Merge changes from emacs-23 branch
[emacs.git] / src / alloc.c
bloba1c78a408d9502ecd0dd3af4ef854cb121a19d3e
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GNU Emacs.
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
21 #include <config.h>
22 #include <stdio.h>
23 #include <limits.h> /* For CHAR_BIT. */
24 #include <setjmp.h>
26 #ifdef ALLOC_DEBUG
27 #undef INLINE
28 #endif
30 #include <signal.h>
32 #ifdef HAVE_GTK_AND_PTHREAD
33 #include <pthread.h>
34 #endif
36 /* This file is part of the core Lisp implementation, and thus must
37 deal with the real data structures. If the Lisp implementation is
38 replaced, this file likely will not be used. */
40 #undef HIDE_LISP_IMPLEMENTATION
41 #include "lisp.h"
42 #include "process.h"
43 #include "intervals.h"
44 #include "puresize.h"
45 #include "buffer.h"
46 #include "window.h"
47 #include "keyboard.h"
48 #include "frame.h"
49 #include "blockinput.h"
50 #include "character.h"
51 #include "syssignal.h"
52 #include "termhooks.h" /* For struct terminal. */
53 #include <setjmp.h>
55 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
56 memory. Can do this only if using gmalloc.c. */
58 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
59 #undef GC_MALLOC_CHECK
60 #endif
62 #ifdef HAVE_UNISTD_H
63 #include <unistd.h>
64 #else
65 extern POINTER_TYPE *sbrk ();
66 #endif
68 #include <fcntl.h>
70 #ifdef WINDOWSNT
71 #include "w32.h"
72 #endif
74 #ifdef DOUG_LEA_MALLOC
76 #include <malloc.h>
77 /* malloc.h #defines this as size_t, at least in glibc2. */
78 #ifndef __malloc_size_t
79 #define __malloc_size_t int
80 #endif
82 /* Specify maximum number of areas to mmap. It would be nice to use a
83 value that explicitly means "no limit". */
85 #define MMAP_MAX_AREAS 100000000
87 #else /* not DOUG_LEA_MALLOC */
89 /* The following come from gmalloc.c. */
91 #define __malloc_size_t size_t
92 extern __malloc_size_t _bytes_used;
93 extern __malloc_size_t __malloc_extra_blocks;
95 #endif /* not DOUG_LEA_MALLOC */
97 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
99 /* When GTK uses the file chooser dialog, different backends can be loaded
100 dynamically. One such a backend is the Gnome VFS backend that gets loaded
101 if you run Gnome. That backend creates several threads and also allocates
102 memory with malloc.
104 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
105 functions below are called from malloc, there is a chance that one
106 of these threads preempts the Emacs main thread and the hook variables
107 end up in an inconsistent state. So we have a mutex to prevent that (note
108 that the backend handles concurrent access to malloc within its own threads
109 but Emacs code running in the main thread is not included in that control).
111 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
112 happens in one of the backend threads we will have two threads that tries
113 to run Emacs code at once, and the code is not prepared for that.
114 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
116 static pthread_mutex_t alloc_mutex;
118 #define BLOCK_INPUT_ALLOC \
119 do \
121 if (pthread_equal (pthread_self (), main_thread)) \
122 BLOCK_INPUT; \
123 pthread_mutex_lock (&alloc_mutex); \
125 while (0)
126 #define UNBLOCK_INPUT_ALLOC \
127 do \
129 pthread_mutex_unlock (&alloc_mutex); \
130 if (pthread_equal (pthread_self (), main_thread)) \
131 UNBLOCK_INPUT; \
133 while (0)
135 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
137 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
138 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
140 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
142 /* Value of _bytes_used, when spare_memory was freed. */
144 static __malloc_size_t bytes_used_when_full;
146 static __malloc_size_t bytes_used_when_reconsidered;
148 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
149 to a struct Lisp_String. */
151 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
152 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
153 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
155 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
156 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
157 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
159 /* Value is the number of bytes/chars of S, a pointer to a struct
160 Lisp_String. This must be used instead of STRING_BYTES (S) or
161 S->size during GC, because S->size contains the mark bit for
162 strings. */
164 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
165 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
167 /* Number of bytes of consing done since the last gc. */
169 int consing_since_gc;
171 /* Count the amount of consing of various sorts of space. */
173 EMACS_INT cons_cells_consed;
174 EMACS_INT floats_consed;
175 EMACS_INT vector_cells_consed;
176 EMACS_INT symbols_consed;
177 EMACS_INT string_chars_consed;
178 EMACS_INT misc_objects_consed;
179 EMACS_INT intervals_consed;
180 EMACS_INT strings_consed;
182 /* Minimum number of bytes of consing since GC before next GC. */
184 EMACS_INT gc_cons_threshold;
186 /* Similar minimum, computed from Vgc_cons_percentage. */
188 EMACS_INT gc_relative_threshold;
190 static Lisp_Object Vgc_cons_percentage;
192 /* Minimum number of bytes of consing since GC before next GC,
193 when memory is full. */
195 EMACS_INT memory_full_cons_threshold;
197 /* Nonzero during GC. */
199 int gc_in_progress;
201 /* Nonzero means abort if try to GC.
202 This is for code which is written on the assumption that
203 no GC will happen, so as to verify that assumption. */
205 int abort_on_gc;
207 /* Nonzero means display messages at beginning and end of GC. */
209 int garbage_collection_messages;
211 /* Number of live and free conses etc. */
213 static int total_conses, total_markers, total_symbols, total_vector_size;
214 static int total_free_conses, total_free_markers, total_free_symbols;
215 static int total_free_floats, total_floats;
217 /* Points to memory space allocated as "spare", to be freed if we run
218 out of memory. We keep one large block, four cons-blocks, and
219 two string blocks. */
221 static char *spare_memory[7];
223 /* Amount of spare memory to keep in large reserve block. */
225 #define SPARE_MEMORY (1 << 14)
227 /* Number of extra blocks malloc should get when it needs more core. */
229 static int malloc_hysteresis;
231 /* Non-nil means defun should do purecopy on the function definition. */
233 Lisp_Object Vpurify_flag;
235 /* Non-nil means we are handling a memory-full error. */
237 Lisp_Object Vmemory_full;
239 /* Initialize it to a nonzero value to force it into data space
240 (rather than bss space). That way unexec will remap it into text
241 space (pure), on some systems. We have not implemented the
242 remapping on more recent systems because this is less important
243 nowadays than in the days of small memories and timesharing. */
245 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
246 #define PUREBEG (char *) pure
248 /* Pointer to the pure area, and its size. */
250 static char *purebeg;
251 static size_t pure_size;
253 /* Number of bytes of pure storage used before pure storage overflowed.
254 If this is non-zero, this implies that an overflow occurred. */
256 static size_t pure_bytes_used_before_overflow;
258 /* Value is non-zero if P points into pure space. */
260 #define PURE_POINTER_P(P) \
261 (((PNTR_COMPARISON_TYPE) (P) \
262 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
263 && ((PNTR_COMPARISON_TYPE) (P) \
264 >= (PNTR_COMPARISON_TYPE) purebeg))
266 /* Total number of bytes allocated in pure storage. */
268 EMACS_INT pure_bytes_used;
270 /* Index in pure at which next pure Lisp object will be allocated.. */
272 static EMACS_INT pure_bytes_used_lisp;
274 /* Number of bytes allocated for non-Lisp objects in pure storage. */
276 static EMACS_INT pure_bytes_used_non_lisp;
278 /* If nonzero, this is a warning delivered by malloc and not yet
279 displayed. */
281 const char *pending_malloc_warning;
283 /* Pre-computed signal argument for use when memory is exhausted. */
285 Lisp_Object Vmemory_signal_data;
287 /* Maximum amount of C stack to save when a GC happens. */
289 #ifndef MAX_SAVE_STACK
290 #define MAX_SAVE_STACK 16000
291 #endif
293 /* Buffer in which we save a copy of the C stack at each GC. */
295 static char *stack_copy;
296 static int stack_copy_size;
298 /* Non-zero means ignore malloc warnings. Set during initialization.
299 Currently not used. */
301 static int ignore_warnings;
303 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
305 /* Hook run after GC has finished. */
307 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
309 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
310 EMACS_INT gcs_done; /* accumulated GCs */
312 static void mark_buffer (Lisp_Object);
313 static void mark_terminals (void);
314 extern void mark_kboards (void);
315 extern void mark_ttys (void);
316 extern void mark_backtrace (void);
317 static void gc_sweep (void);
318 static void mark_glyph_matrix (struct glyph_matrix *);
319 static void mark_face_cache (struct face_cache *);
321 #ifdef HAVE_WINDOW_SYSTEM
322 extern void mark_fringe_data (void);
323 #endif /* HAVE_WINDOW_SYSTEM */
325 static struct Lisp_String *allocate_string (void);
326 static void compact_small_strings (void);
327 static void free_large_strings (void);
328 static void sweep_strings (void);
330 extern int message_enable_multibyte;
332 /* When scanning the C stack for live Lisp objects, Emacs keeps track
333 of what memory allocated via lisp_malloc is intended for what
334 purpose. This enumeration specifies the type of memory. */
336 enum mem_type
338 MEM_TYPE_NON_LISP,
339 MEM_TYPE_BUFFER,
340 MEM_TYPE_CONS,
341 MEM_TYPE_STRING,
342 MEM_TYPE_MISC,
343 MEM_TYPE_SYMBOL,
344 MEM_TYPE_FLOAT,
345 /* We used to keep separate mem_types for subtypes of vectors such as
346 process, hash_table, frame, terminal, and window, but we never made
347 use of the distinction, so it only caused source-code complexity
348 and runtime slowdown. Minor but pointless. */
349 MEM_TYPE_VECTORLIKE
352 static POINTER_TYPE *lisp_align_malloc (size_t, enum mem_type);
353 static POINTER_TYPE *lisp_malloc (size_t, enum mem_type);
356 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
358 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
359 #include <stdio.h> /* For fprintf. */
360 #endif
362 /* A unique object in pure space used to make some Lisp objects
363 on free lists recognizable in O(1). */
365 static Lisp_Object Vdead;
367 #ifdef GC_MALLOC_CHECK
369 enum mem_type allocated_mem_type;
370 static int dont_register_blocks;
372 #endif /* GC_MALLOC_CHECK */
374 /* A node in the red-black tree describing allocated memory containing
375 Lisp data. Each such block is recorded with its start and end
376 address when it is allocated, and removed from the tree when it
377 is freed.
379 A red-black tree is a balanced binary tree with the following
380 properties:
382 1. Every node is either red or black.
383 2. Every leaf is black.
384 3. If a node is red, then both of its children are black.
385 4. Every simple path from a node to a descendant leaf contains
386 the same number of black nodes.
387 5. The root is always black.
389 When nodes are inserted into the tree, or deleted from the tree,
390 the tree is "fixed" so that these properties are always true.
392 A red-black tree with N internal nodes has height at most 2
393 log(N+1). Searches, insertions and deletions are done in O(log N).
394 Please see a text book about data structures for a detailed
395 description of red-black trees. Any book worth its salt should
396 describe them. */
398 struct mem_node
400 /* Children of this node. These pointers are never NULL. When there
401 is no child, the value is MEM_NIL, which points to a dummy node. */
402 struct mem_node *left, *right;
404 /* The parent of this node. In the root node, this is NULL. */
405 struct mem_node *parent;
407 /* Start and end of allocated region. */
408 void *start, *end;
410 /* Node color. */
411 enum {MEM_BLACK, MEM_RED} color;
413 /* Memory type. */
414 enum mem_type type;
417 /* Base address of stack. Set in main. */
419 Lisp_Object *stack_base;
421 /* Root of the tree describing allocated Lisp memory. */
423 static struct mem_node *mem_root;
425 /* Lowest and highest known address in the heap. */
427 static void *min_heap_address, *max_heap_address;
429 /* Sentinel node of the tree. */
431 static struct mem_node mem_z;
432 #define MEM_NIL &mem_z
434 static struct Lisp_Vector *allocate_vectorlike (EMACS_INT);
435 static void lisp_free (POINTER_TYPE *);
436 static void mark_stack (void);
437 static int live_vector_p (struct mem_node *, void *);
438 static int live_buffer_p (struct mem_node *, void *);
439 static int live_string_p (struct mem_node *, void *);
440 static int live_cons_p (struct mem_node *, void *);
441 static int live_symbol_p (struct mem_node *, void *);
442 static int live_float_p (struct mem_node *, void *);
443 static int live_misc_p (struct mem_node *, void *);
444 static void mark_maybe_object (Lisp_Object);
445 static void mark_memory (void *, void *, int);
446 static void mem_init (void);
447 static struct mem_node *mem_insert (void *, void *, enum mem_type);
448 static void mem_insert_fixup (struct mem_node *);
449 static void mem_rotate_left (struct mem_node *);
450 static void mem_rotate_right (struct mem_node *);
451 static void mem_delete (struct mem_node *);
452 static void mem_delete_fixup (struct mem_node *);
453 static INLINE struct mem_node *mem_find (void *);
456 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
457 static void check_gcpros (void);
458 #endif
460 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
462 /* Recording what needs to be marked for gc. */
464 struct gcpro *gcprolist;
466 /* Addresses of staticpro'd variables. Initialize it to a nonzero
467 value; otherwise some compilers put it into BSS. */
469 #define NSTATICS 0x640
470 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
472 /* Index of next unused slot in staticvec. */
474 static int staticidx = 0;
476 static POINTER_TYPE *pure_alloc (size_t, int);
479 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
480 ALIGNMENT must be a power of 2. */
482 #define ALIGN(ptr, ALIGNMENT) \
483 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
484 & ~((ALIGNMENT) - 1)))
488 /************************************************************************
489 Malloc
490 ************************************************************************/
492 /* Function malloc calls this if it finds we are near exhausting storage. */
494 void
495 malloc_warning (const char *str)
497 pending_malloc_warning = str;
501 /* Display an already-pending malloc warning. */
503 void
504 display_malloc_warning (void)
506 call3 (intern ("display-warning"),
507 intern ("alloc"),
508 build_string (pending_malloc_warning),
509 intern ("emergency"));
510 pending_malloc_warning = 0;
514 #ifdef DOUG_LEA_MALLOC
515 # define BYTES_USED (mallinfo ().uordblks)
516 #else
517 # define BYTES_USED _bytes_used
518 #endif
520 /* Called if we can't allocate relocatable space for a buffer. */
522 void
523 buffer_memory_full (void)
525 /* If buffers use the relocating allocator, no need to free
526 spare_memory, because we may have plenty of malloc space left
527 that we could get, and if we don't, the malloc that fails will
528 itself cause spare_memory to be freed. If buffers don't use the
529 relocating allocator, treat this like any other failing
530 malloc. */
532 #ifndef REL_ALLOC
533 memory_full ();
534 #endif
536 /* This used to call error, but if we've run out of memory, we could
537 get infinite recursion trying to build the string. */
538 xsignal (Qnil, Vmemory_signal_data);
542 #ifdef XMALLOC_OVERRUN_CHECK
544 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
545 and a 16 byte trailer around each block.
547 The header consists of 12 fixed bytes + a 4 byte integer contaning the
548 original block size, while the trailer consists of 16 fixed bytes.
550 The header is used to detect whether this block has been allocated
551 through these functions -- as it seems that some low-level libc
552 functions may bypass the malloc hooks.
556 #define XMALLOC_OVERRUN_CHECK_SIZE 16
558 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
559 { 0x9a, 0x9b, 0xae, 0xaf,
560 0xbf, 0xbe, 0xce, 0xcf,
561 0xea, 0xeb, 0xec, 0xed };
563 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
564 { 0xaa, 0xab, 0xac, 0xad,
565 0xba, 0xbb, 0xbc, 0xbd,
566 0xca, 0xcb, 0xcc, 0xcd,
567 0xda, 0xdb, 0xdc, 0xdd };
569 /* Macros to insert and extract the block size in the header. */
571 #define XMALLOC_PUT_SIZE(ptr, size) \
572 (ptr[-1] = (size & 0xff), \
573 ptr[-2] = ((size >> 8) & 0xff), \
574 ptr[-3] = ((size >> 16) & 0xff), \
575 ptr[-4] = ((size >> 24) & 0xff))
577 #define XMALLOC_GET_SIZE(ptr) \
578 (size_t)((unsigned)(ptr[-1]) | \
579 ((unsigned)(ptr[-2]) << 8) | \
580 ((unsigned)(ptr[-3]) << 16) | \
581 ((unsigned)(ptr[-4]) << 24))
584 /* The call depth in overrun_check functions. For example, this might happen:
585 xmalloc()
586 overrun_check_malloc()
587 -> malloc -> (via hook)_-> emacs_blocked_malloc
588 -> overrun_check_malloc
589 call malloc (hooks are NULL, so real malloc is called).
590 malloc returns 10000.
591 add overhead, return 10016.
592 <- (back in overrun_check_malloc)
593 add overhead again, return 10032
594 xmalloc returns 10032.
596 (time passes).
598 xfree(10032)
599 overrun_check_free(10032)
600 decrease overhed
601 free(10016) <- crash, because 10000 is the original pointer. */
603 static int check_depth;
605 /* Like malloc, but wraps allocated block with header and trailer. */
607 POINTER_TYPE *
608 overrun_check_malloc (size)
609 size_t size;
611 register unsigned char *val;
612 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
614 val = (unsigned char *) malloc (size + overhead);
615 if (val && check_depth == 1)
617 memcpy (val, xmalloc_overrun_check_header,
618 XMALLOC_OVERRUN_CHECK_SIZE - 4);
619 val += XMALLOC_OVERRUN_CHECK_SIZE;
620 XMALLOC_PUT_SIZE(val, size);
621 memcpy (val + size, xmalloc_overrun_check_trailer,
622 XMALLOC_OVERRUN_CHECK_SIZE);
624 --check_depth;
625 return (POINTER_TYPE *)val;
629 /* Like realloc, but checks old block for overrun, and wraps new block
630 with header and trailer. */
632 POINTER_TYPE *
633 overrun_check_realloc (block, size)
634 POINTER_TYPE *block;
635 size_t size;
637 register unsigned char *val = (unsigned char *)block;
638 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
640 if (val
641 && check_depth == 1
642 && memcmp (xmalloc_overrun_check_header,
643 val - XMALLOC_OVERRUN_CHECK_SIZE,
644 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
646 size_t osize = XMALLOC_GET_SIZE (val);
647 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
648 XMALLOC_OVERRUN_CHECK_SIZE))
649 abort ();
650 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
651 val -= XMALLOC_OVERRUN_CHECK_SIZE;
652 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
655 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
657 if (val && check_depth == 1)
659 memcpy (val, xmalloc_overrun_check_header,
660 XMALLOC_OVERRUN_CHECK_SIZE - 4);
661 val += XMALLOC_OVERRUN_CHECK_SIZE;
662 XMALLOC_PUT_SIZE(val, size);
663 memcpy (val + size, xmalloc_overrun_check_trailer,
664 XMALLOC_OVERRUN_CHECK_SIZE);
666 --check_depth;
667 return (POINTER_TYPE *)val;
670 /* Like free, but checks block for overrun. */
672 void
673 overrun_check_free (block)
674 POINTER_TYPE *block;
676 unsigned char *val = (unsigned char *)block;
678 ++check_depth;
679 if (val
680 && check_depth == 1
681 && memcmp (xmalloc_overrun_check_header,
682 val - XMALLOC_OVERRUN_CHECK_SIZE,
683 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
685 size_t osize = XMALLOC_GET_SIZE (val);
686 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
687 XMALLOC_OVERRUN_CHECK_SIZE))
688 abort ();
689 #ifdef XMALLOC_CLEAR_FREE_MEMORY
690 val -= XMALLOC_OVERRUN_CHECK_SIZE;
691 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
692 #else
693 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
694 val -= XMALLOC_OVERRUN_CHECK_SIZE;
695 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
696 #endif
699 free (val);
700 --check_depth;
703 #undef malloc
704 #undef realloc
705 #undef free
706 #define malloc overrun_check_malloc
707 #define realloc overrun_check_realloc
708 #define free overrun_check_free
709 #endif
711 #ifdef SYNC_INPUT
712 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
713 there's no need to block input around malloc. */
714 #define MALLOC_BLOCK_INPUT ((void)0)
715 #define MALLOC_UNBLOCK_INPUT ((void)0)
716 #else
717 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
718 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
719 #endif
721 /* Like malloc but check for no memory and block interrupt input.. */
723 POINTER_TYPE *
724 xmalloc (size_t size)
726 register POINTER_TYPE *val;
728 MALLOC_BLOCK_INPUT;
729 val = (POINTER_TYPE *) malloc (size);
730 MALLOC_UNBLOCK_INPUT;
732 if (!val && size)
733 memory_full ();
734 return val;
738 /* Like realloc but check for no memory and block interrupt input.. */
740 POINTER_TYPE *
741 xrealloc (POINTER_TYPE *block, size_t size)
743 register POINTER_TYPE *val;
745 MALLOC_BLOCK_INPUT;
746 /* We must call malloc explicitly when BLOCK is 0, since some
747 reallocs don't do this. */
748 if (! block)
749 val = (POINTER_TYPE *) malloc (size);
750 else
751 val = (POINTER_TYPE *) realloc (block, size);
752 MALLOC_UNBLOCK_INPUT;
754 if (!val && size) memory_full ();
755 return val;
759 /* Like free but block interrupt input. */
761 void
762 xfree (POINTER_TYPE *block)
764 if (!block)
765 return;
766 MALLOC_BLOCK_INPUT;
767 free (block);
768 MALLOC_UNBLOCK_INPUT;
769 /* We don't call refill_memory_reserve here
770 because that duplicates doing so in emacs_blocked_free
771 and the criterion should go there. */
775 /* Like strdup, but uses xmalloc. */
777 char *
778 xstrdup (const char *s)
780 size_t len = strlen (s) + 1;
781 char *p = (char *) xmalloc (len);
782 memcpy (p, s, len);
783 return p;
787 /* Unwind for SAFE_ALLOCA */
789 Lisp_Object
790 safe_alloca_unwind (Lisp_Object arg)
792 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
794 p->dogc = 0;
795 xfree (p->pointer);
796 p->pointer = 0;
797 free_misc (arg);
798 return Qnil;
802 /* Like malloc but used for allocating Lisp data. NBYTES is the
803 number of bytes to allocate, TYPE describes the intended use of the
804 allcated memory block (for strings, for conses, ...). */
806 #ifndef USE_LSB_TAG
807 static void *lisp_malloc_loser;
808 #endif
810 static POINTER_TYPE *
811 lisp_malloc (size_t nbytes, enum mem_type type)
813 register void *val;
815 MALLOC_BLOCK_INPUT;
817 #ifdef GC_MALLOC_CHECK
818 allocated_mem_type = type;
819 #endif
821 val = (void *) malloc (nbytes);
823 #ifndef USE_LSB_TAG
824 /* If the memory just allocated cannot be addressed thru a Lisp
825 object's pointer, and it needs to be,
826 that's equivalent to running out of memory. */
827 if (val && type != MEM_TYPE_NON_LISP)
829 Lisp_Object tem;
830 XSETCONS (tem, (char *) val + nbytes - 1);
831 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
833 lisp_malloc_loser = val;
834 free (val);
835 val = 0;
838 #endif
840 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
841 if (val && type != MEM_TYPE_NON_LISP)
842 mem_insert (val, (char *) val + nbytes, type);
843 #endif
845 MALLOC_UNBLOCK_INPUT;
846 if (!val && nbytes)
847 memory_full ();
848 return val;
851 /* Free BLOCK. This must be called to free memory allocated with a
852 call to lisp_malloc. */
854 static void
855 lisp_free (POINTER_TYPE *block)
857 MALLOC_BLOCK_INPUT;
858 free (block);
859 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
860 mem_delete (mem_find (block));
861 #endif
862 MALLOC_UNBLOCK_INPUT;
865 /* Allocation of aligned blocks of memory to store Lisp data. */
866 /* The entry point is lisp_align_malloc which returns blocks of at most */
867 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
869 /* Use posix_memalloc if the system has it and we're using the system's
870 malloc (because our gmalloc.c routines don't have posix_memalign although
871 its memalloc could be used). */
872 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
873 #define USE_POSIX_MEMALIGN 1
874 #endif
876 /* BLOCK_ALIGN has to be a power of 2. */
877 #define BLOCK_ALIGN (1 << 10)
879 /* Padding to leave at the end of a malloc'd block. This is to give
880 malloc a chance to minimize the amount of memory wasted to alignment.
881 It should be tuned to the particular malloc library used.
882 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
883 posix_memalign on the other hand would ideally prefer a value of 4
884 because otherwise, there's 1020 bytes wasted between each ablocks.
885 In Emacs, testing shows that those 1020 can most of the time be
886 efficiently used by malloc to place other objects, so a value of 0 can
887 still preferable unless you have a lot of aligned blocks and virtually
888 nothing else. */
889 #define BLOCK_PADDING 0
890 #define BLOCK_BYTES \
891 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
893 /* Internal data structures and constants. */
895 #define ABLOCKS_SIZE 16
897 /* An aligned block of memory. */
898 struct ablock
900 union
902 char payload[BLOCK_BYTES];
903 struct ablock *next_free;
904 } x;
905 /* `abase' is the aligned base of the ablocks. */
906 /* It is overloaded to hold the virtual `busy' field that counts
907 the number of used ablock in the parent ablocks.
908 The first ablock has the `busy' field, the others have the `abase'
909 field. To tell the difference, we assume that pointers will have
910 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
911 is used to tell whether the real base of the parent ablocks is `abase'
912 (if not, the word before the first ablock holds a pointer to the
913 real base). */
914 struct ablocks *abase;
915 /* The padding of all but the last ablock is unused. The padding of
916 the last ablock in an ablocks is not allocated. */
917 #if BLOCK_PADDING
918 char padding[BLOCK_PADDING];
919 #endif
922 /* A bunch of consecutive aligned blocks. */
923 struct ablocks
925 struct ablock blocks[ABLOCKS_SIZE];
928 /* Size of the block requested from malloc or memalign. */
929 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
931 #define ABLOCK_ABASE(block) \
932 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
933 ? (struct ablocks *)(block) \
934 : (block)->abase)
936 /* Virtual `busy' field. */
937 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
939 /* Pointer to the (not necessarily aligned) malloc block. */
940 #ifdef USE_POSIX_MEMALIGN
941 #define ABLOCKS_BASE(abase) (abase)
942 #else
943 #define ABLOCKS_BASE(abase) \
944 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
945 #endif
947 /* The list of free ablock. */
948 static struct ablock *free_ablock;
950 /* Allocate an aligned block of nbytes.
951 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
952 smaller or equal to BLOCK_BYTES. */
953 static POINTER_TYPE *
954 lisp_align_malloc (size_t nbytes, enum mem_type type)
956 void *base, *val;
957 struct ablocks *abase;
959 eassert (nbytes <= BLOCK_BYTES);
961 MALLOC_BLOCK_INPUT;
963 #ifdef GC_MALLOC_CHECK
964 allocated_mem_type = type;
965 #endif
967 if (!free_ablock)
969 int i;
970 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
972 #ifdef DOUG_LEA_MALLOC
973 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
974 because mapped region contents are not preserved in
975 a dumped Emacs. */
976 mallopt (M_MMAP_MAX, 0);
977 #endif
979 #ifdef USE_POSIX_MEMALIGN
981 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
982 if (err)
983 base = NULL;
984 abase = base;
986 #else
987 base = malloc (ABLOCKS_BYTES);
988 abase = ALIGN (base, BLOCK_ALIGN);
989 #endif
991 if (base == 0)
993 MALLOC_UNBLOCK_INPUT;
994 memory_full ();
997 aligned = (base == abase);
998 if (!aligned)
999 ((void**)abase)[-1] = base;
1001 #ifdef DOUG_LEA_MALLOC
1002 /* Back to a reasonable maximum of mmap'ed areas. */
1003 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1004 #endif
1006 #ifndef USE_LSB_TAG
1007 /* If the memory just allocated cannot be addressed thru a Lisp
1008 object's pointer, and it needs to be, that's equivalent to
1009 running out of memory. */
1010 if (type != MEM_TYPE_NON_LISP)
1012 Lisp_Object tem;
1013 char *end = (char *) base + ABLOCKS_BYTES - 1;
1014 XSETCONS (tem, end);
1015 if ((char *) XCONS (tem) != end)
1017 lisp_malloc_loser = base;
1018 free (base);
1019 MALLOC_UNBLOCK_INPUT;
1020 memory_full ();
1023 #endif
1025 /* Initialize the blocks and put them on the free list.
1026 Is `base' was not properly aligned, we can't use the last block. */
1027 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1029 abase->blocks[i].abase = abase;
1030 abase->blocks[i].x.next_free = free_ablock;
1031 free_ablock = &abase->blocks[i];
1033 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
1035 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
1036 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1037 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1038 eassert (ABLOCKS_BASE (abase) == base);
1039 eassert (aligned == (long) ABLOCKS_BUSY (abase));
1042 abase = ABLOCK_ABASE (free_ablock);
1043 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1044 val = free_ablock;
1045 free_ablock = free_ablock->x.next_free;
1047 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1048 if (val && type != MEM_TYPE_NON_LISP)
1049 mem_insert (val, (char *) val + nbytes, type);
1050 #endif
1052 MALLOC_UNBLOCK_INPUT;
1053 if (!val && nbytes)
1054 memory_full ();
1056 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1057 return val;
1060 static void
1061 lisp_align_free (POINTER_TYPE *block)
1063 struct ablock *ablock = block;
1064 struct ablocks *abase = ABLOCK_ABASE (ablock);
1066 MALLOC_BLOCK_INPUT;
1067 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1068 mem_delete (mem_find (block));
1069 #endif
1070 /* Put on free list. */
1071 ablock->x.next_free = free_ablock;
1072 free_ablock = ablock;
1073 /* Update busy count. */
1074 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1076 if (2 > (long) ABLOCKS_BUSY (abase))
1077 { /* All the blocks are free. */
1078 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1079 struct ablock **tem = &free_ablock;
1080 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1082 while (*tem)
1084 if (*tem >= (struct ablock *) abase && *tem < atop)
1086 i++;
1087 *tem = (*tem)->x.next_free;
1089 else
1090 tem = &(*tem)->x.next_free;
1092 eassert ((aligned & 1) == aligned);
1093 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1094 #ifdef USE_POSIX_MEMALIGN
1095 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1096 #endif
1097 free (ABLOCKS_BASE (abase));
1099 MALLOC_UNBLOCK_INPUT;
1102 /* Return a new buffer structure allocated from the heap with
1103 a call to lisp_malloc. */
1105 struct buffer *
1106 allocate_buffer (void)
1108 struct buffer *b
1109 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1110 MEM_TYPE_BUFFER);
1111 b->size = sizeof (struct buffer) / sizeof (EMACS_INT);
1112 XSETPVECTYPE (b, PVEC_BUFFER);
1113 return b;
1117 #ifndef SYSTEM_MALLOC
1119 /* Arranging to disable input signals while we're in malloc.
1121 This only works with GNU malloc. To help out systems which can't
1122 use GNU malloc, all the calls to malloc, realloc, and free
1123 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1124 pair; unfortunately, we have no idea what C library functions
1125 might call malloc, so we can't really protect them unless you're
1126 using GNU malloc. Fortunately, most of the major operating systems
1127 can use GNU malloc. */
1129 #ifndef SYNC_INPUT
1130 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1131 there's no need to block input around malloc. */
1133 #ifndef DOUG_LEA_MALLOC
1134 extern void * (*__malloc_hook) (size_t, const void *);
1135 extern void * (*__realloc_hook) (void *, size_t, const void *);
1136 extern void (*__free_hook) (void *, const void *);
1137 /* Else declared in malloc.h, perhaps with an extra arg. */
1138 #endif /* DOUG_LEA_MALLOC */
1139 static void * (*old_malloc_hook) (size_t, const void *);
1140 static void * (*old_realloc_hook) (void *, size_t, const void*);
1141 static void (*old_free_hook) (void*, const void*);
1143 /* This function is used as the hook for free to call. */
1145 static void
1146 emacs_blocked_free (void *ptr, const void *ptr2)
1148 BLOCK_INPUT_ALLOC;
1150 #ifdef GC_MALLOC_CHECK
1151 if (ptr)
1153 struct mem_node *m;
1155 m = mem_find (ptr);
1156 if (m == MEM_NIL || m->start != ptr)
1158 fprintf (stderr,
1159 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1160 abort ();
1162 else
1164 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1165 mem_delete (m);
1168 #endif /* GC_MALLOC_CHECK */
1170 __free_hook = old_free_hook;
1171 free (ptr);
1173 /* If we released our reserve (due to running out of memory),
1174 and we have a fair amount free once again,
1175 try to set aside another reserve in case we run out once more. */
1176 if (! NILP (Vmemory_full)
1177 /* Verify there is enough space that even with the malloc
1178 hysteresis this call won't run out again.
1179 The code here is correct as long as SPARE_MEMORY
1180 is substantially larger than the block size malloc uses. */
1181 && (bytes_used_when_full
1182 > ((bytes_used_when_reconsidered = BYTES_USED)
1183 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1184 refill_memory_reserve ();
1186 __free_hook = emacs_blocked_free;
1187 UNBLOCK_INPUT_ALLOC;
1191 /* This function is the malloc hook that Emacs uses. */
1193 static void *
1194 emacs_blocked_malloc (size_t size, const void *ptr)
1196 void *value;
1198 BLOCK_INPUT_ALLOC;
1199 __malloc_hook = old_malloc_hook;
1200 #ifdef DOUG_LEA_MALLOC
1201 /* Segfaults on my system. --lorentey */
1202 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1203 #else
1204 __malloc_extra_blocks = malloc_hysteresis;
1205 #endif
1207 value = (void *) malloc (size);
1209 #ifdef GC_MALLOC_CHECK
1211 struct mem_node *m = mem_find (value);
1212 if (m != MEM_NIL)
1214 fprintf (stderr, "Malloc returned %p which is already in use\n",
1215 value);
1216 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1217 m->start, m->end, (char *) m->end - (char *) m->start,
1218 m->type);
1219 abort ();
1222 if (!dont_register_blocks)
1224 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1225 allocated_mem_type = MEM_TYPE_NON_LISP;
1228 #endif /* GC_MALLOC_CHECK */
1230 __malloc_hook = emacs_blocked_malloc;
1231 UNBLOCK_INPUT_ALLOC;
1233 /* fprintf (stderr, "%p malloc\n", value); */
1234 return value;
1238 /* This function is the realloc hook that Emacs uses. */
1240 static void *
1241 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1243 void *value;
1245 BLOCK_INPUT_ALLOC;
1246 __realloc_hook = old_realloc_hook;
1248 #ifdef GC_MALLOC_CHECK
1249 if (ptr)
1251 struct mem_node *m = mem_find (ptr);
1252 if (m == MEM_NIL || m->start != ptr)
1254 fprintf (stderr,
1255 "Realloc of %p which wasn't allocated with malloc\n",
1256 ptr);
1257 abort ();
1260 mem_delete (m);
1263 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1265 /* Prevent malloc from registering blocks. */
1266 dont_register_blocks = 1;
1267 #endif /* GC_MALLOC_CHECK */
1269 value = (void *) realloc (ptr, size);
1271 #ifdef GC_MALLOC_CHECK
1272 dont_register_blocks = 0;
1275 struct mem_node *m = mem_find (value);
1276 if (m != MEM_NIL)
1278 fprintf (stderr, "Realloc returns memory that is already in use\n");
1279 abort ();
1282 /* Can't handle zero size regions in the red-black tree. */
1283 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1286 /* fprintf (stderr, "%p <- realloc\n", value); */
1287 #endif /* GC_MALLOC_CHECK */
1289 __realloc_hook = emacs_blocked_realloc;
1290 UNBLOCK_INPUT_ALLOC;
1292 return value;
1296 #ifdef HAVE_GTK_AND_PTHREAD
1297 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1298 normal malloc. Some thread implementations need this as they call
1299 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1300 calls malloc because it is the first call, and we have an endless loop. */
1302 void
1303 reset_malloc_hooks ()
1305 __free_hook = old_free_hook;
1306 __malloc_hook = old_malloc_hook;
1307 __realloc_hook = old_realloc_hook;
1309 #endif /* HAVE_GTK_AND_PTHREAD */
1312 /* Called from main to set up malloc to use our hooks. */
1314 void
1315 uninterrupt_malloc (void)
1317 #ifdef HAVE_GTK_AND_PTHREAD
1318 #ifdef DOUG_LEA_MALLOC
1319 pthread_mutexattr_t attr;
1321 /* GLIBC has a faster way to do this, but lets keep it portable.
1322 This is according to the Single UNIX Specification. */
1323 pthread_mutexattr_init (&attr);
1324 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1325 pthread_mutex_init (&alloc_mutex, &attr);
1326 #else /* !DOUG_LEA_MALLOC */
1327 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1328 and the bundled gmalloc.c doesn't require it. */
1329 pthread_mutex_init (&alloc_mutex, NULL);
1330 #endif /* !DOUG_LEA_MALLOC */
1331 #endif /* HAVE_GTK_AND_PTHREAD */
1333 if (__free_hook != emacs_blocked_free)
1334 old_free_hook = __free_hook;
1335 __free_hook = emacs_blocked_free;
1337 if (__malloc_hook != emacs_blocked_malloc)
1338 old_malloc_hook = __malloc_hook;
1339 __malloc_hook = emacs_blocked_malloc;
1341 if (__realloc_hook != emacs_blocked_realloc)
1342 old_realloc_hook = __realloc_hook;
1343 __realloc_hook = emacs_blocked_realloc;
1346 #endif /* not SYNC_INPUT */
1347 #endif /* not SYSTEM_MALLOC */
1351 /***********************************************************************
1352 Interval Allocation
1353 ***********************************************************************/
1355 /* Number of intervals allocated in an interval_block structure.
1356 The 1020 is 1024 minus malloc overhead. */
1358 #define INTERVAL_BLOCK_SIZE \
1359 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1361 /* Intervals are allocated in chunks in form of an interval_block
1362 structure. */
1364 struct interval_block
1366 /* Place `intervals' first, to preserve alignment. */
1367 struct interval intervals[INTERVAL_BLOCK_SIZE];
1368 struct interval_block *next;
1371 /* Current interval block. Its `next' pointer points to older
1372 blocks. */
1374 static struct interval_block *interval_block;
1376 /* Index in interval_block above of the next unused interval
1377 structure. */
1379 static int interval_block_index;
1381 /* Number of free and live intervals. */
1383 static int total_free_intervals, total_intervals;
1385 /* List of free intervals. */
1387 INTERVAL interval_free_list;
1389 /* Total number of interval blocks now in use. */
1391 static int n_interval_blocks;
1394 /* Initialize interval allocation. */
1396 static void
1397 init_intervals (void)
1399 interval_block = NULL;
1400 interval_block_index = INTERVAL_BLOCK_SIZE;
1401 interval_free_list = 0;
1402 n_interval_blocks = 0;
1406 /* Return a new interval. */
1408 INTERVAL
1409 make_interval (void)
1411 INTERVAL val;
1413 /* eassert (!handling_signal); */
1415 MALLOC_BLOCK_INPUT;
1417 if (interval_free_list)
1419 val = interval_free_list;
1420 interval_free_list = INTERVAL_PARENT (interval_free_list);
1422 else
1424 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1426 register struct interval_block *newi;
1428 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1429 MEM_TYPE_NON_LISP);
1431 newi->next = interval_block;
1432 interval_block = newi;
1433 interval_block_index = 0;
1434 n_interval_blocks++;
1436 val = &interval_block->intervals[interval_block_index++];
1439 MALLOC_UNBLOCK_INPUT;
1441 consing_since_gc += sizeof (struct interval);
1442 intervals_consed++;
1443 RESET_INTERVAL (val);
1444 val->gcmarkbit = 0;
1445 return val;
1449 /* Mark Lisp objects in interval I. */
1451 static void
1452 mark_interval (register INTERVAL i, Lisp_Object dummy)
1454 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1455 i->gcmarkbit = 1;
1456 mark_object (i->plist);
1460 /* Mark the interval tree rooted in TREE. Don't call this directly;
1461 use the macro MARK_INTERVAL_TREE instead. */
1463 static void
1464 mark_interval_tree (register INTERVAL tree)
1466 /* No need to test if this tree has been marked already; this
1467 function is always called through the MARK_INTERVAL_TREE macro,
1468 which takes care of that. */
1470 traverse_intervals_noorder (tree, mark_interval, Qnil);
1474 /* Mark the interval tree rooted in I. */
1476 #define MARK_INTERVAL_TREE(i) \
1477 do { \
1478 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1479 mark_interval_tree (i); \
1480 } while (0)
1483 #define UNMARK_BALANCE_INTERVALS(i) \
1484 do { \
1485 if (! NULL_INTERVAL_P (i)) \
1486 (i) = balance_intervals (i); \
1487 } while (0)
1490 /* Number support. If USE_LISP_UNION_TYPE is in effect, we
1491 can't create number objects in macros. */
1492 #ifndef make_number
1493 Lisp_Object
1494 make_number (n)
1495 EMACS_INT n;
1497 Lisp_Object obj;
1498 obj.s.val = n;
1499 obj.s.type = Lisp_Int;
1500 return obj;
1502 #endif
1504 /***********************************************************************
1505 String Allocation
1506 ***********************************************************************/
1508 /* Lisp_Strings are allocated in string_block structures. When a new
1509 string_block is allocated, all the Lisp_Strings it contains are
1510 added to a free-list string_free_list. When a new Lisp_String is
1511 needed, it is taken from that list. During the sweep phase of GC,
1512 string_blocks that are entirely free are freed, except two which
1513 we keep.
1515 String data is allocated from sblock structures. Strings larger
1516 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1517 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1519 Sblocks consist internally of sdata structures, one for each
1520 Lisp_String. The sdata structure points to the Lisp_String it
1521 belongs to. The Lisp_String points back to the `u.data' member of
1522 its sdata structure.
1524 When a Lisp_String is freed during GC, it is put back on
1525 string_free_list, and its `data' member and its sdata's `string'
1526 pointer is set to null. The size of the string is recorded in the
1527 `u.nbytes' member of the sdata. So, sdata structures that are no
1528 longer used, can be easily recognized, and it's easy to compact the
1529 sblocks of small strings which we do in compact_small_strings. */
1531 /* Size in bytes of an sblock structure used for small strings. This
1532 is 8192 minus malloc overhead. */
1534 #define SBLOCK_SIZE 8188
1536 /* Strings larger than this are considered large strings. String data
1537 for large strings is allocated from individual sblocks. */
1539 #define LARGE_STRING_BYTES 1024
1541 /* Structure describing string memory sub-allocated from an sblock.
1542 This is where the contents of Lisp strings are stored. */
1544 struct sdata
1546 /* Back-pointer to the string this sdata belongs to. If null, this
1547 structure is free, and the NBYTES member of the union below
1548 contains the string's byte size (the same value that STRING_BYTES
1549 would return if STRING were non-null). If non-null, STRING_BYTES
1550 (STRING) is the size of the data, and DATA contains the string's
1551 contents. */
1552 struct Lisp_String *string;
1554 #ifdef GC_CHECK_STRING_BYTES
1556 EMACS_INT nbytes;
1557 unsigned char data[1];
1559 #define SDATA_NBYTES(S) (S)->nbytes
1560 #define SDATA_DATA(S) (S)->data
1562 #else /* not GC_CHECK_STRING_BYTES */
1564 union
1566 /* When STRING in non-null. */
1567 unsigned char data[1];
1569 /* When STRING is null. */
1570 EMACS_INT nbytes;
1571 } u;
1574 #define SDATA_NBYTES(S) (S)->u.nbytes
1575 #define SDATA_DATA(S) (S)->u.data
1577 #endif /* not GC_CHECK_STRING_BYTES */
1581 /* Structure describing a block of memory which is sub-allocated to
1582 obtain string data memory for strings. Blocks for small strings
1583 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1584 as large as needed. */
1586 struct sblock
1588 /* Next in list. */
1589 struct sblock *next;
1591 /* Pointer to the next free sdata block. This points past the end
1592 of the sblock if there isn't any space left in this block. */
1593 struct sdata *next_free;
1595 /* Start of data. */
1596 struct sdata first_data;
1599 /* Number of Lisp strings in a string_block structure. The 1020 is
1600 1024 minus malloc overhead. */
1602 #define STRING_BLOCK_SIZE \
1603 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1605 /* Structure describing a block from which Lisp_String structures
1606 are allocated. */
1608 struct string_block
1610 /* Place `strings' first, to preserve alignment. */
1611 struct Lisp_String strings[STRING_BLOCK_SIZE];
1612 struct string_block *next;
1615 /* Head and tail of the list of sblock structures holding Lisp string
1616 data. We always allocate from current_sblock. The NEXT pointers
1617 in the sblock structures go from oldest_sblock to current_sblock. */
1619 static struct sblock *oldest_sblock, *current_sblock;
1621 /* List of sblocks for large strings. */
1623 static struct sblock *large_sblocks;
1625 /* List of string_block structures, and how many there are. */
1627 static struct string_block *string_blocks;
1628 static int n_string_blocks;
1630 /* Free-list of Lisp_Strings. */
1632 static struct Lisp_String *string_free_list;
1634 /* Number of live and free Lisp_Strings. */
1636 static int total_strings, total_free_strings;
1638 /* Number of bytes used by live strings. */
1640 static EMACS_INT total_string_size;
1642 /* Given a pointer to a Lisp_String S which is on the free-list
1643 string_free_list, return a pointer to its successor in the
1644 free-list. */
1646 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1648 /* Return a pointer to the sdata structure belonging to Lisp string S.
1649 S must be live, i.e. S->data must not be null. S->data is actually
1650 a pointer to the `u.data' member of its sdata structure; the
1651 structure starts at a constant offset in front of that. */
1653 #ifdef GC_CHECK_STRING_BYTES
1655 #define SDATA_OF_STRING(S) \
1656 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1657 - sizeof (EMACS_INT)))
1659 #else /* not GC_CHECK_STRING_BYTES */
1661 #define SDATA_OF_STRING(S) \
1662 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1664 #endif /* not GC_CHECK_STRING_BYTES */
1667 #ifdef GC_CHECK_STRING_OVERRUN
1669 /* We check for overrun in string data blocks by appending a small
1670 "cookie" after each allocated string data block, and check for the
1671 presence of this cookie during GC. */
1673 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1674 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1675 { 0xde, 0xad, 0xbe, 0xef };
1677 #else
1678 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1679 #endif
1681 /* Value is the size of an sdata structure large enough to hold NBYTES
1682 bytes of string data. The value returned includes a terminating
1683 NUL byte, the size of the sdata structure, and padding. */
1685 #ifdef GC_CHECK_STRING_BYTES
1687 #define SDATA_SIZE(NBYTES) \
1688 ((sizeof (struct Lisp_String *) \
1689 + (NBYTES) + 1 \
1690 + sizeof (EMACS_INT) \
1691 + sizeof (EMACS_INT) - 1) \
1692 & ~(sizeof (EMACS_INT) - 1))
1694 #else /* not GC_CHECK_STRING_BYTES */
1696 #define SDATA_SIZE(NBYTES) \
1697 ((sizeof (struct Lisp_String *) \
1698 + (NBYTES) + 1 \
1699 + sizeof (EMACS_INT) - 1) \
1700 & ~(sizeof (EMACS_INT) - 1))
1702 #endif /* not GC_CHECK_STRING_BYTES */
1704 /* Extra bytes to allocate for each string. */
1706 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1708 /* Initialize string allocation. Called from init_alloc_once. */
1710 static void
1711 init_strings (void)
1713 total_strings = total_free_strings = total_string_size = 0;
1714 oldest_sblock = current_sblock = large_sblocks = NULL;
1715 string_blocks = NULL;
1716 n_string_blocks = 0;
1717 string_free_list = NULL;
1718 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1719 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1723 #ifdef GC_CHECK_STRING_BYTES
1725 static int check_string_bytes_count;
1727 static void check_string_bytes (int);
1728 static void check_sblock (struct sblock *);
1730 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1733 /* Like GC_STRING_BYTES, but with debugging check. */
1735 EMACS_INT
1736 string_bytes (struct Lisp_String *s)
1738 EMACS_INT nbytes =
1739 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1741 if (!PURE_POINTER_P (s)
1742 && s->data
1743 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1744 abort ();
1745 return nbytes;
1748 /* Check validity of Lisp strings' string_bytes member in B. */
1750 static void
1751 check_sblock (b)
1752 struct sblock *b;
1754 struct sdata *from, *end, *from_end;
1756 end = b->next_free;
1758 for (from = &b->first_data; from < end; from = from_end)
1760 /* Compute the next FROM here because copying below may
1761 overwrite data we need to compute it. */
1762 EMACS_INT nbytes;
1764 /* Check that the string size recorded in the string is the
1765 same as the one recorded in the sdata structure. */
1766 if (from->string)
1767 CHECK_STRING_BYTES (from->string);
1769 if (from->string)
1770 nbytes = GC_STRING_BYTES (from->string);
1771 else
1772 nbytes = SDATA_NBYTES (from);
1774 nbytes = SDATA_SIZE (nbytes);
1775 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1780 /* Check validity of Lisp strings' string_bytes member. ALL_P
1781 non-zero means check all strings, otherwise check only most
1782 recently allocated strings. Used for hunting a bug. */
1784 static void
1785 check_string_bytes (all_p)
1786 int all_p;
1788 if (all_p)
1790 struct sblock *b;
1792 for (b = large_sblocks; b; b = b->next)
1794 struct Lisp_String *s = b->first_data.string;
1795 if (s)
1796 CHECK_STRING_BYTES (s);
1799 for (b = oldest_sblock; b; b = b->next)
1800 check_sblock (b);
1802 else
1803 check_sblock (current_sblock);
1806 #endif /* GC_CHECK_STRING_BYTES */
1808 #ifdef GC_CHECK_STRING_FREE_LIST
1810 /* Walk through the string free list looking for bogus next pointers.
1811 This may catch buffer overrun from a previous string. */
1813 static void
1814 check_string_free_list ()
1816 struct Lisp_String *s;
1818 /* Pop a Lisp_String off the free-list. */
1819 s = string_free_list;
1820 while (s != NULL)
1822 if ((unsigned long)s < 1024)
1823 abort();
1824 s = NEXT_FREE_LISP_STRING (s);
1827 #else
1828 #define check_string_free_list()
1829 #endif
1831 /* Return a new Lisp_String. */
1833 static struct Lisp_String *
1834 allocate_string (void)
1836 struct Lisp_String *s;
1838 /* eassert (!handling_signal); */
1840 MALLOC_BLOCK_INPUT;
1842 /* If the free-list is empty, allocate a new string_block, and
1843 add all the Lisp_Strings in it to the free-list. */
1844 if (string_free_list == NULL)
1846 struct string_block *b;
1847 int i;
1849 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1850 memset (b, 0, sizeof *b);
1851 b->next = string_blocks;
1852 string_blocks = b;
1853 ++n_string_blocks;
1855 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1857 s = b->strings + i;
1858 NEXT_FREE_LISP_STRING (s) = string_free_list;
1859 string_free_list = s;
1862 total_free_strings += STRING_BLOCK_SIZE;
1865 check_string_free_list ();
1867 /* Pop a Lisp_String off the free-list. */
1868 s = string_free_list;
1869 string_free_list = NEXT_FREE_LISP_STRING (s);
1871 MALLOC_UNBLOCK_INPUT;
1873 /* Probably not strictly necessary, but play it safe. */
1874 memset (s, 0, sizeof *s);
1876 --total_free_strings;
1877 ++total_strings;
1878 ++strings_consed;
1879 consing_since_gc += sizeof *s;
1881 #ifdef GC_CHECK_STRING_BYTES
1882 if (!noninteractive)
1884 if (++check_string_bytes_count == 200)
1886 check_string_bytes_count = 0;
1887 check_string_bytes (1);
1889 else
1890 check_string_bytes (0);
1892 #endif /* GC_CHECK_STRING_BYTES */
1894 return s;
1898 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1899 plus a NUL byte at the end. Allocate an sdata structure for S, and
1900 set S->data to its `u.data' member. Store a NUL byte at the end of
1901 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1902 S->data if it was initially non-null. */
1904 void
1905 allocate_string_data (struct Lisp_String *s,
1906 EMACS_INT nchars, EMACS_INT nbytes)
1908 struct sdata *data, *old_data;
1909 struct sblock *b;
1910 EMACS_INT needed, old_nbytes;
1912 /* Determine the number of bytes needed to store NBYTES bytes
1913 of string data. */
1914 needed = SDATA_SIZE (nbytes);
1915 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1916 old_nbytes = GC_STRING_BYTES (s);
1918 MALLOC_BLOCK_INPUT;
1920 if (nbytes > LARGE_STRING_BYTES)
1922 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1924 #ifdef DOUG_LEA_MALLOC
1925 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1926 because mapped region contents are not preserved in
1927 a dumped Emacs.
1929 In case you think of allowing it in a dumped Emacs at the
1930 cost of not being able to re-dump, there's another reason:
1931 mmap'ed data typically have an address towards the top of the
1932 address space, which won't fit into an EMACS_INT (at least on
1933 32-bit systems with the current tagging scheme). --fx */
1934 mallopt (M_MMAP_MAX, 0);
1935 #endif
1937 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1939 #ifdef DOUG_LEA_MALLOC
1940 /* Back to a reasonable maximum of mmap'ed areas. */
1941 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1942 #endif
1944 b->next_free = &b->first_data;
1945 b->first_data.string = NULL;
1946 b->next = large_sblocks;
1947 large_sblocks = b;
1949 else if (current_sblock == NULL
1950 || (((char *) current_sblock + SBLOCK_SIZE
1951 - (char *) current_sblock->next_free)
1952 < (needed + GC_STRING_EXTRA)))
1954 /* Not enough room in the current sblock. */
1955 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1956 b->next_free = &b->first_data;
1957 b->first_data.string = NULL;
1958 b->next = NULL;
1960 if (current_sblock)
1961 current_sblock->next = b;
1962 else
1963 oldest_sblock = b;
1964 current_sblock = b;
1966 else
1967 b = current_sblock;
1969 data = b->next_free;
1970 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1972 MALLOC_UNBLOCK_INPUT;
1974 data->string = s;
1975 s->data = SDATA_DATA (data);
1976 #ifdef GC_CHECK_STRING_BYTES
1977 SDATA_NBYTES (data) = nbytes;
1978 #endif
1979 s->size = nchars;
1980 s->size_byte = nbytes;
1981 s->data[nbytes] = '\0';
1982 #ifdef GC_CHECK_STRING_OVERRUN
1983 memcpy (data + needed, string_overrun_cookie, GC_STRING_OVERRUN_COOKIE_SIZE);
1984 #endif
1986 /* If S had already data assigned, mark that as free by setting its
1987 string back-pointer to null, and recording the size of the data
1988 in it. */
1989 if (old_data)
1991 SDATA_NBYTES (old_data) = old_nbytes;
1992 old_data->string = NULL;
1995 consing_since_gc += needed;
1999 /* Sweep and compact strings. */
2001 static void
2002 sweep_strings (void)
2004 struct string_block *b, *next;
2005 struct string_block *live_blocks = NULL;
2007 string_free_list = NULL;
2008 total_strings = total_free_strings = 0;
2009 total_string_size = 0;
2011 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2012 for (b = string_blocks; b; b = next)
2014 int i, nfree = 0;
2015 struct Lisp_String *free_list_before = string_free_list;
2017 next = b->next;
2019 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2021 struct Lisp_String *s = b->strings + i;
2023 if (s->data)
2025 /* String was not on free-list before. */
2026 if (STRING_MARKED_P (s))
2028 /* String is live; unmark it and its intervals. */
2029 UNMARK_STRING (s);
2031 if (!NULL_INTERVAL_P (s->intervals))
2032 UNMARK_BALANCE_INTERVALS (s->intervals);
2034 ++total_strings;
2035 total_string_size += STRING_BYTES (s);
2037 else
2039 /* String is dead. Put it on the free-list. */
2040 struct sdata *data = SDATA_OF_STRING (s);
2042 /* Save the size of S in its sdata so that we know
2043 how large that is. Reset the sdata's string
2044 back-pointer so that we know it's free. */
2045 #ifdef GC_CHECK_STRING_BYTES
2046 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2047 abort ();
2048 #else
2049 data->u.nbytes = GC_STRING_BYTES (s);
2050 #endif
2051 data->string = NULL;
2053 /* Reset the strings's `data' member so that we
2054 know it's free. */
2055 s->data = NULL;
2057 /* Put the string on the free-list. */
2058 NEXT_FREE_LISP_STRING (s) = string_free_list;
2059 string_free_list = s;
2060 ++nfree;
2063 else
2065 /* S was on the free-list before. Put it there again. */
2066 NEXT_FREE_LISP_STRING (s) = string_free_list;
2067 string_free_list = s;
2068 ++nfree;
2072 /* Free blocks that contain free Lisp_Strings only, except
2073 the first two of them. */
2074 if (nfree == STRING_BLOCK_SIZE
2075 && total_free_strings > STRING_BLOCK_SIZE)
2077 lisp_free (b);
2078 --n_string_blocks;
2079 string_free_list = free_list_before;
2081 else
2083 total_free_strings += nfree;
2084 b->next = live_blocks;
2085 live_blocks = b;
2089 check_string_free_list ();
2091 string_blocks = live_blocks;
2092 free_large_strings ();
2093 compact_small_strings ();
2095 check_string_free_list ();
2099 /* Free dead large strings. */
2101 static void
2102 free_large_strings (void)
2104 struct sblock *b, *next;
2105 struct sblock *live_blocks = NULL;
2107 for (b = large_sblocks; b; b = next)
2109 next = b->next;
2111 if (b->first_data.string == NULL)
2112 lisp_free (b);
2113 else
2115 b->next = live_blocks;
2116 live_blocks = b;
2120 large_sblocks = live_blocks;
2124 /* Compact data of small strings. Free sblocks that don't contain
2125 data of live strings after compaction. */
2127 static void
2128 compact_small_strings (void)
2130 struct sblock *b, *tb, *next;
2131 struct sdata *from, *to, *end, *tb_end;
2132 struct sdata *to_end, *from_end;
2134 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2135 to, and TB_END is the end of TB. */
2136 tb = oldest_sblock;
2137 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2138 to = &tb->first_data;
2140 /* Step through the blocks from the oldest to the youngest. We
2141 expect that old blocks will stabilize over time, so that less
2142 copying will happen this way. */
2143 for (b = oldest_sblock; b; b = b->next)
2145 end = b->next_free;
2146 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2148 for (from = &b->first_data; from < end; from = from_end)
2150 /* Compute the next FROM here because copying below may
2151 overwrite data we need to compute it. */
2152 EMACS_INT nbytes;
2154 #ifdef GC_CHECK_STRING_BYTES
2155 /* Check that the string size recorded in the string is the
2156 same as the one recorded in the sdata structure. */
2157 if (from->string
2158 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2159 abort ();
2160 #endif /* GC_CHECK_STRING_BYTES */
2162 if (from->string)
2163 nbytes = GC_STRING_BYTES (from->string);
2164 else
2165 nbytes = SDATA_NBYTES (from);
2167 if (nbytes > LARGE_STRING_BYTES)
2168 abort ();
2170 nbytes = SDATA_SIZE (nbytes);
2171 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2173 #ifdef GC_CHECK_STRING_OVERRUN
2174 if (memcmp (string_overrun_cookie,
2175 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2176 GC_STRING_OVERRUN_COOKIE_SIZE))
2177 abort ();
2178 #endif
2180 /* FROM->string non-null means it's alive. Copy its data. */
2181 if (from->string)
2183 /* If TB is full, proceed with the next sblock. */
2184 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2185 if (to_end > tb_end)
2187 tb->next_free = to;
2188 tb = tb->next;
2189 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2190 to = &tb->first_data;
2191 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2194 /* Copy, and update the string's `data' pointer. */
2195 if (from != to)
2197 xassert (tb != b || to <= from);
2198 memmove (to, from, nbytes + GC_STRING_EXTRA);
2199 to->string->data = SDATA_DATA (to);
2202 /* Advance past the sdata we copied to. */
2203 to = to_end;
2208 /* The rest of the sblocks following TB don't contain live data, so
2209 we can free them. */
2210 for (b = tb->next; b; b = next)
2212 next = b->next;
2213 lisp_free (b);
2216 tb->next_free = to;
2217 tb->next = NULL;
2218 current_sblock = tb;
2222 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2223 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2224 LENGTH must be an integer.
2225 INIT must be an integer that represents a character. */)
2226 (Lisp_Object length, Lisp_Object init)
2228 register Lisp_Object val;
2229 register unsigned char *p, *end;
2230 int c;
2231 EMACS_INT nbytes;
2233 CHECK_NATNUM (length);
2234 CHECK_NUMBER (init);
2236 c = XINT (init);
2237 if (ASCII_CHAR_P (c))
2239 nbytes = XINT (length);
2240 val = make_uninit_string (nbytes);
2241 p = SDATA (val);
2242 end = p + SCHARS (val);
2243 while (p != end)
2244 *p++ = c;
2246 else
2248 unsigned char str[MAX_MULTIBYTE_LENGTH];
2249 int len = CHAR_STRING (c, str);
2250 EMACS_INT string_len = XINT (length);
2252 if (string_len > MOST_POSITIVE_FIXNUM / len)
2253 error ("Maximum string size exceeded");
2254 nbytes = len * string_len;
2255 val = make_uninit_multibyte_string (string_len, nbytes);
2256 p = SDATA (val);
2257 end = p + nbytes;
2258 while (p != end)
2260 memcpy (p, str, len);
2261 p += len;
2265 *p = 0;
2266 return val;
2270 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2271 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2272 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2273 (Lisp_Object length, Lisp_Object init)
2275 register Lisp_Object val;
2276 struct Lisp_Bool_Vector *p;
2277 int real_init, i;
2278 EMACS_INT length_in_chars, length_in_elts;
2279 int bits_per_value;
2281 CHECK_NATNUM (length);
2283 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2285 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2286 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2287 / BOOL_VECTOR_BITS_PER_CHAR);
2289 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2290 slot `size' of the struct Lisp_Bool_Vector. */
2291 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2293 /* Get rid of any bits that would cause confusion. */
2294 XVECTOR (val)->size = 0; /* No Lisp_Object to trace in there. */
2295 /* Use XVECTOR (val) rather than `p' because p->size is not TRT. */
2296 XSETPVECTYPE (XVECTOR (val), PVEC_BOOL_VECTOR);
2298 p = XBOOL_VECTOR (val);
2299 p->size = XFASTINT (length);
2301 real_init = (NILP (init) ? 0 : -1);
2302 for (i = 0; i < length_in_chars ; i++)
2303 p->data[i] = real_init;
2305 /* Clear the extraneous bits in the last byte. */
2306 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2307 p->data[length_in_chars - 1]
2308 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2310 return val;
2314 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2315 of characters from the contents. This string may be unibyte or
2316 multibyte, depending on the contents. */
2318 Lisp_Object
2319 make_string (const char *contents, EMACS_INT nbytes)
2321 register Lisp_Object val;
2322 EMACS_INT nchars, multibyte_nbytes;
2324 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2325 if (nbytes == nchars || nbytes != multibyte_nbytes)
2326 /* CONTENTS contains no multibyte sequences or contains an invalid
2327 multibyte sequence. We must make unibyte string. */
2328 val = make_unibyte_string (contents, nbytes);
2329 else
2330 val = make_multibyte_string (contents, nchars, nbytes);
2331 return val;
2335 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2337 Lisp_Object
2338 make_unibyte_string (const char *contents, EMACS_INT length)
2340 register Lisp_Object val;
2341 val = make_uninit_string (length);
2342 memcpy (SDATA (val), contents, length);
2343 STRING_SET_UNIBYTE (val);
2344 return val;
2348 /* Make a multibyte string from NCHARS characters occupying NBYTES
2349 bytes at CONTENTS. */
2351 Lisp_Object
2352 make_multibyte_string (const char *contents,
2353 EMACS_INT nchars, EMACS_INT nbytes)
2355 register Lisp_Object val;
2356 val = make_uninit_multibyte_string (nchars, nbytes);
2357 memcpy (SDATA (val), contents, nbytes);
2358 return val;
2362 /* Make a string from NCHARS characters occupying NBYTES bytes at
2363 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2365 Lisp_Object
2366 make_string_from_bytes (const char *contents,
2367 EMACS_INT nchars, EMACS_INT nbytes)
2369 register Lisp_Object val;
2370 val = make_uninit_multibyte_string (nchars, nbytes);
2371 memcpy (SDATA (val), contents, nbytes);
2372 if (SBYTES (val) == SCHARS (val))
2373 STRING_SET_UNIBYTE (val);
2374 return val;
2378 /* Make a string from NCHARS characters occupying NBYTES bytes at
2379 CONTENTS. The argument MULTIBYTE controls whether to label the
2380 string as multibyte. If NCHARS is negative, it counts the number of
2381 characters by itself. */
2383 Lisp_Object
2384 make_specified_string (const char *contents,
2385 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
2387 register Lisp_Object val;
2389 if (nchars < 0)
2391 if (multibyte)
2392 nchars = multibyte_chars_in_text (contents, nbytes);
2393 else
2394 nchars = nbytes;
2396 val = make_uninit_multibyte_string (nchars, nbytes);
2397 memcpy (SDATA (val), contents, nbytes);
2398 if (!multibyte)
2399 STRING_SET_UNIBYTE (val);
2400 return val;
2404 /* Make a string from the data at STR, treating it as multibyte if the
2405 data warrants. */
2407 Lisp_Object
2408 build_string (const char *str)
2410 return make_string (str, strlen (str));
2414 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2415 occupying LENGTH bytes. */
2417 Lisp_Object
2418 make_uninit_string (EMACS_INT length)
2420 Lisp_Object val;
2422 if (!length)
2423 return empty_unibyte_string;
2424 val = make_uninit_multibyte_string (length, length);
2425 STRING_SET_UNIBYTE (val);
2426 return val;
2430 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2431 which occupy NBYTES bytes. */
2433 Lisp_Object
2434 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2436 Lisp_Object string;
2437 struct Lisp_String *s;
2439 if (nchars < 0)
2440 abort ();
2441 if (!nbytes)
2442 return empty_multibyte_string;
2444 s = allocate_string ();
2445 allocate_string_data (s, nchars, nbytes);
2446 XSETSTRING (string, s);
2447 string_chars_consed += nbytes;
2448 return string;
2453 /***********************************************************************
2454 Float Allocation
2455 ***********************************************************************/
2457 /* We store float cells inside of float_blocks, allocating a new
2458 float_block with malloc whenever necessary. Float cells reclaimed
2459 by GC are put on a free list to be reallocated before allocating
2460 any new float cells from the latest float_block. */
2462 #define FLOAT_BLOCK_SIZE \
2463 (((BLOCK_BYTES - sizeof (struct float_block *) \
2464 /* The compiler might add padding at the end. */ \
2465 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2466 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2468 #define GETMARKBIT(block,n) \
2469 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2470 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2471 & 1)
2473 #define SETMARKBIT(block,n) \
2474 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2475 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2477 #define UNSETMARKBIT(block,n) \
2478 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2479 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2481 #define FLOAT_BLOCK(fptr) \
2482 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2484 #define FLOAT_INDEX(fptr) \
2485 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2487 struct float_block
2489 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2490 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2491 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2492 struct float_block *next;
2495 #define FLOAT_MARKED_P(fptr) \
2496 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2498 #define FLOAT_MARK(fptr) \
2499 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2501 #define FLOAT_UNMARK(fptr) \
2502 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2504 /* Current float_block. */
2506 struct float_block *float_block;
2508 /* Index of first unused Lisp_Float in the current float_block. */
2510 int float_block_index;
2512 /* Total number of float blocks now in use. */
2514 int n_float_blocks;
2516 /* Free-list of Lisp_Floats. */
2518 struct Lisp_Float *float_free_list;
2521 /* Initialize float allocation. */
2523 static void
2524 init_float (void)
2526 float_block = NULL;
2527 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2528 float_free_list = 0;
2529 n_float_blocks = 0;
2533 /* Return a new float object with value FLOAT_VALUE. */
2535 Lisp_Object
2536 make_float (double float_value)
2538 register Lisp_Object val;
2540 /* eassert (!handling_signal); */
2542 MALLOC_BLOCK_INPUT;
2544 if (float_free_list)
2546 /* We use the data field for chaining the free list
2547 so that we won't use the same field that has the mark bit. */
2548 XSETFLOAT (val, float_free_list);
2549 float_free_list = float_free_list->u.chain;
2551 else
2553 if (float_block_index == FLOAT_BLOCK_SIZE)
2555 register struct float_block *new;
2557 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2558 MEM_TYPE_FLOAT);
2559 new->next = float_block;
2560 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2561 float_block = new;
2562 float_block_index = 0;
2563 n_float_blocks++;
2565 XSETFLOAT (val, &float_block->floats[float_block_index]);
2566 float_block_index++;
2569 MALLOC_UNBLOCK_INPUT;
2571 XFLOAT_INIT (val, float_value);
2572 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2573 consing_since_gc += sizeof (struct Lisp_Float);
2574 floats_consed++;
2575 return val;
2580 /***********************************************************************
2581 Cons Allocation
2582 ***********************************************************************/
2584 /* We store cons cells inside of cons_blocks, allocating a new
2585 cons_block with malloc whenever necessary. Cons cells reclaimed by
2586 GC are put on a free list to be reallocated before allocating
2587 any new cons cells from the latest cons_block. */
2589 #define CONS_BLOCK_SIZE \
2590 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2591 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2593 #define CONS_BLOCK(fptr) \
2594 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2596 #define CONS_INDEX(fptr) \
2597 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2599 struct cons_block
2601 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2602 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2603 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2604 struct cons_block *next;
2607 #define CONS_MARKED_P(fptr) \
2608 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2610 #define CONS_MARK(fptr) \
2611 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2613 #define CONS_UNMARK(fptr) \
2614 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2616 /* Current cons_block. */
2618 struct cons_block *cons_block;
2620 /* Index of first unused Lisp_Cons in the current block. */
2622 int cons_block_index;
2624 /* Free-list of Lisp_Cons structures. */
2626 struct Lisp_Cons *cons_free_list;
2628 /* Total number of cons blocks now in use. */
2630 static int n_cons_blocks;
2633 /* Initialize cons allocation. */
2635 static void
2636 init_cons (void)
2638 cons_block = NULL;
2639 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2640 cons_free_list = 0;
2641 n_cons_blocks = 0;
2645 /* Explicitly free a cons cell by putting it on the free-list. */
2647 void
2648 free_cons (struct Lisp_Cons *ptr)
2650 ptr->u.chain = cons_free_list;
2651 #if GC_MARK_STACK
2652 ptr->car = Vdead;
2653 #endif
2654 cons_free_list = ptr;
2657 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2658 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2659 (Lisp_Object car, Lisp_Object cdr)
2661 register Lisp_Object val;
2663 /* eassert (!handling_signal); */
2665 MALLOC_BLOCK_INPUT;
2667 if (cons_free_list)
2669 /* We use the cdr for chaining the free list
2670 so that we won't use the same field that has the mark bit. */
2671 XSETCONS (val, cons_free_list);
2672 cons_free_list = cons_free_list->u.chain;
2674 else
2676 if (cons_block_index == CONS_BLOCK_SIZE)
2678 register struct cons_block *new;
2679 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2680 MEM_TYPE_CONS);
2681 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2682 new->next = cons_block;
2683 cons_block = new;
2684 cons_block_index = 0;
2685 n_cons_blocks++;
2687 XSETCONS (val, &cons_block->conses[cons_block_index]);
2688 cons_block_index++;
2691 MALLOC_UNBLOCK_INPUT;
2693 XSETCAR (val, car);
2694 XSETCDR (val, cdr);
2695 eassert (!CONS_MARKED_P (XCONS (val)));
2696 consing_since_gc += sizeof (struct Lisp_Cons);
2697 cons_cells_consed++;
2698 return val;
2701 /* Get an error now if there's any junk in the cons free list. */
2702 void
2703 check_cons_list (void)
2705 #ifdef GC_CHECK_CONS_LIST
2706 struct Lisp_Cons *tail = cons_free_list;
2708 while (tail)
2709 tail = tail->u.chain;
2710 #endif
2713 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2715 Lisp_Object
2716 list1 (Lisp_Object arg1)
2718 return Fcons (arg1, Qnil);
2721 Lisp_Object
2722 list2 (Lisp_Object arg1, Lisp_Object arg2)
2724 return Fcons (arg1, Fcons (arg2, Qnil));
2728 Lisp_Object
2729 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2731 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2735 Lisp_Object
2736 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2738 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2742 Lisp_Object
2743 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2745 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2746 Fcons (arg5, Qnil)))));
2750 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2751 doc: /* Return a newly created list with specified arguments as elements.
2752 Any number of arguments, even zero arguments, are allowed.
2753 usage: (list &rest OBJECTS) */)
2754 (int nargs, register Lisp_Object *args)
2756 register Lisp_Object val;
2757 val = Qnil;
2759 while (nargs > 0)
2761 nargs--;
2762 val = Fcons (args[nargs], val);
2764 return val;
2768 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2769 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2770 (register Lisp_Object length, Lisp_Object init)
2772 register Lisp_Object val;
2773 register EMACS_INT size;
2775 CHECK_NATNUM (length);
2776 size = XFASTINT (length);
2778 val = Qnil;
2779 while (size > 0)
2781 val = Fcons (init, val);
2782 --size;
2784 if (size > 0)
2786 val = Fcons (init, val);
2787 --size;
2789 if (size > 0)
2791 val = Fcons (init, val);
2792 --size;
2794 if (size > 0)
2796 val = Fcons (init, val);
2797 --size;
2799 if (size > 0)
2801 val = Fcons (init, val);
2802 --size;
2808 QUIT;
2811 return val;
2816 /***********************************************************************
2817 Vector Allocation
2818 ***********************************************************************/
2820 /* Singly-linked list of all vectors. */
2822 static struct Lisp_Vector *all_vectors;
2824 /* Total number of vector-like objects now in use. */
2826 static int n_vectors;
2829 /* Value is a pointer to a newly allocated Lisp_Vector structure
2830 with room for LEN Lisp_Objects. */
2832 static struct Lisp_Vector *
2833 allocate_vectorlike (EMACS_INT len)
2835 struct Lisp_Vector *p;
2836 size_t nbytes;
2838 MALLOC_BLOCK_INPUT;
2840 #ifdef DOUG_LEA_MALLOC
2841 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2842 because mapped region contents are not preserved in
2843 a dumped Emacs. */
2844 mallopt (M_MMAP_MAX, 0);
2845 #endif
2847 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2848 /* eassert (!handling_signal); */
2850 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2851 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2853 #ifdef DOUG_LEA_MALLOC
2854 /* Back to a reasonable maximum of mmap'ed areas. */
2855 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2856 #endif
2858 consing_since_gc += nbytes;
2859 vector_cells_consed += len;
2861 p->next = all_vectors;
2862 all_vectors = p;
2864 MALLOC_UNBLOCK_INPUT;
2866 ++n_vectors;
2867 return p;
2871 /* Allocate a vector with NSLOTS slots. */
2873 struct Lisp_Vector *
2874 allocate_vector (EMACS_INT nslots)
2876 struct Lisp_Vector *v = allocate_vectorlike (nslots);
2877 v->size = nslots;
2878 return v;
2882 /* Allocate other vector-like structures. */
2884 struct Lisp_Vector *
2885 allocate_pseudovector (int memlen, int lisplen, EMACS_INT tag)
2887 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2888 EMACS_INT i;
2890 /* Only the first lisplen slots will be traced normally by the GC. */
2891 v->size = lisplen;
2892 for (i = 0; i < lisplen; ++i)
2893 v->contents[i] = Qnil;
2895 XSETPVECTYPE (v, tag); /* Add the appropriate tag. */
2896 return v;
2899 struct Lisp_Hash_Table *
2900 allocate_hash_table (void)
2902 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2906 struct window *
2907 allocate_window (void)
2909 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
2913 struct terminal *
2914 allocate_terminal (void)
2916 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
2917 next_terminal, PVEC_TERMINAL);
2918 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2919 memset (&t->next_terminal, 0,
2920 (char*) (t + 1) - (char*) &t->next_terminal);
2922 return t;
2925 struct frame *
2926 allocate_frame (void)
2928 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
2929 face_cache, PVEC_FRAME);
2930 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2931 memset (&f->face_cache, 0,
2932 (char *) (f + 1) - (char *) &f->face_cache);
2933 return f;
2937 struct Lisp_Process *
2938 allocate_process (void)
2940 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
2944 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2945 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2946 See also the function `vector'. */)
2947 (register Lisp_Object length, Lisp_Object init)
2949 Lisp_Object vector;
2950 register EMACS_INT sizei;
2951 register EMACS_INT index;
2952 register struct Lisp_Vector *p;
2954 CHECK_NATNUM (length);
2955 sizei = XFASTINT (length);
2957 p = allocate_vector (sizei);
2958 for (index = 0; index < sizei; index++)
2959 p->contents[index] = init;
2961 XSETVECTOR (vector, p);
2962 return vector;
2966 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2967 doc: /* Return a newly created vector with specified arguments as elements.
2968 Any number of arguments, even zero arguments, are allowed.
2969 usage: (vector &rest OBJECTS) */)
2970 (register int nargs, Lisp_Object *args)
2972 register Lisp_Object len, val;
2973 register int index;
2974 register struct Lisp_Vector *p;
2976 XSETFASTINT (len, nargs);
2977 val = Fmake_vector (len, Qnil);
2978 p = XVECTOR (val);
2979 for (index = 0; index < nargs; index++)
2980 p->contents[index] = args[index];
2981 return val;
2985 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2986 doc: /* Create a byte-code object with specified arguments as elements.
2987 The arguments should be the arglist, bytecode-string, constant vector,
2988 stack size, (optional) doc string, and (optional) interactive spec.
2989 The first four arguments are required; at most six have any
2990 significance.
2991 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
2992 (register int nargs, Lisp_Object *args)
2994 register Lisp_Object len, val;
2995 register int index;
2996 register struct Lisp_Vector *p;
2998 XSETFASTINT (len, nargs);
2999 if (!NILP (Vpurify_flag))
3000 val = make_pure_vector ((EMACS_INT) nargs);
3001 else
3002 val = Fmake_vector (len, Qnil);
3004 if (nargs > 1 && STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3005 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3006 earlier because they produced a raw 8-bit string for byte-code
3007 and now such a byte-code string is loaded as multibyte while
3008 raw 8-bit characters converted to multibyte form. Thus, now we
3009 must convert them back to the original unibyte form. */
3010 args[1] = Fstring_as_unibyte (args[1]);
3012 p = XVECTOR (val);
3013 for (index = 0; index < nargs; index++)
3015 if (!NILP (Vpurify_flag))
3016 args[index] = Fpurecopy (args[index]);
3017 p->contents[index] = args[index];
3019 XSETPVECTYPE (p, PVEC_COMPILED);
3020 XSETCOMPILED (val, p);
3021 return val;
3026 /***********************************************************************
3027 Symbol Allocation
3028 ***********************************************************************/
3030 /* Each symbol_block is just under 1020 bytes long, since malloc
3031 really allocates in units of powers of two and uses 4 bytes for its
3032 own overhead. */
3034 #define SYMBOL_BLOCK_SIZE \
3035 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3037 struct symbol_block
3039 /* Place `symbols' first, to preserve alignment. */
3040 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3041 struct symbol_block *next;
3044 /* Current symbol block and index of first unused Lisp_Symbol
3045 structure in it. */
3047 static struct symbol_block *symbol_block;
3048 static int symbol_block_index;
3050 /* List of free symbols. */
3052 static struct Lisp_Symbol *symbol_free_list;
3054 /* Total number of symbol blocks now in use. */
3056 static int n_symbol_blocks;
3059 /* Initialize symbol allocation. */
3061 static void
3062 init_symbol (void)
3064 symbol_block = NULL;
3065 symbol_block_index = SYMBOL_BLOCK_SIZE;
3066 symbol_free_list = 0;
3067 n_symbol_blocks = 0;
3071 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3072 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3073 Its value and function definition are void, and its property list is nil. */)
3074 (Lisp_Object name)
3076 register Lisp_Object val;
3077 register struct Lisp_Symbol *p;
3079 CHECK_STRING (name);
3081 /* eassert (!handling_signal); */
3083 MALLOC_BLOCK_INPUT;
3085 if (symbol_free_list)
3087 XSETSYMBOL (val, symbol_free_list);
3088 symbol_free_list = symbol_free_list->next;
3090 else
3092 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3094 struct symbol_block *new;
3095 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3096 MEM_TYPE_SYMBOL);
3097 new->next = symbol_block;
3098 symbol_block = new;
3099 symbol_block_index = 0;
3100 n_symbol_blocks++;
3102 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3103 symbol_block_index++;
3106 MALLOC_UNBLOCK_INPUT;
3108 p = XSYMBOL (val);
3109 p->xname = name;
3110 p->plist = Qnil;
3111 p->redirect = SYMBOL_PLAINVAL;
3112 SET_SYMBOL_VAL (p, Qunbound);
3113 p->function = Qunbound;
3114 p->next = NULL;
3115 p->gcmarkbit = 0;
3116 p->interned = SYMBOL_UNINTERNED;
3117 p->constant = 0;
3118 consing_since_gc += sizeof (struct Lisp_Symbol);
3119 symbols_consed++;
3120 return val;
3125 /***********************************************************************
3126 Marker (Misc) Allocation
3127 ***********************************************************************/
3129 /* Allocation of markers and other objects that share that structure.
3130 Works like allocation of conses. */
3132 #define MARKER_BLOCK_SIZE \
3133 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3135 struct marker_block
3137 /* Place `markers' first, to preserve alignment. */
3138 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3139 struct marker_block *next;
3142 static struct marker_block *marker_block;
3143 static int marker_block_index;
3145 static union Lisp_Misc *marker_free_list;
3147 /* Total number of marker blocks now in use. */
3149 static int n_marker_blocks;
3151 static void
3152 init_marker (void)
3154 marker_block = NULL;
3155 marker_block_index = MARKER_BLOCK_SIZE;
3156 marker_free_list = 0;
3157 n_marker_blocks = 0;
3160 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3162 Lisp_Object
3163 allocate_misc (void)
3165 Lisp_Object val;
3167 /* eassert (!handling_signal); */
3169 MALLOC_BLOCK_INPUT;
3171 if (marker_free_list)
3173 XSETMISC (val, marker_free_list);
3174 marker_free_list = marker_free_list->u_free.chain;
3176 else
3178 if (marker_block_index == MARKER_BLOCK_SIZE)
3180 struct marker_block *new;
3181 new = (struct marker_block *) lisp_malloc (sizeof *new,
3182 MEM_TYPE_MISC);
3183 new->next = marker_block;
3184 marker_block = new;
3185 marker_block_index = 0;
3186 n_marker_blocks++;
3187 total_free_markers += MARKER_BLOCK_SIZE;
3189 XSETMISC (val, &marker_block->markers[marker_block_index]);
3190 marker_block_index++;
3193 MALLOC_UNBLOCK_INPUT;
3195 --total_free_markers;
3196 consing_since_gc += sizeof (union Lisp_Misc);
3197 misc_objects_consed++;
3198 XMISCANY (val)->gcmarkbit = 0;
3199 return val;
3202 /* Free a Lisp_Misc object */
3204 void
3205 free_misc (Lisp_Object misc)
3207 XMISCTYPE (misc) = Lisp_Misc_Free;
3208 XMISC (misc)->u_free.chain = marker_free_list;
3209 marker_free_list = XMISC (misc);
3211 total_free_markers++;
3214 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3215 INTEGER. This is used to package C values to call record_unwind_protect.
3216 The unwind function can get the C values back using XSAVE_VALUE. */
3218 Lisp_Object
3219 make_save_value (void *pointer, int integer)
3221 register Lisp_Object val;
3222 register struct Lisp_Save_Value *p;
3224 val = allocate_misc ();
3225 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3226 p = XSAVE_VALUE (val);
3227 p->pointer = pointer;
3228 p->integer = integer;
3229 p->dogc = 0;
3230 return val;
3233 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3234 doc: /* Return a newly allocated marker which does not point at any place. */)
3235 (void)
3237 register Lisp_Object val;
3238 register struct Lisp_Marker *p;
3240 val = allocate_misc ();
3241 XMISCTYPE (val) = Lisp_Misc_Marker;
3242 p = XMARKER (val);
3243 p->buffer = 0;
3244 p->bytepos = 0;
3245 p->charpos = 0;
3246 p->next = NULL;
3247 p->insertion_type = 0;
3248 return val;
3251 /* Put MARKER back on the free list after using it temporarily. */
3253 void
3254 free_marker (Lisp_Object marker)
3256 unchain_marker (XMARKER (marker));
3257 free_misc (marker);
3261 /* Return a newly created vector or string with specified arguments as
3262 elements. If all the arguments are characters that can fit
3263 in a string of events, make a string; otherwise, make a vector.
3265 Any number of arguments, even zero arguments, are allowed. */
3267 Lisp_Object
3268 make_event_array (register int nargs, Lisp_Object *args)
3270 int i;
3272 for (i = 0; i < nargs; i++)
3273 /* The things that fit in a string
3274 are characters that are in 0...127,
3275 after discarding the meta bit and all the bits above it. */
3276 if (!INTEGERP (args[i])
3277 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3278 return Fvector (nargs, args);
3280 /* Since the loop exited, we know that all the things in it are
3281 characters, so we can make a string. */
3283 Lisp_Object result;
3285 result = Fmake_string (make_number (nargs), make_number (0));
3286 for (i = 0; i < nargs; i++)
3288 SSET (result, i, XINT (args[i]));
3289 /* Move the meta bit to the right place for a string char. */
3290 if (XINT (args[i]) & CHAR_META)
3291 SSET (result, i, SREF (result, i) | 0x80);
3294 return result;
3300 /************************************************************************
3301 Memory Full Handling
3302 ************************************************************************/
3305 /* Called if malloc returns zero. */
3307 void
3308 memory_full (void)
3310 int i;
3312 Vmemory_full = Qt;
3314 memory_full_cons_threshold = sizeof (struct cons_block);
3316 /* The first time we get here, free the spare memory. */
3317 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3318 if (spare_memory[i])
3320 if (i == 0)
3321 free (spare_memory[i]);
3322 else if (i >= 1 && i <= 4)
3323 lisp_align_free (spare_memory[i]);
3324 else
3325 lisp_free (spare_memory[i]);
3326 spare_memory[i] = 0;
3329 /* Record the space now used. When it decreases substantially,
3330 we can refill the memory reserve. */
3331 #ifndef SYSTEM_MALLOC
3332 bytes_used_when_full = BYTES_USED;
3333 #endif
3335 /* This used to call error, but if we've run out of memory, we could
3336 get infinite recursion trying to build the string. */
3337 xsignal (Qnil, Vmemory_signal_data);
3340 /* If we released our reserve (due to running out of memory),
3341 and we have a fair amount free once again,
3342 try to set aside another reserve in case we run out once more.
3344 This is called when a relocatable block is freed in ralloc.c,
3345 and also directly from this file, in case we're not using ralloc.c. */
3347 void
3348 refill_memory_reserve (void)
3350 #ifndef SYSTEM_MALLOC
3351 if (spare_memory[0] == 0)
3352 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3353 if (spare_memory[1] == 0)
3354 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3355 MEM_TYPE_CONS);
3356 if (spare_memory[2] == 0)
3357 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3358 MEM_TYPE_CONS);
3359 if (spare_memory[3] == 0)
3360 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3361 MEM_TYPE_CONS);
3362 if (spare_memory[4] == 0)
3363 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3364 MEM_TYPE_CONS);
3365 if (spare_memory[5] == 0)
3366 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3367 MEM_TYPE_STRING);
3368 if (spare_memory[6] == 0)
3369 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3370 MEM_TYPE_STRING);
3371 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3372 Vmemory_full = Qnil;
3373 #endif
3376 /************************************************************************
3377 C Stack Marking
3378 ************************************************************************/
3380 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3382 /* Conservative C stack marking requires a method to identify possibly
3383 live Lisp objects given a pointer value. We do this by keeping
3384 track of blocks of Lisp data that are allocated in a red-black tree
3385 (see also the comment of mem_node which is the type of nodes in
3386 that tree). Function lisp_malloc adds information for an allocated
3387 block to the red-black tree with calls to mem_insert, and function
3388 lisp_free removes it with mem_delete. Functions live_string_p etc
3389 call mem_find to lookup information about a given pointer in the
3390 tree, and use that to determine if the pointer points to a Lisp
3391 object or not. */
3393 /* Initialize this part of alloc.c. */
3395 static void
3396 mem_init (void)
3398 mem_z.left = mem_z.right = MEM_NIL;
3399 mem_z.parent = NULL;
3400 mem_z.color = MEM_BLACK;
3401 mem_z.start = mem_z.end = NULL;
3402 mem_root = MEM_NIL;
3406 /* Value is a pointer to the mem_node containing START. Value is
3407 MEM_NIL if there is no node in the tree containing START. */
3409 static INLINE struct mem_node *
3410 mem_find (void *start)
3412 struct mem_node *p;
3414 if (start < min_heap_address || start > max_heap_address)
3415 return MEM_NIL;
3417 /* Make the search always successful to speed up the loop below. */
3418 mem_z.start = start;
3419 mem_z.end = (char *) start + 1;
3421 p = mem_root;
3422 while (start < p->start || start >= p->end)
3423 p = start < p->start ? p->left : p->right;
3424 return p;
3428 /* Insert a new node into the tree for a block of memory with start
3429 address START, end address END, and type TYPE. Value is a
3430 pointer to the node that was inserted. */
3432 static struct mem_node *
3433 mem_insert (void *start, void *end, enum mem_type type)
3435 struct mem_node *c, *parent, *x;
3437 if (min_heap_address == NULL || start < min_heap_address)
3438 min_heap_address = start;
3439 if (max_heap_address == NULL || end > max_heap_address)
3440 max_heap_address = end;
3442 /* See where in the tree a node for START belongs. In this
3443 particular application, it shouldn't happen that a node is already
3444 present. For debugging purposes, let's check that. */
3445 c = mem_root;
3446 parent = NULL;
3448 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3450 while (c != MEM_NIL)
3452 if (start >= c->start && start < c->end)
3453 abort ();
3454 parent = c;
3455 c = start < c->start ? c->left : c->right;
3458 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3460 while (c != MEM_NIL)
3462 parent = c;
3463 c = start < c->start ? c->left : c->right;
3466 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3468 /* Create a new node. */
3469 #ifdef GC_MALLOC_CHECK
3470 x = (struct mem_node *) _malloc_internal (sizeof *x);
3471 if (x == NULL)
3472 abort ();
3473 #else
3474 x = (struct mem_node *) xmalloc (sizeof *x);
3475 #endif
3476 x->start = start;
3477 x->end = end;
3478 x->type = type;
3479 x->parent = parent;
3480 x->left = x->right = MEM_NIL;
3481 x->color = MEM_RED;
3483 /* Insert it as child of PARENT or install it as root. */
3484 if (parent)
3486 if (start < parent->start)
3487 parent->left = x;
3488 else
3489 parent->right = x;
3491 else
3492 mem_root = x;
3494 /* Re-establish red-black tree properties. */
3495 mem_insert_fixup (x);
3497 return x;
3501 /* Re-establish the red-black properties of the tree, and thereby
3502 balance the tree, after node X has been inserted; X is always red. */
3504 static void
3505 mem_insert_fixup (struct mem_node *x)
3507 while (x != mem_root && x->parent->color == MEM_RED)
3509 /* X is red and its parent is red. This is a violation of
3510 red-black tree property #3. */
3512 if (x->parent == x->parent->parent->left)
3514 /* We're on the left side of our grandparent, and Y is our
3515 "uncle". */
3516 struct mem_node *y = x->parent->parent->right;
3518 if (y->color == MEM_RED)
3520 /* Uncle and parent are red but should be black because
3521 X is red. Change the colors accordingly and proceed
3522 with the grandparent. */
3523 x->parent->color = MEM_BLACK;
3524 y->color = MEM_BLACK;
3525 x->parent->parent->color = MEM_RED;
3526 x = x->parent->parent;
3528 else
3530 /* Parent and uncle have different colors; parent is
3531 red, uncle is black. */
3532 if (x == x->parent->right)
3534 x = x->parent;
3535 mem_rotate_left (x);
3538 x->parent->color = MEM_BLACK;
3539 x->parent->parent->color = MEM_RED;
3540 mem_rotate_right (x->parent->parent);
3543 else
3545 /* This is the symmetrical case of above. */
3546 struct mem_node *y = x->parent->parent->left;
3548 if (y->color == MEM_RED)
3550 x->parent->color = MEM_BLACK;
3551 y->color = MEM_BLACK;
3552 x->parent->parent->color = MEM_RED;
3553 x = x->parent->parent;
3555 else
3557 if (x == x->parent->left)
3559 x = x->parent;
3560 mem_rotate_right (x);
3563 x->parent->color = MEM_BLACK;
3564 x->parent->parent->color = MEM_RED;
3565 mem_rotate_left (x->parent->parent);
3570 /* The root may have been changed to red due to the algorithm. Set
3571 it to black so that property #5 is satisfied. */
3572 mem_root->color = MEM_BLACK;
3576 /* (x) (y)
3577 / \ / \
3578 a (y) ===> (x) c
3579 / \ / \
3580 b c a b */
3582 static void
3583 mem_rotate_left (struct mem_node *x)
3585 struct mem_node *y;
3587 /* Turn y's left sub-tree into x's right sub-tree. */
3588 y = x->right;
3589 x->right = y->left;
3590 if (y->left != MEM_NIL)
3591 y->left->parent = x;
3593 /* Y's parent was x's parent. */
3594 if (y != MEM_NIL)
3595 y->parent = x->parent;
3597 /* Get the parent to point to y instead of x. */
3598 if (x->parent)
3600 if (x == x->parent->left)
3601 x->parent->left = y;
3602 else
3603 x->parent->right = y;
3605 else
3606 mem_root = y;
3608 /* Put x on y's left. */
3609 y->left = x;
3610 if (x != MEM_NIL)
3611 x->parent = y;
3615 /* (x) (Y)
3616 / \ / \
3617 (y) c ===> a (x)
3618 / \ / \
3619 a b b c */
3621 static void
3622 mem_rotate_right (struct mem_node *x)
3624 struct mem_node *y = x->left;
3626 x->left = y->right;
3627 if (y->right != MEM_NIL)
3628 y->right->parent = x;
3630 if (y != MEM_NIL)
3631 y->parent = x->parent;
3632 if (x->parent)
3634 if (x == x->parent->right)
3635 x->parent->right = y;
3636 else
3637 x->parent->left = y;
3639 else
3640 mem_root = y;
3642 y->right = x;
3643 if (x != MEM_NIL)
3644 x->parent = y;
3648 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3650 static void
3651 mem_delete (struct mem_node *z)
3653 struct mem_node *x, *y;
3655 if (!z || z == MEM_NIL)
3656 return;
3658 if (z->left == MEM_NIL || z->right == MEM_NIL)
3659 y = z;
3660 else
3662 y = z->right;
3663 while (y->left != MEM_NIL)
3664 y = y->left;
3667 if (y->left != MEM_NIL)
3668 x = y->left;
3669 else
3670 x = y->right;
3672 x->parent = y->parent;
3673 if (y->parent)
3675 if (y == y->parent->left)
3676 y->parent->left = x;
3677 else
3678 y->parent->right = x;
3680 else
3681 mem_root = x;
3683 if (y != z)
3685 z->start = y->start;
3686 z->end = y->end;
3687 z->type = y->type;
3690 if (y->color == MEM_BLACK)
3691 mem_delete_fixup (x);
3693 #ifdef GC_MALLOC_CHECK
3694 _free_internal (y);
3695 #else
3696 xfree (y);
3697 #endif
3701 /* Re-establish the red-black properties of the tree, after a
3702 deletion. */
3704 static void
3705 mem_delete_fixup (struct mem_node *x)
3707 while (x != mem_root && x->color == MEM_BLACK)
3709 if (x == x->parent->left)
3711 struct mem_node *w = x->parent->right;
3713 if (w->color == MEM_RED)
3715 w->color = MEM_BLACK;
3716 x->parent->color = MEM_RED;
3717 mem_rotate_left (x->parent);
3718 w = x->parent->right;
3721 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3723 w->color = MEM_RED;
3724 x = x->parent;
3726 else
3728 if (w->right->color == MEM_BLACK)
3730 w->left->color = MEM_BLACK;
3731 w->color = MEM_RED;
3732 mem_rotate_right (w);
3733 w = x->parent->right;
3735 w->color = x->parent->color;
3736 x->parent->color = MEM_BLACK;
3737 w->right->color = MEM_BLACK;
3738 mem_rotate_left (x->parent);
3739 x = mem_root;
3742 else
3744 struct mem_node *w = x->parent->left;
3746 if (w->color == MEM_RED)
3748 w->color = MEM_BLACK;
3749 x->parent->color = MEM_RED;
3750 mem_rotate_right (x->parent);
3751 w = x->parent->left;
3754 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3756 w->color = MEM_RED;
3757 x = x->parent;
3759 else
3761 if (w->left->color == MEM_BLACK)
3763 w->right->color = MEM_BLACK;
3764 w->color = MEM_RED;
3765 mem_rotate_left (w);
3766 w = x->parent->left;
3769 w->color = x->parent->color;
3770 x->parent->color = MEM_BLACK;
3771 w->left->color = MEM_BLACK;
3772 mem_rotate_right (x->parent);
3773 x = mem_root;
3778 x->color = MEM_BLACK;
3782 /* Value is non-zero if P is a pointer to a live Lisp string on
3783 the heap. M is a pointer to the mem_block for P. */
3785 static INLINE int
3786 live_string_p (struct mem_node *m, void *p)
3788 if (m->type == MEM_TYPE_STRING)
3790 struct string_block *b = (struct string_block *) m->start;
3791 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
3793 /* P must point to the start of a Lisp_String structure, and it
3794 must not be on the free-list. */
3795 return (offset >= 0
3796 && offset % sizeof b->strings[0] == 0
3797 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3798 && ((struct Lisp_String *) p)->data != NULL);
3800 else
3801 return 0;
3805 /* Value is non-zero if P is a pointer to a live Lisp cons on
3806 the heap. M is a pointer to the mem_block for P. */
3808 static INLINE int
3809 live_cons_p (struct mem_node *m, void *p)
3811 if (m->type == MEM_TYPE_CONS)
3813 struct cons_block *b = (struct cons_block *) m->start;
3814 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
3816 /* P must point to the start of a Lisp_Cons, not be
3817 one of the unused cells in the current cons block,
3818 and not be on the free-list. */
3819 return (offset >= 0
3820 && offset % sizeof b->conses[0] == 0
3821 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3822 && (b != cons_block
3823 || offset / sizeof b->conses[0] < cons_block_index)
3824 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3826 else
3827 return 0;
3831 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3832 the heap. M is a pointer to the mem_block for P. */
3834 static INLINE int
3835 live_symbol_p (struct mem_node *m, void *p)
3837 if (m->type == MEM_TYPE_SYMBOL)
3839 struct symbol_block *b = (struct symbol_block *) m->start;
3840 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
3842 /* P must point to the start of a Lisp_Symbol, not be
3843 one of the unused cells in the current symbol block,
3844 and not be on the free-list. */
3845 return (offset >= 0
3846 && offset % sizeof b->symbols[0] == 0
3847 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3848 && (b != symbol_block
3849 || offset / sizeof b->symbols[0] < symbol_block_index)
3850 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3852 else
3853 return 0;
3857 /* Value is non-zero if P is a pointer to a live Lisp float on
3858 the heap. M is a pointer to the mem_block for P. */
3860 static INLINE int
3861 live_float_p (struct mem_node *m, void *p)
3863 if (m->type == MEM_TYPE_FLOAT)
3865 struct float_block *b = (struct float_block *) m->start;
3866 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
3868 /* P must point to the start of a Lisp_Float and not be
3869 one of the unused cells in the current float block. */
3870 return (offset >= 0
3871 && offset % sizeof b->floats[0] == 0
3872 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3873 && (b != float_block
3874 || offset / sizeof b->floats[0] < float_block_index));
3876 else
3877 return 0;
3881 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3882 the heap. M is a pointer to the mem_block for P. */
3884 static INLINE int
3885 live_misc_p (struct mem_node *m, void *p)
3887 if (m->type == MEM_TYPE_MISC)
3889 struct marker_block *b = (struct marker_block *) m->start;
3890 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
3892 /* P must point to the start of a Lisp_Misc, not be
3893 one of the unused cells in the current misc block,
3894 and not be on the free-list. */
3895 return (offset >= 0
3896 && offset % sizeof b->markers[0] == 0
3897 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3898 && (b != marker_block
3899 || offset / sizeof b->markers[0] < marker_block_index)
3900 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
3902 else
3903 return 0;
3907 /* Value is non-zero if P is a pointer to a live vector-like object.
3908 M is a pointer to the mem_block for P. */
3910 static INLINE int
3911 live_vector_p (struct mem_node *m, void *p)
3913 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
3917 /* Value is non-zero if P is a pointer to a live buffer. M is a
3918 pointer to the mem_block for P. */
3920 static INLINE int
3921 live_buffer_p (struct mem_node *m, void *p)
3923 /* P must point to the start of the block, and the buffer
3924 must not have been killed. */
3925 return (m->type == MEM_TYPE_BUFFER
3926 && p == m->start
3927 && !NILP (((struct buffer *) p)->name));
3930 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3932 #if GC_MARK_STACK
3934 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3936 /* Array of objects that are kept alive because the C stack contains
3937 a pattern that looks like a reference to them . */
3939 #define MAX_ZOMBIES 10
3940 static Lisp_Object zombies[MAX_ZOMBIES];
3942 /* Number of zombie objects. */
3944 static int nzombies;
3946 /* Number of garbage collections. */
3948 static int ngcs;
3950 /* Average percentage of zombies per collection. */
3952 static double avg_zombies;
3954 /* Max. number of live and zombie objects. */
3956 static int max_live, max_zombies;
3958 /* Average number of live objects per GC. */
3960 static double avg_live;
3962 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3963 doc: /* Show information about live and zombie objects. */)
3964 (void)
3966 Lisp_Object args[8], zombie_list = Qnil;
3967 int i;
3968 for (i = 0; i < nzombies; i++)
3969 zombie_list = Fcons (zombies[i], zombie_list);
3970 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3971 args[1] = make_number (ngcs);
3972 args[2] = make_float (avg_live);
3973 args[3] = make_float (avg_zombies);
3974 args[4] = make_float (avg_zombies / avg_live / 100);
3975 args[5] = make_number (max_live);
3976 args[6] = make_number (max_zombies);
3977 args[7] = zombie_list;
3978 return Fmessage (8, args);
3981 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3984 /* Mark OBJ if we can prove it's a Lisp_Object. */
3986 static INLINE void
3987 mark_maybe_object (Lisp_Object obj)
3989 void *po;
3990 struct mem_node *m;
3992 if (INTEGERP (obj))
3993 return;
3995 po = (void *) XPNTR (obj);
3996 m = mem_find (po);
3998 if (m != MEM_NIL)
4000 int mark_p = 0;
4002 switch (XTYPE (obj))
4004 case Lisp_String:
4005 mark_p = (live_string_p (m, po)
4006 && !STRING_MARKED_P ((struct Lisp_String *) po));
4007 break;
4009 case Lisp_Cons:
4010 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4011 break;
4013 case Lisp_Symbol:
4014 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4015 break;
4017 case Lisp_Float:
4018 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4019 break;
4021 case Lisp_Vectorlike:
4022 /* Note: can't check BUFFERP before we know it's a
4023 buffer because checking that dereferences the pointer
4024 PO which might point anywhere. */
4025 if (live_vector_p (m, po))
4026 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4027 else if (live_buffer_p (m, po))
4028 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4029 break;
4031 case Lisp_Misc:
4032 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4033 break;
4035 default:
4036 break;
4039 if (mark_p)
4041 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4042 if (nzombies < MAX_ZOMBIES)
4043 zombies[nzombies] = obj;
4044 ++nzombies;
4045 #endif
4046 mark_object (obj);
4052 /* If P points to Lisp data, mark that as live if it isn't already
4053 marked. */
4055 static INLINE void
4056 mark_maybe_pointer (void *p)
4058 struct mem_node *m;
4060 /* Quickly rule out some values which can't point to Lisp data. */
4061 if ((EMACS_INT) p %
4062 #ifdef USE_LSB_TAG
4063 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4064 #else
4065 2 /* We assume that Lisp data is aligned on even addresses. */
4066 #endif
4068 return;
4070 m = mem_find (p);
4071 if (m != MEM_NIL)
4073 Lisp_Object obj = Qnil;
4075 switch (m->type)
4077 case MEM_TYPE_NON_LISP:
4078 /* Nothing to do; not a pointer to Lisp memory. */
4079 break;
4081 case MEM_TYPE_BUFFER:
4082 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4083 XSETVECTOR (obj, p);
4084 break;
4086 case MEM_TYPE_CONS:
4087 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4088 XSETCONS (obj, p);
4089 break;
4091 case MEM_TYPE_STRING:
4092 if (live_string_p (m, p)
4093 && !STRING_MARKED_P ((struct Lisp_String *) p))
4094 XSETSTRING (obj, p);
4095 break;
4097 case MEM_TYPE_MISC:
4098 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4099 XSETMISC (obj, p);
4100 break;
4102 case MEM_TYPE_SYMBOL:
4103 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4104 XSETSYMBOL (obj, p);
4105 break;
4107 case MEM_TYPE_FLOAT:
4108 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4109 XSETFLOAT (obj, p);
4110 break;
4112 case MEM_TYPE_VECTORLIKE:
4113 if (live_vector_p (m, p))
4115 Lisp_Object tem;
4116 XSETVECTOR (tem, p);
4117 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4118 obj = tem;
4120 break;
4122 default:
4123 abort ();
4126 if (!NILP (obj))
4127 mark_object (obj);
4132 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4133 or END+OFFSET..START. */
4135 static void
4136 mark_memory (void *start, void *end, int offset)
4138 Lisp_Object *p;
4139 void **pp;
4141 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4142 nzombies = 0;
4143 #endif
4145 /* Make START the pointer to the start of the memory region,
4146 if it isn't already. */
4147 if (end < start)
4149 void *tem = start;
4150 start = end;
4151 end = tem;
4154 /* Mark Lisp_Objects. */
4155 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4156 mark_maybe_object (*p);
4158 /* Mark Lisp data pointed to. This is necessary because, in some
4159 situations, the C compiler optimizes Lisp objects away, so that
4160 only a pointer to them remains. Example:
4162 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4165 Lisp_Object obj = build_string ("test");
4166 struct Lisp_String *s = XSTRING (obj);
4167 Fgarbage_collect ();
4168 fprintf (stderr, "test `%s'\n", s->data);
4169 return Qnil;
4172 Here, `obj' isn't really used, and the compiler optimizes it
4173 away. The only reference to the life string is through the
4174 pointer `s'. */
4176 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4177 mark_maybe_pointer (*pp);
4180 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4181 the GCC system configuration. In gcc 3.2, the only systems for
4182 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4183 by others?) and ns32k-pc532-min. */
4185 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4187 static int setjmp_tested_p, longjmps_done;
4189 #define SETJMP_WILL_LIKELY_WORK "\
4191 Emacs garbage collector has been changed to use conservative stack\n\
4192 marking. Emacs has determined that the method it uses to do the\n\
4193 marking will likely work on your system, but this isn't sure.\n\
4195 If you are a system-programmer, or can get the help of a local wizard\n\
4196 who is, please take a look at the function mark_stack in alloc.c, and\n\
4197 verify that the methods used are appropriate for your system.\n\
4199 Please mail the result to <emacs-devel@gnu.org>.\n\
4202 #define SETJMP_WILL_NOT_WORK "\
4204 Emacs garbage collector has been changed to use conservative stack\n\
4205 marking. Emacs has determined that the default method it uses to do the\n\
4206 marking will not work on your system. We will need a system-dependent\n\
4207 solution for your system.\n\
4209 Please take a look at the function mark_stack in alloc.c, and\n\
4210 try to find a way to make it work on your system.\n\
4212 Note that you may get false negatives, depending on the compiler.\n\
4213 In particular, you need to use -O with GCC for this test.\n\
4215 Please mail the result to <emacs-devel@gnu.org>.\n\
4219 /* Perform a quick check if it looks like setjmp saves registers in a
4220 jmp_buf. Print a message to stderr saying so. When this test
4221 succeeds, this is _not_ a proof that setjmp is sufficient for
4222 conservative stack marking. Only the sources or a disassembly
4223 can prove that. */
4225 static void
4226 test_setjmp ()
4228 char buf[10];
4229 register int x;
4230 jmp_buf jbuf;
4231 int result = 0;
4233 /* Arrange for X to be put in a register. */
4234 sprintf (buf, "1");
4235 x = strlen (buf);
4236 x = 2 * x - 1;
4238 setjmp (jbuf);
4239 if (longjmps_done == 1)
4241 /* Came here after the longjmp at the end of the function.
4243 If x == 1, the longjmp has restored the register to its
4244 value before the setjmp, and we can hope that setjmp
4245 saves all such registers in the jmp_buf, although that
4246 isn't sure.
4248 For other values of X, either something really strange is
4249 taking place, or the setjmp just didn't save the register. */
4251 if (x == 1)
4252 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4253 else
4255 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4256 exit (1);
4260 ++longjmps_done;
4261 x = 2;
4262 if (longjmps_done == 1)
4263 longjmp (jbuf, 1);
4266 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4269 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4271 /* Abort if anything GCPRO'd doesn't survive the GC. */
4273 static void
4274 check_gcpros ()
4276 struct gcpro *p;
4277 int i;
4279 for (p = gcprolist; p; p = p->next)
4280 for (i = 0; i < p->nvars; ++i)
4281 if (!survives_gc_p (p->var[i]))
4282 /* FIXME: It's not necessarily a bug. It might just be that the
4283 GCPRO is unnecessary or should release the object sooner. */
4284 abort ();
4287 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4289 static void
4290 dump_zombies ()
4292 int i;
4294 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4295 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4297 fprintf (stderr, " %d = ", i);
4298 debug_print (zombies[i]);
4302 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4305 /* Mark live Lisp objects on the C stack.
4307 There are several system-dependent problems to consider when
4308 porting this to new architectures:
4310 Processor Registers
4312 We have to mark Lisp objects in CPU registers that can hold local
4313 variables or are used to pass parameters.
4315 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4316 something that either saves relevant registers on the stack, or
4317 calls mark_maybe_object passing it each register's contents.
4319 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4320 implementation assumes that calling setjmp saves registers we need
4321 to see in a jmp_buf which itself lies on the stack. This doesn't
4322 have to be true! It must be verified for each system, possibly
4323 by taking a look at the source code of setjmp.
4325 Stack Layout
4327 Architectures differ in the way their processor stack is organized.
4328 For example, the stack might look like this
4330 +----------------+
4331 | Lisp_Object | size = 4
4332 +----------------+
4333 | something else | size = 2
4334 +----------------+
4335 | Lisp_Object | size = 4
4336 +----------------+
4337 | ... |
4339 In such a case, not every Lisp_Object will be aligned equally. To
4340 find all Lisp_Object on the stack it won't be sufficient to walk
4341 the stack in steps of 4 bytes. Instead, two passes will be
4342 necessary, one starting at the start of the stack, and a second
4343 pass starting at the start of the stack + 2. Likewise, if the
4344 minimal alignment of Lisp_Objects on the stack is 1, four passes
4345 would be necessary, each one starting with one byte more offset
4346 from the stack start.
4348 The current code assumes by default that Lisp_Objects are aligned
4349 equally on the stack. */
4351 static void
4352 mark_stack (void)
4354 int i;
4355 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4356 union aligned_jmpbuf {
4357 Lisp_Object o;
4358 jmp_buf j;
4359 } j;
4360 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4361 void *end;
4363 /* This trick flushes the register windows so that all the state of
4364 the process is contained in the stack. */
4365 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4366 needed on ia64 too. See mach_dep.c, where it also says inline
4367 assembler doesn't work with relevant proprietary compilers. */
4368 #ifdef __sparc__
4369 #if defined (__sparc64__) && defined (__FreeBSD__)
4370 /* FreeBSD does not have a ta 3 handler. */
4371 asm ("flushw");
4372 #else
4373 asm ("ta 3");
4374 #endif
4375 #endif
4377 /* Save registers that we need to see on the stack. We need to see
4378 registers used to hold register variables and registers used to
4379 pass parameters. */
4380 #ifdef GC_SAVE_REGISTERS_ON_STACK
4381 GC_SAVE_REGISTERS_ON_STACK (end);
4382 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4384 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4385 setjmp will definitely work, test it
4386 and print a message with the result
4387 of the test. */
4388 if (!setjmp_tested_p)
4390 setjmp_tested_p = 1;
4391 test_setjmp ();
4393 #endif /* GC_SETJMP_WORKS */
4395 setjmp (j.j);
4396 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4397 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4399 /* This assumes that the stack is a contiguous region in memory. If
4400 that's not the case, something has to be done here to iterate
4401 over the stack segments. */
4402 #ifndef GC_LISP_OBJECT_ALIGNMENT
4403 #ifdef __GNUC__
4404 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4405 #else
4406 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4407 #endif
4408 #endif
4409 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4410 mark_memory (stack_base, end, i);
4411 /* Allow for marking a secondary stack, like the register stack on the
4412 ia64. */
4413 #ifdef GC_MARK_SECONDARY_STACK
4414 GC_MARK_SECONDARY_STACK ();
4415 #endif
4417 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4418 check_gcpros ();
4419 #endif
4422 #endif /* GC_MARK_STACK != 0 */
4425 /* Determine whether it is safe to access memory at address P. */
4426 static int
4427 valid_pointer_p (void *p)
4429 #ifdef WINDOWSNT
4430 return w32_valid_pointer_p (p, 16);
4431 #else
4432 int fd;
4434 /* Obviously, we cannot just access it (we would SEGV trying), so we
4435 trick the o/s to tell us whether p is a valid pointer.
4436 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4437 not validate p in that case. */
4439 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4441 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4442 emacs_close (fd);
4443 unlink ("__Valid__Lisp__Object__");
4444 return valid;
4447 return -1;
4448 #endif
4451 /* Return 1 if OBJ is a valid lisp object.
4452 Return 0 if OBJ is NOT a valid lisp object.
4453 Return -1 if we cannot validate OBJ.
4454 This function can be quite slow,
4455 so it should only be used in code for manual debugging. */
4458 valid_lisp_object_p (Lisp_Object obj)
4460 void *p;
4461 #if GC_MARK_STACK
4462 struct mem_node *m;
4463 #endif
4465 if (INTEGERP (obj))
4466 return 1;
4468 p = (void *) XPNTR (obj);
4469 if (PURE_POINTER_P (p))
4470 return 1;
4472 #if !GC_MARK_STACK
4473 return valid_pointer_p (p);
4474 #else
4476 m = mem_find (p);
4478 if (m == MEM_NIL)
4480 int valid = valid_pointer_p (p);
4481 if (valid <= 0)
4482 return valid;
4484 if (SUBRP (obj))
4485 return 1;
4487 return 0;
4490 switch (m->type)
4492 case MEM_TYPE_NON_LISP:
4493 return 0;
4495 case MEM_TYPE_BUFFER:
4496 return live_buffer_p (m, p);
4498 case MEM_TYPE_CONS:
4499 return live_cons_p (m, p);
4501 case MEM_TYPE_STRING:
4502 return live_string_p (m, p);
4504 case MEM_TYPE_MISC:
4505 return live_misc_p (m, p);
4507 case MEM_TYPE_SYMBOL:
4508 return live_symbol_p (m, p);
4510 case MEM_TYPE_FLOAT:
4511 return live_float_p (m, p);
4513 case MEM_TYPE_VECTORLIKE:
4514 return live_vector_p (m, p);
4516 default:
4517 break;
4520 return 0;
4521 #endif
4527 /***********************************************************************
4528 Pure Storage Management
4529 ***********************************************************************/
4531 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4532 pointer to it. TYPE is the Lisp type for which the memory is
4533 allocated. TYPE < 0 means it's not used for a Lisp object. */
4535 static POINTER_TYPE *
4536 pure_alloc (size_t size, int type)
4538 POINTER_TYPE *result;
4539 #ifdef USE_LSB_TAG
4540 size_t alignment = (1 << GCTYPEBITS);
4541 #else
4542 size_t alignment = sizeof (EMACS_INT);
4544 /* Give Lisp_Floats an extra alignment. */
4545 if (type == Lisp_Float)
4547 #if defined __GNUC__ && __GNUC__ >= 2
4548 alignment = __alignof (struct Lisp_Float);
4549 #else
4550 alignment = sizeof (struct Lisp_Float);
4551 #endif
4553 #endif
4555 again:
4556 if (type >= 0)
4558 /* Allocate space for a Lisp object from the beginning of the free
4559 space with taking account of alignment. */
4560 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4561 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4563 else
4565 /* Allocate space for a non-Lisp object from the end of the free
4566 space. */
4567 pure_bytes_used_non_lisp += size;
4568 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4570 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4572 if (pure_bytes_used <= pure_size)
4573 return result;
4575 /* Don't allocate a large amount here,
4576 because it might get mmap'd and then its address
4577 might not be usable. */
4578 purebeg = (char *) xmalloc (10000);
4579 pure_size = 10000;
4580 pure_bytes_used_before_overflow += pure_bytes_used - size;
4581 pure_bytes_used = 0;
4582 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4583 goto again;
4587 /* Print a warning if PURESIZE is too small. */
4589 void
4590 check_pure_size (void)
4592 if (pure_bytes_used_before_overflow)
4593 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
4594 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4598 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4599 the non-Lisp data pool of the pure storage, and return its start
4600 address. Return NULL if not found. */
4602 static char *
4603 find_string_data_in_pure (const char *data, EMACS_INT nbytes)
4605 int i;
4606 EMACS_INT skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4607 const unsigned char *p;
4608 char *non_lisp_beg;
4610 if (pure_bytes_used_non_lisp < nbytes + 1)
4611 return NULL;
4613 /* Set up the Boyer-Moore table. */
4614 skip = nbytes + 1;
4615 for (i = 0; i < 256; i++)
4616 bm_skip[i] = skip;
4618 p = (const unsigned char *) data;
4619 while (--skip > 0)
4620 bm_skip[*p++] = skip;
4622 last_char_skip = bm_skip['\0'];
4624 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4625 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4627 /* See the comments in the function `boyer_moore' (search.c) for the
4628 use of `infinity'. */
4629 infinity = pure_bytes_used_non_lisp + 1;
4630 bm_skip['\0'] = infinity;
4632 p = (const unsigned char *) non_lisp_beg + nbytes;
4633 start = 0;
4636 /* Check the last character (== '\0'). */
4639 start += bm_skip[*(p + start)];
4641 while (start <= start_max);
4643 if (start < infinity)
4644 /* Couldn't find the last character. */
4645 return NULL;
4647 /* No less than `infinity' means we could find the last
4648 character at `p[start - infinity]'. */
4649 start -= infinity;
4651 /* Check the remaining characters. */
4652 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4653 /* Found. */
4654 return non_lisp_beg + start;
4656 start += last_char_skip;
4658 while (start <= start_max);
4660 return NULL;
4664 /* Return a string allocated in pure space. DATA is a buffer holding
4665 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4666 non-zero means make the result string multibyte.
4668 Must get an error if pure storage is full, since if it cannot hold
4669 a large string it may be able to hold conses that point to that
4670 string; then the string is not protected from gc. */
4672 Lisp_Object
4673 make_pure_string (const char *data,
4674 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
4676 Lisp_Object string;
4677 struct Lisp_String *s;
4679 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4680 s->data = find_string_data_in_pure (data, nbytes);
4681 if (s->data == NULL)
4683 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4684 memcpy (s->data, data, nbytes);
4685 s->data[nbytes] = '\0';
4687 s->size = nchars;
4688 s->size_byte = multibyte ? nbytes : -1;
4689 s->intervals = NULL_INTERVAL;
4690 XSETSTRING (string, s);
4691 return string;
4694 /* Return a string a string allocated in pure space. Do not allocate
4695 the string data, just point to DATA. */
4697 Lisp_Object
4698 make_pure_c_string (const char *data)
4700 Lisp_Object string;
4701 struct Lisp_String *s;
4702 EMACS_INT nchars = strlen (data);
4704 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4705 s->size = nchars;
4706 s->size_byte = -1;
4707 s->data = (unsigned char *) data;
4708 s->intervals = NULL_INTERVAL;
4709 XSETSTRING (string, s);
4710 return string;
4713 /* Return a cons allocated from pure space. Give it pure copies
4714 of CAR as car and CDR as cdr. */
4716 Lisp_Object
4717 pure_cons (Lisp_Object car, Lisp_Object cdr)
4719 register Lisp_Object new;
4720 struct Lisp_Cons *p;
4722 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4723 XSETCONS (new, p);
4724 XSETCAR (new, Fpurecopy (car));
4725 XSETCDR (new, Fpurecopy (cdr));
4726 return new;
4730 /* Value is a float object with value NUM allocated from pure space. */
4732 static Lisp_Object
4733 make_pure_float (double num)
4735 register Lisp_Object new;
4736 struct Lisp_Float *p;
4738 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4739 XSETFLOAT (new, p);
4740 XFLOAT_INIT (new, num);
4741 return new;
4745 /* Return a vector with room for LEN Lisp_Objects allocated from
4746 pure space. */
4748 Lisp_Object
4749 make_pure_vector (EMACS_INT len)
4751 Lisp_Object new;
4752 struct Lisp_Vector *p;
4753 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4755 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4756 XSETVECTOR (new, p);
4757 XVECTOR (new)->size = len;
4758 return new;
4762 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4763 doc: /* Make a copy of object OBJ in pure storage.
4764 Recursively copies contents of vectors and cons cells.
4765 Does not copy symbols. Copies strings without text properties. */)
4766 (register Lisp_Object obj)
4768 if (NILP (Vpurify_flag))
4769 return obj;
4771 if (PURE_POINTER_P (XPNTR (obj)))
4772 return obj;
4774 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4776 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
4777 if (!NILP (tmp))
4778 return tmp;
4781 if (CONSP (obj))
4782 obj = pure_cons (XCAR (obj), XCDR (obj));
4783 else if (FLOATP (obj))
4784 obj = make_pure_float (XFLOAT_DATA (obj));
4785 else if (STRINGP (obj))
4786 obj = make_pure_string (SDATA (obj), SCHARS (obj),
4787 SBYTES (obj),
4788 STRING_MULTIBYTE (obj));
4789 else if (COMPILEDP (obj) || VECTORP (obj))
4791 register struct Lisp_Vector *vec;
4792 register EMACS_INT i;
4793 EMACS_INT size;
4795 size = XVECTOR (obj)->size;
4796 if (size & PSEUDOVECTOR_FLAG)
4797 size &= PSEUDOVECTOR_SIZE_MASK;
4798 vec = XVECTOR (make_pure_vector (size));
4799 for (i = 0; i < size; i++)
4800 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4801 if (COMPILEDP (obj))
4803 XSETPVECTYPE (vec, PVEC_COMPILED);
4804 XSETCOMPILED (obj, vec);
4806 else
4807 XSETVECTOR (obj, vec);
4809 else if (MARKERP (obj))
4810 error ("Attempt to copy a marker to pure storage");
4811 else
4812 /* Not purified, don't hash-cons. */
4813 return obj;
4815 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4816 Fputhash (obj, obj, Vpurify_flag);
4818 return obj;
4823 /***********************************************************************
4824 Protection from GC
4825 ***********************************************************************/
4827 /* Put an entry in staticvec, pointing at the variable with address
4828 VARADDRESS. */
4830 void
4831 staticpro (Lisp_Object *varaddress)
4833 staticvec[staticidx++] = varaddress;
4834 if (staticidx >= NSTATICS)
4835 abort ();
4839 /***********************************************************************
4840 Protection from GC
4841 ***********************************************************************/
4843 /* Temporarily prevent garbage collection. */
4846 inhibit_garbage_collection (void)
4848 int count = SPECPDL_INDEX ();
4849 int nbits = min (VALBITS, BITS_PER_INT);
4851 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4852 return count;
4856 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4857 doc: /* Reclaim storage for Lisp objects no longer needed.
4858 Garbage collection happens automatically if you cons more than
4859 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4860 `garbage-collect' normally returns a list with info on amount of space in use:
4861 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4862 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4863 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4864 (USED-STRINGS . FREE-STRINGS))
4865 However, if there was overflow in pure space, `garbage-collect'
4866 returns nil, because real GC can't be done. */)
4867 (void)
4869 register struct specbinding *bind;
4870 struct catchtag *catch;
4871 struct handler *handler;
4872 char stack_top_variable;
4873 register int i;
4874 int message_p;
4875 Lisp_Object total[8];
4876 int count = SPECPDL_INDEX ();
4877 EMACS_TIME t1, t2, t3;
4879 if (abort_on_gc)
4880 abort ();
4882 /* Can't GC if pure storage overflowed because we can't determine
4883 if something is a pure object or not. */
4884 if (pure_bytes_used_before_overflow)
4885 return Qnil;
4887 CHECK_CONS_LIST ();
4889 /* Don't keep undo information around forever.
4890 Do this early on, so it is no problem if the user quits. */
4892 register struct buffer *nextb = all_buffers;
4894 while (nextb)
4896 /* If a buffer's undo list is Qt, that means that undo is
4897 turned off in that buffer. Calling truncate_undo_list on
4898 Qt tends to return NULL, which effectively turns undo back on.
4899 So don't call truncate_undo_list if undo_list is Qt. */
4900 if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
4901 truncate_undo_list (nextb);
4903 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4904 if (nextb->base_buffer == 0 && !NILP (nextb->name)
4905 && ! nextb->text->inhibit_shrinking)
4907 /* If a buffer's gap size is more than 10% of the buffer
4908 size, or larger than 2000 bytes, then shrink it
4909 accordingly. Keep a minimum size of 20 bytes. */
4910 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4912 if (nextb->text->gap_size > size)
4914 struct buffer *save_current = current_buffer;
4915 current_buffer = nextb;
4916 make_gap (-(nextb->text->gap_size - size));
4917 current_buffer = save_current;
4921 nextb = nextb->next;
4925 EMACS_GET_TIME (t1);
4927 /* In case user calls debug_print during GC,
4928 don't let that cause a recursive GC. */
4929 consing_since_gc = 0;
4931 /* Save what's currently displayed in the echo area. */
4932 message_p = push_message ();
4933 record_unwind_protect (pop_message_unwind, Qnil);
4935 /* Save a copy of the contents of the stack, for debugging. */
4936 #if MAX_SAVE_STACK > 0
4937 if (NILP (Vpurify_flag))
4939 i = &stack_top_variable - stack_bottom;
4940 if (i < 0) i = -i;
4941 if (i < MAX_SAVE_STACK)
4943 if (stack_copy == 0)
4944 stack_copy = (char *) xmalloc (stack_copy_size = i);
4945 else if (stack_copy_size < i)
4946 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4947 if (stack_copy)
4949 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4950 memcpy (stack_copy, stack_bottom, i);
4951 else
4952 memcpy (stack_copy, &stack_top_variable, i);
4956 #endif /* MAX_SAVE_STACK > 0 */
4958 if (garbage_collection_messages)
4959 message1_nolog ("Garbage collecting...");
4961 BLOCK_INPUT;
4963 shrink_regexp_cache ();
4965 gc_in_progress = 1;
4967 /* clear_marks (); */
4969 /* Mark all the special slots that serve as the roots of accessibility. */
4971 for (i = 0; i < staticidx; i++)
4972 mark_object (*staticvec[i]);
4974 for (bind = specpdl; bind != specpdl_ptr; bind++)
4976 mark_object (bind->symbol);
4977 mark_object (bind->old_value);
4979 mark_terminals ();
4980 mark_kboards ();
4981 mark_ttys ();
4983 #ifdef USE_GTK
4985 extern void xg_mark_data (void);
4986 xg_mark_data ();
4988 #endif
4990 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4991 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4992 mark_stack ();
4993 #else
4995 register struct gcpro *tail;
4996 for (tail = gcprolist; tail; tail = tail->next)
4997 for (i = 0; i < tail->nvars; i++)
4998 mark_object (tail->var[i]);
5000 #endif
5002 mark_byte_stack ();
5003 for (catch = catchlist; catch; catch = catch->next)
5005 mark_object (catch->tag);
5006 mark_object (catch->val);
5008 for (handler = handlerlist; handler; handler = handler->next)
5010 mark_object (handler->handler);
5011 mark_object (handler->var);
5013 mark_backtrace ();
5015 #ifdef HAVE_WINDOW_SYSTEM
5016 mark_fringe_data ();
5017 #endif
5019 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5020 mark_stack ();
5021 #endif
5023 /* Everything is now marked, except for the things that require special
5024 finalization, i.e. the undo_list.
5025 Look thru every buffer's undo list
5026 for elements that update markers that were not marked,
5027 and delete them. */
5029 register struct buffer *nextb = all_buffers;
5031 while (nextb)
5033 /* If a buffer's undo list is Qt, that means that undo is
5034 turned off in that buffer. Calling truncate_undo_list on
5035 Qt tends to return NULL, which effectively turns undo back on.
5036 So don't call truncate_undo_list if undo_list is Qt. */
5037 if (! EQ (nextb->undo_list, Qt))
5039 Lisp_Object tail, prev;
5040 tail = nextb->undo_list;
5041 prev = Qnil;
5042 while (CONSP (tail))
5044 if (CONSP (XCAR (tail))
5045 && MARKERP (XCAR (XCAR (tail)))
5046 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5048 if (NILP (prev))
5049 nextb->undo_list = tail = XCDR (tail);
5050 else
5052 tail = XCDR (tail);
5053 XSETCDR (prev, tail);
5056 else
5058 prev = tail;
5059 tail = XCDR (tail);
5063 /* Now that we have stripped the elements that need not be in the
5064 undo_list any more, we can finally mark the list. */
5065 mark_object (nextb->undo_list);
5067 nextb = nextb->next;
5071 gc_sweep ();
5073 /* Clear the mark bits that we set in certain root slots. */
5075 unmark_byte_stack ();
5076 VECTOR_UNMARK (&buffer_defaults);
5077 VECTOR_UNMARK (&buffer_local_symbols);
5079 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5080 dump_zombies ();
5081 #endif
5083 UNBLOCK_INPUT;
5085 CHECK_CONS_LIST ();
5087 /* clear_marks (); */
5088 gc_in_progress = 0;
5090 consing_since_gc = 0;
5091 if (gc_cons_threshold < 10000)
5092 gc_cons_threshold = 10000;
5094 if (FLOATP (Vgc_cons_percentage))
5095 { /* Set gc_cons_combined_threshold. */
5096 EMACS_INT total = 0;
5098 total += total_conses * sizeof (struct Lisp_Cons);
5099 total += total_symbols * sizeof (struct Lisp_Symbol);
5100 total += total_markers * sizeof (union Lisp_Misc);
5101 total += total_string_size;
5102 total += total_vector_size * sizeof (Lisp_Object);
5103 total += total_floats * sizeof (struct Lisp_Float);
5104 total += total_intervals * sizeof (struct interval);
5105 total += total_strings * sizeof (struct Lisp_String);
5107 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
5109 else
5110 gc_relative_threshold = 0;
5112 if (garbage_collection_messages)
5114 if (message_p || minibuf_level > 0)
5115 restore_message ();
5116 else
5117 message1_nolog ("Garbage collecting...done");
5120 unbind_to (count, Qnil);
5122 total[0] = Fcons (make_number (total_conses),
5123 make_number (total_free_conses));
5124 total[1] = Fcons (make_number (total_symbols),
5125 make_number (total_free_symbols));
5126 total[2] = Fcons (make_number (total_markers),
5127 make_number (total_free_markers));
5128 total[3] = make_number (total_string_size);
5129 total[4] = make_number (total_vector_size);
5130 total[5] = Fcons (make_number (total_floats),
5131 make_number (total_free_floats));
5132 total[6] = Fcons (make_number (total_intervals),
5133 make_number (total_free_intervals));
5134 total[7] = Fcons (make_number (total_strings),
5135 make_number (total_free_strings));
5137 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5139 /* Compute average percentage of zombies. */
5140 double nlive = 0;
5142 for (i = 0; i < 7; ++i)
5143 if (CONSP (total[i]))
5144 nlive += XFASTINT (XCAR (total[i]));
5146 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5147 max_live = max (nlive, max_live);
5148 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5149 max_zombies = max (nzombies, max_zombies);
5150 ++ngcs;
5152 #endif
5154 if (!NILP (Vpost_gc_hook))
5156 int count = inhibit_garbage_collection ();
5157 safe_run_hooks (Qpost_gc_hook);
5158 unbind_to (count, Qnil);
5161 /* Accumulate statistics. */
5162 EMACS_GET_TIME (t2);
5163 EMACS_SUB_TIME (t3, t2, t1);
5164 if (FLOATP (Vgc_elapsed))
5165 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5166 EMACS_SECS (t3) +
5167 EMACS_USECS (t3) * 1.0e-6);
5168 gcs_done++;
5170 return Flist (sizeof total / sizeof *total, total);
5174 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5175 only interesting objects referenced from glyphs are strings. */
5177 static void
5178 mark_glyph_matrix (struct glyph_matrix *matrix)
5180 struct glyph_row *row = matrix->rows;
5181 struct glyph_row *end = row + matrix->nrows;
5183 for (; row < end; ++row)
5184 if (row->enabled_p)
5186 int area;
5187 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5189 struct glyph *glyph = row->glyphs[area];
5190 struct glyph *end_glyph = glyph + row->used[area];
5192 for (; glyph < end_glyph; ++glyph)
5193 if (STRINGP (glyph->object)
5194 && !STRING_MARKED_P (XSTRING (glyph->object)))
5195 mark_object (glyph->object);
5201 /* Mark Lisp faces in the face cache C. */
5203 static void
5204 mark_face_cache (struct face_cache *c)
5206 if (c)
5208 int i, j;
5209 for (i = 0; i < c->used; ++i)
5211 struct face *face = FACE_FROM_ID (c->f, i);
5213 if (face)
5215 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5216 mark_object (face->lface[j]);
5224 /* Mark reference to a Lisp_Object.
5225 If the object referred to has not been seen yet, recursively mark
5226 all the references contained in it. */
5228 #define LAST_MARKED_SIZE 500
5229 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5230 int last_marked_index;
5232 /* For debugging--call abort when we cdr down this many
5233 links of a list, in mark_object. In debugging,
5234 the call to abort will hit a breakpoint.
5235 Normally this is zero and the check never goes off. */
5236 static int mark_object_loop_halt;
5238 static void
5239 mark_vectorlike (struct Lisp_Vector *ptr)
5241 register EMACS_UINT size = ptr->size;
5242 register EMACS_UINT i;
5244 eassert (!VECTOR_MARKED_P (ptr));
5245 VECTOR_MARK (ptr); /* Else mark it */
5246 if (size & PSEUDOVECTOR_FLAG)
5247 size &= PSEUDOVECTOR_SIZE_MASK;
5249 /* Note that this size is not the memory-footprint size, but only
5250 the number of Lisp_Object fields that we should trace.
5251 The distinction is used e.g. by Lisp_Process which places extra
5252 non-Lisp_Object fields at the end of the structure. */
5253 for (i = 0; i < size; i++) /* and then mark its elements */
5254 mark_object (ptr->contents[i]);
5257 /* Like mark_vectorlike but optimized for char-tables (and
5258 sub-char-tables) assuming that the contents are mostly integers or
5259 symbols. */
5261 static void
5262 mark_char_table (struct Lisp_Vector *ptr)
5264 register EMACS_UINT size = ptr->size & PSEUDOVECTOR_SIZE_MASK;
5265 register EMACS_UINT i;
5267 eassert (!VECTOR_MARKED_P (ptr));
5268 VECTOR_MARK (ptr);
5269 for (i = 0; i < size; i++)
5271 Lisp_Object val = ptr->contents[i];
5273 if (INTEGERP (val) || SYMBOLP (val) && XSYMBOL (val)->gcmarkbit)
5274 continue;
5275 if (SUB_CHAR_TABLE_P (val))
5277 if (! VECTOR_MARKED_P (XVECTOR (val)))
5278 mark_char_table (XVECTOR (val));
5280 else
5281 mark_object (val);
5285 void
5286 mark_object (Lisp_Object arg)
5288 register Lisp_Object obj = arg;
5289 #ifdef GC_CHECK_MARKED_OBJECTS
5290 void *po;
5291 struct mem_node *m;
5292 #endif
5293 int cdr_count = 0;
5295 loop:
5297 if (PURE_POINTER_P (XPNTR (obj)))
5298 return;
5300 last_marked[last_marked_index++] = obj;
5301 if (last_marked_index == LAST_MARKED_SIZE)
5302 last_marked_index = 0;
5304 /* Perform some sanity checks on the objects marked here. Abort if
5305 we encounter an object we know is bogus. This increases GC time
5306 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5307 #ifdef GC_CHECK_MARKED_OBJECTS
5309 po = (void *) XPNTR (obj);
5311 /* Check that the object pointed to by PO is known to be a Lisp
5312 structure allocated from the heap. */
5313 #define CHECK_ALLOCATED() \
5314 do { \
5315 m = mem_find (po); \
5316 if (m == MEM_NIL) \
5317 abort (); \
5318 } while (0)
5320 /* Check that the object pointed to by PO is live, using predicate
5321 function LIVEP. */
5322 #define CHECK_LIVE(LIVEP) \
5323 do { \
5324 if (!LIVEP (m, po)) \
5325 abort (); \
5326 } while (0)
5328 /* Check both of the above conditions. */
5329 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5330 do { \
5331 CHECK_ALLOCATED (); \
5332 CHECK_LIVE (LIVEP); \
5333 } while (0) \
5335 #else /* not GC_CHECK_MARKED_OBJECTS */
5337 #define CHECK_ALLOCATED() (void) 0
5338 #define CHECK_LIVE(LIVEP) (void) 0
5339 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5341 #endif /* not GC_CHECK_MARKED_OBJECTS */
5343 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5345 case Lisp_String:
5347 register struct Lisp_String *ptr = XSTRING (obj);
5348 if (STRING_MARKED_P (ptr))
5349 break;
5350 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5351 MARK_INTERVAL_TREE (ptr->intervals);
5352 MARK_STRING (ptr);
5353 #ifdef GC_CHECK_STRING_BYTES
5354 /* Check that the string size recorded in the string is the
5355 same as the one recorded in the sdata structure. */
5356 CHECK_STRING_BYTES (ptr);
5357 #endif /* GC_CHECK_STRING_BYTES */
5359 break;
5361 case Lisp_Vectorlike:
5362 if (VECTOR_MARKED_P (XVECTOR (obj)))
5363 break;
5364 #ifdef GC_CHECK_MARKED_OBJECTS
5365 m = mem_find (po);
5366 if (m == MEM_NIL && !SUBRP (obj)
5367 && po != &buffer_defaults
5368 && po != &buffer_local_symbols)
5369 abort ();
5370 #endif /* GC_CHECK_MARKED_OBJECTS */
5372 if (BUFFERP (obj))
5374 #ifdef GC_CHECK_MARKED_OBJECTS
5375 if (po != &buffer_defaults && po != &buffer_local_symbols)
5377 struct buffer *b;
5378 for (b = all_buffers; b && b != po; b = b->next)
5380 if (b == NULL)
5381 abort ();
5383 #endif /* GC_CHECK_MARKED_OBJECTS */
5384 mark_buffer (obj);
5386 else if (SUBRP (obj))
5387 break;
5388 else if (COMPILEDP (obj))
5389 /* We could treat this just like a vector, but it is better to
5390 save the COMPILED_CONSTANTS element for last and avoid
5391 recursion there. */
5393 register struct Lisp_Vector *ptr = XVECTOR (obj);
5394 register EMACS_UINT size = ptr->size;
5395 register EMACS_UINT i;
5397 CHECK_LIVE (live_vector_p);
5398 VECTOR_MARK (ptr); /* Else mark it */
5399 size &= PSEUDOVECTOR_SIZE_MASK;
5400 for (i = 0; i < size; i++) /* and then mark its elements */
5402 if (i != COMPILED_CONSTANTS)
5403 mark_object (ptr->contents[i]);
5405 obj = ptr->contents[COMPILED_CONSTANTS];
5406 goto loop;
5408 else if (FRAMEP (obj))
5410 register struct frame *ptr = XFRAME (obj);
5411 mark_vectorlike (XVECTOR (obj));
5412 mark_face_cache (ptr->face_cache);
5414 else if (WINDOWP (obj))
5416 register struct Lisp_Vector *ptr = XVECTOR (obj);
5417 struct window *w = XWINDOW (obj);
5418 mark_vectorlike (ptr);
5419 /* Mark glyphs for leaf windows. Marking window matrices is
5420 sufficient because frame matrices use the same glyph
5421 memory. */
5422 if (NILP (w->hchild)
5423 && NILP (w->vchild)
5424 && w->current_matrix)
5426 mark_glyph_matrix (w->current_matrix);
5427 mark_glyph_matrix (w->desired_matrix);
5430 else if (HASH_TABLE_P (obj))
5432 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5433 mark_vectorlike ((struct Lisp_Vector *)h);
5434 /* If hash table is not weak, mark all keys and values.
5435 For weak tables, mark only the vector. */
5436 if (NILP (h->weak))
5437 mark_object (h->key_and_value);
5438 else
5439 VECTOR_MARK (XVECTOR (h->key_and_value));
5441 else if (CHAR_TABLE_P (obj))
5442 mark_char_table (XVECTOR (obj));
5443 else
5444 mark_vectorlike (XVECTOR (obj));
5445 break;
5447 case Lisp_Symbol:
5449 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5450 struct Lisp_Symbol *ptrx;
5452 if (ptr->gcmarkbit)
5453 break;
5454 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5455 ptr->gcmarkbit = 1;
5456 mark_object (ptr->function);
5457 mark_object (ptr->plist);
5458 switch (ptr->redirect)
5460 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5461 case SYMBOL_VARALIAS:
5463 Lisp_Object tem;
5464 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5465 mark_object (tem);
5466 break;
5468 case SYMBOL_LOCALIZED:
5470 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5471 /* If the value is forwarded to a buffer or keyboard field,
5472 these are marked when we see the corresponding object.
5473 And if it's forwarded to a C variable, either it's not
5474 a Lisp_Object var, or it's staticpro'd already. */
5475 mark_object (blv->where);
5476 mark_object (blv->valcell);
5477 mark_object (blv->defcell);
5478 break;
5480 case SYMBOL_FORWARDED:
5481 /* If the value is forwarded to a buffer or keyboard field,
5482 these are marked when we see the corresponding object.
5483 And if it's forwarded to a C variable, either it's not
5484 a Lisp_Object var, or it's staticpro'd already. */
5485 break;
5486 default: abort ();
5488 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5489 MARK_STRING (XSTRING (ptr->xname));
5490 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5492 ptr = ptr->next;
5493 if (ptr)
5495 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5496 XSETSYMBOL (obj, ptrx);
5497 goto loop;
5500 break;
5502 case Lisp_Misc:
5503 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5504 if (XMISCANY (obj)->gcmarkbit)
5505 break;
5506 XMISCANY (obj)->gcmarkbit = 1;
5508 switch (XMISCTYPE (obj))
5511 case Lisp_Misc_Marker:
5512 /* DO NOT mark thru the marker's chain.
5513 The buffer's markers chain does not preserve markers from gc;
5514 instead, markers are removed from the chain when freed by gc. */
5515 break;
5517 case Lisp_Misc_Save_Value:
5518 #if GC_MARK_STACK
5520 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5521 /* If DOGC is set, POINTER is the address of a memory
5522 area containing INTEGER potential Lisp_Objects. */
5523 if (ptr->dogc)
5525 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5526 int nelt;
5527 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5528 mark_maybe_object (*p);
5531 #endif
5532 break;
5534 case Lisp_Misc_Overlay:
5536 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5537 mark_object (ptr->start);
5538 mark_object (ptr->end);
5539 mark_object (ptr->plist);
5540 if (ptr->next)
5542 XSETMISC (obj, ptr->next);
5543 goto loop;
5546 break;
5548 default:
5549 abort ();
5551 break;
5553 case Lisp_Cons:
5555 register struct Lisp_Cons *ptr = XCONS (obj);
5556 if (CONS_MARKED_P (ptr))
5557 break;
5558 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5559 CONS_MARK (ptr);
5560 /* If the cdr is nil, avoid recursion for the car. */
5561 if (EQ (ptr->u.cdr, Qnil))
5563 obj = ptr->car;
5564 cdr_count = 0;
5565 goto loop;
5567 mark_object (ptr->car);
5568 obj = ptr->u.cdr;
5569 cdr_count++;
5570 if (cdr_count == mark_object_loop_halt)
5571 abort ();
5572 goto loop;
5575 case Lisp_Float:
5576 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5577 FLOAT_MARK (XFLOAT (obj));
5578 break;
5580 case_Lisp_Int:
5581 break;
5583 default:
5584 abort ();
5587 #undef CHECK_LIVE
5588 #undef CHECK_ALLOCATED
5589 #undef CHECK_ALLOCATED_AND_LIVE
5592 /* Mark the pointers in a buffer structure. */
5594 static void
5595 mark_buffer (Lisp_Object buf)
5597 register struct buffer *buffer = XBUFFER (buf);
5598 register Lisp_Object *ptr, tmp;
5599 Lisp_Object base_buffer;
5601 eassert (!VECTOR_MARKED_P (buffer));
5602 VECTOR_MARK (buffer);
5604 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5606 /* For now, we just don't mark the undo_list. It's done later in
5607 a special way just before the sweep phase, and after stripping
5608 some of its elements that are not needed any more. */
5610 if (buffer->overlays_before)
5612 XSETMISC (tmp, buffer->overlays_before);
5613 mark_object (tmp);
5615 if (buffer->overlays_after)
5617 XSETMISC (tmp, buffer->overlays_after);
5618 mark_object (tmp);
5621 /* buffer-local Lisp variables start at `undo_list',
5622 tho only the ones from `name' on are GC'd normally. */
5623 for (ptr = &buffer->name;
5624 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5625 ptr++)
5626 mark_object (*ptr);
5628 /* If this is an indirect buffer, mark its base buffer. */
5629 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5631 XSETBUFFER (base_buffer, buffer->base_buffer);
5632 mark_buffer (base_buffer);
5636 /* Mark the Lisp pointers in the terminal objects.
5637 Called by the Fgarbage_collector. */
5639 static void
5640 mark_terminals (void)
5642 struct terminal *t;
5643 for (t = terminal_list; t; t = t->next_terminal)
5645 eassert (t->name != NULL);
5646 #ifdef HAVE_WINDOW_SYSTEM
5647 /* If a terminal object is reachable from a stacpro'ed object,
5648 it might have been marked already. Make sure the image cache
5649 gets marked. */
5650 mark_image_cache (t->image_cache);
5651 #endif /* HAVE_WINDOW_SYSTEM */
5652 if (!VECTOR_MARKED_P (t))
5653 mark_vectorlike ((struct Lisp_Vector *)t);
5659 /* Value is non-zero if OBJ will survive the current GC because it's
5660 either marked or does not need to be marked to survive. */
5663 survives_gc_p (Lisp_Object obj)
5665 int survives_p;
5667 switch (XTYPE (obj))
5669 case_Lisp_Int:
5670 survives_p = 1;
5671 break;
5673 case Lisp_Symbol:
5674 survives_p = XSYMBOL (obj)->gcmarkbit;
5675 break;
5677 case Lisp_Misc:
5678 survives_p = XMISCANY (obj)->gcmarkbit;
5679 break;
5681 case Lisp_String:
5682 survives_p = STRING_MARKED_P (XSTRING (obj));
5683 break;
5685 case Lisp_Vectorlike:
5686 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5687 break;
5689 case Lisp_Cons:
5690 survives_p = CONS_MARKED_P (XCONS (obj));
5691 break;
5693 case Lisp_Float:
5694 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5695 break;
5697 default:
5698 abort ();
5701 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5706 /* Sweep: find all structures not marked, and free them. */
5708 static void
5709 gc_sweep (void)
5711 /* Remove or mark entries in weak hash tables.
5712 This must be done before any object is unmarked. */
5713 sweep_weak_hash_tables ();
5715 sweep_strings ();
5716 #ifdef GC_CHECK_STRING_BYTES
5717 if (!noninteractive)
5718 check_string_bytes (1);
5719 #endif
5721 /* Put all unmarked conses on free list */
5723 register struct cons_block *cblk;
5724 struct cons_block **cprev = &cons_block;
5725 register int lim = cons_block_index;
5726 register int num_free = 0, num_used = 0;
5728 cons_free_list = 0;
5730 for (cblk = cons_block; cblk; cblk = *cprev)
5732 register int i = 0;
5733 int this_free = 0;
5734 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5736 /* Scan the mark bits an int at a time. */
5737 for (i = 0; i <= ilim; i++)
5739 if (cblk->gcmarkbits[i] == -1)
5741 /* Fast path - all cons cells for this int are marked. */
5742 cblk->gcmarkbits[i] = 0;
5743 num_used += BITS_PER_INT;
5745 else
5747 /* Some cons cells for this int are not marked.
5748 Find which ones, and free them. */
5749 int start, pos, stop;
5751 start = i * BITS_PER_INT;
5752 stop = lim - start;
5753 if (stop > BITS_PER_INT)
5754 stop = BITS_PER_INT;
5755 stop += start;
5757 for (pos = start; pos < stop; pos++)
5759 if (!CONS_MARKED_P (&cblk->conses[pos]))
5761 this_free++;
5762 cblk->conses[pos].u.chain = cons_free_list;
5763 cons_free_list = &cblk->conses[pos];
5764 #if GC_MARK_STACK
5765 cons_free_list->car = Vdead;
5766 #endif
5768 else
5770 num_used++;
5771 CONS_UNMARK (&cblk->conses[pos]);
5777 lim = CONS_BLOCK_SIZE;
5778 /* If this block contains only free conses and we have already
5779 seen more than two blocks worth of free conses then deallocate
5780 this block. */
5781 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5783 *cprev = cblk->next;
5784 /* Unhook from the free list. */
5785 cons_free_list = cblk->conses[0].u.chain;
5786 lisp_align_free (cblk);
5787 n_cons_blocks--;
5789 else
5791 num_free += this_free;
5792 cprev = &cblk->next;
5795 total_conses = num_used;
5796 total_free_conses = num_free;
5799 /* Put all unmarked floats on free list */
5801 register struct float_block *fblk;
5802 struct float_block **fprev = &float_block;
5803 register int lim = float_block_index;
5804 register int num_free = 0, num_used = 0;
5806 float_free_list = 0;
5808 for (fblk = float_block; fblk; fblk = *fprev)
5810 register int i;
5811 int this_free = 0;
5812 for (i = 0; i < lim; i++)
5813 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5815 this_free++;
5816 fblk->floats[i].u.chain = float_free_list;
5817 float_free_list = &fblk->floats[i];
5819 else
5821 num_used++;
5822 FLOAT_UNMARK (&fblk->floats[i]);
5824 lim = FLOAT_BLOCK_SIZE;
5825 /* If this block contains only free floats and we have already
5826 seen more than two blocks worth of free floats then deallocate
5827 this block. */
5828 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5830 *fprev = fblk->next;
5831 /* Unhook from the free list. */
5832 float_free_list = fblk->floats[0].u.chain;
5833 lisp_align_free (fblk);
5834 n_float_blocks--;
5836 else
5838 num_free += this_free;
5839 fprev = &fblk->next;
5842 total_floats = num_used;
5843 total_free_floats = num_free;
5846 /* Put all unmarked intervals on free list */
5848 register struct interval_block *iblk;
5849 struct interval_block **iprev = &interval_block;
5850 register int lim = interval_block_index;
5851 register int num_free = 0, num_used = 0;
5853 interval_free_list = 0;
5855 for (iblk = interval_block; iblk; iblk = *iprev)
5857 register int i;
5858 int this_free = 0;
5860 for (i = 0; i < lim; i++)
5862 if (!iblk->intervals[i].gcmarkbit)
5864 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5865 interval_free_list = &iblk->intervals[i];
5866 this_free++;
5868 else
5870 num_used++;
5871 iblk->intervals[i].gcmarkbit = 0;
5874 lim = INTERVAL_BLOCK_SIZE;
5875 /* If this block contains only free intervals and we have already
5876 seen more than two blocks worth of free intervals then
5877 deallocate this block. */
5878 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5880 *iprev = iblk->next;
5881 /* Unhook from the free list. */
5882 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5883 lisp_free (iblk);
5884 n_interval_blocks--;
5886 else
5888 num_free += this_free;
5889 iprev = &iblk->next;
5892 total_intervals = num_used;
5893 total_free_intervals = num_free;
5896 /* Put all unmarked symbols on free list */
5898 register struct symbol_block *sblk;
5899 struct symbol_block **sprev = &symbol_block;
5900 register int lim = symbol_block_index;
5901 register int num_free = 0, num_used = 0;
5903 symbol_free_list = NULL;
5905 for (sblk = symbol_block; sblk; sblk = *sprev)
5907 int this_free = 0;
5908 struct Lisp_Symbol *sym = sblk->symbols;
5909 struct Lisp_Symbol *end = sym + lim;
5911 for (; sym < end; ++sym)
5913 /* Check if the symbol was created during loadup. In such a case
5914 it might be pointed to by pure bytecode which we don't trace,
5915 so we conservatively assume that it is live. */
5916 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5918 if (!sym->gcmarkbit && !pure_p)
5920 if (sym->redirect == SYMBOL_LOCALIZED)
5921 xfree (SYMBOL_BLV (sym));
5922 sym->next = symbol_free_list;
5923 symbol_free_list = sym;
5924 #if GC_MARK_STACK
5925 symbol_free_list->function = Vdead;
5926 #endif
5927 ++this_free;
5929 else
5931 ++num_used;
5932 if (!pure_p)
5933 UNMARK_STRING (XSTRING (sym->xname));
5934 sym->gcmarkbit = 0;
5938 lim = SYMBOL_BLOCK_SIZE;
5939 /* If this block contains only free symbols and we have already
5940 seen more than two blocks worth of free symbols then deallocate
5941 this block. */
5942 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5944 *sprev = sblk->next;
5945 /* Unhook from the free list. */
5946 symbol_free_list = sblk->symbols[0].next;
5947 lisp_free (sblk);
5948 n_symbol_blocks--;
5950 else
5952 num_free += this_free;
5953 sprev = &sblk->next;
5956 total_symbols = num_used;
5957 total_free_symbols = num_free;
5960 /* Put all unmarked misc's on free list.
5961 For a marker, first unchain it from the buffer it points into. */
5963 register struct marker_block *mblk;
5964 struct marker_block **mprev = &marker_block;
5965 register int lim = marker_block_index;
5966 register int num_free = 0, num_used = 0;
5968 marker_free_list = 0;
5970 for (mblk = marker_block; mblk; mblk = *mprev)
5972 register int i;
5973 int this_free = 0;
5975 for (i = 0; i < lim; i++)
5977 if (!mblk->markers[i].u_any.gcmarkbit)
5979 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
5980 unchain_marker (&mblk->markers[i].u_marker);
5981 /* Set the type of the freed object to Lisp_Misc_Free.
5982 We could leave the type alone, since nobody checks it,
5983 but this might catch bugs faster. */
5984 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5985 mblk->markers[i].u_free.chain = marker_free_list;
5986 marker_free_list = &mblk->markers[i];
5987 this_free++;
5989 else
5991 num_used++;
5992 mblk->markers[i].u_any.gcmarkbit = 0;
5995 lim = MARKER_BLOCK_SIZE;
5996 /* If this block contains only free markers and we have already
5997 seen more than two blocks worth of free markers then deallocate
5998 this block. */
5999 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6001 *mprev = mblk->next;
6002 /* Unhook from the free list. */
6003 marker_free_list = mblk->markers[0].u_free.chain;
6004 lisp_free (mblk);
6005 n_marker_blocks--;
6007 else
6009 num_free += this_free;
6010 mprev = &mblk->next;
6014 total_markers = num_used;
6015 total_free_markers = num_free;
6018 /* Free all unmarked buffers */
6020 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6022 while (buffer)
6023 if (!VECTOR_MARKED_P (buffer))
6025 if (prev)
6026 prev->next = buffer->next;
6027 else
6028 all_buffers = buffer->next;
6029 next = buffer->next;
6030 lisp_free (buffer);
6031 buffer = next;
6033 else
6035 VECTOR_UNMARK (buffer);
6036 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6037 prev = buffer, buffer = buffer->next;
6041 /* Free all unmarked vectors */
6043 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6044 total_vector_size = 0;
6046 while (vector)
6047 if (!VECTOR_MARKED_P (vector))
6049 if (prev)
6050 prev->next = vector->next;
6051 else
6052 all_vectors = vector->next;
6053 next = vector->next;
6054 lisp_free (vector);
6055 n_vectors--;
6056 vector = next;
6059 else
6061 VECTOR_UNMARK (vector);
6062 if (vector->size & PSEUDOVECTOR_FLAG)
6063 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6064 else
6065 total_vector_size += vector->size;
6066 prev = vector, vector = vector->next;
6070 #ifdef GC_CHECK_STRING_BYTES
6071 if (!noninteractive)
6072 check_string_bytes (1);
6073 #endif
6079 /* Debugging aids. */
6081 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6082 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6083 This may be helpful in debugging Emacs's memory usage.
6084 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6085 (void)
6087 Lisp_Object end;
6089 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
6091 return end;
6094 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6095 doc: /* Return a list of counters that measure how much consing there has been.
6096 Each of these counters increments for a certain kind of object.
6097 The counters wrap around from the largest positive integer to zero.
6098 Garbage collection does not decrease them.
6099 The elements of the value are as follows:
6100 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6101 All are in units of 1 = one object consed
6102 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6103 objects consed.
6104 MISCS include overlays, markers, and some internal types.
6105 Frames, windows, buffers, and subprocesses count as vectors
6106 (but the contents of a buffer's text do not count here). */)
6107 (void)
6109 Lisp_Object consed[8];
6111 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6112 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6113 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6114 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6115 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6116 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6117 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6118 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6120 return Flist (8, consed);
6123 int suppress_checking;
6125 void
6126 die (const char *msg, const char *file, int line)
6128 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6129 file, line, msg);
6130 abort ();
6133 /* Initialization */
6135 void
6136 init_alloc_once (void)
6138 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6139 purebeg = PUREBEG;
6140 pure_size = PURESIZE;
6141 pure_bytes_used = 0;
6142 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6143 pure_bytes_used_before_overflow = 0;
6145 /* Initialize the list of free aligned blocks. */
6146 free_ablock = NULL;
6148 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6149 mem_init ();
6150 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6151 #endif
6153 all_vectors = 0;
6154 ignore_warnings = 1;
6155 #ifdef DOUG_LEA_MALLOC
6156 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6157 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6158 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6159 #endif
6160 init_strings ();
6161 init_cons ();
6162 init_symbol ();
6163 init_marker ();
6164 init_float ();
6165 init_intervals ();
6166 init_weak_hash_tables ();
6168 #ifdef REL_ALLOC
6169 malloc_hysteresis = 32;
6170 #else
6171 malloc_hysteresis = 0;
6172 #endif
6174 refill_memory_reserve ();
6176 ignore_warnings = 0;
6177 gcprolist = 0;
6178 byte_stack_list = 0;
6179 staticidx = 0;
6180 consing_since_gc = 0;
6181 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6182 gc_relative_threshold = 0;
6185 void
6186 init_alloc (void)
6188 gcprolist = 0;
6189 byte_stack_list = 0;
6190 #if GC_MARK_STACK
6191 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6192 setjmp_tested_p = longjmps_done = 0;
6193 #endif
6194 #endif
6195 Vgc_elapsed = make_float (0.0);
6196 gcs_done = 0;
6199 void
6200 syms_of_alloc (void)
6202 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
6203 doc: /* *Number of bytes of consing between garbage collections.
6204 Garbage collection can happen automatically once this many bytes have been
6205 allocated since the last garbage collection. All data types count.
6207 Garbage collection happens automatically only when `eval' is called.
6209 By binding this temporarily to a large number, you can effectively
6210 prevent garbage collection during a part of the program.
6211 See also `gc-cons-percentage'. */);
6213 DEFVAR_LISP ("gc-cons-percentage", &Vgc_cons_percentage,
6214 doc: /* *Portion of the heap used for allocation.
6215 Garbage collection can happen automatically once this portion of the heap
6216 has been allocated since the last garbage collection.
6217 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6218 Vgc_cons_percentage = make_float (0.1);
6220 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
6221 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6223 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
6224 doc: /* Number of cons cells that have been consed so far. */);
6226 DEFVAR_INT ("floats-consed", &floats_consed,
6227 doc: /* Number of floats that have been consed so far. */);
6229 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
6230 doc: /* Number of vector cells that have been consed so far. */);
6232 DEFVAR_INT ("symbols-consed", &symbols_consed,
6233 doc: /* Number of symbols that have been consed so far. */);
6235 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
6236 doc: /* Number of string characters that have been consed so far. */);
6238 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
6239 doc: /* Number of miscellaneous objects that have been consed so far. */);
6241 DEFVAR_INT ("intervals-consed", &intervals_consed,
6242 doc: /* Number of intervals that have been consed so far. */);
6244 DEFVAR_INT ("strings-consed", &strings_consed,
6245 doc: /* Number of strings that have been consed so far. */);
6247 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
6248 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6249 This means that certain objects should be allocated in shared (pure) space.
6250 It can also be set to a hash-table, in which case this table is used to
6251 do hash-consing of the objects allocated to pure space. */);
6253 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
6254 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6255 garbage_collection_messages = 0;
6257 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
6258 doc: /* Hook run after garbage collection has finished. */);
6259 Vpost_gc_hook = Qnil;
6260 Qpost_gc_hook = intern_c_string ("post-gc-hook");
6261 staticpro (&Qpost_gc_hook);
6263 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
6264 doc: /* Precomputed `signal' argument for memory-full error. */);
6265 /* We build this in advance because if we wait until we need it, we might
6266 not be able to allocate the memory to hold it. */
6267 Vmemory_signal_data
6268 = pure_cons (Qerror,
6269 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6271 DEFVAR_LISP ("memory-full", &Vmemory_full,
6272 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6273 Vmemory_full = Qnil;
6275 staticpro (&Qgc_cons_threshold);
6276 Qgc_cons_threshold = intern_c_string ("gc-cons-threshold");
6278 staticpro (&Qchar_table_extra_slots);
6279 Qchar_table_extra_slots = intern_c_string ("char-table-extra-slots");
6281 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
6282 doc: /* Accumulated time elapsed in garbage collections.
6283 The time is in seconds as a floating point value. */);
6284 DEFVAR_INT ("gcs-done", &gcs_done,
6285 doc: /* Accumulated number of garbage collections done. */);
6287 defsubr (&Scons);
6288 defsubr (&Slist);
6289 defsubr (&Svector);
6290 defsubr (&Smake_byte_code);
6291 defsubr (&Smake_list);
6292 defsubr (&Smake_vector);
6293 defsubr (&Smake_string);
6294 defsubr (&Smake_bool_vector);
6295 defsubr (&Smake_symbol);
6296 defsubr (&Smake_marker);
6297 defsubr (&Spurecopy);
6298 defsubr (&Sgarbage_collect);
6299 defsubr (&Smemory_limit);
6300 defsubr (&Smemory_use_counts);
6302 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6303 defsubr (&Sgc_status);
6304 #endif
6307 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6308 (do not change this comment) */