Handle patch terminators produced by git and bzr patch export
[emacs.git] / src / alloc.c
blobdd2b688f91eea6cd4be3561998dca7e4cb484e1d
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2017 Free Software
4 Foundation, Inc.
6 This file is part of GNU Emacs.
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or (at
11 your option) any later version.
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
21 #include <config.h>
23 #include <errno.h>
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <limits.h> /* For CHAR_BIT. */
27 #include <signal.h> /* For SIGABRT, SIGDANGER. */
29 #ifdef HAVE_PTHREAD
30 #include <pthread.h>
31 #endif
33 #include "lisp.h"
34 #include "dispextern.h"
35 #include "intervals.h"
36 #include "puresize.h"
37 #include "sheap.h"
38 #include "systime.h"
39 #include "character.h"
40 #include "buffer.h"
41 #include "window.h"
42 #include "keyboard.h"
43 #include "frame.h"
44 #include "blockinput.h"
45 #include "termhooks.h" /* For struct terminal. */
46 #ifdef HAVE_WINDOW_SYSTEM
47 #include TERM_HEADER
48 #endif /* HAVE_WINDOW_SYSTEM */
50 #include <flexmember.h>
51 #include <verify.h>
52 #include <execinfo.h> /* For backtrace. */
54 #ifdef HAVE_LINUX_SYSINFO
55 #include <sys/sysinfo.h>
56 #endif
58 #ifdef MSDOS
59 #include "dosfns.h" /* For dos_memory_info. */
60 #endif
62 #ifdef HAVE_MALLOC_H
63 # include <malloc.h>
64 #endif
66 #if (defined ENABLE_CHECKING \
67 && defined HAVE_VALGRIND_VALGRIND_H \
68 && !defined USE_VALGRIND)
69 # define USE_VALGRIND 1
70 #endif
72 #if USE_VALGRIND
73 #include <valgrind/valgrind.h>
74 #include <valgrind/memcheck.h>
75 static bool valgrind_p;
76 #endif
78 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects. */
80 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
81 memory. Can do this only if using gmalloc.c and if not checking
82 marked objects. */
84 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
85 || defined HYBRID_MALLOC || defined GC_CHECK_MARKED_OBJECTS)
86 #undef GC_MALLOC_CHECK
87 #endif
89 #include <unistd.h>
90 #include <fcntl.h>
92 #ifdef USE_GTK
93 # include "gtkutil.h"
94 #endif
95 #ifdef WINDOWSNT
96 #include "w32.h"
97 #include "w32heap.h" /* for sbrk */
98 #endif
100 #ifdef GNU_LINUX
101 /* The address where the heap starts. */
102 void *
103 my_heap_start (void)
105 static void *start;
106 if (! start)
107 start = sbrk (0);
108 return start;
110 #endif
112 #ifdef DOUG_LEA_MALLOC
114 /* Specify maximum number of areas to mmap. It would be nice to use a
115 value that explicitly means "no limit". */
117 #define MMAP_MAX_AREAS 100000000
119 /* A pointer to the memory allocated that copies that static data
120 inside glibc's malloc. */
121 static void *malloc_state_ptr;
123 /* Restore the dumped malloc state. Because malloc can be invoked
124 even before main (e.g. by the dynamic linker), the dumped malloc
125 state must be restored as early as possible using this special hook. */
126 static void
127 malloc_initialize_hook (void)
129 static bool malloc_using_checking;
131 if (! initialized)
133 #ifdef GNU_LINUX
134 my_heap_start ();
135 #endif
136 malloc_using_checking = getenv ("MALLOC_CHECK_") != NULL;
138 else
140 if (!malloc_using_checking)
142 /* Work around a bug in glibc's malloc. MALLOC_CHECK_ must be
143 ignored if the heap to be restored was constructed without
144 malloc checking. Can't use unsetenv, since that calls malloc. */
145 char **p = environ;
146 if (p)
147 for (; *p; p++)
148 if (strncmp (*p, "MALLOC_CHECK_=", 14) == 0)
151 *p = p[1];
152 while (*++p);
154 break;
158 if (malloc_set_state (malloc_state_ptr) != 0)
159 emacs_abort ();
160 # ifndef XMALLOC_OVERRUN_CHECK
161 alloc_unexec_post ();
162 # endif
166 /* Declare the malloc initialization hook, which runs before 'main' starts.
167 EXTERNALLY_VISIBLE works around Bug#22522. */
168 # ifndef __MALLOC_HOOK_VOLATILE
169 # define __MALLOC_HOOK_VOLATILE
170 # endif
171 voidfuncptr __MALLOC_HOOK_VOLATILE __malloc_initialize_hook EXTERNALLY_VISIBLE
172 = malloc_initialize_hook;
174 #endif
176 #if defined DOUG_LEA_MALLOC || !defined CANNOT_DUMP
178 /* Allocator-related actions to do just before and after unexec. */
180 void
181 alloc_unexec_pre (void)
183 # ifdef DOUG_LEA_MALLOC
184 malloc_state_ptr = malloc_get_state ();
185 if (!malloc_state_ptr)
186 fatal ("malloc_get_state: %s", strerror (errno));
187 # endif
188 # ifdef HYBRID_MALLOC
189 bss_sbrk_did_unexec = true;
190 # endif
193 void
194 alloc_unexec_post (void)
196 # ifdef DOUG_LEA_MALLOC
197 free (malloc_state_ptr);
198 # endif
199 # ifdef HYBRID_MALLOC
200 bss_sbrk_did_unexec = false;
201 # endif
203 #endif
205 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
206 to a struct Lisp_String. */
208 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
209 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
210 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
212 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
213 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
214 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
216 /* Default value of gc_cons_threshold (see below). */
218 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
220 /* Global variables. */
221 struct emacs_globals globals;
223 /* Number of bytes of consing done since the last gc. */
225 EMACS_INT consing_since_gc;
227 /* Similar minimum, computed from Vgc_cons_percentage. */
229 EMACS_INT gc_relative_threshold;
231 /* Minimum number of bytes of consing since GC before next GC,
232 when memory is full. */
234 EMACS_INT memory_full_cons_threshold;
236 /* True during GC. */
238 bool gc_in_progress;
240 /* Number of live and free conses etc. */
242 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
243 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
244 static EMACS_INT total_free_floats, total_floats;
246 /* Points to memory space allocated as "spare", to be freed if we run
247 out of memory. We keep one large block, four cons-blocks, and
248 two string blocks. */
250 static char *spare_memory[7];
252 /* Amount of spare memory to keep in large reserve block, or to see
253 whether this much is available when malloc fails on a larger request. */
255 #define SPARE_MEMORY (1 << 14)
257 /* Initialize it to a nonzero value to force it into data space
258 (rather than bss space). That way unexec will remap it into text
259 space (pure), on some systems. We have not implemented the
260 remapping on more recent systems because this is less important
261 nowadays than in the days of small memories and timesharing. */
263 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
264 #define PUREBEG (char *) pure
266 /* Pointer to the pure area, and its size. */
268 static char *purebeg;
269 static ptrdiff_t pure_size;
271 /* Number of bytes of pure storage used before pure storage overflowed.
272 If this is non-zero, this implies that an overflow occurred. */
274 static ptrdiff_t pure_bytes_used_before_overflow;
276 /* Index in pure at which next pure Lisp object will be allocated.. */
278 static ptrdiff_t pure_bytes_used_lisp;
280 /* Number of bytes allocated for non-Lisp objects in pure storage. */
282 static ptrdiff_t pure_bytes_used_non_lisp;
284 /* If nonzero, this is a warning delivered by malloc and not yet
285 displayed. */
287 const char *pending_malloc_warning;
289 #if 0 /* Normally, pointer sanity only on request... */
290 #ifdef ENABLE_CHECKING
291 #define SUSPICIOUS_OBJECT_CHECKING 1
292 #endif
293 #endif
295 /* ... but unconditionally use SUSPICIOUS_OBJECT_CHECKING while the GC
296 bug is unresolved. */
297 #define SUSPICIOUS_OBJECT_CHECKING 1
299 #ifdef SUSPICIOUS_OBJECT_CHECKING
300 struct suspicious_free_record
302 void *suspicious_object;
303 void *backtrace[128];
305 static void *suspicious_objects[32];
306 static int suspicious_object_index;
307 struct suspicious_free_record suspicious_free_history[64] EXTERNALLY_VISIBLE;
308 static int suspicious_free_history_index;
309 /* Find the first currently-monitored suspicious pointer in range
310 [begin,end) or NULL if no such pointer exists. */
311 static void *find_suspicious_object_in_range (void *begin, void *end);
312 static void detect_suspicious_free (void *ptr);
313 #else
314 # define find_suspicious_object_in_range(begin, end) NULL
315 # define detect_suspicious_free(ptr) (void)
316 #endif
318 /* Maximum amount of C stack to save when a GC happens. */
320 #ifndef MAX_SAVE_STACK
321 #define MAX_SAVE_STACK 16000
322 #endif
324 /* Buffer in which we save a copy of the C stack at each GC. */
326 #if MAX_SAVE_STACK > 0
327 static char *stack_copy;
328 static ptrdiff_t stack_copy_size;
330 /* Copy to DEST a block of memory from SRC of size SIZE bytes,
331 avoiding any address sanitization. */
333 static void * ATTRIBUTE_NO_SANITIZE_ADDRESS
334 no_sanitize_memcpy (void *dest, void const *src, size_t size)
336 if (! ADDRESS_SANITIZER)
337 return memcpy (dest, src, size);
338 else
340 size_t i;
341 char *d = dest;
342 char const *s = src;
343 for (i = 0; i < size; i++)
344 d[i] = s[i];
345 return dest;
349 #endif /* MAX_SAVE_STACK > 0 */
351 static void mark_terminals (void);
352 static void gc_sweep (void);
353 static Lisp_Object make_pure_vector (ptrdiff_t);
354 static void mark_buffer (struct buffer *);
356 #if !defined REL_ALLOC || defined SYSTEM_MALLOC || defined HYBRID_MALLOC
357 static void refill_memory_reserve (void);
358 #endif
359 static void compact_small_strings (void);
360 static void free_large_strings (void);
361 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
363 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
364 what memory allocated via lisp_malloc and lisp_align_malloc is intended
365 for what purpose. This enumeration specifies the type of memory. */
367 enum mem_type
369 MEM_TYPE_NON_LISP,
370 MEM_TYPE_BUFFER,
371 MEM_TYPE_CONS,
372 MEM_TYPE_STRING,
373 MEM_TYPE_MISC,
374 MEM_TYPE_SYMBOL,
375 MEM_TYPE_FLOAT,
376 /* Since all non-bool pseudovectors are small enough to be
377 allocated from vector blocks, this memory type denotes
378 large regular vectors and large bool pseudovectors. */
379 MEM_TYPE_VECTORLIKE,
380 /* Special type to denote vector blocks. */
381 MEM_TYPE_VECTOR_BLOCK,
382 /* Special type to denote reserved memory. */
383 MEM_TYPE_SPARE
386 /* A unique object in pure space used to make some Lisp objects
387 on free lists recognizable in O(1). */
389 static Lisp_Object Vdead;
390 #define DEADP(x) EQ (x, Vdead)
392 #ifdef GC_MALLOC_CHECK
394 enum mem_type allocated_mem_type;
396 #endif /* GC_MALLOC_CHECK */
398 /* A node in the red-black tree describing allocated memory containing
399 Lisp data. Each such block is recorded with its start and end
400 address when it is allocated, and removed from the tree when it
401 is freed.
403 A red-black tree is a balanced binary tree with the following
404 properties:
406 1. Every node is either red or black.
407 2. Every leaf is black.
408 3. If a node is red, then both of its children are black.
409 4. Every simple path from a node to a descendant leaf contains
410 the same number of black nodes.
411 5. The root is always black.
413 When nodes are inserted into the tree, or deleted from the tree,
414 the tree is "fixed" so that these properties are always true.
416 A red-black tree with N internal nodes has height at most 2
417 log(N+1). Searches, insertions and deletions are done in O(log N).
418 Please see a text book about data structures for a detailed
419 description of red-black trees. Any book worth its salt should
420 describe them. */
422 struct mem_node
424 /* Children of this node. These pointers are never NULL. When there
425 is no child, the value is MEM_NIL, which points to a dummy node. */
426 struct mem_node *left, *right;
428 /* The parent of this node. In the root node, this is NULL. */
429 struct mem_node *parent;
431 /* Start and end of allocated region. */
432 void *start, *end;
434 /* Node color. */
435 enum {MEM_BLACK, MEM_RED} color;
437 /* Memory type. */
438 enum mem_type type;
441 /* Root of the tree describing allocated Lisp memory. */
443 static struct mem_node *mem_root;
445 /* Lowest and highest known address in the heap. */
447 static void *min_heap_address, *max_heap_address;
449 /* Sentinel node of the tree. */
451 static struct mem_node mem_z;
452 #define MEM_NIL &mem_z
454 static struct mem_node *mem_insert (void *, void *, enum mem_type);
455 static void mem_insert_fixup (struct mem_node *);
456 static void mem_rotate_left (struct mem_node *);
457 static void mem_rotate_right (struct mem_node *);
458 static void mem_delete (struct mem_node *);
459 static void mem_delete_fixup (struct mem_node *);
460 static struct mem_node *mem_find (void *);
462 #ifndef DEADP
463 # define DEADP(x) 0
464 #endif
466 /* Addresses of staticpro'd variables. Initialize it to a nonzero
467 value; otherwise some compilers put it into BSS. */
469 enum { NSTATICS = 2048 };
470 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
472 /* Index of next unused slot in staticvec. */
474 static int staticidx;
476 static void *pure_alloc (size_t, int);
478 /* True if N is a power of 2. N should be positive. */
480 #define POWER_OF_2(n) (((n) & ((n) - 1)) == 0)
482 /* Return X rounded to the next multiple of Y. Y should be positive,
483 and Y - 1 + X should not overflow. Arguments should not have side
484 effects, as they are evaluated more than once. Tune for Y being a
485 power of 2. */
487 #define ROUNDUP(x, y) (POWER_OF_2 (y) \
488 ? ((y) - 1 + (x)) & ~ ((y) - 1) \
489 : ((y) - 1 + (x)) - ((y) - 1 + (x)) % (y))
491 /* Return PTR rounded up to the next multiple of ALIGNMENT. */
493 static void *
494 pointer_align (void *ptr, int alignment)
496 return (void *) ROUNDUP ((uintptr_t) ptr, alignment);
499 /* Extract the pointer hidden within A, if A is not a symbol.
500 If A is a symbol, extract the hidden pointer's offset from lispsym,
501 converted to void *. */
503 #define macro_XPNTR_OR_SYMBOL_OFFSET(a) \
504 ((void *) (intptr_t) (USE_LSB_TAG ? XLI (a) - XTYPE (a) : XLI (a) & VALMASK))
506 /* Extract the pointer hidden within A. */
508 #define macro_XPNTR(a) \
509 ((void *) ((intptr_t) XPNTR_OR_SYMBOL_OFFSET (a) \
510 + (SYMBOLP (a) ? (char *) lispsym : NULL)))
512 /* For pointer access, define XPNTR and XPNTR_OR_SYMBOL_OFFSET as
513 functions, as functions are cleaner and can be used in debuggers.
514 Also, define them as macros if being compiled with GCC without
515 optimization, for performance in that case. The macro_* names are
516 private to this section of code. */
518 static ATTRIBUTE_UNUSED void *
519 XPNTR_OR_SYMBOL_OFFSET (Lisp_Object a)
521 return macro_XPNTR_OR_SYMBOL_OFFSET (a);
523 static ATTRIBUTE_UNUSED void *
524 XPNTR (Lisp_Object a)
526 return macro_XPNTR (a);
529 #if DEFINE_KEY_OPS_AS_MACROS
530 # define XPNTR_OR_SYMBOL_OFFSET(a) macro_XPNTR_OR_SYMBOL_OFFSET (a)
531 # define XPNTR(a) macro_XPNTR (a)
532 #endif
534 static void
535 XFLOAT_INIT (Lisp_Object f, double n)
537 XFLOAT (f)->u.data = n;
540 #ifdef DOUG_LEA_MALLOC
541 static bool
542 pointers_fit_in_lispobj_p (void)
544 return (UINTPTR_MAX <= VAL_MAX) || USE_LSB_TAG;
547 static bool
548 mmap_lisp_allowed_p (void)
550 /* If we can't store all memory addresses in our lisp objects, it's
551 risky to let the heap use mmap and give us addresses from all
552 over our address space. We also can't use mmap for lisp objects
553 if we might dump: unexec doesn't preserve the contents of mmapped
554 regions. */
555 return pointers_fit_in_lispobj_p () && !might_dump;
557 #endif
559 /* Head of a circularly-linked list of extant finalizers. */
560 static struct Lisp_Finalizer finalizers;
562 /* Head of a circularly-linked list of finalizers that must be invoked
563 because we deemed them unreachable. This list must be global, and
564 not a local inside garbage_collect_1, in case we GC again while
565 running finalizers. */
566 static struct Lisp_Finalizer doomed_finalizers;
569 /************************************************************************
570 Malloc
571 ************************************************************************/
573 #if defined SIGDANGER || (!defined SYSTEM_MALLOC && !defined HYBRID_MALLOC)
575 /* Function malloc calls this if it finds we are near exhausting storage. */
577 void
578 malloc_warning (const char *str)
580 pending_malloc_warning = str;
583 #endif
585 /* Display an already-pending malloc warning. */
587 void
588 display_malloc_warning (void)
590 call3 (intern ("display-warning"),
591 intern ("alloc"),
592 build_string (pending_malloc_warning),
593 intern ("emergency"));
594 pending_malloc_warning = 0;
597 /* Called if we can't allocate relocatable space for a buffer. */
599 void
600 buffer_memory_full (ptrdiff_t nbytes)
602 /* If buffers use the relocating allocator, no need to free
603 spare_memory, because we may have plenty of malloc space left
604 that we could get, and if we don't, the malloc that fails will
605 itself cause spare_memory to be freed. If buffers don't use the
606 relocating allocator, treat this like any other failing
607 malloc. */
609 #ifndef REL_ALLOC
610 memory_full (nbytes);
611 #else
612 /* This used to call error, but if we've run out of memory, we could
613 get infinite recursion trying to build the string. */
614 xsignal (Qnil, Vmemory_signal_data);
615 #endif
618 /* A common multiple of the positive integers A and B. Ideally this
619 would be the least common multiple, but there's no way to do that
620 as a constant expression in C, so do the best that we can easily do. */
621 #define COMMON_MULTIPLE(a, b) \
622 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
624 #ifndef XMALLOC_OVERRUN_CHECK
625 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
626 #else
628 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
629 around each block.
631 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
632 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
633 block size in little-endian order. The trailer consists of
634 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
636 The header is used to detect whether this block has been allocated
637 through these functions, as some low-level libc functions may
638 bypass the malloc hooks. */
640 #define XMALLOC_OVERRUN_CHECK_SIZE 16
641 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
642 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
644 #define XMALLOC_BASE_ALIGNMENT alignof (max_align_t)
646 #define XMALLOC_HEADER_ALIGNMENT \
647 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
649 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
650 hold a size_t value and (2) the header size is a multiple of the
651 alignment that Emacs needs for C types and for USE_LSB_TAG. */
652 #define XMALLOC_OVERRUN_SIZE_SIZE \
653 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
654 + XMALLOC_HEADER_ALIGNMENT - 1) \
655 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
656 - XMALLOC_OVERRUN_CHECK_SIZE)
658 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
659 { '\x9a', '\x9b', '\xae', '\xaf',
660 '\xbf', '\xbe', '\xce', '\xcf',
661 '\xea', '\xeb', '\xec', '\xed',
662 '\xdf', '\xde', '\x9c', '\x9d' };
664 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
665 { '\xaa', '\xab', '\xac', '\xad',
666 '\xba', '\xbb', '\xbc', '\xbd',
667 '\xca', '\xcb', '\xcc', '\xcd',
668 '\xda', '\xdb', '\xdc', '\xdd' };
670 /* Insert and extract the block size in the header. */
672 static void
673 xmalloc_put_size (unsigned char *ptr, size_t size)
675 int i;
676 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
678 *--ptr = size & ((1 << CHAR_BIT) - 1);
679 size >>= CHAR_BIT;
683 static size_t
684 xmalloc_get_size (unsigned char *ptr)
686 size_t size = 0;
687 int i;
688 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
689 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
691 size <<= CHAR_BIT;
692 size += *ptr++;
694 return size;
698 /* Like malloc, but wraps allocated block with header and trailer. */
700 static void *
701 overrun_check_malloc (size_t size)
703 register unsigned char *val;
704 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
705 emacs_abort ();
707 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
708 if (val)
710 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
711 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
712 xmalloc_put_size (val, size);
713 memcpy (val + size, xmalloc_overrun_check_trailer,
714 XMALLOC_OVERRUN_CHECK_SIZE);
716 return val;
720 /* Like realloc, but checks old block for overrun, and wraps new block
721 with header and trailer. */
723 static void *
724 overrun_check_realloc (void *block, size_t size)
726 register unsigned char *val = (unsigned char *) block;
727 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
728 emacs_abort ();
730 if (val
731 && memcmp (xmalloc_overrun_check_header,
732 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
733 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
735 size_t osize = xmalloc_get_size (val);
736 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
737 XMALLOC_OVERRUN_CHECK_SIZE))
738 emacs_abort ();
739 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
740 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
741 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
744 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
746 if (val)
748 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
749 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
750 xmalloc_put_size (val, size);
751 memcpy (val + size, xmalloc_overrun_check_trailer,
752 XMALLOC_OVERRUN_CHECK_SIZE);
754 return val;
757 /* Like free, but checks block for overrun. */
759 static void
760 overrun_check_free (void *block)
762 unsigned char *val = (unsigned char *) block;
764 if (val
765 && memcmp (xmalloc_overrun_check_header,
766 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
767 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
769 size_t osize = xmalloc_get_size (val);
770 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
771 XMALLOC_OVERRUN_CHECK_SIZE))
772 emacs_abort ();
773 #ifdef XMALLOC_CLEAR_FREE_MEMORY
774 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
775 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
776 #else
777 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
778 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
779 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
780 #endif
783 free (val);
786 #undef malloc
787 #undef realloc
788 #undef free
789 #define malloc overrun_check_malloc
790 #define realloc overrun_check_realloc
791 #define free overrun_check_free
792 #endif
794 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
795 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
796 If that variable is set, block input while in one of Emacs's memory
797 allocation functions. There should be no need for this debugging
798 option, since signal handlers do not allocate memory, but Emacs
799 formerly allocated memory in signal handlers and this compile-time
800 option remains as a way to help debug the issue should it rear its
801 ugly head again. */
802 #ifdef XMALLOC_BLOCK_INPUT_CHECK
803 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
804 static void
805 malloc_block_input (void)
807 if (block_input_in_memory_allocators)
808 block_input ();
810 static void
811 malloc_unblock_input (void)
813 if (block_input_in_memory_allocators)
814 unblock_input ();
816 # define MALLOC_BLOCK_INPUT malloc_block_input ()
817 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
818 #else
819 # define MALLOC_BLOCK_INPUT ((void) 0)
820 # define MALLOC_UNBLOCK_INPUT ((void) 0)
821 #endif
823 #define MALLOC_PROBE(size) \
824 do { \
825 if (profiler_memory_running) \
826 malloc_probe (size); \
827 } while (0)
829 static void *lmalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
830 static void *lrealloc (void *, size_t);
832 /* Like malloc but check for no memory and block interrupt input. */
834 void *
835 xmalloc (size_t size)
837 void *val;
839 MALLOC_BLOCK_INPUT;
840 val = lmalloc (size);
841 MALLOC_UNBLOCK_INPUT;
843 if (!val && size)
844 memory_full (size);
845 MALLOC_PROBE (size);
846 return val;
849 /* Like the above, but zeroes out the memory just allocated. */
851 void *
852 xzalloc (size_t size)
854 void *val;
856 MALLOC_BLOCK_INPUT;
857 val = lmalloc (size);
858 MALLOC_UNBLOCK_INPUT;
860 if (!val && size)
861 memory_full (size);
862 memset (val, 0, size);
863 MALLOC_PROBE (size);
864 return val;
867 /* Like realloc but check for no memory and block interrupt input.. */
869 void *
870 xrealloc (void *block, size_t size)
872 void *val;
874 MALLOC_BLOCK_INPUT;
875 /* We must call malloc explicitly when BLOCK is 0, since some
876 reallocs don't do this. */
877 if (! block)
878 val = lmalloc (size);
879 else
880 val = lrealloc (block, size);
881 MALLOC_UNBLOCK_INPUT;
883 if (!val && size)
884 memory_full (size);
885 MALLOC_PROBE (size);
886 return val;
890 /* Like free but block interrupt input. */
892 void
893 xfree (void *block)
895 if (!block)
896 return;
897 MALLOC_BLOCK_INPUT;
898 free (block);
899 MALLOC_UNBLOCK_INPUT;
900 /* We don't call refill_memory_reserve here
901 because in practice the call in r_alloc_free seems to suffice. */
905 /* Other parts of Emacs pass large int values to allocator functions
906 expecting ptrdiff_t. This is portable in practice, but check it to
907 be safe. */
908 verify (INT_MAX <= PTRDIFF_MAX);
911 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
912 Signal an error on memory exhaustion, and block interrupt input. */
914 void *
915 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
917 eassert (0 <= nitems && 0 < item_size);
918 ptrdiff_t nbytes;
919 if (INT_MULTIPLY_WRAPV (nitems, item_size, &nbytes) || SIZE_MAX < nbytes)
920 memory_full (SIZE_MAX);
921 return xmalloc (nbytes);
925 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
926 Signal an error on memory exhaustion, and block interrupt input. */
928 void *
929 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
931 eassert (0 <= nitems && 0 < item_size);
932 ptrdiff_t nbytes;
933 if (INT_MULTIPLY_WRAPV (nitems, item_size, &nbytes) || SIZE_MAX < nbytes)
934 memory_full (SIZE_MAX);
935 return xrealloc (pa, nbytes);
939 /* Grow PA, which points to an array of *NITEMS items, and return the
940 location of the reallocated array, updating *NITEMS to reflect its
941 new size. The new array will contain at least NITEMS_INCR_MIN more
942 items, but will not contain more than NITEMS_MAX items total.
943 ITEM_SIZE is the size of each item, in bytes.
945 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
946 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
947 infinity.
949 If PA is null, then allocate a new array instead of reallocating
950 the old one.
952 Block interrupt input as needed. If memory exhaustion occurs, set
953 *NITEMS to zero if PA is null, and signal an error (i.e., do not
954 return).
956 Thus, to grow an array A without saving its old contents, do
957 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
958 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
959 and signals an error, and later this code is reexecuted and
960 attempts to free A. */
962 void *
963 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
964 ptrdiff_t nitems_max, ptrdiff_t item_size)
966 ptrdiff_t n0 = *nitems;
967 eassume (0 < item_size && 0 < nitems_incr_min && 0 <= n0 && -1 <= nitems_max);
969 /* The approximate size to use for initial small allocation
970 requests. This is the largest "small" request for the GNU C
971 library malloc. */
972 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
974 /* If the array is tiny, grow it to about (but no greater than)
975 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%.
976 Adjust the growth according to three constraints: NITEMS_INCR_MIN,
977 NITEMS_MAX, and what the C language can represent safely. */
979 ptrdiff_t n, nbytes;
980 if (INT_ADD_WRAPV (n0, n0 >> 1, &n))
981 n = PTRDIFF_MAX;
982 if (0 <= nitems_max && nitems_max < n)
983 n = nitems_max;
985 ptrdiff_t adjusted_nbytes
986 = ((INT_MULTIPLY_WRAPV (n, item_size, &nbytes) || SIZE_MAX < nbytes)
987 ? min (PTRDIFF_MAX, SIZE_MAX)
988 : nbytes < DEFAULT_MXFAST ? DEFAULT_MXFAST : 0);
989 if (adjusted_nbytes)
991 n = adjusted_nbytes / item_size;
992 nbytes = adjusted_nbytes - adjusted_nbytes % item_size;
995 if (! pa)
996 *nitems = 0;
997 if (n - n0 < nitems_incr_min
998 && (INT_ADD_WRAPV (n0, nitems_incr_min, &n)
999 || (0 <= nitems_max && nitems_max < n)
1000 || INT_MULTIPLY_WRAPV (n, item_size, &nbytes)))
1001 memory_full (SIZE_MAX);
1002 pa = xrealloc (pa, nbytes);
1003 *nitems = n;
1004 return pa;
1008 /* Like strdup, but uses xmalloc. */
1010 char *
1011 xstrdup (const char *s)
1013 ptrdiff_t size;
1014 eassert (s);
1015 size = strlen (s) + 1;
1016 return memcpy (xmalloc (size), s, size);
1019 /* Like above, but duplicates Lisp string to C string. */
1021 char *
1022 xlispstrdup (Lisp_Object string)
1024 ptrdiff_t size = SBYTES (string) + 1;
1025 return memcpy (xmalloc (size), SSDATA (string), size);
1028 /* Assign to *PTR a copy of STRING, freeing any storage *PTR formerly
1029 pointed to. If STRING is null, assign it without copying anything.
1030 Allocate before freeing, to avoid a dangling pointer if allocation
1031 fails. */
1033 void
1034 dupstring (char **ptr, char const *string)
1036 char *old = *ptr;
1037 *ptr = string ? xstrdup (string) : 0;
1038 xfree (old);
1042 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
1043 argument is a const pointer. */
1045 void
1046 xputenv (char const *string)
1048 if (putenv ((char *) string) != 0)
1049 memory_full (0);
1052 /* Return a newly allocated memory block of SIZE bytes, remembering
1053 to free it when unwinding. */
1054 void *
1055 record_xmalloc (size_t size)
1057 void *p = xmalloc (size);
1058 record_unwind_protect_ptr (xfree, p);
1059 return p;
1063 /* Like malloc but used for allocating Lisp data. NBYTES is the
1064 number of bytes to allocate, TYPE describes the intended use of the
1065 allocated memory block (for strings, for conses, ...). */
1067 #if ! USE_LSB_TAG
1068 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
1069 #endif
1071 static void *
1072 lisp_malloc (size_t nbytes, enum mem_type type)
1074 register void *val;
1076 MALLOC_BLOCK_INPUT;
1078 #ifdef GC_MALLOC_CHECK
1079 allocated_mem_type = type;
1080 #endif
1082 val = lmalloc (nbytes);
1084 #if ! USE_LSB_TAG
1085 /* If the memory just allocated cannot be addressed thru a Lisp
1086 object's pointer, and it needs to be,
1087 that's equivalent to running out of memory. */
1088 if (val && type != MEM_TYPE_NON_LISP)
1090 Lisp_Object tem;
1091 XSETCONS (tem, (char *) val + nbytes - 1);
1092 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
1094 lisp_malloc_loser = val;
1095 free (val);
1096 val = 0;
1099 #endif
1101 #ifndef GC_MALLOC_CHECK
1102 if (val && type != MEM_TYPE_NON_LISP)
1103 mem_insert (val, (char *) val + nbytes, type);
1104 #endif
1106 MALLOC_UNBLOCK_INPUT;
1107 if (!val && nbytes)
1108 memory_full (nbytes);
1109 MALLOC_PROBE (nbytes);
1110 return val;
1113 /* Free BLOCK. This must be called to free memory allocated with a
1114 call to lisp_malloc. */
1116 static void
1117 lisp_free (void *block)
1119 MALLOC_BLOCK_INPUT;
1120 free (block);
1121 #ifndef GC_MALLOC_CHECK
1122 mem_delete (mem_find (block));
1123 #endif
1124 MALLOC_UNBLOCK_INPUT;
1127 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
1129 /* The entry point is lisp_align_malloc which returns blocks of at most
1130 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
1132 /* Byte alignment of storage blocks. */
1133 #define BLOCK_ALIGN (1 << 10)
1134 verify (POWER_OF_2 (BLOCK_ALIGN));
1136 /* Use aligned_alloc if it or a simple substitute is available.
1137 Address sanitization breaks aligned allocation, as of gcc 4.8.2 and
1138 clang 3.3 anyway. Aligned allocation is incompatible with
1139 unexmacosx.c, so don't use it on Darwin. */
1141 #if ! ADDRESS_SANITIZER && !defined DARWIN_OS
1142 # if (defined HAVE_ALIGNED_ALLOC \
1143 || (defined HYBRID_MALLOC \
1144 ? defined HAVE_POSIX_MEMALIGN \
1145 : !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC))
1146 # define USE_ALIGNED_ALLOC 1
1147 # elif !defined HYBRID_MALLOC && defined HAVE_POSIX_MEMALIGN
1148 # define USE_ALIGNED_ALLOC 1
1149 # define aligned_alloc my_aligned_alloc /* Avoid collision with lisp.h. */
1150 static void *
1151 aligned_alloc (size_t alignment, size_t size)
1153 /* POSIX says the alignment must be a power-of-2 multiple of sizeof (void *).
1154 Verify this for all arguments this function is given. */
1155 verify (BLOCK_ALIGN % sizeof (void *) == 0
1156 && POWER_OF_2 (BLOCK_ALIGN / sizeof (void *)));
1157 verify (GCALIGNMENT % sizeof (void *) == 0
1158 && POWER_OF_2 (GCALIGNMENT / sizeof (void *)));
1159 eassert (alignment == BLOCK_ALIGN || alignment == GCALIGNMENT);
1161 void *p;
1162 return posix_memalign (&p, alignment, size) == 0 ? p : 0;
1164 # endif
1165 #endif
1167 /* Padding to leave at the end of a malloc'd block. This is to give
1168 malloc a chance to minimize the amount of memory wasted to alignment.
1169 It should be tuned to the particular malloc library used.
1170 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
1171 aligned_alloc on the other hand would ideally prefer a value of 4
1172 because otherwise, there's 1020 bytes wasted between each ablocks.
1173 In Emacs, testing shows that those 1020 can most of the time be
1174 efficiently used by malloc to place other objects, so a value of 0 can
1175 still preferable unless you have a lot of aligned blocks and virtually
1176 nothing else. */
1177 #define BLOCK_PADDING 0
1178 #define BLOCK_BYTES \
1179 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
1181 /* Internal data structures and constants. */
1183 #define ABLOCKS_SIZE 16
1185 /* An aligned block of memory. */
1186 struct ablock
1188 union
1190 char payload[BLOCK_BYTES];
1191 struct ablock *next_free;
1192 } x;
1194 /* ABASE is the aligned base of the ablocks. It is overloaded to
1195 hold a virtual "busy" field that counts twice the number of used
1196 ablock values in the parent ablocks, plus one if the real base of
1197 the parent ablocks is ABASE (if the "busy" field is even, the
1198 word before the first ablock holds a pointer to the real base).
1199 The first ablock has a "busy" ABASE, and the others have an
1200 ordinary pointer ABASE. To tell the difference, the code assumes
1201 that pointers, when cast to uintptr_t, are at least 2 *
1202 ABLOCKS_SIZE + 1. */
1203 struct ablocks *abase;
1205 /* The padding of all but the last ablock is unused. The padding of
1206 the last ablock in an ablocks is not allocated. */
1207 #if BLOCK_PADDING
1208 char padding[BLOCK_PADDING];
1209 #endif
1212 /* A bunch of consecutive aligned blocks. */
1213 struct ablocks
1215 struct ablock blocks[ABLOCKS_SIZE];
1218 /* Size of the block requested from malloc or aligned_alloc. */
1219 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1221 #define ABLOCK_ABASE(block) \
1222 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1223 ? (struct ablocks *) (block) \
1224 : (block)->abase)
1226 /* Virtual `busy' field. */
1227 #define ABLOCKS_BUSY(a_base) ((a_base)->blocks[0].abase)
1229 /* Pointer to the (not necessarily aligned) malloc block. */
1230 #ifdef USE_ALIGNED_ALLOC
1231 #define ABLOCKS_BASE(abase) (abase)
1232 #else
1233 #define ABLOCKS_BASE(abase) \
1234 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **) (abase))[-1])
1235 #endif
1237 /* The list of free ablock. */
1238 static struct ablock *free_ablock;
1240 /* Allocate an aligned block of nbytes.
1241 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1242 smaller or equal to BLOCK_BYTES. */
1243 static void *
1244 lisp_align_malloc (size_t nbytes, enum mem_type type)
1246 void *base, *val;
1247 struct ablocks *abase;
1249 eassert (nbytes <= BLOCK_BYTES);
1251 MALLOC_BLOCK_INPUT;
1253 #ifdef GC_MALLOC_CHECK
1254 allocated_mem_type = type;
1255 #endif
1257 if (!free_ablock)
1259 int i;
1260 bool aligned;
1262 #ifdef DOUG_LEA_MALLOC
1263 if (!mmap_lisp_allowed_p ())
1264 mallopt (M_MMAP_MAX, 0);
1265 #endif
1267 #ifdef USE_ALIGNED_ALLOC
1268 verify (ABLOCKS_BYTES % BLOCK_ALIGN == 0);
1269 abase = base = aligned_alloc (BLOCK_ALIGN, ABLOCKS_BYTES);
1270 #else
1271 base = malloc (ABLOCKS_BYTES);
1272 abase = pointer_align (base, BLOCK_ALIGN);
1273 #endif
1275 if (base == 0)
1277 MALLOC_UNBLOCK_INPUT;
1278 memory_full (ABLOCKS_BYTES);
1281 aligned = (base == abase);
1282 if (!aligned)
1283 ((void **) abase)[-1] = base;
1285 #ifdef DOUG_LEA_MALLOC
1286 if (!mmap_lisp_allowed_p ())
1287 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1288 #endif
1290 #if ! USE_LSB_TAG
1291 /* If the memory just allocated cannot be addressed thru a Lisp
1292 object's pointer, and it needs to be, that's equivalent to
1293 running out of memory. */
1294 if (type != MEM_TYPE_NON_LISP)
1296 Lisp_Object tem;
1297 char *end = (char *) base + ABLOCKS_BYTES - 1;
1298 XSETCONS (tem, end);
1299 if ((char *) XCONS (tem) != end)
1301 lisp_malloc_loser = base;
1302 free (base);
1303 MALLOC_UNBLOCK_INPUT;
1304 memory_full (SIZE_MAX);
1307 #endif
1309 /* Initialize the blocks and put them on the free list.
1310 If `base' was not properly aligned, we can't use the last block. */
1311 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1313 abase->blocks[i].abase = abase;
1314 abase->blocks[i].x.next_free = free_ablock;
1315 free_ablock = &abase->blocks[i];
1317 intptr_t ialigned = aligned;
1318 ABLOCKS_BUSY (abase) = (struct ablocks *) ialigned;
1320 eassert ((uintptr_t) abase % BLOCK_ALIGN == 0);
1321 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1322 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1323 eassert (ABLOCKS_BASE (abase) == base);
1324 eassert ((intptr_t) ABLOCKS_BUSY (abase) == aligned);
1327 abase = ABLOCK_ABASE (free_ablock);
1328 ABLOCKS_BUSY (abase)
1329 = (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1330 val = free_ablock;
1331 free_ablock = free_ablock->x.next_free;
1333 #ifndef GC_MALLOC_CHECK
1334 if (type != MEM_TYPE_NON_LISP)
1335 mem_insert (val, (char *) val + nbytes, type);
1336 #endif
1338 MALLOC_UNBLOCK_INPUT;
1340 MALLOC_PROBE (nbytes);
1342 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1343 return val;
1346 static void
1347 lisp_align_free (void *block)
1349 struct ablock *ablock = block;
1350 struct ablocks *abase = ABLOCK_ABASE (ablock);
1352 MALLOC_BLOCK_INPUT;
1353 #ifndef GC_MALLOC_CHECK
1354 mem_delete (mem_find (block));
1355 #endif
1356 /* Put on free list. */
1357 ablock->x.next_free = free_ablock;
1358 free_ablock = ablock;
1359 /* Update busy count. */
1360 intptr_t busy = (intptr_t) ABLOCKS_BUSY (abase) - 2;
1361 eassume (0 <= busy && busy <= 2 * ABLOCKS_SIZE - 1);
1362 ABLOCKS_BUSY (abase) = (struct ablocks *) busy;
1364 if (busy < 2)
1365 { /* All the blocks are free. */
1366 int i = 0;
1367 bool aligned = busy;
1368 struct ablock **tem = &free_ablock;
1369 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1371 while (*tem)
1373 if (*tem >= (struct ablock *) abase && *tem < atop)
1375 i++;
1376 *tem = (*tem)->x.next_free;
1378 else
1379 tem = &(*tem)->x.next_free;
1381 eassert ((aligned & 1) == aligned);
1382 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1383 #ifdef USE_POSIX_MEMALIGN
1384 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1385 #endif
1386 free (ABLOCKS_BASE (abase));
1388 MALLOC_UNBLOCK_INPUT;
1391 #if !defined __GNUC__ && !defined __alignof__
1392 # define __alignof__(type) alignof (type)
1393 #endif
1395 /* True if malloc (N) is known to return a multiple of GCALIGNMENT
1396 whenever N is also a multiple. In practice this is true if
1397 __alignof__ (max_align_t) is a multiple as well, assuming
1398 GCALIGNMENT is 8; other values of GCALIGNMENT have not been looked
1399 into. Use __alignof__ if available, as otherwise
1400 MALLOC_IS_GC_ALIGNED would be false on GCC x86 even though the
1401 alignment is OK there.
1403 This is a macro, not an enum constant, for portability to HP-UX
1404 10.20 cc and AIX 3.2.5 xlc. */
1405 #define MALLOC_IS_GC_ALIGNED \
1406 (GCALIGNMENT == 8 && __alignof__ (max_align_t) % GCALIGNMENT == 0)
1408 /* True if a malloc-returned pointer P is suitably aligned for SIZE,
1409 where Lisp alignment may be needed if SIZE is Lisp-aligned. */
1411 static bool
1412 laligned (void *p, size_t size)
1414 return (MALLOC_IS_GC_ALIGNED || (intptr_t) p % GCALIGNMENT == 0
1415 || size % GCALIGNMENT != 0);
1418 /* Like malloc and realloc except that if SIZE is Lisp-aligned, make
1419 sure the result is too, if necessary by reallocating (typically
1420 with larger and larger sizes) until the allocator returns a
1421 Lisp-aligned pointer. Code that needs to allocate C heap memory
1422 for a Lisp object should use one of these functions to obtain a
1423 pointer P; that way, if T is an enum Lisp_Type value and L ==
1424 make_lisp_ptr (P, T), then XPNTR (L) == P and XTYPE (L) == T.
1426 On typical modern platforms these functions' loops do not iterate.
1427 On now-rare (and perhaps nonexistent) platforms, the loops in
1428 theory could repeat forever. If an infinite loop is possible on a
1429 platform, a build would surely loop and the builder can then send
1430 us a bug report. Adding a counter to try to detect any such loop
1431 would complicate the code (and possibly introduce bugs, in code
1432 that's never really exercised) for little benefit. */
1434 static void *
1435 lmalloc (size_t size)
1437 #if USE_ALIGNED_ALLOC
1438 if (! MALLOC_IS_GC_ALIGNED && size % GCALIGNMENT == 0)
1439 return aligned_alloc (GCALIGNMENT, size);
1440 #endif
1442 while (true)
1444 void *p = malloc (size);
1445 if (laligned (p, size))
1446 return p;
1447 free (p);
1448 size_t bigger = size + GCALIGNMENT;
1449 if (size < bigger)
1450 size = bigger;
1454 static void *
1455 lrealloc (void *p, size_t size)
1457 while (true)
1459 p = realloc (p, size);
1460 if (laligned (p, size))
1461 return p;
1462 size_t bigger = size + GCALIGNMENT;
1463 if (size < bigger)
1464 size = bigger;
1469 /***********************************************************************
1470 Interval Allocation
1471 ***********************************************************************/
1473 /* Number of intervals allocated in an interval_block structure.
1474 The 1020 is 1024 minus malloc overhead. */
1476 #define INTERVAL_BLOCK_SIZE \
1477 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1479 /* Intervals are allocated in chunks in the form of an interval_block
1480 structure. */
1482 struct interval_block
1484 /* Place `intervals' first, to preserve alignment. */
1485 struct interval intervals[INTERVAL_BLOCK_SIZE];
1486 struct interval_block *next;
1489 /* Current interval block. Its `next' pointer points to older
1490 blocks. */
1492 static struct interval_block *interval_block;
1494 /* Index in interval_block above of the next unused interval
1495 structure. */
1497 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1499 /* Number of free and live intervals. */
1501 static EMACS_INT total_free_intervals, total_intervals;
1503 /* List of free intervals. */
1505 static INTERVAL interval_free_list;
1507 /* Return a new interval. */
1509 INTERVAL
1510 make_interval (void)
1512 INTERVAL val;
1514 MALLOC_BLOCK_INPUT;
1516 if (interval_free_list)
1518 val = interval_free_list;
1519 interval_free_list = INTERVAL_PARENT (interval_free_list);
1521 else
1523 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1525 struct interval_block *newi
1526 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1528 newi->next = interval_block;
1529 interval_block = newi;
1530 interval_block_index = 0;
1531 total_free_intervals += INTERVAL_BLOCK_SIZE;
1533 val = &interval_block->intervals[interval_block_index++];
1536 MALLOC_UNBLOCK_INPUT;
1538 consing_since_gc += sizeof (struct interval);
1539 intervals_consed++;
1540 total_free_intervals--;
1541 RESET_INTERVAL (val);
1542 val->gcmarkbit = 0;
1543 return val;
1547 /* Mark Lisp objects in interval I. */
1549 static void
1550 mark_interval (register INTERVAL i, Lisp_Object dummy)
1552 /* Intervals should never be shared. So, if extra internal checking is
1553 enabled, GC aborts if it seems to have visited an interval twice. */
1554 eassert (!i->gcmarkbit);
1555 i->gcmarkbit = 1;
1556 mark_object (i->plist);
1559 /* Mark the interval tree rooted in I. */
1561 #define MARK_INTERVAL_TREE(i) \
1562 do { \
1563 if (i && !i->gcmarkbit) \
1564 traverse_intervals_noorder (i, mark_interval, Qnil); \
1565 } while (0)
1567 /***********************************************************************
1568 String Allocation
1569 ***********************************************************************/
1571 /* Lisp_Strings are allocated in string_block structures. When a new
1572 string_block is allocated, all the Lisp_Strings it contains are
1573 added to a free-list string_free_list. When a new Lisp_String is
1574 needed, it is taken from that list. During the sweep phase of GC,
1575 string_blocks that are entirely free are freed, except two which
1576 we keep.
1578 String data is allocated from sblock structures. Strings larger
1579 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1580 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1582 Sblocks consist internally of sdata structures, one for each
1583 Lisp_String. The sdata structure points to the Lisp_String it
1584 belongs to. The Lisp_String points back to the `u.data' member of
1585 its sdata structure.
1587 When a Lisp_String is freed during GC, it is put back on
1588 string_free_list, and its `data' member and its sdata's `string'
1589 pointer is set to null. The size of the string is recorded in the
1590 `n.nbytes' member of the sdata. So, sdata structures that are no
1591 longer used, can be easily recognized, and it's easy to compact the
1592 sblocks of small strings which we do in compact_small_strings. */
1594 /* Size in bytes of an sblock structure used for small strings. This
1595 is 8192 minus malloc overhead. */
1597 #define SBLOCK_SIZE 8188
1599 /* Strings larger than this are considered large strings. String data
1600 for large strings is allocated from individual sblocks. */
1602 #define LARGE_STRING_BYTES 1024
1604 /* The SDATA typedef is a struct or union describing string memory
1605 sub-allocated from an sblock. This is where the contents of Lisp
1606 strings are stored. */
1608 struct sdata
1610 /* Back-pointer to the string this sdata belongs to. If null, this
1611 structure is free, and NBYTES (in this structure or in the union below)
1612 contains the string's byte size (the same value that STRING_BYTES
1613 would return if STRING were non-null). If non-null, STRING_BYTES
1614 (STRING) is the size of the data, and DATA contains the string's
1615 contents. */
1616 struct Lisp_String *string;
1618 #ifdef GC_CHECK_STRING_BYTES
1619 ptrdiff_t nbytes;
1620 #endif
1622 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1625 #ifdef GC_CHECK_STRING_BYTES
1627 typedef struct sdata sdata;
1628 #define SDATA_NBYTES(S) (S)->nbytes
1629 #define SDATA_DATA(S) (S)->data
1631 #else
1633 typedef union
1635 struct Lisp_String *string;
1637 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1638 which has a flexible array member. However, if implemented by
1639 giving this union a member of type 'struct sdata', the union
1640 could not be the last (flexible) member of 'struct sblock',
1641 because C99 prohibits a flexible array member from having a type
1642 that is itself a flexible array. So, comment this member out here,
1643 but remember that the option's there when using this union. */
1644 #if 0
1645 struct sdata u;
1646 #endif
1648 /* When STRING is null. */
1649 struct
1651 struct Lisp_String *string;
1652 ptrdiff_t nbytes;
1653 } n;
1654 } sdata;
1656 #define SDATA_NBYTES(S) (S)->n.nbytes
1657 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1659 #endif /* not GC_CHECK_STRING_BYTES */
1661 enum { SDATA_DATA_OFFSET = offsetof (struct sdata, data) };
1663 /* Structure describing a block of memory which is sub-allocated to
1664 obtain string data memory for strings. Blocks for small strings
1665 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1666 as large as needed. */
1668 struct sblock
1670 /* Next in list. */
1671 struct sblock *next;
1673 /* Pointer to the next free sdata block. This points past the end
1674 of the sblock if there isn't any space left in this block. */
1675 sdata *next_free;
1677 /* String data. */
1678 sdata data[FLEXIBLE_ARRAY_MEMBER];
1681 /* Number of Lisp strings in a string_block structure. The 1020 is
1682 1024 minus malloc overhead. */
1684 #define STRING_BLOCK_SIZE \
1685 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1687 /* Structure describing a block from which Lisp_String structures
1688 are allocated. */
1690 struct string_block
1692 /* Place `strings' first, to preserve alignment. */
1693 struct Lisp_String strings[STRING_BLOCK_SIZE];
1694 struct string_block *next;
1697 /* Head and tail of the list of sblock structures holding Lisp string
1698 data. We always allocate from current_sblock. The NEXT pointers
1699 in the sblock structures go from oldest_sblock to current_sblock. */
1701 static struct sblock *oldest_sblock, *current_sblock;
1703 /* List of sblocks for large strings. */
1705 static struct sblock *large_sblocks;
1707 /* List of string_block structures. */
1709 static struct string_block *string_blocks;
1711 /* Free-list of Lisp_Strings. */
1713 static struct Lisp_String *string_free_list;
1715 /* Number of live and free Lisp_Strings. */
1717 static EMACS_INT total_strings, total_free_strings;
1719 /* Number of bytes used by live strings. */
1721 static EMACS_INT total_string_bytes;
1723 /* Given a pointer to a Lisp_String S which is on the free-list
1724 string_free_list, return a pointer to its successor in the
1725 free-list. */
1727 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1729 /* Return a pointer to the sdata structure belonging to Lisp string S.
1730 S must be live, i.e. S->data must not be null. S->data is actually
1731 a pointer to the `u.data' member of its sdata structure; the
1732 structure starts at a constant offset in front of that. */
1734 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1737 #ifdef GC_CHECK_STRING_OVERRUN
1739 /* We check for overrun in string data blocks by appending a small
1740 "cookie" after each allocated string data block, and check for the
1741 presence of this cookie during GC. */
1743 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1744 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1745 { '\xde', '\xad', '\xbe', '\xef' };
1747 #else
1748 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1749 #endif
1751 /* Value is the size of an sdata structure large enough to hold NBYTES
1752 bytes of string data. The value returned includes a terminating
1753 NUL byte, the size of the sdata structure, and padding. */
1755 #ifdef GC_CHECK_STRING_BYTES
1757 #define SDATA_SIZE(NBYTES) FLEXSIZEOF (struct sdata, data, NBYTES)
1759 #else /* not GC_CHECK_STRING_BYTES */
1761 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1762 less than the size of that member. The 'max' is not needed when
1763 SDATA_DATA_OFFSET is a multiple of FLEXALIGNOF (struct sdata),
1764 because then the alignment code reserves enough space. */
1766 #define SDATA_SIZE(NBYTES) \
1767 ((SDATA_DATA_OFFSET \
1768 + (SDATA_DATA_OFFSET % FLEXALIGNOF (struct sdata) == 0 \
1769 ? NBYTES \
1770 : max (NBYTES, FLEXALIGNOF (struct sdata) - 1)) \
1771 + 1 \
1772 + FLEXALIGNOF (struct sdata) - 1) \
1773 & ~(FLEXALIGNOF (struct sdata) - 1))
1775 #endif /* not GC_CHECK_STRING_BYTES */
1777 /* Extra bytes to allocate for each string. */
1779 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1781 /* Exact bound on the number of bytes in a string, not counting the
1782 terminating null. A string cannot contain more bytes than
1783 STRING_BYTES_BOUND, nor can it be so long that the size_t
1784 arithmetic in allocate_string_data would overflow while it is
1785 calculating a value to be passed to malloc. */
1786 static ptrdiff_t const STRING_BYTES_MAX =
1787 min (STRING_BYTES_BOUND,
1788 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1789 - GC_STRING_EXTRA
1790 - offsetof (struct sblock, data)
1791 - SDATA_DATA_OFFSET)
1792 & ~(sizeof (EMACS_INT) - 1)));
1794 /* Initialize string allocation. Called from init_alloc_once. */
1796 static void
1797 init_strings (void)
1799 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1800 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1804 #ifdef GC_CHECK_STRING_BYTES
1806 static int check_string_bytes_count;
1808 /* Like STRING_BYTES, but with debugging check. Can be
1809 called during GC, so pay attention to the mark bit. */
1811 ptrdiff_t
1812 string_bytes (struct Lisp_String *s)
1814 ptrdiff_t nbytes =
1815 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1817 if (!PURE_P (s) && s->data && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1818 emacs_abort ();
1819 return nbytes;
1822 /* Check validity of Lisp strings' string_bytes member in B. */
1824 static void
1825 check_sblock (struct sblock *b)
1827 sdata *from, *end, *from_end;
1829 end = b->next_free;
1831 for (from = b->data; from < end; from = from_end)
1833 /* Compute the next FROM here because copying below may
1834 overwrite data we need to compute it. */
1835 ptrdiff_t nbytes;
1837 /* Check that the string size recorded in the string is the
1838 same as the one recorded in the sdata structure. */
1839 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1840 : SDATA_NBYTES (from));
1841 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1846 /* Check validity of Lisp strings' string_bytes member. ALL_P
1847 means check all strings, otherwise check only most
1848 recently allocated strings. Used for hunting a bug. */
1850 static void
1851 check_string_bytes (bool all_p)
1853 if (all_p)
1855 struct sblock *b;
1857 for (b = large_sblocks; b; b = b->next)
1859 struct Lisp_String *s = b->data[0].string;
1860 if (s)
1861 string_bytes (s);
1864 for (b = oldest_sblock; b; b = b->next)
1865 check_sblock (b);
1867 else if (current_sblock)
1868 check_sblock (current_sblock);
1871 #else /* not GC_CHECK_STRING_BYTES */
1873 #define check_string_bytes(all) ((void) 0)
1875 #endif /* GC_CHECK_STRING_BYTES */
1877 #ifdef GC_CHECK_STRING_FREE_LIST
1879 /* Walk through the string free list looking for bogus next pointers.
1880 This may catch buffer overrun from a previous string. */
1882 static void
1883 check_string_free_list (void)
1885 struct Lisp_String *s;
1887 /* Pop a Lisp_String off the free-list. */
1888 s = string_free_list;
1889 while (s != NULL)
1891 if ((uintptr_t) s < 1024)
1892 emacs_abort ();
1893 s = NEXT_FREE_LISP_STRING (s);
1896 #else
1897 #define check_string_free_list()
1898 #endif
1900 /* Return a new Lisp_String. */
1902 static struct Lisp_String *
1903 allocate_string (void)
1905 struct Lisp_String *s;
1907 MALLOC_BLOCK_INPUT;
1909 /* If the free-list is empty, allocate a new string_block, and
1910 add all the Lisp_Strings in it to the free-list. */
1911 if (string_free_list == NULL)
1913 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1914 int i;
1916 b->next = string_blocks;
1917 string_blocks = b;
1919 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1921 s = b->strings + i;
1922 /* Every string on a free list should have NULL data pointer. */
1923 s->data = NULL;
1924 NEXT_FREE_LISP_STRING (s) = string_free_list;
1925 string_free_list = s;
1928 total_free_strings += STRING_BLOCK_SIZE;
1931 check_string_free_list ();
1933 /* Pop a Lisp_String off the free-list. */
1934 s = string_free_list;
1935 string_free_list = NEXT_FREE_LISP_STRING (s);
1937 MALLOC_UNBLOCK_INPUT;
1939 --total_free_strings;
1940 ++total_strings;
1941 ++strings_consed;
1942 consing_since_gc += sizeof *s;
1944 #ifdef GC_CHECK_STRING_BYTES
1945 if (!noninteractive)
1947 if (++check_string_bytes_count == 200)
1949 check_string_bytes_count = 0;
1950 check_string_bytes (1);
1952 else
1953 check_string_bytes (0);
1955 #endif /* GC_CHECK_STRING_BYTES */
1957 return s;
1961 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1962 plus a NUL byte at the end. Allocate an sdata structure for S, and
1963 set S->data to its `u.data' member. Store a NUL byte at the end of
1964 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1965 S->data if it was initially non-null. */
1967 void
1968 allocate_string_data (struct Lisp_String *s,
1969 EMACS_INT nchars, EMACS_INT nbytes)
1971 sdata *data, *old_data;
1972 struct sblock *b;
1973 ptrdiff_t needed, old_nbytes;
1975 if (STRING_BYTES_MAX < nbytes)
1976 string_overflow ();
1978 /* Determine the number of bytes needed to store NBYTES bytes
1979 of string data. */
1980 needed = SDATA_SIZE (nbytes);
1981 if (s->data)
1983 old_data = SDATA_OF_STRING (s);
1984 old_nbytes = STRING_BYTES (s);
1986 else
1987 old_data = NULL;
1989 MALLOC_BLOCK_INPUT;
1991 if (nbytes > LARGE_STRING_BYTES)
1993 size_t size = FLEXSIZEOF (struct sblock, data, needed);
1995 #ifdef DOUG_LEA_MALLOC
1996 if (!mmap_lisp_allowed_p ())
1997 mallopt (M_MMAP_MAX, 0);
1998 #endif
2000 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
2002 #ifdef DOUG_LEA_MALLOC
2003 if (!mmap_lisp_allowed_p ())
2004 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2005 #endif
2007 data = b->data;
2008 b->next = large_sblocks;
2009 b->next_free = data;
2010 large_sblocks = b;
2012 else if (current_sblock == NULL
2013 || (((char *) current_sblock + SBLOCK_SIZE
2014 - (char *) current_sblock->next_free)
2015 < (needed + GC_STRING_EXTRA)))
2017 /* Not enough room in the current sblock. */
2018 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2019 data = b->data;
2020 b->next = NULL;
2021 b->next_free = data;
2023 if (current_sblock)
2024 current_sblock->next = b;
2025 else
2026 oldest_sblock = b;
2027 current_sblock = b;
2029 else
2031 b = current_sblock;
2032 data = b->next_free;
2035 data->string = s;
2036 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2038 MALLOC_UNBLOCK_INPUT;
2040 s->data = SDATA_DATA (data);
2041 #ifdef GC_CHECK_STRING_BYTES
2042 SDATA_NBYTES (data) = nbytes;
2043 #endif
2044 s->size = nchars;
2045 s->size_byte = nbytes;
2046 s->data[nbytes] = '\0';
2047 #ifdef GC_CHECK_STRING_OVERRUN
2048 memcpy ((char *) data + needed, string_overrun_cookie,
2049 GC_STRING_OVERRUN_COOKIE_SIZE);
2050 #endif
2052 /* Note that Faset may call to this function when S has already data
2053 assigned. In this case, mark data as free by setting it's string
2054 back-pointer to null, and record the size of the data in it. */
2055 if (old_data)
2057 SDATA_NBYTES (old_data) = old_nbytes;
2058 old_data->string = NULL;
2061 consing_since_gc += needed;
2065 /* Sweep and compact strings. */
2067 NO_INLINE /* For better stack traces */
2068 static void
2069 sweep_strings (void)
2071 struct string_block *b, *next;
2072 struct string_block *live_blocks = NULL;
2074 string_free_list = NULL;
2075 total_strings = total_free_strings = 0;
2076 total_string_bytes = 0;
2078 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2079 for (b = string_blocks; b; b = next)
2081 int i, nfree = 0;
2082 struct Lisp_String *free_list_before = string_free_list;
2084 next = b->next;
2086 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2088 struct Lisp_String *s = b->strings + i;
2090 if (s->data)
2092 /* String was not on free-list before. */
2093 if (STRING_MARKED_P (s))
2095 /* String is live; unmark it and its intervals. */
2096 UNMARK_STRING (s);
2098 /* Do not use string_(set|get)_intervals here. */
2099 s->intervals = balance_intervals (s->intervals);
2101 ++total_strings;
2102 total_string_bytes += STRING_BYTES (s);
2104 else
2106 /* String is dead. Put it on the free-list. */
2107 sdata *data = SDATA_OF_STRING (s);
2109 /* Save the size of S in its sdata so that we know
2110 how large that is. Reset the sdata's string
2111 back-pointer so that we know it's free. */
2112 #ifdef GC_CHECK_STRING_BYTES
2113 if (string_bytes (s) != SDATA_NBYTES (data))
2114 emacs_abort ();
2115 #else
2116 data->n.nbytes = STRING_BYTES (s);
2117 #endif
2118 data->string = NULL;
2120 /* Reset the strings's `data' member so that we
2121 know it's free. */
2122 s->data = NULL;
2124 /* Put the string on the free-list. */
2125 NEXT_FREE_LISP_STRING (s) = string_free_list;
2126 string_free_list = s;
2127 ++nfree;
2130 else
2132 /* S was on the free-list before. Put it there again. */
2133 NEXT_FREE_LISP_STRING (s) = string_free_list;
2134 string_free_list = s;
2135 ++nfree;
2139 /* Free blocks that contain free Lisp_Strings only, except
2140 the first two of them. */
2141 if (nfree == STRING_BLOCK_SIZE
2142 && total_free_strings > STRING_BLOCK_SIZE)
2144 lisp_free (b);
2145 string_free_list = free_list_before;
2147 else
2149 total_free_strings += nfree;
2150 b->next = live_blocks;
2151 live_blocks = b;
2155 check_string_free_list ();
2157 string_blocks = live_blocks;
2158 free_large_strings ();
2159 compact_small_strings ();
2161 check_string_free_list ();
2165 /* Free dead large strings. */
2167 static void
2168 free_large_strings (void)
2170 struct sblock *b, *next;
2171 struct sblock *live_blocks = NULL;
2173 for (b = large_sblocks; b; b = next)
2175 next = b->next;
2177 if (b->data[0].string == NULL)
2178 lisp_free (b);
2179 else
2181 b->next = live_blocks;
2182 live_blocks = b;
2186 large_sblocks = live_blocks;
2190 /* Compact data of small strings. Free sblocks that don't contain
2191 data of live strings after compaction. */
2193 static void
2194 compact_small_strings (void)
2196 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2197 to, and TB_END is the end of TB. */
2198 struct sblock *tb = oldest_sblock;
2199 if (tb)
2201 sdata *tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2202 sdata *to = tb->data;
2204 /* Step through the blocks from the oldest to the youngest. We
2205 expect that old blocks will stabilize over time, so that less
2206 copying will happen this way. */
2207 struct sblock *b = tb;
2210 sdata *end = b->next_free;
2211 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2213 for (sdata *from = b->data; from < end; )
2215 /* Compute the next FROM here because copying below may
2216 overwrite data we need to compute it. */
2217 ptrdiff_t nbytes;
2218 struct Lisp_String *s = from->string;
2220 #ifdef GC_CHECK_STRING_BYTES
2221 /* Check that the string size recorded in the string is the
2222 same as the one recorded in the sdata structure. */
2223 if (s && string_bytes (s) != SDATA_NBYTES (from))
2224 emacs_abort ();
2225 #endif /* GC_CHECK_STRING_BYTES */
2227 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
2228 eassert (nbytes <= LARGE_STRING_BYTES);
2230 nbytes = SDATA_SIZE (nbytes);
2231 sdata *from_end = (sdata *) ((char *) from
2232 + nbytes + GC_STRING_EXTRA);
2234 #ifdef GC_CHECK_STRING_OVERRUN
2235 if (memcmp (string_overrun_cookie,
2236 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2237 GC_STRING_OVERRUN_COOKIE_SIZE))
2238 emacs_abort ();
2239 #endif
2241 /* Non-NULL S means it's alive. Copy its data. */
2242 if (s)
2244 /* If TB is full, proceed with the next sblock. */
2245 sdata *to_end = (sdata *) ((char *) to
2246 + nbytes + GC_STRING_EXTRA);
2247 if (to_end > tb_end)
2249 tb->next_free = to;
2250 tb = tb->next;
2251 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2252 to = tb->data;
2253 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2256 /* Copy, and update the string's `data' pointer. */
2257 if (from != to)
2259 eassert (tb != b || to < from);
2260 memmove (to, from, nbytes + GC_STRING_EXTRA);
2261 to->string->data = SDATA_DATA (to);
2264 /* Advance past the sdata we copied to. */
2265 to = to_end;
2267 from = from_end;
2269 b = b->next;
2271 while (b);
2273 /* The rest of the sblocks following TB don't contain live data, so
2274 we can free them. */
2275 for (b = tb->next; b; )
2277 struct sblock *next = b->next;
2278 lisp_free (b);
2279 b = next;
2282 tb->next_free = to;
2283 tb->next = NULL;
2286 current_sblock = tb;
2289 void
2290 string_overflow (void)
2292 error ("Maximum string size exceeded");
2295 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2296 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2297 LENGTH must be an integer.
2298 INIT must be an integer that represents a character. */)
2299 (Lisp_Object length, Lisp_Object init)
2301 register Lisp_Object val;
2302 int c;
2303 EMACS_INT nbytes;
2305 CHECK_NATNUM (length);
2306 CHECK_CHARACTER (init);
2308 c = XFASTINT (init);
2309 if (ASCII_CHAR_P (c))
2311 nbytes = XINT (length);
2312 val = make_uninit_string (nbytes);
2313 if (nbytes)
2315 memset (SDATA (val), c, nbytes);
2316 SDATA (val)[nbytes] = 0;
2319 else
2321 unsigned char str[MAX_MULTIBYTE_LENGTH];
2322 ptrdiff_t len = CHAR_STRING (c, str);
2323 EMACS_INT string_len = XINT (length);
2324 unsigned char *p, *beg, *end;
2326 if (INT_MULTIPLY_WRAPV (len, string_len, &nbytes))
2327 string_overflow ();
2328 val = make_uninit_multibyte_string (string_len, nbytes);
2329 for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
2331 /* First time we just copy `str' to the data of `val'. */
2332 if (p == beg)
2333 memcpy (p, str, len);
2334 else
2336 /* Next time we copy largest possible chunk from
2337 initialized to uninitialized part of `val'. */
2338 len = min (p - beg, end - p);
2339 memcpy (p, beg, len);
2342 if (nbytes)
2343 *p = 0;
2346 return val;
2349 /* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
2350 Return A. */
2352 Lisp_Object
2353 bool_vector_fill (Lisp_Object a, Lisp_Object init)
2355 EMACS_INT nbits = bool_vector_size (a);
2356 if (0 < nbits)
2358 unsigned char *data = bool_vector_uchar_data (a);
2359 int pattern = NILP (init) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR) - 1;
2360 ptrdiff_t nbytes = bool_vector_bytes (nbits);
2361 int last_mask = ~ (~0u << ((nbits - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1));
2362 memset (data, pattern, nbytes - 1);
2363 data[nbytes - 1] = pattern & last_mask;
2365 return a;
2368 /* Return a newly allocated, uninitialized bool vector of size NBITS. */
2370 Lisp_Object
2371 make_uninit_bool_vector (EMACS_INT nbits)
2373 Lisp_Object val;
2374 EMACS_INT words = bool_vector_words (nbits);
2375 EMACS_INT word_bytes = words * sizeof (bits_word);
2376 EMACS_INT needed_elements = ((bool_header_size - header_size + word_bytes
2377 + word_size - 1)
2378 / word_size);
2379 struct Lisp_Bool_Vector *p
2380 = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2381 XSETVECTOR (val, p);
2382 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2383 p->size = nbits;
2385 /* Clear padding at the end. */
2386 if (words)
2387 p->data[words - 1] = 0;
2389 return val;
2392 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2393 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2394 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2395 (Lisp_Object length, Lisp_Object init)
2397 Lisp_Object val;
2399 CHECK_NATNUM (length);
2400 val = make_uninit_bool_vector (XFASTINT (length));
2401 return bool_vector_fill (val, init);
2404 DEFUN ("bool-vector", Fbool_vector, Sbool_vector, 0, MANY, 0,
2405 doc: /* Return a new bool-vector with specified arguments as elements.
2406 Any number of arguments, even zero arguments, are allowed.
2407 usage: (bool-vector &rest OBJECTS) */)
2408 (ptrdiff_t nargs, Lisp_Object *args)
2410 ptrdiff_t i;
2411 Lisp_Object vector;
2413 vector = make_uninit_bool_vector (nargs);
2414 for (i = 0; i < nargs; i++)
2415 bool_vector_set (vector, i, !NILP (args[i]));
2417 return vector;
2420 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2421 of characters from the contents. This string may be unibyte or
2422 multibyte, depending on the contents. */
2424 Lisp_Object
2425 make_string (const char *contents, ptrdiff_t nbytes)
2427 register Lisp_Object val;
2428 ptrdiff_t nchars, multibyte_nbytes;
2430 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2431 &nchars, &multibyte_nbytes);
2432 if (nbytes == nchars || nbytes != multibyte_nbytes)
2433 /* CONTENTS contains no multibyte sequences or contains an invalid
2434 multibyte sequence. We must make unibyte string. */
2435 val = make_unibyte_string (contents, nbytes);
2436 else
2437 val = make_multibyte_string (contents, nchars, nbytes);
2438 return val;
2441 /* Make a unibyte string from LENGTH bytes at CONTENTS. */
2443 Lisp_Object
2444 make_unibyte_string (const char *contents, ptrdiff_t length)
2446 register Lisp_Object val;
2447 val = make_uninit_string (length);
2448 memcpy (SDATA (val), contents, length);
2449 return val;
2453 /* Make a multibyte string from NCHARS characters occupying NBYTES
2454 bytes at CONTENTS. */
2456 Lisp_Object
2457 make_multibyte_string (const char *contents,
2458 ptrdiff_t nchars, ptrdiff_t nbytes)
2460 register Lisp_Object val;
2461 val = make_uninit_multibyte_string (nchars, nbytes);
2462 memcpy (SDATA (val), contents, nbytes);
2463 return val;
2467 /* Make a string from NCHARS characters occupying NBYTES bytes at
2468 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2470 Lisp_Object
2471 make_string_from_bytes (const char *contents,
2472 ptrdiff_t nchars, ptrdiff_t nbytes)
2474 register Lisp_Object val;
2475 val = make_uninit_multibyte_string (nchars, nbytes);
2476 memcpy (SDATA (val), contents, nbytes);
2477 if (SBYTES (val) == SCHARS (val))
2478 STRING_SET_UNIBYTE (val);
2479 return val;
2483 /* Make a string from NCHARS characters occupying NBYTES bytes at
2484 CONTENTS. The argument MULTIBYTE controls whether to label the
2485 string as multibyte. If NCHARS is negative, it counts the number of
2486 characters by itself. */
2488 Lisp_Object
2489 make_specified_string (const char *contents,
2490 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2492 Lisp_Object val;
2494 if (nchars < 0)
2496 if (multibyte)
2497 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2498 nbytes);
2499 else
2500 nchars = nbytes;
2502 val = make_uninit_multibyte_string (nchars, nbytes);
2503 memcpy (SDATA (val), contents, nbytes);
2504 if (!multibyte)
2505 STRING_SET_UNIBYTE (val);
2506 return val;
2510 /* Return a unibyte Lisp_String set up to hold LENGTH characters
2511 occupying LENGTH bytes. */
2513 Lisp_Object
2514 make_uninit_string (EMACS_INT length)
2516 Lisp_Object val;
2518 if (!length)
2519 return empty_unibyte_string;
2520 val = make_uninit_multibyte_string (length, length);
2521 STRING_SET_UNIBYTE (val);
2522 return val;
2526 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2527 which occupy NBYTES bytes. */
2529 Lisp_Object
2530 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2532 Lisp_Object string;
2533 struct Lisp_String *s;
2535 if (nchars < 0)
2536 emacs_abort ();
2537 if (!nbytes)
2538 return empty_multibyte_string;
2540 s = allocate_string ();
2541 s->intervals = NULL;
2542 allocate_string_data (s, nchars, nbytes);
2543 XSETSTRING (string, s);
2544 string_chars_consed += nbytes;
2545 return string;
2548 /* Print arguments to BUF according to a FORMAT, then return
2549 a Lisp_String initialized with the data from BUF. */
2551 Lisp_Object
2552 make_formatted_string (char *buf, const char *format, ...)
2554 va_list ap;
2555 int length;
2557 va_start (ap, format);
2558 length = vsprintf (buf, format, ap);
2559 va_end (ap);
2560 return make_string (buf, length);
2564 /***********************************************************************
2565 Float Allocation
2566 ***********************************************************************/
2568 /* We store float cells inside of float_blocks, allocating a new
2569 float_block with malloc whenever necessary. Float cells reclaimed
2570 by GC are put on a free list to be reallocated before allocating
2571 any new float cells from the latest float_block. */
2573 #define FLOAT_BLOCK_SIZE \
2574 (((BLOCK_BYTES - sizeof (struct float_block *) \
2575 /* The compiler might add padding at the end. */ \
2576 - (sizeof (struct Lisp_Float) - sizeof (bits_word))) * CHAR_BIT) \
2577 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2579 #define GETMARKBIT(block,n) \
2580 (((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2581 >> ((n) % BITS_PER_BITS_WORD)) \
2582 & 1)
2584 #define SETMARKBIT(block,n) \
2585 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2586 |= (bits_word) 1 << ((n) % BITS_PER_BITS_WORD))
2588 #define UNSETMARKBIT(block,n) \
2589 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2590 &= ~((bits_word) 1 << ((n) % BITS_PER_BITS_WORD)))
2592 #define FLOAT_BLOCK(fptr) \
2593 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2595 #define FLOAT_INDEX(fptr) \
2596 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2598 struct float_block
2600 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2601 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2602 bits_word gcmarkbits[1 + FLOAT_BLOCK_SIZE / BITS_PER_BITS_WORD];
2603 struct float_block *next;
2606 #define FLOAT_MARKED_P(fptr) \
2607 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2609 #define FLOAT_MARK(fptr) \
2610 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2612 #define FLOAT_UNMARK(fptr) \
2613 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2615 /* Current float_block. */
2617 static struct float_block *float_block;
2619 /* Index of first unused Lisp_Float in the current float_block. */
2621 static int float_block_index = FLOAT_BLOCK_SIZE;
2623 /* Free-list of Lisp_Floats. */
2625 static struct Lisp_Float *float_free_list;
2627 /* Return a new float object with value FLOAT_VALUE. */
2629 Lisp_Object
2630 make_float (double float_value)
2632 register Lisp_Object val;
2634 MALLOC_BLOCK_INPUT;
2636 if (float_free_list)
2638 /* We use the data field for chaining the free list
2639 so that we won't use the same field that has the mark bit. */
2640 XSETFLOAT (val, float_free_list);
2641 float_free_list = float_free_list->u.chain;
2643 else
2645 if (float_block_index == FLOAT_BLOCK_SIZE)
2647 struct float_block *new
2648 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2649 new->next = float_block;
2650 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2651 float_block = new;
2652 float_block_index = 0;
2653 total_free_floats += FLOAT_BLOCK_SIZE;
2655 XSETFLOAT (val, &float_block->floats[float_block_index]);
2656 float_block_index++;
2659 MALLOC_UNBLOCK_INPUT;
2661 XFLOAT_INIT (val, float_value);
2662 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2663 consing_since_gc += sizeof (struct Lisp_Float);
2664 floats_consed++;
2665 total_free_floats--;
2666 return val;
2671 /***********************************************************************
2672 Cons Allocation
2673 ***********************************************************************/
2675 /* We store cons cells inside of cons_blocks, allocating a new
2676 cons_block with malloc whenever necessary. Cons cells reclaimed by
2677 GC are put on a free list to be reallocated before allocating
2678 any new cons cells from the latest cons_block. */
2680 #define CONS_BLOCK_SIZE \
2681 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2682 /* The compiler might add padding at the end. */ \
2683 - (sizeof (struct Lisp_Cons) - sizeof (bits_word))) * CHAR_BIT) \
2684 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2686 #define CONS_BLOCK(fptr) \
2687 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2689 #define CONS_INDEX(fptr) \
2690 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2692 struct cons_block
2694 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2695 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2696 bits_word gcmarkbits[1 + CONS_BLOCK_SIZE / BITS_PER_BITS_WORD];
2697 struct cons_block *next;
2700 #define CONS_MARKED_P(fptr) \
2701 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2703 #define CONS_MARK(fptr) \
2704 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2706 #define CONS_UNMARK(fptr) \
2707 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2709 /* Current cons_block. */
2711 static struct cons_block *cons_block;
2713 /* Index of first unused Lisp_Cons in the current block. */
2715 static int cons_block_index = CONS_BLOCK_SIZE;
2717 /* Free-list of Lisp_Cons structures. */
2719 static struct Lisp_Cons *cons_free_list;
2721 /* Explicitly free a cons cell by putting it on the free-list. */
2723 void
2724 free_cons (struct Lisp_Cons *ptr)
2726 ptr->u.chain = cons_free_list;
2727 ptr->car = Vdead;
2728 cons_free_list = ptr;
2729 consing_since_gc -= sizeof *ptr;
2730 total_free_conses++;
2733 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2734 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2735 (Lisp_Object car, Lisp_Object cdr)
2737 register Lisp_Object val;
2739 MALLOC_BLOCK_INPUT;
2741 if (cons_free_list)
2743 /* We use the cdr for chaining the free list
2744 so that we won't use the same field that has the mark bit. */
2745 XSETCONS (val, cons_free_list);
2746 cons_free_list = cons_free_list->u.chain;
2748 else
2750 if (cons_block_index == CONS_BLOCK_SIZE)
2752 struct cons_block *new
2753 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2754 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2755 new->next = cons_block;
2756 cons_block = new;
2757 cons_block_index = 0;
2758 total_free_conses += CONS_BLOCK_SIZE;
2760 XSETCONS (val, &cons_block->conses[cons_block_index]);
2761 cons_block_index++;
2764 MALLOC_UNBLOCK_INPUT;
2766 XSETCAR (val, car);
2767 XSETCDR (val, cdr);
2768 eassert (!CONS_MARKED_P (XCONS (val)));
2769 consing_since_gc += sizeof (struct Lisp_Cons);
2770 total_free_conses--;
2771 cons_cells_consed++;
2772 return val;
2775 #ifdef GC_CHECK_CONS_LIST
2776 /* Get an error now if there's any junk in the cons free list. */
2777 void
2778 check_cons_list (void)
2780 struct Lisp_Cons *tail = cons_free_list;
2782 while (tail)
2783 tail = tail->u.chain;
2785 #endif
2787 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2789 Lisp_Object
2790 list1 (Lisp_Object arg1)
2792 return Fcons (arg1, Qnil);
2795 Lisp_Object
2796 list2 (Lisp_Object arg1, Lisp_Object arg2)
2798 return Fcons (arg1, Fcons (arg2, Qnil));
2802 Lisp_Object
2803 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2805 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2809 Lisp_Object
2810 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2812 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2816 Lisp_Object
2817 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2819 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2820 Fcons (arg5, Qnil)))));
2823 /* Make a list of COUNT Lisp_Objects, where ARG is the
2824 first one. Allocate conses from pure space if TYPE
2825 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2827 Lisp_Object
2828 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2830 Lisp_Object (*cons) (Lisp_Object, Lisp_Object);
2831 switch (type)
2833 case CONSTYPE_PURE: cons = pure_cons; break;
2834 case CONSTYPE_HEAP: cons = Fcons; break;
2835 default: emacs_abort ();
2838 eassume (0 < count);
2839 Lisp_Object val = cons (arg, Qnil);
2840 Lisp_Object tail = val;
2842 va_list ap;
2843 va_start (ap, arg);
2844 for (ptrdiff_t i = 1; i < count; i++)
2846 Lisp_Object elem = cons (va_arg (ap, Lisp_Object), Qnil);
2847 XSETCDR (tail, elem);
2848 tail = elem;
2850 va_end (ap);
2852 return val;
2855 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2856 doc: /* Return a newly created list with specified arguments as elements.
2857 Any number of arguments, even zero arguments, are allowed.
2858 usage: (list &rest OBJECTS) */)
2859 (ptrdiff_t nargs, Lisp_Object *args)
2861 register Lisp_Object val;
2862 val = Qnil;
2864 while (nargs > 0)
2866 nargs--;
2867 val = Fcons (args[nargs], val);
2869 return val;
2873 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2874 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2875 (Lisp_Object length, Lisp_Object init)
2877 Lisp_Object val = Qnil;
2878 CHECK_NATNUM (length);
2880 for (EMACS_INT size = XFASTINT (length); 0 < size; size--)
2882 val = Fcons (init, val);
2883 maybe_quit ();
2886 return val;
2891 /***********************************************************************
2892 Vector Allocation
2893 ***********************************************************************/
2895 /* Sometimes a vector's contents are merely a pointer internally used
2896 in vector allocation code. On the rare platforms where a null
2897 pointer cannot be tagged, represent it with a Lisp 0.
2898 Usually you don't want to touch this. */
2900 static struct Lisp_Vector *
2901 next_vector (struct Lisp_Vector *v)
2903 return XUNTAG (v->contents[0], Lisp_Int0);
2906 static void
2907 set_next_vector (struct Lisp_Vector *v, struct Lisp_Vector *p)
2909 v->contents[0] = make_lisp_ptr (p, Lisp_Int0);
2912 /* This value is balanced well enough to avoid too much internal overhead
2913 for the most common cases; it's not required to be a power of two, but
2914 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2916 #define VECTOR_BLOCK_SIZE 4096
2918 enum
2920 /* Alignment of struct Lisp_Vector objects. */
2921 vector_alignment = COMMON_MULTIPLE (FLEXALIGNOF (struct Lisp_Vector),
2922 GCALIGNMENT),
2924 /* Vector size requests are a multiple of this. */
2925 roundup_size = COMMON_MULTIPLE (vector_alignment, word_size)
2928 /* Verify assumptions described above. */
2929 verify (VECTOR_BLOCK_SIZE % roundup_size == 0);
2930 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2932 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2933 #define vroundup_ct(x) ROUNDUP (x, roundup_size)
2934 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2935 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2937 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2939 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2941 /* Size of the minimal vector allocated from block. */
2943 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2945 /* Size of the largest vector allocated from block. */
2947 #define VBLOCK_BYTES_MAX \
2948 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2950 /* We maintain one free list for each possible block-allocated
2951 vector size, and this is the number of free lists we have. */
2953 #define VECTOR_MAX_FREE_LIST_INDEX \
2954 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2956 /* Common shortcut to advance vector pointer over a block data. */
2958 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2960 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2962 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2964 /* Common shortcut to setup vector on a free list. */
2966 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2967 do { \
2968 (tmp) = ((nbytes - header_size) / word_size); \
2969 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2970 eassert ((nbytes) % roundup_size == 0); \
2971 (tmp) = VINDEX (nbytes); \
2972 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2973 set_next_vector (v, vector_free_lists[tmp]); \
2974 vector_free_lists[tmp] = (v); \
2975 total_free_vector_slots += (nbytes) / word_size; \
2976 } while (0)
2978 /* This internal type is used to maintain the list of large vectors
2979 which are allocated at their own, e.g. outside of vector blocks.
2981 struct large_vector itself cannot contain a struct Lisp_Vector, as
2982 the latter contains a flexible array member and C99 does not allow
2983 such structs to be nested. Instead, each struct large_vector
2984 object LV is followed by a struct Lisp_Vector, which is at offset
2985 large_vector_offset from LV, and whose address is therefore
2986 large_vector_vec (&LV). */
2988 struct large_vector
2990 struct large_vector *next;
2993 enum
2995 large_vector_offset = ROUNDUP (sizeof (struct large_vector), vector_alignment)
2998 static struct Lisp_Vector *
2999 large_vector_vec (struct large_vector *p)
3001 return (struct Lisp_Vector *) ((char *) p + large_vector_offset);
3004 /* This internal type is used to maintain an underlying storage
3005 for small vectors. */
3007 struct vector_block
3009 char data[VECTOR_BLOCK_BYTES];
3010 struct vector_block *next;
3013 /* Chain of vector blocks. */
3015 static struct vector_block *vector_blocks;
3017 /* Vector free lists, where NTH item points to a chain of free
3018 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
3020 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
3022 /* Singly-linked list of large vectors. */
3024 static struct large_vector *large_vectors;
3026 /* The only vector with 0 slots, allocated from pure space. */
3028 Lisp_Object zero_vector;
3030 /* Number of live vectors. */
3032 static EMACS_INT total_vectors;
3034 /* Total size of live and free vectors, in Lisp_Object units. */
3036 static EMACS_INT total_vector_slots, total_free_vector_slots;
3038 /* Get a new vector block. */
3040 static struct vector_block *
3041 allocate_vector_block (void)
3043 struct vector_block *block = xmalloc (sizeof *block);
3045 #ifndef GC_MALLOC_CHECK
3046 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
3047 MEM_TYPE_VECTOR_BLOCK);
3048 #endif
3050 block->next = vector_blocks;
3051 vector_blocks = block;
3052 return block;
3055 /* Called once to initialize vector allocation. */
3057 static void
3058 init_vectors (void)
3060 zero_vector = make_pure_vector (0);
3063 /* Allocate vector from a vector block. */
3065 static struct Lisp_Vector *
3066 allocate_vector_from_block (size_t nbytes)
3068 struct Lisp_Vector *vector;
3069 struct vector_block *block;
3070 size_t index, restbytes;
3072 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
3073 eassert (nbytes % roundup_size == 0);
3075 /* First, try to allocate from a free list
3076 containing vectors of the requested size. */
3077 index = VINDEX (nbytes);
3078 if (vector_free_lists[index])
3080 vector = vector_free_lists[index];
3081 vector_free_lists[index] = next_vector (vector);
3082 total_free_vector_slots -= nbytes / word_size;
3083 return vector;
3086 /* Next, check free lists containing larger vectors. Since
3087 we will split the result, we should have remaining space
3088 large enough to use for one-slot vector at least. */
3089 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
3090 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
3091 if (vector_free_lists[index])
3093 /* This vector is larger than requested. */
3094 vector = vector_free_lists[index];
3095 vector_free_lists[index] = next_vector (vector);
3096 total_free_vector_slots -= nbytes / word_size;
3098 /* Excess bytes are used for the smaller vector,
3099 which should be set on an appropriate free list. */
3100 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
3101 eassert (restbytes % roundup_size == 0);
3102 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
3103 return vector;
3106 /* Finally, need a new vector block. */
3107 block = allocate_vector_block ();
3109 /* New vector will be at the beginning of this block. */
3110 vector = (struct Lisp_Vector *) block->data;
3112 /* If the rest of space from this block is large enough
3113 for one-slot vector at least, set up it on a free list. */
3114 restbytes = VECTOR_BLOCK_BYTES - nbytes;
3115 if (restbytes >= VBLOCK_BYTES_MIN)
3117 eassert (restbytes % roundup_size == 0);
3118 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
3120 return vector;
3123 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
3125 #define VECTOR_IN_BLOCK(vector, block) \
3126 ((char *) (vector) <= (block)->data \
3127 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
3129 /* Return the memory footprint of V in bytes. */
3131 static ptrdiff_t
3132 vector_nbytes (struct Lisp_Vector *v)
3134 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
3135 ptrdiff_t nwords;
3137 if (size & PSEUDOVECTOR_FLAG)
3139 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
3141 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
3142 ptrdiff_t word_bytes = (bool_vector_words (bv->size)
3143 * sizeof (bits_word));
3144 ptrdiff_t boolvec_bytes = bool_header_size + word_bytes;
3145 verify (header_size <= bool_header_size);
3146 nwords = (boolvec_bytes - header_size + word_size - 1) / word_size;
3148 else
3149 nwords = ((size & PSEUDOVECTOR_SIZE_MASK)
3150 + ((size & PSEUDOVECTOR_REST_MASK)
3151 >> PSEUDOVECTOR_SIZE_BITS));
3153 else
3154 nwords = size;
3155 return vroundup (header_size + word_size * nwords);
3158 /* Release extra resources still in use by VECTOR, which may be any
3159 vector-like object. */
3161 static void
3162 cleanup_vector (struct Lisp_Vector *vector)
3164 detect_suspicious_free (vector);
3165 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FONT)
3166 && ((vector->header.size & PSEUDOVECTOR_SIZE_MASK)
3167 == FONT_OBJECT_MAX))
3169 struct font_driver const *drv = ((struct font *) vector)->driver;
3171 /* The font driver might sometimes be NULL, e.g. if Emacs was
3172 interrupted before it had time to set it up. */
3173 if (drv)
3175 /* Attempt to catch subtle bugs like Bug#16140. */
3176 eassert (valid_font_driver (drv));
3177 drv->close ((struct font *) vector);
3181 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_THREAD))
3182 finalize_one_thread ((struct thread_state *) vector);
3183 else if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_MUTEX))
3184 finalize_one_mutex ((struct Lisp_Mutex *) vector);
3185 else if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_CONDVAR))
3186 finalize_one_condvar ((struct Lisp_CondVar *) vector);
3189 /* Reclaim space used by unmarked vectors. */
3191 NO_INLINE /* For better stack traces */
3192 static void
3193 sweep_vectors (void)
3195 struct vector_block *block, **bprev = &vector_blocks;
3196 struct large_vector *lv, **lvprev = &large_vectors;
3197 struct Lisp_Vector *vector, *next;
3199 total_vectors = total_vector_slots = total_free_vector_slots = 0;
3200 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3202 /* Looking through vector blocks. */
3204 for (block = vector_blocks; block; block = *bprev)
3206 bool free_this_block = 0;
3207 ptrdiff_t nbytes;
3209 for (vector = (struct Lisp_Vector *) block->data;
3210 VECTOR_IN_BLOCK (vector, block); vector = next)
3212 if (VECTOR_MARKED_P (vector))
3214 VECTOR_UNMARK (vector);
3215 total_vectors++;
3216 nbytes = vector_nbytes (vector);
3217 total_vector_slots += nbytes / word_size;
3218 next = ADVANCE (vector, nbytes);
3220 else
3222 ptrdiff_t total_bytes;
3224 cleanup_vector (vector);
3225 nbytes = vector_nbytes (vector);
3226 total_bytes = nbytes;
3227 next = ADVANCE (vector, nbytes);
3229 /* While NEXT is not marked, try to coalesce with VECTOR,
3230 thus making VECTOR of the largest possible size. */
3232 while (VECTOR_IN_BLOCK (next, block))
3234 if (VECTOR_MARKED_P (next))
3235 break;
3236 cleanup_vector (next);
3237 nbytes = vector_nbytes (next);
3238 total_bytes += nbytes;
3239 next = ADVANCE (next, nbytes);
3242 eassert (total_bytes % roundup_size == 0);
3244 if (vector == (struct Lisp_Vector *) block->data
3245 && !VECTOR_IN_BLOCK (next, block))
3246 /* This block should be freed because all of its
3247 space was coalesced into the only free vector. */
3248 free_this_block = 1;
3249 else
3251 size_t tmp;
3252 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
3257 if (free_this_block)
3259 *bprev = block->next;
3260 #ifndef GC_MALLOC_CHECK
3261 mem_delete (mem_find (block->data));
3262 #endif
3263 xfree (block);
3265 else
3266 bprev = &block->next;
3269 /* Sweep large vectors. */
3271 for (lv = large_vectors; lv; lv = *lvprev)
3273 vector = large_vector_vec (lv);
3274 if (VECTOR_MARKED_P (vector))
3276 VECTOR_UNMARK (vector);
3277 total_vectors++;
3278 if (vector->header.size & PSEUDOVECTOR_FLAG)
3280 /* All non-bool pseudovectors are small enough to be allocated
3281 from vector blocks. This code should be redesigned if some
3282 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
3283 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
3284 total_vector_slots += vector_nbytes (vector) / word_size;
3286 else
3287 total_vector_slots
3288 += header_size / word_size + vector->header.size;
3289 lvprev = &lv->next;
3291 else
3293 *lvprev = lv->next;
3294 lisp_free (lv);
3299 /* Value is a pointer to a newly allocated Lisp_Vector structure
3300 with room for LEN Lisp_Objects. */
3302 static struct Lisp_Vector *
3303 allocate_vectorlike (ptrdiff_t len)
3305 struct Lisp_Vector *p;
3307 MALLOC_BLOCK_INPUT;
3309 if (len == 0)
3310 p = XVECTOR (zero_vector);
3311 else
3313 size_t nbytes = header_size + len * word_size;
3315 #ifdef DOUG_LEA_MALLOC
3316 if (!mmap_lisp_allowed_p ())
3317 mallopt (M_MMAP_MAX, 0);
3318 #endif
3320 if (nbytes <= VBLOCK_BYTES_MAX)
3321 p = allocate_vector_from_block (vroundup (nbytes));
3322 else
3324 struct large_vector *lv
3325 = lisp_malloc ((large_vector_offset + header_size
3326 + len * word_size),
3327 MEM_TYPE_VECTORLIKE);
3328 lv->next = large_vectors;
3329 large_vectors = lv;
3330 p = large_vector_vec (lv);
3333 #ifdef DOUG_LEA_MALLOC
3334 if (!mmap_lisp_allowed_p ())
3335 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3336 #endif
3338 if (find_suspicious_object_in_range (p, (char *) p + nbytes))
3339 emacs_abort ();
3341 consing_since_gc += nbytes;
3342 vector_cells_consed += len;
3345 MALLOC_UNBLOCK_INPUT;
3347 return p;
3351 /* Allocate a vector with LEN slots. */
3353 struct Lisp_Vector *
3354 allocate_vector (EMACS_INT len)
3356 struct Lisp_Vector *v;
3357 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3359 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3360 memory_full (SIZE_MAX);
3361 v = allocate_vectorlike (len);
3362 if (len)
3363 v->header.size = len;
3364 return v;
3368 /* Allocate other vector-like structures. */
3370 struct Lisp_Vector *
3371 allocate_pseudovector (int memlen, int lisplen,
3372 int zerolen, enum pvec_type tag)
3374 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3376 /* Catch bogus values. */
3377 eassert (0 <= tag && tag <= PVEC_FONT);
3378 eassert (0 <= lisplen && lisplen <= zerolen && zerolen <= memlen);
3379 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3380 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3382 /* Only the first LISPLEN slots will be traced normally by the GC. */
3383 memclear (v->contents, zerolen * word_size);
3384 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3385 return v;
3388 struct buffer *
3389 allocate_buffer (void)
3391 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3393 BUFFER_PVEC_INIT (b);
3394 /* Put B on the chain of all buffers including killed ones. */
3395 b->next = all_buffers;
3396 all_buffers = b;
3397 /* Note that the rest fields of B are not initialized. */
3398 return b;
3401 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3402 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3403 See also the function `vector'. */)
3404 (Lisp_Object length, Lisp_Object init)
3406 CHECK_NATNUM (length);
3407 struct Lisp_Vector *p = allocate_vector (XFASTINT (length));
3408 for (ptrdiff_t i = 0; i < XFASTINT (length); i++)
3409 p->contents[i] = init;
3410 return make_lisp_ptr (p, Lisp_Vectorlike);
3413 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3414 doc: /* Return a newly created vector with specified arguments as elements.
3415 Any number of arguments, even zero arguments, are allowed.
3416 usage: (vector &rest OBJECTS) */)
3417 (ptrdiff_t nargs, Lisp_Object *args)
3419 Lisp_Object val = make_uninit_vector (nargs);
3420 struct Lisp_Vector *p = XVECTOR (val);
3421 memcpy (p->contents, args, nargs * sizeof *args);
3422 return val;
3425 void
3426 make_byte_code (struct Lisp_Vector *v)
3428 /* Don't allow the global zero_vector to become a byte code object. */
3429 eassert (0 < v->header.size);
3431 if (v->header.size > 1 && STRINGP (v->contents[1])
3432 && STRING_MULTIBYTE (v->contents[1]))
3433 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3434 earlier because they produced a raw 8-bit string for byte-code
3435 and now such a byte-code string is loaded as multibyte while
3436 raw 8-bit characters converted to multibyte form. Thus, now we
3437 must convert them back to the original unibyte form. */
3438 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3439 XSETPVECTYPE (v, PVEC_COMPILED);
3442 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3443 doc: /* Create a byte-code object with specified arguments as elements.
3444 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3445 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3446 and (optional) INTERACTIVE-SPEC.
3447 The first four arguments are required; at most six have any
3448 significance.
3449 The ARGLIST can be either like the one of `lambda', in which case the arguments
3450 will be dynamically bound before executing the byte code, or it can be an
3451 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3452 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3453 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3454 argument to catch the left-over arguments. If such an integer is used, the
3455 arguments will not be dynamically bound but will be instead pushed on the
3456 stack before executing the byte-code.
3457 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3458 (ptrdiff_t nargs, Lisp_Object *args)
3460 Lisp_Object val = make_uninit_vector (nargs);
3461 struct Lisp_Vector *p = XVECTOR (val);
3463 /* We used to purecopy everything here, if purify-flag was set. This worked
3464 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3465 dangerous, since make-byte-code is used during execution to build
3466 closures, so any closure built during the preload phase would end up
3467 copied into pure space, including its free variables, which is sometimes
3468 just wasteful and other times plainly wrong (e.g. those free vars may want
3469 to be setcar'd). */
3471 memcpy (p->contents, args, nargs * sizeof *args);
3472 make_byte_code (p);
3473 XSETCOMPILED (val, p);
3474 return val;
3479 /***********************************************************************
3480 Symbol Allocation
3481 ***********************************************************************/
3483 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3484 of the required alignment. */
3486 union aligned_Lisp_Symbol
3488 struct Lisp_Symbol s;
3489 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3490 & -GCALIGNMENT];
3493 /* Each symbol_block is just under 1020 bytes long, since malloc
3494 really allocates in units of powers of two and uses 4 bytes for its
3495 own overhead. */
3497 #define SYMBOL_BLOCK_SIZE \
3498 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3500 struct symbol_block
3502 /* Place `symbols' first, to preserve alignment. */
3503 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3504 struct symbol_block *next;
3507 /* Current symbol block and index of first unused Lisp_Symbol
3508 structure in it. */
3510 static struct symbol_block *symbol_block;
3511 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3512 /* Pointer to the first symbol_block that contains pinned symbols.
3513 Tests for 24.4 showed that at dump-time, Emacs contains about 15K symbols,
3514 10K of which are pinned (and all but 250 of them are interned in obarray),
3515 whereas a "typical session" has in the order of 30K symbols.
3516 `symbol_block_pinned' lets mark_pinned_symbols scan only 15K symbols rather
3517 than 30K to find the 10K symbols we need to mark. */
3518 static struct symbol_block *symbol_block_pinned;
3520 /* List of free symbols. */
3522 static struct Lisp_Symbol *symbol_free_list;
3524 static void
3525 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3527 XSYMBOL (sym)->name = name;
3530 void
3531 init_symbol (Lisp_Object val, Lisp_Object name)
3533 struct Lisp_Symbol *p = XSYMBOL (val);
3534 set_symbol_name (val, name);
3535 set_symbol_plist (val, Qnil);
3536 p->redirect = SYMBOL_PLAINVAL;
3537 SET_SYMBOL_VAL (p, Qunbound);
3538 set_symbol_function (val, Qnil);
3539 set_symbol_next (val, NULL);
3540 p->gcmarkbit = false;
3541 p->interned = SYMBOL_UNINTERNED;
3542 p->trapped_write = SYMBOL_UNTRAPPED_WRITE;
3543 p->declared_special = false;
3544 p->pinned = false;
3547 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3548 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3549 Its value is void, and its function definition and property list are nil. */)
3550 (Lisp_Object name)
3552 Lisp_Object val;
3554 CHECK_STRING (name);
3556 MALLOC_BLOCK_INPUT;
3558 if (symbol_free_list)
3560 XSETSYMBOL (val, symbol_free_list);
3561 symbol_free_list = symbol_free_list->next;
3563 else
3565 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3567 struct symbol_block *new
3568 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3569 new->next = symbol_block;
3570 symbol_block = new;
3571 symbol_block_index = 0;
3572 total_free_symbols += SYMBOL_BLOCK_SIZE;
3574 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3575 symbol_block_index++;
3578 MALLOC_UNBLOCK_INPUT;
3580 init_symbol (val, name);
3581 consing_since_gc += sizeof (struct Lisp_Symbol);
3582 symbols_consed++;
3583 total_free_symbols--;
3584 return val;
3589 /***********************************************************************
3590 Marker (Misc) Allocation
3591 ***********************************************************************/
3593 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3594 the required alignment. */
3596 union aligned_Lisp_Misc
3598 union Lisp_Misc m;
3599 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3600 & -GCALIGNMENT];
3603 /* Allocation of markers and other objects that share that structure.
3604 Works like allocation of conses. */
3606 #define MARKER_BLOCK_SIZE \
3607 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3609 struct marker_block
3611 /* Place `markers' first, to preserve alignment. */
3612 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3613 struct marker_block *next;
3616 static struct marker_block *marker_block;
3617 static int marker_block_index = MARKER_BLOCK_SIZE;
3619 static union Lisp_Misc *marker_free_list;
3621 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3623 static Lisp_Object
3624 allocate_misc (enum Lisp_Misc_Type type)
3626 Lisp_Object val;
3628 MALLOC_BLOCK_INPUT;
3630 if (marker_free_list)
3632 XSETMISC (val, marker_free_list);
3633 marker_free_list = marker_free_list->u_free.chain;
3635 else
3637 if (marker_block_index == MARKER_BLOCK_SIZE)
3639 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3640 new->next = marker_block;
3641 marker_block = new;
3642 marker_block_index = 0;
3643 total_free_markers += MARKER_BLOCK_SIZE;
3645 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3646 marker_block_index++;
3649 MALLOC_UNBLOCK_INPUT;
3651 --total_free_markers;
3652 consing_since_gc += sizeof (union Lisp_Misc);
3653 misc_objects_consed++;
3654 XMISCANY (val)->type = type;
3655 XMISCANY (val)->gcmarkbit = 0;
3656 return val;
3659 /* Free a Lisp_Misc object. */
3661 void
3662 free_misc (Lisp_Object misc)
3664 XMISCANY (misc)->type = Lisp_Misc_Free;
3665 XMISC (misc)->u_free.chain = marker_free_list;
3666 marker_free_list = XMISC (misc);
3667 consing_since_gc -= sizeof (union Lisp_Misc);
3668 total_free_markers++;
3671 /* Verify properties of Lisp_Save_Value's representation
3672 that are assumed here and elsewhere. */
3674 verify (SAVE_UNUSED == 0);
3675 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3676 >> SAVE_SLOT_BITS)
3677 == 0);
3679 /* Return Lisp_Save_Value objects for the various combinations
3680 that callers need. */
3682 Lisp_Object
3683 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3685 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3686 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3687 p->save_type = SAVE_TYPE_INT_INT_INT;
3688 p->data[0].integer = a;
3689 p->data[1].integer = b;
3690 p->data[2].integer = c;
3691 return val;
3694 Lisp_Object
3695 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3696 Lisp_Object d)
3698 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3699 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3700 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3701 p->data[0].object = a;
3702 p->data[1].object = b;
3703 p->data[2].object = c;
3704 p->data[3].object = d;
3705 return val;
3708 Lisp_Object
3709 make_save_ptr (void *a)
3711 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3712 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3713 p->save_type = SAVE_POINTER;
3714 p->data[0].pointer = a;
3715 return val;
3718 Lisp_Object
3719 make_save_ptr_int (void *a, ptrdiff_t b)
3721 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3722 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3723 p->save_type = SAVE_TYPE_PTR_INT;
3724 p->data[0].pointer = a;
3725 p->data[1].integer = b;
3726 return val;
3729 Lisp_Object
3730 make_save_ptr_ptr (void *a, void *b)
3732 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3733 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3734 p->save_type = SAVE_TYPE_PTR_PTR;
3735 p->data[0].pointer = a;
3736 p->data[1].pointer = b;
3737 return val;
3740 Lisp_Object
3741 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3743 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3744 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3745 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3746 p->data[0].funcpointer = a;
3747 p->data[1].pointer = b;
3748 p->data[2].object = c;
3749 return val;
3752 /* Return a Lisp_Save_Value object that represents an array A
3753 of N Lisp objects. */
3755 Lisp_Object
3756 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3758 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3759 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3760 p->save_type = SAVE_TYPE_MEMORY;
3761 p->data[0].pointer = a;
3762 p->data[1].integer = n;
3763 return val;
3766 /* Free a Lisp_Save_Value object. Do not use this function
3767 if SAVE contains pointer other than returned by xmalloc. */
3769 void
3770 free_save_value (Lisp_Object save)
3772 xfree (XSAVE_POINTER (save, 0));
3773 free_misc (save);
3776 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3778 Lisp_Object
3779 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3781 register Lisp_Object overlay;
3783 overlay = allocate_misc (Lisp_Misc_Overlay);
3784 OVERLAY_START (overlay) = start;
3785 OVERLAY_END (overlay) = end;
3786 set_overlay_plist (overlay, plist);
3787 XOVERLAY (overlay)->next = NULL;
3788 return overlay;
3791 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3792 doc: /* Return a newly allocated marker which does not point at any place. */)
3793 (void)
3795 register Lisp_Object val;
3796 register struct Lisp_Marker *p;
3798 val = allocate_misc (Lisp_Misc_Marker);
3799 p = XMARKER (val);
3800 p->buffer = 0;
3801 p->bytepos = 0;
3802 p->charpos = 0;
3803 p->next = NULL;
3804 p->insertion_type = 0;
3805 p->need_adjustment = 0;
3806 return val;
3809 /* Return a newly allocated marker which points into BUF
3810 at character position CHARPOS and byte position BYTEPOS. */
3812 Lisp_Object
3813 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3815 Lisp_Object obj;
3816 struct Lisp_Marker *m;
3818 /* No dead buffers here. */
3819 eassert (BUFFER_LIVE_P (buf));
3821 /* Every character is at least one byte. */
3822 eassert (charpos <= bytepos);
3824 obj = allocate_misc (Lisp_Misc_Marker);
3825 m = XMARKER (obj);
3826 m->buffer = buf;
3827 m->charpos = charpos;
3828 m->bytepos = bytepos;
3829 m->insertion_type = 0;
3830 m->need_adjustment = 0;
3831 m->next = BUF_MARKERS (buf);
3832 BUF_MARKERS (buf) = m;
3833 return obj;
3836 /* Put MARKER back on the free list after using it temporarily. */
3838 void
3839 free_marker (Lisp_Object marker)
3841 unchain_marker (XMARKER (marker));
3842 free_misc (marker);
3846 /* Return a newly created vector or string with specified arguments as
3847 elements. If all the arguments are characters that can fit
3848 in a string of events, make a string; otherwise, make a vector.
3850 Any number of arguments, even zero arguments, are allowed. */
3852 Lisp_Object
3853 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3855 ptrdiff_t i;
3857 for (i = 0; i < nargs; i++)
3858 /* The things that fit in a string
3859 are characters that are in 0...127,
3860 after discarding the meta bit and all the bits above it. */
3861 if (!INTEGERP (args[i])
3862 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3863 return Fvector (nargs, args);
3865 /* Since the loop exited, we know that all the things in it are
3866 characters, so we can make a string. */
3868 Lisp_Object result;
3870 result = Fmake_string (make_number (nargs), make_number (0));
3871 for (i = 0; i < nargs; i++)
3873 SSET (result, i, XINT (args[i]));
3874 /* Move the meta bit to the right place for a string char. */
3875 if (XINT (args[i]) & CHAR_META)
3876 SSET (result, i, SREF (result, i) | 0x80);
3879 return result;
3883 #ifdef HAVE_MODULES
3884 /* Create a new module user ptr object. */
3885 Lisp_Object
3886 make_user_ptr (void (*finalizer) (void *), void *p)
3888 Lisp_Object obj;
3889 struct Lisp_User_Ptr *uptr;
3891 obj = allocate_misc (Lisp_Misc_User_Ptr);
3892 uptr = XUSER_PTR (obj);
3893 uptr->finalizer = finalizer;
3894 uptr->p = p;
3895 return obj;
3898 #endif
3900 static void
3901 init_finalizer_list (struct Lisp_Finalizer *head)
3903 head->prev = head->next = head;
3906 /* Insert FINALIZER before ELEMENT. */
3908 static void
3909 finalizer_insert (struct Lisp_Finalizer *element,
3910 struct Lisp_Finalizer *finalizer)
3912 eassert (finalizer->prev == NULL);
3913 eassert (finalizer->next == NULL);
3914 finalizer->next = element;
3915 finalizer->prev = element->prev;
3916 finalizer->prev->next = finalizer;
3917 element->prev = finalizer;
3920 static void
3921 unchain_finalizer (struct Lisp_Finalizer *finalizer)
3923 if (finalizer->prev != NULL)
3925 eassert (finalizer->next != NULL);
3926 finalizer->prev->next = finalizer->next;
3927 finalizer->next->prev = finalizer->prev;
3928 finalizer->prev = finalizer->next = NULL;
3932 static void
3933 mark_finalizer_list (struct Lisp_Finalizer *head)
3935 for (struct Lisp_Finalizer *finalizer = head->next;
3936 finalizer != head;
3937 finalizer = finalizer->next)
3939 finalizer->base.gcmarkbit = true;
3940 mark_object (finalizer->function);
3944 /* Move doomed finalizers to list DEST from list SRC. A doomed
3945 finalizer is one that is not GC-reachable and whose
3946 finalizer->function is non-nil. */
3948 static void
3949 queue_doomed_finalizers (struct Lisp_Finalizer *dest,
3950 struct Lisp_Finalizer *src)
3952 struct Lisp_Finalizer *finalizer = src->next;
3953 while (finalizer != src)
3955 struct Lisp_Finalizer *next = finalizer->next;
3956 if (!finalizer->base.gcmarkbit && !NILP (finalizer->function))
3958 unchain_finalizer (finalizer);
3959 finalizer_insert (dest, finalizer);
3962 finalizer = next;
3966 static Lisp_Object
3967 run_finalizer_handler (Lisp_Object args)
3969 add_to_log ("finalizer failed: %S", args);
3970 return Qnil;
3973 static void
3974 run_finalizer_function (Lisp_Object function)
3976 ptrdiff_t count = SPECPDL_INDEX ();
3978 specbind (Qinhibit_quit, Qt);
3979 internal_condition_case_1 (call0, function, Qt, run_finalizer_handler);
3980 unbind_to (count, Qnil);
3983 static void
3984 run_finalizers (struct Lisp_Finalizer *finalizers)
3986 struct Lisp_Finalizer *finalizer;
3987 Lisp_Object function;
3989 while (finalizers->next != finalizers)
3991 finalizer = finalizers->next;
3992 eassert (finalizer->base.type == Lisp_Misc_Finalizer);
3993 unchain_finalizer (finalizer);
3994 function = finalizer->function;
3995 if (!NILP (function))
3997 finalizer->function = Qnil;
3998 run_finalizer_function (function);
4003 DEFUN ("make-finalizer", Fmake_finalizer, Smake_finalizer, 1, 1, 0,
4004 doc: /* Make a finalizer that will run FUNCTION.
4005 FUNCTION will be called after garbage collection when the returned
4006 finalizer object becomes unreachable. If the finalizer object is
4007 reachable only through references from finalizer objects, it does not
4008 count as reachable for the purpose of deciding whether to run
4009 FUNCTION. FUNCTION will be run once per finalizer object. */)
4010 (Lisp_Object function)
4012 Lisp_Object val = allocate_misc (Lisp_Misc_Finalizer);
4013 struct Lisp_Finalizer *finalizer = XFINALIZER (val);
4014 finalizer->function = function;
4015 finalizer->prev = finalizer->next = NULL;
4016 finalizer_insert (&finalizers, finalizer);
4017 return val;
4021 /************************************************************************
4022 Memory Full Handling
4023 ************************************************************************/
4026 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
4027 there may have been size_t overflow so that malloc was never
4028 called, or perhaps malloc was invoked successfully but the
4029 resulting pointer had problems fitting into a tagged EMACS_INT. In
4030 either case this counts as memory being full even though malloc did
4031 not fail. */
4033 void
4034 memory_full (size_t nbytes)
4036 /* Do not go into hysterics merely because a large request failed. */
4037 bool enough_free_memory = 0;
4038 if (SPARE_MEMORY < nbytes)
4040 void *p;
4042 MALLOC_BLOCK_INPUT;
4043 p = malloc (SPARE_MEMORY);
4044 if (p)
4046 free (p);
4047 enough_free_memory = 1;
4049 MALLOC_UNBLOCK_INPUT;
4052 if (! enough_free_memory)
4054 int i;
4056 Vmemory_full = Qt;
4058 memory_full_cons_threshold = sizeof (struct cons_block);
4060 /* The first time we get here, free the spare memory. */
4061 for (i = 0; i < ARRAYELTS (spare_memory); i++)
4062 if (spare_memory[i])
4064 if (i == 0)
4065 free (spare_memory[i]);
4066 else if (i >= 1 && i <= 4)
4067 lisp_align_free (spare_memory[i]);
4068 else
4069 lisp_free (spare_memory[i]);
4070 spare_memory[i] = 0;
4074 /* This used to call error, but if we've run out of memory, we could
4075 get infinite recursion trying to build the string. */
4076 xsignal (Qnil, Vmemory_signal_data);
4079 /* If we released our reserve (due to running out of memory),
4080 and we have a fair amount free once again,
4081 try to set aside another reserve in case we run out once more.
4083 This is called when a relocatable block is freed in ralloc.c,
4084 and also directly from this file, in case we're not using ralloc.c. */
4086 void
4087 refill_memory_reserve (void)
4089 #if !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
4090 if (spare_memory[0] == 0)
4091 spare_memory[0] = malloc (SPARE_MEMORY);
4092 if (spare_memory[1] == 0)
4093 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
4094 MEM_TYPE_SPARE);
4095 if (spare_memory[2] == 0)
4096 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
4097 MEM_TYPE_SPARE);
4098 if (spare_memory[3] == 0)
4099 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
4100 MEM_TYPE_SPARE);
4101 if (spare_memory[4] == 0)
4102 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
4103 MEM_TYPE_SPARE);
4104 if (spare_memory[5] == 0)
4105 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
4106 MEM_TYPE_SPARE);
4107 if (spare_memory[6] == 0)
4108 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
4109 MEM_TYPE_SPARE);
4110 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
4111 Vmemory_full = Qnil;
4112 #endif
4115 /************************************************************************
4116 C Stack Marking
4117 ************************************************************************/
4119 /* Conservative C stack marking requires a method to identify possibly
4120 live Lisp objects given a pointer value. We do this by keeping
4121 track of blocks of Lisp data that are allocated in a red-black tree
4122 (see also the comment of mem_node which is the type of nodes in
4123 that tree). Function lisp_malloc adds information for an allocated
4124 block to the red-black tree with calls to mem_insert, and function
4125 lisp_free removes it with mem_delete. Functions live_string_p etc
4126 call mem_find to lookup information about a given pointer in the
4127 tree, and use that to determine if the pointer points to a Lisp
4128 object or not. */
4130 /* Initialize this part of alloc.c. */
4132 static void
4133 mem_init (void)
4135 mem_z.left = mem_z.right = MEM_NIL;
4136 mem_z.parent = NULL;
4137 mem_z.color = MEM_BLACK;
4138 mem_z.start = mem_z.end = NULL;
4139 mem_root = MEM_NIL;
4143 /* Value is a pointer to the mem_node containing START. Value is
4144 MEM_NIL if there is no node in the tree containing START. */
4146 static struct mem_node *
4147 mem_find (void *start)
4149 struct mem_node *p;
4151 if (start < min_heap_address || start > max_heap_address)
4152 return MEM_NIL;
4154 /* Make the search always successful to speed up the loop below. */
4155 mem_z.start = start;
4156 mem_z.end = (char *) start + 1;
4158 p = mem_root;
4159 while (start < p->start || start >= p->end)
4160 p = start < p->start ? p->left : p->right;
4161 return p;
4165 /* Insert a new node into the tree for a block of memory with start
4166 address START, end address END, and type TYPE. Value is a
4167 pointer to the node that was inserted. */
4169 static struct mem_node *
4170 mem_insert (void *start, void *end, enum mem_type type)
4172 struct mem_node *c, *parent, *x;
4174 if (min_heap_address == NULL || start < min_heap_address)
4175 min_heap_address = start;
4176 if (max_heap_address == NULL || end > max_heap_address)
4177 max_heap_address = end;
4179 /* See where in the tree a node for START belongs. In this
4180 particular application, it shouldn't happen that a node is already
4181 present. For debugging purposes, let's check that. */
4182 c = mem_root;
4183 parent = NULL;
4185 while (c != MEM_NIL)
4187 parent = c;
4188 c = start < c->start ? c->left : c->right;
4191 /* Create a new node. */
4192 #ifdef GC_MALLOC_CHECK
4193 x = malloc (sizeof *x);
4194 if (x == NULL)
4195 emacs_abort ();
4196 #else
4197 x = xmalloc (sizeof *x);
4198 #endif
4199 x->start = start;
4200 x->end = end;
4201 x->type = type;
4202 x->parent = parent;
4203 x->left = x->right = MEM_NIL;
4204 x->color = MEM_RED;
4206 /* Insert it as child of PARENT or install it as root. */
4207 if (parent)
4209 if (start < parent->start)
4210 parent->left = x;
4211 else
4212 parent->right = x;
4214 else
4215 mem_root = x;
4217 /* Re-establish red-black tree properties. */
4218 mem_insert_fixup (x);
4220 return x;
4224 /* Re-establish the red-black properties of the tree, and thereby
4225 balance the tree, after node X has been inserted; X is always red. */
4227 static void
4228 mem_insert_fixup (struct mem_node *x)
4230 while (x != mem_root && x->parent->color == MEM_RED)
4232 /* X is red and its parent is red. This is a violation of
4233 red-black tree property #3. */
4235 if (x->parent == x->parent->parent->left)
4237 /* We're on the left side of our grandparent, and Y is our
4238 "uncle". */
4239 struct mem_node *y = x->parent->parent->right;
4241 if (y->color == MEM_RED)
4243 /* Uncle and parent are red but should be black because
4244 X is red. Change the colors accordingly and proceed
4245 with the grandparent. */
4246 x->parent->color = MEM_BLACK;
4247 y->color = MEM_BLACK;
4248 x->parent->parent->color = MEM_RED;
4249 x = x->parent->parent;
4251 else
4253 /* Parent and uncle have different colors; parent is
4254 red, uncle is black. */
4255 if (x == x->parent->right)
4257 x = x->parent;
4258 mem_rotate_left (x);
4261 x->parent->color = MEM_BLACK;
4262 x->parent->parent->color = MEM_RED;
4263 mem_rotate_right (x->parent->parent);
4266 else
4268 /* This is the symmetrical case of above. */
4269 struct mem_node *y = x->parent->parent->left;
4271 if (y->color == MEM_RED)
4273 x->parent->color = MEM_BLACK;
4274 y->color = MEM_BLACK;
4275 x->parent->parent->color = MEM_RED;
4276 x = x->parent->parent;
4278 else
4280 if (x == x->parent->left)
4282 x = x->parent;
4283 mem_rotate_right (x);
4286 x->parent->color = MEM_BLACK;
4287 x->parent->parent->color = MEM_RED;
4288 mem_rotate_left (x->parent->parent);
4293 /* The root may have been changed to red due to the algorithm. Set
4294 it to black so that property #5 is satisfied. */
4295 mem_root->color = MEM_BLACK;
4299 /* (x) (y)
4300 / \ / \
4301 a (y) ===> (x) c
4302 / \ / \
4303 b c a b */
4305 static void
4306 mem_rotate_left (struct mem_node *x)
4308 struct mem_node *y;
4310 /* Turn y's left sub-tree into x's right sub-tree. */
4311 y = x->right;
4312 x->right = y->left;
4313 if (y->left != MEM_NIL)
4314 y->left->parent = x;
4316 /* Y's parent was x's parent. */
4317 if (y != MEM_NIL)
4318 y->parent = x->parent;
4320 /* Get the parent to point to y instead of x. */
4321 if (x->parent)
4323 if (x == x->parent->left)
4324 x->parent->left = y;
4325 else
4326 x->parent->right = y;
4328 else
4329 mem_root = y;
4331 /* Put x on y's left. */
4332 y->left = x;
4333 if (x != MEM_NIL)
4334 x->parent = y;
4338 /* (x) (Y)
4339 / \ / \
4340 (y) c ===> a (x)
4341 / \ / \
4342 a b b c */
4344 static void
4345 mem_rotate_right (struct mem_node *x)
4347 struct mem_node *y = x->left;
4349 x->left = y->right;
4350 if (y->right != MEM_NIL)
4351 y->right->parent = x;
4353 if (y != MEM_NIL)
4354 y->parent = x->parent;
4355 if (x->parent)
4357 if (x == x->parent->right)
4358 x->parent->right = y;
4359 else
4360 x->parent->left = y;
4362 else
4363 mem_root = y;
4365 y->right = x;
4366 if (x != MEM_NIL)
4367 x->parent = y;
4371 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4373 static void
4374 mem_delete (struct mem_node *z)
4376 struct mem_node *x, *y;
4378 if (!z || z == MEM_NIL)
4379 return;
4381 if (z->left == MEM_NIL || z->right == MEM_NIL)
4382 y = z;
4383 else
4385 y = z->right;
4386 while (y->left != MEM_NIL)
4387 y = y->left;
4390 if (y->left != MEM_NIL)
4391 x = y->left;
4392 else
4393 x = y->right;
4395 x->parent = y->parent;
4396 if (y->parent)
4398 if (y == y->parent->left)
4399 y->parent->left = x;
4400 else
4401 y->parent->right = x;
4403 else
4404 mem_root = x;
4406 if (y != z)
4408 z->start = y->start;
4409 z->end = y->end;
4410 z->type = y->type;
4413 if (y->color == MEM_BLACK)
4414 mem_delete_fixup (x);
4416 #ifdef GC_MALLOC_CHECK
4417 free (y);
4418 #else
4419 xfree (y);
4420 #endif
4424 /* Re-establish the red-black properties of the tree, after a
4425 deletion. */
4427 static void
4428 mem_delete_fixup (struct mem_node *x)
4430 while (x != mem_root && x->color == MEM_BLACK)
4432 if (x == x->parent->left)
4434 struct mem_node *w = x->parent->right;
4436 if (w->color == MEM_RED)
4438 w->color = MEM_BLACK;
4439 x->parent->color = MEM_RED;
4440 mem_rotate_left (x->parent);
4441 w = x->parent->right;
4444 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4446 w->color = MEM_RED;
4447 x = x->parent;
4449 else
4451 if (w->right->color == MEM_BLACK)
4453 w->left->color = MEM_BLACK;
4454 w->color = MEM_RED;
4455 mem_rotate_right (w);
4456 w = x->parent->right;
4458 w->color = x->parent->color;
4459 x->parent->color = MEM_BLACK;
4460 w->right->color = MEM_BLACK;
4461 mem_rotate_left (x->parent);
4462 x = mem_root;
4465 else
4467 struct mem_node *w = x->parent->left;
4469 if (w->color == MEM_RED)
4471 w->color = MEM_BLACK;
4472 x->parent->color = MEM_RED;
4473 mem_rotate_right (x->parent);
4474 w = x->parent->left;
4477 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4479 w->color = MEM_RED;
4480 x = x->parent;
4482 else
4484 if (w->left->color == MEM_BLACK)
4486 w->right->color = MEM_BLACK;
4487 w->color = MEM_RED;
4488 mem_rotate_left (w);
4489 w = x->parent->left;
4492 w->color = x->parent->color;
4493 x->parent->color = MEM_BLACK;
4494 w->left->color = MEM_BLACK;
4495 mem_rotate_right (x->parent);
4496 x = mem_root;
4501 x->color = MEM_BLACK;
4505 /* Value is non-zero if P is a pointer to a live Lisp string on
4506 the heap. M is a pointer to the mem_block for P. */
4508 static bool
4509 live_string_p (struct mem_node *m, void *p)
4511 if (m->type == MEM_TYPE_STRING)
4513 struct string_block *b = m->start;
4514 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4516 /* P must point to the start of a Lisp_String structure, and it
4517 must not be on the free-list. */
4518 return (offset >= 0
4519 && offset % sizeof b->strings[0] == 0
4520 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4521 && ((struct Lisp_String *) p)->data != NULL);
4523 else
4524 return 0;
4528 /* Value is non-zero if P is a pointer to a live Lisp cons on
4529 the heap. M is a pointer to the mem_block for P. */
4531 static bool
4532 live_cons_p (struct mem_node *m, void *p)
4534 if (m->type == MEM_TYPE_CONS)
4536 struct cons_block *b = m->start;
4537 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4539 /* P must point to the start of a Lisp_Cons, not be
4540 one of the unused cells in the current cons block,
4541 and not be on the free-list. */
4542 return (offset >= 0
4543 && offset % sizeof b->conses[0] == 0
4544 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4545 && (b != cons_block
4546 || offset / sizeof b->conses[0] < cons_block_index)
4547 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4549 else
4550 return 0;
4554 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4555 the heap. M is a pointer to the mem_block for P. */
4557 static bool
4558 live_symbol_p (struct mem_node *m, void *p)
4560 if (m->type == MEM_TYPE_SYMBOL)
4562 struct symbol_block *b = m->start;
4563 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4565 /* P must point to the start of a Lisp_Symbol, not be
4566 one of the unused cells in the current symbol block,
4567 and not be on the free-list. */
4568 return (offset >= 0
4569 && offset % sizeof b->symbols[0] == 0
4570 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4571 && (b != symbol_block
4572 || offset / sizeof b->symbols[0] < symbol_block_index)
4573 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4575 else
4576 return 0;
4580 /* Value is non-zero if P is a pointer to a live Lisp float on
4581 the heap. M is a pointer to the mem_block for P. */
4583 static bool
4584 live_float_p (struct mem_node *m, void *p)
4586 if (m->type == MEM_TYPE_FLOAT)
4588 struct float_block *b = m->start;
4589 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4591 /* P must point to the start of a Lisp_Float and not be
4592 one of the unused cells in the current float block. */
4593 return (offset >= 0
4594 && offset % sizeof b->floats[0] == 0
4595 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4596 && (b != float_block
4597 || offset / sizeof b->floats[0] < float_block_index));
4599 else
4600 return 0;
4604 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4605 the heap. M is a pointer to the mem_block for P. */
4607 static bool
4608 live_misc_p (struct mem_node *m, void *p)
4610 if (m->type == MEM_TYPE_MISC)
4612 struct marker_block *b = m->start;
4613 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4615 /* P must point to the start of a Lisp_Misc, not be
4616 one of the unused cells in the current misc block,
4617 and not be on the free-list. */
4618 return (offset >= 0
4619 && offset % sizeof b->markers[0] == 0
4620 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4621 && (b != marker_block
4622 || offset / sizeof b->markers[0] < marker_block_index)
4623 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4625 else
4626 return 0;
4630 /* Value is non-zero if P is a pointer to a live vector-like object.
4631 M is a pointer to the mem_block for P. */
4633 static bool
4634 live_vector_p (struct mem_node *m, void *p)
4636 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4638 /* This memory node corresponds to a vector block. */
4639 struct vector_block *block = m->start;
4640 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4642 /* P is in the block's allocation range. Scan the block
4643 up to P and see whether P points to the start of some
4644 vector which is not on a free list. FIXME: check whether
4645 some allocation patterns (probably a lot of short vectors)
4646 may cause a substantial overhead of this loop. */
4647 while (VECTOR_IN_BLOCK (vector, block)
4648 && vector <= (struct Lisp_Vector *) p)
4650 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4651 return 1;
4652 else
4653 vector = ADVANCE (vector, vector_nbytes (vector));
4656 else if (m->type == MEM_TYPE_VECTORLIKE && p == large_vector_vec (m->start))
4657 /* This memory node corresponds to a large vector. */
4658 return 1;
4659 return 0;
4663 /* Value is non-zero if P is a pointer to a live buffer. M is a
4664 pointer to the mem_block for P. */
4666 static bool
4667 live_buffer_p (struct mem_node *m, void *p)
4669 /* P must point to the start of the block, and the buffer
4670 must not have been killed. */
4671 return (m->type == MEM_TYPE_BUFFER
4672 && p == m->start
4673 && !NILP (((struct buffer *) p)->name_));
4676 /* Mark OBJ if we can prove it's a Lisp_Object. */
4678 static void
4679 mark_maybe_object (Lisp_Object obj)
4681 #if USE_VALGRIND
4682 if (valgrind_p)
4683 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4684 #endif
4686 if (INTEGERP (obj))
4687 return;
4689 void *po = XPNTR (obj);
4690 struct mem_node *m = mem_find (po);
4692 if (m != MEM_NIL)
4694 bool mark_p = false;
4696 switch (XTYPE (obj))
4698 case Lisp_String:
4699 mark_p = (live_string_p (m, po)
4700 && !STRING_MARKED_P ((struct Lisp_String *) po));
4701 break;
4703 case Lisp_Cons:
4704 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4705 break;
4707 case Lisp_Symbol:
4708 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4709 break;
4711 case Lisp_Float:
4712 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4713 break;
4715 case Lisp_Vectorlike:
4716 /* Note: can't check BUFFERP before we know it's a
4717 buffer because checking that dereferences the pointer
4718 PO which might point anywhere. */
4719 if (live_vector_p (m, po))
4720 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4721 else if (live_buffer_p (m, po))
4722 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4723 break;
4725 case Lisp_Misc:
4726 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4727 break;
4729 default:
4730 break;
4733 if (mark_p)
4734 mark_object (obj);
4738 /* Return true if P can point to Lisp data, and false otherwise.
4739 Symbols are implemented via offsets not pointers, but the offsets
4740 are also multiples of GCALIGNMENT. */
4742 static bool
4743 maybe_lisp_pointer (void *p)
4745 return (uintptr_t) p % GCALIGNMENT == 0;
4748 #ifndef HAVE_MODULES
4749 enum { HAVE_MODULES = false };
4750 #endif
4752 /* If P points to Lisp data, mark that as live if it isn't already
4753 marked. */
4755 static void
4756 mark_maybe_pointer (void *p)
4758 struct mem_node *m;
4760 #if USE_VALGRIND
4761 if (valgrind_p)
4762 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4763 #endif
4765 if (sizeof (Lisp_Object) == sizeof (void *) || !HAVE_MODULES)
4767 if (!maybe_lisp_pointer (p))
4768 return;
4770 else
4772 /* For the wide-int case, also mark emacs_value tagged pointers,
4773 which can be generated by emacs-module.c's value_to_lisp. */
4774 p = (void *) ((uintptr_t) p & ~(GCALIGNMENT - 1));
4777 m = mem_find (p);
4778 if (m != MEM_NIL)
4780 Lisp_Object obj = Qnil;
4782 switch (m->type)
4784 case MEM_TYPE_NON_LISP:
4785 case MEM_TYPE_SPARE:
4786 /* Nothing to do; not a pointer to Lisp memory. */
4787 break;
4789 case MEM_TYPE_BUFFER:
4790 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4791 XSETVECTOR (obj, p);
4792 break;
4794 case MEM_TYPE_CONS:
4795 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4796 XSETCONS (obj, p);
4797 break;
4799 case MEM_TYPE_STRING:
4800 if (live_string_p (m, p)
4801 && !STRING_MARKED_P ((struct Lisp_String *) p))
4802 XSETSTRING (obj, p);
4803 break;
4805 case MEM_TYPE_MISC:
4806 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4807 XSETMISC (obj, p);
4808 break;
4810 case MEM_TYPE_SYMBOL:
4811 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4812 XSETSYMBOL (obj, p);
4813 break;
4815 case MEM_TYPE_FLOAT:
4816 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4817 XSETFLOAT (obj, p);
4818 break;
4820 case MEM_TYPE_VECTORLIKE:
4821 case MEM_TYPE_VECTOR_BLOCK:
4822 if (live_vector_p (m, p))
4824 Lisp_Object tem;
4825 XSETVECTOR (tem, p);
4826 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4827 obj = tem;
4829 break;
4831 default:
4832 emacs_abort ();
4835 if (!NILP (obj))
4836 mark_object (obj);
4841 /* Alignment of pointer values. Use alignof, as it sometimes returns
4842 a smaller alignment than GCC's __alignof__ and mark_memory might
4843 miss objects if __alignof__ were used. */
4844 #define GC_POINTER_ALIGNMENT alignof (void *)
4846 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4847 or END+OFFSET..START. */
4849 static void ATTRIBUTE_NO_SANITIZE_ADDRESS
4850 mark_memory (void *start, void *end)
4852 char *pp;
4854 /* Make START the pointer to the start of the memory region,
4855 if it isn't already. */
4856 if (end < start)
4858 void *tem = start;
4859 start = end;
4860 end = tem;
4863 eassert (((uintptr_t) start) % GC_POINTER_ALIGNMENT == 0);
4865 /* Mark Lisp data pointed to. This is necessary because, in some
4866 situations, the C compiler optimizes Lisp objects away, so that
4867 only a pointer to them remains. Example:
4869 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4872 Lisp_Object obj = build_string ("test");
4873 struct Lisp_String *s = XSTRING (obj);
4874 Fgarbage_collect ();
4875 fprintf (stderr, "test '%s'\n", s->data);
4876 return Qnil;
4879 Here, `obj' isn't really used, and the compiler optimizes it
4880 away. The only reference to the life string is through the
4881 pointer `s'. */
4883 for (pp = start; (void *) pp < end; pp += GC_POINTER_ALIGNMENT)
4885 mark_maybe_pointer (*(void **) pp);
4886 mark_maybe_object (*(Lisp_Object *) pp);
4890 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4892 static bool setjmp_tested_p;
4893 static int longjmps_done;
4895 #define SETJMP_WILL_LIKELY_WORK "\
4897 Emacs garbage collector has been changed to use conservative stack\n\
4898 marking. Emacs has determined that the method it uses to do the\n\
4899 marking will likely work on your system, but this isn't sure.\n\
4901 If you are a system-programmer, or can get the help of a local wizard\n\
4902 who is, please take a look at the function mark_stack in alloc.c, and\n\
4903 verify that the methods used are appropriate for your system.\n\
4905 Please mail the result to <emacs-devel@gnu.org>.\n\
4908 #define SETJMP_WILL_NOT_WORK "\
4910 Emacs garbage collector has been changed to use conservative stack\n\
4911 marking. Emacs has determined that the default method it uses to do the\n\
4912 marking will not work on your system. We will need a system-dependent\n\
4913 solution for your system.\n\
4915 Please take a look at the function mark_stack in alloc.c, and\n\
4916 try to find a way to make it work on your system.\n\
4918 Note that you may get false negatives, depending on the compiler.\n\
4919 In particular, you need to use -O with GCC for this test.\n\
4921 Please mail the result to <emacs-devel@gnu.org>.\n\
4925 /* Perform a quick check if it looks like setjmp saves registers in a
4926 jmp_buf. Print a message to stderr saying so. When this test
4927 succeeds, this is _not_ a proof that setjmp is sufficient for
4928 conservative stack marking. Only the sources or a disassembly
4929 can prove that. */
4931 static void
4932 test_setjmp (void)
4934 char buf[10];
4935 register int x;
4936 sys_jmp_buf jbuf;
4938 /* Arrange for X to be put in a register. */
4939 sprintf (buf, "1");
4940 x = strlen (buf);
4941 x = 2 * x - 1;
4943 sys_setjmp (jbuf);
4944 if (longjmps_done == 1)
4946 /* Came here after the longjmp at the end of the function.
4948 If x == 1, the longjmp has restored the register to its
4949 value before the setjmp, and we can hope that setjmp
4950 saves all such registers in the jmp_buf, although that
4951 isn't sure.
4953 For other values of X, either something really strange is
4954 taking place, or the setjmp just didn't save the register. */
4956 if (x == 1)
4957 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4958 else
4960 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4961 exit (1);
4965 ++longjmps_done;
4966 x = 2;
4967 if (longjmps_done == 1)
4968 sys_longjmp (jbuf, 1);
4971 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4974 /* Mark live Lisp objects on the C stack.
4976 There are several system-dependent problems to consider when
4977 porting this to new architectures:
4979 Processor Registers
4981 We have to mark Lisp objects in CPU registers that can hold local
4982 variables or are used to pass parameters.
4984 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4985 something that either saves relevant registers on the stack, or
4986 calls mark_maybe_object passing it each register's contents.
4988 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4989 implementation assumes that calling setjmp saves registers we need
4990 to see in a jmp_buf which itself lies on the stack. This doesn't
4991 have to be true! It must be verified for each system, possibly
4992 by taking a look at the source code of setjmp.
4994 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4995 can use it as a machine independent method to store all registers
4996 to the stack. In this case the macros described in the previous
4997 two paragraphs are not used.
4999 Stack Layout
5001 Architectures differ in the way their processor stack is organized.
5002 For example, the stack might look like this
5004 +----------------+
5005 | Lisp_Object | size = 4
5006 +----------------+
5007 | something else | size = 2
5008 +----------------+
5009 | Lisp_Object | size = 4
5010 +----------------+
5011 | ... |
5013 In such a case, not every Lisp_Object will be aligned equally. To
5014 find all Lisp_Object on the stack it won't be sufficient to walk
5015 the stack in steps of 4 bytes. Instead, two passes will be
5016 necessary, one starting at the start of the stack, and a second
5017 pass starting at the start of the stack + 2. Likewise, if the
5018 minimal alignment of Lisp_Objects on the stack is 1, four passes
5019 would be necessary, each one starting with one byte more offset
5020 from the stack start. */
5022 void
5023 mark_stack (char *bottom, char *end)
5025 /* This assumes that the stack is a contiguous region in memory. If
5026 that's not the case, something has to be done here to iterate
5027 over the stack segments. */
5028 mark_memory (bottom, end);
5030 /* Allow for marking a secondary stack, like the register stack on the
5031 ia64. */
5032 #ifdef GC_MARK_SECONDARY_STACK
5033 GC_MARK_SECONDARY_STACK ();
5034 #endif
5037 /* This is a trampoline function that flushes registers to the stack,
5038 and then calls FUNC. ARG is passed through to FUNC verbatim.
5040 This function must be called whenever Emacs is about to release the
5041 global interpreter lock. This lets the garbage collector easily
5042 find roots in registers on threads that are not actively running
5043 Lisp.
5045 It is invalid to run any Lisp code or to allocate any GC memory
5046 from FUNC. */
5048 void
5049 flush_stack_call_func (void (*func) (void *arg), void *arg)
5051 void *end;
5052 struct thread_state *self = current_thread;
5054 #ifdef HAVE___BUILTIN_UNWIND_INIT
5055 /* Force callee-saved registers and register windows onto the stack.
5056 This is the preferred method if available, obviating the need for
5057 machine dependent methods. */
5058 __builtin_unwind_init ();
5059 end = &end;
5060 #else /* not HAVE___BUILTIN_UNWIND_INIT */
5061 #ifndef GC_SAVE_REGISTERS_ON_STACK
5062 /* jmp_buf may not be aligned enough on darwin-ppc64 */
5063 union aligned_jmpbuf {
5064 Lisp_Object o;
5065 sys_jmp_buf j;
5066 } j;
5067 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_bottom;
5068 #endif
5069 /* This trick flushes the register windows so that all the state of
5070 the process is contained in the stack. */
5071 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
5072 needed on ia64 too. See mach_dep.c, where it also says inline
5073 assembler doesn't work with relevant proprietary compilers. */
5074 #ifdef __sparc__
5075 #if defined (__sparc64__) && defined (__FreeBSD__)
5076 /* FreeBSD does not have a ta 3 handler. */
5077 asm ("flushw");
5078 #else
5079 asm ("ta 3");
5080 #endif
5081 #endif
5083 /* Save registers that we need to see on the stack. We need to see
5084 registers used to hold register variables and registers used to
5085 pass parameters. */
5086 #ifdef GC_SAVE_REGISTERS_ON_STACK
5087 GC_SAVE_REGISTERS_ON_STACK (end);
5088 #else /* not GC_SAVE_REGISTERS_ON_STACK */
5090 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
5091 setjmp will definitely work, test it
5092 and print a message with the result
5093 of the test. */
5094 if (!setjmp_tested_p)
5096 setjmp_tested_p = 1;
5097 test_setjmp ();
5099 #endif /* GC_SETJMP_WORKS */
5101 sys_setjmp (j.j);
5102 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
5103 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
5104 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
5106 self->stack_top = end;
5107 (*func) (arg);
5109 eassert (current_thread == self);
5112 static bool
5113 c_symbol_p (struct Lisp_Symbol *sym)
5115 char *lispsym_ptr = (char *) lispsym;
5116 char *sym_ptr = (char *) sym;
5117 ptrdiff_t lispsym_offset = sym_ptr - lispsym_ptr;
5118 return 0 <= lispsym_offset && lispsym_offset < sizeof lispsym;
5121 /* Determine whether it is safe to access memory at address P. */
5122 static int
5123 valid_pointer_p (void *p)
5125 #ifdef WINDOWSNT
5126 return w32_valid_pointer_p (p, 16);
5127 #else
5129 if (ADDRESS_SANITIZER)
5130 return p ? -1 : 0;
5132 int fd[2];
5134 /* Obviously, we cannot just access it (we would SEGV trying), so we
5135 trick the o/s to tell us whether p is a valid pointer.
5136 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
5137 not validate p in that case. */
5139 if (emacs_pipe (fd) == 0)
5141 bool valid = emacs_write (fd[1], p, 16) == 16;
5142 emacs_close (fd[1]);
5143 emacs_close (fd[0]);
5144 return valid;
5147 return -1;
5148 #endif
5151 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
5152 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
5153 cannot validate OBJ. This function can be quite slow, so its primary
5154 use is the manual debugging. The only exception is print_object, where
5155 we use it to check whether the memory referenced by the pointer of
5156 Lisp_Save_Value object contains valid objects. */
5159 valid_lisp_object_p (Lisp_Object obj)
5161 if (INTEGERP (obj))
5162 return 1;
5164 void *p = XPNTR (obj);
5165 if (PURE_P (p))
5166 return 1;
5168 if (SYMBOLP (obj) && c_symbol_p (p))
5169 return ((char *) p - (char *) lispsym) % sizeof lispsym[0] == 0;
5171 if (p == &buffer_defaults || p == &buffer_local_symbols)
5172 return 2;
5174 struct mem_node *m = mem_find (p);
5176 if (m == MEM_NIL)
5178 int valid = valid_pointer_p (p);
5179 if (valid <= 0)
5180 return valid;
5182 if (SUBRP (obj))
5183 return 1;
5185 return 0;
5188 switch (m->type)
5190 case MEM_TYPE_NON_LISP:
5191 case MEM_TYPE_SPARE:
5192 return 0;
5194 case MEM_TYPE_BUFFER:
5195 return live_buffer_p (m, p) ? 1 : 2;
5197 case MEM_TYPE_CONS:
5198 return live_cons_p (m, p);
5200 case MEM_TYPE_STRING:
5201 return live_string_p (m, p);
5203 case MEM_TYPE_MISC:
5204 return live_misc_p (m, p);
5206 case MEM_TYPE_SYMBOL:
5207 return live_symbol_p (m, p);
5209 case MEM_TYPE_FLOAT:
5210 return live_float_p (m, p);
5212 case MEM_TYPE_VECTORLIKE:
5213 case MEM_TYPE_VECTOR_BLOCK:
5214 return live_vector_p (m, p);
5216 default:
5217 break;
5220 return 0;
5223 /***********************************************************************
5224 Pure Storage Management
5225 ***********************************************************************/
5227 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5228 pointer to it. TYPE is the Lisp type for which the memory is
5229 allocated. TYPE < 0 means it's not used for a Lisp object. */
5231 static void *
5232 pure_alloc (size_t size, int type)
5234 void *result;
5236 again:
5237 if (type >= 0)
5239 /* Allocate space for a Lisp object from the beginning of the free
5240 space with taking account of alignment. */
5241 result = pointer_align (purebeg + pure_bytes_used_lisp, GCALIGNMENT);
5242 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5244 else
5246 /* Allocate space for a non-Lisp object from the end of the free
5247 space. */
5248 pure_bytes_used_non_lisp += size;
5249 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5251 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5253 if (pure_bytes_used <= pure_size)
5254 return result;
5256 /* Don't allocate a large amount here,
5257 because it might get mmap'd and then its address
5258 might not be usable. */
5259 purebeg = xmalloc (10000);
5260 pure_size = 10000;
5261 pure_bytes_used_before_overflow += pure_bytes_used - size;
5262 pure_bytes_used = 0;
5263 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5264 goto again;
5268 #ifndef CANNOT_DUMP
5270 /* Print a warning if PURESIZE is too small. */
5272 void
5273 check_pure_size (void)
5275 if (pure_bytes_used_before_overflow)
5276 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5277 " bytes needed)"),
5278 pure_bytes_used + pure_bytes_used_before_overflow);
5280 #endif
5283 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5284 the non-Lisp data pool of the pure storage, and return its start
5285 address. Return NULL if not found. */
5287 static char *
5288 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5290 int i;
5291 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5292 const unsigned char *p;
5293 char *non_lisp_beg;
5295 if (pure_bytes_used_non_lisp <= nbytes)
5296 return NULL;
5298 /* Set up the Boyer-Moore table. */
5299 skip = nbytes + 1;
5300 for (i = 0; i < 256; i++)
5301 bm_skip[i] = skip;
5303 p = (const unsigned char *) data;
5304 while (--skip > 0)
5305 bm_skip[*p++] = skip;
5307 last_char_skip = bm_skip['\0'];
5309 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5310 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5312 /* See the comments in the function `boyer_moore' (search.c) for the
5313 use of `infinity'. */
5314 infinity = pure_bytes_used_non_lisp + 1;
5315 bm_skip['\0'] = infinity;
5317 p = (const unsigned char *) non_lisp_beg + nbytes;
5318 start = 0;
5321 /* Check the last character (== '\0'). */
5324 start += bm_skip[*(p + start)];
5326 while (start <= start_max);
5328 if (start < infinity)
5329 /* Couldn't find the last character. */
5330 return NULL;
5332 /* No less than `infinity' means we could find the last
5333 character at `p[start - infinity]'. */
5334 start -= infinity;
5336 /* Check the remaining characters. */
5337 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5338 /* Found. */
5339 return non_lisp_beg + start;
5341 start += last_char_skip;
5343 while (start <= start_max);
5345 return NULL;
5349 /* Return a string allocated in pure space. DATA is a buffer holding
5350 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5351 means make the result string multibyte.
5353 Must get an error if pure storage is full, since if it cannot hold
5354 a large string it may be able to hold conses that point to that
5355 string; then the string is not protected from gc. */
5357 Lisp_Object
5358 make_pure_string (const char *data,
5359 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5361 Lisp_Object string;
5362 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5363 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5364 if (s->data == NULL)
5366 s->data = pure_alloc (nbytes + 1, -1);
5367 memcpy (s->data, data, nbytes);
5368 s->data[nbytes] = '\0';
5370 s->size = nchars;
5371 s->size_byte = multibyte ? nbytes : -1;
5372 s->intervals = NULL;
5373 XSETSTRING (string, s);
5374 return string;
5377 /* Return a string allocated in pure space. Do not
5378 allocate the string data, just point to DATA. */
5380 Lisp_Object
5381 make_pure_c_string (const char *data, ptrdiff_t nchars)
5383 Lisp_Object string;
5384 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5385 s->size = nchars;
5386 s->size_byte = -1;
5387 s->data = (unsigned char *) data;
5388 s->intervals = NULL;
5389 XSETSTRING (string, s);
5390 return string;
5393 static Lisp_Object purecopy (Lisp_Object obj);
5395 /* Return a cons allocated from pure space. Give it pure copies
5396 of CAR as car and CDR as cdr. */
5398 Lisp_Object
5399 pure_cons (Lisp_Object car, Lisp_Object cdr)
5401 Lisp_Object new;
5402 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5403 XSETCONS (new, p);
5404 XSETCAR (new, purecopy (car));
5405 XSETCDR (new, purecopy (cdr));
5406 return new;
5410 /* Value is a float object with value NUM allocated from pure space. */
5412 static Lisp_Object
5413 make_pure_float (double num)
5415 Lisp_Object new;
5416 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5417 XSETFLOAT (new, p);
5418 XFLOAT_INIT (new, num);
5419 return new;
5423 /* Return a vector with room for LEN Lisp_Objects allocated from
5424 pure space. */
5426 static Lisp_Object
5427 make_pure_vector (ptrdiff_t len)
5429 Lisp_Object new;
5430 size_t size = header_size + len * word_size;
5431 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5432 XSETVECTOR (new, p);
5433 XVECTOR (new)->header.size = len;
5434 return new;
5437 /* Copy all contents and parameters of TABLE to a new table allocated
5438 from pure space, return the purified table. */
5439 static struct Lisp_Hash_Table *
5440 purecopy_hash_table (struct Lisp_Hash_Table *table) {
5441 eassert (NILP (table->weak));
5442 eassert (!NILP (table->pure));
5444 struct Lisp_Hash_Table *pure = pure_alloc (sizeof *pure, Lisp_Vectorlike);
5445 struct hash_table_test pure_test = table->test;
5447 /* Purecopy the hash table test. */
5448 pure_test.name = purecopy (table->test.name);
5449 pure_test.user_hash_function = purecopy (table->test.user_hash_function);
5450 pure_test.user_cmp_function = purecopy (table->test.user_cmp_function);
5452 pure->test = pure_test;
5453 pure->header = table->header;
5454 pure->weak = purecopy (Qnil);
5455 pure->rehash_size = purecopy (table->rehash_size);
5456 pure->rehash_threshold = purecopy (table->rehash_threshold);
5457 pure->hash = purecopy (table->hash);
5458 pure->next = purecopy (table->next);
5459 pure->next_free = purecopy (table->next_free);
5460 pure->index = purecopy (table->index);
5461 pure->count = table->count;
5462 pure->key_and_value = purecopy (table->key_and_value);
5463 pure->pure = purecopy (table->pure);
5465 return pure;
5468 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5469 doc: /* Make a copy of object OBJ in pure storage.
5470 Recursively copies contents of vectors and cons cells.
5471 Does not copy symbols. Copies strings without text properties. */)
5472 (register Lisp_Object obj)
5474 if (NILP (Vpurify_flag))
5475 return obj;
5476 else if (MARKERP (obj) || OVERLAYP (obj) || SYMBOLP (obj))
5477 /* Can't purify those. */
5478 return obj;
5479 else
5480 return purecopy (obj);
5483 struct pinned_object
5485 Lisp_Object object;
5486 struct pinned_object *next;
5489 /* Pinned objects are marked before every GC cycle. */
5490 static struct pinned_object *pinned_objects;
5492 static Lisp_Object
5493 purecopy (Lisp_Object obj)
5495 if (INTEGERP (obj)
5496 || (! SYMBOLP (obj) && PURE_P (XPNTR_OR_SYMBOL_OFFSET (obj)))
5497 || SUBRP (obj))
5498 return obj; /* Already pure. */
5500 if (STRINGP (obj) && XSTRING (obj)->intervals)
5501 message_with_string ("Dropping text-properties while making string `%s' pure",
5502 obj, true);
5504 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5506 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5507 if (!NILP (tmp))
5508 return tmp;
5511 if (CONSP (obj))
5512 obj = pure_cons (XCAR (obj), XCDR (obj));
5513 else if (FLOATP (obj))
5514 obj = make_pure_float (XFLOAT_DATA (obj));
5515 else if (STRINGP (obj))
5516 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5517 SBYTES (obj),
5518 STRING_MULTIBYTE (obj));
5519 else if (HASH_TABLE_P (obj))
5521 struct Lisp_Hash_Table *table = XHASH_TABLE (obj);
5522 /* We cannot purify hash tables which haven't been defined with
5523 :purecopy as non-nil or are weak - they aren't guaranteed to
5524 not change. */
5525 if (!NILP (table->weak) || NILP (table->pure))
5527 /* Instead, the hash table is added to the list of pinned objects,
5528 and is marked before GC. */
5529 struct pinned_object *o = xmalloc (sizeof *o);
5530 o->object = obj;
5531 o->next = pinned_objects;
5532 pinned_objects = o;
5533 return obj; /* Don't hash cons it. */
5536 struct Lisp_Hash_Table *h = purecopy_hash_table (table);
5537 XSET_HASH_TABLE (obj, h);
5539 else if (COMPILEDP (obj) || VECTORP (obj))
5541 struct Lisp_Vector *objp = XVECTOR (obj);
5542 ptrdiff_t nbytes = vector_nbytes (objp);
5543 struct Lisp_Vector *vec = pure_alloc (nbytes, Lisp_Vectorlike);
5544 register ptrdiff_t i;
5545 ptrdiff_t size = ASIZE (obj);
5546 if (size & PSEUDOVECTOR_FLAG)
5547 size &= PSEUDOVECTOR_SIZE_MASK;
5548 memcpy (vec, objp, nbytes);
5549 for (i = 0; i < size; i++)
5550 vec->contents[i] = purecopy (vec->contents[i]);
5551 XSETVECTOR (obj, vec);
5553 else if (SYMBOLP (obj))
5555 if (!XSYMBOL (obj)->pinned && !c_symbol_p (XSYMBOL (obj)))
5556 { /* We can't purify them, but they appear in many pure objects.
5557 Mark them as `pinned' so we know to mark them at every GC cycle. */
5558 XSYMBOL (obj)->pinned = true;
5559 symbol_block_pinned = symbol_block;
5561 /* Don't hash-cons it. */
5562 return obj;
5564 else
5566 AUTO_STRING (fmt, "Don't know how to purify: %S");
5567 Fsignal (Qerror, list1 (CALLN (Fformat, fmt, obj)));
5570 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5571 Fputhash (obj, obj, Vpurify_flag);
5573 return obj;
5578 /***********************************************************************
5579 Protection from GC
5580 ***********************************************************************/
5582 /* Put an entry in staticvec, pointing at the variable with address
5583 VARADDRESS. */
5585 void
5586 staticpro (Lisp_Object *varaddress)
5588 if (staticidx >= NSTATICS)
5589 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5590 staticvec[staticidx++] = varaddress;
5594 /***********************************************************************
5595 Protection from GC
5596 ***********************************************************************/
5598 /* Temporarily prevent garbage collection. */
5600 ptrdiff_t
5601 inhibit_garbage_collection (void)
5603 ptrdiff_t count = SPECPDL_INDEX ();
5605 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5606 return count;
5609 /* Used to avoid possible overflows when
5610 converting from C to Lisp integers. */
5612 static Lisp_Object
5613 bounded_number (EMACS_INT number)
5615 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5618 /* Calculate total bytes of live objects. */
5620 static size_t
5621 total_bytes_of_live_objects (void)
5623 size_t tot = 0;
5624 tot += total_conses * sizeof (struct Lisp_Cons);
5625 tot += total_symbols * sizeof (struct Lisp_Symbol);
5626 tot += total_markers * sizeof (union Lisp_Misc);
5627 tot += total_string_bytes;
5628 tot += total_vector_slots * word_size;
5629 tot += total_floats * sizeof (struct Lisp_Float);
5630 tot += total_intervals * sizeof (struct interval);
5631 tot += total_strings * sizeof (struct Lisp_String);
5632 return tot;
5635 #ifdef HAVE_WINDOW_SYSTEM
5637 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5638 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5640 static Lisp_Object
5641 compact_font_cache_entry (Lisp_Object entry)
5643 Lisp_Object tail, *prev = &entry;
5645 for (tail = entry; CONSP (tail); tail = XCDR (tail))
5647 bool drop = 0;
5648 Lisp_Object obj = XCAR (tail);
5650 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5651 if (CONSP (obj) && GC_FONT_SPEC_P (XCAR (obj))
5652 && !VECTOR_MARKED_P (GC_XFONT_SPEC (XCAR (obj)))
5653 /* Don't use VECTORP here, as that calls ASIZE, which could
5654 hit assertion violation during GC. */
5655 && (VECTORLIKEP (XCDR (obj))
5656 && ! (gc_asize (XCDR (obj)) & PSEUDOVECTOR_FLAG)))
5658 ptrdiff_t i, size = gc_asize (XCDR (obj));
5659 Lisp_Object obj_cdr = XCDR (obj);
5661 /* If font-spec is not marked, most likely all font-entities
5662 are not marked too. But we must be sure that nothing is
5663 marked within OBJ before we really drop it. */
5664 for (i = 0; i < size; i++)
5666 Lisp_Object objlist;
5668 if (VECTOR_MARKED_P (GC_XFONT_ENTITY (AREF (obj_cdr, i))))
5669 break;
5671 objlist = AREF (AREF (obj_cdr, i), FONT_OBJLIST_INDEX);
5672 for (; CONSP (objlist); objlist = XCDR (objlist))
5674 Lisp_Object val = XCAR (objlist);
5675 struct font *font = GC_XFONT_OBJECT (val);
5677 if (!NILP (AREF (val, FONT_TYPE_INDEX))
5678 && VECTOR_MARKED_P(font))
5679 break;
5681 if (CONSP (objlist))
5683 /* Found a marked font, bail out. */
5684 break;
5688 if (i == size)
5690 /* No marked fonts were found, so this entire font
5691 entity can be dropped. */
5692 drop = 1;
5695 if (drop)
5696 *prev = XCDR (tail);
5697 else
5698 prev = xcdr_addr (tail);
5700 return entry;
5703 /* Compact font caches on all terminals and mark
5704 everything which is still here after compaction. */
5706 static void
5707 compact_font_caches (void)
5709 struct terminal *t;
5711 for (t = terminal_list; t; t = t->next_terminal)
5713 Lisp_Object cache = TERMINAL_FONT_CACHE (t);
5714 /* Inhibit compacting the caches if the user so wishes. Some of
5715 the users don't mind a larger memory footprint, but do mind
5716 slower redisplay. */
5717 if (!inhibit_compacting_font_caches
5718 && CONSP (cache))
5720 Lisp_Object entry;
5722 for (entry = XCDR (cache); CONSP (entry); entry = XCDR (entry))
5723 XSETCAR (entry, compact_font_cache_entry (XCAR (entry)));
5725 mark_object (cache);
5729 #else /* not HAVE_WINDOW_SYSTEM */
5731 #define compact_font_caches() (void)(0)
5733 #endif /* HAVE_WINDOW_SYSTEM */
5735 /* Remove (MARKER . DATA) entries with unmarked MARKER
5736 from buffer undo LIST and return changed list. */
5738 static Lisp_Object
5739 compact_undo_list (Lisp_Object list)
5741 Lisp_Object tail, *prev = &list;
5743 for (tail = list; CONSP (tail); tail = XCDR (tail))
5745 if (CONSP (XCAR (tail))
5746 && MARKERP (XCAR (XCAR (tail)))
5747 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5748 *prev = XCDR (tail);
5749 else
5750 prev = xcdr_addr (tail);
5752 return list;
5755 static void
5756 mark_pinned_objects (void)
5758 struct pinned_object *pobj;
5759 for (pobj = pinned_objects; pobj; pobj = pobj->next)
5761 mark_object (pobj->object);
5765 static void
5766 mark_pinned_symbols (void)
5768 struct symbol_block *sblk;
5769 int lim = (symbol_block_pinned == symbol_block
5770 ? symbol_block_index : SYMBOL_BLOCK_SIZE);
5772 for (sblk = symbol_block_pinned; sblk; sblk = sblk->next)
5774 union aligned_Lisp_Symbol *sym = sblk->symbols, *end = sym + lim;
5775 for (; sym < end; ++sym)
5776 if (sym->s.pinned)
5777 mark_object (make_lisp_symbol (&sym->s));
5779 lim = SYMBOL_BLOCK_SIZE;
5783 /* Subroutine of Fgarbage_collect that does most of the work. It is a
5784 separate function so that we could limit mark_stack in searching
5785 the stack frames below this function, thus avoiding the rare cases
5786 where mark_stack finds values that look like live Lisp objects on
5787 portions of stack that couldn't possibly contain such live objects.
5788 For more details of this, see the discussion at
5789 http://lists.gnu.org/archive/html/emacs-devel/2014-05/msg00270.html. */
5790 static Lisp_Object
5791 garbage_collect_1 (void *end)
5793 struct buffer *nextb;
5794 char stack_top_variable;
5795 ptrdiff_t i;
5796 bool message_p;
5797 ptrdiff_t count = SPECPDL_INDEX ();
5798 struct timespec start;
5799 Lisp_Object retval = Qnil;
5800 size_t tot_before = 0;
5802 /* Can't GC if pure storage overflowed because we can't determine
5803 if something is a pure object or not. */
5804 if (pure_bytes_used_before_overflow)
5805 return Qnil;
5807 /* Record this function, so it appears on the profiler's backtraces. */
5808 record_in_backtrace (QAutomatic_GC, 0, 0);
5810 check_cons_list ();
5812 /* Don't keep undo information around forever.
5813 Do this early on, so it is no problem if the user quits. */
5814 FOR_EACH_BUFFER (nextb)
5815 compact_buffer (nextb);
5817 if (profiler_memory_running)
5818 tot_before = total_bytes_of_live_objects ();
5820 start = current_timespec ();
5822 /* In case user calls debug_print during GC,
5823 don't let that cause a recursive GC. */
5824 consing_since_gc = 0;
5826 /* Save what's currently displayed in the echo area. Don't do that
5827 if we are GC'ing because we've run out of memory, since
5828 push_message will cons, and we might have no memory for that. */
5829 if (NILP (Vmemory_full))
5831 message_p = push_message ();
5832 record_unwind_protect_void (pop_message_unwind);
5834 else
5835 message_p = false;
5837 /* Save a copy of the contents of the stack, for debugging. */
5838 #if MAX_SAVE_STACK > 0
5839 if (NILP (Vpurify_flag))
5841 char *stack;
5842 ptrdiff_t stack_size;
5843 if (&stack_top_variable < stack_bottom)
5845 stack = &stack_top_variable;
5846 stack_size = stack_bottom - &stack_top_variable;
5848 else
5850 stack = stack_bottom;
5851 stack_size = &stack_top_variable - stack_bottom;
5853 if (stack_size <= MAX_SAVE_STACK)
5855 if (stack_copy_size < stack_size)
5857 stack_copy = xrealloc (stack_copy, stack_size);
5858 stack_copy_size = stack_size;
5860 no_sanitize_memcpy (stack_copy, stack, stack_size);
5863 #endif /* MAX_SAVE_STACK > 0 */
5865 if (garbage_collection_messages)
5866 message1_nolog ("Garbage collecting...");
5868 block_input ();
5870 shrink_regexp_cache ();
5872 gc_in_progress = 1;
5874 /* Mark all the special slots that serve as the roots of accessibility. */
5876 mark_buffer (&buffer_defaults);
5877 mark_buffer (&buffer_local_symbols);
5879 for (i = 0; i < ARRAYELTS (lispsym); i++)
5880 mark_object (builtin_lisp_symbol (i));
5882 for (i = 0; i < staticidx; i++)
5883 mark_object (*staticvec[i]);
5885 mark_pinned_objects ();
5886 mark_pinned_symbols ();
5887 mark_terminals ();
5888 mark_kboards ();
5889 mark_threads ();
5891 #ifdef USE_GTK
5892 xg_mark_data ();
5893 #endif
5895 #ifdef HAVE_WINDOW_SYSTEM
5896 mark_fringe_data ();
5897 #endif
5899 /* Everything is now marked, except for the data in font caches,
5900 undo lists, and finalizers. The first two are compacted by
5901 removing an items which aren't reachable otherwise. */
5903 compact_font_caches ();
5905 FOR_EACH_BUFFER (nextb)
5907 if (!EQ (BVAR (nextb, undo_list), Qt))
5908 bset_undo_list (nextb, compact_undo_list (BVAR (nextb, undo_list)));
5909 /* Now that we have stripped the elements that need not be
5910 in the undo_list any more, we can finally mark the list. */
5911 mark_object (BVAR (nextb, undo_list));
5914 /* Now pre-sweep finalizers. Here, we add any unmarked finalizers
5915 to doomed_finalizers so we can run their associated functions
5916 after GC. It's important to scan finalizers at this stage so
5917 that we can be sure that unmarked finalizers are really
5918 unreachable except for references from their associated functions
5919 and from other finalizers. */
5921 queue_doomed_finalizers (&doomed_finalizers, &finalizers);
5922 mark_finalizer_list (&doomed_finalizers);
5924 gc_sweep ();
5926 /* Clear the mark bits that we set in certain root slots. */
5927 VECTOR_UNMARK (&buffer_defaults);
5928 VECTOR_UNMARK (&buffer_local_symbols);
5930 check_cons_list ();
5932 gc_in_progress = 0;
5934 unblock_input ();
5936 consing_since_gc = 0;
5937 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5938 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5940 gc_relative_threshold = 0;
5941 if (FLOATP (Vgc_cons_percentage))
5942 { /* Set gc_cons_combined_threshold. */
5943 double tot = total_bytes_of_live_objects ();
5945 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5946 if (0 < tot)
5948 if (tot < TYPE_MAXIMUM (EMACS_INT))
5949 gc_relative_threshold = tot;
5950 else
5951 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5955 if (garbage_collection_messages && NILP (Vmemory_full))
5957 if (message_p || minibuf_level > 0)
5958 restore_message ();
5959 else
5960 message1_nolog ("Garbage collecting...done");
5963 unbind_to (count, Qnil);
5965 Lisp_Object total[] = {
5966 list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5967 bounded_number (total_conses),
5968 bounded_number (total_free_conses)),
5969 list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5970 bounded_number (total_symbols),
5971 bounded_number (total_free_symbols)),
5972 list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5973 bounded_number (total_markers),
5974 bounded_number (total_free_markers)),
5975 list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5976 bounded_number (total_strings),
5977 bounded_number (total_free_strings)),
5978 list3 (Qstring_bytes, make_number (1),
5979 bounded_number (total_string_bytes)),
5980 list3 (Qvectors,
5981 make_number (header_size + sizeof (Lisp_Object)),
5982 bounded_number (total_vectors)),
5983 list4 (Qvector_slots, make_number (word_size),
5984 bounded_number (total_vector_slots),
5985 bounded_number (total_free_vector_slots)),
5986 list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5987 bounded_number (total_floats),
5988 bounded_number (total_free_floats)),
5989 list4 (Qintervals, make_number (sizeof (struct interval)),
5990 bounded_number (total_intervals),
5991 bounded_number (total_free_intervals)),
5992 list3 (Qbuffers, make_number (sizeof (struct buffer)),
5993 bounded_number (total_buffers)),
5995 #ifdef DOUG_LEA_MALLOC
5996 list4 (Qheap, make_number (1024),
5997 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5998 bounded_number ((mallinfo ().fordblks + 1023) >> 10)),
5999 #endif
6001 retval = CALLMANY (Flist, total);
6003 /* GC is complete: now we can run our finalizer callbacks. */
6004 run_finalizers (&doomed_finalizers);
6006 if (!NILP (Vpost_gc_hook))
6008 ptrdiff_t gc_count = inhibit_garbage_collection ();
6009 safe_run_hooks (Qpost_gc_hook);
6010 unbind_to (gc_count, Qnil);
6013 /* Accumulate statistics. */
6014 if (FLOATP (Vgc_elapsed))
6016 struct timespec since_start = timespec_sub (current_timespec (), start);
6017 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
6018 + timespectod (since_start));
6021 gcs_done++;
6023 /* Collect profiling data. */
6024 if (profiler_memory_running)
6026 size_t swept = 0;
6027 size_t tot_after = total_bytes_of_live_objects ();
6028 if (tot_before > tot_after)
6029 swept = tot_before - tot_after;
6030 malloc_probe (swept);
6033 return retval;
6036 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
6037 doc: /* Reclaim storage for Lisp objects no longer needed.
6038 Garbage collection happens automatically if you cons more than
6039 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
6040 `garbage-collect' normally returns a list with info on amount of space in use,
6041 where each entry has the form (NAME SIZE USED FREE), where:
6042 - NAME is a symbol describing the kind of objects this entry represents,
6043 - SIZE is the number of bytes used by each one,
6044 - USED is the number of those objects that were found live in the heap,
6045 - FREE is the number of those objects that are not live but that Emacs
6046 keeps around for future allocations (maybe because it does not know how
6047 to return them to the OS).
6048 However, if there was overflow in pure space, `garbage-collect'
6049 returns nil, because real GC can't be done.
6050 See Info node `(elisp)Garbage Collection'. */)
6051 (void)
6053 void *end;
6055 #ifdef HAVE___BUILTIN_UNWIND_INIT
6056 /* Force callee-saved registers and register windows onto the stack.
6057 This is the preferred method if available, obviating the need for
6058 machine dependent methods. */
6059 __builtin_unwind_init ();
6060 end = &end;
6061 #else /* not HAVE___BUILTIN_UNWIND_INIT */
6062 #ifndef GC_SAVE_REGISTERS_ON_STACK
6063 /* jmp_buf may not be aligned enough on darwin-ppc64 */
6064 union aligned_jmpbuf {
6065 Lisp_Object o;
6066 sys_jmp_buf j;
6067 } j;
6068 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
6069 #endif
6070 /* This trick flushes the register windows so that all the state of
6071 the process is contained in the stack. */
6072 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
6073 needed on ia64 too. See mach_dep.c, where it also says inline
6074 assembler doesn't work with relevant proprietary compilers. */
6075 #ifdef __sparc__
6076 #if defined (__sparc64__) && defined (__FreeBSD__)
6077 /* FreeBSD does not have a ta 3 handler. */
6078 asm ("flushw");
6079 #else
6080 asm ("ta 3");
6081 #endif
6082 #endif
6084 /* Save registers that we need to see on the stack. We need to see
6085 registers used to hold register variables and registers used to
6086 pass parameters. */
6087 #ifdef GC_SAVE_REGISTERS_ON_STACK
6088 GC_SAVE_REGISTERS_ON_STACK (end);
6089 #else /* not GC_SAVE_REGISTERS_ON_STACK */
6091 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
6092 setjmp will definitely work, test it
6093 and print a message with the result
6094 of the test. */
6095 if (!setjmp_tested_p)
6097 setjmp_tested_p = 1;
6098 test_setjmp ();
6100 #endif /* GC_SETJMP_WORKS */
6102 sys_setjmp (j.j);
6103 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
6104 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
6105 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
6106 return garbage_collect_1 (end);
6109 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
6110 only interesting objects referenced from glyphs are strings. */
6112 static void
6113 mark_glyph_matrix (struct glyph_matrix *matrix)
6115 struct glyph_row *row = matrix->rows;
6116 struct glyph_row *end = row + matrix->nrows;
6118 for (; row < end; ++row)
6119 if (row->enabled_p)
6121 int area;
6122 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
6124 struct glyph *glyph = row->glyphs[area];
6125 struct glyph *end_glyph = glyph + row->used[area];
6127 for (; glyph < end_glyph; ++glyph)
6128 if (STRINGP (glyph->object)
6129 && !STRING_MARKED_P (XSTRING (glyph->object)))
6130 mark_object (glyph->object);
6135 /* Mark reference to a Lisp_Object.
6136 If the object referred to has not been seen yet, recursively mark
6137 all the references contained in it. */
6139 #define LAST_MARKED_SIZE 500
6140 Lisp_Object last_marked[LAST_MARKED_SIZE] EXTERNALLY_VISIBLE;
6141 static int last_marked_index;
6143 /* For debugging--call abort when we cdr down this many
6144 links of a list, in mark_object. In debugging,
6145 the call to abort will hit a breakpoint.
6146 Normally this is zero and the check never goes off. */
6147 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
6149 static void
6150 mark_vectorlike (struct Lisp_Vector *ptr)
6152 ptrdiff_t size = ptr->header.size;
6153 ptrdiff_t i;
6155 eassert (!VECTOR_MARKED_P (ptr));
6156 VECTOR_MARK (ptr); /* Else mark it. */
6157 if (size & PSEUDOVECTOR_FLAG)
6158 size &= PSEUDOVECTOR_SIZE_MASK;
6160 /* Note that this size is not the memory-footprint size, but only
6161 the number of Lisp_Object fields that we should trace.
6162 The distinction is used e.g. by Lisp_Process which places extra
6163 non-Lisp_Object fields at the end of the structure... */
6164 for (i = 0; i < size; i++) /* ...and then mark its elements. */
6165 mark_object (ptr->contents[i]);
6168 /* Like mark_vectorlike but optimized for char-tables (and
6169 sub-char-tables) assuming that the contents are mostly integers or
6170 symbols. */
6172 static void
6173 mark_char_table (struct Lisp_Vector *ptr, enum pvec_type pvectype)
6175 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6176 /* Consult the Lisp_Sub_Char_Table layout before changing this. */
6177 int i, idx = (pvectype == PVEC_SUB_CHAR_TABLE ? SUB_CHAR_TABLE_OFFSET : 0);
6179 eassert (!VECTOR_MARKED_P (ptr));
6180 VECTOR_MARK (ptr);
6181 for (i = idx; i < size; i++)
6183 Lisp_Object val = ptr->contents[i];
6185 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
6186 continue;
6187 if (SUB_CHAR_TABLE_P (val))
6189 if (! VECTOR_MARKED_P (XVECTOR (val)))
6190 mark_char_table (XVECTOR (val), PVEC_SUB_CHAR_TABLE);
6192 else
6193 mark_object (val);
6197 NO_INLINE /* To reduce stack depth in mark_object. */
6198 static Lisp_Object
6199 mark_compiled (struct Lisp_Vector *ptr)
6201 int i, size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6203 VECTOR_MARK (ptr);
6204 for (i = 0; i < size; i++)
6205 if (i != COMPILED_CONSTANTS)
6206 mark_object (ptr->contents[i]);
6207 return size > COMPILED_CONSTANTS ? ptr->contents[COMPILED_CONSTANTS] : Qnil;
6210 /* Mark the chain of overlays starting at PTR. */
6212 static void
6213 mark_overlay (struct Lisp_Overlay *ptr)
6215 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
6217 ptr->gcmarkbit = 1;
6218 /* These two are always markers and can be marked fast. */
6219 XMARKER (ptr->start)->gcmarkbit = 1;
6220 XMARKER (ptr->end)->gcmarkbit = 1;
6221 mark_object (ptr->plist);
6225 /* Mark Lisp_Objects and special pointers in BUFFER. */
6227 static void
6228 mark_buffer (struct buffer *buffer)
6230 /* This is handled much like other pseudovectors... */
6231 mark_vectorlike ((struct Lisp_Vector *) buffer);
6233 /* ...but there are some buffer-specific things. */
6235 MARK_INTERVAL_TREE (buffer_intervals (buffer));
6237 /* For now, we just don't mark the undo_list. It's done later in
6238 a special way just before the sweep phase, and after stripping
6239 some of its elements that are not needed any more. */
6241 mark_overlay (buffer->overlays_before);
6242 mark_overlay (buffer->overlays_after);
6244 /* If this is an indirect buffer, mark its base buffer. */
6245 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
6246 mark_buffer (buffer->base_buffer);
6249 /* Mark Lisp faces in the face cache C. */
6251 NO_INLINE /* To reduce stack depth in mark_object. */
6252 static void
6253 mark_face_cache (struct face_cache *c)
6255 if (c)
6257 int i, j;
6258 for (i = 0; i < c->used; ++i)
6260 struct face *face = FACE_FROM_ID_OR_NULL (c->f, i);
6262 if (face)
6264 if (face->font && !VECTOR_MARKED_P (face->font))
6265 mark_vectorlike ((struct Lisp_Vector *) face->font);
6267 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
6268 mark_object (face->lface[j]);
6274 NO_INLINE /* To reduce stack depth in mark_object. */
6275 static void
6276 mark_localized_symbol (struct Lisp_Symbol *ptr)
6278 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6279 Lisp_Object where = blv->where;
6280 /* If the value is set up for a killed buffer or deleted
6281 frame, restore its global binding. If the value is
6282 forwarded to a C variable, either it's not a Lisp_Object
6283 var, or it's staticpro'd already. */
6284 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
6285 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
6286 swap_in_global_binding (ptr);
6287 mark_object (blv->where);
6288 mark_object (blv->valcell);
6289 mark_object (blv->defcell);
6292 NO_INLINE /* To reduce stack depth in mark_object. */
6293 static void
6294 mark_save_value (struct Lisp_Save_Value *ptr)
6296 /* If `save_type' is zero, `data[0].pointer' is the address
6297 of a memory area containing `data[1].integer' potential
6298 Lisp_Objects. */
6299 if (ptr->save_type == SAVE_TYPE_MEMORY)
6301 Lisp_Object *p = ptr->data[0].pointer;
6302 ptrdiff_t nelt;
6303 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6304 mark_maybe_object (*p);
6306 else
6308 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6309 int i;
6310 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6311 if (save_type (ptr, i) == SAVE_OBJECT)
6312 mark_object (ptr->data[i].object);
6316 /* Remove killed buffers or items whose car is a killed buffer from
6317 LIST, and mark other items. Return changed LIST, which is marked. */
6319 static Lisp_Object
6320 mark_discard_killed_buffers (Lisp_Object list)
6322 Lisp_Object tail, *prev = &list;
6324 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
6325 tail = XCDR (tail))
6327 Lisp_Object tem = XCAR (tail);
6328 if (CONSP (tem))
6329 tem = XCAR (tem);
6330 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
6331 *prev = XCDR (tail);
6332 else
6334 CONS_MARK (XCONS (tail));
6335 mark_object (XCAR (tail));
6336 prev = xcdr_addr (tail);
6339 mark_object (tail);
6340 return list;
6343 /* Determine type of generic Lisp_Object and mark it accordingly.
6345 This function implements a straightforward depth-first marking
6346 algorithm and so the recursion depth may be very high (a few
6347 tens of thousands is not uncommon). To minimize stack usage,
6348 a few cold paths are moved out to NO_INLINE functions above.
6349 In general, inlining them doesn't help you to gain more speed. */
6351 void
6352 mark_object (Lisp_Object arg)
6354 register Lisp_Object obj;
6355 void *po;
6356 #ifdef GC_CHECK_MARKED_OBJECTS
6357 struct mem_node *m;
6358 #endif
6359 ptrdiff_t cdr_count = 0;
6361 obj = arg;
6362 loop:
6364 po = XPNTR (obj);
6365 if (PURE_P (po))
6366 return;
6368 last_marked[last_marked_index++] = obj;
6369 if (last_marked_index == LAST_MARKED_SIZE)
6370 last_marked_index = 0;
6372 /* Perform some sanity checks on the objects marked here. Abort if
6373 we encounter an object we know is bogus. This increases GC time
6374 by ~80%. */
6375 #ifdef GC_CHECK_MARKED_OBJECTS
6377 /* Check that the object pointed to by PO is known to be a Lisp
6378 structure allocated from the heap. */
6379 #define CHECK_ALLOCATED() \
6380 do { \
6381 m = mem_find (po); \
6382 if (m == MEM_NIL) \
6383 emacs_abort (); \
6384 } while (0)
6386 /* Check that the object pointed to by PO is live, using predicate
6387 function LIVEP. */
6388 #define CHECK_LIVE(LIVEP) \
6389 do { \
6390 if (!LIVEP (m, po)) \
6391 emacs_abort (); \
6392 } while (0)
6394 /* Check both of the above conditions, for non-symbols. */
6395 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
6396 do { \
6397 CHECK_ALLOCATED (); \
6398 CHECK_LIVE (LIVEP); \
6399 } while (0) \
6401 /* Check both of the above conditions, for symbols. */
6402 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() \
6403 do { \
6404 if (!c_symbol_p (ptr)) \
6406 CHECK_ALLOCATED (); \
6407 CHECK_LIVE (live_symbol_p); \
6409 } while (0) \
6411 #else /* not GC_CHECK_MARKED_OBJECTS */
6413 #define CHECK_LIVE(LIVEP) ((void) 0)
6414 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) ((void) 0)
6415 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() ((void) 0)
6417 #endif /* not GC_CHECK_MARKED_OBJECTS */
6419 switch (XTYPE (obj))
6421 case Lisp_String:
6423 register struct Lisp_String *ptr = XSTRING (obj);
6424 if (STRING_MARKED_P (ptr))
6425 break;
6426 CHECK_ALLOCATED_AND_LIVE (live_string_p);
6427 MARK_STRING (ptr);
6428 MARK_INTERVAL_TREE (ptr->intervals);
6429 #ifdef GC_CHECK_STRING_BYTES
6430 /* Check that the string size recorded in the string is the
6431 same as the one recorded in the sdata structure. */
6432 string_bytes (ptr);
6433 #endif /* GC_CHECK_STRING_BYTES */
6435 break;
6437 case Lisp_Vectorlike:
6439 register struct Lisp_Vector *ptr = XVECTOR (obj);
6440 register ptrdiff_t pvectype;
6442 if (VECTOR_MARKED_P (ptr))
6443 break;
6445 #ifdef GC_CHECK_MARKED_OBJECTS
6446 m = mem_find (po);
6447 if (m == MEM_NIL && !SUBRP (obj) && !main_thread_p (po))
6448 emacs_abort ();
6449 #endif /* GC_CHECK_MARKED_OBJECTS */
6451 if (ptr->header.size & PSEUDOVECTOR_FLAG)
6452 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
6453 >> PSEUDOVECTOR_AREA_BITS);
6454 else
6455 pvectype = PVEC_NORMAL_VECTOR;
6457 if (pvectype != PVEC_SUBR
6458 && pvectype != PVEC_BUFFER
6459 && !main_thread_p (po))
6460 CHECK_LIVE (live_vector_p);
6462 switch (pvectype)
6464 case PVEC_BUFFER:
6465 #ifdef GC_CHECK_MARKED_OBJECTS
6467 struct buffer *b;
6468 FOR_EACH_BUFFER (b)
6469 if (b == po)
6470 break;
6471 if (b == NULL)
6472 emacs_abort ();
6474 #endif /* GC_CHECK_MARKED_OBJECTS */
6475 mark_buffer ((struct buffer *) ptr);
6476 break;
6478 case PVEC_COMPILED:
6479 /* Although we could treat this just like a vector, mark_compiled
6480 returns the COMPILED_CONSTANTS element, which is marked at the
6481 next iteration of goto-loop here. This is done to avoid a few
6482 recursive calls to mark_object. */
6483 obj = mark_compiled (ptr);
6484 if (!NILP (obj))
6485 goto loop;
6486 break;
6488 case PVEC_FRAME:
6490 struct frame *f = (struct frame *) ptr;
6492 mark_vectorlike (ptr);
6493 mark_face_cache (f->face_cache);
6494 #ifdef HAVE_WINDOW_SYSTEM
6495 if (FRAME_WINDOW_P (f) && FRAME_X_OUTPUT (f))
6497 struct font *font = FRAME_FONT (f);
6499 if (font && !VECTOR_MARKED_P (font))
6500 mark_vectorlike ((struct Lisp_Vector *) font);
6502 #endif
6504 break;
6506 case PVEC_WINDOW:
6508 struct window *w = (struct window *) ptr;
6510 mark_vectorlike (ptr);
6512 /* Mark glyph matrices, if any. Marking window
6513 matrices is sufficient because frame matrices
6514 use the same glyph memory. */
6515 if (w->current_matrix)
6517 mark_glyph_matrix (w->current_matrix);
6518 mark_glyph_matrix (w->desired_matrix);
6521 /* Filter out killed buffers from both buffer lists
6522 in attempt to help GC to reclaim killed buffers faster.
6523 We can do it elsewhere for live windows, but this is the
6524 best place to do it for dead windows. */
6525 wset_prev_buffers
6526 (w, mark_discard_killed_buffers (w->prev_buffers));
6527 wset_next_buffers
6528 (w, mark_discard_killed_buffers (w->next_buffers));
6530 break;
6532 case PVEC_HASH_TABLE:
6534 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6536 mark_vectorlike (ptr);
6537 mark_object (h->test.name);
6538 mark_object (h->test.user_hash_function);
6539 mark_object (h->test.user_cmp_function);
6540 /* If hash table is not weak, mark all keys and values.
6541 For weak tables, mark only the vector. */
6542 if (NILP (h->weak))
6543 mark_object (h->key_and_value);
6544 else
6545 VECTOR_MARK (XVECTOR (h->key_and_value));
6547 break;
6549 case PVEC_CHAR_TABLE:
6550 case PVEC_SUB_CHAR_TABLE:
6551 mark_char_table (ptr, (enum pvec_type) pvectype);
6552 break;
6554 case PVEC_BOOL_VECTOR:
6555 /* No Lisp_Objects to mark in a bool vector. */
6556 VECTOR_MARK (ptr);
6557 break;
6559 case PVEC_SUBR:
6560 break;
6562 case PVEC_FREE:
6563 emacs_abort ();
6565 default:
6566 mark_vectorlike (ptr);
6569 break;
6571 case Lisp_Symbol:
6573 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6574 nextsym:
6575 if (ptr->gcmarkbit)
6576 break;
6577 CHECK_ALLOCATED_AND_LIVE_SYMBOL ();
6578 ptr->gcmarkbit = 1;
6579 /* Attempt to catch bogus objects. */
6580 eassert (valid_lisp_object_p (ptr->function));
6581 mark_object (ptr->function);
6582 mark_object (ptr->plist);
6583 switch (ptr->redirect)
6585 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6586 case SYMBOL_VARALIAS:
6588 Lisp_Object tem;
6589 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6590 mark_object (tem);
6591 break;
6593 case SYMBOL_LOCALIZED:
6594 mark_localized_symbol (ptr);
6595 break;
6596 case SYMBOL_FORWARDED:
6597 /* If the value is forwarded to a buffer or keyboard field,
6598 these are marked when we see the corresponding object.
6599 And if it's forwarded to a C variable, either it's not
6600 a Lisp_Object var, or it's staticpro'd already. */
6601 break;
6602 default: emacs_abort ();
6604 if (!PURE_P (XSTRING (ptr->name)))
6605 MARK_STRING (XSTRING (ptr->name));
6606 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6607 /* Inner loop to mark next symbol in this bucket, if any. */
6608 po = ptr = ptr->next;
6609 if (ptr)
6610 goto nextsym;
6612 break;
6614 case Lisp_Misc:
6615 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6617 if (XMISCANY (obj)->gcmarkbit)
6618 break;
6620 switch (XMISCTYPE (obj))
6622 case Lisp_Misc_Marker:
6623 /* DO NOT mark thru the marker's chain.
6624 The buffer's markers chain does not preserve markers from gc;
6625 instead, markers are removed from the chain when freed by gc. */
6626 XMISCANY (obj)->gcmarkbit = 1;
6627 break;
6629 case Lisp_Misc_Save_Value:
6630 XMISCANY (obj)->gcmarkbit = 1;
6631 mark_save_value (XSAVE_VALUE (obj));
6632 break;
6634 case Lisp_Misc_Overlay:
6635 mark_overlay (XOVERLAY (obj));
6636 break;
6638 case Lisp_Misc_Finalizer:
6639 XMISCANY (obj)->gcmarkbit = true;
6640 mark_object (XFINALIZER (obj)->function);
6641 break;
6643 #ifdef HAVE_MODULES
6644 case Lisp_Misc_User_Ptr:
6645 XMISCANY (obj)->gcmarkbit = true;
6646 break;
6647 #endif
6649 default:
6650 emacs_abort ();
6652 break;
6654 case Lisp_Cons:
6656 register struct Lisp_Cons *ptr = XCONS (obj);
6657 if (CONS_MARKED_P (ptr))
6658 break;
6659 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6660 CONS_MARK (ptr);
6661 /* If the cdr is nil, avoid recursion for the car. */
6662 if (EQ (ptr->u.cdr, Qnil))
6664 obj = ptr->car;
6665 cdr_count = 0;
6666 goto loop;
6668 mark_object (ptr->car);
6669 obj = ptr->u.cdr;
6670 cdr_count++;
6671 if (cdr_count == mark_object_loop_halt)
6672 emacs_abort ();
6673 goto loop;
6676 case Lisp_Float:
6677 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6678 FLOAT_MARK (XFLOAT (obj));
6679 break;
6681 case_Lisp_Int:
6682 break;
6684 default:
6685 emacs_abort ();
6688 #undef CHECK_LIVE
6689 #undef CHECK_ALLOCATED
6690 #undef CHECK_ALLOCATED_AND_LIVE
6692 /* Mark the Lisp pointers in the terminal objects.
6693 Called by Fgarbage_collect. */
6695 static void
6696 mark_terminals (void)
6698 struct terminal *t;
6699 for (t = terminal_list; t; t = t->next_terminal)
6701 eassert (t->name != NULL);
6702 #ifdef HAVE_WINDOW_SYSTEM
6703 /* If a terminal object is reachable from a stacpro'ed object,
6704 it might have been marked already. Make sure the image cache
6705 gets marked. */
6706 mark_image_cache (t->image_cache);
6707 #endif /* HAVE_WINDOW_SYSTEM */
6708 if (!VECTOR_MARKED_P (t))
6709 mark_vectorlike ((struct Lisp_Vector *)t);
6715 /* Value is non-zero if OBJ will survive the current GC because it's
6716 either marked or does not need to be marked to survive. */
6718 bool
6719 survives_gc_p (Lisp_Object obj)
6721 bool survives_p;
6723 switch (XTYPE (obj))
6725 case_Lisp_Int:
6726 survives_p = 1;
6727 break;
6729 case Lisp_Symbol:
6730 survives_p = XSYMBOL (obj)->gcmarkbit;
6731 break;
6733 case Lisp_Misc:
6734 survives_p = XMISCANY (obj)->gcmarkbit;
6735 break;
6737 case Lisp_String:
6738 survives_p = STRING_MARKED_P (XSTRING (obj));
6739 break;
6741 case Lisp_Vectorlike:
6742 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6743 break;
6745 case Lisp_Cons:
6746 survives_p = CONS_MARKED_P (XCONS (obj));
6747 break;
6749 case Lisp_Float:
6750 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6751 break;
6753 default:
6754 emacs_abort ();
6757 return survives_p || PURE_P (XPNTR (obj));
6763 NO_INLINE /* For better stack traces */
6764 static void
6765 sweep_conses (void)
6767 struct cons_block *cblk;
6768 struct cons_block **cprev = &cons_block;
6769 int lim = cons_block_index;
6770 EMACS_INT num_free = 0, num_used = 0;
6772 cons_free_list = 0;
6774 for (cblk = cons_block; cblk; cblk = *cprev)
6776 int i = 0;
6777 int this_free = 0;
6778 int ilim = (lim + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
6780 /* Scan the mark bits an int at a time. */
6781 for (i = 0; i < ilim; i++)
6783 if (cblk->gcmarkbits[i] == BITS_WORD_MAX)
6785 /* Fast path - all cons cells for this int are marked. */
6786 cblk->gcmarkbits[i] = 0;
6787 num_used += BITS_PER_BITS_WORD;
6789 else
6791 /* Some cons cells for this int are not marked.
6792 Find which ones, and free them. */
6793 int start, pos, stop;
6795 start = i * BITS_PER_BITS_WORD;
6796 stop = lim - start;
6797 if (stop > BITS_PER_BITS_WORD)
6798 stop = BITS_PER_BITS_WORD;
6799 stop += start;
6801 for (pos = start; pos < stop; pos++)
6803 if (!CONS_MARKED_P (&cblk->conses[pos]))
6805 this_free++;
6806 cblk->conses[pos].u.chain = cons_free_list;
6807 cons_free_list = &cblk->conses[pos];
6808 cons_free_list->car = Vdead;
6810 else
6812 num_used++;
6813 CONS_UNMARK (&cblk->conses[pos]);
6819 lim = CONS_BLOCK_SIZE;
6820 /* If this block contains only free conses and we have already
6821 seen more than two blocks worth of free conses then deallocate
6822 this block. */
6823 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6825 *cprev = cblk->next;
6826 /* Unhook from the free list. */
6827 cons_free_list = cblk->conses[0].u.chain;
6828 lisp_align_free (cblk);
6830 else
6832 num_free += this_free;
6833 cprev = &cblk->next;
6836 total_conses = num_used;
6837 total_free_conses = num_free;
6840 NO_INLINE /* For better stack traces */
6841 static void
6842 sweep_floats (void)
6844 register struct float_block *fblk;
6845 struct float_block **fprev = &float_block;
6846 register int lim = float_block_index;
6847 EMACS_INT num_free = 0, num_used = 0;
6849 float_free_list = 0;
6851 for (fblk = float_block; fblk; fblk = *fprev)
6853 register int i;
6854 int this_free = 0;
6855 for (i = 0; i < lim; i++)
6856 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6858 this_free++;
6859 fblk->floats[i].u.chain = float_free_list;
6860 float_free_list = &fblk->floats[i];
6862 else
6864 num_used++;
6865 FLOAT_UNMARK (&fblk->floats[i]);
6867 lim = FLOAT_BLOCK_SIZE;
6868 /* If this block contains only free floats and we have already
6869 seen more than two blocks worth of free floats then deallocate
6870 this block. */
6871 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6873 *fprev = fblk->next;
6874 /* Unhook from the free list. */
6875 float_free_list = fblk->floats[0].u.chain;
6876 lisp_align_free (fblk);
6878 else
6880 num_free += this_free;
6881 fprev = &fblk->next;
6884 total_floats = num_used;
6885 total_free_floats = num_free;
6888 NO_INLINE /* For better stack traces */
6889 static void
6890 sweep_intervals (void)
6892 register struct interval_block *iblk;
6893 struct interval_block **iprev = &interval_block;
6894 register int lim = interval_block_index;
6895 EMACS_INT num_free = 0, num_used = 0;
6897 interval_free_list = 0;
6899 for (iblk = interval_block; iblk; iblk = *iprev)
6901 register int i;
6902 int this_free = 0;
6904 for (i = 0; i < lim; i++)
6906 if (!iblk->intervals[i].gcmarkbit)
6908 set_interval_parent (&iblk->intervals[i], interval_free_list);
6909 interval_free_list = &iblk->intervals[i];
6910 this_free++;
6912 else
6914 num_used++;
6915 iblk->intervals[i].gcmarkbit = 0;
6918 lim = INTERVAL_BLOCK_SIZE;
6919 /* If this block contains only free intervals and we have already
6920 seen more than two blocks worth of free intervals then
6921 deallocate this block. */
6922 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6924 *iprev = iblk->next;
6925 /* Unhook from the free list. */
6926 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6927 lisp_free (iblk);
6929 else
6931 num_free += this_free;
6932 iprev = &iblk->next;
6935 total_intervals = num_used;
6936 total_free_intervals = num_free;
6939 NO_INLINE /* For better stack traces */
6940 static void
6941 sweep_symbols (void)
6943 struct symbol_block *sblk;
6944 struct symbol_block **sprev = &symbol_block;
6945 int lim = symbol_block_index;
6946 EMACS_INT num_free = 0, num_used = ARRAYELTS (lispsym);
6948 symbol_free_list = NULL;
6950 for (int i = 0; i < ARRAYELTS (lispsym); i++)
6951 lispsym[i].gcmarkbit = 0;
6953 for (sblk = symbol_block; sblk; sblk = *sprev)
6955 int this_free = 0;
6956 union aligned_Lisp_Symbol *sym = sblk->symbols;
6957 union aligned_Lisp_Symbol *end = sym + lim;
6959 for (; sym < end; ++sym)
6961 if (!sym->s.gcmarkbit)
6963 if (sym->s.redirect == SYMBOL_LOCALIZED)
6964 xfree (SYMBOL_BLV (&sym->s));
6965 sym->s.next = symbol_free_list;
6966 symbol_free_list = &sym->s;
6967 symbol_free_list->function = Vdead;
6968 ++this_free;
6970 else
6972 ++num_used;
6973 sym->s.gcmarkbit = 0;
6974 /* Attempt to catch bogus objects. */
6975 eassert (valid_lisp_object_p (sym->s.function));
6979 lim = SYMBOL_BLOCK_SIZE;
6980 /* If this block contains only free symbols and we have already
6981 seen more than two blocks worth of free symbols then deallocate
6982 this block. */
6983 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6985 *sprev = sblk->next;
6986 /* Unhook from the free list. */
6987 symbol_free_list = sblk->symbols[0].s.next;
6988 lisp_free (sblk);
6990 else
6992 num_free += this_free;
6993 sprev = &sblk->next;
6996 total_symbols = num_used;
6997 total_free_symbols = num_free;
7000 NO_INLINE /* For better stack traces. */
7001 static void
7002 sweep_misc (void)
7004 register struct marker_block *mblk;
7005 struct marker_block **mprev = &marker_block;
7006 register int lim = marker_block_index;
7007 EMACS_INT num_free = 0, num_used = 0;
7009 /* Put all unmarked misc's on free list. For a marker, first
7010 unchain it from the buffer it points into. */
7012 marker_free_list = 0;
7014 for (mblk = marker_block; mblk; mblk = *mprev)
7016 register int i;
7017 int this_free = 0;
7019 for (i = 0; i < lim; i++)
7021 if (!mblk->markers[i].m.u_any.gcmarkbit)
7023 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
7024 unchain_marker (&mblk->markers[i].m.u_marker);
7025 else if (mblk->markers[i].m.u_any.type == Lisp_Misc_Finalizer)
7026 unchain_finalizer (&mblk->markers[i].m.u_finalizer);
7027 #ifdef HAVE_MODULES
7028 else if (mblk->markers[i].m.u_any.type == Lisp_Misc_User_Ptr)
7030 struct Lisp_User_Ptr *uptr = &mblk->markers[i].m.u_user_ptr;
7031 if (uptr->finalizer)
7032 uptr->finalizer (uptr->p);
7034 #endif
7035 /* Set the type of the freed object to Lisp_Misc_Free.
7036 We could leave the type alone, since nobody checks it,
7037 but this might catch bugs faster. */
7038 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
7039 mblk->markers[i].m.u_free.chain = marker_free_list;
7040 marker_free_list = &mblk->markers[i].m;
7041 this_free++;
7043 else
7045 num_used++;
7046 mblk->markers[i].m.u_any.gcmarkbit = 0;
7049 lim = MARKER_BLOCK_SIZE;
7050 /* If this block contains only free markers and we have already
7051 seen more than two blocks worth of free markers then deallocate
7052 this block. */
7053 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
7055 *mprev = mblk->next;
7056 /* Unhook from the free list. */
7057 marker_free_list = mblk->markers[0].m.u_free.chain;
7058 lisp_free (mblk);
7060 else
7062 num_free += this_free;
7063 mprev = &mblk->next;
7067 total_markers = num_used;
7068 total_free_markers = num_free;
7071 NO_INLINE /* For better stack traces */
7072 static void
7073 sweep_buffers (void)
7075 register struct buffer *buffer, **bprev = &all_buffers;
7077 total_buffers = 0;
7078 for (buffer = all_buffers; buffer; buffer = *bprev)
7079 if (!VECTOR_MARKED_P (buffer))
7081 *bprev = buffer->next;
7082 lisp_free (buffer);
7084 else
7086 VECTOR_UNMARK (buffer);
7087 /* Do not use buffer_(set|get)_intervals here. */
7088 buffer->text->intervals = balance_intervals (buffer->text->intervals);
7089 total_buffers++;
7090 bprev = &buffer->next;
7094 /* Sweep: find all structures not marked, and free them. */
7095 static void
7096 gc_sweep (void)
7098 /* Remove or mark entries in weak hash tables.
7099 This must be done before any object is unmarked. */
7100 sweep_weak_hash_tables ();
7102 sweep_strings ();
7103 check_string_bytes (!noninteractive);
7104 sweep_conses ();
7105 sweep_floats ();
7106 sweep_intervals ();
7107 sweep_symbols ();
7108 sweep_misc ();
7109 sweep_buffers ();
7110 sweep_vectors ();
7111 check_string_bytes (!noninteractive);
7114 DEFUN ("memory-info", Fmemory_info, Smemory_info, 0, 0, 0,
7115 doc: /* Return a list of (TOTAL-RAM FREE-RAM TOTAL-SWAP FREE-SWAP).
7116 All values are in Kbytes. If there is no swap space,
7117 last two values are zero. If the system is not supported
7118 or memory information can't be obtained, return nil. */)
7119 (void)
7121 #if defined HAVE_LINUX_SYSINFO
7122 struct sysinfo si;
7123 uintmax_t units;
7125 if (sysinfo (&si))
7126 return Qnil;
7127 #ifdef LINUX_SYSINFO_UNIT
7128 units = si.mem_unit;
7129 #else
7130 units = 1;
7131 #endif
7132 return list4i ((uintmax_t) si.totalram * units / 1024,
7133 (uintmax_t) si.freeram * units / 1024,
7134 (uintmax_t) si.totalswap * units / 1024,
7135 (uintmax_t) si.freeswap * units / 1024);
7136 #elif defined WINDOWSNT
7137 unsigned long long totalram, freeram, totalswap, freeswap;
7139 if (w32_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
7140 return list4i ((uintmax_t) totalram / 1024,
7141 (uintmax_t) freeram / 1024,
7142 (uintmax_t) totalswap / 1024,
7143 (uintmax_t) freeswap / 1024);
7144 else
7145 return Qnil;
7146 #elif defined MSDOS
7147 unsigned long totalram, freeram, totalswap, freeswap;
7149 if (dos_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
7150 return list4i ((uintmax_t) totalram / 1024,
7151 (uintmax_t) freeram / 1024,
7152 (uintmax_t) totalswap / 1024,
7153 (uintmax_t) freeswap / 1024);
7154 else
7155 return Qnil;
7156 #else /* not HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
7157 /* FIXME: add more systems. */
7158 return Qnil;
7159 #endif /* HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
7162 /* Debugging aids. */
7164 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
7165 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
7166 This may be helpful in debugging Emacs's memory usage.
7167 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
7168 (void)
7170 Lisp_Object end;
7172 #if defined HAVE_NS || !HAVE_SBRK
7173 /* Avoid warning. sbrk has no relation to memory allocated anyway. */
7174 XSETINT (end, 0);
7175 #else
7176 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
7177 #endif
7179 return end;
7182 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
7183 doc: /* Return a list of counters that measure how much consing there has been.
7184 Each of these counters increments for a certain kind of object.
7185 The counters wrap around from the largest positive integer to zero.
7186 Garbage collection does not decrease them.
7187 The elements of the value are as follows:
7188 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
7189 All are in units of 1 = one object consed
7190 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
7191 objects consed.
7192 MISCS include overlays, markers, and some internal types.
7193 Frames, windows, buffers, and subprocesses count as vectors
7194 (but the contents of a buffer's text do not count here). */)
7195 (void)
7197 return listn (CONSTYPE_HEAP, 8,
7198 bounded_number (cons_cells_consed),
7199 bounded_number (floats_consed),
7200 bounded_number (vector_cells_consed),
7201 bounded_number (symbols_consed),
7202 bounded_number (string_chars_consed),
7203 bounded_number (misc_objects_consed),
7204 bounded_number (intervals_consed),
7205 bounded_number (strings_consed));
7208 static bool
7209 symbol_uses_obj (Lisp_Object symbol, Lisp_Object obj)
7211 struct Lisp_Symbol *sym = XSYMBOL (symbol);
7212 Lisp_Object val = find_symbol_value (symbol);
7213 return (EQ (val, obj)
7214 || EQ (sym->function, obj)
7215 || (!NILP (sym->function)
7216 && COMPILEDP (sym->function)
7217 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
7218 || (!NILP (val)
7219 && COMPILEDP (val)
7220 && EQ (AREF (val, COMPILED_BYTECODE), obj)));
7223 /* Find at most FIND_MAX symbols which have OBJ as their value or
7224 function. This is used in gdbinit's `xwhichsymbols' command. */
7226 Lisp_Object
7227 which_symbols (Lisp_Object obj, EMACS_INT find_max)
7229 struct symbol_block *sblk;
7230 ptrdiff_t gc_count = inhibit_garbage_collection ();
7231 Lisp_Object found = Qnil;
7233 if (! DEADP (obj))
7235 for (int i = 0; i < ARRAYELTS (lispsym); i++)
7237 Lisp_Object sym = builtin_lisp_symbol (i);
7238 if (symbol_uses_obj (sym, obj))
7240 found = Fcons (sym, found);
7241 if (--find_max == 0)
7242 goto out;
7246 for (sblk = symbol_block; sblk; sblk = sblk->next)
7248 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
7249 int bn;
7251 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
7253 if (sblk == symbol_block && bn >= symbol_block_index)
7254 break;
7256 Lisp_Object sym = make_lisp_symbol (&aligned_sym->s);
7257 if (symbol_uses_obj (sym, obj))
7259 found = Fcons (sym, found);
7260 if (--find_max == 0)
7261 goto out;
7267 out:
7268 unbind_to (gc_count, Qnil);
7269 return found;
7272 #ifdef SUSPICIOUS_OBJECT_CHECKING
7274 static void *
7275 find_suspicious_object_in_range (void *begin, void *end)
7277 char *begin_a = begin;
7278 char *end_a = end;
7279 int i;
7281 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7283 char *suspicious_object = suspicious_objects[i];
7284 if (begin_a <= suspicious_object && suspicious_object < end_a)
7285 return suspicious_object;
7288 return NULL;
7291 static void
7292 note_suspicious_free (void* ptr)
7294 struct suspicious_free_record* rec;
7296 rec = &suspicious_free_history[suspicious_free_history_index++];
7297 if (suspicious_free_history_index ==
7298 ARRAYELTS (suspicious_free_history))
7300 suspicious_free_history_index = 0;
7303 memset (rec, 0, sizeof (*rec));
7304 rec->suspicious_object = ptr;
7305 backtrace (&rec->backtrace[0], ARRAYELTS (rec->backtrace));
7308 static void
7309 detect_suspicious_free (void* ptr)
7311 int i;
7313 eassert (ptr != NULL);
7315 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7316 if (suspicious_objects[i] == ptr)
7318 note_suspicious_free (ptr);
7319 suspicious_objects[i] = NULL;
7323 #endif /* SUSPICIOUS_OBJECT_CHECKING */
7325 DEFUN ("suspicious-object", Fsuspicious_object, Ssuspicious_object, 1, 1, 0,
7326 doc: /* Return OBJ, maybe marking it for extra scrutiny.
7327 If Emacs is compiled with suspicious object checking, capture
7328 a stack trace when OBJ is freed in order to help track down
7329 garbage collection bugs. Otherwise, do nothing and return OBJ. */)
7330 (Lisp_Object obj)
7332 #ifdef SUSPICIOUS_OBJECT_CHECKING
7333 /* Right now, we care only about vectors. */
7334 if (VECTORLIKEP (obj))
7336 suspicious_objects[suspicious_object_index++] = XVECTOR (obj);
7337 if (suspicious_object_index == ARRAYELTS (suspicious_objects))
7338 suspicious_object_index = 0;
7340 #endif
7341 return obj;
7344 #ifdef ENABLE_CHECKING
7346 bool suppress_checking;
7348 void
7349 die (const char *msg, const char *file, int line)
7351 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
7352 file, line, msg);
7353 terminate_due_to_signal (SIGABRT, INT_MAX);
7356 #endif /* ENABLE_CHECKING */
7358 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
7360 /* Stress alloca with inconveniently sized requests and check
7361 whether all allocated areas may be used for Lisp_Object. */
7363 NO_INLINE static void
7364 verify_alloca (void)
7366 int i;
7367 enum { ALLOCA_CHECK_MAX = 256 };
7368 /* Start from size of the smallest Lisp object. */
7369 for (i = sizeof (struct Lisp_Cons); i <= ALLOCA_CHECK_MAX; i++)
7371 void *ptr = alloca (i);
7372 make_lisp_ptr (ptr, Lisp_Cons);
7376 #else /* not ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7378 #define verify_alloca() ((void) 0)
7380 #endif /* ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7382 /* Initialization. */
7384 void
7385 init_alloc_once (void)
7387 /* Even though Qt's contents are not set up, its address is known. */
7388 Vpurify_flag = Qt;
7390 purebeg = PUREBEG;
7391 pure_size = PURESIZE;
7393 verify_alloca ();
7394 init_finalizer_list (&finalizers);
7395 init_finalizer_list (&doomed_finalizers);
7397 mem_init ();
7398 Vdead = make_pure_string ("DEAD", 4, 4, 0);
7400 #ifdef DOUG_LEA_MALLOC
7401 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
7402 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
7403 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
7404 #endif
7405 init_strings ();
7406 init_vectors ();
7408 refill_memory_reserve ();
7409 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
7412 void
7413 init_alloc (void)
7415 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
7416 setjmp_tested_p = longjmps_done = 0;
7417 #endif
7418 Vgc_elapsed = make_float (0.0);
7419 gcs_done = 0;
7421 #if USE_VALGRIND
7422 valgrind_p = RUNNING_ON_VALGRIND != 0;
7423 #endif
7426 void
7427 syms_of_alloc (void)
7429 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
7430 doc: /* Number of bytes of consing between garbage collections.
7431 Garbage collection can happen automatically once this many bytes have been
7432 allocated since the last garbage collection. All data types count.
7434 Garbage collection happens automatically only when `eval' is called.
7436 By binding this temporarily to a large number, you can effectively
7437 prevent garbage collection during a part of the program.
7438 See also `gc-cons-percentage'. */);
7440 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
7441 doc: /* Portion of the heap used for allocation.
7442 Garbage collection can happen automatically once this portion of the heap
7443 has been allocated since the last garbage collection.
7444 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
7445 Vgc_cons_percentage = make_float (0.1);
7447 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
7448 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
7450 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
7451 doc: /* Number of cons cells that have been consed so far. */);
7453 DEFVAR_INT ("floats-consed", floats_consed,
7454 doc: /* Number of floats that have been consed so far. */);
7456 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
7457 doc: /* Number of vector cells that have been consed so far. */);
7459 DEFVAR_INT ("symbols-consed", symbols_consed,
7460 doc: /* Number of symbols that have been consed so far. */);
7461 symbols_consed += ARRAYELTS (lispsym);
7463 DEFVAR_INT ("string-chars-consed", string_chars_consed,
7464 doc: /* Number of string characters that have been consed so far. */);
7466 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
7467 doc: /* Number of miscellaneous objects that have been consed so far.
7468 These include markers and overlays, plus certain objects not visible
7469 to users. */);
7471 DEFVAR_INT ("intervals-consed", intervals_consed,
7472 doc: /* Number of intervals that have been consed so far. */);
7474 DEFVAR_INT ("strings-consed", strings_consed,
7475 doc: /* Number of strings that have been consed so far. */);
7477 DEFVAR_LISP ("purify-flag", Vpurify_flag,
7478 doc: /* Non-nil means loading Lisp code in order to dump an executable.
7479 This means that certain objects should be allocated in shared (pure) space.
7480 It can also be set to a hash-table, in which case this table is used to
7481 do hash-consing of the objects allocated to pure space. */);
7483 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
7484 doc: /* Non-nil means display messages at start and end of garbage collection. */);
7485 garbage_collection_messages = 0;
7487 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
7488 doc: /* Hook run after garbage collection has finished. */);
7489 Vpost_gc_hook = Qnil;
7490 DEFSYM (Qpost_gc_hook, "post-gc-hook");
7492 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
7493 doc: /* Precomputed `signal' argument for memory-full error. */);
7494 /* We build this in advance because if we wait until we need it, we might
7495 not be able to allocate the memory to hold it. */
7496 Vmemory_signal_data
7497 = listn (CONSTYPE_PURE, 2, Qerror,
7498 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
7500 DEFVAR_LISP ("memory-full", Vmemory_full,
7501 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
7502 Vmemory_full = Qnil;
7504 DEFSYM (Qconses, "conses");
7505 DEFSYM (Qsymbols, "symbols");
7506 DEFSYM (Qmiscs, "miscs");
7507 DEFSYM (Qstrings, "strings");
7508 DEFSYM (Qvectors, "vectors");
7509 DEFSYM (Qfloats, "floats");
7510 DEFSYM (Qintervals, "intervals");
7511 DEFSYM (Qbuffers, "buffers");
7512 DEFSYM (Qstring_bytes, "string-bytes");
7513 DEFSYM (Qvector_slots, "vector-slots");
7514 DEFSYM (Qheap, "heap");
7515 DEFSYM (QAutomatic_GC, "Automatic GC");
7517 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
7518 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
7520 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
7521 doc: /* Accumulated time elapsed in garbage collections.
7522 The time is in seconds as a floating point value. */);
7523 DEFVAR_INT ("gcs-done", gcs_done,
7524 doc: /* Accumulated number of garbage collections done. */);
7526 defsubr (&Scons);
7527 defsubr (&Slist);
7528 defsubr (&Svector);
7529 defsubr (&Sbool_vector);
7530 defsubr (&Smake_byte_code);
7531 defsubr (&Smake_list);
7532 defsubr (&Smake_vector);
7533 defsubr (&Smake_string);
7534 defsubr (&Smake_bool_vector);
7535 defsubr (&Smake_symbol);
7536 defsubr (&Smake_marker);
7537 defsubr (&Smake_finalizer);
7538 defsubr (&Spurecopy);
7539 defsubr (&Sgarbage_collect);
7540 defsubr (&Smemory_limit);
7541 defsubr (&Smemory_info);
7542 defsubr (&Smemory_use_counts);
7543 defsubr (&Ssuspicious_object);
7546 /* When compiled with GCC, GDB might say "No enum type named
7547 pvec_type" if we don't have at least one symbol with that type, and
7548 then xbacktrace could fail. Similarly for the other enums and
7549 their values. Some non-GCC compilers don't like these constructs. */
7550 #ifdef __GNUC__
7551 union
7553 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
7554 enum char_table_specials char_table_specials;
7555 enum char_bits char_bits;
7556 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
7557 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
7558 enum Lisp_Bits Lisp_Bits;
7559 enum Lisp_Compiled Lisp_Compiled;
7560 enum maxargs maxargs;
7561 enum MAX_ALLOCA MAX_ALLOCA;
7562 enum More_Lisp_Bits More_Lisp_Bits;
7563 enum pvec_type pvec_type;
7564 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
7565 #endif /* __GNUC__ */