;
6156 lisp_free (buffer);
6157 buffer = next;
6159 else
6161 VECTOR_UNMARK (buffer);
6162 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6163 prev = buffer, buffer = buffer->next;
6167 /* Free all unmarked vectors */
6169 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6170 total_vector_size = 0;
6172 while (vector)
6173 if (!VECTOR_MARKED_P (vector))
6175 if (prev)
6176 prev->next = vector->next;
6177 else
6178 all_vectors = vector->next;
6179 next = vector->next;
6180 lisp_free (vector);
6181 n_vectors--;
6182 vector = next;
6185 else
6187 VECTOR_UNMARK (vector);
6188 if (vector->size & PSEUDOVECTOR_FLAG)
6189 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6190 else
6191 total_vector_size += vector->size;
6192 prev = vector, vector = vector->next;
6196 #ifdef GC_CHECK_STRING_BYTES
6197 if (!noninteractive)
6198 check_string_bytes (1);
6199 #endif
6205 /* Debugging aids. */
6207 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6208 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6209 This may be helpful in debugging Emacs's memory usage.
6210 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6213 Lisp_Object end;
6215 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
6217 return end;
6220 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6221 doc: /* Return a list of counters that measure how much consing there has been.
6222 Each of these counters increments for a certain kind of object.
6223 The counters wrap around from the largest positive integer to zero.
6224 Garbage collection does not decrease them.
6225 The elements of the value are as follows:
6226 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6227 All are in units of 1 = one object consed
6228 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6229 objects consed.
6230 MISCS include overlays, markers, and some internal types.
6231 Frames, windows, buffers, and subprocesses count as vectors
6232 (but the contents of a buffer's text do not count here). */)
6235 Lisp_Object consed[8];
6237 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6238 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6239 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6240 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6241 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6242 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6243 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6244 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6246 return Flist (8, consed);
6249 int suppress_checking;
6251 void
6252 die (msg, file, line)
6253 const char *msg;
6254 const char *file;
6255 int line;
6257 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6258 file, line, msg);
6259 abort ();
6262 /* Initialization */
6264 void
6265 init_alloc_once ()
6267 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6268 purebeg = PUREBEG;
6269 pure_size = PURESIZE;
6270 pure_bytes_used = 0;
6271 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6272 pure_bytes_used_before_overflow = 0;
6274 /* Initialize the list of free aligned blocks. */
6275 free_ablock = NULL;
6277 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6278 mem_init ();
6279 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6280 #endif
6282 all_vectors = 0;
6283 ignore_warnings = 1;
6284 #ifdef DOUG_LEA_MALLOC
6285 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6286 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6287 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6288 #endif
6289 init_strings ();
6290 init_cons ();
6291 init_symbol ();
6292 init_marker ();
6293 init_float ();
6294 init_intervals ();
6295 init_weak_hash_tables ();
6297 #ifdef REL_ALLOC
6298 malloc_hysteresis = 32;
6299 #else
6300 malloc_hysteresis = 0;
6301 #endif
6303 refill_memory_reserve ();
6305 ignore_warnings = 0;
6306 gcprolist = 0;
6307 byte_stack_list = 0;
6308 staticidx = 0;
6309 consing_since_gc = 0;
6310 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6311 gc_relative_threshold = 0;
6313 #ifdef VIRT_ADDR_VARIES
6314 malloc_sbrk_unused = 1<<22; /* A large number */
6315 malloc_sbrk_used = 100000; /* as reasonable as any number */
6316 #endif /* VIRT_ADDR_VARIES */
6319 void
6320 init_alloc ()
6322 gcprolist = 0;
6323 byte_stack_list = 0;
6324 #if GC_MARK_STACK
6325 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6326 setjmp_tested_p = longjmps_done = 0;
6327 #endif
6328 #endif
6329 Vgc_elapsed = make_float (0.0);
6330 gcs_done = 0;
6333 void
6334 syms_of_alloc ()
6336 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
6337 doc: /* *Number of bytes of consing between garbage collections.
6338 Garbage collection can happen automatically once this many bytes have been
6339 allocated since the last garbage collection. All data types count.
6341 Garbage collection happens automatically only when `eval' is called.
6343 By binding this temporarily to a large number, you can effectively
6344 prevent garbage collection during a part of the program.
6345 See also `gc-cons-percentage'. */);
6347 DEFVAR_LISP ("gc-cons-percentage", &Vgc_cons_percentage,
6348 doc: /* *Portion of the heap used for allocation.
6349 Garbage collection can happen automatically once this portion of the heap
6350 has been allocated since the last garbage collection.
6351 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6352 Vgc_cons_percentage = make_float (0.1);
6354 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
6355 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6357 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
6358 doc: /* Number of cons cells that have been consed so far. */);
6360 DEFVAR_INT ("floats-consed", &floats_consed,
6361 doc: /* Number of floats that have been consed so far. */);
6363 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
6364 doc: /* Number of vector cells that have been consed so far. */);
6366 DEFVAR_INT ("symbols-consed", &symbols_consed,
6367 doc: /* Number of symbols that have been consed so far. */);
6369 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
6370 doc: /* Number of string characters that have been consed so far. */);
6372 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
6373 doc: /* Number of miscellaneous objects that have been consed so far. */);
6375 DEFVAR_INT ("intervals-consed", &intervals_consed,
6376 doc: /* Number of intervals that have been consed so far. */);
6378 DEFVAR_INT ("strings-consed", &strings_consed,
6379 doc: /* Number of strings that have been consed so far. */);
6381 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
6382 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6383 This means that certain objects should be allocated in shared (pure) space. */);
6385 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
6386 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6387 garbage_collection_messages = 0;
6389 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
6390 doc: /* Hook run after garbage collection has finished. */);
6391 Vpost_gc_hook = Qnil;
6392 Qpost_gc_hook = intern_c_string ("post-gc-hook");
6393 staticpro (&Qpost_gc_hook);
6395 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
6396 doc: /* Precomputed `signal' argument for memory-full error. */);
6397 /* We build this in advance because if we wait until we need it, we might
6398 not be able to allocate the memory to hold it. */
6399 Vmemory_signal_data
6400 = pure_cons (Qerror,
6401 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6403 DEFVAR_LISP ("memory-full", &Vmemory_full,
6404 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6405 Vmemory_full = Qnil;
6407 staticpro (&Qgc_cons_threshold);
6408 Qgc_cons_threshold = intern_c_string ("gc-cons-threshold");
6410 staticpro (&Qchar_table_extra_slots);
6411 Qchar_table_extra_slots = intern_c_string ("char-table-extra-slots");
6413 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
6414 doc: /* Accumulated time elapsed in garbage collections.
6415 The time is in seconds as a floating point value. */);
6416 DEFVAR_INT ("gcs-done", &gcs_done,
6417 doc: /* Accumulated number of garbage collections done. */);
6419 defsubr (&Scons);
6420 defsubr (&Slist);
6421 defsubr (&Svector);
6422 defsubr (&Smake_byte_code);
6423 defsubr (&Smake_list);
6424 defsubr (&Smake_vector);
6425 defsubr (&Smake_string);
6426 defsubr (&Smake_bool_vector);
6427 defsubr (&Smake_symbol);
6428 defsubr (&Smake_marker);
6429 defsubr (&Spurecopy);
6430 defsubr (&Sgarbage_collect);
6431 defsubr (&Smemory_limit);
6432 defsubr (&Smemory_use_counts);
6434 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6435 defsubr (&Sgc_status);
6436 #endif
6439 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6440 (do not change this comment) */