Add xref-pulse-on-jump
[emacs.git] / src / alloc.c
blob688363d06e33a680d130753216775a2fb2e0b6f5
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2015 Free Software
4 Foundation, Inc.
6 This file is part of GNU Emacs.
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
21 #include <config.h>
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
26 #ifdef ENABLE_CHECKING
27 #include <signal.h> /* For SIGABRT. */
28 #endif
30 #ifdef HAVE_PTHREAD
31 #include <pthread.h>
32 #endif
34 #include "lisp.h"
35 #include "process.h"
36 #include "intervals.h"
37 #include "puresize.h"
38 #include "character.h"
39 #include "buffer.h"
40 #include "window.h"
41 #include "keyboard.h"
42 #include "frame.h"
43 #include "blockinput.h"
44 #include "termhooks.h" /* For struct terminal. */
45 #ifdef HAVE_WINDOW_SYSTEM
46 #include TERM_HEADER
47 #endif /* HAVE_WINDOW_SYSTEM */
49 #include <verify.h>
50 #include <execinfo.h> /* For backtrace. */
52 #ifdef HAVE_LINUX_SYSINFO
53 #include <sys/sysinfo.h>
54 #endif
56 #ifdef MSDOS
57 #include "dosfns.h" /* For dos_memory_info. */
58 #endif
60 #if (defined ENABLE_CHECKING \
61 && defined HAVE_VALGRIND_VALGRIND_H \
62 && !defined USE_VALGRIND)
63 # define USE_VALGRIND 1
64 #endif
66 #if USE_VALGRIND
67 #include <valgrind/valgrind.h>
68 #include <valgrind/memcheck.h>
69 static bool valgrind_p;
70 #endif
72 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
73 Doable only if GC_MARK_STACK. */
74 #if ! GC_MARK_STACK
75 # undef GC_CHECK_MARKED_OBJECTS
76 #endif
78 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
79 memory. Can do this only if using gmalloc.c and if not checking
80 marked objects. */
82 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
83 || defined HYBRID_MALLOC || defined GC_CHECK_MARKED_OBJECTS)
84 #undef GC_MALLOC_CHECK
85 #endif
87 #include <unistd.h>
88 #include <fcntl.h>
90 #ifdef USE_GTK
91 # include "gtkutil.h"
92 #endif
93 #ifdef WINDOWSNT
94 #include "w32.h"
95 #include "w32heap.h" /* for sbrk */
96 #endif
98 #ifdef DOUG_LEA_MALLOC
100 #include <malloc.h>
102 /* Specify maximum number of areas to mmap. It would be nice to use a
103 value that explicitly means "no limit". */
105 #define MMAP_MAX_AREAS 100000000
107 #endif /* not DOUG_LEA_MALLOC */
109 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
110 to a struct Lisp_String. */
112 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
113 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
114 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
116 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
117 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
118 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
120 /* Default value of gc_cons_threshold (see below). */
122 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
124 /* Global variables. */
125 struct emacs_globals globals;
127 /* Number of bytes of consing done since the last gc. */
129 EMACS_INT consing_since_gc;
131 /* Similar minimum, computed from Vgc_cons_percentage. */
133 EMACS_INT gc_relative_threshold;
135 /* Minimum number of bytes of consing since GC before next GC,
136 when memory is full. */
138 EMACS_INT memory_full_cons_threshold;
140 /* True during GC. */
142 bool gc_in_progress;
144 /* True means abort if try to GC.
145 This is for code which is written on the assumption that
146 no GC will happen, so as to verify that assumption. */
148 bool abort_on_gc;
150 /* Number of live and free conses etc. */
152 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
153 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
154 static EMACS_INT total_free_floats, total_floats;
156 /* Points to memory space allocated as "spare", to be freed if we run
157 out of memory. We keep one large block, four cons-blocks, and
158 two string blocks. */
160 static char *spare_memory[7];
162 /* Amount of spare memory to keep in large reserve block, or to see
163 whether this much is available when malloc fails on a larger request. */
165 #define SPARE_MEMORY (1 << 14)
167 /* Initialize it to a nonzero value to force it into data space
168 (rather than bss space). That way unexec will remap it into text
169 space (pure), on some systems. We have not implemented the
170 remapping on more recent systems because this is less important
171 nowadays than in the days of small memories and timesharing. */
173 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
174 #define PUREBEG (char *) pure
176 /* Pointer to the pure area, and its size. */
178 static char *purebeg;
179 static ptrdiff_t pure_size;
181 /* Number of bytes of pure storage used before pure storage overflowed.
182 If this is non-zero, this implies that an overflow occurred. */
184 static ptrdiff_t pure_bytes_used_before_overflow;
186 /* True if P points into pure space. */
188 #define PURE_POINTER_P(P) \
189 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
191 /* Index in pure at which next pure Lisp object will be allocated.. */
193 static ptrdiff_t pure_bytes_used_lisp;
195 /* Number of bytes allocated for non-Lisp objects in pure storage. */
197 static ptrdiff_t pure_bytes_used_non_lisp;
199 /* If nonzero, this is a warning delivered by malloc and not yet
200 displayed. */
202 const char *pending_malloc_warning;
204 #if 0 /* Normally, pointer sanity only on request... */
205 #ifdef ENABLE_CHECKING
206 #define SUSPICIOUS_OBJECT_CHECKING 1
207 #endif
208 #endif
210 /* ... but unconditionally use SUSPICIOUS_OBJECT_CHECKING while the GC
211 bug is unresolved. */
212 #define SUSPICIOUS_OBJECT_CHECKING 1
214 #ifdef SUSPICIOUS_OBJECT_CHECKING
215 struct suspicious_free_record
217 void *suspicious_object;
218 void *backtrace[128];
220 static void *suspicious_objects[32];
221 static int suspicious_object_index;
222 struct suspicious_free_record suspicious_free_history[64] EXTERNALLY_VISIBLE;
223 static int suspicious_free_history_index;
224 /* Find the first currently-monitored suspicious pointer in range
225 [begin,end) or NULL if no such pointer exists. */
226 static void *find_suspicious_object_in_range (void *begin, void *end);
227 static void detect_suspicious_free (void *ptr);
228 #else
229 # define find_suspicious_object_in_range(begin, end) NULL
230 # define detect_suspicious_free(ptr) (void)
231 #endif
233 /* Maximum amount of C stack to save when a GC happens. */
235 #ifndef MAX_SAVE_STACK
236 #define MAX_SAVE_STACK 16000
237 #endif
239 /* Buffer in which we save a copy of the C stack at each GC. */
241 #if MAX_SAVE_STACK > 0
242 static char *stack_copy;
243 static ptrdiff_t stack_copy_size;
245 /* Copy to DEST a block of memory from SRC of size SIZE bytes,
246 avoiding any address sanitization. */
248 static void * ATTRIBUTE_NO_SANITIZE_ADDRESS
249 no_sanitize_memcpy (void *dest, void const *src, size_t size)
251 if (! ADDRESS_SANITIZER)
252 return memcpy (dest, src, size);
253 else
255 size_t i;
256 char *d = dest;
257 char const *s = src;
258 for (i = 0; i < size; i++)
259 d[i] = s[i];
260 return dest;
264 #endif /* MAX_SAVE_STACK > 0 */
266 static void mark_terminals (void);
267 static void gc_sweep (void);
268 static Lisp_Object make_pure_vector (ptrdiff_t);
269 static void mark_buffer (struct buffer *);
271 #if !defined REL_ALLOC || defined SYSTEM_MALLOC || defined HYBRID_MALLOC
272 static void refill_memory_reserve (void);
273 #endif
274 static void compact_small_strings (void);
275 static void free_large_strings (void);
276 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
278 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
279 what memory allocated via lisp_malloc and lisp_align_malloc is intended
280 for what purpose. This enumeration specifies the type of memory. */
282 enum mem_type
284 MEM_TYPE_NON_LISP,
285 MEM_TYPE_BUFFER,
286 MEM_TYPE_CONS,
287 MEM_TYPE_STRING,
288 MEM_TYPE_MISC,
289 MEM_TYPE_SYMBOL,
290 MEM_TYPE_FLOAT,
291 /* Since all non-bool pseudovectors are small enough to be
292 allocated from vector blocks, this memory type denotes
293 large regular vectors and large bool pseudovectors. */
294 MEM_TYPE_VECTORLIKE,
295 /* Special type to denote vector blocks. */
296 MEM_TYPE_VECTOR_BLOCK,
297 /* Special type to denote reserved memory. */
298 MEM_TYPE_SPARE
301 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
303 /* A unique object in pure space used to make some Lisp objects
304 on free lists recognizable in O(1). */
306 static Lisp_Object Vdead;
307 #define DEADP(x) EQ (x, Vdead)
309 #ifdef GC_MALLOC_CHECK
311 enum mem_type allocated_mem_type;
313 #endif /* GC_MALLOC_CHECK */
315 /* A node in the red-black tree describing allocated memory containing
316 Lisp data. Each such block is recorded with its start and end
317 address when it is allocated, and removed from the tree when it
318 is freed.
320 A red-black tree is a balanced binary tree with the following
321 properties:
323 1. Every node is either red or black.
324 2. Every leaf is black.
325 3. If a node is red, then both of its children are black.
326 4. Every simple path from a node to a descendant leaf contains
327 the same number of black nodes.
328 5. The root is always black.
330 When nodes are inserted into the tree, or deleted from the tree,
331 the tree is "fixed" so that these properties are always true.
333 A red-black tree with N internal nodes has height at most 2
334 log(N+1). Searches, insertions and deletions are done in O(log N).
335 Please see a text book about data structures for a detailed
336 description of red-black trees. Any book worth its salt should
337 describe them. */
339 struct mem_node
341 /* Children of this node. These pointers are never NULL. When there
342 is no child, the value is MEM_NIL, which points to a dummy node. */
343 struct mem_node *left, *right;
345 /* The parent of this node. In the root node, this is NULL. */
346 struct mem_node *parent;
348 /* Start and end of allocated region. */
349 void *start, *end;
351 /* Node color. */
352 enum {MEM_BLACK, MEM_RED} color;
354 /* Memory type. */
355 enum mem_type type;
358 /* Base address of stack. Set in main. */
360 Lisp_Object *stack_base;
362 /* Root of the tree describing allocated Lisp memory. */
364 static struct mem_node *mem_root;
366 /* Lowest and highest known address in the heap. */
368 static void *min_heap_address, *max_heap_address;
370 /* Sentinel node of the tree. */
372 static struct mem_node mem_z;
373 #define MEM_NIL &mem_z
375 static struct mem_node *mem_insert (void *, void *, enum mem_type);
376 static void mem_insert_fixup (struct mem_node *);
377 static void mem_rotate_left (struct mem_node *);
378 static void mem_rotate_right (struct mem_node *);
379 static void mem_delete (struct mem_node *);
380 static void mem_delete_fixup (struct mem_node *);
381 static struct mem_node *mem_find (void *);
383 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
385 #ifndef DEADP
386 # define DEADP(x) 0
387 #endif
389 /* Recording what needs to be marked for gc. */
391 struct gcpro *gcprolist;
393 /* Addresses of staticpro'd variables. Initialize it to a nonzero
394 value; otherwise some compilers put it into BSS. */
396 enum { NSTATICS = 2048 };
397 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
399 /* Index of next unused slot in staticvec. */
401 static int staticidx;
403 static void *pure_alloc (size_t, int);
405 /* Return X rounded to the next multiple of Y. Arguments should not
406 have side effects, as they are evaluated more than once. Assume X
407 + Y - 1 does not overflow. Tune for Y being a power of 2. */
409 #define ROUNDUP(x, y) ((y) & ((y) - 1) \
410 ? ((x) + (y) - 1) - ((x) + (y) - 1) % (y) \
411 : ((x) + (y) - 1) & ~ ((y) - 1))
413 /* Return PTR rounded up to the next multiple of ALIGNMENT. */
415 static void *
416 ALIGN (void *ptr, int alignment)
418 return (void *) ROUNDUP ((uintptr_t) ptr, alignment);
421 static void
422 XFLOAT_INIT (Lisp_Object f, double n)
424 XFLOAT (f)->u.data = n;
427 static bool
428 pointers_fit_in_lispobj_p (void)
430 return (UINTPTR_MAX <= VAL_MAX) || USE_LSB_TAG;
433 static bool
434 mmap_lisp_allowed_p (void)
436 /* If we can't store all memory addresses in our lisp objects, it's
437 risky to let the heap use mmap and give us addresses from all
438 over our address space. We also can't use mmap for lisp objects
439 if we might dump: unexec doesn't preserve the contents of mmapped
440 regions. */
441 return pointers_fit_in_lispobj_p () && !might_dump;
444 /* Head of a circularly-linked list of extant finalizers. */
445 static struct Lisp_Finalizer finalizers;
447 /* Head of a circularly-linked list of finalizers that must be invoked
448 because we deemed them unreachable. This list must be global, and
449 not a local inside garbage_collect_1, in case we GC again while
450 running finalizers. */
451 static struct Lisp_Finalizer doomed_finalizers;
454 /************************************************************************
455 Malloc
456 ************************************************************************/
458 /* Function malloc calls this if it finds we are near exhausting storage. */
460 void
461 malloc_warning (const char *str)
463 pending_malloc_warning = str;
467 /* Display an already-pending malloc warning. */
469 void
470 display_malloc_warning (void)
472 call3 (intern ("display-warning"),
473 intern ("alloc"),
474 build_string (pending_malloc_warning),
475 intern ("emergency"));
476 pending_malloc_warning = 0;
479 /* Called if we can't allocate relocatable space for a buffer. */
481 void
482 buffer_memory_full (ptrdiff_t nbytes)
484 /* If buffers use the relocating allocator, no need to free
485 spare_memory, because we may have plenty of malloc space left
486 that we could get, and if we don't, the malloc that fails will
487 itself cause spare_memory to be freed. If buffers don't use the
488 relocating allocator, treat this like any other failing
489 malloc. */
491 #ifndef REL_ALLOC
492 memory_full (nbytes);
493 #else
494 /* This used to call error, but if we've run out of memory, we could
495 get infinite recursion trying to build the string. */
496 xsignal (Qnil, Vmemory_signal_data);
497 #endif
500 /* A common multiple of the positive integers A and B. Ideally this
501 would be the least common multiple, but there's no way to do that
502 as a constant expression in C, so do the best that we can easily do. */
503 #define COMMON_MULTIPLE(a, b) \
504 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
506 #ifndef XMALLOC_OVERRUN_CHECK
507 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
508 #else
510 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
511 around each block.
513 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
514 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
515 block size in little-endian order. The trailer consists of
516 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
518 The header is used to detect whether this block has been allocated
519 through these functions, as some low-level libc functions may
520 bypass the malloc hooks. */
522 #define XMALLOC_OVERRUN_CHECK_SIZE 16
523 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
524 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
526 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
527 hold a size_t value and (2) the header size is a multiple of the
528 alignment that Emacs needs for C types and for USE_LSB_TAG. */
529 #define XMALLOC_BASE_ALIGNMENT alignof (max_align_t)
531 #if USE_LSB_TAG
532 # define XMALLOC_HEADER_ALIGNMENT \
533 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
534 #else
535 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
536 #endif
537 #define XMALLOC_OVERRUN_SIZE_SIZE \
538 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
539 + XMALLOC_HEADER_ALIGNMENT - 1) \
540 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
541 - XMALLOC_OVERRUN_CHECK_SIZE)
543 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
544 { '\x9a', '\x9b', '\xae', '\xaf',
545 '\xbf', '\xbe', '\xce', '\xcf',
546 '\xea', '\xeb', '\xec', '\xed',
547 '\xdf', '\xde', '\x9c', '\x9d' };
549 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
550 { '\xaa', '\xab', '\xac', '\xad',
551 '\xba', '\xbb', '\xbc', '\xbd',
552 '\xca', '\xcb', '\xcc', '\xcd',
553 '\xda', '\xdb', '\xdc', '\xdd' };
555 /* Insert and extract the block size in the header. */
557 static void
558 xmalloc_put_size (unsigned char *ptr, size_t size)
560 int i;
561 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
563 *--ptr = size & ((1 << CHAR_BIT) - 1);
564 size >>= CHAR_BIT;
568 static size_t
569 xmalloc_get_size (unsigned char *ptr)
571 size_t size = 0;
572 int i;
573 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
574 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
576 size <<= CHAR_BIT;
577 size += *ptr++;
579 return size;
583 /* Like malloc, but wraps allocated block with header and trailer. */
585 static void *
586 overrun_check_malloc (size_t size)
588 register unsigned char *val;
589 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
590 emacs_abort ();
592 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
593 if (val)
595 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
596 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
597 xmalloc_put_size (val, size);
598 memcpy (val + size, xmalloc_overrun_check_trailer,
599 XMALLOC_OVERRUN_CHECK_SIZE);
601 return val;
605 /* Like realloc, but checks old block for overrun, and wraps new block
606 with header and trailer. */
608 static void *
609 overrun_check_realloc (void *block, size_t size)
611 register unsigned char *val = (unsigned char *) block;
612 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
613 emacs_abort ();
615 if (val
616 && memcmp (xmalloc_overrun_check_header,
617 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
618 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
620 size_t osize = xmalloc_get_size (val);
621 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
622 XMALLOC_OVERRUN_CHECK_SIZE))
623 emacs_abort ();
624 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
625 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
626 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
629 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
631 if (val)
633 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
634 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
635 xmalloc_put_size (val, size);
636 memcpy (val + size, xmalloc_overrun_check_trailer,
637 XMALLOC_OVERRUN_CHECK_SIZE);
639 return val;
642 /* Like free, but checks block for overrun. */
644 static void
645 overrun_check_free (void *block)
647 unsigned char *val = (unsigned char *) block;
649 if (val
650 && memcmp (xmalloc_overrun_check_header,
651 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
652 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
654 size_t osize = xmalloc_get_size (val);
655 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
656 XMALLOC_OVERRUN_CHECK_SIZE))
657 emacs_abort ();
658 #ifdef XMALLOC_CLEAR_FREE_MEMORY
659 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
660 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
661 #else
662 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
663 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
664 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
665 #endif
668 free (val);
671 #undef malloc
672 #undef realloc
673 #undef free
674 #define malloc overrun_check_malloc
675 #define realloc overrun_check_realloc
676 #define free overrun_check_free
677 #endif
679 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
680 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
681 If that variable is set, block input while in one of Emacs's memory
682 allocation functions. There should be no need for this debugging
683 option, since signal handlers do not allocate memory, but Emacs
684 formerly allocated memory in signal handlers and this compile-time
685 option remains as a way to help debug the issue should it rear its
686 ugly head again. */
687 #ifdef XMALLOC_BLOCK_INPUT_CHECK
688 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
689 static void
690 malloc_block_input (void)
692 if (block_input_in_memory_allocators)
693 block_input ();
695 static void
696 malloc_unblock_input (void)
698 if (block_input_in_memory_allocators)
699 unblock_input ();
701 # define MALLOC_BLOCK_INPUT malloc_block_input ()
702 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
703 #else
704 # define MALLOC_BLOCK_INPUT ((void) 0)
705 # define MALLOC_UNBLOCK_INPUT ((void) 0)
706 #endif
708 #define MALLOC_PROBE(size) \
709 do { \
710 if (profiler_memory_running) \
711 malloc_probe (size); \
712 } while (0)
715 /* Like malloc but check for no memory and block interrupt input.. */
717 void *
718 xmalloc (size_t size)
720 void *val;
722 MALLOC_BLOCK_INPUT;
723 val = malloc (size);
724 MALLOC_UNBLOCK_INPUT;
726 if (!val && size)
727 memory_full (size);
728 MALLOC_PROBE (size);
729 return val;
732 /* Like the above, but zeroes out the memory just allocated. */
734 void *
735 xzalloc (size_t size)
737 void *val;
739 MALLOC_BLOCK_INPUT;
740 val = malloc (size);
741 MALLOC_UNBLOCK_INPUT;
743 if (!val && size)
744 memory_full (size);
745 memset (val, 0, size);
746 MALLOC_PROBE (size);
747 return val;
750 /* Like realloc but check for no memory and block interrupt input.. */
752 void *
753 xrealloc (void *block, size_t size)
755 void *val;
757 MALLOC_BLOCK_INPUT;
758 /* We must call malloc explicitly when BLOCK is 0, since some
759 reallocs don't do this. */
760 if (! block)
761 val = malloc (size);
762 else
763 val = realloc (block, size);
764 MALLOC_UNBLOCK_INPUT;
766 if (!val && size)
767 memory_full (size);
768 MALLOC_PROBE (size);
769 return val;
773 /* Like free but block interrupt input. */
775 void
776 xfree (void *block)
778 if (!block)
779 return;
780 MALLOC_BLOCK_INPUT;
781 free (block);
782 MALLOC_UNBLOCK_INPUT;
783 /* We don't call refill_memory_reserve here
784 because in practice the call in r_alloc_free seems to suffice. */
788 /* Other parts of Emacs pass large int values to allocator functions
789 expecting ptrdiff_t. This is portable in practice, but check it to
790 be safe. */
791 verify (INT_MAX <= PTRDIFF_MAX);
794 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
795 Signal an error on memory exhaustion, and block interrupt input. */
797 void *
798 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
800 eassert (0 <= nitems && 0 < item_size);
801 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
802 memory_full (SIZE_MAX);
803 return xmalloc (nitems * item_size);
807 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
808 Signal an error on memory exhaustion, and block interrupt input. */
810 void *
811 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
813 eassert (0 <= nitems && 0 < item_size);
814 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
815 memory_full (SIZE_MAX);
816 return xrealloc (pa, nitems * item_size);
820 /* Grow PA, which points to an array of *NITEMS items, and return the
821 location of the reallocated array, updating *NITEMS to reflect its
822 new size. The new array will contain at least NITEMS_INCR_MIN more
823 items, but will not contain more than NITEMS_MAX items total.
824 ITEM_SIZE is the size of each item, in bytes.
826 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
827 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
828 infinity.
830 If PA is null, then allocate a new array instead of reallocating
831 the old one.
833 Block interrupt input as needed. If memory exhaustion occurs, set
834 *NITEMS to zero if PA is null, and signal an error (i.e., do not
835 return).
837 Thus, to grow an array A without saving its old contents, do
838 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
839 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
840 and signals an error, and later this code is reexecuted and
841 attempts to free A. */
843 void *
844 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
845 ptrdiff_t nitems_max, ptrdiff_t item_size)
847 /* The approximate size to use for initial small allocation
848 requests. This is the largest "small" request for the GNU C
849 library malloc. */
850 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
852 /* If the array is tiny, grow it to about (but no greater than)
853 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
854 ptrdiff_t n = *nitems;
855 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
856 ptrdiff_t half_again = n >> 1;
857 ptrdiff_t incr_estimate = max (tiny_max, half_again);
859 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
860 NITEMS_MAX, and what the C language can represent safely. */
861 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
862 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
863 ? nitems_max : C_language_max);
864 ptrdiff_t nitems_incr_max = n_max - n;
865 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
867 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
868 if (! pa)
869 *nitems = 0;
870 if (nitems_incr_max < incr)
871 memory_full (SIZE_MAX);
872 n += incr;
873 pa = xrealloc (pa, n * item_size);
874 *nitems = n;
875 return pa;
879 /* Like strdup, but uses xmalloc. */
881 char *
882 xstrdup (const char *s)
884 ptrdiff_t size;
885 eassert (s);
886 size = strlen (s) + 1;
887 return memcpy (xmalloc (size), s, size);
890 /* Like above, but duplicates Lisp string to C string. */
892 char *
893 xlispstrdup (Lisp_Object string)
895 ptrdiff_t size = SBYTES (string) + 1;
896 return memcpy (xmalloc (size), SSDATA (string), size);
899 /* Assign to *PTR a copy of STRING, freeing any storage *PTR formerly
900 pointed to. If STRING is null, assign it without copying anything.
901 Allocate before freeing, to avoid a dangling pointer if allocation
902 fails. */
904 void
905 dupstring (char **ptr, char const *string)
907 char *old = *ptr;
908 *ptr = string ? xstrdup (string) : 0;
909 xfree (old);
913 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
914 argument is a const pointer. */
916 void
917 xputenv (char const *string)
919 if (putenv ((char *) string) != 0)
920 memory_full (0);
923 /* Return a newly allocated memory block of SIZE bytes, remembering
924 to free it when unwinding. */
925 void *
926 record_xmalloc (size_t size)
928 void *p = xmalloc (size);
929 record_unwind_protect_ptr (xfree, p);
930 return p;
934 /* Like malloc but used for allocating Lisp data. NBYTES is the
935 number of bytes to allocate, TYPE describes the intended use of the
936 allocated memory block (for strings, for conses, ...). */
938 #if ! USE_LSB_TAG
939 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
940 #endif
942 static void *
943 lisp_malloc (size_t nbytes, enum mem_type type)
945 register void *val;
947 MALLOC_BLOCK_INPUT;
949 #ifdef GC_MALLOC_CHECK
950 allocated_mem_type = type;
951 #endif
953 val = malloc (nbytes);
955 #if ! USE_LSB_TAG
956 /* If the memory just allocated cannot be addressed thru a Lisp
957 object's pointer, and it needs to be,
958 that's equivalent to running out of memory. */
959 if (val && type != MEM_TYPE_NON_LISP)
961 Lisp_Object tem;
962 XSETCONS (tem, (char *) val + nbytes - 1);
963 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
965 lisp_malloc_loser = val;
966 free (val);
967 val = 0;
970 #endif
972 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
973 if (val && type != MEM_TYPE_NON_LISP)
974 mem_insert (val, (char *) val + nbytes, type);
975 #endif
977 MALLOC_UNBLOCK_INPUT;
978 if (!val && nbytes)
979 memory_full (nbytes);
980 MALLOC_PROBE (nbytes);
981 return val;
984 /* Free BLOCK. This must be called to free memory allocated with a
985 call to lisp_malloc. */
987 static void
988 lisp_free (void *block)
990 MALLOC_BLOCK_INPUT;
991 free (block);
992 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
993 mem_delete (mem_find (block));
994 #endif
995 MALLOC_UNBLOCK_INPUT;
998 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
1000 /* The entry point is lisp_align_malloc which returns blocks of at most
1001 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
1003 /* Use aligned_alloc if it or a simple substitute is available.
1004 Address sanitization breaks aligned allocation, as of gcc 4.8.2 and
1005 clang 3.3 anyway. */
1007 #if ! ADDRESS_SANITIZER
1008 # if !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC && !defined HYBRID_MALLOC
1009 # define USE_ALIGNED_ALLOC 1
1010 /* Defined in gmalloc.c. */
1011 void *aligned_alloc (size_t, size_t);
1012 # elif defined HYBRID_MALLOC
1013 # if defined ALIGNED_ALLOC || defined HAVE_POSIX_MEMALIGN
1014 # define USE_ALIGNED_ALLOC 1
1015 # define aligned_alloc hybrid_aligned_alloc
1016 /* Defined in gmalloc.c. */
1017 void *aligned_alloc (size_t, size_t);
1018 # endif
1019 # elif defined HAVE_ALIGNED_ALLOC
1020 # define USE_ALIGNED_ALLOC 1
1021 # elif defined HAVE_POSIX_MEMALIGN
1022 # define USE_ALIGNED_ALLOC 1
1023 static void *
1024 aligned_alloc (size_t alignment, size_t size)
1026 void *p;
1027 return posix_memalign (&p, alignment, size) == 0 ? p : 0;
1029 # endif
1030 #endif
1032 /* BLOCK_ALIGN has to be a power of 2. */
1033 #define BLOCK_ALIGN (1 << 10)
1035 /* Padding to leave at the end of a malloc'd block. This is to give
1036 malloc a chance to minimize the amount of memory wasted to alignment.
1037 It should be tuned to the particular malloc library used.
1038 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
1039 aligned_alloc on the other hand would ideally prefer a value of 4
1040 because otherwise, there's 1020 bytes wasted between each ablocks.
1041 In Emacs, testing shows that those 1020 can most of the time be
1042 efficiently used by malloc to place other objects, so a value of 0 can
1043 still preferable unless you have a lot of aligned blocks and virtually
1044 nothing else. */
1045 #define BLOCK_PADDING 0
1046 #define BLOCK_BYTES \
1047 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
1049 /* Internal data structures and constants. */
1051 #define ABLOCKS_SIZE 16
1053 /* An aligned block of memory. */
1054 struct ablock
1056 union
1058 char payload[BLOCK_BYTES];
1059 struct ablock *next_free;
1060 } x;
1061 /* `abase' is the aligned base of the ablocks. */
1062 /* It is overloaded to hold the virtual `busy' field that counts
1063 the number of used ablock in the parent ablocks.
1064 The first ablock has the `busy' field, the others have the `abase'
1065 field. To tell the difference, we assume that pointers will have
1066 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1067 is used to tell whether the real base of the parent ablocks is `abase'
1068 (if not, the word before the first ablock holds a pointer to the
1069 real base). */
1070 struct ablocks *abase;
1071 /* The padding of all but the last ablock is unused. The padding of
1072 the last ablock in an ablocks is not allocated. */
1073 #if BLOCK_PADDING
1074 char padding[BLOCK_PADDING];
1075 #endif
1078 /* A bunch of consecutive aligned blocks. */
1079 struct ablocks
1081 struct ablock blocks[ABLOCKS_SIZE];
1084 /* Size of the block requested from malloc or aligned_alloc. */
1085 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1087 #define ABLOCK_ABASE(block) \
1088 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1089 ? (struct ablocks *)(block) \
1090 : (block)->abase)
1092 /* Virtual `busy' field. */
1093 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1095 /* Pointer to the (not necessarily aligned) malloc block. */
1096 #ifdef USE_ALIGNED_ALLOC
1097 #define ABLOCKS_BASE(abase) (abase)
1098 #else
1099 #define ABLOCKS_BASE(abase) \
1100 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
1101 #endif
1103 /* The list of free ablock. */
1104 static struct ablock *free_ablock;
1106 /* Allocate an aligned block of nbytes.
1107 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1108 smaller or equal to BLOCK_BYTES. */
1109 static void *
1110 lisp_align_malloc (size_t nbytes, enum mem_type type)
1112 void *base, *val;
1113 struct ablocks *abase;
1115 eassert (nbytes <= BLOCK_BYTES);
1117 MALLOC_BLOCK_INPUT;
1119 #ifdef GC_MALLOC_CHECK
1120 allocated_mem_type = type;
1121 #endif
1123 if (!free_ablock)
1125 int i;
1126 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1128 #ifdef DOUG_LEA_MALLOC
1129 if (!mmap_lisp_allowed_p ())
1130 mallopt (M_MMAP_MAX, 0);
1131 #endif
1133 #ifdef USE_ALIGNED_ALLOC
1134 abase = base = aligned_alloc (BLOCK_ALIGN, ABLOCKS_BYTES);
1135 #else
1136 base = malloc (ABLOCKS_BYTES);
1137 abase = ALIGN (base, BLOCK_ALIGN);
1138 #endif
1140 if (base == 0)
1142 MALLOC_UNBLOCK_INPUT;
1143 memory_full (ABLOCKS_BYTES);
1146 aligned = (base == abase);
1147 if (!aligned)
1148 ((void **) abase)[-1] = base;
1150 #ifdef DOUG_LEA_MALLOC
1151 if (!mmap_lisp_allowed_p ())
1152 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1153 #endif
1155 #if ! USE_LSB_TAG
1156 /* If the memory just allocated cannot be addressed thru a Lisp
1157 object's pointer, and it needs to be, that's equivalent to
1158 running out of memory. */
1159 if (type != MEM_TYPE_NON_LISP)
1161 Lisp_Object tem;
1162 char *end = (char *) base + ABLOCKS_BYTES - 1;
1163 XSETCONS (tem, end);
1164 if ((char *) XCONS (tem) != end)
1166 lisp_malloc_loser = base;
1167 free (base);
1168 MALLOC_UNBLOCK_INPUT;
1169 memory_full (SIZE_MAX);
1172 #endif
1174 /* Initialize the blocks and put them on the free list.
1175 If `base' was not properly aligned, we can't use the last block. */
1176 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1178 abase->blocks[i].abase = abase;
1179 abase->blocks[i].x.next_free = free_ablock;
1180 free_ablock = &abase->blocks[i];
1182 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1184 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1185 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1186 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1187 eassert (ABLOCKS_BASE (abase) == base);
1188 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1191 abase = ABLOCK_ABASE (free_ablock);
1192 ABLOCKS_BUSY (abase)
1193 = (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1194 val = free_ablock;
1195 free_ablock = free_ablock->x.next_free;
1197 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1198 if (type != MEM_TYPE_NON_LISP)
1199 mem_insert (val, (char *) val + nbytes, type);
1200 #endif
1202 MALLOC_UNBLOCK_INPUT;
1204 MALLOC_PROBE (nbytes);
1206 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1207 return val;
1210 static void
1211 lisp_align_free (void *block)
1213 struct ablock *ablock = block;
1214 struct ablocks *abase = ABLOCK_ABASE (ablock);
1216 MALLOC_BLOCK_INPUT;
1217 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1218 mem_delete (mem_find (block));
1219 #endif
1220 /* Put on free list. */
1221 ablock->x.next_free = free_ablock;
1222 free_ablock = ablock;
1223 /* Update busy count. */
1224 ABLOCKS_BUSY (abase)
1225 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1227 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1228 { /* All the blocks are free. */
1229 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1230 struct ablock **tem = &free_ablock;
1231 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1233 while (*tem)
1235 if (*tem >= (struct ablock *) abase && *tem < atop)
1237 i++;
1238 *tem = (*tem)->x.next_free;
1240 else
1241 tem = &(*tem)->x.next_free;
1243 eassert ((aligned & 1) == aligned);
1244 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1245 #ifdef USE_POSIX_MEMALIGN
1246 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1247 #endif
1248 free (ABLOCKS_BASE (abase));
1250 MALLOC_UNBLOCK_INPUT;
1254 /***********************************************************************
1255 Interval Allocation
1256 ***********************************************************************/
1258 /* Number of intervals allocated in an interval_block structure.
1259 The 1020 is 1024 minus malloc overhead. */
1261 #define INTERVAL_BLOCK_SIZE \
1262 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1264 /* Intervals are allocated in chunks in the form of an interval_block
1265 structure. */
1267 struct interval_block
1269 /* Place `intervals' first, to preserve alignment. */
1270 struct interval intervals[INTERVAL_BLOCK_SIZE];
1271 struct interval_block *next;
1274 /* Current interval block. Its `next' pointer points to older
1275 blocks. */
1277 static struct interval_block *interval_block;
1279 /* Index in interval_block above of the next unused interval
1280 structure. */
1282 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1284 /* Number of free and live intervals. */
1286 static EMACS_INT total_free_intervals, total_intervals;
1288 /* List of free intervals. */
1290 static INTERVAL interval_free_list;
1292 /* Return a new interval. */
1294 INTERVAL
1295 make_interval (void)
1297 INTERVAL val;
1299 MALLOC_BLOCK_INPUT;
1301 if (interval_free_list)
1303 val = interval_free_list;
1304 interval_free_list = INTERVAL_PARENT (interval_free_list);
1306 else
1308 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1310 struct interval_block *newi
1311 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1313 newi->next = interval_block;
1314 interval_block = newi;
1315 interval_block_index = 0;
1316 total_free_intervals += INTERVAL_BLOCK_SIZE;
1318 val = &interval_block->intervals[interval_block_index++];
1321 MALLOC_UNBLOCK_INPUT;
1323 consing_since_gc += sizeof (struct interval);
1324 intervals_consed++;
1325 total_free_intervals--;
1326 RESET_INTERVAL (val);
1327 val->gcmarkbit = 0;
1328 return val;
1332 /* Mark Lisp objects in interval I. */
1334 static void
1335 mark_interval (register INTERVAL i, Lisp_Object dummy)
1337 /* Intervals should never be shared. So, if extra internal checking is
1338 enabled, GC aborts if it seems to have visited an interval twice. */
1339 eassert (!i->gcmarkbit);
1340 i->gcmarkbit = 1;
1341 mark_object (i->plist);
1344 /* Mark the interval tree rooted in I. */
1346 #define MARK_INTERVAL_TREE(i) \
1347 do { \
1348 if (i && !i->gcmarkbit) \
1349 traverse_intervals_noorder (i, mark_interval, Qnil); \
1350 } while (0)
1352 /***********************************************************************
1353 String Allocation
1354 ***********************************************************************/
1356 /* Lisp_Strings are allocated in string_block structures. When a new
1357 string_block is allocated, all the Lisp_Strings it contains are
1358 added to a free-list string_free_list. When a new Lisp_String is
1359 needed, it is taken from that list. During the sweep phase of GC,
1360 string_blocks that are entirely free are freed, except two which
1361 we keep.
1363 String data is allocated from sblock structures. Strings larger
1364 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1365 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1367 Sblocks consist internally of sdata structures, one for each
1368 Lisp_String. The sdata structure points to the Lisp_String it
1369 belongs to. The Lisp_String points back to the `u.data' member of
1370 its sdata structure.
1372 When a Lisp_String is freed during GC, it is put back on
1373 string_free_list, and its `data' member and its sdata's `string'
1374 pointer is set to null. The size of the string is recorded in the
1375 `n.nbytes' member of the sdata. So, sdata structures that are no
1376 longer used, can be easily recognized, and it's easy to compact the
1377 sblocks of small strings which we do in compact_small_strings. */
1379 /* Size in bytes of an sblock structure used for small strings. This
1380 is 8192 minus malloc overhead. */
1382 #define SBLOCK_SIZE 8188
1384 /* Strings larger than this are considered large strings. String data
1385 for large strings is allocated from individual sblocks. */
1387 #define LARGE_STRING_BYTES 1024
1389 /* The SDATA typedef is a struct or union describing string memory
1390 sub-allocated from an sblock. This is where the contents of Lisp
1391 strings are stored. */
1393 struct sdata
1395 /* Back-pointer to the string this sdata belongs to. If null, this
1396 structure is free, and NBYTES (in this structure or in the union below)
1397 contains the string's byte size (the same value that STRING_BYTES
1398 would return if STRING were non-null). If non-null, STRING_BYTES
1399 (STRING) is the size of the data, and DATA contains the string's
1400 contents. */
1401 struct Lisp_String *string;
1403 #ifdef GC_CHECK_STRING_BYTES
1404 ptrdiff_t nbytes;
1405 #endif
1407 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1410 #ifdef GC_CHECK_STRING_BYTES
1412 typedef struct sdata sdata;
1413 #define SDATA_NBYTES(S) (S)->nbytes
1414 #define SDATA_DATA(S) (S)->data
1416 #else
1418 typedef union
1420 struct Lisp_String *string;
1422 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1423 which has a flexible array member. However, if implemented by
1424 giving this union a member of type 'struct sdata', the union
1425 could not be the last (flexible) member of 'struct sblock',
1426 because C99 prohibits a flexible array member from having a type
1427 that is itself a flexible array. So, comment this member out here,
1428 but remember that the option's there when using this union. */
1429 #if 0
1430 struct sdata u;
1431 #endif
1433 /* When STRING is null. */
1434 struct
1436 struct Lisp_String *string;
1437 ptrdiff_t nbytes;
1438 } n;
1439 } sdata;
1441 #define SDATA_NBYTES(S) (S)->n.nbytes
1442 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1444 #endif /* not GC_CHECK_STRING_BYTES */
1446 enum { SDATA_DATA_OFFSET = offsetof (struct sdata, data) };
1448 /* Structure describing a block of memory which is sub-allocated to
1449 obtain string data memory for strings. Blocks for small strings
1450 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1451 as large as needed. */
1453 struct sblock
1455 /* Next in list. */
1456 struct sblock *next;
1458 /* Pointer to the next free sdata block. This points past the end
1459 of the sblock if there isn't any space left in this block. */
1460 sdata *next_free;
1462 /* String data. */
1463 sdata data[FLEXIBLE_ARRAY_MEMBER];
1466 /* Number of Lisp strings in a string_block structure. The 1020 is
1467 1024 minus malloc overhead. */
1469 #define STRING_BLOCK_SIZE \
1470 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1472 /* Structure describing a block from which Lisp_String structures
1473 are allocated. */
1475 struct string_block
1477 /* Place `strings' first, to preserve alignment. */
1478 struct Lisp_String strings[STRING_BLOCK_SIZE];
1479 struct string_block *next;
1482 /* Head and tail of the list of sblock structures holding Lisp string
1483 data. We always allocate from current_sblock. The NEXT pointers
1484 in the sblock structures go from oldest_sblock to current_sblock. */
1486 static struct sblock *oldest_sblock, *current_sblock;
1488 /* List of sblocks for large strings. */
1490 static struct sblock *large_sblocks;
1492 /* List of string_block structures. */
1494 static struct string_block *string_blocks;
1496 /* Free-list of Lisp_Strings. */
1498 static struct Lisp_String *string_free_list;
1500 /* Number of live and free Lisp_Strings. */
1502 static EMACS_INT total_strings, total_free_strings;
1504 /* Number of bytes used by live strings. */
1506 static EMACS_INT total_string_bytes;
1508 /* Given a pointer to a Lisp_String S which is on the free-list
1509 string_free_list, return a pointer to its successor in the
1510 free-list. */
1512 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1514 /* Return a pointer to the sdata structure belonging to Lisp string S.
1515 S must be live, i.e. S->data must not be null. S->data is actually
1516 a pointer to the `u.data' member of its sdata structure; the
1517 structure starts at a constant offset in front of that. */
1519 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1522 #ifdef GC_CHECK_STRING_OVERRUN
1524 /* We check for overrun in string data blocks by appending a small
1525 "cookie" after each allocated string data block, and check for the
1526 presence of this cookie during GC. */
1528 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1529 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1530 { '\xde', '\xad', '\xbe', '\xef' };
1532 #else
1533 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1534 #endif
1536 /* Value is the size of an sdata structure large enough to hold NBYTES
1537 bytes of string data. The value returned includes a terminating
1538 NUL byte, the size of the sdata structure, and padding. */
1540 #ifdef GC_CHECK_STRING_BYTES
1542 #define SDATA_SIZE(NBYTES) \
1543 ((SDATA_DATA_OFFSET \
1544 + (NBYTES) + 1 \
1545 + sizeof (ptrdiff_t) - 1) \
1546 & ~(sizeof (ptrdiff_t) - 1))
1548 #else /* not GC_CHECK_STRING_BYTES */
1550 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1551 less than the size of that member. The 'max' is not needed when
1552 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1553 alignment code reserves enough space. */
1555 #define SDATA_SIZE(NBYTES) \
1556 ((SDATA_DATA_OFFSET \
1557 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1558 ? NBYTES \
1559 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1560 + 1 \
1561 + sizeof (ptrdiff_t) - 1) \
1562 & ~(sizeof (ptrdiff_t) - 1))
1564 #endif /* not GC_CHECK_STRING_BYTES */
1566 /* Extra bytes to allocate for each string. */
1568 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1570 /* Exact bound on the number of bytes in a string, not counting the
1571 terminating null. A string cannot contain more bytes than
1572 STRING_BYTES_BOUND, nor can it be so long that the size_t
1573 arithmetic in allocate_string_data would overflow while it is
1574 calculating a value to be passed to malloc. */
1575 static ptrdiff_t const STRING_BYTES_MAX =
1576 min (STRING_BYTES_BOUND,
1577 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1578 - GC_STRING_EXTRA
1579 - offsetof (struct sblock, data)
1580 - SDATA_DATA_OFFSET)
1581 & ~(sizeof (EMACS_INT) - 1)));
1583 /* Initialize string allocation. Called from init_alloc_once. */
1585 static void
1586 init_strings (void)
1588 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1589 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1593 #ifdef GC_CHECK_STRING_BYTES
1595 static int check_string_bytes_count;
1597 /* Like STRING_BYTES, but with debugging check. Can be
1598 called during GC, so pay attention to the mark bit. */
1600 ptrdiff_t
1601 string_bytes (struct Lisp_String *s)
1603 ptrdiff_t nbytes =
1604 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1606 if (!PURE_POINTER_P (s)
1607 && s->data
1608 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1609 emacs_abort ();
1610 return nbytes;
1613 /* Check validity of Lisp strings' string_bytes member in B. */
1615 static void
1616 check_sblock (struct sblock *b)
1618 sdata *from, *end, *from_end;
1620 end = b->next_free;
1622 for (from = b->data; from < end; from = from_end)
1624 /* Compute the next FROM here because copying below may
1625 overwrite data we need to compute it. */
1626 ptrdiff_t nbytes;
1628 /* Check that the string size recorded in the string is the
1629 same as the one recorded in the sdata structure. */
1630 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1631 : SDATA_NBYTES (from));
1632 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1637 /* Check validity of Lisp strings' string_bytes member. ALL_P
1638 means check all strings, otherwise check only most
1639 recently allocated strings. Used for hunting a bug. */
1641 static void
1642 check_string_bytes (bool all_p)
1644 if (all_p)
1646 struct sblock *b;
1648 for (b = large_sblocks; b; b = b->next)
1650 struct Lisp_String *s = b->data[0].string;
1651 if (s)
1652 string_bytes (s);
1655 for (b = oldest_sblock; b; b = b->next)
1656 check_sblock (b);
1658 else if (current_sblock)
1659 check_sblock (current_sblock);
1662 #else /* not GC_CHECK_STRING_BYTES */
1664 #define check_string_bytes(all) ((void) 0)
1666 #endif /* GC_CHECK_STRING_BYTES */
1668 #ifdef GC_CHECK_STRING_FREE_LIST
1670 /* Walk through the string free list looking for bogus next pointers.
1671 This may catch buffer overrun from a previous string. */
1673 static void
1674 check_string_free_list (void)
1676 struct Lisp_String *s;
1678 /* Pop a Lisp_String off the free-list. */
1679 s = string_free_list;
1680 while (s != NULL)
1682 if ((uintptr_t) s < 1024)
1683 emacs_abort ();
1684 s = NEXT_FREE_LISP_STRING (s);
1687 #else
1688 #define check_string_free_list()
1689 #endif
1691 /* Return a new Lisp_String. */
1693 static struct Lisp_String *
1694 allocate_string (void)
1696 struct Lisp_String *s;
1698 MALLOC_BLOCK_INPUT;
1700 /* If the free-list is empty, allocate a new string_block, and
1701 add all the Lisp_Strings in it to the free-list. */
1702 if (string_free_list == NULL)
1704 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1705 int i;
1707 b->next = string_blocks;
1708 string_blocks = b;
1710 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1712 s = b->strings + i;
1713 /* Every string on a free list should have NULL data pointer. */
1714 s->data = NULL;
1715 NEXT_FREE_LISP_STRING (s) = string_free_list;
1716 string_free_list = s;
1719 total_free_strings += STRING_BLOCK_SIZE;
1722 check_string_free_list ();
1724 /* Pop a Lisp_String off the free-list. */
1725 s = string_free_list;
1726 string_free_list = NEXT_FREE_LISP_STRING (s);
1728 MALLOC_UNBLOCK_INPUT;
1730 --total_free_strings;
1731 ++total_strings;
1732 ++strings_consed;
1733 consing_since_gc += sizeof *s;
1735 #ifdef GC_CHECK_STRING_BYTES
1736 if (!noninteractive)
1738 if (++check_string_bytes_count == 200)
1740 check_string_bytes_count = 0;
1741 check_string_bytes (1);
1743 else
1744 check_string_bytes (0);
1746 #endif /* GC_CHECK_STRING_BYTES */
1748 return s;
1752 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1753 plus a NUL byte at the end. Allocate an sdata structure for S, and
1754 set S->data to its `u.data' member. Store a NUL byte at the end of
1755 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1756 S->data if it was initially non-null. */
1758 void
1759 allocate_string_data (struct Lisp_String *s,
1760 EMACS_INT nchars, EMACS_INT nbytes)
1762 sdata *data, *old_data;
1763 struct sblock *b;
1764 ptrdiff_t needed, old_nbytes;
1766 if (STRING_BYTES_MAX < nbytes)
1767 string_overflow ();
1769 /* Determine the number of bytes needed to store NBYTES bytes
1770 of string data. */
1771 needed = SDATA_SIZE (nbytes);
1772 if (s->data)
1774 old_data = SDATA_OF_STRING (s);
1775 old_nbytes = STRING_BYTES (s);
1777 else
1778 old_data = NULL;
1780 MALLOC_BLOCK_INPUT;
1782 if (nbytes > LARGE_STRING_BYTES)
1784 size_t size = offsetof (struct sblock, data) + needed;
1786 #ifdef DOUG_LEA_MALLOC
1787 if (!mmap_lisp_allowed_p ())
1788 mallopt (M_MMAP_MAX, 0);
1789 #endif
1791 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1793 #ifdef DOUG_LEA_MALLOC
1794 if (!mmap_lisp_allowed_p ())
1795 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1796 #endif
1798 b->next_free = b->data;
1799 b->data[0].string = NULL;
1800 b->next = large_sblocks;
1801 large_sblocks = b;
1803 else if (current_sblock == NULL
1804 || (((char *) current_sblock + SBLOCK_SIZE
1805 - (char *) current_sblock->next_free)
1806 < (needed + GC_STRING_EXTRA)))
1808 /* Not enough room in the current sblock. */
1809 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1810 b->next_free = b->data;
1811 b->data[0].string = NULL;
1812 b->next = NULL;
1814 if (current_sblock)
1815 current_sblock->next = b;
1816 else
1817 oldest_sblock = b;
1818 current_sblock = b;
1820 else
1821 b = current_sblock;
1823 data = b->next_free;
1824 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1826 MALLOC_UNBLOCK_INPUT;
1828 data->string = s;
1829 s->data = SDATA_DATA (data);
1830 #ifdef GC_CHECK_STRING_BYTES
1831 SDATA_NBYTES (data) = nbytes;
1832 #endif
1833 s->size = nchars;
1834 s->size_byte = nbytes;
1835 s->data[nbytes] = '\0';
1836 #ifdef GC_CHECK_STRING_OVERRUN
1837 memcpy ((char *) data + needed, string_overrun_cookie,
1838 GC_STRING_OVERRUN_COOKIE_SIZE);
1839 #endif
1841 /* Note that Faset may call to this function when S has already data
1842 assigned. In this case, mark data as free by setting it's string
1843 back-pointer to null, and record the size of the data in it. */
1844 if (old_data)
1846 SDATA_NBYTES (old_data) = old_nbytes;
1847 old_data->string = NULL;
1850 consing_since_gc += needed;
1854 /* Sweep and compact strings. */
1856 NO_INLINE /* For better stack traces */
1857 static void
1858 sweep_strings (void)
1860 struct string_block *b, *next;
1861 struct string_block *live_blocks = NULL;
1863 string_free_list = NULL;
1864 total_strings = total_free_strings = 0;
1865 total_string_bytes = 0;
1867 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1868 for (b = string_blocks; b; b = next)
1870 int i, nfree = 0;
1871 struct Lisp_String *free_list_before = string_free_list;
1873 next = b->next;
1875 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1877 struct Lisp_String *s = b->strings + i;
1879 if (s->data)
1881 /* String was not on free-list before. */
1882 if (STRING_MARKED_P (s))
1884 /* String is live; unmark it and its intervals. */
1885 UNMARK_STRING (s);
1887 /* Do not use string_(set|get)_intervals here. */
1888 s->intervals = balance_intervals (s->intervals);
1890 ++total_strings;
1891 total_string_bytes += STRING_BYTES (s);
1893 else
1895 /* String is dead. Put it on the free-list. */
1896 sdata *data = SDATA_OF_STRING (s);
1898 /* Save the size of S in its sdata so that we know
1899 how large that is. Reset the sdata's string
1900 back-pointer so that we know it's free. */
1901 #ifdef GC_CHECK_STRING_BYTES
1902 if (string_bytes (s) != SDATA_NBYTES (data))
1903 emacs_abort ();
1904 #else
1905 data->n.nbytes = STRING_BYTES (s);
1906 #endif
1907 data->string = NULL;
1909 /* Reset the strings's `data' member so that we
1910 know it's free. */
1911 s->data = NULL;
1913 /* Put the string on the free-list. */
1914 NEXT_FREE_LISP_STRING (s) = string_free_list;
1915 string_free_list = s;
1916 ++nfree;
1919 else
1921 /* S was on the free-list before. Put it there again. */
1922 NEXT_FREE_LISP_STRING (s) = string_free_list;
1923 string_free_list = s;
1924 ++nfree;
1928 /* Free blocks that contain free Lisp_Strings only, except
1929 the first two of them. */
1930 if (nfree == STRING_BLOCK_SIZE
1931 && total_free_strings > STRING_BLOCK_SIZE)
1933 lisp_free (b);
1934 string_free_list = free_list_before;
1936 else
1938 total_free_strings += nfree;
1939 b->next = live_blocks;
1940 live_blocks = b;
1944 check_string_free_list ();
1946 string_blocks = live_blocks;
1947 free_large_strings ();
1948 compact_small_strings ();
1950 check_string_free_list ();
1954 /* Free dead large strings. */
1956 static void
1957 free_large_strings (void)
1959 struct sblock *b, *next;
1960 struct sblock *live_blocks = NULL;
1962 for (b = large_sblocks; b; b = next)
1964 next = b->next;
1966 if (b->data[0].string == NULL)
1967 lisp_free (b);
1968 else
1970 b->next = live_blocks;
1971 live_blocks = b;
1975 large_sblocks = live_blocks;
1979 /* Compact data of small strings. Free sblocks that don't contain
1980 data of live strings after compaction. */
1982 static void
1983 compact_small_strings (void)
1985 struct sblock *b, *tb, *next;
1986 sdata *from, *to, *end, *tb_end;
1987 sdata *to_end, *from_end;
1989 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1990 to, and TB_END is the end of TB. */
1991 tb = oldest_sblock;
1992 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1993 to = tb->data;
1995 /* Step through the blocks from the oldest to the youngest. We
1996 expect that old blocks will stabilize over time, so that less
1997 copying will happen this way. */
1998 for (b = oldest_sblock; b; b = b->next)
2000 end = b->next_free;
2001 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2003 for (from = b->data; from < end; from = from_end)
2005 /* Compute the next FROM here because copying below may
2006 overwrite data we need to compute it. */
2007 ptrdiff_t nbytes;
2008 struct Lisp_String *s = from->string;
2010 #ifdef GC_CHECK_STRING_BYTES
2011 /* Check that the string size recorded in the string is the
2012 same as the one recorded in the sdata structure. */
2013 if (s && string_bytes (s) != SDATA_NBYTES (from))
2014 emacs_abort ();
2015 #endif /* GC_CHECK_STRING_BYTES */
2017 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
2018 eassert (nbytes <= LARGE_STRING_BYTES);
2020 nbytes = SDATA_SIZE (nbytes);
2021 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2023 #ifdef GC_CHECK_STRING_OVERRUN
2024 if (memcmp (string_overrun_cookie,
2025 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2026 GC_STRING_OVERRUN_COOKIE_SIZE))
2027 emacs_abort ();
2028 #endif
2030 /* Non-NULL S means it's alive. Copy its data. */
2031 if (s)
2033 /* If TB is full, proceed with the next sblock. */
2034 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2035 if (to_end > tb_end)
2037 tb->next_free = to;
2038 tb = tb->next;
2039 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2040 to = tb->data;
2041 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2044 /* Copy, and update the string's `data' pointer. */
2045 if (from != to)
2047 eassert (tb != b || to < from);
2048 memmove (to, from, nbytes + GC_STRING_EXTRA);
2049 to->string->data = SDATA_DATA (to);
2052 /* Advance past the sdata we copied to. */
2053 to = to_end;
2058 /* The rest of the sblocks following TB don't contain live data, so
2059 we can free them. */
2060 for (b = tb->next; b; b = next)
2062 next = b->next;
2063 lisp_free (b);
2066 tb->next_free = to;
2067 tb->next = NULL;
2068 current_sblock = tb;
2071 void
2072 string_overflow (void)
2074 error ("Maximum string size exceeded");
2077 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2078 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2079 LENGTH must be an integer.
2080 INIT must be an integer that represents a character. */)
2081 (Lisp_Object length, Lisp_Object init)
2083 register Lisp_Object val;
2084 int c;
2085 EMACS_INT nbytes;
2087 CHECK_NATNUM (length);
2088 CHECK_CHARACTER (init);
2090 c = XFASTINT (init);
2091 if (ASCII_CHAR_P (c))
2093 nbytes = XINT (length);
2094 val = make_uninit_string (nbytes);
2095 memset (SDATA (val), c, nbytes);
2096 SDATA (val)[nbytes] = 0;
2098 else
2100 unsigned char str[MAX_MULTIBYTE_LENGTH];
2101 ptrdiff_t len = CHAR_STRING (c, str);
2102 EMACS_INT string_len = XINT (length);
2103 unsigned char *p, *beg, *end;
2105 if (string_len > STRING_BYTES_MAX / len)
2106 string_overflow ();
2107 nbytes = len * string_len;
2108 val = make_uninit_multibyte_string (string_len, nbytes);
2109 for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
2111 /* First time we just copy `str' to the data of `val'. */
2112 if (p == beg)
2113 memcpy (p, str, len);
2114 else
2116 /* Next time we copy largest possible chunk from
2117 initialized to uninitialized part of `val'. */
2118 len = min (p - beg, end - p);
2119 memcpy (p, beg, len);
2122 *p = 0;
2125 return val;
2128 /* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
2129 Return A. */
2131 Lisp_Object
2132 bool_vector_fill (Lisp_Object a, Lisp_Object init)
2134 EMACS_INT nbits = bool_vector_size (a);
2135 if (0 < nbits)
2137 unsigned char *data = bool_vector_uchar_data (a);
2138 int pattern = NILP (init) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR) - 1;
2139 ptrdiff_t nbytes = bool_vector_bytes (nbits);
2140 int last_mask = ~ (~0u << ((nbits - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1));
2141 memset (data, pattern, nbytes - 1);
2142 data[nbytes - 1] = pattern & last_mask;
2144 return a;
2147 /* Return a newly allocated, uninitialized bool vector of size NBITS. */
2149 Lisp_Object
2150 make_uninit_bool_vector (EMACS_INT nbits)
2152 Lisp_Object val;
2153 EMACS_INT words = bool_vector_words (nbits);
2154 EMACS_INT word_bytes = words * sizeof (bits_word);
2155 EMACS_INT needed_elements = ((bool_header_size - header_size + word_bytes
2156 + word_size - 1)
2157 / word_size);
2158 struct Lisp_Bool_Vector *p
2159 = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2160 XSETVECTOR (val, p);
2161 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2162 p->size = nbits;
2164 /* Clear padding at the end. */
2165 if (words)
2166 p->data[words - 1] = 0;
2168 return val;
2171 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2172 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2173 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2174 (Lisp_Object length, Lisp_Object init)
2176 Lisp_Object val;
2178 CHECK_NATNUM (length);
2179 val = make_uninit_bool_vector (XFASTINT (length));
2180 return bool_vector_fill (val, init);
2183 DEFUN ("bool-vector", Fbool_vector, Sbool_vector, 0, MANY, 0,
2184 doc: /* Return a new bool-vector with specified arguments as elements.
2185 Any number of arguments, even zero arguments, are allowed.
2186 usage: (bool-vector &rest OBJECTS) */)
2187 (ptrdiff_t nargs, Lisp_Object *args)
2189 ptrdiff_t i;
2190 Lisp_Object vector;
2192 vector = make_uninit_bool_vector (nargs);
2193 for (i = 0; i < nargs; i++)
2194 bool_vector_set (vector, i, !NILP (args[i]));
2196 return vector;
2199 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2200 of characters from the contents. This string may be unibyte or
2201 multibyte, depending on the contents. */
2203 Lisp_Object
2204 make_string (const char *contents, ptrdiff_t nbytes)
2206 register Lisp_Object val;
2207 ptrdiff_t nchars, multibyte_nbytes;
2209 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2210 &nchars, &multibyte_nbytes);
2211 if (nbytes == nchars || nbytes != multibyte_nbytes)
2212 /* CONTENTS contains no multibyte sequences or contains an invalid
2213 multibyte sequence. We must make unibyte string. */
2214 val = make_unibyte_string (contents, nbytes);
2215 else
2216 val = make_multibyte_string (contents, nchars, nbytes);
2217 return val;
2220 /* Make a unibyte string from LENGTH bytes at CONTENTS. */
2222 Lisp_Object
2223 make_unibyte_string (const char *contents, ptrdiff_t length)
2225 register Lisp_Object val;
2226 val = make_uninit_string (length);
2227 memcpy (SDATA (val), contents, length);
2228 return val;
2232 /* Make a multibyte string from NCHARS characters occupying NBYTES
2233 bytes at CONTENTS. */
2235 Lisp_Object
2236 make_multibyte_string (const char *contents,
2237 ptrdiff_t nchars, ptrdiff_t nbytes)
2239 register Lisp_Object val;
2240 val = make_uninit_multibyte_string (nchars, nbytes);
2241 memcpy (SDATA (val), contents, nbytes);
2242 return val;
2246 /* Make a string from NCHARS characters occupying NBYTES bytes at
2247 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2249 Lisp_Object
2250 make_string_from_bytes (const char *contents,
2251 ptrdiff_t nchars, ptrdiff_t nbytes)
2253 register Lisp_Object val;
2254 val = make_uninit_multibyte_string (nchars, nbytes);
2255 memcpy (SDATA (val), contents, nbytes);
2256 if (SBYTES (val) == SCHARS (val))
2257 STRING_SET_UNIBYTE (val);
2258 return val;
2262 /* Make a string from NCHARS characters occupying NBYTES bytes at
2263 CONTENTS. The argument MULTIBYTE controls whether to label the
2264 string as multibyte. If NCHARS is negative, it counts the number of
2265 characters by itself. */
2267 Lisp_Object
2268 make_specified_string (const char *contents,
2269 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2271 Lisp_Object val;
2273 if (nchars < 0)
2275 if (multibyte)
2276 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2277 nbytes);
2278 else
2279 nchars = nbytes;
2281 val = make_uninit_multibyte_string (nchars, nbytes);
2282 memcpy (SDATA (val), contents, nbytes);
2283 if (!multibyte)
2284 STRING_SET_UNIBYTE (val);
2285 return val;
2289 /* Return a unibyte Lisp_String set up to hold LENGTH characters
2290 occupying LENGTH bytes. */
2292 Lisp_Object
2293 make_uninit_string (EMACS_INT length)
2295 Lisp_Object val;
2297 if (!length)
2298 return empty_unibyte_string;
2299 val = make_uninit_multibyte_string (length, length);
2300 STRING_SET_UNIBYTE (val);
2301 return val;
2305 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2306 which occupy NBYTES bytes. */
2308 Lisp_Object
2309 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2311 Lisp_Object string;
2312 struct Lisp_String *s;
2314 if (nchars < 0)
2315 emacs_abort ();
2316 if (!nbytes)
2317 return empty_multibyte_string;
2319 s = allocate_string ();
2320 s->intervals = NULL;
2321 allocate_string_data (s, nchars, nbytes);
2322 XSETSTRING (string, s);
2323 string_chars_consed += nbytes;
2324 return string;
2327 /* Print arguments to BUF according to a FORMAT, then return
2328 a Lisp_String initialized with the data from BUF. */
2330 Lisp_Object
2331 make_formatted_string (char *buf, const char *format, ...)
2333 va_list ap;
2334 int length;
2336 va_start (ap, format);
2337 length = vsprintf (buf, format, ap);
2338 va_end (ap);
2339 return make_string (buf, length);
2343 /***********************************************************************
2344 Float Allocation
2345 ***********************************************************************/
2347 /* We store float cells inside of float_blocks, allocating a new
2348 float_block with malloc whenever necessary. Float cells reclaimed
2349 by GC are put on a free list to be reallocated before allocating
2350 any new float cells from the latest float_block. */
2352 #define FLOAT_BLOCK_SIZE \
2353 (((BLOCK_BYTES - sizeof (struct float_block *) \
2354 /* The compiler might add padding at the end. */ \
2355 - (sizeof (struct Lisp_Float) - sizeof (bits_word))) * CHAR_BIT) \
2356 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2358 #define GETMARKBIT(block,n) \
2359 (((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2360 >> ((n) % BITS_PER_BITS_WORD)) \
2361 & 1)
2363 #define SETMARKBIT(block,n) \
2364 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2365 |= (bits_word) 1 << ((n) % BITS_PER_BITS_WORD))
2367 #define UNSETMARKBIT(block,n) \
2368 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2369 &= ~((bits_word) 1 << ((n) % BITS_PER_BITS_WORD)))
2371 #define FLOAT_BLOCK(fptr) \
2372 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2374 #define FLOAT_INDEX(fptr) \
2375 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2377 struct float_block
2379 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2380 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2381 bits_word gcmarkbits[1 + FLOAT_BLOCK_SIZE / BITS_PER_BITS_WORD];
2382 struct float_block *next;
2385 #define FLOAT_MARKED_P(fptr) \
2386 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2388 #define FLOAT_MARK(fptr) \
2389 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2391 #define FLOAT_UNMARK(fptr) \
2392 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2394 /* Current float_block. */
2396 static struct float_block *float_block;
2398 /* Index of first unused Lisp_Float in the current float_block. */
2400 static int float_block_index = FLOAT_BLOCK_SIZE;
2402 /* Free-list of Lisp_Floats. */
2404 static struct Lisp_Float *float_free_list;
2406 /* Return a new float object with value FLOAT_VALUE. */
2408 Lisp_Object
2409 make_float (double float_value)
2411 register Lisp_Object val;
2413 MALLOC_BLOCK_INPUT;
2415 if (float_free_list)
2417 /* We use the data field for chaining the free list
2418 so that we won't use the same field that has the mark bit. */
2419 XSETFLOAT (val, float_free_list);
2420 float_free_list = float_free_list->u.chain;
2422 else
2424 if (float_block_index == FLOAT_BLOCK_SIZE)
2426 struct float_block *new
2427 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2428 new->next = float_block;
2429 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2430 float_block = new;
2431 float_block_index = 0;
2432 total_free_floats += FLOAT_BLOCK_SIZE;
2434 XSETFLOAT (val, &float_block->floats[float_block_index]);
2435 float_block_index++;
2438 MALLOC_UNBLOCK_INPUT;
2440 XFLOAT_INIT (val, float_value);
2441 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2442 consing_since_gc += sizeof (struct Lisp_Float);
2443 floats_consed++;
2444 total_free_floats--;
2445 return val;
2450 /***********************************************************************
2451 Cons Allocation
2452 ***********************************************************************/
2454 /* We store cons cells inside of cons_blocks, allocating a new
2455 cons_block with malloc whenever necessary. Cons cells reclaimed by
2456 GC are put on a free list to be reallocated before allocating
2457 any new cons cells from the latest cons_block. */
2459 #define CONS_BLOCK_SIZE \
2460 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2461 /* The compiler might add padding at the end. */ \
2462 - (sizeof (struct Lisp_Cons) - sizeof (bits_word))) * CHAR_BIT) \
2463 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2465 #define CONS_BLOCK(fptr) \
2466 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2468 #define CONS_INDEX(fptr) \
2469 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2471 struct cons_block
2473 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2474 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2475 bits_word gcmarkbits[1 + CONS_BLOCK_SIZE / BITS_PER_BITS_WORD];
2476 struct cons_block *next;
2479 #define CONS_MARKED_P(fptr) \
2480 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2482 #define CONS_MARK(fptr) \
2483 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2485 #define CONS_UNMARK(fptr) \
2486 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2488 /* Current cons_block. */
2490 static struct cons_block *cons_block;
2492 /* Index of first unused Lisp_Cons in the current block. */
2494 static int cons_block_index = CONS_BLOCK_SIZE;
2496 /* Free-list of Lisp_Cons structures. */
2498 static struct Lisp_Cons *cons_free_list;
2500 /* Explicitly free a cons cell by putting it on the free-list. */
2502 void
2503 free_cons (struct Lisp_Cons *ptr)
2505 ptr->u.chain = cons_free_list;
2506 #if GC_MARK_STACK
2507 ptr->car = Vdead;
2508 #endif
2509 cons_free_list = ptr;
2510 consing_since_gc -= sizeof *ptr;
2511 total_free_conses++;
2514 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2515 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2516 (Lisp_Object car, Lisp_Object cdr)
2518 register Lisp_Object val;
2520 MALLOC_BLOCK_INPUT;
2522 if (cons_free_list)
2524 /* We use the cdr for chaining the free list
2525 so that we won't use the same field that has the mark bit. */
2526 XSETCONS (val, cons_free_list);
2527 cons_free_list = cons_free_list->u.chain;
2529 else
2531 if (cons_block_index == CONS_BLOCK_SIZE)
2533 struct cons_block *new
2534 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2535 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2536 new->next = cons_block;
2537 cons_block = new;
2538 cons_block_index = 0;
2539 total_free_conses += CONS_BLOCK_SIZE;
2541 XSETCONS (val, &cons_block->conses[cons_block_index]);
2542 cons_block_index++;
2545 MALLOC_UNBLOCK_INPUT;
2547 XSETCAR (val, car);
2548 XSETCDR (val, cdr);
2549 eassert (!CONS_MARKED_P (XCONS (val)));
2550 consing_since_gc += sizeof (struct Lisp_Cons);
2551 total_free_conses--;
2552 cons_cells_consed++;
2553 return val;
2556 #ifdef GC_CHECK_CONS_LIST
2557 /* Get an error now if there's any junk in the cons free list. */
2558 void
2559 check_cons_list (void)
2561 struct Lisp_Cons *tail = cons_free_list;
2563 while (tail)
2564 tail = tail->u.chain;
2566 #endif
2568 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2570 Lisp_Object
2571 list1 (Lisp_Object arg1)
2573 return Fcons (arg1, Qnil);
2576 Lisp_Object
2577 list2 (Lisp_Object arg1, Lisp_Object arg2)
2579 return Fcons (arg1, Fcons (arg2, Qnil));
2583 Lisp_Object
2584 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2586 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2590 Lisp_Object
2591 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2593 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2597 Lisp_Object
2598 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2600 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2601 Fcons (arg5, Qnil)))));
2604 /* Make a list of COUNT Lisp_Objects, where ARG is the
2605 first one. Allocate conses from pure space if TYPE
2606 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2608 Lisp_Object
2609 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2611 Lisp_Object (*cons) (Lisp_Object, Lisp_Object);
2612 switch (type)
2614 case CONSTYPE_PURE: cons = pure_cons; break;
2615 case CONSTYPE_HEAP: cons = Fcons; break;
2616 default: emacs_abort ();
2619 eassume (0 < count);
2620 Lisp_Object val = cons (arg, Qnil);
2621 Lisp_Object tail = val;
2623 va_list ap;
2624 va_start (ap, arg);
2625 for (ptrdiff_t i = 1; i < count; i++)
2627 Lisp_Object elem = cons (va_arg (ap, Lisp_Object), Qnil);
2628 XSETCDR (tail, elem);
2629 tail = elem;
2631 va_end (ap);
2633 return val;
2636 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2637 doc: /* Return a newly created list with specified arguments as elements.
2638 Any number of arguments, even zero arguments, are allowed.
2639 usage: (list &rest OBJECTS) */)
2640 (ptrdiff_t nargs, Lisp_Object *args)
2642 register Lisp_Object val;
2643 val = Qnil;
2645 while (nargs > 0)
2647 nargs--;
2648 val = Fcons (args[nargs], val);
2650 return val;
2654 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2655 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2656 (register Lisp_Object length, Lisp_Object init)
2658 register Lisp_Object val;
2659 register EMACS_INT size;
2661 CHECK_NATNUM (length);
2662 size = XFASTINT (length);
2664 val = Qnil;
2665 while (size > 0)
2667 val = Fcons (init, val);
2668 --size;
2670 if (size > 0)
2672 val = Fcons (init, val);
2673 --size;
2675 if (size > 0)
2677 val = Fcons (init, val);
2678 --size;
2680 if (size > 0)
2682 val = Fcons (init, val);
2683 --size;
2685 if (size > 0)
2687 val = Fcons (init, val);
2688 --size;
2694 QUIT;
2697 return val;
2702 /***********************************************************************
2703 Vector Allocation
2704 ***********************************************************************/
2706 /* Sometimes a vector's contents are merely a pointer internally used
2707 in vector allocation code. On the rare platforms where a null
2708 pointer cannot be tagged, represent it with a Lisp 0.
2709 Usually you don't want to touch this. */
2711 static struct Lisp_Vector *
2712 next_vector (struct Lisp_Vector *v)
2714 return XUNTAG (v->contents[0], Lisp_Int0);
2717 static void
2718 set_next_vector (struct Lisp_Vector *v, struct Lisp_Vector *p)
2720 v->contents[0] = make_lisp_ptr (p, Lisp_Int0);
2723 /* This value is balanced well enough to avoid too much internal overhead
2724 for the most common cases; it's not required to be a power of two, but
2725 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2727 #define VECTOR_BLOCK_SIZE 4096
2729 enum
2731 /* Alignment of struct Lisp_Vector objects. */
2732 vector_alignment = COMMON_MULTIPLE (ALIGNOF_STRUCT_LISP_VECTOR,
2733 USE_LSB_TAG ? GCALIGNMENT : 1),
2735 /* Vector size requests are a multiple of this. */
2736 roundup_size = COMMON_MULTIPLE (vector_alignment, word_size)
2739 /* Verify assumptions described above. */
2740 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2741 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2743 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2744 #define vroundup_ct(x) ROUNDUP (x, roundup_size)
2745 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2746 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2748 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2750 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2752 /* Size of the minimal vector allocated from block. */
2754 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2756 /* Size of the largest vector allocated from block. */
2758 #define VBLOCK_BYTES_MAX \
2759 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2761 /* We maintain one free list for each possible block-allocated
2762 vector size, and this is the number of free lists we have. */
2764 #define VECTOR_MAX_FREE_LIST_INDEX \
2765 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2767 /* Common shortcut to advance vector pointer over a block data. */
2769 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2771 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2773 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2775 /* Common shortcut to setup vector on a free list. */
2777 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2778 do { \
2779 (tmp) = ((nbytes - header_size) / word_size); \
2780 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2781 eassert ((nbytes) % roundup_size == 0); \
2782 (tmp) = VINDEX (nbytes); \
2783 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2784 set_next_vector (v, vector_free_lists[tmp]); \
2785 vector_free_lists[tmp] = (v); \
2786 total_free_vector_slots += (nbytes) / word_size; \
2787 } while (0)
2789 /* This internal type is used to maintain the list of large vectors
2790 which are allocated at their own, e.g. outside of vector blocks.
2792 struct large_vector itself cannot contain a struct Lisp_Vector, as
2793 the latter contains a flexible array member and C99 does not allow
2794 such structs to be nested. Instead, each struct large_vector
2795 object LV is followed by a struct Lisp_Vector, which is at offset
2796 large_vector_offset from LV, and whose address is therefore
2797 large_vector_vec (&LV). */
2799 struct large_vector
2801 struct large_vector *next;
2804 enum
2806 large_vector_offset = ROUNDUP (sizeof (struct large_vector), vector_alignment)
2809 static struct Lisp_Vector *
2810 large_vector_vec (struct large_vector *p)
2812 return (struct Lisp_Vector *) ((char *) p + large_vector_offset);
2815 /* This internal type is used to maintain an underlying storage
2816 for small vectors. */
2818 struct vector_block
2820 char data[VECTOR_BLOCK_BYTES];
2821 struct vector_block *next;
2824 /* Chain of vector blocks. */
2826 static struct vector_block *vector_blocks;
2828 /* Vector free lists, where NTH item points to a chain of free
2829 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2831 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2833 /* Singly-linked list of large vectors. */
2835 static struct large_vector *large_vectors;
2837 /* The only vector with 0 slots, allocated from pure space. */
2839 Lisp_Object zero_vector;
2841 /* Number of live vectors. */
2843 static EMACS_INT total_vectors;
2845 /* Total size of live and free vectors, in Lisp_Object units. */
2847 static EMACS_INT total_vector_slots, total_free_vector_slots;
2849 /* Get a new vector block. */
2851 static struct vector_block *
2852 allocate_vector_block (void)
2854 struct vector_block *block = xmalloc (sizeof *block);
2856 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2857 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2858 MEM_TYPE_VECTOR_BLOCK);
2859 #endif
2861 block->next = vector_blocks;
2862 vector_blocks = block;
2863 return block;
2866 /* Called once to initialize vector allocation. */
2868 static void
2869 init_vectors (void)
2871 zero_vector = make_pure_vector (0);
2874 /* Allocate vector from a vector block. */
2876 static struct Lisp_Vector *
2877 allocate_vector_from_block (size_t nbytes)
2879 struct Lisp_Vector *vector;
2880 struct vector_block *block;
2881 size_t index, restbytes;
2883 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2884 eassert (nbytes % roundup_size == 0);
2886 /* First, try to allocate from a free list
2887 containing vectors of the requested size. */
2888 index = VINDEX (nbytes);
2889 if (vector_free_lists[index])
2891 vector = vector_free_lists[index];
2892 vector_free_lists[index] = next_vector (vector);
2893 total_free_vector_slots -= nbytes / word_size;
2894 return vector;
2897 /* Next, check free lists containing larger vectors. Since
2898 we will split the result, we should have remaining space
2899 large enough to use for one-slot vector at least. */
2900 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2901 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2902 if (vector_free_lists[index])
2904 /* This vector is larger than requested. */
2905 vector = vector_free_lists[index];
2906 vector_free_lists[index] = next_vector (vector);
2907 total_free_vector_slots -= nbytes / word_size;
2909 /* Excess bytes are used for the smaller vector,
2910 which should be set on an appropriate free list. */
2911 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2912 eassert (restbytes % roundup_size == 0);
2913 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2914 return vector;
2917 /* Finally, need a new vector block. */
2918 block = allocate_vector_block ();
2920 /* New vector will be at the beginning of this block. */
2921 vector = (struct Lisp_Vector *) block->data;
2923 /* If the rest of space from this block is large enough
2924 for one-slot vector at least, set up it on a free list. */
2925 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2926 if (restbytes >= VBLOCK_BYTES_MIN)
2928 eassert (restbytes % roundup_size == 0);
2929 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2931 return vector;
2934 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2936 #define VECTOR_IN_BLOCK(vector, block) \
2937 ((char *) (vector) <= (block)->data \
2938 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2940 /* Return the memory footprint of V in bytes. */
2942 static ptrdiff_t
2943 vector_nbytes (struct Lisp_Vector *v)
2945 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
2946 ptrdiff_t nwords;
2948 if (size & PSEUDOVECTOR_FLAG)
2950 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
2952 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
2953 ptrdiff_t word_bytes = (bool_vector_words (bv->size)
2954 * sizeof (bits_word));
2955 ptrdiff_t boolvec_bytes = bool_header_size + word_bytes;
2956 verify (header_size <= bool_header_size);
2957 nwords = (boolvec_bytes - header_size + word_size - 1) / word_size;
2959 else
2960 nwords = ((size & PSEUDOVECTOR_SIZE_MASK)
2961 + ((size & PSEUDOVECTOR_REST_MASK)
2962 >> PSEUDOVECTOR_SIZE_BITS));
2964 else
2965 nwords = size;
2966 return vroundup (header_size + word_size * nwords);
2969 /* Release extra resources still in use by VECTOR, which may be any
2970 vector-like object. For now, this is used just to free data in
2971 font objects. */
2973 static void
2974 cleanup_vector (struct Lisp_Vector *vector)
2976 detect_suspicious_free (vector);
2977 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FONT)
2978 && ((vector->header.size & PSEUDOVECTOR_SIZE_MASK)
2979 == FONT_OBJECT_MAX))
2981 struct font_driver *drv = ((struct font *) vector)->driver;
2983 /* The font driver might sometimes be NULL, e.g. if Emacs was
2984 interrupted before it had time to set it up. */
2985 if (drv)
2987 /* Attempt to catch subtle bugs like Bug#16140. */
2988 eassert (valid_font_driver (drv));
2989 drv->close ((struct font *) vector);
2994 /* Reclaim space used by unmarked vectors. */
2996 NO_INLINE /* For better stack traces */
2997 static void
2998 sweep_vectors (void)
3000 struct vector_block *block, **bprev = &vector_blocks;
3001 struct large_vector *lv, **lvprev = &large_vectors;
3002 struct Lisp_Vector *vector, *next;
3004 total_vectors = total_vector_slots = total_free_vector_slots = 0;
3005 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3007 /* Looking through vector blocks. */
3009 for (block = vector_blocks; block; block = *bprev)
3011 bool free_this_block = 0;
3012 ptrdiff_t nbytes;
3014 for (vector = (struct Lisp_Vector *) block->data;
3015 VECTOR_IN_BLOCK (vector, block); vector = next)
3017 if (VECTOR_MARKED_P (vector))
3019 VECTOR_UNMARK (vector);
3020 total_vectors++;
3021 nbytes = vector_nbytes (vector);
3022 total_vector_slots += nbytes / word_size;
3023 next = ADVANCE (vector, nbytes);
3025 else
3027 ptrdiff_t total_bytes;
3029 cleanup_vector (vector);
3030 nbytes = vector_nbytes (vector);
3031 total_bytes = nbytes;
3032 next = ADVANCE (vector, nbytes);
3034 /* While NEXT is not marked, try to coalesce with VECTOR,
3035 thus making VECTOR of the largest possible size. */
3037 while (VECTOR_IN_BLOCK (next, block))
3039 if (VECTOR_MARKED_P (next))
3040 break;
3041 cleanup_vector (next);
3042 nbytes = vector_nbytes (next);
3043 total_bytes += nbytes;
3044 next = ADVANCE (next, nbytes);
3047 eassert (total_bytes % roundup_size == 0);
3049 if (vector == (struct Lisp_Vector *) block->data
3050 && !VECTOR_IN_BLOCK (next, block))
3051 /* This block should be freed because all of its
3052 space was coalesced into the only free vector. */
3053 free_this_block = 1;
3054 else
3056 size_t tmp;
3057 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
3062 if (free_this_block)
3064 *bprev = block->next;
3065 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3066 mem_delete (mem_find (block->data));
3067 #endif
3068 xfree (block);
3070 else
3071 bprev = &block->next;
3074 /* Sweep large vectors. */
3076 for (lv = large_vectors; lv; lv = *lvprev)
3078 vector = large_vector_vec (lv);
3079 if (VECTOR_MARKED_P (vector))
3081 VECTOR_UNMARK (vector);
3082 total_vectors++;
3083 if (vector->header.size & PSEUDOVECTOR_FLAG)
3085 /* All non-bool pseudovectors are small enough to be allocated
3086 from vector blocks. This code should be redesigned if some
3087 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
3088 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
3089 total_vector_slots += vector_nbytes (vector) / word_size;
3091 else
3092 total_vector_slots
3093 += header_size / word_size + vector->header.size;
3094 lvprev = &lv->next;
3096 else
3098 *lvprev = lv->next;
3099 lisp_free (lv);
3104 /* Value is a pointer to a newly allocated Lisp_Vector structure
3105 with room for LEN Lisp_Objects. */
3107 static struct Lisp_Vector *
3108 allocate_vectorlike (ptrdiff_t len)
3110 struct Lisp_Vector *p;
3112 MALLOC_BLOCK_INPUT;
3114 if (len == 0)
3115 p = XVECTOR (zero_vector);
3116 else
3118 size_t nbytes = header_size + len * word_size;
3120 #ifdef DOUG_LEA_MALLOC
3121 if (!mmap_lisp_allowed_p ())
3122 mallopt (M_MMAP_MAX, 0);
3123 #endif
3125 if (nbytes <= VBLOCK_BYTES_MAX)
3126 p = allocate_vector_from_block (vroundup (nbytes));
3127 else
3129 struct large_vector *lv
3130 = lisp_malloc ((large_vector_offset + header_size
3131 + len * word_size),
3132 MEM_TYPE_VECTORLIKE);
3133 lv->next = large_vectors;
3134 large_vectors = lv;
3135 p = large_vector_vec (lv);
3138 #ifdef DOUG_LEA_MALLOC
3139 if (!mmap_lisp_allowed_p ())
3140 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3141 #endif
3143 if (find_suspicious_object_in_range (p, (char *) p + nbytes))
3144 emacs_abort ();
3146 consing_since_gc += nbytes;
3147 vector_cells_consed += len;
3150 MALLOC_UNBLOCK_INPUT;
3152 return p;
3156 /* Allocate a vector with LEN slots. */
3158 struct Lisp_Vector *
3159 allocate_vector (EMACS_INT len)
3161 struct Lisp_Vector *v;
3162 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3164 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3165 memory_full (SIZE_MAX);
3166 v = allocate_vectorlike (len);
3167 v->header.size = len;
3168 return v;
3172 /* Allocate other vector-like structures. */
3174 struct Lisp_Vector *
3175 allocate_pseudovector (int memlen, int lisplen,
3176 int zerolen, enum pvec_type tag)
3178 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3180 /* Catch bogus values. */
3181 eassert (0 <= tag && tag <= PVEC_FONT);
3182 eassert (0 <= lisplen && lisplen <= zerolen && zerolen <= memlen);
3183 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3184 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3186 /* Only the first LISPLEN slots will be traced normally by the GC. */
3187 memclear (v->contents, zerolen * word_size);
3188 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3189 return v;
3192 struct buffer *
3193 allocate_buffer (void)
3195 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3197 BUFFER_PVEC_INIT (b);
3198 /* Put B on the chain of all buffers including killed ones. */
3199 b->next = all_buffers;
3200 all_buffers = b;
3201 /* Note that the rest fields of B are not initialized. */
3202 return b;
3205 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3206 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3207 See also the function `vector'. */)
3208 (register Lisp_Object length, Lisp_Object init)
3210 Lisp_Object vector;
3211 register ptrdiff_t sizei;
3212 register ptrdiff_t i;
3213 register struct Lisp_Vector *p;
3215 CHECK_NATNUM (length);
3217 p = allocate_vector (XFASTINT (length));
3218 sizei = XFASTINT (length);
3219 for (i = 0; i < sizei; i++)
3220 p->contents[i] = init;
3222 XSETVECTOR (vector, p);
3223 return vector;
3226 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3227 doc: /* Return a newly created vector with specified arguments as elements.
3228 Any number of arguments, even zero arguments, are allowed.
3229 usage: (vector &rest OBJECTS) */)
3230 (ptrdiff_t nargs, Lisp_Object *args)
3232 ptrdiff_t i;
3233 register Lisp_Object val = make_uninit_vector (nargs);
3234 register struct Lisp_Vector *p = XVECTOR (val);
3236 for (i = 0; i < nargs; i++)
3237 p->contents[i] = args[i];
3238 return val;
3241 void
3242 make_byte_code (struct Lisp_Vector *v)
3244 /* Don't allow the global zero_vector to become a byte code object. */
3245 eassert (0 < v->header.size);
3247 if (v->header.size > 1 && STRINGP (v->contents[1])
3248 && STRING_MULTIBYTE (v->contents[1]))
3249 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3250 earlier because they produced a raw 8-bit string for byte-code
3251 and now such a byte-code string is loaded as multibyte while
3252 raw 8-bit characters converted to multibyte form. Thus, now we
3253 must convert them back to the original unibyte form. */
3254 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3255 XSETPVECTYPE (v, PVEC_COMPILED);
3258 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3259 doc: /* Create a byte-code object with specified arguments as elements.
3260 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3261 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3262 and (optional) INTERACTIVE-SPEC.
3263 The first four arguments are required; at most six have any
3264 significance.
3265 The ARGLIST can be either like the one of `lambda', in which case the arguments
3266 will be dynamically bound before executing the byte code, or it can be an
3267 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3268 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3269 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3270 argument to catch the left-over arguments. If such an integer is used, the
3271 arguments will not be dynamically bound but will be instead pushed on the
3272 stack before executing the byte-code.
3273 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3274 (ptrdiff_t nargs, Lisp_Object *args)
3276 ptrdiff_t i;
3277 register Lisp_Object val = make_uninit_vector (nargs);
3278 register struct Lisp_Vector *p = XVECTOR (val);
3280 /* We used to purecopy everything here, if purify-flag was set. This worked
3281 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3282 dangerous, since make-byte-code is used during execution to build
3283 closures, so any closure built during the preload phase would end up
3284 copied into pure space, including its free variables, which is sometimes
3285 just wasteful and other times plainly wrong (e.g. those free vars may want
3286 to be setcar'd). */
3288 for (i = 0; i < nargs; i++)
3289 p->contents[i] = args[i];
3290 make_byte_code (p);
3291 XSETCOMPILED (val, p);
3292 return val;
3297 /***********************************************************************
3298 Symbol Allocation
3299 ***********************************************************************/
3301 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3302 of the required alignment if LSB tags are used. */
3304 union aligned_Lisp_Symbol
3306 struct Lisp_Symbol s;
3307 #if USE_LSB_TAG
3308 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3309 & -GCALIGNMENT];
3310 #endif
3313 /* Each symbol_block is just under 1020 bytes long, since malloc
3314 really allocates in units of powers of two and uses 4 bytes for its
3315 own overhead. */
3317 #define SYMBOL_BLOCK_SIZE \
3318 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3320 struct symbol_block
3322 /* Place `symbols' first, to preserve alignment. */
3323 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3324 struct symbol_block *next;
3327 /* Current symbol block and index of first unused Lisp_Symbol
3328 structure in it. */
3330 static struct symbol_block *symbol_block;
3331 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3332 /* Pointer to the first symbol_block that contains pinned symbols.
3333 Tests for 24.4 showed that at dump-time, Emacs contains about 15K symbols,
3334 10K of which are pinned (and all but 250 of them are interned in obarray),
3335 whereas a "typical session" has in the order of 30K symbols.
3336 `symbol_block_pinned' lets mark_pinned_symbols scan only 15K symbols rather
3337 than 30K to find the 10K symbols we need to mark. */
3338 static struct symbol_block *symbol_block_pinned;
3340 /* List of free symbols. */
3342 static struct Lisp_Symbol *symbol_free_list;
3344 static void
3345 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3347 XSYMBOL (sym)->name = name;
3350 void
3351 init_symbol (Lisp_Object val, Lisp_Object name)
3353 struct Lisp_Symbol *p = XSYMBOL (val);
3354 set_symbol_name (val, name);
3355 set_symbol_plist (val, Qnil);
3356 p->redirect = SYMBOL_PLAINVAL;
3357 SET_SYMBOL_VAL (p, Qunbound);
3358 set_symbol_function (val, Qnil);
3359 set_symbol_next (val, NULL);
3360 p->gcmarkbit = false;
3361 p->interned = SYMBOL_UNINTERNED;
3362 p->constant = 0;
3363 p->declared_special = false;
3364 p->pinned = false;
3367 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3368 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3369 Its value is void, and its function definition and property list are nil. */)
3370 (Lisp_Object name)
3372 Lisp_Object val;
3374 CHECK_STRING (name);
3376 MALLOC_BLOCK_INPUT;
3378 if (symbol_free_list)
3380 XSETSYMBOL (val, symbol_free_list);
3381 symbol_free_list = symbol_free_list->next;
3383 else
3385 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3387 struct symbol_block *new
3388 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3389 new->next = symbol_block;
3390 symbol_block = new;
3391 symbol_block_index = 0;
3392 total_free_symbols += SYMBOL_BLOCK_SIZE;
3394 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3395 symbol_block_index++;
3398 MALLOC_UNBLOCK_INPUT;
3400 init_symbol (val, name);
3401 consing_since_gc += sizeof (struct Lisp_Symbol);
3402 symbols_consed++;
3403 total_free_symbols--;
3404 return val;
3409 /***********************************************************************
3410 Marker (Misc) Allocation
3411 ***********************************************************************/
3413 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3414 the required alignment when LSB tags are used. */
3416 union aligned_Lisp_Misc
3418 union Lisp_Misc m;
3419 #if USE_LSB_TAG
3420 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3421 & -GCALIGNMENT];
3422 #endif
3425 /* Allocation of markers and other objects that share that structure.
3426 Works like allocation of conses. */
3428 #define MARKER_BLOCK_SIZE \
3429 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3431 struct marker_block
3433 /* Place `markers' first, to preserve alignment. */
3434 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3435 struct marker_block *next;
3438 static struct marker_block *marker_block;
3439 static int marker_block_index = MARKER_BLOCK_SIZE;
3441 static union Lisp_Misc *marker_free_list;
3443 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3445 static Lisp_Object
3446 allocate_misc (enum Lisp_Misc_Type type)
3448 Lisp_Object val;
3450 MALLOC_BLOCK_INPUT;
3452 if (marker_free_list)
3454 XSETMISC (val, marker_free_list);
3455 marker_free_list = marker_free_list->u_free.chain;
3457 else
3459 if (marker_block_index == MARKER_BLOCK_SIZE)
3461 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3462 new->next = marker_block;
3463 marker_block = new;
3464 marker_block_index = 0;
3465 total_free_markers += MARKER_BLOCK_SIZE;
3467 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3468 marker_block_index++;
3471 MALLOC_UNBLOCK_INPUT;
3473 --total_free_markers;
3474 consing_since_gc += sizeof (union Lisp_Misc);
3475 misc_objects_consed++;
3476 XMISCANY (val)->type = type;
3477 XMISCANY (val)->gcmarkbit = 0;
3478 return val;
3481 /* Free a Lisp_Misc object. */
3483 void
3484 free_misc (Lisp_Object misc)
3486 XMISCANY (misc)->type = Lisp_Misc_Free;
3487 XMISC (misc)->u_free.chain = marker_free_list;
3488 marker_free_list = XMISC (misc);
3489 consing_since_gc -= sizeof (union Lisp_Misc);
3490 total_free_markers++;
3493 /* Verify properties of Lisp_Save_Value's representation
3494 that are assumed here and elsewhere. */
3496 verify (SAVE_UNUSED == 0);
3497 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3498 >> SAVE_SLOT_BITS)
3499 == 0);
3501 /* Return Lisp_Save_Value objects for the various combinations
3502 that callers need. */
3504 Lisp_Object
3505 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3507 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3508 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3509 p->save_type = SAVE_TYPE_INT_INT_INT;
3510 p->data[0].integer = a;
3511 p->data[1].integer = b;
3512 p->data[2].integer = c;
3513 return val;
3516 Lisp_Object
3517 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3518 Lisp_Object d)
3520 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3521 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3522 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3523 p->data[0].object = a;
3524 p->data[1].object = b;
3525 p->data[2].object = c;
3526 p->data[3].object = d;
3527 return val;
3530 Lisp_Object
3531 make_save_ptr (void *a)
3533 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3534 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3535 p->save_type = SAVE_POINTER;
3536 p->data[0].pointer = a;
3537 return val;
3540 Lisp_Object
3541 make_save_ptr_int (void *a, ptrdiff_t b)
3543 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3544 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3545 p->save_type = SAVE_TYPE_PTR_INT;
3546 p->data[0].pointer = a;
3547 p->data[1].integer = b;
3548 return val;
3551 #if ! (defined USE_X_TOOLKIT || defined USE_GTK)
3552 Lisp_Object
3553 make_save_ptr_ptr (void *a, void *b)
3555 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3556 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3557 p->save_type = SAVE_TYPE_PTR_PTR;
3558 p->data[0].pointer = a;
3559 p->data[1].pointer = b;
3560 return val;
3562 #endif
3564 Lisp_Object
3565 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3567 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3568 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3569 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3570 p->data[0].funcpointer = a;
3571 p->data[1].pointer = b;
3572 p->data[2].object = c;
3573 return val;
3576 /* Return a Lisp_Save_Value object that represents an array A
3577 of N Lisp objects. */
3579 Lisp_Object
3580 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3582 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3583 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3584 p->save_type = SAVE_TYPE_MEMORY;
3585 p->data[0].pointer = a;
3586 p->data[1].integer = n;
3587 return val;
3590 /* Free a Lisp_Save_Value object. Do not use this function
3591 if SAVE contains pointer other than returned by xmalloc. */
3593 void
3594 free_save_value (Lisp_Object save)
3596 xfree (XSAVE_POINTER (save, 0));
3597 free_misc (save);
3600 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3602 Lisp_Object
3603 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3605 register Lisp_Object overlay;
3607 overlay = allocate_misc (Lisp_Misc_Overlay);
3608 OVERLAY_START (overlay) = start;
3609 OVERLAY_END (overlay) = end;
3610 set_overlay_plist (overlay, plist);
3611 XOVERLAY (overlay)->next = NULL;
3612 return overlay;
3615 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3616 doc: /* Return a newly allocated marker which does not point at any place. */)
3617 (void)
3619 register Lisp_Object val;
3620 register struct Lisp_Marker *p;
3622 val = allocate_misc (Lisp_Misc_Marker);
3623 p = XMARKER (val);
3624 p->buffer = 0;
3625 p->bytepos = 0;
3626 p->charpos = 0;
3627 p->next = NULL;
3628 p->insertion_type = 0;
3629 p->need_adjustment = 0;
3630 return val;
3633 /* Return a newly allocated marker which points into BUF
3634 at character position CHARPOS and byte position BYTEPOS. */
3636 Lisp_Object
3637 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3639 Lisp_Object obj;
3640 struct Lisp_Marker *m;
3642 /* No dead buffers here. */
3643 eassert (BUFFER_LIVE_P (buf));
3645 /* Every character is at least one byte. */
3646 eassert (charpos <= bytepos);
3648 obj = allocate_misc (Lisp_Misc_Marker);
3649 m = XMARKER (obj);
3650 m->buffer = buf;
3651 m->charpos = charpos;
3652 m->bytepos = bytepos;
3653 m->insertion_type = 0;
3654 m->need_adjustment = 0;
3655 m->next = BUF_MARKERS (buf);
3656 BUF_MARKERS (buf) = m;
3657 return obj;
3660 /* Put MARKER back on the free list after using it temporarily. */
3662 void
3663 free_marker (Lisp_Object marker)
3665 unchain_marker (XMARKER (marker));
3666 free_misc (marker);
3670 /* Return a newly created vector or string with specified arguments as
3671 elements. If all the arguments are characters that can fit
3672 in a string of events, make a string; otherwise, make a vector.
3674 Any number of arguments, even zero arguments, are allowed. */
3676 Lisp_Object
3677 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3679 ptrdiff_t i;
3681 for (i = 0; i < nargs; i++)
3682 /* The things that fit in a string
3683 are characters that are in 0...127,
3684 after discarding the meta bit and all the bits above it. */
3685 if (!INTEGERP (args[i])
3686 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3687 return Fvector (nargs, args);
3689 /* Since the loop exited, we know that all the things in it are
3690 characters, so we can make a string. */
3692 Lisp_Object result;
3694 result = Fmake_string (make_number (nargs), make_number (0));
3695 for (i = 0; i < nargs; i++)
3697 SSET (result, i, XINT (args[i]));
3698 /* Move the meta bit to the right place for a string char. */
3699 if (XINT (args[i]) & CHAR_META)
3700 SSET (result, i, SREF (result, i) | 0x80);
3703 return result;
3707 static void
3708 init_finalizer_list (struct Lisp_Finalizer *head)
3710 head->prev = head->next = head;
3713 /* Insert FINALIZER before ELEMENT. */
3715 static void
3716 finalizer_insert (struct Lisp_Finalizer *element,
3717 struct Lisp_Finalizer *finalizer)
3719 eassert (finalizer->prev == NULL);
3720 eassert (finalizer->next == NULL);
3721 finalizer->next = element;
3722 finalizer->prev = element->prev;
3723 finalizer->prev->next = finalizer;
3724 element->prev = finalizer;
3727 static void
3728 unchain_finalizer (struct Lisp_Finalizer *finalizer)
3730 if (finalizer->prev != NULL)
3732 eassert (finalizer->next != NULL);
3733 finalizer->prev->next = finalizer->next;
3734 finalizer->next->prev = finalizer->prev;
3735 finalizer->prev = finalizer->next = NULL;
3739 static void
3740 mark_finalizer_list (struct Lisp_Finalizer *head)
3742 for (struct Lisp_Finalizer *finalizer = head->next;
3743 finalizer != head;
3744 finalizer = finalizer->next)
3746 finalizer->base.gcmarkbit = true;
3747 mark_object (finalizer->function);
3751 /* Move doomed finalizers to list DEST from list SRC. A doomed
3752 finalizer is one that is not GC-reachable and whose
3753 finalizer->function is non-nil. */
3755 static void
3756 queue_doomed_finalizers (struct Lisp_Finalizer *dest,
3757 struct Lisp_Finalizer *src)
3759 struct Lisp_Finalizer *finalizer = src->next;
3760 while (finalizer != src)
3762 struct Lisp_Finalizer *next = finalizer->next;
3763 if (!finalizer->base.gcmarkbit && !NILP (finalizer->function))
3765 unchain_finalizer (finalizer);
3766 finalizer_insert (dest, finalizer);
3769 finalizer = next;
3773 static Lisp_Object
3774 run_finalizer_handler (Lisp_Object args)
3776 add_to_log ("finalizer failed: %S", args, Qnil);
3777 return Qnil;
3780 static void
3781 run_finalizer_function (Lisp_Object function)
3783 struct gcpro gcpro1;
3784 ptrdiff_t count = SPECPDL_INDEX ();
3786 GCPRO1 (function);
3787 specbind (Qinhibit_quit, Qt);
3788 internal_condition_case_1 (call0, function, Qt, run_finalizer_handler);
3789 unbind_to (count, Qnil);
3790 UNGCPRO;
3793 static void
3794 run_finalizers (struct Lisp_Finalizer *finalizers)
3796 struct Lisp_Finalizer *finalizer;
3797 Lisp_Object function;
3799 while (finalizers->next != finalizers)
3801 finalizer = finalizers->next;
3802 eassert (finalizer->base.type == Lisp_Misc_Finalizer);
3803 unchain_finalizer (finalizer);
3804 function = finalizer->function;
3805 if (!NILP (function))
3807 finalizer->function = Qnil;
3808 run_finalizer_function (function);
3813 DEFUN ("make-finalizer", Fmake_finalizer, Smake_finalizer, 1, 1, 0,
3814 doc: /* Make a finalizer that will run FUNCTION.
3815 FUNCTION will be called after garbage collection when the returned
3816 finalizer object becomes unreachable. If the finalizer object is
3817 reachable only through references from finalizer objects, it does not
3818 count as reachable for the purpose of deciding whether to run
3819 FUNCTION. FUNCTION will be run once per finalizer object. */)
3820 (Lisp_Object function)
3822 Lisp_Object val = allocate_misc (Lisp_Misc_Finalizer);
3823 struct Lisp_Finalizer *finalizer = XFINALIZER (val);
3824 finalizer->function = function;
3825 finalizer->prev = finalizer->next = NULL;
3826 finalizer_insert (&finalizers, finalizer);
3827 return val;
3831 /************************************************************************
3832 Memory Full Handling
3833 ************************************************************************/
3836 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3837 there may have been size_t overflow so that malloc was never
3838 called, or perhaps malloc was invoked successfully but the
3839 resulting pointer had problems fitting into a tagged EMACS_INT. In
3840 either case this counts as memory being full even though malloc did
3841 not fail. */
3843 void
3844 memory_full (size_t nbytes)
3846 /* Do not go into hysterics merely because a large request failed. */
3847 bool enough_free_memory = 0;
3848 if (SPARE_MEMORY < nbytes)
3850 void *p;
3852 MALLOC_BLOCK_INPUT;
3853 p = malloc (SPARE_MEMORY);
3854 if (p)
3856 free (p);
3857 enough_free_memory = 1;
3859 MALLOC_UNBLOCK_INPUT;
3862 if (! enough_free_memory)
3864 int i;
3866 Vmemory_full = Qt;
3868 memory_full_cons_threshold = sizeof (struct cons_block);
3870 /* The first time we get here, free the spare memory. */
3871 for (i = 0; i < ARRAYELTS (spare_memory); i++)
3872 if (spare_memory[i])
3874 if (i == 0)
3875 free (spare_memory[i]);
3876 else if (i >= 1 && i <= 4)
3877 lisp_align_free (spare_memory[i]);
3878 else
3879 lisp_free (spare_memory[i]);
3880 spare_memory[i] = 0;
3884 /* This used to call error, but if we've run out of memory, we could
3885 get infinite recursion trying to build the string. */
3886 xsignal (Qnil, Vmemory_signal_data);
3889 /* If we released our reserve (due to running out of memory),
3890 and we have a fair amount free once again,
3891 try to set aside another reserve in case we run out once more.
3893 This is called when a relocatable block is freed in ralloc.c,
3894 and also directly from this file, in case we're not using ralloc.c. */
3896 void
3897 refill_memory_reserve (void)
3899 #if !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
3900 if (spare_memory[0] == 0)
3901 spare_memory[0] = malloc (SPARE_MEMORY);
3902 if (spare_memory[1] == 0)
3903 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3904 MEM_TYPE_SPARE);
3905 if (spare_memory[2] == 0)
3906 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3907 MEM_TYPE_SPARE);
3908 if (spare_memory[3] == 0)
3909 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3910 MEM_TYPE_SPARE);
3911 if (spare_memory[4] == 0)
3912 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3913 MEM_TYPE_SPARE);
3914 if (spare_memory[5] == 0)
3915 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3916 MEM_TYPE_SPARE);
3917 if (spare_memory[6] == 0)
3918 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3919 MEM_TYPE_SPARE);
3920 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3921 Vmemory_full = Qnil;
3922 #endif
3925 /************************************************************************
3926 C Stack Marking
3927 ************************************************************************/
3929 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3931 /* Conservative C stack marking requires a method to identify possibly
3932 live Lisp objects given a pointer value. We do this by keeping
3933 track of blocks of Lisp data that are allocated in a red-black tree
3934 (see also the comment of mem_node which is the type of nodes in
3935 that tree). Function lisp_malloc adds information for an allocated
3936 block to the red-black tree with calls to mem_insert, and function
3937 lisp_free removes it with mem_delete. Functions live_string_p etc
3938 call mem_find to lookup information about a given pointer in the
3939 tree, and use that to determine if the pointer points to a Lisp
3940 object or not. */
3942 /* Initialize this part of alloc.c. */
3944 static void
3945 mem_init (void)
3947 mem_z.left = mem_z.right = MEM_NIL;
3948 mem_z.parent = NULL;
3949 mem_z.color = MEM_BLACK;
3950 mem_z.start = mem_z.end = NULL;
3951 mem_root = MEM_NIL;
3955 /* Value is a pointer to the mem_node containing START. Value is
3956 MEM_NIL if there is no node in the tree containing START. */
3958 static struct mem_node *
3959 mem_find (void *start)
3961 struct mem_node *p;
3963 if (start < min_heap_address || start > max_heap_address)
3964 return MEM_NIL;
3966 /* Make the search always successful to speed up the loop below. */
3967 mem_z.start = start;
3968 mem_z.end = (char *) start + 1;
3970 p = mem_root;
3971 while (start < p->start || start >= p->end)
3972 p = start < p->start ? p->left : p->right;
3973 return p;
3977 /* Insert a new node into the tree for a block of memory with start
3978 address START, end address END, and type TYPE. Value is a
3979 pointer to the node that was inserted. */
3981 static struct mem_node *
3982 mem_insert (void *start, void *end, enum mem_type type)
3984 struct mem_node *c, *parent, *x;
3986 if (min_heap_address == NULL || start < min_heap_address)
3987 min_heap_address = start;
3988 if (max_heap_address == NULL || end > max_heap_address)
3989 max_heap_address = end;
3991 /* See where in the tree a node for START belongs. In this
3992 particular application, it shouldn't happen that a node is already
3993 present. For debugging purposes, let's check that. */
3994 c = mem_root;
3995 parent = NULL;
3997 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3999 while (c != MEM_NIL)
4001 if (start >= c->start && start < c->end)
4002 emacs_abort ();
4003 parent = c;
4004 c = start < c->start ? c->left : c->right;
4007 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
4009 while (c != MEM_NIL)
4011 parent = c;
4012 c = start < c->start ? c->left : c->right;
4015 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
4017 /* Create a new node. */
4018 #ifdef GC_MALLOC_CHECK
4019 x = malloc (sizeof *x);
4020 if (x == NULL)
4021 emacs_abort ();
4022 #else
4023 x = xmalloc (sizeof *x);
4024 #endif
4025 x->start = start;
4026 x->end = end;
4027 x->type = type;
4028 x->parent = parent;
4029 x->left = x->right = MEM_NIL;
4030 x->color = MEM_RED;
4032 /* Insert it as child of PARENT or install it as root. */
4033 if (parent)
4035 if (start < parent->start)
4036 parent->left = x;
4037 else
4038 parent->right = x;
4040 else
4041 mem_root = x;
4043 /* Re-establish red-black tree properties. */
4044 mem_insert_fixup (x);
4046 return x;
4050 /* Re-establish the red-black properties of the tree, and thereby
4051 balance the tree, after node X has been inserted; X is always red. */
4053 static void
4054 mem_insert_fixup (struct mem_node *x)
4056 while (x != mem_root && x->parent->color == MEM_RED)
4058 /* X is red and its parent is red. This is a violation of
4059 red-black tree property #3. */
4061 if (x->parent == x->parent->parent->left)
4063 /* We're on the left side of our grandparent, and Y is our
4064 "uncle". */
4065 struct mem_node *y = x->parent->parent->right;
4067 if (y->color == MEM_RED)
4069 /* Uncle and parent are red but should be black because
4070 X is red. Change the colors accordingly and proceed
4071 with the grandparent. */
4072 x->parent->color = MEM_BLACK;
4073 y->color = MEM_BLACK;
4074 x->parent->parent->color = MEM_RED;
4075 x = x->parent->parent;
4077 else
4079 /* Parent and uncle have different colors; parent is
4080 red, uncle is black. */
4081 if (x == x->parent->right)
4083 x = x->parent;
4084 mem_rotate_left (x);
4087 x->parent->color = MEM_BLACK;
4088 x->parent->parent->color = MEM_RED;
4089 mem_rotate_right (x->parent->parent);
4092 else
4094 /* This is the symmetrical case of above. */
4095 struct mem_node *y = x->parent->parent->left;
4097 if (y->color == MEM_RED)
4099 x->parent->color = MEM_BLACK;
4100 y->color = MEM_BLACK;
4101 x->parent->parent->color = MEM_RED;
4102 x = x->parent->parent;
4104 else
4106 if (x == x->parent->left)
4108 x = x->parent;
4109 mem_rotate_right (x);
4112 x->parent->color = MEM_BLACK;
4113 x->parent->parent->color = MEM_RED;
4114 mem_rotate_left (x->parent->parent);
4119 /* The root may have been changed to red due to the algorithm. Set
4120 it to black so that property #5 is satisfied. */
4121 mem_root->color = MEM_BLACK;
4125 /* (x) (y)
4126 / \ / \
4127 a (y) ===> (x) c
4128 / \ / \
4129 b c a b */
4131 static void
4132 mem_rotate_left (struct mem_node *x)
4134 struct mem_node *y;
4136 /* Turn y's left sub-tree into x's right sub-tree. */
4137 y = x->right;
4138 x->right = y->left;
4139 if (y->left != MEM_NIL)
4140 y->left->parent = x;
4142 /* Y's parent was x's parent. */
4143 if (y != MEM_NIL)
4144 y->parent = x->parent;
4146 /* Get the parent to point to y instead of x. */
4147 if (x->parent)
4149 if (x == x->parent->left)
4150 x->parent->left = y;
4151 else
4152 x->parent->right = y;
4154 else
4155 mem_root = y;
4157 /* Put x on y's left. */
4158 y->left = x;
4159 if (x != MEM_NIL)
4160 x->parent = y;
4164 /* (x) (Y)
4165 / \ / \
4166 (y) c ===> a (x)
4167 / \ / \
4168 a b b c */
4170 static void
4171 mem_rotate_right (struct mem_node *x)
4173 struct mem_node *y = x->left;
4175 x->left = y->right;
4176 if (y->right != MEM_NIL)
4177 y->right->parent = x;
4179 if (y != MEM_NIL)
4180 y->parent = x->parent;
4181 if (x->parent)
4183 if (x == x->parent->right)
4184 x->parent->right = y;
4185 else
4186 x->parent->left = y;
4188 else
4189 mem_root = y;
4191 y->right = x;
4192 if (x != MEM_NIL)
4193 x->parent = y;
4197 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4199 static void
4200 mem_delete (struct mem_node *z)
4202 struct mem_node *x, *y;
4204 if (!z || z == MEM_NIL)
4205 return;
4207 if (z->left == MEM_NIL || z->right == MEM_NIL)
4208 y = z;
4209 else
4211 y = z->right;
4212 while (y->left != MEM_NIL)
4213 y = y->left;
4216 if (y->left != MEM_NIL)
4217 x = y->left;
4218 else
4219 x = y->right;
4221 x->parent = y->parent;
4222 if (y->parent)
4224 if (y == y->parent->left)
4225 y->parent->left = x;
4226 else
4227 y->parent->right = x;
4229 else
4230 mem_root = x;
4232 if (y != z)
4234 z->start = y->start;
4235 z->end = y->end;
4236 z->type = y->type;
4239 if (y->color == MEM_BLACK)
4240 mem_delete_fixup (x);
4242 #ifdef GC_MALLOC_CHECK
4243 free (y);
4244 #else
4245 xfree (y);
4246 #endif
4250 /* Re-establish the red-black properties of the tree, after a
4251 deletion. */
4253 static void
4254 mem_delete_fixup (struct mem_node *x)
4256 while (x != mem_root && x->color == MEM_BLACK)
4258 if (x == x->parent->left)
4260 struct mem_node *w = x->parent->right;
4262 if (w->color == MEM_RED)
4264 w->color = MEM_BLACK;
4265 x->parent->color = MEM_RED;
4266 mem_rotate_left (x->parent);
4267 w = x->parent->right;
4270 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4272 w->color = MEM_RED;
4273 x = x->parent;
4275 else
4277 if (w->right->color == MEM_BLACK)
4279 w->left->color = MEM_BLACK;
4280 w->color = MEM_RED;
4281 mem_rotate_right (w);
4282 w = x->parent->right;
4284 w->color = x->parent->color;
4285 x->parent->color = MEM_BLACK;
4286 w->right->color = MEM_BLACK;
4287 mem_rotate_left (x->parent);
4288 x = mem_root;
4291 else
4293 struct mem_node *w = x->parent->left;
4295 if (w->color == MEM_RED)
4297 w->color = MEM_BLACK;
4298 x->parent->color = MEM_RED;
4299 mem_rotate_right (x->parent);
4300 w = x->parent->left;
4303 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4305 w->color = MEM_RED;
4306 x = x->parent;
4308 else
4310 if (w->left->color == MEM_BLACK)
4312 w->right->color = MEM_BLACK;
4313 w->color = MEM_RED;
4314 mem_rotate_left (w);
4315 w = x->parent->left;
4318 w->color = x->parent->color;
4319 x->parent->color = MEM_BLACK;
4320 w->left->color = MEM_BLACK;
4321 mem_rotate_right (x->parent);
4322 x = mem_root;
4327 x->color = MEM_BLACK;
4331 /* Value is non-zero if P is a pointer to a live Lisp string on
4332 the heap. M is a pointer to the mem_block for P. */
4334 static bool
4335 live_string_p (struct mem_node *m, void *p)
4337 if (m->type == MEM_TYPE_STRING)
4339 struct string_block *b = m->start;
4340 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4342 /* P must point to the start of a Lisp_String structure, and it
4343 must not be on the free-list. */
4344 return (offset >= 0
4345 && offset % sizeof b->strings[0] == 0
4346 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4347 && ((struct Lisp_String *) p)->data != NULL);
4349 else
4350 return 0;
4354 /* Value is non-zero if P is a pointer to a live Lisp cons on
4355 the heap. M is a pointer to the mem_block for P. */
4357 static bool
4358 live_cons_p (struct mem_node *m, void *p)
4360 if (m->type == MEM_TYPE_CONS)
4362 struct cons_block *b = m->start;
4363 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4365 /* P must point to the start of a Lisp_Cons, not be
4366 one of the unused cells in the current cons block,
4367 and not be on the free-list. */
4368 return (offset >= 0
4369 && offset % sizeof b->conses[0] == 0
4370 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4371 && (b != cons_block
4372 || offset / sizeof b->conses[0] < cons_block_index)
4373 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4375 else
4376 return 0;
4380 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4381 the heap. M is a pointer to the mem_block for P. */
4383 static bool
4384 live_symbol_p (struct mem_node *m, void *p)
4386 if (m->type == MEM_TYPE_SYMBOL)
4388 struct symbol_block *b = m->start;
4389 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4391 /* P must point to the start of a Lisp_Symbol, not be
4392 one of the unused cells in the current symbol block,
4393 and not be on the free-list. */
4394 return (offset >= 0
4395 && offset % sizeof b->symbols[0] == 0
4396 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4397 && (b != symbol_block
4398 || offset / sizeof b->symbols[0] < symbol_block_index)
4399 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4401 else
4402 return 0;
4406 /* Value is non-zero if P is a pointer to a live Lisp float on
4407 the heap. M is a pointer to the mem_block for P. */
4409 static bool
4410 live_float_p (struct mem_node *m, void *p)
4412 if (m->type == MEM_TYPE_FLOAT)
4414 struct float_block *b = m->start;
4415 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4417 /* P must point to the start of a Lisp_Float and not be
4418 one of the unused cells in the current float block. */
4419 return (offset >= 0
4420 && offset % sizeof b->floats[0] == 0
4421 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4422 && (b != float_block
4423 || offset / sizeof b->floats[0] < float_block_index));
4425 else
4426 return 0;
4430 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4431 the heap. M is a pointer to the mem_block for P. */
4433 static bool
4434 live_misc_p (struct mem_node *m, void *p)
4436 if (m->type == MEM_TYPE_MISC)
4438 struct marker_block *b = m->start;
4439 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4441 /* P must point to the start of a Lisp_Misc, not be
4442 one of the unused cells in the current misc block,
4443 and not be on the free-list. */
4444 return (offset >= 0
4445 && offset % sizeof b->markers[0] == 0
4446 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4447 && (b != marker_block
4448 || offset / sizeof b->markers[0] < marker_block_index)
4449 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4451 else
4452 return 0;
4456 /* Value is non-zero if P is a pointer to a live vector-like object.
4457 M is a pointer to the mem_block for P. */
4459 static bool
4460 live_vector_p (struct mem_node *m, void *p)
4462 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4464 /* This memory node corresponds to a vector block. */
4465 struct vector_block *block = m->start;
4466 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4468 /* P is in the block's allocation range. Scan the block
4469 up to P and see whether P points to the start of some
4470 vector which is not on a free list. FIXME: check whether
4471 some allocation patterns (probably a lot of short vectors)
4472 may cause a substantial overhead of this loop. */
4473 while (VECTOR_IN_BLOCK (vector, block)
4474 && vector <= (struct Lisp_Vector *) p)
4476 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4477 return 1;
4478 else
4479 vector = ADVANCE (vector, vector_nbytes (vector));
4482 else if (m->type == MEM_TYPE_VECTORLIKE && p == large_vector_vec (m->start))
4483 /* This memory node corresponds to a large vector. */
4484 return 1;
4485 return 0;
4489 /* Value is non-zero if P is a pointer to a live buffer. M is a
4490 pointer to the mem_block for P. */
4492 static bool
4493 live_buffer_p (struct mem_node *m, void *p)
4495 /* P must point to the start of the block, and the buffer
4496 must not have been killed. */
4497 return (m->type == MEM_TYPE_BUFFER
4498 && p == m->start
4499 && !NILP (((struct buffer *) p)->name_));
4502 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4504 #if GC_MARK_STACK
4506 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4508 /* Currently not used, but may be called from gdb. */
4510 void dump_zombies (void) EXTERNALLY_VISIBLE;
4512 /* Array of objects that are kept alive because the C stack contains
4513 a pattern that looks like a reference to them. */
4515 #define MAX_ZOMBIES 10
4516 static Lisp_Object zombies[MAX_ZOMBIES];
4518 /* Number of zombie objects. */
4520 static EMACS_INT nzombies;
4522 /* Number of garbage collections. */
4524 static EMACS_INT ngcs;
4526 /* Average percentage of zombies per collection. */
4528 static double avg_zombies;
4530 /* Max. number of live and zombie objects. */
4532 static EMACS_INT max_live, max_zombies;
4534 /* Average number of live objects per GC. */
4536 static double avg_live;
4538 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4539 doc: /* Show information about live and zombie objects. */)
4540 (void)
4542 Lisp_Object zombie_list = Qnil;
4543 for (int i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4544 zombie_list = Fcons (zombies[i], zombie_list);
4545 return CALLN (Fmessage,
4546 build_string ("%d GCs, avg live/zombies = %.2f/%.2f"
4547 " (%f%%), max %d/%d\nzombies: %S"),
4548 make_number (ngcs), make_float (avg_live),
4549 make_float (avg_zombies),
4550 make_float (avg_zombies / avg_live / 100),
4551 make_number (max_live), make_number (max_zombies),
4552 zombie_list);
4555 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4558 /* Mark OBJ if we can prove it's a Lisp_Object. */
4560 static void
4561 mark_maybe_object (Lisp_Object obj)
4563 void *po;
4564 struct mem_node *m;
4566 #if USE_VALGRIND
4567 if (valgrind_p)
4568 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4569 #endif
4571 if (INTEGERP (obj))
4572 return;
4574 po = (void *) XPNTR (obj);
4575 m = mem_find (po);
4577 if (m != MEM_NIL)
4579 bool mark_p = 0;
4581 switch (XTYPE (obj))
4583 case Lisp_String:
4584 mark_p = (live_string_p (m, po)
4585 && !STRING_MARKED_P ((struct Lisp_String *) po));
4586 break;
4588 case Lisp_Cons:
4589 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4590 break;
4592 case Lisp_Symbol:
4593 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4594 break;
4596 case Lisp_Float:
4597 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4598 break;
4600 case Lisp_Vectorlike:
4601 /* Note: can't check BUFFERP before we know it's a
4602 buffer because checking that dereferences the pointer
4603 PO which might point anywhere. */
4604 if (live_vector_p (m, po))
4605 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4606 else if (live_buffer_p (m, po))
4607 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4608 break;
4610 case Lisp_Misc:
4611 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4612 break;
4614 default:
4615 break;
4618 if (mark_p)
4620 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4621 if (nzombies < MAX_ZOMBIES)
4622 zombies[nzombies] = obj;
4623 ++nzombies;
4624 #endif
4625 mark_object (obj);
4630 /* Return true if P can point to Lisp data, and false otherwise.
4631 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4632 Otherwise, assume that Lisp data is aligned on even addresses. */
4634 static bool
4635 maybe_lisp_pointer (void *p)
4637 return !((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2));
4640 /* If P points to Lisp data, mark that as live if it isn't already
4641 marked. */
4643 static void
4644 mark_maybe_pointer (void *p)
4646 struct mem_node *m;
4648 #if USE_VALGRIND
4649 if (valgrind_p)
4650 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4651 #endif
4653 if (!maybe_lisp_pointer (p))
4654 return;
4656 m = mem_find (p);
4657 if (m != MEM_NIL)
4659 Lisp_Object obj = Qnil;
4661 switch (m->type)
4663 case MEM_TYPE_NON_LISP:
4664 case MEM_TYPE_SPARE:
4665 /* Nothing to do; not a pointer to Lisp memory. */
4666 break;
4668 case MEM_TYPE_BUFFER:
4669 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4670 XSETVECTOR (obj, p);
4671 break;
4673 case MEM_TYPE_CONS:
4674 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4675 XSETCONS (obj, p);
4676 break;
4678 case MEM_TYPE_STRING:
4679 if (live_string_p (m, p)
4680 && !STRING_MARKED_P ((struct Lisp_String *) p))
4681 XSETSTRING (obj, p);
4682 break;
4684 case MEM_TYPE_MISC:
4685 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4686 XSETMISC (obj, p);
4687 break;
4689 case MEM_TYPE_SYMBOL:
4690 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4691 XSETSYMBOL (obj, p);
4692 break;
4694 case MEM_TYPE_FLOAT:
4695 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4696 XSETFLOAT (obj, p);
4697 break;
4699 case MEM_TYPE_VECTORLIKE:
4700 case MEM_TYPE_VECTOR_BLOCK:
4701 if (live_vector_p (m, p))
4703 Lisp_Object tem;
4704 XSETVECTOR (tem, p);
4705 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4706 obj = tem;
4708 break;
4710 default:
4711 emacs_abort ();
4714 if (!NILP (obj))
4715 mark_object (obj);
4720 /* Alignment of pointer values. Use alignof, as it sometimes returns
4721 a smaller alignment than GCC's __alignof__ and mark_memory might
4722 miss objects if __alignof__ were used. */
4723 #define GC_POINTER_ALIGNMENT alignof (void *)
4725 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4726 not suffice, which is the typical case. A host where a Lisp_Object is
4727 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4728 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4729 suffice to widen it to to a Lisp_Object and check it that way. */
4730 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4731 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4732 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4733 nor mark_maybe_object can follow the pointers. This should not occur on
4734 any practical porting target. */
4735 # error "MSB type bits straddle pointer-word boundaries"
4736 # endif
4737 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4738 pointer words that hold pointers ORed with type bits. */
4739 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4740 #else
4741 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4742 words that hold unmodified pointers. */
4743 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4744 #endif
4746 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4747 or END+OFFSET..START. */
4749 static void ATTRIBUTE_NO_SANITIZE_ADDRESS
4750 mark_memory (void *start, void *end)
4752 void **pp;
4753 int i;
4755 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4756 nzombies = 0;
4757 #endif
4759 /* Make START the pointer to the start of the memory region,
4760 if it isn't already. */
4761 if (end < start)
4763 void *tem = start;
4764 start = end;
4765 end = tem;
4768 /* Mark Lisp data pointed to. This is necessary because, in some
4769 situations, the C compiler optimizes Lisp objects away, so that
4770 only a pointer to them remains. Example:
4772 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4775 Lisp_Object obj = build_string ("test");
4776 struct Lisp_String *s = XSTRING (obj);
4777 Fgarbage_collect ();
4778 fprintf (stderr, "test `%s'\n", s->data);
4779 return Qnil;
4782 Here, `obj' isn't really used, and the compiler optimizes it
4783 away. The only reference to the life string is through the
4784 pointer `s'. */
4786 for (pp = start; (void *) pp < end; pp++)
4787 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4789 void *p = *(void **) ((char *) pp + i);
4790 mark_maybe_pointer (p);
4791 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4792 mark_maybe_object (XIL ((intptr_t) p));
4796 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4798 static bool setjmp_tested_p;
4799 static int longjmps_done;
4801 #define SETJMP_WILL_LIKELY_WORK "\
4803 Emacs garbage collector has been changed to use conservative stack\n\
4804 marking. Emacs has determined that the method it uses to do the\n\
4805 marking will likely work on your system, but this isn't sure.\n\
4807 If you are a system-programmer, or can get the help of a local wizard\n\
4808 who is, please take a look at the function mark_stack in alloc.c, and\n\
4809 verify that the methods used are appropriate for your system.\n\
4811 Please mail the result to <emacs-devel@gnu.org>.\n\
4814 #define SETJMP_WILL_NOT_WORK "\
4816 Emacs garbage collector has been changed to use conservative stack\n\
4817 marking. Emacs has determined that the default method it uses to do the\n\
4818 marking will not work on your system. We will need a system-dependent\n\
4819 solution for your system.\n\
4821 Please take a look at the function mark_stack in alloc.c, and\n\
4822 try to find a way to make it work on your system.\n\
4824 Note that you may get false negatives, depending on the compiler.\n\
4825 In particular, you need to use -O with GCC for this test.\n\
4827 Please mail the result to <emacs-devel@gnu.org>.\n\
4831 /* Perform a quick check if it looks like setjmp saves registers in a
4832 jmp_buf. Print a message to stderr saying so. When this test
4833 succeeds, this is _not_ a proof that setjmp is sufficient for
4834 conservative stack marking. Only the sources or a disassembly
4835 can prove that. */
4837 static void
4838 test_setjmp (void)
4840 char buf[10];
4841 register int x;
4842 sys_jmp_buf jbuf;
4844 /* Arrange for X to be put in a register. */
4845 sprintf (buf, "1");
4846 x = strlen (buf);
4847 x = 2 * x - 1;
4849 sys_setjmp (jbuf);
4850 if (longjmps_done == 1)
4852 /* Came here after the longjmp at the end of the function.
4854 If x == 1, the longjmp has restored the register to its
4855 value before the setjmp, and we can hope that setjmp
4856 saves all such registers in the jmp_buf, although that
4857 isn't sure.
4859 For other values of X, either something really strange is
4860 taking place, or the setjmp just didn't save the register. */
4862 if (x == 1)
4863 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4864 else
4866 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4867 exit (1);
4871 ++longjmps_done;
4872 x = 2;
4873 if (longjmps_done == 1)
4874 sys_longjmp (jbuf, 1);
4877 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4880 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4882 /* Abort if anything GCPRO'd doesn't survive the GC. */
4884 static void
4885 check_gcpros (void)
4887 struct gcpro *p;
4888 ptrdiff_t i;
4890 for (p = gcprolist; p; p = p->next)
4891 for (i = 0; i < p->nvars; ++i)
4892 if (!survives_gc_p (p->var[i]))
4893 /* FIXME: It's not necessarily a bug. It might just be that the
4894 GCPRO is unnecessary or should release the object sooner. */
4895 emacs_abort ();
4898 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4900 void
4901 dump_zombies (void)
4903 int i;
4905 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4906 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4908 fprintf (stderr, " %d = ", i);
4909 debug_print (zombies[i]);
4913 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4916 /* Mark live Lisp objects on the C stack.
4918 There are several system-dependent problems to consider when
4919 porting this to new architectures:
4921 Processor Registers
4923 We have to mark Lisp objects in CPU registers that can hold local
4924 variables or are used to pass parameters.
4926 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4927 something that either saves relevant registers on the stack, or
4928 calls mark_maybe_object passing it each register's contents.
4930 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4931 implementation assumes that calling setjmp saves registers we need
4932 to see in a jmp_buf which itself lies on the stack. This doesn't
4933 have to be true! It must be verified for each system, possibly
4934 by taking a look at the source code of setjmp.
4936 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4937 can use it as a machine independent method to store all registers
4938 to the stack. In this case the macros described in the previous
4939 two paragraphs are not used.
4941 Stack Layout
4943 Architectures differ in the way their processor stack is organized.
4944 For example, the stack might look like this
4946 +----------------+
4947 | Lisp_Object | size = 4
4948 +----------------+
4949 | something else | size = 2
4950 +----------------+
4951 | Lisp_Object | size = 4
4952 +----------------+
4953 | ... |
4955 In such a case, not every Lisp_Object will be aligned equally. To
4956 find all Lisp_Object on the stack it won't be sufficient to walk
4957 the stack in steps of 4 bytes. Instead, two passes will be
4958 necessary, one starting at the start of the stack, and a second
4959 pass starting at the start of the stack + 2. Likewise, if the
4960 minimal alignment of Lisp_Objects on the stack is 1, four passes
4961 would be necessary, each one starting with one byte more offset
4962 from the stack start. */
4964 static void
4965 mark_stack (void *end)
4968 /* This assumes that the stack is a contiguous region in memory. If
4969 that's not the case, something has to be done here to iterate
4970 over the stack segments. */
4971 mark_memory (stack_base, end);
4973 /* Allow for marking a secondary stack, like the register stack on the
4974 ia64. */
4975 #ifdef GC_MARK_SECONDARY_STACK
4976 GC_MARK_SECONDARY_STACK ();
4977 #endif
4979 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4980 check_gcpros ();
4981 #endif
4984 #else /* GC_MARK_STACK == 0 */
4986 #define mark_maybe_object(obj) emacs_abort ()
4988 #endif /* GC_MARK_STACK != 0 */
4990 static bool
4991 c_symbol_p (struct Lisp_Symbol *sym)
4993 char *lispsym_ptr = (char *) lispsym;
4994 char *sym_ptr = (char *) sym;
4995 ptrdiff_t lispsym_offset = sym_ptr - lispsym_ptr;
4996 return 0 <= lispsym_offset && lispsym_offset < sizeof lispsym;
4999 /* Determine whether it is safe to access memory at address P. */
5000 static int
5001 valid_pointer_p (void *p)
5003 #ifdef WINDOWSNT
5004 return w32_valid_pointer_p (p, 16);
5005 #else
5007 if (ADDRESS_SANITIZER)
5008 return p ? -1 : 0;
5010 int fd[2];
5012 /* Obviously, we cannot just access it (we would SEGV trying), so we
5013 trick the o/s to tell us whether p is a valid pointer.
5014 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
5015 not validate p in that case. */
5017 if (emacs_pipe (fd) == 0)
5019 bool valid = emacs_write (fd[1], p, 16) == 16;
5020 emacs_close (fd[1]);
5021 emacs_close (fd[0]);
5022 return valid;
5025 return -1;
5026 #endif
5029 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
5030 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
5031 cannot validate OBJ. This function can be quite slow, so its primary
5032 use is the manual debugging. The only exception is print_object, where
5033 we use it to check whether the memory referenced by the pointer of
5034 Lisp_Save_Value object contains valid objects. */
5037 valid_lisp_object_p (Lisp_Object obj)
5039 void *p;
5040 #if GC_MARK_STACK
5041 struct mem_node *m;
5042 #endif
5044 if (INTEGERP (obj))
5045 return 1;
5047 p = (void *) XPNTR (obj);
5048 if (PURE_POINTER_P (p))
5049 return 1;
5051 if (SYMBOLP (obj) && c_symbol_p (p))
5052 return ((char *) p - (char *) lispsym) % sizeof lispsym[0] == 0;
5054 if (p == &buffer_defaults || p == &buffer_local_symbols)
5055 return 2;
5057 #if !GC_MARK_STACK
5058 return valid_pointer_p (p);
5059 #else
5061 m = mem_find (p);
5063 if (m == MEM_NIL)
5065 int valid = valid_pointer_p (p);
5066 if (valid <= 0)
5067 return valid;
5069 if (SUBRP (obj))
5070 return 1;
5072 return 0;
5075 switch (m->type)
5077 case MEM_TYPE_NON_LISP:
5078 case MEM_TYPE_SPARE:
5079 return 0;
5081 case MEM_TYPE_BUFFER:
5082 return live_buffer_p (m, p) ? 1 : 2;
5084 case MEM_TYPE_CONS:
5085 return live_cons_p (m, p);
5087 case MEM_TYPE_STRING:
5088 return live_string_p (m, p);
5090 case MEM_TYPE_MISC:
5091 return live_misc_p (m, p);
5093 case MEM_TYPE_SYMBOL:
5094 return live_symbol_p (m, p);
5096 case MEM_TYPE_FLOAT:
5097 return live_float_p (m, p);
5099 case MEM_TYPE_VECTORLIKE:
5100 case MEM_TYPE_VECTOR_BLOCK:
5101 return live_vector_p (m, p);
5103 default:
5104 break;
5107 return 0;
5108 #endif
5111 /* If GC_MARK_STACK, return 1 if STR is a relocatable data of Lisp_String
5112 (i.e. there is a non-pure Lisp_Object X so that SDATA (X) == STR) and 0
5113 if not. Otherwise we can't rely on valid_lisp_object_p and return -1.
5114 This function is slow and should be used for debugging purposes. */
5117 relocatable_string_data_p (const char *str)
5119 if (PURE_POINTER_P (str))
5120 return 0;
5121 #if GC_MARK_STACK
5122 if (str)
5124 struct sdata *sdata
5125 = (struct sdata *) (str - offsetof (struct sdata, data));
5127 if (0 < valid_pointer_p (sdata)
5128 && 0 < valid_pointer_p (sdata->string)
5129 && maybe_lisp_pointer (sdata->string))
5130 return (valid_lisp_object_p
5131 (make_lisp_ptr (sdata->string, Lisp_String))
5132 && (const char *) sdata->string->data == str);
5134 return 0;
5135 #endif /* GC_MARK_STACK */
5136 return -1;
5139 /***********************************************************************
5140 Pure Storage Management
5141 ***********************************************************************/
5143 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5144 pointer to it. TYPE is the Lisp type for which the memory is
5145 allocated. TYPE < 0 means it's not used for a Lisp object. */
5147 static void *
5148 pure_alloc (size_t size, int type)
5150 void *result;
5151 #if USE_LSB_TAG
5152 size_t alignment = GCALIGNMENT;
5153 #else
5154 size_t alignment = alignof (EMACS_INT);
5156 /* Give Lisp_Floats an extra alignment. */
5157 if (type == Lisp_Float)
5158 alignment = alignof (struct Lisp_Float);
5159 #endif
5161 again:
5162 if (type >= 0)
5164 /* Allocate space for a Lisp object from the beginning of the free
5165 space with taking account of alignment. */
5166 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
5167 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5169 else
5171 /* Allocate space for a non-Lisp object from the end of the free
5172 space. */
5173 pure_bytes_used_non_lisp += size;
5174 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5176 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5178 if (pure_bytes_used <= pure_size)
5179 return result;
5181 /* Don't allocate a large amount here,
5182 because it might get mmap'd and then its address
5183 might not be usable. */
5184 purebeg = xmalloc (10000);
5185 pure_size = 10000;
5186 pure_bytes_used_before_overflow += pure_bytes_used - size;
5187 pure_bytes_used = 0;
5188 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5189 goto again;
5193 /* Print a warning if PURESIZE is too small. */
5195 void
5196 check_pure_size (void)
5198 if (pure_bytes_used_before_overflow)
5199 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5200 " bytes needed)"),
5201 pure_bytes_used + pure_bytes_used_before_overflow);
5205 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5206 the non-Lisp data pool of the pure storage, and return its start
5207 address. Return NULL if not found. */
5209 static char *
5210 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5212 int i;
5213 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5214 const unsigned char *p;
5215 char *non_lisp_beg;
5217 if (pure_bytes_used_non_lisp <= nbytes)
5218 return NULL;
5220 /* Set up the Boyer-Moore table. */
5221 skip = nbytes + 1;
5222 for (i = 0; i < 256; i++)
5223 bm_skip[i] = skip;
5225 p = (const unsigned char *) data;
5226 while (--skip > 0)
5227 bm_skip[*p++] = skip;
5229 last_char_skip = bm_skip['\0'];
5231 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5232 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5234 /* See the comments in the function `boyer_moore' (search.c) for the
5235 use of `infinity'. */
5236 infinity = pure_bytes_used_non_lisp + 1;
5237 bm_skip['\0'] = infinity;
5239 p = (const unsigned char *) non_lisp_beg + nbytes;
5240 start = 0;
5243 /* Check the last character (== '\0'). */
5246 start += bm_skip[*(p + start)];
5248 while (start <= start_max);
5250 if (start < infinity)
5251 /* Couldn't find the last character. */
5252 return NULL;
5254 /* No less than `infinity' means we could find the last
5255 character at `p[start - infinity]'. */
5256 start -= infinity;
5258 /* Check the remaining characters. */
5259 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5260 /* Found. */
5261 return non_lisp_beg + start;
5263 start += last_char_skip;
5265 while (start <= start_max);
5267 return NULL;
5271 /* Return a string allocated in pure space. DATA is a buffer holding
5272 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5273 means make the result string multibyte.
5275 Must get an error if pure storage is full, since if it cannot hold
5276 a large string it may be able to hold conses that point to that
5277 string; then the string is not protected from gc. */
5279 Lisp_Object
5280 make_pure_string (const char *data,
5281 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5283 Lisp_Object string;
5284 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5285 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5286 if (s->data == NULL)
5288 s->data = pure_alloc (nbytes + 1, -1);
5289 memcpy (s->data, data, nbytes);
5290 s->data[nbytes] = '\0';
5292 s->size = nchars;
5293 s->size_byte = multibyte ? nbytes : -1;
5294 s->intervals = NULL;
5295 XSETSTRING (string, s);
5296 return string;
5299 /* Return a string allocated in pure space. Do not
5300 allocate the string data, just point to DATA. */
5302 Lisp_Object
5303 make_pure_c_string (const char *data, ptrdiff_t nchars)
5305 Lisp_Object string;
5306 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5307 s->size = nchars;
5308 s->size_byte = -1;
5309 s->data = (unsigned char *) data;
5310 s->intervals = NULL;
5311 XSETSTRING (string, s);
5312 return string;
5315 static Lisp_Object purecopy (Lisp_Object obj);
5317 /* Return a cons allocated from pure space. Give it pure copies
5318 of CAR as car and CDR as cdr. */
5320 Lisp_Object
5321 pure_cons (Lisp_Object car, Lisp_Object cdr)
5323 Lisp_Object new;
5324 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5325 XSETCONS (new, p);
5326 XSETCAR (new, purecopy (car));
5327 XSETCDR (new, purecopy (cdr));
5328 return new;
5332 /* Value is a float object with value NUM allocated from pure space. */
5334 static Lisp_Object
5335 make_pure_float (double num)
5337 Lisp_Object new;
5338 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5339 XSETFLOAT (new, p);
5340 XFLOAT_INIT (new, num);
5341 return new;
5345 /* Return a vector with room for LEN Lisp_Objects allocated from
5346 pure space. */
5348 static Lisp_Object
5349 make_pure_vector (ptrdiff_t len)
5351 Lisp_Object new;
5352 size_t size = header_size + len * word_size;
5353 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5354 XSETVECTOR (new, p);
5355 XVECTOR (new)->header.size = len;
5356 return new;
5359 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5360 doc: /* Make a copy of object OBJ in pure storage.
5361 Recursively copies contents of vectors and cons cells.
5362 Does not copy symbols. Copies strings without text properties. */)
5363 (register Lisp_Object obj)
5365 if (NILP (Vpurify_flag))
5366 return obj;
5367 else if (MARKERP (obj) || OVERLAYP (obj)
5368 || HASH_TABLE_P (obj) || SYMBOLP (obj))
5369 /* Can't purify those. */
5370 return obj;
5371 else
5372 return purecopy (obj);
5375 static Lisp_Object
5376 purecopy (Lisp_Object obj)
5378 if (PURE_POINTER_P (XPNTR (obj)) || INTEGERP (obj) || SUBRP (obj))
5379 return obj; /* Already pure. */
5381 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5383 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5384 if (!NILP (tmp))
5385 return tmp;
5388 if (CONSP (obj))
5389 obj = pure_cons (XCAR (obj), XCDR (obj));
5390 else if (FLOATP (obj))
5391 obj = make_pure_float (XFLOAT_DATA (obj));
5392 else if (STRINGP (obj))
5394 if (XSTRING (obj)->intervals)
5395 message ("Dropping text-properties when making string pure");
5396 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5397 SBYTES (obj),
5398 STRING_MULTIBYTE (obj));
5400 else if (COMPILEDP (obj) || VECTORP (obj) || HASH_TABLE_P (obj))
5402 struct Lisp_Vector *objp = XVECTOR (obj);
5403 ptrdiff_t nbytes = vector_nbytes (objp);
5404 struct Lisp_Vector *vec = pure_alloc (nbytes, Lisp_Vectorlike);
5405 register ptrdiff_t i;
5406 ptrdiff_t size = ASIZE (obj);
5407 if (size & PSEUDOVECTOR_FLAG)
5408 size &= PSEUDOVECTOR_SIZE_MASK;
5409 memcpy (vec, objp, nbytes);
5410 for (i = 0; i < size; i++)
5411 vec->contents[i] = purecopy (vec->contents[i]);
5412 XSETVECTOR (obj, vec);
5414 else if (SYMBOLP (obj))
5416 if (!XSYMBOL (obj)->pinned && !c_symbol_p (XSYMBOL (obj)))
5417 { /* We can't purify them, but they appear in many pure objects.
5418 Mark them as `pinned' so we know to mark them at every GC cycle. */
5419 XSYMBOL (obj)->pinned = true;
5420 symbol_block_pinned = symbol_block;
5422 /* Don't hash-cons it. */
5423 return obj;
5425 else
5427 Lisp_Object fmt = build_pure_c_string ("Don't know how to purify: %S");
5428 Fsignal (Qerror, list1 (CALLN (Fformat, fmt, obj)));
5431 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5432 Fputhash (obj, obj, Vpurify_flag);
5434 return obj;
5439 /***********************************************************************
5440 Protection from GC
5441 ***********************************************************************/
5443 /* Put an entry in staticvec, pointing at the variable with address
5444 VARADDRESS. */
5446 void
5447 staticpro (Lisp_Object *varaddress)
5449 if (staticidx >= NSTATICS)
5450 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5451 staticvec[staticidx++] = varaddress;
5455 /***********************************************************************
5456 Protection from GC
5457 ***********************************************************************/
5459 /* Temporarily prevent garbage collection. */
5461 ptrdiff_t
5462 inhibit_garbage_collection (void)
5464 ptrdiff_t count = SPECPDL_INDEX ();
5466 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5467 return count;
5470 /* Used to avoid possible overflows when
5471 converting from C to Lisp integers. */
5473 static Lisp_Object
5474 bounded_number (EMACS_INT number)
5476 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5479 /* Calculate total bytes of live objects. */
5481 static size_t
5482 total_bytes_of_live_objects (void)
5484 size_t tot = 0;
5485 tot += total_conses * sizeof (struct Lisp_Cons);
5486 tot += total_symbols * sizeof (struct Lisp_Symbol);
5487 tot += total_markers * sizeof (union Lisp_Misc);
5488 tot += total_string_bytes;
5489 tot += total_vector_slots * word_size;
5490 tot += total_floats * sizeof (struct Lisp_Float);
5491 tot += total_intervals * sizeof (struct interval);
5492 tot += total_strings * sizeof (struct Lisp_String);
5493 return tot;
5496 #ifdef HAVE_WINDOW_SYSTEM
5498 /* This code has a few issues on MS-Windows, see Bug#15876 and Bug#16140. */
5500 #if !defined (HAVE_NTGUI)
5502 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5503 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5505 static Lisp_Object
5506 compact_font_cache_entry (Lisp_Object entry)
5508 Lisp_Object tail, *prev = &entry;
5510 for (tail = entry; CONSP (tail); tail = XCDR (tail))
5512 bool drop = 0;
5513 Lisp_Object obj = XCAR (tail);
5515 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5516 if (CONSP (obj) && FONT_SPEC_P (XCAR (obj))
5517 && !VECTOR_MARKED_P (XFONT_SPEC (XCAR (obj)))
5518 && VECTORP (XCDR (obj)))
5520 ptrdiff_t i, size = ASIZE (XCDR (obj)) & ~ARRAY_MARK_FLAG;
5522 /* If font-spec is not marked, most likely all font-entities
5523 are not marked too. But we must be sure that nothing is
5524 marked within OBJ before we really drop it. */
5525 for (i = 0; i < size; i++)
5526 if (VECTOR_MARKED_P (XFONT_ENTITY (AREF (XCDR (obj), i))))
5527 break;
5529 if (i == size)
5530 drop = 1;
5532 if (drop)
5533 *prev = XCDR (tail);
5534 else
5535 prev = xcdr_addr (tail);
5537 return entry;
5540 #endif /* not HAVE_NTGUI */
5542 /* Compact font caches on all terminals and mark
5543 everything which is still here after compaction. */
5545 static void
5546 compact_font_caches (void)
5548 struct terminal *t;
5550 for (t = terminal_list; t; t = t->next_terminal)
5552 Lisp_Object cache = TERMINAL_FONT_CACHE (t);
5553 #if !defined (HAVE_NTGUI)
5554 if (CONSP (cache))
5556 Lisp_Object entry;
5558 for (entry = XCDR (cache); CONSP (entry); entry = XCDR (entry))
5559 XSETCAR (entry, compact_font_cache_entry (XCAR (entry)));
5561 #endif /* not HAVE_NTGUI */
5562 mark_object (cache);
5566 #else /* not HAVE_WINDOW_SYSTEM */
5568 #define compact_font_caches() (void)(0)
5570 #endif /* HAVE_WINDOW_SYSTEM */
5572 /* Remove (MARKER . DATA) entries with unmarked MARKER
5573 from buffer undo LIST and return changed list. */
5575 static Lisp_Object
5576 compact_undo_list (Lisp_Object list)
5578 Lisp_Object tail, *prev = &list;
5580 for (tail = list; CONSP (tail); tail = XCDR (tail))
5582 if (CONSP (XCAR (tail))
5583 && MARKERP (XCAR (XCAR (tail)))
5584 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5585 *prev = XCDR (tail);
5586 else
5587 prev = xcdr_addr (tail);
5589 return list;
5592 static void
5593 mark_pinned_symbols (void)
5595 struct symbol_block *sblk;
5596 int lim = (symbol_block_pinned == symbol_block
5597 ? symbol_block_index : SYMBOL_BLOCK_SIZE);
5599 for (sblk = symbol_block_pinned; sblk; sblk = sblk->next)
5601 union aligned_Lisp_Symbol *sym = sblk->symbols, *end = sym + lim;
5602 for (; sym < end; ++sym)
5603 if (sym->s.pinned)
5604 mark_object (make_lisp_symbol (&sym->s));
5606 lim = SYMBOL_BLOCK_SIZE;
5610 /* Subroutine of Fgarbage_collect that does most of the work. It is a
5611 separate function so that we could limit mark_stack in searching
5612 the stack frames below this function, thus avoiding the rare cases
5613 where mark_stack finds values that look like live Lisp objects on
5614 portions of stack that couldn't possibly contain such live objects.
5615 For more details of this, see the discussion at
5616 http://lists.gnu.org/archive/html/emacs-devel/2014-05/msg00270.html. */
5617 static Lisp_Object
5618 garbage_collect_1 (void *end)
5620 struct buffer *nextb;
5621 char stack_top_variable;
5622 ptrdiff_t i;
5623 bool message_p;
5624 ptrdiff_t count = SPECPDL_INDEX ();
5625 struct timespec start;
5626 Lisp_Object retval = Qnil;
5627 size_t tot_before = 0;
5629 if (abort_on_gc)
5630 emacs_abort ();
5632 /* Can't GC if pure storage overflowed because we can't determine
5633 if something is a pure object or not. */
5634 if (pure_bytes_used_before_overflow)
5635 return Qnil;
5637 /* Record this function, so it appears on the profiler's backtraces. */
5638 record_in_backtrace (Qautomatic_gc, 0, 0);
5640 check_cons_list ();
5642 /* Don't keep undo information around forever.
5643 Do this early on, so it is no problem if the user quits. */
5644 FOR_EACH_BUFFER (nextb)
5645 compact_buffer (nextb);
5647 if (profiler_memory_running)
5648 tot_before = total_bytes_of_live_objects ();
5650 start = current_timespec ();
5652 /* In case user calls debug_print during GC,
5653 don't let that cause a recursive GC. */
5654 consing_since_gc = 0;
5656 /* Save what's currently displayed in the echo area. */
5657 message_p = push_message ();
5658 record_unwind_protect_void (pop_message_unwind);
5660 /* Save a copy of the contents of the stack, for debugging. */
5661 #if MAX_SAVE_STACK > 0
5662 if (NILP (Vpurify_flag))
5664 char *stack;
5665 ptrdiff_t stack_size;
5666 if (&stack_top_variable < stack_bottom)
5668 stack = &stack_top_variable;
5669 stack_size = stack_bottom - &stack_top_variable;
5671 else
5673 stack = stack_bottom;
5674 stack_size = &stack_top_variable - stack_bottom;
5676 if (stack_size <= MAX_SAVE_STACK)
5678 if (stack_copy_size < stack_size)
5680 stack_copy = xrealloc (stack_copy, stack_size);
5681 stack_copy_size = stack_size;
5683 no_sanitize_memcpy (stack_copy, stack, stack_size);
5686 #endif /* MAX_SAVE_STACK > 0 */
5688 if (garbage_collection_messages)
5689 message1_nolog ("Garbage collecting...");
5691 block_input ();
5693 shrink_regexp_cache ();
5695 gc_in_progress = 1;
5697 /* Mark all the special slots that serve as the roots of accessibility. */
5699 mark_buffer (&buffer_defaults);
5700 mark_buffer (&buffer_local_symbols);
5702 for (i = 0; i < ARRAYELTS (lispsym); i++)
5703 mark_object (builtin_lisp_symbol (i));
5705 for (i = 0; i < staticidx; i++)
5706 mark_object (*staticvec[i]);
5708 mark_pinned_symbols ();
5709 mark_specpdl ();
5710 mark_terminals ();
5711 mark_kboards ();
5713 #ifdef USE_GTK
5714 xg_mark_data ();
5715 #endif
5717 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5718 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5719 mark_stack (end);
5720 #else
5722 register struct gcpro *tail;
5723 for (tail = gcprolist; tail; tail = tail->next)
5724 for (i = 0; i < tail->nvars; i++)
5725 mark_object (tail->var[i]);
5727 mark_byte_stack ();
5728 #endif
5730 struct handler *handler;
5731 for (handler = handlerlist; handler; handler = handler->next)
5733 mark_object (handler->tag_or_ch);
5734 mark_object (handler->val);
5737 #ifdef HAVE_WINDOW_SYSTEM
5738 mark_fringe_data ();
5739 #endif
5741 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5742 mark_stack (end);
5743 #endif
5745 /* Everything is now marked, except for the data in font caches,
5746 undo lists, and finalizers. The first two are compacted by
5747 removing an items which aren't reachable otherwise. */
5749 compact_font_caches ();
5751 FOR_EACH_BUFFER (nextb)
5753 if (!EQ (BVAR (nextb, undo_list), Qt))
5754 bset_undo_list (nextb, compact_undo_list (BVAR (nextb, undo_list)));
5755 /* Now that we have stripped the elements that need not be
5756 in the undo_list any more, we can finally mark the list. */
5757 mark_object (BVAR (nextb, undo_list));
5760 /* Now pre-sweep finalizers. Here, we add any unmarked finalizers
5761 to doomed_finalizers so we can run their associated functions
5762 after GC. It's important to scan finalizers at this stage so
5763 that we can be sure that unmarked finalizers are really
5764 unreachable except for references from their associated functions
5765 and from other finalizers. */
5767 queue_doomed_finalizers (&doomed_finalizers, &finalizers);
5768 mark_finalizer_list (&doomed_finalizers);
5770 gc_sweep ();
5772 /* Clear the mark bits that we set in certain root slots. */
5774 unmark_byte_stack ();
5775 VECTOR_UNMARK (&buffer_defaults);
5776 VECTOR_UNMARK (&buffer_local_symbols);
5778 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5779 dump_zombies ();
5780 #endif
5782 check_cons_list ();
5784 gc_in_progress = 0;
5786 unblock_input ();
5788 consing_since_gc = 0;
5789 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5790 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5792 gc_relative_threshold = 0;
5793 if (FLOATP (Vgc_cons_percentage))
5794 { /* Set gc_cons_combined_threshold. */
5795 double tot = total_bytes_of_live_objects ();
5797 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5798 if (0 < tot)
5800 if (tot < TYPE_MAXIMUM (EMACS_INT))
5801 gc_relative_threshold = tot;
5802 else
5803 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5807 if (garbage_collection_messages)
5809 if (message_p || minibuf_level > 0)
5810 restore_message ();
5811 else
5812 message1_nolog ("Garbage collecting...done");
5815 unbind_to (count, Qnil);
5817 Lisp_Object total[] = {
5818 list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5819 bounded_number (total_conses),
5820 bounded_number (total_free_conses)),
5821 list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5822 bounded_number (total_symbols),
5823 bounded_number (total_free_symbols)),
5824 list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5825 bounded_number (total_markers),
5826 bounded_number (total_free_markers)),
5827 list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5828 bounded_number (total_strings),
5829 bounded_number (total_free_strings)),
5830 list3 (Qstring_bytes, make_number (1),
5831 bounded_number (total_string_bytes)),
5832 list3 (Qvectors,
5833 make_number (header_size + sizeof (Lisp_Object)),
5834 bounded_number (total_vectors)),
5835 list4 (Qvector_slots, make_number (word_size),
5836 bounded_number (total_vector_slots),
5837 bounded_number (total_free_vector_slots)),
5838 list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5839 bounded_number (total_floats),
5840 bounded_number (total_free_floats)),
5841 list4 (Qintervals, make_number (sizeof (struct interval)),
5842 bounded_number (total_intervals),
5843 bounded_number (total_free_intervals)),
5844 list3 (Qbuffers, make_number (sizeof (struct buffer)),
5845 bounded_number (total_buffers)),
5847 #ifdef DOUG_LEA_MALLOC
5848 list4 (Qheap, make_number (1024),
5849 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5850 bounded_number ((mallinfo ().fordblks + 1023) >> 10)),
5851 #endif
5853 retval = CALLMANY (Flist, total);
5855 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5857 /* Compute average percentage of zombies. */
5858 double nlive
5859 = (total_conses + total_symbols + total_markers + total_strings
5860 + total_vectors + total_floats + total_intervals + total_buffers);
5862 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5863 max_live = max (nlive, max_live);
5864 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5865 max_zombies = max (nzombies, max_zombies);
5866 ++ngcs;
5868 #endif
5870 /* GC is complete: now we can run our finalizer callbacks. */
5871 run_finalizers (&doomed_finalizers);
5873 if (!NILP (Vpost_gc_hook))
5875 ptrdiff_t gc_count = inhibit_garbage_collection ();
5876 safe_run_hooks (Qpost_gc_hook);
5877 unbind_to (gc_count, Qnil);
5880 /* Accumulate statistics. */
5881 if (FLOATP (Vgc_elapsed))
5883 struct timespec since_start = timespec_sub (current_timespec (), start);
5884 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5885 + timespectod (since_start));
5888 gcs_done++;
5890 /* Collect profiling data. */
5891 if (profiler_memory_running)
5893 size_t swept = 0;
5894 size_t tot_after = total_bytes_of_live_objects ();
5895 if (tot_before > tot_after)
5896 swept = tot_before - tot_after;
5897 malloc_probe (swept);
5900 return retval;
5903 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5904 doc: /* Reclaim storage for Lisp objects no longer needed.
5905 Garbage collection happens automatically if you cons more than
5906 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5907 `garbage-collect' normally returns a list with info on amount of space in use,
5908 where each entry has the form (NAME SIZE USED FREE), where:
5909 - NAME is a symbol describing the kind of objects this entry represents,
5910 - SIZE is the number of bytes used by each one,
5911 - USED is the number of those objects that were found live in the heap,
5912 - FREE is the number of those objects that are not live but that Emacs
5913 keeps around for future allocations (maybe because it does not know how
5914 to return them to the OS).
5915 However, if there was overflow in pure space, `garbage-collect'
5916 returns nil, because real GC can't be done.
5917 See Info node `(elisp)Garbage Collection'. */)
5918 (void)
5920 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5921 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS \
5922 || GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES)
5923 void *end;
5925 #ifdef HAVE___BUILTIN_UNWIND_INIT
5926 /* Force callee-saved registers and register windows onto the stack.
5927 This is the preferred method if available, obviating the need for
5928 machine dependent methods. */
5929 __builtin_unwind_init ();
5930 end = &end;
5931 #else /* not HAVE___BUILTIN_UNWIND_INIT */
5932 #ifndef GC_SAVE_REGISTERS_ON_STACK
5933 /* jmp_buf may not be aligned enough on darwin-ppc64 */
5934 union aligned_jmpbuf {
5935 Lisp_Object o;
5936 sys_jmp_buf j;
5937 } j;
5938 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
5939 #endif
5940 /* This trick flushes the register windows so that all the state of
5941 the process is contained in the stack. */
5942 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
5943 needed on ia64 too. See mach_dep.c, where it also says inline
5944 assembler doesn't work with relevant proprietary compilers. */
5945 #ifdef __sparc__
5946 #if defined (__sparc64__) && defined (__FreeBSD__)
5947 /* FreeBSD does not have a ta 3 handler. */
5948 asm ("flushw");
5949 #else
5950 asm ("ta 3");
5951 #endif
5952 #endif
5954 /* Save registers that we need to see on the stack. We need to see
5955 registers used to hold register variables and registers used to
5956 pass parameters. */
5957 #ifdef GC_SAVE_REGISTERS_ON_STACK
5958 GC_SAVE_REGISTERS_ON_STACK (end);
5959 #else /* not GC_SAVE_REGISTERS_ON_STACK */
5961 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
5962 setjmp will definitely work, test it
5963 and print a message with the result
5964 of the test. */
5965 if (!setjmp_tested_p)
5967 setjmp_tested_p = 1;
5968 test_setjmp ();
5970 #endif /* GC_SETJMP_WORKS */
5972 sys_setjmp (j.j);
5973 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
5974 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
5975 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
5976 return garbage_collect_1 (end);
5977 #elif (GC_MARK_STACK == GC_USE_GCPROS_AS_BEFORE)
5978 /* Old GCPROs-based method without stack marking. */
5979 return garbage_collect_1 (NULL);
5980 #else
5981 emacs_abort ();
5982 #endif /* GC_MARK_STACK */
5985 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5986 only interesting objects referenced from glyphs are strings. */
5988 static void
5989 mark_glyph_matrix (struct glyph_matrix *matrix)
5991 struct glyph_row *row = matrix->rows;
5992 struct glyph_row *end = row + matrix->nrows;
5994 for (; row < end; ++row)
5995 if (row->enabled_p)
5997 int area;
5998 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
6000 struct glyph *glyph = row->glyphs[area];
6001 struct glyph *end_glyph = glyph + row->used[area];
6003 for (; glyph < end_glyph; ++glyph)
6004 if (STRINGP (glyph->object)
6005 && !STRING_MARKED_P (XSTRING (glyph->object)))
6006 mark_object (glyph->object);
6011 /* Mark reference to a Lisp_Object.
6012 If the object referred to has not been seen yet, recursively mark
6013 all the references contained in it. */
6015 #define LAST_MARKED_SIZE 500
6016 static Lisp_Object last_marked[LAST_MARKED_SIZE];
6017 static int last_marked_index;
6019 /* For debugging--call abort when we cdr down this many
6020 links of a list, in mark_object. In debugging,
6021 the call to abort will hit a breakpoint.
6022 Normally this is zero and the check never goes off. */
6023 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
6025 static void
6026 mark_vectorlike (struct Lisp_Vector *ptr)
6028 ptrdiff_t size = ptr->header.size;
6029 ptrdiff_t i;
6031 eassert (!VECTOR_MARKED_P (ptr));
6032 VECTOR_MARK (ptr); /* Else mark it. */
6033 if (size & PSEUDOVECTOR_FLAG)
6034 size &= PSEUDOVECTOR_SIZE_MASK;
6036 /* Note that this size is not the memory-footprint size, but only
6037 the number of Lisp_Object fields that we should trace.
6038 The distinction is used e.g. by Lisp_Process which places extra
6039 non-Lisp_Object fields at the end of the structure... */
6040 for (i = 0; i < size; i++) /* ...and then mark its elements. */
6041 mark_object (ptr->contents[i]);
6044 /* Like mark_vectorlike but optimized for char-tables (and
6045 sub-char-tables) assuming that the contents are mostly integers or
6046 symbols. */
6048 static void
6049 mark_char_table (struct Lisp_Vector *ptr, enum pvec_type pvectype)
6051 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6052 /* Consult the Lisp_Sub_Char_Table layout before changing this. */
6053 int i, idx = (pvectype == PVEC_SUB_CHAR_TABLE ? SUB_CHAR_TABLE_OFFSET : 0);
6055 eassert (!VECTOR_MARKED_P (ptr));
6056 VECTOR_MARK (ptr);
6057 for (i = idx; i < size; i++)
6059 Lisp_Object val = ptr->contents[i];
6061 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
6062 continue;
6063 if (SUB_CHAR_TABLE_P (val))
6065 if (! VECTOR_MARKED_P (XVECTOR (val)))
6066 mark_char_table (XVECTOR (val), PVEC_SUB_CHAR_TABLE);
6068 else
6069 mark_object (val);
6073 NO_INLINE /* To reduce stack depth in mark_object. */
6074 static Lisp_Object
6075 mark_compiled (struct Lisp_Vector *ptr)
6077 int i, size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6079 VECTOR_MARK (ptr);
6080 for (i = 0; i < size; i++)
6081 if (i != COMPILED_CONSTANTS)
6082 mark_object (ptr->contents[i]);
6083 return size > COMPILED_CONSTANTS ? ptr->contents[COMPILED_CONSTANTS] : Qnil;
6086 /* Mark the chain of overlays starting at PTR. */
6088 static void
6089 mark_overlay (struct Lisp_Overlay *ptr)
6091 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
6093 ptr->gcmarkbit = 1;
6094 /* These two are always markers and can be marked fast. */
6095 XMARKER (ptr->start)->gcmarkbit = 1;
6096 XMARKER (ptr->end)->gcmarkbit = 1;
6097 mark_object (ptr->plist);
6101 /* Mark Lisp_Objects and special pointers in BUFFER. */
6103 static void
6104 mark_buffer (struct buffer *buffer)
6106 /* This is handled much like other pseudovectors... */
6107 mark_vectorlike ((struct Lisp_Vector *) buffer);
6109 /* ...but there are some buffer-specific things. */
6111 MARK_INTERVAL_TREE (buffer_intervals (buffer));
6113 /* For now, we just don't mark the undo_list. It's done later in
6114 a special way just before the sweep phase, and after stripping
6115 some of its elements that are not needed any more. */
6117 mark_overlay (buffer->overlays_before);
6118 mark_overlay (buffer->overlays_after);
6120 /* If this is an indirect buffer, mark its base buffer. */
6121 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
6122 mark_buffer (buffer->base_buffer);
6125 /* Mark Lisp faces in the face cache C. */
6127 NO_INLINE /* To reduce stack depth in mark_object. */
6128 static void
6129 mark_face_cache (struct face_cache *c)
6131 if (c)
6133 int i, j;
6134 for (i = 0; i < c->used; ++i)
6136 struct face *face = FACE_FROM_ID (c->f, i);
6138 if (face)
6140 if (face->font && !VECTOR_MARKED_P (face->font))
6141 mark_vectorlike ((struct Lisp_Vector *) face->font);
6143 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
6144 mark_object (face->lface[j]);
6150 NO_INLINE /* To reduce stack depth in mark_object. */
6151 static void
6152 mark_localized_symbol (struct Lisp_Symbol *ptr)
6154 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6155 Lisp_Object where = blv->where;
6156 /* If the value is set up for a killed buffer or deleted
6157 frame, restore its global binding. If the value is
6158 forwarded to a C variable, either it's not a Lisp_Object
6159 var, or it's staticpro'd already. */
6160 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
6161 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
6162 swap_in_global_binding (ptr);
6163 mark_object (blv->where);
6164 mark_object (blv->valcell);
6165 mark_object (blv->defcell);
6168 NO_INLINE /* To reduce stack depth in mark_object. */
6169 static void
6170 mark_save_value (struct Lisp_Save_Value *ptr)
6172 /* If `save_type' is zero, `data[0].pointer' is the address
6173 of a memory area containing `data[1].integer' potential
6174 Lisp_Objects. */
6175 if (GC_MARK_STACK && ptr->save_type == SAVE_TYPE_MEMORY)
6177 Lisp_Object *p = ptr->data[0].pointer;
6178 ptrdiff_t nelt;
6179 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6180 mark_maybe_object (*p);
6182 else
6184 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6185 int i;
6186 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6187 if (save_type (ptr, i) == SAVE_OBJECT)
6188 mark_object (ptr->data[i].object);
6192 /* Remove killed buffers or items whose car is a killed buffer from
6193 LIST, and mark other items. Return changed LIST, which is marked. */
6195 static Lisp_Object
6196 mark_discard_killed_buffers (Lisp_Object list)
6198 Lisp_Object tail, *prev = &list;
6200 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
6201 tail = XCDR (tail))
6203 Lisp_Object tem = XCAR (tail);
6204 if (CONSP (tem))
6205 tem = XCAR (tem);
6206 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
6207 *prev = XCDR (tail);
6208 else
6210 CONS_MARK (XCONS (tail));
6211 mark_object (XCAR (tail));
6212 prev = xcdr_addr (tail);
6215 mark_object (tail);
6216 return list;
6219 /* Determine type of generic Lisp_Object and mark it accordingly.
6221 This function implements a straightforward depth-first marking
6222 algorithm and so the recursion depth may be very high (a few
6223 tens of thousands is not uncommon). To minimize stack usage,
6224 a few cold paths are moved out to NO_INLINE functions above.
6225 In general, inlining them doesn't help you to gain more speed. */
6227 void
6228 mark_object (Lisp_Object arg)
6230 register Lisp_Object obj;
6231 void *po;
6232 #ifdef GC_CHECK_MARKED_OBJECTS
6233 struct mem_node *m;
6234 #endif
6235 ptrdiff_t cdr_count = 0;
6237 obj = arg;
6238 loop:
6240 po = XPNTR (obj);
6241 if (PURE_POINTER_P (po))
6242 return;
6244 last_marked[last_marked_index++] = obj;
6245 if (last_marked_index == LAST_MARKED_SIZE)
6246 last_marked_index = 0;
6248 /* Perform some sanity checks on the objects marked here. Abort if
6249 we encounter an object we know is bogus. This increases GC time
6250 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
6251 #ifdef GC_CHECK_MARKED_OBJECTS
6253 /* Check that the object pointed to by PO is known to be a Lisp
6254 structure allocated from the heap. */
6255 #define CHECK_ALLOCATED() \
6256 do { \
6257 m = mem_find (po); \
6258 if (m == MEM_NIL) \
6259 emacs_abort (); \
6260 } while (0)
6262 /* Check that the object pointed to by PO is live, using predicate
6263 function LIVEP. */
6264 #define CHECK_LIVE(LIVEP) \
6265 do { \
6266 if (!LIVEP (m, po)) \
6267 emacs_abort (); \
6268 } while (0)
6270 /* Check both of the above conditions, for non-symbols. */
6271 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
6272 do { \
6273 CHECK_ALLOCATED (); \
6274 CHECK_LIVE (LIVEP); \
6275 } while (0) \
6277 /* Check both of the above conditions, for symbols. */
6278 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() \
6279 do { \
6280 if (!c_symbol_p (ptr)) \
6282 CHECK_ALLOCATED (); \
6283 CHECK_LIVE (live_symbol_p); \
6285 } while (0) \
6287 #else /* not GC_CHECK_MARKED_OBJECTS */
6289 #define CHECK_LIVE(LIVEP) ((void) 0)
6290 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) ((void) 0)
6291 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() ((void) 0)
6293 #endif /* not GC_CHECK_MARKED_OBJECTS */
6295 switch (XTYPE (obj))
6297 case Lisp_String:
6299 register struct Lisp_String *ptr = XSTRING (obj);
6300 if (STRING_MARKED_P (ptr))
6301 break;
6302 CHECK_ALLOCATED_AND_LIVE (live_string_p);
6303 MARK_STRING (ptr);
6304 MARK_INTERVAL_TREE (ptr->intervals);
6305 #ifdef GC_CHECK_STRING_BYTES
6306 /* Check that the string size recorded in the string is the
6307 same as the one recorded in the sdata structure. */
6308 string_bytes (ptr);
6309 #endif /* GC_CHECK_STRING_BYTES */
6311 break;
6313 case Lisp_Vectorlike:
6315 register struct Lisp_Vector *ptr = XVECTOR (obj);
6316 register ptrdiff_t pvectype;
6318 if (VECTOR_MARKED_P (ptr))
6319 break;
6321 #ifdef GC_CHECK_MARKED_OBJECTS
6322 m = mem_find (po);
6323 if (m == MEM_NIL && !SUBRP (obj))
6324 emacs_abort ();
6325 #endif /* GC_CHECK_MARKED_OBJECTS */
6327 if (ptr->header.size & PSEUDOVECTOR_FLAG)
6328 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
6329 >> PSEUDOVECTOR_AREA_BITS);
6330 else
6331 pvectype = PVEC_NORMAL_VECTOR;
6333 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
6334 CHECK_LIVE (live_vector_p);
6336 switch (pvectype)
6338 case PVEC_BUFFER:
6339 #ifdef GC_CHECK_MARKED_OBJECTS
6341 struct buffer *b;
6342 FOR_EACH_BUFFER (b)
6343 if (b == po)
6344 break;
6345 if (b == NULL)
6346 emacs_abort ();
6348 #endif /* GC_CHECK_MARKED_OBJECTS */
6349 mark_buffer ((struct buffer *) ptr);
6350 break;
6352 case PVEC_COMPILED:
6353 /* Although we could treat this just like a vector, mark_compiled
6354 returns the COMPILED_CONSTANTS element, which is marked at the
6355 next iteration of goto-loop here. This is done to avoid a few
6356 recursive calls to mark_object. */
6357 obj = mark_compiled (ptr);
6358 if (!NILP (obj))
6359 goto loop;
6360 break;
6362 case PVEC_FRAME:
6364 struct frame *f = (struct frame *) ptr;
6366 mark_vectorlike (ptr);
6367 mark_face_cache (f->face_cache);
6368 #ifdef HAVE_WINDOW_SYSTEM
6369 if (FRAME_WINDOW_P (f) && FRAME_X_OUTPUT (f))
6371 struct font *font = FRAME_FONT (f);
6373 if (font && !VECTOR_MARKED_P (font))
6374 mark_vectorlike ((struct Lisp_Vector *) font);
6376 #endif
6378 break;
6380 case PVEC_WINDOW:
6382 struct window *w = (struct window *) ptr;
6384 mark_vectorlike (ptr);
6386 /* Mark glyph matrices, if any. Marking window
6387 matrices is sufficient because frame matrices
6388 use the same glyph memory. */
6389 if (w->current_matrix)
6391 mark_glyph_matrix (w->current_matrix);
6392 mark_glyph_matrix (w->desired_matrix);
6395 /* Filter out killed buffers from both buffer lists
6396 in attempt to help GC to reclaim killed buffers faster.
6397 We can do it elsewhere for live windows, but this is the
6398 best place to do it for dead windows. */
6399 wset_prev_buffers
6400 (w, mark_discard_killed_buffers (w->prev_buffers));
6401 wset_next_buffers
6402 (w, mark_discard_killed_buffers (w->next_buffers));
6404 break;
6406 case PVEC_HASH_TABLE:
6408 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6410 mark_vectorlike (ptr);
6411 mark_object (h->test.name);
6412 mark_object (h->test.user_hash_function);
6413 mark_object (h->test.user_cmp_function);
6414 /* If hash table is not weak, mark all keys and values.
6415 For weak tables, mark only the vector. */
6416 if (NILP (h->weak))
6417 mark_object (h->key_and_value);
6418 else
6419 VECTOR_MARK (XVECTOR (h->key_and_value));
6421 break;
6423 case PVEC_CHAR_TABLE:
6424 case PVEC_SUB_CHAR_TABLE:
6425 mark_char_table (ptr, (enum pvec_type) pvectype);
6426 break;
6428 case PVEC_BOOL_VECTOR:
6429 /* No Lisp_Objects to mark in a bool vector. */
6430 VECTOR_MARK (ptr);
6431 break;
6433 case PVEC_SUBR:
6434 break;
6436 case PVEC_FREE:
6437 emacs_abort ();
6439 default:
6440 mark_vectorlike (ptr);
6443 break;
6445 case Lisp_Symbol:
6447 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6448 nextsym:
6449 if (ptr->gcmarkbit)
6450 break;
6451 CHECK_ALLOCATED_AND_LIVE_SYMBOL ();
6452 ptr->gcmarkbit = 1;
6453 /* Attempt to catch bogus objects. */
6454 eassert (valid_lisp_object_p (ptr->function));
6455 mark_object (ptr->function);
6456 mark_object (ptr->plist);
6457 switch (ptr->redirect)
6459 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6460 case SYMBOL_VARALIAS:
6462 Lisp_Object tem;
6463 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6464 mark_object (tem);
6465 break;
6467 case SYMBOL_LOCALIZED:
6468 mark_localized_symbol (ptr);
6469 break;
6470 case SYMBOL_FORWARDED:
6471 /* If the value is forwarded to a buffer or keyboard field,
6472 these are marked when we see the corresponding object.
6473 And if it's forwarded to a C variable, either it's not
6474 a Lisp_Object var, or it's staticpro'd already. */
6475 break;
6476 default: emacs_abort ();
6478 if (!PURE_POINTER_P (XSTRING (ptr->name)))
6479 MARK_STRING (XSTRING (ptr->name));
6480 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6481 /* Inner loop to mark next symbol in this bucket, if any. */
6482 ptr = ptr->next;
6483 if (ptr)
6484 goto nextsym;
6486 break;
6488 case Lisp_Misc:
6489 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6491 if (XMISCANY (obj)->gcmarkbit)
6492 break;
6494 switch (XMISCTYPE (obj))
6496 case Lisp_Misc_Marker:
6497 /* DO NOT mark thru the marker's chain.
6498 The buffer's markers chain does not preserve markers from gc;
6499 instead, markers are removed from the chain when freed by gc. */
6500 XMISCANY (obj)->gcmarkbit = 1;
6501 break;
6503 case Lisp_Misc_Save_Value:
6504 XMISCANY (obj)->gcmarkbit = 1;
6505 mark_save_value (XSAVE_VALUE (obj));
6506 break;
6508 case Lisp_Misc_Overlay:
6509 mark_overlay (XOVERLAY (obj));
6510 break;
6512 case Lisp_Misc_Finalizer:
6513 XMISCANY (obj)->gcmarkbit = true;
6514 mark_object (XFINALIZER (obj)->function);
6515 break;
6517 default:
6518 emacs_abort ();
6520 break;
6522 case Lisp_Cons:
6524 register struct Lisp_Cons *ptr = XCONS (obj);
6525 if (CONS_MARKED_P (ptr))
6526 break;
6527 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6528 CONS_MARK (ptr);
6529 /* If the cdr is nil, avoid recursion for the car. */
6530 if (EQ (ptr->u.cdr, Qnil))
6532 obj = ptr->car;
6533 cdr_count = 0;
6534 goto loop;
6536 mark_object (ptr->car);
6537 obj = ptr->u.cdr;
6538 cdr_count++;
6539 if (cdr_count == mark_object_loop_halt)
6540 emacs_abort ();
6541 goto loop;
6544 case Lisp_Float:
6545 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6546 FLOAT_MARK (XFLOAT (obj));
6547 break;
6549 case_Lisp_Int:
6550 break;
6552 default:
6553 emacs_abort ();
6556 #undef CHECK_LIVE
6557 #undef CHECK_ALLOCATED
6558 #undef CHECK_ALLOCATED_AND_LIVE
6560 /* Mark the Lisp pointers in the terminal objects.
6561 Called by Fgarbage_collect. */
6563 static void
6564 mark_terminals (void)
6566 struct terminal *t;
6567 for (t = terminal_list; t; t = t->next_terminal)
6569 eassert (t->name != NULL);
6570 #ifdef HAVE_WINDOW_SYSTEM
6571 /* If a terminal object is reachable from a stacpro'ed object,
6572 it might have been marked already. Make sure the image cache
6573 gets marked. */
6574 mark_image_cache (t->image_cache);
6575 #endif /* HAVE_WINDOW_SYSTEM */
6576 if (!VECTOR_MARKED_P (t))
6577 mark_vectorlike ((struct Lisp_Vector *)t);
6583 /* Value is non-zero if OBJ will survive the current GC because it's
6584 either marked or does not need to be marked to survive. */
6586 bool
6587 survives_gc_p (Lisp_Object obj)
6589 bool survives_p;
6591 switch (XTYPE (obj))
6593 case_Lisp_Int:
6594 survives_p = 1;
6595 break;
6597 case Lisp_Symbol:
6598 survives_p = XSYMBOL (obj)->gcmarkbit;
6599 break;
6601 case Lisp_Misc:
6602 survives_p = XMISCANY (obj)->gcmarkbit;
6603 break;
6605 case Lisp_String:
6606 survives_p = STRING_MARKED_P (XSTRING (obj));
6607 break;
6609 case Lisp_Vectorlike:
6610 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6611 break;
6613 case Lisp_Cons:
6614 survives_p = CONS_MARKED_P (XCONS (obj));
6615 break;
6617 case Lisp_Float:
6618 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6619 break;
6621 default:
6622 emacs_abort ();
6625 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6631 NO_INLINE /* For better stack traces */
6632 static void
6633 sweep_conses (void)
6635 struct cons_block *cblk;
6636 struct cons_block **cprev = &cons_block;
6637 int lim = cons_block_index;
6638 EMACS_INT num_free = 0, num_used = 0;
6640 cons_free_list = 0;
6642 for (cblk = cons_block; cblk; cblk = *cprev)
6644 int i = 0;
6645 int this_free = 0;
6646 int ilim = (lim + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
6648 /* Scan the mark bits an int at a time. */
6649 for (i = 0; i < ilim; i++)
6651 if (cblk->gcmarkbits[i] == BITS_WORD_MAX)
6653 /* Fast path - all cons cells for this int are marked. */
6654 cblk->gcmarkbits[i] = 0;
6655 num_used += BITS_PER_BITS_WORD;
6657 else
6659 /* Some cons cells for this int are not marked.
6660 Find which ones, and free them. */
6661 int start, pos, stop;
6663 start = i * BITS_PER_BITS_WORD;
6664 stop = lim - start;
6665 if (stop > BITS_PER_BITS_WORD)
6666 stop = BITS_PER_BITS_WORD;
6667 stop += start;
6669 for (pos = start; pos < stop; pos++)
6671 if (!CONS_MARKED_P (&cblk->conses[pos]))
6673 this_free++;
6674 cblk->conses[pos].u.chain = cons_free_list;
6675 cons_free_list = &cblk->conses[pos];
6676 #if GC_MARK_STACK
6677 cons_free_list->car = Vdead;
6678 #endif
6680 else
6682 num_used++;
6683 CONS_UNMARK (&cblk->conses[pos]);
6689 lim = CONS_BLOCK_SIZE;
6690 /* If this block contains only free conses and we have already
6691 seen more than two blocks worth of free conses then deallocate
6692 this block. */
6693 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6695 *cprev = cblk->next;
6696 /* Unhook from the free list. */
6697 cons_free_list = cblk->conses[0].u.chain;
6698 lisp_align_free (cblk);
6700 else
6702 num_free += this_free;
6703 cprev = &cblk->next;
6706 total_conses = num_used;
6707 total_free_conses = num_free;
6710 NO_INLINE /* For better stack traces */
6711 static void
6712 sweep_floats (void)
6714 register struct float_block *fblk;
6715 struct float_block **fprev = &float_block;
6716 register int lim = float_block_index;
6717 EMACS_INT num_free = 0, num_used = 0;
6719 float_free_list = 0;
6721 for (fblk = float_block; fblk; fblk = *fprev)
6723 register int i;
6724 int this_free = 0;
6725 for (i = 0; i < lim; i++)
6726 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6728 this_free++;
6729 fblk->floats[i].u.chain = float_free_list;
6730 float_free_list = &fblk->floats[i];
6732 else
6734 num_used++;
6735 FLOAT_UNMARK (&fblk->floats[i]);
6737 lim = FLOAT_BLOCK_SIZE;
6738 /* If this block contains only free floats and we have already
6739 seen more than two blocks worth of free floats then deallocate
6740 this block. */
6741 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6743 *fprev = fblk->next;
6744 /* Unhook from the free list. */
6745 float_free_list = fblk->floats[0].u.chain;
6746 lisp_align_free (fblk);
6748 else
6750 num_free += this_free;
6751 fprev = &fblk->next;
6754 total_floats = num_used;
6755 total_free_floats = num_free;
6758 NO_INLINE /* For better stack traces */
6759 static void
6760 sweep_intervals (void)
6762 register struct interval_block *iblk;
6763 struct interval_block **iprev = &interval_block;
6764 register int lim = interval_block_index;
6765 EMACS_INT num_free = 0, num_used = 0;
6767 interval_free_list = 0;
6769 for (iblk = interval_block; iblk; iblk = *iprev)
6771 register int i;
6772 int this_free = 0;
6774 for (i = 0; i < lim; i++)
6776 if (!iblk->intervals[i].gcmarkbit)
6778 set_interval_parent (&iblk->intervals[i], interval_free_list);
6779 interval_free_list = &iblk->intervals[i];
6780 this_free++;
6782 else
6784 num_used++;
6785 iblk->intervals[i].gcmarkbit = 0;
6788 lim = INTERVAL_BLOCK_SIZE;
6789 /* If this block contains only free intervals and we have already
6790 seen more than two blocks worth of free intervals then
6791 deallocate this block. */
6792 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6794 *iprev = iblk->next;
6795 /* Unhook from the free list. */
6796 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6797 lisp_free (iblk);
6799 else
6801 num_free += this_free;
6802 iprev = &iblk->next;
6805 total_intervals = num_used;
6806 total_free_intervals = num_free;
6809 NO_INLINE /* For better stack traces */
6810 static void
6811 sweep_symbols (void)
6813 struct symbol_block *sblk;
6814 struct symbol_block **sprev = &symbol_block;
6815 int lim = symbol_block_index;
6816 EMACS_INT num_free = 0, num_used = ARRAYELTS (lispsym);
6818 symbol_free_list = NULL;
6820 for (int i = 0; i < ARRAYELTS (lispsym); i++)
6821 lispsym[i].gcmarkbit = 0;
6823 for (sblk = symbol_block; sblk; sblk = *sprev)
6825 int this_free = 0;
6826 union aligned_Lisp_Symbol *sym = sblk->symbols;
6827 union aligned_Lisp_Symbol *end = sym + lim;
6829 for (; sym < end; ++sym)
6831 if (!sym->s.gcmarkbit)
6833 if (sym->s.redirect == SYMBOL_LOCALIZED)
6834 xfree (SYMBOL_BLV (&sym->s));
6835 sym->s.next = symbol_free_list;
6836 symbol_free_list = &sym->s;
6837 #if GC_MARK_STACK
6838 symbol_free_list->function = Vdead;
6839 #endif
6840 ++this_free;
6842 else
6844 ++num_used;
6845 sym->s.gcmarkbit = 0;
6846 /* Attempt to catch bogus objects. */
6847 eassert (valid_lisp_object_p (sym->s.function));
6851 lim = SYMBOL_BLOCK_SIZE;
6852 /* If this block contains only free symbols and we have already
6853 seen more than two blocks worth of free symbols then deallocate
6854 this block. */
6855 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6857 *sprev = sblk->next;
6858 /* Unhook from the free list. */
6859 symbol_free_list = sblk->symbols[0].s.next;
6860 lisp_free (sblk);
6862 else
6864 num_free += this_free;
6865 sprev = &sblk->next;
6868 total_symbols = num_used;
6869 total_free_symbols = num_free;
6872 NO_INLINE /* For better stack traces. */
6873 static void
6874 sweep_misc (void)
6876 register struct marker_block *mblk;
6877 struct marker_block **mprev = &marker_block;
6878 register int lim = marker_block_index;
6879 EMACS_INT num_free = 0, num_used = 0;
6881 /* Put all unmarked misc's on free list. For a marker, first
6882 unchain it from the buffer it points into. */
6884 marker_free_list = 0;
6886 for (mblk = marker_block; mblk; mblk = *mprev)
6888 register int i;
6889 int this_free = 0;
6891 for (i = 0; i < lim; i++)
6893 if (!mblk->markers[i].m.u_any.gcmarkbit)
6895 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6896 unchain_marker (&mblk->markers[i].m.u_marker);
6897 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Finalizer)
6898 unchain_finalizer (&mblk->markers[i].m.u_finalizer);
6899 /* Set the type of the freed object to Lisp_Misc_Free.
6900 We could leave the type alone, since nobody checks it,
6901 but this might catch bugs faster. */
6902 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6903 mblk->markers[i].m.u_free.chain = marker_free_list;
6904 marker_free_list = &mblk->markers[i].m;
6905 this_free++;
6907 else
6909 num_used++;
6910 mblk->markers[i].m.u_any.gcmarkbit = 0;
6913 lim = MARKER_BLOCK_SIZE;
6914 /* If this block contains only free markers and we have already
6915 seen more than two blocks worth of free markers then deallocate
6916 this block. */
6917 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6919 *mprev = mblk->next;
6920 /* Unhook from the free list. */
6921 marker_free_list = mblk->markers[0].m.u_free.chain;
6922 lisp_free (mblk);
6924 else
6926 num_free += this_free;
6927 mprev = &mblk->next;
6931 total_markers = num_used;
6932 total_free_markers = num_free;
6935 NO_INLINE /* For better stack traces */
6936 static void
6937 sweep_buffers (void)
6939 register struct buffer *buffer, **bprev = &all_buffers;
6941 total_buffers = 0;
6942 for (buffer = all_buffers; buffer; buffer = *bprev)
6943 if (!VECTOR_MARKED_P (buffer))
6945 *bprev = buffer->next;
6946 lisp_free (buffer);
6948 else
6950 VECTOR_UNMARK (buffer);
6951 /* Do not use buffer_(set|get)_intervals here. */
6952 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6953 total_buffers++;
6954 bprev = &buffer->next;
6958 /* Sweep: find all structures not marked, and free them. */
6959 static void
6960 gc_sweep (void)
6962 /* Remove or mark entries in weak hash tables.
6963 This must be done before any object is unmarked. */
6964 sweep_weak_hash_tables ();
6966 sweep_strings ();
6967 check_string_bytes (!noninteractive);
6968 sweep_conses ();
6969 sweep_floats ();
6970 sweep_intervals ();
6971 sweep_symbols ();
6972 sweep_misc ();
6973 sweep_buffers ();
6974 sweep_vectors ();
6975 check_string_bytes (!noninteractive);
6978 DEFUN ("memory-info", Fmemory_info, Smemory_info, 0, 0, 0,
6979 doc: /* Return a list of (TOTAL-RAM FREE-RAM TOTAL-SWAP FREE-SWAP).
6980 All values are in Kbytes. If there is no swap space,
6981 last two values are zero. If the system is not supported
6982 or memory information can't be obtained, return nil. */)
6983 (void)
6985 #if defined HAVE_LINUX_SYSINFO
6986 struct sysinfo si;
6987 uintmax_t units;
6989 if (sysinfo (&si))
6990 return Qnil;
6991 #ifdef LINUX_SYSINFO_UNIT
6992 units = si.mem_unit;
6993 #else
6994 units = 1;
6995 #endif
6996 return list4i ((uintmax_t) si.totalram * units / 1024,
6997 (uintmax_t) si.freeram * units / 1024,
6998 (uintmax_t) si.totalswap * units / 1024,
6999 (uintmax_t) si.freeswap * units / 1024);
7000 #elif defined WINDOWSNT
7001 unsigned long long totalram, freeram, totalswap, freeswap;
7003 if (w32_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
7004 return list4i ((uintmax_t) totalram / 1024,
7005 (uintmax_t) freeram / 1024,
7006 (uintmax_t) totalswap / 1024,
7007 (uintmax_t) freeswap / 1024);
7008 else
7009 return Qnil;
7010 #elif defined MSDOS
7011 unsigned long totalram, freeram, totalswap, freeswap;
7013 if (dos_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
7014 return list4i ((uintmax_t) totalram / 1024,
7015 (uintmax_t) freeram / 1024,
7016 (uintmax_t) totalswap / 1024,
7017 (uintmax_t) freeswap / 1024);
7018 else
7019 return Qnil;
7020 #else /* not HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
7021 /* FIXME: add more systems. */
7022 return Qnil;
7023 #endif /* HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
7026 /* Debugging aids. */
7028 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
7029 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
7030 This may be helpful in debugging Emacs's memory usage.
7031 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
7032 (void)
7034 Lisp_Object end;
7036 #ifdef HAVE_NS
7037 /* Avoid warning. sbrk has no relation to memory allocated anyway. */
7038 XSETINT (end, 0);
7039 #else
7040 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
7041 #endif
7043 return end;
7046 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
7047 doc: /* Return a list of counters that measure how much consing there has been.
7048 Each of these counters increments for a certain kind of object.
7049 The counters wrap around from the largest positive integer to zero.
7050 Garbage collection does not decrease them.
7051 The elements of the value are as follows:
7052 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
7053 All are in units of 1 = one object consed
7054 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
7055 objects consed.
7056 MISCS include overlays, markers, and some internal types.
7057 Frames, windows, buffers, and subprocesses count as vectors
7058 (but the contents of a buffer's text do not count here). */)
7059 (void)
7061 return listn (CONSTYPE_HEAP, 8,
7062 bounded_number (cons_cells_consed),
7063 bounded_number (floats_consed),
7064 bounded_number (vector_cells_consed),
7065 bounded_number (symbols_consed),
7066 bounded_number (string_chars_consed),
7067 bounded_number (misc_objects_consed),
7068 bounded_number (intervals_consed),
7069 bounded_number (strings_consed));
7072 static bool
7073 symbol_uses_obj (Lisp_Object symbol, Lisp_Object obj)
7075 struct Lisp_Symbol *sym = XSYMBOL (symbol);
7076 Lisp_Object val = find_symbol_value (symbol);
7077 return (EQ (val, obj)
7078 || EQ (sym->function, obj)
7079 || (!NILP (sym->function)
7080 && COMPILEDP (sym->function)
7081 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
7082 || (!NILP (val)
7083 && COMPILEDP (val)
7084 && EQ (AREF (val, COMPILED_BYTECODE), obj)));
7087 /* Find at most FIND_MAX symbols which have OBJ as their value or
7088 function. This is used in gdbinit's `xwhichsymbols' command. */
7090 Lisp_Object
7091 which_symbols (Lisp_Object obj, EMACS_INT find_max)
7093 struct symbol_block *sblk;
7094 ptrdiff_t gc_count = inhibit_garbage_collection ();
7095 Lisp_Object found = Qnil;
7097 if (! DEADP (obj))
7099 for (int i = 0; i < ARRAYELTS (lispsym); i++)
7101 Lisp_Object sym = builtin_lisp_symbol (i);
7102 if (symbol_uses_obj (sym, obj))
7104 found = Fcons (sym, found);
7105 if (--find_max == 0)
7106 goto out;
7110 for (sblk = symbol_block; sblk; sblk = sblk->next)
7112 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
7113 int bn;
7115 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
7117 if (sblk == symbol_block && bn >= symbol_block_index)
7118 break;
7120 Lisp_Object sym = make_lisp_symbol (&aligned_sym->s);
7121 if (symbol_uses_obj (sym, obj))
7123 found = Fcons (sym, found);
7124 if (--find_max == 0)
7125 goto out;
7131 out:
7132 unbind_to (gc_count, Qnil);
7133 return found;
7136 #ifdef SUSPICIOUS_OBJECT_CHECKING
7138 static void *
7139 find_suspicious_object_in_range (void *begin, void *end)
7141 char *begin_a = begin;
7142 char *end_a = end;
7143 int i;
7145 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7147 char *suspicious_object = suspicious_objects[i];
7148 if (begin_a <= suspicious_object && suspicious_object < end_a)
7149 return suspicious_object;
7152 return NULL;
7155 static void
7156 note_suspicious_free (void* ptr)
7158 struct suspicious_free_record* rec;
7160 rec = &suspicious_free_history[suspicious_free_history_index++];
7161 if (suspicious_free_history_index ==
7162 ARRAYELTS (suspicious_free_history))
7164 suspicious_free_history_index = 0;
7167 memset (rec, 0, sizeof (*rec));
7168 rec->suspicious_object = ptr;
7169 backtrace (&rec->backtrace[0], ARRAYELTS (rec->backtrace));
7172 static void
7173 detect_suspicious_free (void* ptr)
7175 int i;
7177 eassert (ptr != NULL);
7179 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7180 if (suspicious_objects[i] == ptr)
7182 note_suspicious_free (ptr);
7183 suspicious_objects[i] = NULL;
7187 #endif /* SUSPICIOUS_OBJECT_CHECKING */
7189 DEFUN ("suspicious-object", Fsuspicious_object, Ssuspicious_object, 1, 1, 0,
7190 doc: /* Return OBJ, maybe marking it for extra scrutiny.
7191 If Emacs is compiled with suspicious object checking, capture
7192 a stack trace when OBJ is freed in order to help track down
7193 garbage collection bugs. Otherwise, do nothing and return OBJ. */)
7194 (Lisp_Object obj)
7196 #ifdef SUSPICIOUS_OBJECT_CHECKING
7197 /* Right now, we care only about vectors. */
7198 if (VECTORLIKEP (obj))
7200 suspicious_objects[suspicious_object_index++] = XVECTOR (obj);
7201 if (suspicious_object_index == ARRAYELTS (suspicious_objects))
7202 suspicious_object_index = 0;
7204 #endif
7205 return obj;
7208 #ifdef ENABLE_CHECKING
7210 bool suppress_checking;
7212 void
7213 die (const char *msg, const char *file, int line)
7215 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
7216 file, line, msg);
7217 terminate_due_to_signal (SIGABRT, INT_MAX);
7220 #endif /* ENABLE_CHECKING */
7222 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
7224 /* Debugging check whether STR is ASCII-only. */
7226 const char *
7227 verify_ascii (const char *str)
7229 const unsigned char *ptr = (unsigned char *) str, *end = ptr + strlen (str);
7230 while (ptr < end)
7232 int c = STRING_CHAR_ADVANCE (ptr);
7233 if (!ASCII_CHAR_P (c))
7234 emacs_abort ();
7236 return str;
7239 /* Stress alloca with inconveniently sized requests and check
7240 whether all allocated areas may be used for Lisp_Object. */
7242 NO_INLINE static void
7243 verify_alloca (void)
7245 int i;
7246 enum { ALLOCA_CHECK_MAX = 256 };
7247 /* Start from size of the smallest Lisp object. */
7248 for (i = sizeof (struct Lisp_Cons); i <= ALLOCA_CHECK_MAX; i++)
7250 void *ptr = alloca (i);
7251 make_lisp_ptr (ptr, Lisp_Cons);
7255 #else /* not ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7257 #define verify_alloca() ((void) 0)
7259 #endif /* ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7261 /* Initialization. */
7263 void
7264 init_alloc_once (void)
7266 /* Even though Qt's contents are not set up, its address is known. */
7267 Vpurify_flag = Qt;
7268 gc_precise = (GC_MARK_STACK == GC_USE_GCPROS_AS_BEFORE);
7270 purebeg = PUREBEG;
7271 pure_size = PURESIZE;
7273 verify_alloca ();
7274 init_finalizer_list (&finalizers);
7275 init_finalizer_list (&doomed_finalizers);
7277 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
7278 mem_init ();
7279 Vdead = make_pure_string ("DEAD", 4, 4, 0);
7280 #endif
7282 #ifdef DOUG_LEA_MALLOC
7283 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
7284 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
7285 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
7286 #endif
7287 init_strings ();
7288 init_vectors ();
7290 refill_memory_reserve ();
7291 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
7294 void
7295 init_alloc (void)
7297 gcprolist = 0;
7298 byte_stack_list = 0;
7299 #if GC_MARK_STACK
7300 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
7301 setjmp_tested_p = longjmps_done = 0;
7302 #endif
7303 #endif
7304 Vgc_elapsed = make_float (0.0);
7305 gcs_done = 0;
7307 #if USE_VALGRIND
7308 valgrind_p = RUNNING_ON_VALGRIND != 0;
7309 #endif
7312 void
7313 syms_of_alloc (void)
7315 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
7316 doc: /* Number of bytes of consing between garbage collections.
7317 Garbage collection can happen automatically once this many bytes have been
7318 allocated since the last garbage collection. All data types count.
7320 Garbage collection happens automatically only when `eval' is called.
7322 By binding this temporarily to a large number, you can effectively
7323 prevent garbage collection during a part of the program.
7324 See also `gc-cons-percentage'. */);
7326 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
7327 doc: /* Portion of the heap used for allocation.
7328 Garbage collection can happen automatically once this portion of the heap
7329 has been allocated since the last garbage collection.
7330 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
7331 Vgc_cons_percentage = make_float (0.1);
7333 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
7334 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
7336 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
7337 doc: /* Number of cons cells that have been consed so far. */);
7339 DEFVAR_INT ("floats-consed", floats_consed,
7340 doc: /* Number of floats that have been consed so far. */);
7342 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
7343 doc: /* Number of vector cells that have been consed so far. */);
7345 DEFVAR_INT ("symbols-consed", symbols_consed,
7346 doc: /* Number of symbols that have been consed so far. */);
7347 symbols_consed += ARRAYELTS (lispsym);
7349 DEFVAR_INT ("string-chars-consed", string_chars_consed,
7350 doc: /* Number of string characters that have been consed so far. */);
7352 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
7353 doc: /* Number of miscellaneous objects that have been consed so far.
7354 These include markers and overlays, plus certain objects not visible
7355 to users. */);
7357 DEFVAR_INT ("intervals-consed", intervals_consed,
7358 doc: /* Number of intervals that have been consed so far. */);
7360 DEFVAR_INT ("strings-consed", strings_consed,
7361 doc: /* Number of strings that have been consed so far. */);
7363 DEFVAR_LISP ("purify-flag", Vpurify_flag,
7364 doc: /* Non-nil means loading Lisp code in order to dump an executable.
7365 This means that certain objects should be allocated in shared (pure) space.
7366 It can also be set to a hash-table, in which case this table is used to
7367 do hash-consing of the objects allocated to pure space. */);
7369 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
7370 doc: /* Non-nil means display messages at start and end of garbage collection. */);
7371 garbage_collection_messages = 0;
7373 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
7374 doc: /* Hook run after garbage collection has finished. */);
7375 Vpost_gc_hook = Qnil;
7376 DEFSYM (Qpost_gc_hook, "post-gc-hook");
7378 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
7379 doc: /* Precomputed `signal' argument for memory-full error. */);
7380 /* We build this in advance because if we wait until we need it, we might
7381 not be able to allocate the memory to hold it. */
7382 Vmemory_signal_data
7383 = listn (CONSTYPE_PURE, 2, Qerror,
7384 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
7386 DEFVAR_LISP ("memory-full", Vmemory_full,
7387 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
7388 Vmemory_full = Qnil;
7390 DEFSYM (Qconses, "conses");
7391 DEFSYM (Qsymbols, "symbols");
7392 DEFSYM (Qmiscs, "miscs");
7393 DEFSYM (Qstrings, "strings");
7394 DEFSYM (Qvectors, "vectors");
7395 DEFSYM (Qfloats, "floats");
7396 DEFSYM (Qintervals, "intervals");
7397 DEFSYM (Qbuffers, "buffers");
7398 DEFSYM (Qstring_bytes, "string-bytes");
7399 DEFSYM (Qvector_slots, "vector-slots");
7400 DEFSYM (Qheap, "heap");
7401 DEFSYM (Qautomatic_gc, "Automatic GC");
7403 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
7404 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
7406 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
7407 doc: /* Accumulated time elapsed in garbage collections.
7408 The time is in seconds as a floating point value. */);
7409 DEFVAR_INT ("gcs-done", gcs_done,
7410 doc: /* Accumulated number of garbage collections done. */);
7412 DEFVAR_BOOL ("gc-precise", gc_precise,
7413 doc: /* Non-nil means GC stack marking is precise.
7414 Useful mainly for automated GC tests. Build time constant.*/);
7415 XSYMBOL (intern_c_string ("gc-precise"))->constant = 1;
7417 defsubr (&Scons);
7418 defsubr (&Slist);
7419 defsubr (&Svector);
7420 defsubr (&Sbool_vector);
7421 defsubr (&Smake_byte_code);
7422 defsubr (&Smake_list);
7423 defsubr (&Smake_vector);
7424 defsubr (&Smake_string);
7425 defsubr (&Smake_bool_vector);
7426 defsubr (&Smake_symbol);
7427 defsubr (&Smake_marker);
7428 defsubr (&Smake_finalizer);
7429 defsubr (&Spurecopy);
7430 defsubr (&Sgarbage_collect);
7431 defsubr (&Smemory_limit);
7432 defsubr (&Smemory_info);
7433 defsubr (&Smemory_use_counts);
7434 defsubr (&Ssuspicious_object);
7436 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
7437 defsubr (&Sgc_status);
7438 #endif
7441 /* When compiled with GCC, GDB might say "No enum type named
7442 pvec_type" if we don't have at least one symbol with that type, and
7443 then xbacktrace could fail. Similarly for the other enums and
7444 their values. Some non-GCC compilers don't like these constructs. */
7445 #ifdef __GNUC__
7446 union
7448 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
7449 enum char_table_specials char_table_specials;
7450 enum char_bits char_bits;
7451 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
7452 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
7453 enum Lisp_Bits Lisp_Bits;
7454 enum Lisp_Compiled Lisp_Compiled;
7455 enum maxargs maxargs;
7456 enum MAX_ALLOCA MAX_ALLOCA;
7457 enum More_Lisp_Bits More_Lisp_Bits;
7458 enum pvec_type pvec_type;
7459 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
7460 #endif /* __GNUC__ */