* todo-mode.el: Offer to convert legacy file. Update commentary.
[emacs.git] / src / alloc.c
blobcce0fff4fd4088c1a1a71477fcc06e5b1f171ecf
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2013 Free Software
4 Foundation, Inc.
6 This file is part of GNU Emacs.
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
21 #include <config.h>
23 #define LISP_INLINE EXTERN_INLINE
25 #include <stdio.h>
26 #include <limits.h> /* For CHAR_BIT. */
28 #ifdef ENABLE_CHECKING
29 #include <signal.h> /* For SIGABRT. */
30 #endif
32 #ifdef HAVE_PTHREAD
33 #include <pthread.h>
34 #endif
36 #include "lisp.h"
37 #include "process.h"
38 #include "intervals.h"
39 #include "puresize.h"
40 #include "character.h"
41 #include "buffer.h"
42 #include "window.h"
43 #include "keyboard.h"
44 #include "frame.h"
45 #include "blockinput.h"
46 #include "termhooks.h" /* For struct terminal. */
48 #include <verify.h>
50 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
51 Doable only if GC_MARK_STACK. */
52 #if ! GC_MARK_STACK
53 # undef GC_CHECK_MARKED_OBJECTS
54 #endif
56 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
57 memory. Can do this only if using gmalloc.c and if not checking
58 marked objects. */
60 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
61 || defined GC_CHECK_MARKED_OBJECTS)
62 #undef GC_MALLOC_CHECK
63 #endif
65 #include <unistd.h>
66 #include <fcntl.h>
68 #ifdef USE_GTK
69 # include "gtkutil.h"
70 #endif
71 #ifdef WINDOWSNT
72 #include "w32.h"
73 #include "w32heap.h" /* for sbrk */
74 #endif
76 #ifdef DOUG_LEA_MALLOC
78 #include <malloc.h>
80 /* Specify maximum number of areas to mmap. It would be nice to use a
81 value that explicitly means "no limit". */
83 #define MMAP_MAX_AREAS 100000000
85 #endif /* not DOUG_LEA_MALLOC */
87 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
88 to a struct Lisp_String. */
90 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
91 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
92 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
94 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
95 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
96 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
98 /* Default value of gc_cons_threshold (see below). */
100 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
102 /* Global variables. */
103 struct emacs_globals globals;
105 /* Number of bytes of consing done since the last gc. */
107 EMACS_INT consing_since_gc;
109 /* Similar minimum, computed from Vgc_cons_percentage. */
111 EMACS_INT gc_relative_threshold;
113 /* Minimum number of bytes of consing since GC before next GC,
114 when memory is full. */
116 EMACS_INT memory_full_cons_threshold;
118 /* True during GC. */
120 bool gc_in_progress;
122 /* True means abort if try to GC.
123 This is for code which is written on the assumption that
124 no GC will happen, so as to verify that assumption. */
126 bool abort_on_gc;
128 /* Number of live and free conses etc. */
130 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
131 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
132 static EMACS_INT total_free_floats, total_floats;
134 /* Points to memory space allocated as "spare", to be freed if we run
135 out of memory. We keep one large block, four cons-blocks, and
136 two string blocks. */
138 static char *spare_memory[7];
140 /* Amount of spare memory to keep in large reserve block, or to see
141 whether this much is available when malloc fails on a larger request. */
143 #define SPARE_MEMORY (1 << 14)
145 /* Initialize it to a nonzero value to force it into data space
146 (rather than bss space). That way unexec will remap it into text
147 space (pure), on some systems. We have not implemented the
148 remapping on more recent systems because this is less important
149 nowadays than in the days of small memories and timesharing. */
151 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
152 #define PUREBEG (char *) pure
154 /* Pointer to the pure area, and its size. */
156 static char *purebeg;
157 static ptrdiff_t pure_size;
159 /* Number of bytes of pure storage used before pure storage overflowed.
160 If this is non-zero, this implies that an overflow occurred. */
162 static ptrdiff_t pure_bytes_used_before_overflow;
164 /* True if P points into pure space. */
166 #define PURE_POINTER_P(P) \
167 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
169 /* Index in pure at which next pure Lisp object will be allocated.. */
171 static ptrdiff_t pure_bytes_used_lisp;
173 /* Number of bytes allocated for non-Lisp objects in pure storage. */
175 static ptrdiff_t pure_bytes_used_non_lisp;
177 /* If nonzero, this is a warning delivered by malloc and not yet
178 displayed. */
180 const char *pending_malloc_warning;
182 /* Maximum amount of C stack to save when a GC happens. */
184 #ifndef MAX_SAVE_STACK
185 #define MAX_SAVE_STACK 16000
186 #endif
188 /* Buffer in which we save a copy of the C stack at each GC. */
190 #if MAX_SAVE_STACK > 0
191 static char *stack_copy;
192 static ptrdiff_t stack_copy_size;
193 #endif
195 static Lisp_Object Qconses;
196 static Lisp_Object Qsymbols;
197 static Lisp_Object Qmiscs;
198 static Lisp_Object Qstrings;
199 static Lisp_Object Qvectors;
200 static Lisp_Object Qfloats;
201 static Lisp_Object Qintervals;
202 static Lisp_Object Qbuffers;
203 static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
204 static Lisp_Object Qgc_cons_threshold;
205 Lisp_Object Qautomatic_gc;
206 Lisp_Object Qchar_table_extra_slots;
208 /* Hook run after GC has finished. */
210 static Lisp_Object Qpost_gc_hook;
212 static void free_save_value (Lisp_Object);
213 static void mark_terminals (void);
214 static void gc_sweep (void);
215 static Lisp_Object make_pure_vector (ptrdiff_t);
216 static void mark_buffer (struct buffer *);
218 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
219 static void refill_memory_reserve (void);
220 #endif
221 static void compact_small_strings (void);
222 static void free_large_strings (void);
223 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
225 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
226 what memory allocated via lisp_malloc and lisp_align_malloc is intended
227 for what purpose. This enumeration specifies the type of memory. */
229 enum mem_type
231 MEM_TYPE_NON_LISP,
232 MEM_TYPE_BUFFER,
233 MEM_TYPE_CONS,
234 MEM_TYPE_STRING,
235 MEM_TYPE_MISC,
236 MEM_TYPE_SYMBOL,
237 MEM_TYPE_FLOAT,
238 /* Since all non-bool pseudovectors are small enough to be
239 allocated from vector blocks, this memory type denotes
240 large regular vectors and large bool pseudovectors. */
241 MEM_TYPE_VECTORLIKE,
242 /* Special type to denote vector blocks. */
243 MEM_TYPE_VECTOR_BLOCK,
244 /* Special type to denote reserved memory. */
245 MEM_TYPE_SPARE
248 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
250 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
251 #include <stdio.h> /* For fprintf. */
252 #endif
254 /* A unique object in pure space used to make some Lisp objects
255 on free lists recognizable in O(1). */
257 static Lisp_Object Vdead;
258 #define DEADP(x) EQ (x, Vdead)
260 #ifdef GC_MALLOC_CHECK
262 enum mem_type allocated_mem_type;
264 #endif /* GC_MALLOC_CHECK */
266 /* A node in the red-black tree describing allocated memory containing
267 Lisp data. Each such block is recorded with its start and end
268 address when it is allocated, and removed from the tree when it
269 is freed.
271 A red-black tree is a balanced binary tree with the following
272 properties:
274 1. Every node is either red or black.
275 2. Every leaf is black.
276 3. If a node is red, then both of its children are black.
277 4. Every simple path from a node to a descendant leaf contains
278 the same number of black nodes.
279 5. The root is always black.
281 When nodes are inserted into the tree, or deleted from the tree,
282 the tree is "fixed" so that these properties are always true.
284 A red-black tree with N internal nodes has height at most 2
285 log(N+1). Searches, insertions and deletions are done in O(log N).
286 Please see a text book about data structures for a detailed
287 description of red-black trees. Any book worth its salt should
288 describe them. */
290 struct mem_node
292 /* Children of this node. These pointers are never NULL. When there
293 is no child, the value is MEM_NIL, which points to a dummy node. */
294 struct mem_node *left, *right;
296 /* The parent of this node. In the root node, this is NULL. */
297 struct mem_node *parent;
299 /* Start and end of allocated region. */
300 void *start, *end;
302 /* Node color. */
303 enum {MEM_BLACK, MEM_RED} color;
305 /* Memory type. */
306 enum mem_type type;
309 /* Base address of stack. Set in main. */
311 Lisp_Object *stack_base;
313 /* Root of the tree describing allocated Lisp memory. */
315 static struct mem_node *mem_root;
317 /* Lowest and highest known address in the heap. */
319 static void *min_heap_address, *max_heap_address;
321 /* Sentinel node of the tree. */
323 static struct mem_node mem_z;
324 #define MEM_NIL &mem_z
326 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
327 static struct mem_node *mem_insert (void *, void *, enum mem_type);
328 static void mem_insert_fixup (struct mem_node *);
329 static void mem_rotate_left (struct mem_node *);
330 static void mem_rotate_right (struct mem_node *);
331 static void mem_delete (struct mem_node *);
332 static void mem_delete_fixup (struct mem_node *);
333 static struct mem_node *mem_find (void *);
334 #endif
336 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
338 #ifndef DEADP
339 # define DEADP(x) 0
340 #endif
342 /* Recording what needs to be marked for gc. */
344 struct gcpro *gcprolist;
346 /* Addresses of staticpro'd variables. Initialize it to a nonzero
347 value; otherwise some compilers put it into BSS. */
349 #define NSTATICS 0x800
350 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
352 /* Index of next unused slot in staticvec. */
354 static int staticidx;
356 static void *pure_alloc (size_t, int);
359 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
360 ALIGNMENT must be a power of 2. */
362 #define ALIGN(ptr, ALIGNMENT) \
363 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
364 & ~ ((ALIGNMENT) - 1)))
368 /************************************************************************
369 Malloc
370 ************************************************************************/
372 /* Function malloc calls this if it finds we are near exhausting storage. */
374 void
375 malloc_warning (const char *str)
377 pending_malloc_warning = str;
381 /* Display an already-pending malloc warning. */
383 void
384 display_malloc_warning (void)
386 call3 (intern ("display-warning"),
387 intern ("alloc"),
388 build_string (pending_malloc_warning),
389 intern ("emergency"));
390 pending_malloc_warning = 0;
393 /* Called if we can't allocate relocatable space for a buffer. */
395 void
396 buffer_memory_full (ptrdiff_t nbytes)
398 /* If buffers use the relocating allocator, no need to free
399 spare_memory, because we may have plenty of malloc space left
400 that we could get, and if we don't, the malloc that fails will
401 itself cause spare_memory to be freed. If buffers don't use the
402 relocating allocator, treat this like any other failing
403 malloc. */
405 #ifndef REL_ALLOC
406 memory_full (nbytes);
407 #else
408 /* This used to call error, but if we've run out of memory, we could
409 get infinite recursion trying to build the string. */
410 xsignal (Qnil, Vmemory_signal_data);
411 #endif
414 /* A common multiple of the positive integers A and B. Ideally this
415 would be the least common multiple, but there's no way to do that
416 as a constant expression in C, so do the best that we can easily do. */
417 #define COMMON_MULTIPLE(a, b) \
418 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
420 #ifndef XMALLOC_OVERRUN_CHECK
421 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
422 #else
424 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
425 around each block.
427 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
428 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
429 block size in little-endian order. The trailer consists of
430 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
432 The header is used to detect whether this block has been allocated
433 through these functions, as some low-level libc functions may
434 bypass the malloc hooks. */
436 #define XMALLOC_OVERRUN_CHECK_SIZE 16
437 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
438 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
440 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
441 hold a size_t value and (2) the header size is a multiple of the
442 alignment that Emacs needs for C types and for USE_LSB_TAG. */
443 #define XMALLOC_BASE_ALIGNMENT \
444 alignof (union { long double d; intmax_t i; void *p; })
446 #if USE_LSB_TAG
447 # define XMALLOC_HEADER_ALIGNMENT \
448 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
449 #else
450 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
451 #endif
452 #define XMALLOC_OVERRUN_SIZE_SIZE \
453 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
454 + XMALLOC_HEADER_ALIGNMENT - 1) \
455 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
456 - XMALLOC_OVERRUN_CHECK_SIZE)
458 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
459 { '\x9a', '\x9b', '\xae', '\xaf',
460 '\xbf', '\xbe', '\xce', '\xcf',
461 '\xea', '\xeb', '\xec', '\xed',
462 '\xdf', '\xde', '\x9c', '\x9d' };
464 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
465 { '\xaa', '\xab', '\xac', '\xad',
466 '\xba', '\xbb', '\xbc', '\xbd',
467 '\xca', '\xcb', '\xcc', '\xcd',
468 '\xda', '\xdb', '\xdc', '\xdd' };
470 /* Insert and extract the block size in the header. */
472 static void
473 xmalloc_put_size (unsigned char *ptr, size_t size)
475 int i;
476 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
478 *--ptr = size & ((1 << CHAR_BIT) - 1);
479 size >>= CHAR_BIT;
483 static size_t
484 xmalloc_get_size (unsigned char *ptr)
486 size_t size = 0;
487 int i;
488 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
489 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
491 size <<= CHAR_BIT;
492 size += *ptr++;
494 return size;
498 /* Like malloc, but wraps allocated block with header and trailer. */
500 static void *
501 overrun_check_malloc (size_t size)
503 register unsigned char *val;
504 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
505 emacs_abort ();
507 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
508 if (val)
510 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
511 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
512 xmalloc_put_size (val, size);
513 memcpy (val + size, xmalloc_overrun_check_trailer,
514 XMALLOC_OVERRUN_CHECK_SIZE);
516 return val;
520 /* Like realloc, but checks old block for overrun, and wraps new block
521 with header and trailer. */
523 static void *
524 overrun_check_realloc (void *block, size_t size)
526 register unsigned char *val = (unsigned char *) block;
527 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
528 emacs_abort ();
530 if (val
531 && memcmp (xmalloc_overrun_check_header,
532 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
533 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
535 size_t osize = xmalloc_get_size (val);
536 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
537 XMALLOC_OVERRUN_CHECK_SIZE))
538 emacs_abort ();
539 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
540 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
541 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
544 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
546 if (val)
548 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
549 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
550 xmalloc_put_size (val, size);
551 memcpy (val + size, xmalloc_overrun_check_trailer,
552 XMALLOC_OVERRUN_CHECK_SIZE);
554 return val;
557 /* Like free, but checks block for overrun. */
559 static void
560 overrun_check_free (void *block)
562 unsigned char *val = (unsigned char *) block;
564 if (val
565 && memcmp (xmalloc_overrun_check_header,
566 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
567 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
569 size_t osize = xmalloc_get_size (val);
570 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
571 XMALLOC_OVERRUN_CHECK_SIZE))
572 emacs_abort ();
573 #ifdef XMALLOC_CLEAR_FREE_MEMORY
574 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
575 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
576 #else
577 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
578 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
579 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
580 #endif
583 free (val);
586 #undef malloc
587 #undef realloc
588 #undef free
589 #define malloc overrun_check_malloc
590 #define realloc overrun_check_realloc
591 #define free overrun_check_free
592 #endif
594 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
595 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
596 If that variable is set, block input while in one of Emacs's memory
597 allocation functions. There should be no need for this debugging
598 option, since signal handlers do not allocate memory, but Emacs
599 formerly allocated memory in signal handlers and this compile-time
600 option remains as a way to help debug the issue should it rear its
601 ugly head again. */
602 #ifdef XMALLOC_BLOCK_INPUT_CHECK
603 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
604 static void
605 malloc_block_input (void)
607 if (block_input_in_memory_allocators)
608 block_input ();
610 static void
611 malloc_unblock_input (void)
613 if (block_input_in_memory_allocators)
614 unblock_input ();
616 # define MALLOC_BLOCK_INPUT malloc_block_input ()
617 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
618 #else
619 # define MALLOC_BLOCK_INPUT ((void) 0)
620 # define MALLOC_UNBLOCK_INPUT ((void) 0)
621 #endif
623 #define MALLOC_PROBE(size) \
624 do { \
625 if (profiler_memory_running) \
626 malloc_probe (size); \
627 } while (0)
630 /* Like malloc but check for no memory and block interrupt input.. */
632 void *
633 xmalloc (size_t size)
635 void *val;
637 MALLOC_BLOCK_INPUT;
638 val = malloc (size);
639 MALLOC_UNBLOCK_INPUT;
641 if (!val && size)
642 memory_full (size);
643 MALLOC_PROBE (size);
644 return val;
647 /* Like the above, but zeroes out the memory just allocated. */
649 void *
650 xzalloc (size_t size)
652 void *val;
654 MALLOC_BLOCK_INPUT;
655 val = malloc (size);
656 MALLOC_UNBLOCK_INPUT;
658 if (!val && size)
659 memory_full (size);
660 memset (val, 0, size);
661 MALLOC_PROBE (size);
662 return val;
665 /* Like realloc but check for no memory and block interrupt input.. */
667 void *
668 xrealloc (void *block, size_t size)
670 void *val;
672 MALLOC_BLOCK_INPUT;
673 /* We must call malloc explicitly when BLOCK is 0, since some
674 reallocs don't do this. */
675 if (! block)
676 val = malloc (size);
677 else
678 val = realloc (block, size);
679 MALLOC_UNBLOCK_INPUT;
681 if (!val && size)
682 memory_full (size);
683 MALLOC_PROBE (size);
684 return val;
688 /* Like free but block interrupt input. */
690 void
691 xfree (void *block)
693 if (!block)
694 return;
695 MALLOC_BLOCK_INPUT;
696 free (block);
697 MALLOC_UNBLOCK_INPUT;
698 /* We don't call refill_memory_reserve here
699 because in practice the call in r_alloc_free seems to suffice. */
703 /* Other parts of Emacs pass large int values to allocator functions
704 expecting ptrdiff_t. This is portable in practice, but check it to
705 be safe. */
706 verify (INT_MAX <= PTRDIFF_MAX);
709 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
710 Signal an error on memory exhaustion, and block interrupt input. */
712 void *
713 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
715 eassert (0 <= nitems && 0 < item_size);
716 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
717 memory_full (SIZE_MAX);
718 return xmalloc (nitems * item_size);
722 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
723 Signal an error on memory exhaustion, and block interrupt input. */
725 void *
726 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
728 eassert (0 <= nitems && 0 < item_size);
729 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
730 memory_full (SIZE_MAX);
731 return xrealloc (pa, nitems * item_size);
735 /* Grow PA, which points to an array of *NITEMS items, and return the
736 location of the reallocated array, updating *NITEMS to reflect its
737 new size. The new array will contain at least NITEMS_INCR_MIN more
738 items, but will not contain more than NITEMS_MAX items total.
739 ITEM_SIZE is the size of each item, in bytes.
741 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
742 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
743 infinity.
745 If PA is null, then allocate a new array instead of reallocating
746 the old one.
748 Block interrupt input as needed. If memory exhaustion occurs, set
749 *NITEMS to zero if PA is null, and signal an error (i.e., do not
750 return).
752 Thus, to grow an array A without saving its old contents, do
753 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
754 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
755 and signals an error, and later this code is reexecuted and
756 attempts to free A. */
758 void *
759 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
760 ptrdiff_t nitems_max, ptrdiff_t item_size)
762 /* The approximate size to use for initial small allocation
763 requests. This is the largest "small" request for the GNU C
764 library malloc. */
765 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
767 /* If the array is tiny, grow it to about (but no greater than)
768 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
769 ptrdiff_t n = *nitems;
770 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
771 ptrdiff_t half_again = n >> 1;
772 ptrdiff_t incr_estimate = max (tiny_max, half_again);
774 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
775 NITEMS_MAX, and what the C language can represent safely. */
776 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
777 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
778 ? nitems_max : C_language_max);
779 ptrdiff_t nitems_incr_max = n_max - n;
780 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
782 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
783 if (! pa)
784 *nitems = 0;
785 if (nitems_incr_max < incr)
786 memory_full (SIZE_MAX);
787 n += incr;
788 pa = xrealloc (pa, n * item_size);
789 *nitems = n;
790 return pa;
794 /* Like strdup, but uses xmalloc. */
796 char *
797 xstrdup (const char *s)
799 size_t len = strlen (s) + 1;
800 char *p = xmalloc (len);
801 memcpy (p, s, len);
802 return p;
805 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
806 argument is a const pointer. */
808 void
809 xputenv (char const *string)
811 if (putenv ((char *) string) != 0)
812 memory_full (0);
815 /* Unwind for SAFE_ALLOCA */
817 Lisp_Object
818 safe_alloca_unwind (Lisp_Object arg)
820 free_save_value (arg);
821 return Qnil;
824 /* Return a newly allocated memory block of SIZE bytes, remembering
825 to free it when unwinding. */
826 void *
827 record_xmalloc (size_t size)
829 void *p = xmalloc (size);
830 record_unwind_protect (safe_alloca_unwind, make_save_pointer (p));
831 return p;
835 /* Like malloc but used for allocating Lisp data. NBYTES is the
836 number of bytes to allocate, TYPE describes the intended use of the
837 allocated memory block (for strings, for conses, ...). */
839 #if ! USE_LSB_TAG
840 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
841 #endif
843 static void *
844 lisp_malloc (size_t nbytes, enum mem_type type)
846 register void *val;
848 MALLOC_BLOCK_INPUT;
850 #ifdef GC_MALLOC_CHECK
851 allocated_mem_type = type;
852 #endif
854 val = malloc (nbytes);
856 #if ! USE_LSB_TAG
857 /* If the memory just allocated cannot be addressed thru a Lisp
858 object's pointer, and it needs to be,
859 that's equivalent to running out of memory. */
860 if (val && type != MEM_TYPE_NON_LISP)
862 Lisp_Object tem;
863 XSETCONS (tem, (char *) val + nbytes - 1);
864 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
866 lisp_malloc_loser = val;
867 free (val);
868 val = 0;
871 #endif
873 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
874 if (val && type != MEM_TYPE_NON_LISP)
875 mem_insert (val, (char *) val + nbytes, type);
876 #endif
878 MALLOC_UNBLOCK_INPUT;
879 if (!val && nbytes)
880 memory_full (nbytes);
881 MALLOC_PROBE (nbytes);
882 return val;
885 /* Free BLOCK. This must be called to free memory allocated with a
886 call to lisp_malloc. */
888 static void
889 lisp_free (void *block)
891 MALLOC_BLOCK_INPUT;
892 free (block);
893 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
894 mem_delete (mem_find (block));
895 #endif
896 MALLOC_UNBLOCK_INPUT;
899 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
901 /* The entry point is lisp_align_malloc which returns blocks of at most
902 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
904 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
905 #define USE_POSIX_MEMALIGN 1
906 #endif
908 /* BLOCK_ALIGN has to be a power of 2. */
909 #define BLOCK_ALIGN (1 << 10)
911 /* Padding to leave at the end of a malloc'd block. This is to give
912 malloc a chance to minimize the amount of memory wasted to alignment.
913 It should be tuned to the particular malloc library used.
914 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
915 posix_memalign on the other hand would ideally prefer a value of 4
916 because otherwise, there's 1020 bytes wasted between each ablocks.
917 In Emacs, testing shows that those 1020 can most of the time be
918 efficiently used by malloc to place other objects, so a value of 0 can
919 still preferable unless you have a lot of aligned blocks and virtually
920 nothing else. */
921 #define BLOCK_PADDING 0
922 #define BLOCK_BYTES \
923 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
925 /* Internal data structures and constants. */
927 #define ABLOCKS_SIZE 16
929 /* An aligned block of memory. */
930 struct ablock
932 union
934 char payload[BLOCK_BYTES];
935 struct ablock *next_free;
936 } x;
937 /* `abase' is the aligned base of the ablocks. */
938 /* It is overloaded to hold the virtual `busy' field that counts
939 the number of used ablock in the parent ablocks.
940 The first ablock has the `busy' field, the others have the `abase'
941 field. To tell the difference, we assume that pointers will have
942 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
943 is used to tell whether the real base of the parent ablocks is `abase'
944 (if not, the word before the first ablock holds a pointer to the
945 real base). */
946 struct ablocks *abase;
947 /* The padding of all but the last ablock is unused. The padding of
948 the last ablock in an ablocks is not allocated. */
949 #if BLOCK_PADDING
950 char padding[BLOCK_PADDING];
951 #endif
954 /* A bunch of consecutive aligned blocks. */
955 struct ablocks
957 struct ablock blocks[ABLOCKS_SIZE];
960 /* Size of the block requested from malloc or posix_memalign. */
961 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
963 #define ABLOCK_ABASE(block) \
964 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
965 ? (struct ablocks *)(block) \
966 : (block)->abase)
968 /* Virtual `busy' field. */
969 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
971 /* Pointer to the (not necessarily aligned) malloc block. */
972 #ifdef USE_POSIX_MEMALIGN
973 #define ABLOCKS_BASE(abase) (abase)
974 #else
975 #define ABLOCKS_BASE(abase) \
976 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
977 #endif
979 /* The list of free ablock. */
980 static struct ablock *free_ablock;
982 /* Allocate an aligned block of nbytes.
983 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
984 smaller or equal to BLOCK_BYTES. */
985 static void *
986 lisp_align_malloc (size_t nbytes, enum mem_type type)
988 void *base, *val;
989 struct ablocks *abase;
991 eassert (nbytes <= BLOCK_BYTES);
993 MALLOC_BLOCK_INPUT;
995 #ifdef GC_MALLOC_CHECK
996 allocated_mem_type = type;
997 #endif
999 if (!free_ablock)
1001 int i;
1002 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1004 #ifdef DOUG_LEA_MALLOC
1005 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1006 because mapped region contents are not preserved in
1007 a dumped Emacs. */
1008 mallopt (M_MMAP_MAX, 0);
1009 #endif
1011 #ifdef USE_POSIX_MEMALIGN
1013 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1014 if (err)
1015 base = NULL;
1016 abase = base;
1018 #else
1019 base = malloc (ABLOCKS_BYTES);
1020 abase = ALIGN (base, BLOCK_ALIGN);
1021 #endif
1023 if (base == 0)
1025 MALLOC_UNBLOCK_INPUT;
1026 memory_full (ABLOCKS_BYTES);
1029 aligned = (base == abase);
1030 if (!aligned)
1031 ((void**)abase)[-1] = base;
1033 #ifdef DOUG_LEA_MALLOC
1034 /* Back to a reasonable maximum of mmap'ed areas. */
1035 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1036 #endif
1038 #if ! USE_LSB_TAG
1039 /* If the memory just allocated cannot be addressed thru a Lisp
1040 object's pointer, and it needs to be, that's equivalent to
1041 running out of memory. */
1042 if (type != MEM_TYPE_NON_LISP)
1044 Lisp_Object tem;
1045 char *end = (char *) base + ABLOCKS_BYTES - 1;
1046 XSETCONS (tem, end);
1047 if ((char *) XCONS (tem) != end)
1049 lisp_malloc_loser = base;
1050 free (base);
1051 MALLOC_UNBLOCK_INPUT;
1052 memory_full (SIZE_MAX);
1055 #endif
1057 /* Initialize the blocks and put them on the free list.
1058 If `base' was not properly aligned, we can't use the last block. */
1059 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1061 abase->blocks[i].abase = abase;
1062 abase->blocks[i].x.next_free = free_ablock;
1063 free_ablock = &abase->blocks[i];
1065 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1067 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1068 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1069 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1070 eassert (ABLOCKS_BASE (abase) == base);
1071 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1074 abase = ABLOCK_ABASE (free_ablock);
1075 ABLOCKS_BUSY (abase) =
1076 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1077 val = free_ablock;
1078 free_ablock = free_ablock->x.next_free;
1080 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1081 if (type != MEM_TYPE_NON_LISP)
1082 mem_insert (val, (char *) val + nbytes, type);
1083 #endif
1085 MALLOC_UNBLOCK_INPUT;
1087 MALLOC_PROBE (nbytes);
1089 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1090 return val;
1093 static void
1094 lisp_align_free (void *block)
1096 struct ablock *ablock = block;
1097 struct ablocks *abase = ABLOCK_ABASE (ablock);
1099 MALLOC_BLOCK_INPUT;
1100 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1101 mem_delete (mem_find (block));
1102 #endif
1103 /* Put on free list. */
1104 ablock->x.next_free = free_ablock;
1105 free_ablock = ablock;
1106 /* Update busy count. */
1107 ABLOCKS_BUSY (abase)
1108 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1110 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1111 { /* All the blocks are free. */
1112 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1113 struct ablock **tem = &free_ablock;
1114 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1116 while (*tem)
1118 if (*tem >= (struct ablock *) abase && *tem < atop)
1120 i++;
1121 *tem = (*tem)->x.next_free;
1123 else
1124 tem = &(*tem)->x.next_free;
1126 eassert ((aligned & 1) == aligned);
1127 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1128 #ifdef USE_POSIX_MEMALIGN
1129 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1130 #endif
1131 free (ABLOCKS_BASE (abase));
1133 MALLOC_UNBLOCK_INPUT;
1137 /***********************************************************************
1138 Interval Allocation
1139 ***********************************************************************/
1141 /* Number of intervals allocated in an interval_block structure.
1142 The 1020 is 1024 minus malloc overhead. */
1144 #define INTERVAL_BLOCK_SIZE \
1145 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1147 /* Intervals are allocated in chunks in the form of an interval_block
1148 structure. */
1150 struct interval_block
1152 /* Place `intervals' first, to preserve alignment. */
1153 struct interval intervals[INTERVAL_BLOCK_SIZE];
1154 struct interval_block *next;
1157 /* Current interval block. Its `next' pointer points to older
1158 blocks. */
1160 static struct interval_block *interval_block;
1162 /* Index in interval_block above of the next unused interval
1163 structure. */
1165 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1167 /* Number of free and live intervals. */
1169 static EMACS_INT total_free_intervals, total_intervals;
1171 /* List of free intervals. */
1173 static INTERVAL interval_free_list;
1175 /* Return a new interval. */
1177 INTERVAL
1178 make_interval (void)
1180 INTERVAL val;
1182 MALLOC_BLOCK_INPUT;
1184 if (interval_free_list)
1186 val = interval_free_list;
1187 interval_free_list = INTERVAL_PARENT (interval_free_list);
1189 else
1191 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1193 struct interval_block *newi
1194 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1196 newi->next = interval_block;
1197 interval_block = newi;
1198 interval_block_index = 0;
1199 total_free_intervals += INTERVAL_BLOCK_SIZE;
1201 val = &interval_block->intervals[interval_block_index++];
1204 MALLOC_UNBLOCK_INPUT;
1206 consing_since_gc += sizeof (struct interval);
1207 intervals_consed++;
1208 total_free_intervals--;
1209 RESET_INTERVAL (val);
1210 val->gcmarkbit = 0;
1211 return val;
1215 /* Mark Lisp objects in interval I. */
1217 static void
1218 mark_interval (register INTERVAL i, Lisp_Object dummy)
1220 /* Intervals should never be shared. So, if extra internal checking is
1221 enabled, GC aborts if it seems to have visited an interval twice. */
1222 eassert (!i->gcmarkbit);
1223 i->gcmarkbit = 1;
1224 mark_object (i->plist);
1227 /* Mark the interval tree rooted in I. */
1229 #define MARK_INTERVAL_TREE(i) \
1230 do { \
1231 if (i && !i->gcmarkbit) \
1232 traverse_intervals_noorder (i, mark_interval, Qnil); \
1233 } while (0)
1235 /***********************************************************************
1236 String Allocation
1237 ***********************************************************************/
1239 /* Lisp_Strings are allocated in string_block structures. When a new
1240 string_block is allocated, all the Lisp_Strings it contains are
1241 added to a free-list string_free_list. When a new Lisp_String is
1242 needed, it is taken from that list. During the sweep phase of GC,
1243 string_blocks that are entirely free are freed, except two which
1244 we keep.
1246 String data is allocated from sblock structures. Strings larger
1247 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1248 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1250 Sblocks consist internally of sdata structures, one for each
1251 Lisp_String. The sdata structure points to the Lisp_String it
1252 belongs to. The Lisp_String points back to the `u.data' member of
1253 its sdata structure.
1255 When a Lisp_String is freed during GC, it is put back on
1256 string_free_list, and its `data' member and its sdata's `string'
1257 pointer is set to null. The size of the string is recorded in the
1258 `u.nbytes' member of the sdata. So, sdata structures that are no
1259 longer used, can be easily recognized, and it's easy to compact the
1260 sblocks of small strings which we do in compact_small_strings. */
1262 /* Size in bytes of an sblock structure used for small strings. This
1263 is 8192 minus malloc overhead. */
1265 #define SBLOCK_SIZE 8188
1267 /* Strings larger than this are considered large strings. String data
1268 for large strings is allocated from individual sblocks. */
1270 #define LARGE_STRING_BYTES 1024
1272 /* Structure describing string memory sub-allocated from an sblock.
1273 This is where the contents of Lisp strings are stored. */
1275 struct sdata
1277 /* Back-pointer to the string this sdata belongs to. If null, this
1278 structure is free, and the NBYTES member of the union below
1279 contains the string's byte size (the same value that STRING_BYTES
1280 would return if STRING were non-null). If non-null, STRING_BYTES
1281 (STRING) is the size of the data, and DATA contains the string's
1282 contents. */
1283 struct Lisp_String *string;
1285 #ifdef GC_CHECK_STRING_BYTES
1287 ptrdiff_t nbytes;
1288 unsigned char data[1];
1290 #define SDATA_NBYTES(S) (S)->nbytes
1291 #define SDATA_DATA(S) (S)->data
1292 #define SDATA_SELECTOR(member) member
1294 #else /* not GC_CHECK_STRING_BYTES */
1296 union
1298 /* When STRING is non-null. */
1299 unsigned char data[1];
1301 /* When STRING is null. */
1302 ptrdiff_t nbytes;
1303 } u;
1305 #define SDATA_NBYTES(S) (S)->u.nbytes
1306 #define SDATA_DATA(S) (S)->u.data
1307 #define SDATA_SELECTOR(member) u.member
1309 #endif /* not GC_CHECK_STRING_BYTES */
1311 #define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
1315 /* Structure describing a block of memory which is sub-allocated to
1316 obtain string data memory for strings. Blocks for small strings
1317 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1318 as large as needed. */
1320 struct sblock
1322 /* Next in list. */
1323 struct sblock *next;
1325 /* Pointer to the next free sdata block. This points past the end
1326 of the sblock if there isn't any space left in this block. */
1327 struct sdata *next_free;
1329 /* Start of data. */
1330 struct sdata first_data;
1333 /* Number of Lisp strings in a string_block structure. The 1020 is
1334 1024 minus malloc overhead. */
1336 #define STRING_BLOCK_SIZE \
1337 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1339 /* Structure describing a block from which Lisp_String structures
1340 are allocated. */
1342 struct string_block
1344 /* Place `strings' first, to preserve alignment. */
1345 struct Lisp_String strings[STRING_BLOCK_SIZE];
1346 struct string_block *next;
1349 /* Head and tail of the list of sblock structures holding Lisp string
1350 data. We always allocate from current_sblock. The NEXT pointers
1351 in the sblock structures go from oldest_sblock to current_sblock. */
1353 static struct sblock *oldest_sblock, *current_sblock;
1355 /* List of sblocks for large strings. */
1357 static struct sblock *large_sblocks;
1359 /* List of string_block structures. */
1361 static struct string_block *string_blocks;
1363 /* Free-list of Lisp_Strings. */
1365 static struct Lisp_String *string_free_list;
1367 /* Number of live and free Lisp_Strings. */
1369 static EMACS_INT total_strings, total_free_strings;
1371 /* Number of bytes used by live strings. */
1373 static EMACS_INT total_string_bytes;
1375 /* Given a pointer to a Lisp_String S which is on the free-list
1376 string_free_list, return a pointer to its successor in the
1377 free-list. */
1379 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1381 /* Return a pointer to the sdata structure belonging to Lisp string S.
1382 S must be live, i.e. S->data must not be null. S->data is actually
1383 a pointer to the `u.data' member of its sdata structure; the
1384 structure starts at a constant offset in front of that. */
1386 #define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
1389 #ifdef GC_CHECK_STRING_OVERRUN
1391 /* We check for overrun in string data blocks by appending a small
1392 "cookie" after each allocated string data block, and check for the
1393 presence of this cookie during GC. */
1395 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1396 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1397 { '\xde', '\xad', '\xbe', '\xef' };
1399 #else
1400 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1401 #endif
1403 /* Value is the size of an sdata structure large enough to hold NBYTES
1404 bytes of string data. The value returned includes a terminating
1405 NUL byte, the size of the sdata structure, and padding. */
1407 #ifdef GC_CHECK_STRING_BYTES
1409 #define SDATA_SIZE(NBYTES) \
1410 ((SDATA_DATA_OFFSET \
1411 + (NBYTES) + 1 \
1412 + sizeof (ptrdiff_t) - 1) \
1413 & ~(sizeof (ptrdiff_t) - 1))
1415 #else /* not GC_CHECK_STRING_BYTES */
1417 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1418 less than the size of that member. The 'max' is not needed when
1419 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1420 alignment code reserves enough space. */
1422 #define SDATA_SIZE(NBYTES) \
1423 ((SDATA_DATA_OFFSET \
1424 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1425 ? NBYTES \
1426 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1427 + 1 \
1428 + sizeof (ptrdiff_t) - 1) \
1429 & ~(sizeof (ptrdiff_t) - 1))
1431 #endif /* not GC_CHECK_STRING_BYTES */
1433 /* Extra bytes to allocate for each string. */
1435 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1437 /* Exact bound on the number of bytes in a string, not counting the
1438 terminating null. A string cannot contain more bytes than
1439 STRING_BYTES_BOUND, nor can it be so long that the size_t
1440 arithmetic in allocate_string_data would overflow while it is
1441 calculating a value to be passed to malloc. */
1442 static ptrdiff_t const STRING_BYTES_MAX =
1443 min (STRING_BYTES_BOUND,
1444 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1445 - GC_STRING_EXTRA
1446 - offsetof (struct sblock, first_data)
1447 - SDATA_DATA_OFFSET)
1448 & ~(sizeof (EMACS_INT) - 1)));
1450 /* Initialize string allocation. Called from init_alloc_once. */
1452 static void
1453 init_strings (void)
1455 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1456 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1460 #ifdef GC_CHECK_STRING_BYTES
1462 static int check_string_bytes_count;
1464 /* Like STRING_BYTES, but with debugging check. Can be
1465 called during GC, so pay attention to the mark bit. */
1467 ptrdiff_t
1468 string_bytes (struct Lisp_String *s)
1470 ptrdiff_t nbytes =
1471 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1473 if (!PURE_POINTER_P (s)
1474 && s->data
1475 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1476 emacs_abort ();
1477 return nbytes;
1480 /* Check validity of Lisp strings' string_bytes member in B. */
1482 static void
1483 check_sblock (struct sblock *b)
1485 struct sdata *from, *end, *from_end;
1487 end = b->next_free;
1489 for (from = &b->first_data; from < end; from = from_end)
1491 /* Compute the next FROM here because copying below may
1492 overwrite data we need to compute it. */
1493 ptrdiff_t nbytes;
1495 /* Check that the string size recorded in the string is the
1496 same as the one recorded in the sdata structure. */
1497 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1498 : SDATA_NBYTES (from));
1499 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1504 /* Check validity of Lisp strings' string_bytes member. ALL_P
1505 means check all strings, otherwise check only most
1506 recently allocated strings. Used for hunting a bug. */
1508 static void
1509 check_string_bytes (bool all_p)
1511 if (all_p)
1513 struct sblock *b;
1515 for (b = large_sblocks; b; b = b->next)
1517 struct Lisp_String *s = b->first_data.string;
1518 if (s)
1519 string_bytes (s);
1522 for (b = oldest_sblock; b; b = b->next)
1523 check_sblock (b);
1525 else if (current_sblock)
1526 check_sblock (current_sblock);
1529 #else /* not GC_CHECK_STRING_BYTES */
1531 #define check_string_bytes(all) ((void) 0)
1533 #endif /* GC_CHECK_STRING_BYTES */
1535 #ifdef GC_CHECK_STRING_FREE_LIST
1537 /* Walk through the string free list looking for bogus next pointers.
1538 This may catch buffer overrun from a previous string. */
1540 static void
1541 check_string_free_list (void)
1543 struct Lisp_String *s;
1545 /* Pop a Lisp_String off the free-list. */
1546 s = string_free_list;
1547 while (s != NULL)
1549 if ((uintptr_t) s < 1024)
1550 emacs_abort ();
1551 s = NEXT_FREE_LISP_STRING (s);
1554 #else
1555 #define check_string_free_list()
1556 #endif
1558 /* Return a new Lisp_String. */
1560 static struct Lisp_String *
1561 allocate_string (void)
1563 struct Lisp_String *s;
1565 MALLOC_BLOCK_INPUT;
1567 /* If the free-list is empty, allocate a new string_block, and
1568 add all the Lisp_Strings in it to the free-list. */
1569 if (string_free_list == NULL)
1571 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1572 int i;
1574 b->next = string_blocks;
1575 string_blocks = b;
1577 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1579 s = b->strings + i;
1580 /* Every string on a free list should have NULL data pointer. */
1581 s->data = NULL;
1582 NEXT_FREE_LISP_STRING (s) = string_free_list;
1583 string_free_list = s;
1586 total_free_strings += STRING_BLOCK_SIZE;
1589 check_string_free_list ();
1591 /* Pop a Lisp_String off the free-list. */
1592 s = string_free_list;
1593 string_free_list = NEXT_FREE_LISP_STRING (s);
1595 MALLOC_UNBLOCK_INPUT;
1597 --total_free_strings;
1598 ++total_strings;
1599 ++strings_consed;
1600 consing_since_gc += sizeof *s;
1602 #ifdef GC_CHECK_STRING_BYTES
1603 if (!noninteractive)
1605 if (++check_string_bytes_count == 200)
1607 check_string_bytes_count = 0;
1608 check_string_bytes (1);
1610 else
1611 check_string_bytes (0);
1613 #endif /* GC_CHECK_STRING_BYTES */
1615 return s;
1619 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1620 plus a NUL byte at the end. Allocate an sdata structure for S, and
1621 set S->data to its `u.data' member. Store a NUL byte at the end of
1622 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1623 S->data if it was initially non-null. */
1625 void
1626 allocate_string_data (struct Lisp_String *s,
1627 EMACS_INT nchars, EMACS_INT nbytes)
1629 struct sdata *data, *old_data;
1630 struct sblock *b;
1631 ptrdiff_t needed, old_nbytes;
1633 if (STRING_BYTES_MAX < nbytes)
1634 string_overflow ();
1636 /* Determine the number of bytes needed to store NBYTES bytes
1637 of string data. */
1638 needed = SDATA_SIZE (nbytes);
1639 if (s->data)
1641 old_data = SDATA_OF_STRING (s);
1642 old_nbytes = STRING_BYTES (s);
1644 else
1645 old_data = NULL;
1647 MALLOC_BLOCK_INPUT;
1649 if (nbytes > LARGE_STRING_BYTES)
1651 size_t size = offsetof (struct sblock, first_data) + needed;
1653 #ifdef DOUG_LEA_MALLOC
1654 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1655 because mapped region contents are not preserved in
1656 a dumped Emacs.
1658 In case you think of allowing it in a dumped Emacs at the
1659 cost of not being able to re-dump, there's another reason:
1660 mmap'ed data typically have an address towards the top of the
1661 address space, which won't fit into an EMACS_INT (at least on
1662 32-bit systems with the current tagging scheme). --fx */
1663 mallopt (M_MMAP_MAX, 0);
1664 #endif
1666 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1668 #ifdef DOUG_LEA_MALLOC
1669 /* Back to a reasonable maximum of mmap'ed areas. */
1670 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1671 #endif
1673 b->next_free = &b->first_data;
1674 b->first_data.string = NULL;
1675 b->next = large_sblocks;
1676 large_sblocks = b;
1678 else if (current_sblock == NULL
1679 || (((char *) current_sblock + SBLOCK_SIZE
1680 - (char *) current_sblock->next_free)
1681 < (needed + GC_STRING_EXTRA)))
1683 /* Not enough room in the current sblock. */
1684 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1685 b->next_free = &b->first_data;
1686 b->first_data.string = NULL;
1687 b->next = NULL;
1689 if (current_sblock)
1690 current_sblock->next = b;
1691 else
1692 oldest_sblock = b;
1693 current_sblock = b;
1695 else
1696 b = current_sblock;
1698 data = b->next_free;
1699 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1701 MALLOC_UNBLOCK_INPUT;
1703 data->string = s;
1704 s->data = SDATA_DATA (data);
1705 #ifdef GC_CHECK_STRING_BYTES
1706 SDATA_NBYTES (data) = nbytes;
1707 #endif
1708 s->size = nchars;
1709 s->size_byte = nbytes;
1710 s->data[nbytes] = '\0';
1711 #ifdef GC_CHECK_STRING_OVERRUN
1712 memcpy ((char *) data + needed, string_overrun_cookie,
1713 GC_STRING_OVERRUN_COOKIE_SIZE);
1714 #endif
1716 /* Note that Faset may call to this function when S has already data
1717 assigned. In this case, mark data as free by setting it's string
1718 back-pointer to null, and record the size of the data in it. */
1719 if (old_data)
1721 SDATA_NBYTES (old_data) = old_nbytes;
1722 old_data->string = NULL;
1725 consing_since_gc += needed;
1729 /* Sweep and compact strings. */
1731 static void
1732 sweep_strings (void)
1734 struct string_block *b, *next;
1735 struct string_block *live_blocks = NULL;
1737 string_free_list = NULL;
1738 total_strings = total_free_strings = 0;
1739 total_string_bytes = 0;
1741 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1742 for (b = string_blocks; b; b = next)
1744 int i, nfree = 0;
1745 struct Lisp_String *free_list_before = string_free_list;
1747 next = b->next;
1749 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1751 struct Lisp_String *s = b->strings + i;
1753 if (s->data)
1755 /* String was not on free-list before. */
1756 if (STRING_MARKED_P (s))
1758 /* String is live; unmark it and its intervals. */
1759 UNMARK_STRING (s);
1761 /* Do not use string_(set|get)_intervals here. */
1762 s->intervals = balance_intervals (s->intervals);
1764 ++total_strings;
1765 total_string_bytes += STRING_BYTES (s);
1767 else
1769 /* String is dead. Put it on the free-list. */
1770 struct sdata *data = SDATA_OF_STRING (s);
1772 /* Save the size of S in its sdata so that we know
1773 how large that is. Reset the sdata's string
1774 back-pointer so that we know it's free. */
1775 #ifdef GC_CHECK_STRING_BYTES
1776 if (string_bytes (s) != SDATA_NBYTES (data))
1777 emacs_abort ();
1778 #else
1779 data->u.nbytes = STRING_BYTES (s);
1780 #endif
1781 data->string = NULL;
1783 /* Reset the strings's `data' member so that we
1784 know it's free. */
1785 s->data = NULL;
1787 /* Put the string on the free-list. */
1788 NEXT_FREE_LISP_STRING (s) = string_free_list;
1789 string_free_list = s;
1790 ++nfree;
1793 else
1795 /* S was on the free-list before. Put it there again. */
1796 NEXT_FREE_LISP_STRING (s) = string_free_list;
1797 string_free_list = s;
1798 ++nfree;
1802 /* Free blocks that contain free Lisp_Strings only, except
1803 the first two of them. */
1804 if (nfree == STRING_BLOCK_SIZE
1805 && total_free_strings > STRING_BLOCK_SIZE)
1807 lisp_free (b);
1808 string_free_list = free_list_before;
1810 else
1812 total_free_strings += nfree;
1813 b->next = live_blocks;
1814 live_blocks = b;
1818 check_string_free_list ();
1820 string_blocks = live_blocks;
1821 free_large_strings ();
1822 compact_small_strings ();
1824 check_string_free_list ();
1828 /* Free dead large strings. */
1830 static void
1831 free_large_strings (void)
1833 struct sblock *b, *next;
1834 struct sblock *live_blocks = NULL;
1836 for (b = large_sblocks; b; b = next)
1838 next = b->next;
1840 if (b->first_data.string == NULL)
1841 lisp_free (b);
1842 else
1844 b->next = live_blocks;
1845 live_blocks = b;
1849 large_sblocks = live_blocks;
1853 /* Compact data of small strings. Free sblocks that don't contain
1854 data of live strings after compaction. */
1856 static void
1857 compact_small_strings (void)
1859 struct sblock *b, *tb, *next;
1860 struct sdata *from, *to, *end, *tb_end;
1861 struct sdata *to_end, *from_end;
1863 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1864 to, and TB_END is the end of TB. */
1865 tb = oldest_sblock;
1866 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1867 to = &tb->first_data;
1869 /* Step through the blocks from the oldest to the youngest. We
1870 expect that old blocks will stabilize over time, so that less
1871 copying will happen this way. */
1872 for (b = oldest_sblock; b; b = b->next)
1874 end = b->next_free;
1875 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1877 for (from = &b->first_data; from < end; from = from_end)
1879 /* Compute the next FROM here because copying below may
1880 overwrite data we need to compute it. */
1881 ptrdiff_t nbytes;
1882 struct Lisp_String *s = from->string;
1884 #ifdef GC_CHECK_STRING_BYTES
1885 /* Check that the string size recorded in the string is the
1886 same as the one recorded in the sdata structure. */
1887 if (s && string_bytes (s) != SDATA_NBYTES (from))
1888 emacs_abort ();
1889 #endif /* GC_CHECK_STRING_BYTES */
1891 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
1892 eassert (nbytes <= LARGE_STRING_BYTES);
1894 nbytes = SDATA_SIZE (nbytes);
1895 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1897 #ifdef GC_CHECK_STRING_OVERRUN
1898 if (memcmp (string_overrun_cookie,
1899 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
1900 GC_STRING_OVERRUN_COOKIE_SIZE))
1901 emacs_abort ();
1902 #endif
1904 /* Non-NULL S means it's alive. Copy its data. */
1905 if (s)
1907 /* If TB is full, proceed with the next sblock. */
1908 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1909 if (to_end > tb_end)
1911 tb->next_free = to;
1912 tb = tb->next;
1913 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1914 to = &tb->first_data;
1915 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1918 /* Copy, and update the string's `data' pointer. */
1919 if (from != to)
1921 eassert (tb != b || to < from);
1922 memmove (to, from, nbytes + GC_STRING_EXTRA);
1923 to->string->data = SDATA_DATA (to);
1926 /* Advance past the sdata we copied to. */
1927 to = to_end;
1932 /* The rest of the sblocks following TB don't contain live data, so
1933 we can free them. */
1934 for (b = tb->next; b; b = next)
1936 next = b->next;
1937 lisp_free (b);
1940 tb->next_free = to;
1941 tb->next = NULL;
1942 current_sblock = tb;
1945 void
1946 string_overflow (void)
1948 error ("Maximum string size exceeded");
1951 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1952 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
1953 LENGTH must be an integer.
1954 INIT must be an integer that represents a character. */)
1955 (Lisp_Object length, Lisp_Object init)
1957 register Lisp_Object val;
1958 register unsigned char *p, *end;
1959 int c;
1960 EMACS_INT nbytes;
1962 CHECK_NATNUM (length);
1963 CHECK_CHARACTER (init);
1965 c = XFASTINT (init);
1966 if (ASCII_CHAR_P (c))
1968 nbytes = XINT (length);
1969 val = make_uninit_string (nbytes);
1970 p = SDATA (val);
1971 end = p + SCHARS (val);
1972 while (p != end)
1973 *p++ = c;
1975 else
1977 unsigned char str[MAX_MULTIBYTE_LENGTH];
1978 int len = CHAR_STRING (c, str);
1979 EMACS_INT string_len = XINT (length);
1981 if (string_len > STRING_BYTES_MAX / len)
1982 string_overflow ();
1983 nbytes = len * string_len;
1984 val = make_uninit_multibyte_string (string_len, nbytes);
1985 p = SDATA (val);
1986 end = p + nbytes;
1987 while (p != end)
1989 memcpy (p, str, len);
1990 p += len;
1994 *p = 0;
1995 return val;
1999 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2000 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2001 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2002 (Lisp_Object length, Lisp_Object init)
2004 register Lisp_Object val;
2005 struct Lisp_Bool_Vector *p;
2006 ptrdiff_t length_in_chars;
2007 EMACS_INT length_in_elts;
2008 int bits_per_value;
2009 int extra_bool_elts = ((bool_header_size - header_size + word_size - 1)
2010 / word_size);
2012 CHECK_NATNUM (length);
2014 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2016 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2018 val = Fmake_vector (make_number (length_in_elts + extra_bool_elts), Qnil);
2020 /* No Lisp_Object to trace in there. */
2021 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2023 p = XBOOL_VECTOR (val);
2024 p->size = XFASTINT (length);
2026 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2027 / BOOL_VECTOR_BITS_PER_CHAR);
2028 if (length_in_chars)
2030 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
2032 /* Clear any extraneous bits in the last byte. */
2033 p->data[length_in_chars - 1]
2034 &= (1 << ((XFASTINT (length) - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1)) - 1;
2037 return val;
2041 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2042 of characters from the contents. This string may be unibyte or
2043 multibyte, depending on the contents. */
2045 Lisp_Object
2046 make_string (const char *contents, ptrdiff_t nbytes)
2048 register Lisp_Object val;
2049 ptrdiff_t nchars, multibyte_nbytes;
2051 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2052 &nchars, &multibyte_nbytes);
2053 if (nbytes == nchars || nbytes != multibyte_nbytes)
2054 /* CONTENTS contains no multibyte sequences or contains an invalid
2055 multibyte sequence. We must make unibyte string. */
2056 val = make_unibyte_string (contents, nbytes);
2057 else
2058 val = make_multibyte_string (contents, nchars, nbytes);
2059 return val;
2063 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2065 Lisp_Object
2066 make_unibyte_string (const char *contents, ptrdiff_t length)
2068 register Lisp_Object val;
2069 val = make_uninit_string (length);
2070 memcpy (SDATA (val), contents, length);
2071 return val;
2075 /* Make a multibyte string from NCHARS characters occupying NBYTES
2076 bytes at CONTENTS. */
2078 Lisp_Object
2079 make_multibyte_string (const char *contents,
2080 ptrdiff_t nchars, ptrdiff_t nbytes)
2082 register Lisp_Object val;
2083 val = make_uninit_multibyte_string (nchars, nbytes);
2084 memcpy (SDATA (val), contents, nbytes);
2085 return val;
2089 /* Make a string from NCHARS characters occupying NBYTES bytes at
2090 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2092 Lisp_Object
2093 make_string_from_bytes (const char *contents,
2094 ptrdiff_t nchars, ptrdiff_t nbytes)
2096 register Lisp_Object val;
2097 val = make_uninit_multibyte_string (nchars, nbytes);
2098 memcpy (SDATA (val), contents, nbytes);
2099 if (SBYTES (val) == SCHARS (val))
2100 STRING_SET_UNIBYTE (val);
2101 return val;
2105 /* Make a string from NCHARS characters occupying NBYTES bytes at
2106 CONTENTS. The argument MULTIBYTE controls whether to label the
2107 string as multibyte. If NCHARS is negative, it counts the number of
2108 characters by itself. */
2110 Lisp_Object
2111 make_specified_string (const char *contents,
2112 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2114 Lisp_Object val;
2116 if (nchars < 0)
2118 if (multibyte)
2119 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2120 nbytes);
2121 else
2122 nchars = nbytes;
2124 val = make_uninit_multibyte_string (nchars, nbytes);
2125 memcpy (SDATA (val), contents, nbytes);
2126 if (!multibyte)
2127 STRING_SET_UNIBYTE (val);
2128 return val;
2132 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2133 occupying LENGTH bytes. */
2135 Lisp_Object
2136 make_uninit_string (EMACS_INT length)
2138 Lisp_Object val;
2140 if (!length)
2141 return empty_unibyte_string;
2142 val = make_uninit_multibyte_string (length, length);
2143 STRING_SET_UNIBYTE (val);
2144 return val;
2148 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2149 which occupy NBYTES bytes. */
2151 Lisp_Object
2152 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2154 Lisp_Object string;
2155 struct Lisp_String *s;
2157 if (nchars < 0)
2158 emacs_abort ();
2159 if (!nbytes)
2160 return empty_multibyte_string;
2162 s = allocate_string ();
2163 s->intervals = NULL;
2164 allocate_string_data (s, nchars, nbytes);
2165 XSETSTRING (string, s);
2166 string_chars_consed += nbytes;
2167 return string;
2170 /* Print arguments to BUF according to a FORMAT, then return
2171 a Lisp_String initialized with the data from BUF. */
2173 Lisp_Object
2174 make_formatted_string (char *buf, const char *format, ...)
2176 va_list ap;
2177 int length;
2179 va_start (ap, format);
2180 length = vsprintf (buf, format, ap);
2181 va_end (ap);
2182 return make_string (buf, length);
2186 /***********************************************************************
2187 Float Allocation
2188 ***********************************************************************/
2190 /* We store float cells inside of float_blocks, allocating a new
2191 float_block with malloc whenever necessary. Float cells reclaimed
2192 by GC are put on a free list to be reallocated before allocating
2193 any new float cells from the latest float_block. */
2195 #define FLOAT_BLOCK_SIZE \
2196 (((BLOCK_BYTES - sizeof (struct float_block *) \
2197 /* The compiler might add padding at the end. */ \
2198 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2199 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2201 #define GETMARKBIT(block,n) \
2202 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2203 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2204 & 1)
2206 #define SETMARKBIT(block,n) \
2207 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2208 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2210 #define UNSETMARKBIT(block,n) \
2211 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2212 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2214 #define FLOAT_BLOCK(fptr) \
2215 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2217 #define FLOAT_INDEX(fptr) \
2218 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2220 struct float_block
2222 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2223 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2224 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2225 struct float_block *next;
2228 #define FLOAT_MARKED_P(fptr) \
2229 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2231 #define FLOAT_MARK(fptr) \
2232 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2234 #define FLOAT_UNMARK(fptr) \
2235 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2237 /* Current float_block. */
2239 static struct float_block *float_block;
2241 /* Index of first unused Lisp_Float in the current float_block. */
2243 static int float_block_index = FLOAT_BLOCK_SIZE;
2245 /* Free-list of Lisp_Floats. */
2247 static struct Lisp_Float *float_free_list;
2249 /* Return a new float object with value FLOAT_VALUE. */
2251 Lisp_Object
2252 make_float (double float_value)
2254 register Lisp_Object val;
2256 MALLOC_BLOCK_INPUT;
2258 if (float_free_list)
2260 /* We use the data field for chaining the free list
2261 so that we won't use the same field that has the mark bit. */
2262 XSETFLOAT (val, float_free_list);
2263 float_free_list = float_free_list->u.chain;
2265 else
2267 if (float_block_index == FLOAT_BLOCK_SIZE)
2269 struct float_block *new
2270 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2271 new->next = float_block;
2272 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2273 float_block = new;
2274 float_block_index = 0;
2275 total_free_floats += FLOAT_BLOCK_SIZE;
2277 XSETFLOAT (val, &float_block->floats[float_block_index]);
2278 float_block_index++;
2281 MALLOC_UNBLOCK_INPUT;
2283 XFLOAT_INIT (val, float_value);
2284 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2285 consing_since_gc += sizeof (struct Lisp_Float);
2286 floats_consed++;
2287 total_free_floats--;
2288 return val;
2293 /***********************************************************************
2294 Cons Allocation
2295 ***********************************************************************/
2297 /* We store cons cells inside of cons_blocks, allocating a new
2298 cons_block with malloc whenever necessary. Cons cells reclaimed by
2299 GC are put on a free list to be reallocated before allocating
2300 any new cons cells from the latest cons_block. */
2302 #define CONS_BLOCK_SIZE \
2303 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2304 /* The compiler might add padding at the end. */ \
2305 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2306 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2308 #define CONS_BLOCK(fptr) \
2309 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2311 #define CONS_INDEX(fptr) \
2312 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2314 struct cons_block
2316 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2317 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2318 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2319 struct cons_block *next;
2322 #define CONS_MARKED_P(fptr) \
2323 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2325 #define CONS_MARK(fptr) \
2326 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2328 #define CONS_UNMARK(fptr) \
2329 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2331 /* Current cons_block. */
2333 static struct cons_block *cons_block;
2335 /* Index of first unused Lisp_Cons in the current block. */
2337 static int cons_block_index = CONS_BLOCK_SIZE;
2339 /* Free-list of Lisp_Cons structures. */
2341 static struct Lisp_Cons *cons_free_list;
2343 /* Explicitly free a cons cell by putting it on the free-list. */
2345 void
2346 free_cons (struct Lisp_Cons *ptr)
2348 ptr->u.chain = cons_free_list;
2349 #if GC_MARK_STACK
2350 ptr->car = Vdead;
2351 #endif
2352 cons_free_list = ptr;
2353 consing_since_gc -= sizeof *ptr;
2354 total_free_conses++;
2357 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2358 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2359 (Lisp_Object car, Lisp_Object cdr)
2361 register Lisp_Object val;
2363 MALLOC_BLOCK_INPUT;
2365 if (cons_free_list)
2367 /* We use the cdr for chaining the free list
2368 so that we won't use the same field that has the mark bit. */
2369 XSETCONS (val, cons_free_list);
2370 cons_free_list = cons_free_list->u.chain;
2372 else
2374 if (cons_block_index == CONS_BLOCK_SIZE)
2376 struct cons_block *new
2377 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2378 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2379 new->next = cons_block;
2380 cons_block = new;
2381 cons_block_index = 0;
2382 total_free_conses += CONS_BLOCK_SIZE;
2384 XSETCONS (val, &cons_block->conses[cons_block_index]);
2385 cons_block_index++;
2388 MALLOC_UNBLOCK_INPUT;
2390 XSETCAR (val, car);
2391 XSETCDR (val, cdr);
2392 eassert (!CONS_MARKED_P (XCONS (val)));
2393 consing_since_gc += sizeof (struct Lisp_Cons);
2394 total_free_conses--;
2395 cons_cells_consed++;
2396 return val;
2399 #ifdef GC_CHECK_CONS_LIST
2400 /* Get an error now if there's any junk in the cons free list. */
2401 void
2402 check_cons_list (void)
2404 struct Lisp_Cons *tail = cons_free_list;
2406 while (tail)
2407 tail = tail->u.chain;
2409 #endif
2411 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2413 Lisp_Object
2414 list1 (Lisp_Object arg1)
2416 return Fcons (arg1, Qnil);
2419 Lisp_Object
2420 list2 (Lisp_Object arg1, Lisp_Object arg2)
2422 return Fcons (arg1, Fcons (arg2, Qnil));
2426 Lisp_Object
2427 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2429 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2433 Lisp_Object
2434 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2436 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2440 Lisp_Object
2441 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2443 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2444 Fcons (arg5, Qnil)))));
2447 /* Make a list of COUNT Lisp_Objects, where ARG is the
2448 first one. Allocate conses from pure space if TYPE
2449 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2451 Lisp_Object
2452 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2454 va_list ap;
2455 ptrdiff_t i;
2456 Lisp_Object val, *objp;
2458 /* Change to SAFE_ALLOCA if you hit this eassert. */
2459 eassert (count <= MAX_ALLOCA / word_size);
2461 objp = alloca (count * word_size);
2462 objp[0] = arg;
2463 va_start (ap, arg);
2464 for (i = 1; i < count; i++)
2465 objp[i] = va_arg (ap, Lisp_Object);
2466 va_end (ap);
2468 for (val = Qnil, i = count - 1; i >= 0; i--)
2470 if (type == CONSTYPE_PURE)
2471 val = pure_cons (objp[i], val);
2472 else if (type == CONSTYPE_HEAP)
2473 val = Fcons (objp[i], val);
2474 else
2475 emacs_abort ();
2477 return val;
2480 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2481 doc: /* Return a newly created list with specified arguments as elements.
2482 Any number of arguments, even zero arguments, are allowed.
2483 usage: (list &rest OBJECTS) */)
2484 (ptrdiff_t nargs, Lisp_Object *args)
2486 register Lisp_Object val;
2487 val = Qnil;
2489 while (nargs > 0)
2491 nargs--;
2492 val = Fcons (args[nargs], val);
2494 return val;
2498 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2499 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2500 (register Lisp_Object length, Lisp_Object init)
2502 register Lisp_Object val;
2503 register EMACS_INT size;
2505 CHECK_NATNUM (length);
2506 size = XFASTINT (length);
2508 val = Qnil;
2509 while (size > 0)
2511 val = Fcons (init, val);
2512 --size;
2514 if (size > 0)
2516 val = Fcons (init, val);
2517 --size;
2519 if (size > 0)
2521 val = Fcons (init, val);
2522 --size;
2524 if (size > 0)
2526 val = Fcons (init, val);
2527 --size;
2529 if (size > 0)
2531 val = Fcons (init, val);
2532 --size;
2538 QUIT;
2541 return val;
2546 /***********************************************************************
2547 Vector Allocation
2548 ***********************************************************************/
2550 /* This value is balanced well enough to avoid too much internal overhead
2551 for the most common cases; it's not required to be a power of two, but
2552 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2554 #define VECTOR_BLOCK_SIZE 4096
2556 /* Align allocation request sizes to be a multiple of ROUNDUP_SIZE. */
2557 enum
2559 roundup_size = COMMON_MULTIPLE (word_size, USE_LSB_TAG ? GCALIGNMENT : 1)
2562 /* ROUNDUP_SIZE must be a power of 2. */
2563 verify ((roundup_size & (roundup_size - 1)) == 0);
2565 /* Verify assumptions described above. */
2566 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2567 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2569 /* Round up X to nearest mult-of-ROUNDUP_SIZE. */
2571 #define vroundup(x) (((x) + (roundup_size - 1)) & ~(roundup_size - 1))
2573 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2575 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup (sizeof (void *)))
2577 /* Size of the minimal vector allocated from block. */
2579 #define VBLOCK_BYTES_MIN vroundup (sizeof (struct Lisp_Vector))
2581 /* Size of the largest vector allocated from block. */
2583 #define VBLOCK_BYTES_MAX \
2584 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2586 /* We maintain one free list for each possible block-allocated
2587 vector size, and this is the number of free lists we have. */
2589 #define VECTOR_MAX_FREE_LIST_INDEX \
2590 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2592 /* Common shortcut to advance vector pointer over a block data. */
2594 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2596 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2598 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2600 /* Get and set the next field in block-allocated vectorlike objects on
2601 the free list. Doing it this way respects C's aliasing rules.
2602 We could instead make 'contents' a union, but that would mean
2603 changes everywhere that the code uses 'contents'. */
2604 static struct Lisp_Vector *
2605 next_in_free_list (struct Lisp_Vector *v)
2607 intptr_t i = XLI (v->contents[0]);
2608 return (struct Lisp_Vector *) i;
2610 static void
2611 set_next_in_free_list (struct Lisp_Vector *v, struct Lisp_Vector *next)
2613 v->contents[0] = XIL ((intptr_t) next);
2616 /* Common shortcut to setup vector on a free list. */
2618 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2619 do { \
2620 (tmp) = ((nbytes - header_size) / word_size); \
2621 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2622 eassert ((nbytes) % roundup_size == 0); \
2623 (tmp) = VINDEX (nbytes); \
2624 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2625 set_next_in_free_list (v, vector_free_lists[tmp]); \
2626 vector_free_lists[tmp] = (v); \
2627 total_free_vector_slots += (nbytes) / word_size; \
2628 } while (0)
2630 /* This internal type is used to maintain the list of large vectors
2631 which are allocated at their own, e.g. outside of vector blocks. */
2633 struct large_vector
2635 union {
2636 struct large_vector *vector;
2637 #if USE_LSB_TAG
2638 /* We need to maintain ROUNDUP_SIZE alignment for the vector member. */
2639 unsigned char c[vroundup (sizeof (struct large_vector *))];
2640 #endif
2641 } next;
2642 struct Lisp_Vector v;
2645 /* This internal type is used to maintain an underlying storage
2646 for small vectors. */
2648 struct vector_block
2650 char data[VECTOR_BLOCK_BYTES];
2651 struct vector_block *next;
2654 /* Chain of vector blocks. */
2656 static struct vector_block *vector_blocks;
2658 /* Vector free lists, where NTH item points to a chain of free
2659 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2661 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2663 /* Singly-linked list of large vectors. */
2665 static struct large_vector *large_vectors;
2667 /* The only vector with 0 slots, allocated from pure space. */
2669 Lisp_Object zero_vector;
2671 /* Number of live vectors. */
2673 static EMACS_INT total_vectors;
2675 /* Total size of live and free vectors, in Lisp_Object units. */
2677 static EMACS_INT total_vector_slots, total_free_vector_slots;
2679 /* Get a new vector block. */
2681 static struct vector_block *
2682 allocate_vector_block (void)
2684 struct vector_block *block = xmalloc (sizeof *block);
2686 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2687 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2688 MEM_TYPE_VECTOR_BLOCK);
2689 #endif
2691 block->next = vector_blocks;
2692 vector_blocks = block;
2693 return block;
2696 /* Called once to initialize vector allocation. */
2698 static void
2699 init_vectors (void)
2701 zero_vector = make_pure_vector (0);
2704 /* Allocate vector from a vector block. */
2706 static struct Lisp_Vector *
2707 allocate_vector_from_block (size_t nbytes)
2709 struct Lisp_Vector *vector;
2710 struct vector_block *block;
2711 size_t index, restbytes;
2713 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2714 eassert (nbytes % roundup_size == 0);
2716 /* First, try to allocate from a free list
2717 containing vectors of the requested size. */
2718 index = VINDEX (nbytes);
2719 if (vector_free_lists[index])
2721 vector = vector_free_lists[index];
2722 vector_free_lists[index] = next_in_free_list (vector);
2723 total_free_vector_slots -= nbytes / word_size;
2724 return vector;
2727 /* Next, check free lists containing larger vectors. Since
2728 we will split the result, we should have remaining space
2729 large enough to use for one-slot vector at least. */
2730 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2731 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2732 if (vector_free_lists[index])
2734 /* This vector is larger than requested. */
2735 vector = vector_free_lists[index];
2736 vector_free_lists[index] = next_in_free_list (vector);
2737 total_free_vector_slots -= nbytes / word_size;
2739 /* Excess bytes are used for the smaller vector,
2740 which should be set on an appropriate free list. */
2741 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2742 eassert (restbytes % roundup_size == 0);
2743 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2744 return vector;
2747 /* Finally, need a new vector block. */
2748 block = allocate_vector_block ();
2750 /* New vector will be at the beginning of this block. */
2751 vector = (struct Lisp_Vector *) block->data;
2753 /* If the rest of space from this block is large enough
2754 for one-slot vector at least, set up it on a free list. */
2755 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2756 if (restbytes >= VBLOCK_BYTES_MIN)
2758 eassert (restbytes % roundup_size == 0);
2759 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2761 return vector;
2764 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2766 #define VECTOR_IN_BLOCK(vector, block) \
2767 ((char *) (vector) <= (block)->data \
2768 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2770 /* Return the memory footprint of V in bytes. */
2772 static ptrdiff_t
2773 vector_nbytes (struct Lisp_Vector *v)
2775 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
2777 if (size & PSEUDOVECTOR_FLAG)
2779 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
2780 size = (bool_header_size
2781 + (((struct Lisp_Bool_Vector *) v)->size
2782 + BOOL_VECTOR_BITS_PER_CHAR - 1)
2783 / BOOL_VECTOR_BITS_PER_CHAR);
2784 else
2785 size = (header_size
2786 + ((size & PSEUDOVECTOR_SIZE_MASK)
2787 + ((size & PSEUDOVECTOR_REST_MASK)
2788 >> PSEUDOVECTOR_SIZE_BITS)) * word_size);
2790 else
2791 size = header_size + size * word_size;
2792 return vroundup (size);
2795 /* Reclaim space used by unmarked vectors. */
2797 static void
2798 sweep_vectors (void)
2800 struct vector_block *block = vector_blocks, **bprev = &vector_blocks;
2801 struct large_vector *lv, **lvprev = &large_vectors;
2802 struct Lisp_Vector *vector, *next;
2804 total_vectors = total_vector_slots = total_free_vector_slots = 0;
2805 memset (vector_free_lists, 0, sizeof (vector_free_lists));
2807 /* Looking through vector blocks. */
2809 for (block = vector_blocks; block; block = *bprev)
2811 bool free_this_block = 0;
2812 ptrdiff_t nbytes;
2814 for (vector = (struct Lisp_Vector *) block->data;
2815 VECTOR_IN_BLOCK (vector, block); vector = next)
2817 if (VECTOR_MARKED_P (vector))
2819 VECTOR_UNMARK (vector);
2820 total_vectors++;
2821 nbytes = vector_nbytes (vector);
2822 total_vector_slots += nbytes / word_size;
2823 next = ADVANCE (vector, nbytes);
2825 else
2827 ptrdiff_t total_bytes;
2829 nbytes = vector_nbytes (vector);
2830 total_bytes = nbytes;
2831 next = ADVANCE (vector, nbytes);
2833 /* While NEXT is not marked, try to coalesce with VECTOR,
2834 thus making VECTOR of the largest possible size. */
2836 while (VECTOR_IN_BLOCK (next, block))
2838 if (VECTOR_MARKED_P (next))
2839 break;
2840 nbytes = vector_nbytes (next);
2841 total_bytes += nbytes;
2842 next = ADVANCE (next, nbytes);
2845 eassert (total_bytes % roundup_size == 0);
2847 if (vector == (struct Lisp_Vector *) block->data
2848 && !VECTOR_IN_BLOCK (next, block))
2849 /* This block should be freed because all of it's
2850 space was coalesced into the only free vector. */
2851 free_this_block = 1;
2852 else
2854 int tmp;
2855 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
2860 if (free_this_block)
2862 *bprev = block->next;
2863 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2864 mem_delete (mem_find (block->data));
2865 #endif
2866 xfree (block);
2868 else
2869 bprev = &block->next;
2872 /* Sweep large vectors. */
2874 for (lv = large_vectors; lv; lv = *lvprev)
2876 vector = &lv->v;
2877 if (VECTOR_MARKED_P (vector))
2879 VECTOR_UNMARK (vector);
2880 total_vectors++;
2881 if (vector->header.size & PSEUDOVECTOR_FLAG)
2883 struct Lisp_Bool_Vector *b = (struct Lisp_Bool_Vector *) vector;
2885 /* All non-bool pseudovectors are small enough to be allocated
2886 from vector blocks. This code should be redesigned if some
2887 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
2888 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
2890 total_vector_slots
2891 += (bool_header_size
2892 + ((b->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2893 / BOOL_VECTOR_BITS_PER_CHAR)) / word_size;
2895 else
2896 total_vector_slots
2897 += header_size / word_size + vector->header.size;
2898 lvprev = &lv->next.vector;
2900 else
2902 *lvprev = lv->next.vector;
2903 lisp_free (lv);
2908 /* Value is a pointer to a newly allocated Lisp_Vector structure
2909 with room for LEN Lisp_Objects. */
2911 static struct Lisp_Vector *
2912 allocate_vectorlike (ptrdiff_t len)
2914 struct Lisp_Vector *p;
2916 MALLOC_BLOCK_INPUT;
2918 if (len == 0)
2919 p = XVECTOR (zero_vector);
2920 else
2922 size_t nbytes = header_size + len * word_size;
2924 #ifdef DOUG_LEA_MALLOC
2925 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2926 because mapped region contents are not preserved in
2927 a dumped Emacs. */
2928 mallopt (M_MMAP_MAX, 0);
2929 #endif
2931 if (nbytes <= VBLOCK_BYTES_MAX)
2932 p = allocate_vector_from_block (vroundup (nbytes));
2933 else
2935 struct large_vector *lv
2936 = lisp_malloc (sizeof (*lv) + (len - 1) * word_size,
2937 MEM_TYPE_VECTORLIKE);
2938 lv->next.vector = large_vectors;
2939 large_vectors = lv;
2940 p = &lv->v;
2943 #ifdef DOUG_LEA_MALLOC
2944 /* Back to a reasonable maximum of mmap'ed areas. */
2945 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2946 #endif
2948 consing_since_gc += nbytes;
2949 vector_cells_consed += len;
2952 MALLOC_UNBLOCK_INPUT;
2954 return p;
2958 /* Allocate a vector with LEN slots. */
2960 struct Lisp_Vector *
2961 allocate_vector (EMACS_INT len)
2963 struct Lisp_Vector *v;
2964 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
2966 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
2967 memory_full (SIZE_MAX);
2968 v = allocate_vectorlike (len);
2969 v->header.size = len;
2970 return v;
2974 /* Allocate other vector-like structures. */
2976 struct Lisp_Vector *
2977 allocate_pseudovector (int memlen, int lisplen, enum pvec_type tag)
2979 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2980 int i;
2982 /* Catch bogus values. */
2983 eassert (tag <= PVEC_FONT);
2984 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
2985 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
2987 /* Only the first lisplen slots will be traced normally by the GC. */
2988 for (i = 0; i < lisplen; ++i)
2989 v->contents[i] = Qnil;
2991 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
2992 return v;
2995 struct buffer *
2996 allocate_buffer (void)
2998 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3000 BUFFER_PVEC_INIT (b);
3001 /* Put B on the chain of all buffers including killed ones. */
3002 b->next = all_buffers;
3003 all_buffers = b;
3004 /* Note that the rest fields of B are not initialized. */
3005 return b;
3008 struct Lisp_Hash_Table *
3009 allocate_hash_table (void)
3011 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3014 struct window *
3015 allocate_window (void)
3017 struct window *w;
3019 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3020 /* Users assumes that non-Lisp data is zeroed. */
3021 memset (&w->current_matrix, 0,
3022 sizeof (*w) - offsetof (struct window, current_matrix));
3023 return w;
3026 struct terminal *
3027 allocate_terminal (void)
3029 struct terminal *t;
3031 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3032 /* Users assumes that non-Lisp data is zeroed. */
3033 memset (&t->next_terminal, 0,
3034 sizeof (*t) - offsetof (struct terminal, next_terminal));
3035 return t;
3038 struct frame *
3039 allocate_frame (void)
3041 struct frame *f;
3043 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3044 /* Users assumes that non-Lisp data is zeroed. */
3045 memset (&f->face_cache, 0,
3046 sizeof (*f) - offsetof (struct frame, face_cache));
3047 return f;
3050 struct Lisp_Process *
3051 allocate_process (void)
3053 struct Lisp_Process *p;
3055 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3056 /* Users assumes that non-Lisp data is zeroed. */
3057 memset (&p->pid, 0,
3058 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3059 return p;
3062 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3063 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3064 See also the function `vector'. */)
3065 (register Lisp_Object length, Lisp_Object init)
3067 Lisp_Object vector;
3068 register ptrdiff_t sizei;
3069 register ptrdiff_t i;
3070 register struct Lisp_Vector *p;
3072 CHECK_NATNUM (length);
3074 p = allocate_vector (XFASTINT (length));
3075 sizei = XFASTINT (length);
3076 for (i = 0; i < sizei; i++)
3077 p->contents[i] = init;
3079 XSETVECTOR (vector, p);
3080 return vector;
3084 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3085 doc: /* Return a newly created vector with specified arguments as elements.
3086 Any number of arguments, even zero arguments, are allowed.
3087 usage: (vector &rest OBJECTS) */)
3088 (ptrdiff_t nargs, Lisp_Object *args)
3090 ptrdiff_t i;
3091 register Lisp_Object val = make_uninit_vector (nargs);
3092 register struct Lisp_Vector *p = XVECTOR (val);
3094 for (i = 0; i < nargs; i++)
3095 p->contents[i] = args[i];
3096 return val;
3099 void
3100 make_byte_code (struct Lisp_Vector *v)
3102 if (v->header.size > 1 && STRINGP (v->contents[1])
3103 && STRING_MULTIBYTE (v->contents[1]))
3104 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3105 earlier because they produced a raw 8-bit string for byte-code
3106 and now such a byte-code string is loaded as multibyte while
3107 raw 8-bit characters converted to multibyte form. Thus, now we
3108 must convert them back to the original unibyte form. */
3109 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3110 XSETPVECTYPE (v, PVEC_COMPILED);
3113 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3114 doc: /* Create a byte-code object with specified arguments as elements.
3115 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3116 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3117 and (optional) INTERACTIVE-SPEC.
3118 The first four arguments are required; at most six have any
3119 significance.
3120 The ARGLIST can be either like the one of `lambda', in which case the arguments
3121 will be dynamically bound before executing the byte code, or it can be an
3122 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3123 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3124 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3125 argument to catch the left-over arguments. If such an integer is used, the
3126 arguments will not be dynamically bound but will be instead pushed on the
3127 stack before executing the byte-code.
3128 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3129 (ptrdiff_t nargs, Lisp_Object *args)
3131 ptrdiff_t i;
3132 register Lisp_Object val = make_uninit_vector (nargs);
3133 register struct Lisp_Vector *p = XVECTOR (val);
3135 /* We used to purecopy everything here, if purify-flag was set. This worked
3136 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3137 dangerous, since make-byte-code is used during execution to build
3138 closures, so any closure built during the preload phase would end up
3139 copied into pure space, including its free variables, which is sometimes
3140 just wasteful and other times plainly wrong (e.g. those free vars may want
3141 to be setcar'd). */
3143 for (i = 0; i < nargs; i++)
3144 p->contents[i] = args[i];
3145 make_byte_code (p);
3146 XSETCOMPILED (val, p);
3147 return val;
3152 /***********************************************************************
3153 Symbol Allocation
3154 ***********************************************************************/
3156 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3157 of the required alignment if LSB tags are used. */
3159 union aligned_Lisp_Symbol
3161 struct Lisp_Symbol s;
3162 #if USE_LSB_TAG
3163 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3164 & -GCALIGNMENT];
3165 #endif
3168 /* Each symbol_block is just under 1020 bytes long, since malloc
3169 really allocates in units of powers of two and uses 4 bytes for its
3170 own overhead. */
3172 #define SYMBOL_BLOCK_SIZE \
3173 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3175 struct symbol_block
3177 /* Place `symbols' first, to preserve alignment. */
3178 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3179 struct symbol_block *next;
3182 /* Current symbol block and index of first unused Lisp_Symbol
3183 structure in it. */
3185 static struct symbol_block *symbol_block;
3186 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3188 /* List of free symbols. */
3190 static struct Lisp_Symbol *symbol_free_list;
3192 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3193 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3194 Its value is void, and its function definition and property list are nil. */)
3195 (Lisp_Object name)
3197 register Lisp_Object val;
3198 register struct Lisp_Symbol *p;
3200 CHECK_STRING (name);
3202 MALLOC_BLOCK_INPUT;
3204 if (symbol_free_list)
3206 XSETSYMBOL (val, symbol_free_list);
3207 symbol_free_list = symbol_free_list->next;
3209 else
3211 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3213 struct symbol_block *new
3214 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3215 new->next = symbol_block;
3216 symbol_block = new;
3217 symbol_block_index = 0;
3218 total_free_symbols += SYMBOL_BLOCK_SIZE;
3220 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3221 symbol_block_index++;
3224 MALLOC_UNBLOCK_INPUT;
3226 p = XSYMBOL (val);
3227 set_symbol_name (val, name);
3228 set_symbol_plist (val, Qnil);
3229 p->redirect = SYMBOL_PLAINVAL;
3230 SET_SYMBOL_VAL (p, Qunbound);
3231 set_symbol_function (val, Qnil);
3232 set_symbol_next (val, NULL);
3233 p->gcmarkbit = 0;
3234 p->interned = SYMBOL_UNINTERNED;
3235 p->constant = 0;
3236 p->declared_special = 0;
3237 consing_since_gc += sizeof (struct Lisp_Symbol);
3238 symbols_consed++;
3239 total_free_symbols--;
3240 return val;
3245 /***********************************************************************
3246 Marker (Misc) Allocation
3247 ***********************************************************************/
3249 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3250 the required alignment when LSB tags are used. */
3252 union aligned_Lisp_Misc
3254 union Lisp_Misc m;
3255 #if USE_LSB_TAG
3256 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3257 & -GCALIGNMENT];
3258 #endif
3261 /* Allocation of markers and other objects that share that structure.
3262 Works like allocation of conses. */
3264 #define MARKER_BLOCK_SIZE \
3265 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3267 struct marker_block
3269 /* Place `markers' first, to preserve alignment. */
3270 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3271 struct marker_block *next;
3274 static struct marker_block *marker_block;
3275 static int marker_block_index = MARKER_BLOCK_SIZE;
3277 static union Lisp_Misc *marker_free_list;
3279 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3281 static Lisp_Object
3282 allocate_misc (enum Lisp_Misc_Type type)
3284 Lisp_Object val;
3286 MALLOC_BLOCK_INPUT;
3288 if (marker_free_list)
3290 XSETMISC (val, marker_free_list);
3291 marker_free_list = marker_free_list->u_free.chain;
3293 else
3295 if (marker_block_index == MARKER_BLOCK_SIZE)
3297 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3298 new->next = marker_block;
3299 marker_block = new;
3300 marker_block_index = 0;
3301 total_free_markers += MARKER_BLOCK_SIZE;
3303 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3304 marker_block_index++;
3307 MALLOC_UNBLOCK_INPUT;
3309 --total_free_markers;
3310 consing_since_gc += sizeof (union Lisp_Misc);
3311 misc_objects_consed++;
3312 XMISCTYPE (val) = type;
3313 XMISCANY (val)->gcmarkbit = 0;
3314 return val;
3317 /* Free a Lisp_Misc object. */
3319 void
3320 free_misc (Lisp_Object misc)
3322 XMISCTYPE (misc) = Lisp_Misc_Free;
3323 XMISC (misc)->u_free.chain = marker_free_list;
3324 marker_free_list = XMISC (misc);
3325 consing_since_gc -= sizeof (union Lisp_Misc);
3326 total_free_markers++;
3329 /* Verify properties of Lisp_Save_Value's representation
3330 that are assumed here and elsewhere. */
3332 verify (SAVE_UNUSED == 0);
3333 verify ((SAVE_INTEGER | SAVE_POINTER | SAVE_OBJECT) >> SAVE_SLOT_BITS == 0);
3335 /* Return a Lisp_Save_Value object with the data saved according to
3336 DATA_TYPE. DATA_TYPE should be one of SAVE_TYPE_INT_INT, etc. */
3338 Lisp_Object
3339 make_save_value (enum Lisp_Save_Type save_type, ...)
3341 va_list ap;
3342 int i;
3343 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3344 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3346 eassert (0 < save_type
3347 && (save_type < 1 << (SAVE_TYPE_BITS - 1)
3348 || save_type == SAVE_TYPE_MEMORY));
3349 p->save_type = save_type;
3350 va_start (ap, save_type);
3351 save_type &= ~ (1 << (SAVE_TYPE_BITS - 1));
3353 for (i = 0; save_type; i++, save_type >>= SAVE_SLOT_BITS)
3354 switch (save_type & ((1 << SAVE_SLOT_BITS) - 1))
3356 case SAVE_POINTER:
3357 p->data[i].pointer = va_arg (ap, void *);
3358 break;
3360 case SAVE_INTEGER:
3361 p->data[i].integer = va_arg (ap, ptrdiff_t);
3362 break;
3364 case SAVE_OBJECT:
3365 p->data[i].object = va_arg (ap, Lisp_Object);
3366 break;
3368 default:
3369 emacs_abort ();
3372 va_end (ap);
3373 return val;
3376 /* The most common task it to save just one C pointer. */
3378 Lisp_Object
3379 make_save_pointer (void *pointer)
3381 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3382 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3383 p->save_type = SAVE_POINTER;
3384 p->data[0].pointer = pointer;
3385 return val;
3388 /* Free a Lisp_Save_Value object. Do not use this function
3389 if SAVE contains pointer other than returned by xmalloc. */
3391 static void
3392 free_save_value (Lisp_Object save)
3394 xfree (XSAVE_POINTER (save, 0));
3395 free_misc (save);
3398 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3400 Lisp_Object
3401 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3403 register Lisp_Object overlay;
3405 overlay = allocate_misc (Lisp_Misc_Overlay);
3406 OVERLAY_START (overlay) = start;
3407 OVERLAY_END (overlay) = end;
3408 set_overlay_plist (overlay, plist);
3409 XOVERLAY (overlay)->next = NULL;
3410 return overlay;
3413 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3414 doc: /* Return a newly allocated marker which does not point at any place. */)
3415 (void)
3417 register Lisp_Object val;
3418 register struct Lisp_Marker *p;
3420 val = allocate_misc (Lisp_Misc_Marker);
3421 p = XMARKER (val);
3422 p->buffer = 0;
3423 p->bytepos = 0;
3424 p->charpos = 0;
3425 p->next = NULL;
3426 p->insertion_type = 0;
3427 return val;
3430 /* Return a newly allocated marker which points into BUF
3431 at character position CHARPOS and byte position BYTEPOS. */
3433 Lisp_Object
3434 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3436 Lisp_Object obj;
3437 struct Lisp_Marker *m;
3439 /* No dead buffers here. */
3440 eassert (BUFFER_LIVE_P (buf));
3442 /* Every character is at least one byte. */
3443 eassert (charpos <= bytepos);
3445 obj = allocate_misc (Lisp_Misc_Marker);
3446 m = XMARKER (obj);
3447 m->buffer = buf;
3448 m->charpos = charpos;
3449 m->bytepos = bytepos;
3450 m->insertion_type = 0;
3451 m->next = BUF_MARKERS (buf);
3452 BUF_MARKERS (buf) = m;
3453 return obj;
3456 /* Put MARKER back on the free list after using it temporarily. */
3458 void
3459 free_marker (Lisp_Object marker)
3461 unchain_marker (XMARKER (marker));
3462 free_misc (marker);
3466 /* Return a newly created vector or string with specified arguments as
3467 elements. If all the arguments are characters that can fit
3468 in a string of events, make a string; otherwise, make a vector.
3470 Any number of arguments, even zero arguments, are allowed. */
3472 Lisp_Object
3473 make_event_array (register int nargs, Lisp_Object *args)
3475 int i;
3477 for (i = 0; i < nargs; i++)
3478 /* The things that fit in a string
3479 are characters that are in 0...127,
3480 after discarding the meta bit and all the bits above it. */
3481 if (!INTEGERP (args[i])
3482 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3483 return Fvector (nargs, args);
3485 /* Since the loop exited, we know that all the things in it are
3486 characters, so we can make a string. */
3488 Lisp_Object result;
3490 result = Fmake_string (make_number (nargs), make_number (0));
3491 for (i = 0; i < nargs; i++)
3493 SSET (result, i, XINT (args[i]));
3494 /* Move the meta bit to the right place for a string char. */
3495 if (XINT (args[i]) & CHAR_META)
3496 SSET (result, i, SREF (result, i) | 0x80);
3499 return result;
3505 /************************************************************************
3506 Memory Full Handling
3507 ************************************************************************/
3510 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3511 there may have been size_t overflow so that malloc was never
3512 called, or perhaps malloc was invoked successfully but the
3513 resulting pointer had problems fitting into a tagged EMACS_INT. In
3514 either case this counts as memory being full even though malloc did
3515 not fail. */
3517 void
3518 memory_full (size_t nbytes)
3520 /* Do not go into hysterics merely because a large request failed. */
3521 bool enough_free_memory = 0;
3522 if (SPARE_MEMORY < nbytes)
3524 void *p;
3526 MALLOC_BLOCK_INPUT;
3527 p = malloc (SPARE_MEMORY);
3528 if (p)
3530 free (p);
3531 enough_free_memory = 1;
3533 MALLOC_UNBLOCK_INPUT;
3536 if (! enough_free_memory)
3538 int i;
3540 Vmemory_full = Qt;
3542 memory_full_cons_threshold = sizeof (struct cons_block);
3544 /* The first time we get here, free the spare memory. */
3545 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3546 if (spare_memory[i])
3548 if (i == 0)
3549 free (spare_memory[i]);
3550 else if (i >= 1 && i <= 4)
3551 lisp_align_free (spare_memory[i]);
3552 else
3553 lisp_free (spare_memory[i]);
3554 spare_memory[i] = 0;
3558 /* This used to call error, but if we've run out of memory, we could
3559 get infinite recursion trying to build the string. */
3560 xsignal (Qnil, Vmemory_signal_data);
3563 /* If we released our reserve (due to running out of memory),
3564 and we have a fair amount free once again,
3565 try to set aside another reserve in case we run out once more.
3567 This is called when a relocatable block is freed in ralloc.c,
3568 and also directly from this file, in case we're not using ralloc.c. */
3570 void
3571 refill_memory_reserve (void)
3573 #ifndef SYSTEM_MALLOC
3574 if (spare_memory[0] == 0)
3575 spare_memory[0] = malloc (SPARE_MEMORY);
3576 if (spare_memory[1] == 0)
3577 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3578 MEM_TYPE_SPARE);
3579 if (spare_memory[2] == 0)
3580 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3581 MEM_TYPE_SPARE);
3582 if (spare_memory[3] == 0)
3583 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3584 MEM_TYPE_SPARE);
3585 if (spare_memory[4] == 0)
3586 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3587 MEM_TYPE_SPARE);
3588 if (spare_memory[5] == 0)
3589 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3590 MEM_TYPE_SPARE);
3591 if (spare_memory[6] == 0)
3592 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3593 MEM_TYPE_SPARE);
3594 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3595 Vmemory_full = Qnil;
3596 #endif
3599 /************************************************************************
3600 C Stack Marking
3601 ************************************************************************/
3603 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3605 /* Conservative C stack marking requires a method to identify possibly
3606 live Lisp objects given a pointer value. We do this by keeping
3607 track of blocks of Lisp data that are allocated in a red-black tree
3608 (see also the comment of mem_node which is the type of nodes in
3609 that tree). Function lisp_malloc adds information for an allocated
3610 block to the red-black tree with calls to mem_insert, and function
3611 lisp_free removes it with mem_delete. Functions live_string_p etc
3612 call mem_find to lookup information about a given pointer in the
3613 tree, and use that to determine if the pointer points to a Lisp
3614 object or not. */
3616 /* Initialize this part of alloc.c. */
3618 static void
3619 mem_init (void)
3621 mem_z.left = mem_z.right = MEM_NIL;
3622 mem_z.parent = NULL;
3623 mem_z.color = MEM_BLACK;
3624 mem_z.start = mem_z.end = NULL;
3625 mem_root = MEM_NIL;
3629 /* Value is a pointer to the mem_node containing START. Value is
3630 MEM_NIL if there is no node in the tree containing START. */
3632 static struct mem_node *
3633 mem_find (void *start)
3635 struct mem_node *p;
3637 if (start < min_heap_address || start > max_heap_address)
3638 return MEM_NIL;
3640 /* Make the search always successful to speed up the loop below. */
3641 mem_z.start = start;
3642 mem_z.end = (char *) start + 1;
3644 p = mem_root;
3645 while (start < p->start || start >= p->end)
3646 p = start < p->start ? p->left : p->right;
3647 return p;
3651 /* Insert a new node into the tree for a block of memory with start
3652 address START, end address END, and type TYPE. Value is a
3653 pointer to the node that was inserted. */
3655 static struct mem_node *
3656 mem_insert (void *start, void *end, enum mem_type type)
3658 struct mem_node *c, *parent, *x;
3660 if (min_heap_address == NULL || start < min_heap_address)
3661 min_heap_address = start;
3662 if (max_heap_address == NULL || end > max_heap_address)
3663 max_heap_address = end;
3665 /* See where in the tree a node for START belongs. In this
3666 particular application, it shouldn't happen that a node is already
3667 present. For debugging purposes, let's check that. */
3668 c = mem_root;
3669 parent = NULL;
3671 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3673 while (c != MEM_NIL)
3675 if (start >= c->start && start < c->end)
3676 emacs_abort ();
3677 parent = c;
3678 c = start < c->start ? c->left : c->right;
3681 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3683 while (c != MEM_NIL)
3685 parent = c;
3686 c = start < c->start ? c->left : c->right;
3689 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3691 /* Create a new node. */
3692 #ifdef GC_MALLOC_CHECK
3693 x = malloc (sizeof *x);
3694 if (x == NULL)
3695 emacs_abort ();
3696 #else
3697 x = xmalloc (sizeof *x);
3698 #endif
3699 x->start = start;
3700 x->end = end;
3701 x->type = type;
3702 x->parent = parent;
3703 x->left = x->right = MEM_NIL;
3704 x->color = MEM_RED;
3706 /* Insert it as child of PARENT or install it as root. */
3707 if (parent)
3709 if (start < parent->start)
3710 parent->left = x;
3711 else
3712 parent->right = x;
3714 else
3715 mem_root = x;
3717 /* Re-establish red-black tree properties. */
3718 mem_insert_fixup (x);
3720 return x;
3724 /* Re-establish the red-black properties of the tree, and thereby
3725 balance the tree, after node X has been inserted; X is always red. */
3727 static void
3728 mem_insert_fixup (struct mem_node *x)
3730 while (x != mem_root && x->parent->color == MEM_RED)
3732 /* X is red and its parent is red. This is a violation of
3733 red-black tree property #3. */
3735 if (x->parent == x->parent->parent->left)
3737 /* We're on the left side of our grandparent, and Y is our
3738 "uncle". */
3739 struct mem_node *y = x->parent->parent->right;
3741 if (y->color == MEM_RED)
3743 /* Uncle and parent are red but should be black because
3744 X is red. Change the colors accordingly and proceed
3745 with the grandparent. */
3746 x->parent->color = MEM_BLACK;
3747 y->color = MEM_BLACK;
3748 x->parent->parent->color = MEM_RED;
3749 x = x->parent->parent;
3751 else
3753 /* Parent and uncle have different colors; parent is
3754 red, uncle is black. */
3755 if (x == x->parent->right)
3757 x = x->parent;
3758 mem_rotate_left (x);
3761 x->parent->color = MEM_BLACK;
3762 x->parent->parent->color = MEM_RED;
3763 mem_rotate_right (x->parent->parent);
3766 else
3768 /* This is the symmetrical case of above. */
3769 struct mem_node *y = x->parent->parent->left;
3771 if (y->color == MEM_RED)
3773 x->parent->color = MEM_BLACK;
3774 y->color = MEM_BLACK;
3775 x->parent->parent->color = MEM_RED;
3776 x = x->parent->parent;
3778 else
3780 if (x == x->parent->left)
3782 x = x->parent;
3783 mem_rotate_right (x);
3786 x->parent->color = MEM_BLACK;
3787 x->parent->parent->color = MEM_RED;
3788 mem_rotate_left (x->parent->parent);
3793 /* The root may have been changed to red due to the algorithm. Set
3794 it to black so that property #5 is satisfied. */
3795 mem_root->color = MEM_BLACK;
3799 /* (x) (y)
3800 / \ / \
3801 a (y) ===> (x) c
3802 / \ / \
3803 b c a b */
3805 static void
3806 mem_rotate_left (struct mem_node *x)
3808 struct mem_node *y;
3810 /* Turn y's left sub-tree into x's right sub-tree. */
3811 y = x->right;
3812 x->right = y->left;
3813 if (y->left != MEM_NIL)
3814 y->left->parent = x;
3816 /* Y's parent was x's parent. */
3817 if (y != MEM_NIL)
3818 y->parent = x->parent;
3820 /* Get the parent to point to y instead of x. */
3821 if (x->parent)
3823 if (x == x->parent->left)
3824 x->parent->left = y;
3825 else
3826 x->parent->right = y;
3828 else
3829 mem_root = y;
3831 /* Put x on y's left. */
3832 y->left = x;
3833 if (x != MEM_NIL)
3834 x->parent = y;
3838 /* (x) (Y)
3839 / \ / \
3840 (y) c ===> a (x)
3841 / \ / \
3842 a b b c */
3844 static void
3845 mem_rotate_right (struct mem_node *x)
3847 struct mem_node *y = x->left;
3849 x->left = y->right;
3850 if (y->right != MEM_NIL)
3851 y->right->parent = x;
3853 if (y != MEM_NIL)
3854 y->parent = x->parent;
3855 if (x->parent)
3857 if (x == x->parent->right)
3858 x->parent->right = y;
3859 else
3860 x->parent->left = y;
3862 else
3863 mem_root = y;
3865 y->right = x;
3866 if (x != MEM_NIL)
3867 x->parent = y;
3871 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3873 static void
3874 mem_delete (struct mem_node *z)
3876 struct mem_node *x, *y;
3878 if (!z || z == MEM_NIL)
3879 return;
3881 if (z->left == MEM_NIL || z->right == MEM_NIL)
3882 y = z;
3883 else
3885 y = z->right;
3886 while (y->left != MEM_NIL)
3887 y = y->left;
3890 if (y->left != MEM_NIL)
3891 x = y->left;
3892 else
3893 x = y->right;
3895 x->parent = y->parent;
3896 if (y->parent)
3898 if (y == y->parent->left)
3899 y->parent->left = x;
3900 else
3901 y->parent->right = x;
3903 else
3904 mem_root = x;
3906 if (y != z)
3908 z->start = y->start;
3909 z->end = y->end;
3910 z->type = y->type;
3913 if (y->color == MEM_BLACK)
3914 mem_delete_fixup (x);
3916 #ifdef GC_MALLOC_CHECK
3917 free (y);
3918 #else
3919 xfree (y);
3920 #endif
3924 /* Re-establish the red-black properties of the tree, after a
3925 deletion. */
3927 static void
3928 mem_delete_fixup (struct mem_node *x)
3930 while (x != mem_root && x->color == MEM_BLACK)
3932 if (x == x->parent->left)
3934 struct mem_node *w = x->parent->right;
3936 if (w->color == MEM_RED)
3938 w->color = MEM_BLACK;
3939 x->parent->color = MEM_RED;
3940 mem_rotate_left (x->parent);
3941 w = x->parent->right;
3944 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3946 w->color = MEM_RED;
3947 x = x->parent;
3949 else
3951 if (w->right->color == MEM_BLACK)
3953 w->left->color = MEM_BLACK;
3954 w->color = MEM_RED;
3955 mem_rotate_right (w);
3956 w = x->parent->right;
3958 w->color = x->parent->color;
3959 x->parent->color = MEM_BLACK;
3960 w->right->color = MEM_BLACK;
3961 mem_rotate_left (x->parent);
3962 x = mem_root;
3965 else
3967 struct mem_node *w = x->parent->left;
3969 if (w->color == MEM_RED)
3971 w->color = MEM_BLACK;
3972 x->parent->color = MEM_RED;
3973 mem_rotate_right (x->parent);
3974 w = x->parent->left;
3977 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3979 w->color = MEM_RED;
3980 x = x->parent;
3982 else
3984 if (w->left->color == MEM_BLACK)
3986 w->right->color = MEM_BLACK;
3987 w->color = MEM_RED;
3988 mem_rotate_left (w);
3989 w = x->parent->left;
3992 w->color = x->parent->color;
3993 x->parent->color = MEM_BLACK;
3994 w->left->color = MEM_BLACK;
3995 mem_rotate_right (x->parent);
3996 x = mem_root;
4001 x->color = MEM_BLACK;
4005 /* Value is non-zero if P is a pointer to a live Lisp string on
4006 the heap. M is a pointer to the mem_block for P. */
4008 static bool
4009 live_string_p (struct mem_node *m, void *p)
4011 if (m->type == MEM_TYPE_STRING)
4013 struct string_block *b = (struct string_block *) m->start;
4014 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4016 /* P must point to the start of a Lisp_String structure, and it
4017 must not be on the free-list. */
4018 return (offset >= 0
4019 && offset % sizeof b->strings[0] == 0
4020 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4021 && ((struct Lisp_String *) p)->data != NULL);
4023 else
4024 return 0;
4028 /* Value is non-zero if P is a pointer to a live Lisp cons on
4029 the heap. M is a pointer to the mem_block for P. */
4031 static bool
4032 live_cons_p (struct mem_node *m, void *p)
4034 if (m->type == MEM_TYPE_CONS)
4036 struct cons_block *b = (struct cons_block *) m->start;
4037 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4039 /* P must point to the start of a Lisp_Cons, not be
4040 one of the unused cells in the current cons block,
4041 and not be on the free-list. */
4042 return (offset >= 0
4043 && offset % sizeof b->conses[0] == 0
4044 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4045 && (b != cons_block
4046 || offset / sizeof b->conses[0] < cons_block_index)
4047 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4049 else
4050 return 0;
4054 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4055 the heap. M is a pointer to the mem_block for P. */
4057 static bool
4058 live_symbol_p (struct mem_node *m, void *p)
4060 if (m->type == MEM_TYPE_SYMBOL)
4062 struct symbol_block *b = (struct symbol_block *) m->start;
4063 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4065 /* P must point to the start of a Lisp_Symbol, not be
4066 one of the unused cells in the current symbol block,
4067 and not be on the free-list. */
4068 return (offset >= 0
4069 && offset % sizeof b->symbols[0] == 0
4070 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4071 && (b != symbol_block
4072 || offset / sizeof b->symbols[0] < symbol_block_index)
4073 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4075 else
4076 return 0;
4080 /* Value is non-zero if P is a pointer to a live Lisp float on
4081 the heap. M is a pointer to the mem_block for P. */
4083 static bool
4084 live_float_p (struct mem_node *m, void *p)
4086 if (m->type == MEM_TYPE_FLOAT)
4088 struct float_block *b = (struct float_block *) m->start;
4089 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4091 /* P must point to the start of a Lisp_Float and not be
4092 one of the unused cells in the current float block. */
4093 return (offset >= 0
4094 && offset % sizeof b->floats[0] == 0
4095 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4096 && (b != float_block
4097 || offset / sizeof b->floats[0] < float_block_index));
4099 else
4100 return 0;
4104 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4105 the heap. M is a pointer to the mem_block for P. */
4107 static bool
4108 live_misc_p (struct mem_node *m, void *p)
4110 if (m->type == MEM_TYPE_MISC)
4112 struct marker_block *b = (struct marker_block *) m->start;
4113 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4115 /* P must point to the start of a Lisp_Misc, not be
4116 one of the unused cells in the current misc block,
4117 and not be on the free-list. */
4118 return (offset >= 0
4119 && offset % sizeof b->markers[0] == 0
4120 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4121 && (b != marker_block
4122 || offset / sizeof b->markers[0] < marker_block_index)
4123 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4125 else
4126 return 0;
4130 /* Value is non-zero if P is a pointer to a live vector-like object.
4131 M is a pointer to the mem_block for P. */
4133 static bool
4134 live_vector_p (struct mem_node *m, void *p)
4136 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4138 /* This memory node corresponds to a vector block. */
4139 struct vector_block *block = (struct vector_block *) m->start;
4140 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4142 /* P is in the block's allocation range. Scan the block
4143 up to P and see whether P points to the start of some
4144 vector which is not on a free list. FIXME: check whether
4145 some allocation patterns (probably a lot of short vectors)
4146 may cause a substantial overhead of this loop. */
4147 while (VECTOR_IN_BLOCK (vector, block)
4148 && vector <= (struct Lisp_Vector *) p)
4150 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4151 return 1;
4152 else
4153 vector = ADVANCE (vector, vector_nbytes (vector));
4156 else if (m->type == MEM_TYPE_VECTORLIKE
4157 && (char *) p == ((char *) m->start
4158 + offsetof (struct large_vector, v)))
4159 /* This memory node corresponds to a large vector. */
4160 return 1;
4161 return 0;
4165 /* Value is non-zero if P is a pointer to a live buffer. M is a
4166 pointer to the mem_block for P. */
4168 static bool
4169 live_buffer_p (struct mem_node *m, void *p)
4171 /* P must point to the start of the block, and the buffer
4172 must not have been killed. */
4173 return (m->type == MEM_TYPE_BUFFER
4174 && p == m->start
4175 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
4178 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4180 #if GC_MARK_STACK
4182 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4184 /* Array of objects that are kept alive because the C stack contains
4185 a pattern that looks like a reference to them . */
4187 #define MAX_ZOMBIES 10
4188 static Lisp_Object zombies[MAX_ZOMBIES];
4190 /* Number of zombie objects. */
4192 static EMACS_INT nzombies;
4194 /* Number of garbage collections. */
4196 static EMACS_INT ngcs;
4198 /* Average percentage of zombies per collection. */
4200 static double avg_zombies;
4202 /* Max. number of live and zombie objects. */
4204 static EMACS_INT max_live, max_zombies;
4206 /* Average number of live objects per GC. */
4208 static double avg_live;
4210 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4211 doc: /* Show information about live and zombie objects. */)
4212 (void)
4214 Lisp_Object args[8], zombie_list = Qnil;
4215 EMACS_INT i;
4216 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4217 zombie_list = Fcons (zombies[i], zombie_list);
4218 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4219 args[1] = make_number (ngcs);
4220 args[2] = make_float (avg_live);
4221 args[3] = make_float (avg_zombies);
4222 args[4] = make_float (avg_zombies / avg_live / 100);
4223 args[5] = make_number (max_live);
4224 args[6] = make_number (max_zombies);
4225 args[7] = zombie_list;
4226 return Fmessage (8, args);
4229 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4232 /* Mark OBJ if we can prove it's a Lisp_Object. */
4234 static void
4235 mark_maybe_object (Lisp_Object obj)
4237 void *po;
4238 struct mem_node *m;
4240 if (INTEGERP (obj))
4241 return;
4243 po = (void *) XPNTR (obj);
4244 m = mem_find (po);
4246 if (m != MEM_NIL)
4248 bool mark_p = 0;
4250 switch (XTYPE (obj))
4252 case Lisp_String:
4253 mark_p = (live_string_p (m, po)
4254 && !STRING_MARKED_P ((struct Lisp_String *) po));
4255 break;
4257 case Lisp_Cons:
4258 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4259 break;
4261 case Lisp_Symbol:
4262 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4263 break;
4265 case Lisp_Float:
4266 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4267 break;
4269 case Lisp_Vectorlike:
4270 /* Note: can't check BUFFERP before we know it's a
4271 buffer because checking that dereferences the pointer
4272 PO which might point anywhere. */
4273 if (live_vector_p (m, po))
4274 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4275 else if (live_buffer_p (m, po))
4276 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4277 break;
4279 case Lisp_Misc:
4280 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4281 break;
4283 default:
4284 break;
4287 if (mark_p)
4289 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4290 if (nzombies < MAX_ZOMBIES)
4291 zombies[nzombies] = obj;
4292 ++nzombies;
4293 #endif
4294 mark_object (obj);
4300 /* If P points to Lisp data, mark that as live if it isn't already
4301 marked. */
4303 static void
4304 mark_maybe_pointer (void *p)
4306 struct mem_node *m;
4308 /* Quickly rule out some values which can't point to Lisp data.
4309 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4310 Otherwise, assume that Lisp data is aligned on even addresses. */
4311 if ((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2))
4312 return;
4314 m = mem_find (p);
4315 if (m != MEM_NIL)
4317 Lisp_Object obj = Qnil;
4319 switch (m->type)
4321 case MEM_TYPE_NON_LISP:
4322 case MEM_TYPE_SPARE:
4323 /* Nothing to do; not a pointer to Lisp memory. */
4324 break;
4326 case MEM_TYPE_BUFFER:
4327 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4328 XSETVECTOR (obj, p);
4329 break;
4331 case MEM_TYPE_CONS:
4332 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4333 XSETCONS (obj, p);
4334 break;
4336 case MEM_TYPE_STRING:
4337 if (live_string_p (m, p)
4338 && !STRING_MARKED_P ((struct Lisp_String *) p))
4339 XSETSTRING (obj, p);
4340 break;
4342 case MEM_TYPE_MISC:
4343 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4344 XSETMISC (obj, p);
4345 break;
4347 case MEM_TYPE_SYMBOL:
4348 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4349 XSETSYMBOL (obj, p);
4350 break;
4352 case MEM_TYPE_FLOAT:
4353 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4354 XSETFLOAT (obj, p);
4355 break;
4357 case MEM_TYPE_VECTORLIKE:
4358 case MEM_TYPE_VECTOR_BLOCK:
4359 if (live_vector_p (m, p))
4361 Lisp_Object tem;
4362 XSETVECTOR (tem, p);
4363 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4364 obj = tem;
4366 break;
4368 default:
4369 emacs_abort ();
4372 if (!NILP (obj))
4373 mark_object (obj);
4378 /* Alignment of pointer values. Use alignof, as it sometimes returns
4379 a smaller alignment than GCC's __alignof__ and mark_memory might
4380 miss objects if __alignof__ were used. */
4381 #define GC_POINTER_ALIGNMENT alignof (void *)
4383 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4384 not suffice, which is the typical case. A host where a Lisp_Object is
4385 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4386 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4387 suffice to widen it to to a Lisp_Object and check it that way. */
4388 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4389 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4390 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4391 nor mark_maybe_object can follow the pointers. This should not occur on
4392 any practical porting target. */
4393 # error "MSB type bits straddle pointer-word boundaries"
4394 # endif
4395 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4396 pointer words that hold pointers ORed with type bits. */
4397 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4398 #else
4399 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4400 words that hold unmodified pointers. */
4401 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4402 #endif
4404 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4405 or END+OFFSET..START. */
4407 static void
4408 mark_memory (void *start, void *end)
4409 #if defined (__clang__) && defined (__has_feature)
4410 #if __has_feature(address_sanitizer)
4411 /* Do not allow -faddress-sanitizer to check this function, since it
4412 crosses the function stack boundary, and thus would yield many
4413 false positives. */
4414 __attribute__((no_address_safety_analysis))
4415 #endif
4416 #endif
4418 void **pp;
4419 int i;
4421 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4422 nzombies = 0;
4423 #endif
4425 /* Make START the pointer to the start of the memory region,
4426 if it isn't already. */
4427 if (end < start)
4429 void *tem = start;
4430 start = end;
4431 end = tem;
4434 /* Mark Lisp data pointed to. This is necessary because, in some
4435 situations, the C compiler optimizes Lisp objects away, so that
4436 only a pointer to them remains. Example:
4438 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4441 Lisp_Object obj = build_string ("test");
4442 struct Lisp_String *s = XSTRING (obj);
4443 Fgarbage_collect ();
4444 fprintf (stderr, "test `%s'\n", s->data);
4445 return Qnil;
4448 Here, `obj' isn't really used, and the compiler optimizes it
4449 away. The only reference to the life string is through the
4450 pointer `s'. */
4452 for (pp = start; (void *) pp < end; pp++)
4453 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4455 void *p = *(void **) ((char *) pp + i);
4456 mark_maybe_pointer (p);
4457 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4458 mark_maybe_object (XIL ((intptr_t) p));
4462 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4464 static bool setjmp_tested_p;
4465 static int longjmps_done;
4467 #define SETJMP_WILL_LIKELY_WORK "\
4469 Emacs garbage collector has been changed to use conservative stack\n\
4470 marking. Emacs has determined that the method it uses to do the\n\
4471 marking will likely work on your system, but this isn't sure.\n\
4473 If you are a system-programmer, or can get the help of a local wizard\n\
4474 who is, please take a look at the function mark_stack in alloc.c, and\n\
4475 verify that the methods used are appropriate for your system.\n\
4477 Please mail the result to <emacs-devel@gnu.org>.\n\
4480 #define SETJMP_WILL_NOT_WORK "\
4482 Emacs garbage collector has been changed to use conservative stack\n\
4483 marking. Emacs has determined that the default method it uses to do the\n\
4484 marking will not work on your system. We will need a system-dependent\n\
4485 solution for your system.\n\
4487 Please take a look at the function mark_stack in alloc.c, and\n\
4488 try to find a way to make it work on your system.\n\
4490 Note that you may get false negatives, depending on the compiler.\n\
4491 In particular, you need to use -O with GCC for this test.\n\
4493 Please mail the result to <emacs-devel@gnu.org>.\n\
4497 /* Perform a quick check if it looks like setjmp saves registers in a
4498 jmp_buf. Print a message to stderr saying so. When this test
4499 succeeds, this is _not_ a proof that setjmp is sufficient for
4500 conservative stack marking. Only the sources or a disassembly
4501 can prove that. */
4503 static void
4504 test_setjmp (void)
4506 char buf[10];
4507 register int x;
4508 sys_jmp_buf jbuf;
4510 /* Arrange for X to be put in a register. */
4511 sprintf (buf, "1");
4512 x = strlen (buf);
4513 x = 2 * x - 1;
4515 sys_setjmp (jbuf);
4516 if (longjmps_done == 1)
4518 /* Came here after the longjmp at the end of the function.
4520 If x == 1, the longjmp has restored the register to its
4521 value before the setjmp, and we can hope that setjmp
4522 saves all such registers in the jmp_buf, although that
4523 isn't sure.
4525 For other values of X, either something really strange is
4526 taking place, or the setjmp just didn't save the register. */
4528 if (x == 1)
4529 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4530 else
4532 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4533 exit (1);
4537 ++longjmps_done;
4538 x = 2;
4539 if (longjmps_done == 1)
4540 sys_longjmp (jbuf, 1);
4543 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4546 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4548 /* Abort if anything GCPRO'd doesn't survive the GC. */
4550 static void
4551 check_gcpros (void)
4553 struct gcpro *p;
4554 ptrdiff_t i;
4556 for (p = gcprolist; p; p = p->next)
4557 for (i = 0; i < p->nvars; ++i)
4558 if (!survives_gc_p (p->var[i]))
4559 /* FIXME: It's not necessarily a bug. It might just be that the
4560 GCPRO is unnecessary or should release the object sooner. */
4561 emacs_abort ();
4564 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4566 static void
4567 dump_zombies (void)
4569 int i;
4571 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4572 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4574 fprintf (stderr, " %d = ", i);
4575 debug_print (zombies[i]);
4579 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4582 /* Mark live Lisp objects on the C stack.
4584 There are several system-dependent problems to consider when
4585 porting this to new architectures:
4587 Processor Registers
4589 We have to mark Lisp objects in CPU registers that can hold local
4590 variables or are used to pass parameters.
4592 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4593 something that either saves relevant registers on the stack, or
4594 calls mark_maybe_object passing it each register's contents.
4596 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4597 implementation assumes that calling setjmp saves registers we need
4598 to see in a jmp_buf which itself lies on the stack. This doesn't
4599 have to be true! It must be verified for each system, possibly
4600 by taking a look at the source code of setjmp.
4602 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4603 can use it as a machine independent method to store all registers
4604 to the stack. In this case the macros described in the previous
4605 two paragraphs are not used.
4607 Stack Layout
4609 Architectures differ in the way their processor stack is organized.
4610 For example, the stack might look like this
4612 +----------------+
4613 | Lisp_Object | size = 4
4614 +----------------+
4615 | something else | size = 2
4616 +----------------+
4617 | Lisp_Object | size = 4
4618 +----------------+
4619 | ... |
4621 In such a case, not every Lisp_Object will be aligned equally. To
4622 find all Lisp_Object on the stack it won't be sufficient to walk
4623 the stack in steps of 4 bytes. Instead, two passes will be
4624 necessary, one starting at the start of the stack, and a second
4625 pass starting at the start of the stack + 2. Likewise, if the
4626 minimal alignment of Lisp_Objects on the stack is 1, four passes
4627 would be necessary, each one starting with one byte more offset
4628 from the stack start. */
4630 static void
4631 mark_stack (void)
4633 void *end;
4635 #ifdef HAVE___BUILTIN_UNWIND_INIT
4636 /* Force callee-saved registers and register windows onto the stack.
4637 This is the preferred method if available, obviating the need for
4638 machine dependent methods. */
4639 __builtin_unwind_init ();
4640 end = &end;
4641 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4642 #ifndef GC_SAVE_REGISTERS_ON_STACK
4643 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4644 union aligned_jmpbuf {
4645 Lisp_Object o;
4646 sys_jmp_buf j;
4647 } j;
4648 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
4649 #endif
4650 /* This trick flushes the register windows so that all the state of
4651 the process is contained in the stack. */
4652 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4653 needed on ia64 too. See mach_dep.c, where it also says inline
4654 assembler doesn't work with relevant proprietary compilers. */
4655 #ifdef __sparc__
4656 #if defined (__sparc64__) && defined (__FreeBSD__)
4657 /* FreeBSD does not have a ta 3 handler. */
4658 asm ("flushw");
4659 #else
4660 asm ("ta 3");
4661 #endif
4662 #endif
4664 /* Save registers that we need to see on the stack. We need to see
4665 registers used to hold register variables and registers used to
4666 pass parameters. */
4667 #ifdef GC_SAVE_REGISTERS_ON_STACK
4668 GC_SAVE_REGISTERS_ON_STACK (end);
4669 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4671 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4672 setjmp will definitely work, test it
4673 and print a message with the result
4674 of the test. */
4675 if (!setjmp_tested_p)
4677 setjmp_tested_p = 1;
4678 test_setjmp ();
4680 #endif /* GC_SETJMP_WORKS */
4682 sys_setjmp (j.j);
4683 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4684 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4685 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4687 /* This assumes that the stack is a contiguous region in memory. If
4688 that's not the case, something has to be done here to iterate
4689 over the stack segments. */
4690 mark_memory (stack_base, end);
4692 /* Allow for marking a secondary stack, like the register stack on the
4693 ia64. */
4694 #ifdef GC_MARK_SECONDARY_STACK
4695 GC_MARK_SECONDARY_STACK ();
4696 #endif
4698 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4699 check_gcpros ();
4700 #endif
4703 #endif /* GC_MARK_STACK != 0 */
4706 /* Determine whether it is safe to access memory at address P. */
4707 static int
4708 valid_pointer_p (void *p)
4710 #ifdef WINDOWSNT
4711 return w32_valid_pointer_p (p, 16);
4712 #else
4713 int fd[2];
4715 /* Obviously, we cannot just access it (we would SEGV trying), so we
4716 trick the o/s to tell us whether p is a valid pointer.
4717 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4718 not validate p in that case. */
4720 if (pipe (fd) == 0)
4722 bool valid = emacs_write (fd[1], (char *) p, 16) == 16;
4723 emacs_close (fd[1]);
4724 emacs_close (fd[0]);
4725 return valid;
4728 return -1;
4729 #endif
4732 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
4733 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
4734 cannot validate OBJ. This function can be quite slow, so its primary
4735 use is the manual debugging. The only exception is print_object, where
4736 we use it to check whether the memory referenced by the pointer of
4737 Lisp_Save_Value object contains valid objects. */
4740 valid_lisp_object_p (Lisp_Object obj)
4742 void *p;
4743 #if GC_MARK_STACK
4744 struct mem_node *m;
4745 #endif
4747 if (INTEGERP (obj))
4748 return 1;
4750 p = (void *) XPNTR (obj);
4751 if (PURE_POINTER_P (p))
4752 return 1;
4754 if (p == &buffer_defaults || p == &buffer_local_symbols)
4755 return 2;
4757 #if !GC_MARK_STACK
4758 return valid_pointer_p (p);
4759 #else
4761 m = mem_find (p);
4763 if (m == MEM_NIL)
4765 int valid = valid_pointer_p (p);
4766 if (valid <= 0)
4767 return valid;
4769 if (SUBRP (obj))
4770 return 1;
4772 return 0;
4775 switch (m->type)
4777 case MEM_TYPE_NON_LISP:
4778 case MEM_TYPE_SPARE:
4779 return 0;
4781 case MEM_TYPE_BUFFER:
4782 return live_buffer_p (m, p) ? 1 : 2;
4784 case MEM_TYPE_CONS:
4785 return live_cons_p (m, p);
4787 case MEM_TYPE_STRING:
4788 return live_string_p (m, p);
4790 case MEM_TYPE_MISC:
4791 return live_misc_p (m, p);
4793 case MEM_TYPE_SYMBOL:
4794 return live_symbol_p (m, p);
4796 case MEM_TYPE_FLOAT:
4797 return live_float_p (m, p);
4799 case MEM_TYPE_VECTORLIKE:
4800 case MEM_TYPE_VECTOR_BLOCK:
4801 return live_vector_p (m, p);
4803 default:
4804 break;
4807 return 0;
4808 #endif
4814 /***********************************************************************
4815 Pure Storage Management
4816 ***********************************************************************/
4818 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4819 pointer to it. TYPE is the Lisp type for which the memory is
4820 allocated. TYPE < 0 means it's not used for a Lisp object. */
4822 static void *
4823 pure_alloc (size_t size, int type)
4825 void *result;
4826 #if USE_LSB_TAG
4827 size_t alignment = GCALIGNMENT;
4828 #else
4829 size_t alignment = alignof (EMACS_INT);
4831 /* Give Lisp_Floats an extra alignment. */
4832 if (type == Lisp_Float)
4833 alignment = alignof (struct Lisp_Float);
4834 #endif
4836 again:
4837 if (type >= 0)
4839 /* Allocate space for a Lisp object from the beginning of the free
4840 space with taking account of alignment. */
4841 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4842 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4844 else
4846 /* Allocate space for a non-Lisp object from the end of the free
4847 space. */
4848 pure_bytes_used_non_lisp += size;
4849 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4851 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4853 if (pure_bytes_used <= pure_size)
4854 return result;
4856 /* Don't allocate a large amount here,
4857 because it might get mmap'd and then its address
4858 might not be usable. */
4859 purebeg = xmalloc (10000);
4860 pure_size = 10000;
4861 pure_bytes_used_before_overflow += pure_bytes_used - size;
4862 pure_bytes_used = 0;
4863 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4864 goto again;
4868 /* Print a warning if PURESIZE is too small. */
4870 void
4871 check_pure_size (void)
4873 if (pure_bytes_used_before_overflow)
4874 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
4875 " bytes needed)"),
4876 pure_bytes_used + pure_bytes_used_before_overflow);
4880 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4881 the non-Lisp data pool of the pure storage, and return its start
4882 address. Return NULL if not found. */
4884 static char *
4885 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
4887 int i;
4888 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4889 const unsigned char *p;
4890 char *non_lisp_beg;
4892 if (pure_bytes_used_non_lisp <= nbytes)
4893 return NULL;
4895 /* Set up the Boyer-Moore table. */
4896 skip = nbytes + 1;
4897 for (i = 0; i < 256; i++)
4898 bm_skip[i] = skip;
4900 p = (const unsigned char *) data;
4901 while (--skip > 0)
4902 bm_skip[*p++] = skip;
4904 last_char_skip = bm_skip['\0'];
4906 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4907 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4909 /* See the comments in the function `boyer_moore' (search.c) for the
4910 use of `infinity'. */
4911 infinity = pure_bytes_used_non_lisp + 1;
4912 bm_skip['\0'] = infinity;
4914 p = (const unsigned char *) non_lisp_beg + nbytes;
4915 start = 0;
4918 /* Check the last character (== '\0'). */
4921 start += bm_skip[*(p + start)];
4923 while (start <= start_max);
4925 if (start < infinity)
4926 /* Couldn't find the last character. */
4927 return NULL;
4929 /* No less than `infinity' means we could find the last
4930 character at `p[start - infinity]'. */
4931 start -= infinity;
4933 /* Check the remaining characters. */
4934 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4935 /* Found. */
4936 return non_lisp_beg + start;
4938 start += last_char_skip;
4940 while (start <= start_max);
4942 return NULL;
4946 /* Return a string allocated in pure space. DATA is a buffer holding
4947 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4948 means make the result string multibyte.
4950 Must get an error if pure storage is full, since if it cannot hold
4951 a large string it may be able to hold conses that point to that
4952 string; then the string is not protected from gc. */
4954 Lisp_Object
4955 make_pure_string (const char *data,
4956 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
4958 Lisp_Object string;
4959 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
4960 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
4961 if (s->data == NULL)
4963 s->data = pure_alloc (nbytes + 1, -1);
4964 memcpy (s->data, data, nbytes);
4965 s->data[nbytes] = '\0';
4967 s->size = nchars;
4968 s->size_byte = multibyte ? nbytes : -1;
4969 s->intervals = NULL;
4970 XSETSTRING (string, s);
4971 return string;
4974 /* Return a string allocated in pure space. Do not
4975 allocate the string data, just point to DATA. */
4977 Lisp_Object
4978 make_pure_c_string (const char *data, ptrdiff_t nchars)
4980 Lisp_Object string;
4981 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
4982 s->size = nchars;
4983 s->size_byte = -1;
4984 s->data = (unsigned char *) data;
4985 s->intervals = NULL;
4986 XSETSTRING (string, s);
4987 return string;
4990 /* Return a cons allocated from pure space. Give it pure copies
4991 of CAR as car and CDR as cdr. */
4993 Lisp_Object
4994 pure_cons (Lisp_Object car, Lisp_Object cdr)
4996 Lisp_Object new;
4997 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
4998 XSETCONS (new, p);
4999 XSETCAR (new, Fpurecopy (car));
5000 XSETCDR (new, Fpurecopy (cdr));
5001 return new;
5005 /* Value is a float object with value NUM allocated from pure space. */
5007 static Lisp_Object
5008 make_pure_float (double num)
5010 Lisp_Object new;
5011 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5012 XSETFLOAT (new, p);
5013 XFLOAT_INIT (new, num);
5014 return new;
5018 /* Return a vector with room for LEN Lisp_Objects allocated from
5019 pure space. */
5021 static Lisp_Object
5022 make_pure_vector (ptrdiff_t len)
5024 Lisp_Object new;
5025 size_t size = header_size + len * word_size;
5026 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5027 XSETVECTOR (new, p);
5028 XVECTOR (new)->header.size = len;
5029 return new;
5033 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5034 doc: /* Make a copy of object OBJ in pure storage.
5035 Recursively copies contents of vectors and cons cells.
5036 Does not copy symbols. Copies strings without text properties. */)
5037 (register Lisp_Object obj)
5039 if (NILP (Vpurify_flag))
5040 return obj;
5042 if (PURE_POINTER_P (XPNTR (obj)))
5043 return obj;
5045 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5047 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5048 if (!NILP (tmp))
5049 return tmp;
5052 if (CONSP (obj))
5053 obj = pure_cons (XCAR (obj), XCDR (obj));
5054 else if (FLOATP (obj))
5055 obj = make_pure_float (XFLOAT_DATA (obj));
5056 else if (STRINGP (obj))
5057 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5058 SBYTES (obj),
5059 STRING_MULTIBYTE (obj));
5060 else if (COMPILEDP (obj) || VECTORP (obj))
5062 register struct Lisp_Vector *vec;
5063 register ptrdiff_t i;
5064 ptrdiff_t size;
5066 size = ASIZE (obj);
5067 if (size & PSEUDOVECTOR_FLAG)
5068 size &= PSEUDOVECTOR_SIZE_MASK;
5069 vec = XVECTOR (make_pure_vector (size));
5070 for (i = 0; i < size; i++)
5071 vec->contents[i] = Fpurecopy (AREF (obj, i));
5072 if (COMPILEDP (obj))
5074 XSETPVECTYPE (vec, PVEC_COMPILED);
5075 XSETCOMPILED (obj, vec);
5077 else
5078 XSETVECTOR (obj, vec);
5080 else if (MARKERP (obj))
5081 error ("Attempt to copy a marker to pure storage");
5082 else
5083 /* Not purified, don't hash-cons. */
5084 return obj;
5086 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5087 Fputhash (obj, obj, Vpurify_flag);
5089 return obj;
5094 /***********************************************************************
5095 Protection from GC
5096 ***********************************************************************/
5098 /* Put an entry in staticvec, pointing at the variable with address
5099 VARADDRESS. */
5101 void
5102 staticpro (Lisp_Object *varaddress)
5104 staticvec[staticidx++] = varaddress;
5105 if (staticidx >= NSTATICS)
5106 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5110 /***********************************************************************
5111 Protection from GC
5112 ***********************************************************************/
5114 /* Temporarily prevent garbage collection. */
5116 ptrdiff_t
5117 inhibit_garbage_collection (void)
5119 ptrdiff_t count = SPECPDL_INDEX ();
5121 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5122 return count;
5125 /* Used to avoid possible overflows when
5126 converting from C to Lisp integers. */
5128 static Lisp_Object
5129 bounded_number (EMACS_INT number)
5131 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5134 /* Calculate total bytes of live objects. */
5136 static size_t
5137 total_bytes_of_live_objects (void)
5139 size_t tot = 0;
5140 tot += total_conses * sizeof (struct Lisp_Cons);
5141 tot += total_symbols * sizeof (struct Lisp_Symbol);
5142 tot += total_markers * sizeof (union Lisp_Misc);
5143 tot += total_string_bytes;
5144 tot += total_vector_slots * word_size;
5145 tot += total_floats * sizeof (struct Lisp_Float);
5146 tot += total_intervals * sizeof (struct interval);
5147 tot += total_strings * sizeof (struct Lisp_String);
5148 return tot;
5151 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5152 doc: /* Reclaim storage for Lisp objects no longer needed.
5153 Garbage collection happens automatically if you cons more than
5154 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5155 `garbage-collect' normally returns a list with info on amount of space in use,
5156 where each entry has the form (NAME SIZE USED FREE), where:
5157 - NAME is a symbol describing the kind of objects this entry represents,
5158 - SIZE is the number of bytes used by each one,
5159 - USED is the number of those objects that were found live in the heap,
5160 - FREE is the number of those objects that are not live but that Emacs
5161 keeps around for future allocations (maybe because it does not know how
5162 to return them to the OS).
5163 However, if there was overflow in pure space, `garbage-collect'
5164 returns nil, because real GC can't be done.
5165 See Info node `(elisp)Garbage Collection'. */)
5166 (void)
5168 struct buffer *nextb;
5169 char stack_top_variable;
5170 ptrdiff_t i;
5171 bool message_p;
5172 ptrdiff_t count = SPECPDL_INDEX ();
5173 EMACS_TIME start;
5174 Lisp_Object retval = Qnil;
5175 size_t tot_before = 0;
5177 if (abort_on_gc)
5178 emacs_abort ();
5180 /* Can't GC if pure storage overflowed because we can't determine
5181 if something is a pure object or not. */
5182 if (pure_bytes_used_before_overflow)
5183 return Qnil;
5185 /* Record this function, so it appears on the profiler's backtraces. */
5186 record_in_backtrace (Qautomatic_gc, &Qnil, 0);
5188 check_cons_list ();
5190 /* Don't keep undo information around forever.
5191 Do this early on, so it is no problem if the user quits. */
5192 FOR_EACH_BUFFER (nextb)
5193 compact_buffer (nextb);
5195 if (profiler_memory_running)
5196 tot_before = total_bytes_of_live_objects ();
5198 start = current_emacs_time ();
5200 /* In case user calls debug_print during GC,
5201 don't let that cause a recursive GC. */
5202 consing_since_gc = 0;
5204 /* Save what's currently displayed in the echo area. */
5205 message_p = push_message ();
5206 record_unwind_protect (pop_message_unwind, Qnil);
5208 /* Save a copy of the contents of the stack, for debugging. */
5209 #if MAX_SAVE_STACK > 0
5210 if (NILP (Vpurify_flag))
5212 char *stack;
5213 ptrdiff_t stack_size;
5214 if (&stack_top_variable < stack_bottom)
5216 stack = &stack_top_variable;
5217 stack_size = stack_bottom - &stack_top_variable;
5219 else
5221 stack = stack_bottom;
5222 stack_size = &stack_top_variable - stack_bottom;
5224 if (stack_size <= MAX_SAVE_STACK)
5226 if (stack_copy_size < stack_size)
5228 stack_copy = xrealloc (stack_copy, stack_size);
5229 stack_copy_size = stack_size;
5231 memcpy (stack_copy, stack, stack_size);
5234 #endif /* MAX_SAVE_STACK > 0 */
5236 if (garbage_collection_messages)
5237 message1_nolog ("Garbage collecting...");
5239 block_input ();
5241 shrink_regexp_cache ();
5243 gc_in_progress = 1;
5245 /* Mark all the special slots that serve as the roots of accessibility. */
5247 mark_buffer (&buffer_defaults);
5248 mark_buffer (&buffer_local_symbols);
5250 for (i = 0; i < staticidx; i++)
5251 mark_object (*staticvec[i]);
5253 mark_specpdl ();
5254 mark_terminals ();
5255 mark_kboards ();
5257 #ifdef USE_GTK
5258 xg_mark_data ();
5259 #endif
5261 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5262 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5263 mark_stack ();
5264 #else
5266 register struct gcpro *tail;
5267 for (tail = gcprolist; tail; tail = tail->next)
5268 for (i = 0; i < tail->nvars; i++)
5269 mark_object (tail->var[i]);
5271 mark_byte_stack ();
5273 struct catchtag *catch;
5274 struct handler *handler;
5276 for (catch = catchlist; catch; catch = catch->next)
5278 mark_object (catch->tag);
5279 mark_object (catch->val);
5281 for (handler = handlerlist; handler; handler = handler->next)
5283 mark_object (handler->handler);
5284 mark_object (handler->var);
5287 #endif
5289 #ifdef HAVE_WINDOW_SYSTEM
5290 mark_fringe_data ();
5291 #endif
5293 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5294 mark_stack ();
5295 #endif
5297 /* Everything is now marked, except for the things that require special
5298 finalization, i.e. the undo_list.
5299 Look thru every buffer's undo list
5300 for elements that update markers that were not marked,
5301 and delete them. */
5302 FOR_EACH_BUFFER (nextb)
5304 /* If a buffer's undo list is Qt, that means that undo is
5305 turned off in that buffer. Calling truncate_undo_list on
5306 Qt tends to return NULL, which effectively turns undo back on.
5307 So don't call truncate_undo_list if undo_list is Qt. */
5308 if (! EQ (nextb->INTERNAL_FIELD (undo_list), Qt))
5310 Lisp_Object tail, prev;
5311 tail = nextb->INTERNAL_FIELD (undo_list);
5312 prev = Qnil;
5313 while (CONSP (tail))
5315 if (CONSP (XCAR (tail))
5316 && MARKERP (XCAR (XCAR (tail)))
5317 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5319 if (NILP (prev))
5320 nextb->INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5321 else
5323 tail = XCDR (tail);
5324 XSETCDR (prev, tail);
5327 else
5329 prev = tail;
5330 tail = XCDR (tail);
5334 /* Now that we have stripped the elements that need not be in the
5335 undo_list any more, we can finally mark the list. */
5336 mark_object (nextb->INTERNAL_FIELD (undo_list));
5339 gc_sweep ();
5341 /* Clear the mark bits that we set in certain root slots. */
5343 unmark_byte_stack ();
5344 VECTOR_UNMARK (&buffer_defaults);
5345 VECTOR_UNMARK (&buffer_local_symbols);
5347 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5348 dump_zombies ();
5349 #endif
5351 check_cons_list ();
5353 gc_in_progress = 0;
5355 unblock_input ();
5357 consing_since_gc = 0;
5358 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5359 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5361 gc_relative_threshold = 0;
5362 if (FLOATP (Vgc_cons_percentage))
5363 { /* Set gc_cons_combined_threshold. */
5364 double tot = total_bytes_of_live_objects ();
5366 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5367 if (0 < tot)
5369 if (tot < TYPE_MAXIMUM (EMACS_INT))
5370 gc_relative_threshold = tot;
5371 else
5372 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5376 if (garbage_collection_messages)
5378 if (message_p || minibuf_level > 0)
5379 restore_message ();
5380 else
5381 message1_nolog ("Garbage collecting...done");
5384 unbind_to (count, Qnil);
5386 Lisp_Object total[11];
5387 int total_size = 10;
5389 total[0] = list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5390 bounded_number (total_conses),
5391 bounded_number (total_free_conses));
5393 total[1] = list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5394 bounded_number (total_symbols),
5395 bounded_number (total_free_symbols));
5397 total[2] = list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5398 bounded_number (total_markers),
5399 bounded_number (total_free_markers));
5401 total[3] = list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5402 bounded_number (total_strings),
5403 bounded_number (total_free_strings));
5405 total[4] = list3 (Qstring_bytes, make_number (1),
5406 bounded_number (total_string_bytes));
5408 total[5] = list3 (Qvectors, make_number (sizeof (struct Lisp_Vector)),
5409 bounded_number (total_vectors));
5411 total[6] = list4 (Qvector_slots, make_number (word_size),
5412 bounded_number (total_vector_slots),
5413 bounded_number (total_free_vector_slots));
5415 total[7] = list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5416 bounded_number (total_floats),
5417 bounded_number (total_free_floats));
5419 total[8] = list4 (Qintervals, make_number (sizeof (struct interval)),
5420 bounded_number (total_intervals),
5421 bounded_number (total_free_intervals));
5423 total[9] = list3 (Qbuffers, make_number (sizeof (struct buffer)),
5424 bounded_number (total_buffers));
5426 #ifdef DOUG_LEA_MALLOC
5427 total_size++;
5428 total[10] = list4 (Qheap, make_number (1024),
5429 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5430 bounded_number ((mallinfo ().fordblks + 1023) >> 10));
5431 #endif
5432 retval = Flist (total_size, total);
5435 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5437 /* Compute average percentage of zombies. */
5438 double nlive
5439 = (total_conses + total_symbols + total_markers + total_strings
5440 + total_vectors + total_floats + total_intervals + total_buffers);
5442 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5443 max_live = max (nlive, max_live);
5444 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5445 max_zombies = max (nzombies, max_zombies);
5446 ++ngcs;
5448 #endif
5450 if (!NILP (Vpost_gc_hook))
5452 ptrdiff_t gc_count = inhibit_garbage_collection ();
5453 safe_run_hooks (Qpost_gc_hook);
5454 unbind_to (gc_count, Qnil);
5457 /* Accumulate statistics. */
5458 if (FLOATP (Vgc_elapsed))
5460 EMACS_TIME since_start = sub_emacs_time (current_emacs_time (), start);
5461 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5462 + EMACS_TIME_TO_DOUBLE (since_start));
5465 gcs_done++;
5467 /* Collect profiling data. */
5468 if (profiler_memory_running)
5470 size_t swept = 0;
5471 size_t tot_after = total_bytes_of_live_objects ();
5472 if (tot_before > tot_after)
5473 swept = tot_before - tot_after;
5474 malloc_probe (swept);
5477 return retval;
5481 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5482 only interesting objects referenced from glyphs are strings. */
5484 static void
5485 mark_glyph_matrix (struct glyph_matrix *matrix)
5487 struct glyph_row *row = matrix->rows;
5488 struct glyph_row *end = row + matrix->nrows;
5490 for (; row < end; ++row)
5491 if (row->enabled_p)
5493 int area;
5494 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5496 struct glyph *glyph = row->glyphs[area];
5497 struct glyph *end_glyph = glyph + row->used[area];
5499 for (; glyph < end_glyph; ++glyph)
5500 if (STRINGP (glyph->object)
5501 && !STRING_MARKED_P (XSTRING (glyph->object)))
5502 mark_object (glyph->object);
5508 /* Mark Lisp faces in the face cache C. */
5510 static void
5511 mark_face_cache (struct face_cache *c)
5513 if (c)
5515 int i, j;
5516 for (i = 0; i < c->used; ++i)
5518 struct face *face = FACE_FROM_ID (c->f, i);
5520 if (face)
5522 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5523 mark_object (face->lface[j]);
5531 /* Mark reference to a Lisp_Object.
5532 If the object referred to has not been seen yet, recursively mark
5533 all the references contained in it. */
5535 #define LAST_MARKED_SIZE 500
5536 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5537 static int last_marked_index;
5539 /* For debugging--call abort when we cdr down this many
5540 links of a list, in mark_object. In debugging,
5541 the call to abort will hit a breakpoint.
5542 Normally this is zero and the check never goes off. */
5543 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5545 static void
5546 mark_vectorlike (struct Lisp_Vector *ptr)
5548 ptrdiff_t size = ptr->header.size;
5549 ptrdiff_t i;
5551 eassert (!VECTOR_MARKED_P (ptr));
5552 VECTOR_MARK (ptr); /* Else mark it. */
5553 if (size & PSEUDOVECTOR_FLAG)
5554 size &= PSEUDOVECTOR_SIZE_MASK;
5556 /* Note that this size is not the memory-footprint size, but only
5557 the number of Lisp_Object fields that we should trace.
5558 The distinction is used e.g. by Lisp_Process which places extra
5559 non-Lisp_Object fields at the end of the structure... */
5560 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5561 mark_object (ptr->contents[i]);
5564 /* Like mark_vectorlike but optimized for char-tables (and
5565 sub-char-tables) assuming that the contents are mostly integers or
5566 symbols. */
5568 static void
5569 mark_char_table (struct Lisp_Vector *ptr)
5571 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5572 int i;
5574 eassert (!VECTOR_MARKED_P (ptr));
5575 VECTOR_MARK (ptr);
5576 for (i = 0; i < size; i++)
5578 Lisp_Object val = ptr->contents[i];
5580 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5581 continue;
5582 if (SUB_CHAR_TABLE_P (val))
5584 if (! VECTOR_MARKED_P (XVECTOR (val)))
5585 mark_char_table (XVECTOR (val));
5587 else
5588 mark_object (val);
5592 /* Mark the chain of overlays starting at PTR. */
5594 static void
5595 mark_overlay (struct Lisp_Overlay *ptr)
5597 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5599 ptr->gcmarkbit = 1;
5600 mark_object (ptr->start);
5601 mark_object (ptr->end);
5602 mark_object (ptr->plist);
5606 /* Mark Lisp_Objects and special pointers in BUFFER. */
5608 static void
5609 mark_buffer (struct buffer *buffer)
5611 /* This is handled much like other pseudovectors... */
5612 mark_vectorlike ((struct Lisp_Vector *) buffer);
5614 /* ...but there are some buffer-specific things. */
5616 MARK_INTERVAL_TREE (buffer_intervals (buffer));
5618 /* For now, we just don't mark the undo_list. It's done later in
5619 a special way just before the sweep phase, and after stripping
5620 some of its elements that are not needed any more. */
5622 mark_overlay (buffer->overlays_before);
5623 mark_overlay (buffer->overlays_after);
5625 /* If this is an indirect buffer, mark its base buffer. */
5626 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5627 mark_buffer (buffer->base_buffer);
5630 /* Remove killed buffers or items whose car is a killed buffer from
5631 LIST, and mark other items. Return changed LIST, which is marked. */
5633 static Lisp_Object
5634 mark_discard_killed_buffers (Lisp_Object list)
5636 Lisp_Object tail, *prev = &list;
5638 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
5639 tail = XCDR (tail))
5641 Lisp_Object tem = XCAR (tail);
5642 if (CONSP (tem))
5643 tem = XCAR (tem);
5644 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
5645 *prev = XCDR (tail);
5646 else
5648 CONS_MARK (XCONS (tail));
5649 mark_object (XCAR (tail));
5650 prev = &XCDR_AS_LVALUE (tail);
5653 mark_object (tail);
5654 return list;
5657 /* Determine type of generic Lisp_Object and mark it accordingly. */
5659 void
5660 mark_object (Lisp_Object arg)
5662 register Lisp_Object obj = arg;
5663 #ifdef GC_CHECK_MARKED_OBJECTS
5664 void *po;
5665 struct mem_node *m;
5666 #endif
5667 ptrdiff_t cdr_count = 0;
5669 loop:
5671 if (PURE_POINTER_P (XPNTR (obj)))
5672 return;
5674 last_marked[last_marked_index++] = obj;
5675 if (last_marked_index == LAST_MARKED_SIZE)
5676 last_marked_index = 0;
5678 /* Perform some sanity checks on the objects marked here. Abort if
5679 we encounter an object we know is bogus. This increases GC time
5680 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5681 #ifdef GC_CHECK_MARKED_OBJECTS
5683 po = (void *) XPNTR (obj);
5685 /* Check that the object pointed to by PO is known to be a Lisp
5686 structure allocated from the heap. */
5687 #define CHECK_ALLOCATED() \
5688 do { \
5689 m = mem_find (po); \
5690 if (m == MEM_NIL) \
5691 emacs_abort (); \
5692 } while (0)
5694 /* Check that the object pointed to by PO is live, using predicate
5695 function LIVEP. */
5696 #define CHECK_LIVE(LIVEP) \
5697 do { \
5698 if (!LIVEP (m, po)) \
5699 emacs_abort (); \
5700 } while (0)
5702 /* Check both of the above conditions. */
5703 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5704 do { \
5705 CHECK_ALLOCATED (); \
5706 CHECK_LIVE (LIVEP); \
5707 } while (0) \
5709 #else /* not GC_CHECK_MARKED_OBJECTS */
5711 #define CHECK_LIVE(LIVEP) (void) 0
5712 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5714 #endif /* not GC_CHECK_MARKED_OBJECTS */
5716 switch (XTYPE (obj))
5718 case Lisp_String:
5720 register struct Lisp_String *ptr = XSTRING (obj);
5721 if (STRING_MARKED_P (ptr))
5722 break;
5723 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5724 MARK_STRING (ptr);
5725 MARK_INTERVAL_TREE (ptr->intervals);
5726 #ifdef GC_CHECK_STRING_BYTES
5727 /* Check that the string size recorded in the string is the
5728 same as the one recorded in the sdata structure. */
5729 string_bytes (ptr);
5730 #endif /* GC_CHECK_STRING_BYTES */
5732 break;
5734 case Lisp_Vectorlike:
5736 register struct Lisp_Vector *ptr = XVECTOR (obj);
5737 register ptrdiff_t pvectype;
5739 if (VECTOR_MARKED_P (ptr))
5740 break;
5742 #ifdef GC_CHECK_MARKED_OBJECTS
5743 m = mem_find (po);
5744 if (m == MEM_NIL && !SUBRP (obj))
5745 emacs_abort ();
5746 #endif /* GC_CHECK_MARKED_OBJECTS */
5748 if (ptr->header.size & PSEUDOVECTOR_FLAG)
5749 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
5750 >> PSEUDOVECTOR_AREA_BITS);
5751 else
5752 pvectype = PVEC_NORMAL_VECTOR;
5754 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
5755 CHECK_LIVE (live_vector_p);
5757 switch (pvectype)
5759 case PVEC_BUFFER:
5760 #ifdef GC_CHECK_MARKED_OBJECTS
5762 struct buffer *b;
5763 FOR_EACH_BUFFER (b)
5764 if (b == po)
5765 break;
5766 if (b == NULL)
5767 emacs_abort ();
5769 #endif /* GC_CHECK_MARKED_OBJECTS */
5770 mark_buffer ((struct buffer *) ptr);
5771 break;
5773 case PVEC_COMPILED:
5774 { /* We could treat this just like a vector, but it is better
5775 to save the COMPILED_CONSTANTS element for last and avoid
5776 recursion there. */
5777 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5778 int i;
5780 VECTOR_MARK (ptr);
5781 for (i = 0; i < size; i++)
5782 if (i != COMPILED_CONSTANTS)
5783 mark_object (ptr->contents[i]);
5784 if (size > COMPILED_CONSTANTS)
5786 obj = ptr->contents[COMPILED_CONSTANTS];
5787 goto loop;
5790 break;
5792 case PVEC_FRAME:
5793 mark_vectorlike (ptr);
5794 mark_face_cache (((struct frame *) ptr)->face_cache);
5795 break;
5797 case PVEC_WINDOW:
5799 struct window *w = (struct window *) ptr;
5801 mark_vectorlike (ptr);
5803 /* Mark glyph matrices, if any. Marking window
5804 matrices is sufficient because frame matrices
5805 use the same glyph memory. */
5806 if (w->current_matrix)
5808 mark_glyph_matrix (w->current_matrix);
5809 mark_glyph_matrix (w->desired_matrix);
5812 /* Filter out killed buffers from both buffer lists
5813 in attempt to help GC to reclaim killed buffers faster.
5814 We can do it elsewhere for live windows, but this is the
5815 best place to do it for dead windows. */
5816 wset_prev_buffers
5817 (w, mark_discard_killed_buffers (w->prev_buffers));
5818 wset_next_buffers
5819 (w, mark_discard_killed_buffers (w->next_buffers));
5821 break;
5823 case PVEC_HASH_TABLE:
5825 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
5827 mark_vectorlike (ptr);
5828 mark_object (h->test.name);
5829 mark_object (h->test.user_hash_function);
5830 mark_object (h->test.user_cmp_function);
5831 /* If hash table is not weak, mark all keys and values.
5832 For weak tables, mark only the vector. */
5833 if (NILP (h->weak))
5834 mark_object (h->key_and_value);
5835 else
5836 VECTOR_MARK (XVECTOR (h->key_and_value));
5838 break;
5840 case PVEC_CHAR_TABLE:
5841 mark_char_table (ptr);
5842 break;
5844 case PVEC_BOOL_VECTOR:
5845 /* No Lisp_Objects to mark in a bool vector. */
5846 VECTOR_MARK (ptr);
5847 break;
5849 case PVEC_SUBR:
5850 break;
5852 case PVEC_FREE:
5853 emacs_abort ();
5855 default:
5856 mark_vectorlike (ptr);
5859 break;
5861 case Lisp_Symbol:
5863 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5864 struct Lisp_Symbol *ptrx;
5866 if (ptr->gcmarkbit)
5867 break;
5868 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5869 ptr->gcmarkbit = 1;
5870 mark_object (ptr->function);
5871 mark_object (ptr->plist);
5872 switch (ptr->redirect)
5874 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5875 case SYMBOL_VARALIAS:
5877 Lisp_Object tem;
5878 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5879 mark_object (tem);
5880 break;
5882 case SYMBOL_LOCALIZED:
5884 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5885 Lisp_Object where = blv->where;
5886 /* If the value is set up for a killed buffer or deleted
5887 frame, restore it's global binding. If the value is
5888 forwarded to a C variable, either it's not a Lisp_Object
5889 var, or it's staticpro'd already. */
5890 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
5891 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
5892 swap_in_global_binding (ptr);
5893 mark_object (blv->where);
5894 mark_object (blv->valcell);
5895 mark_object (blv->defcell);
5896 break;
5898 case SYMBOL_FORWARDED:
5899 /* If the value is forwarded to a buffer or keyboard field,
5900 these are marked when we see the corresponding object.
5901 And if it's forwarded to a C variable, either it's not
5902 a Lisp_Object var, or it's staticpro'd already. */
5903 break;
5904 default: emacs_abort ();
5906 if (!PURE_POINTER_P (XSTRING (ptr->name)))
5907 MARK_STRING (XSTRING (ptr->name));
5908 MARK_INTERVAL_TREE (string_intervals (ptr->name));
5910 ptr = ptr->next;
5911 if (ptr)
5913 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
5914 XSETSYMBOL (obj, ptrx);
5915 goto loop;
5918 break;
5920 case Lisp_Misc:
5921 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5923 if (XMISCANY (obj)->gcmarkbit)
5924 break;
5926 switch (XMISCTYPE (obj))
5928 case Lisp_Misc_Marker:
5929 /* DO NOT mark thru the marker's chain.
5930 The buffer's markers chain does not preserve markers from gc;
5931 instead, markers are removed from the chain when freed by gc. */
5932 XMISCANY (obj)->gcmarkbit = 1;
5933 break;
5935 case Lisp_Misc_Save_Value:
5936 XMISCANY (obj)->gcmarkbit = 1;
5938 struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5939 /* If `save_type' is zero, `data[0].pointer' is the address
5940 of a memory area containing `data[1].integer' potential
5941 Lisp_Objects. */
5942 if (GC_MARK_STACK && ptr->save_type == SAVE_TYPE_MEMORY)
5944 Lisp_Object *p = ptr->data[0].pointer;
5945 ptrdiff_t nelt;
5946 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
5947 mark_maybe_object (*p);
5949 else
5951 /* Find Lisp_Objects in `data[N]' slots and mark them. */
5952 int i;
5953 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
5954 if (save_type (ptr, i) == SAVE_OBJECT)
5955 mark_object (ptr->data[i].object);
5958 break;
5960 case Lisp_Misc_Overlay:
5961 mark_overlay (XOVERLAY (obj));
5962 break;
5964 default:
5965 emacs_abort ();
5967 break;
5969 case Lisp_Cons:
5971 register struct Lisp_Cons *ptr = XCONS (obj);
5972 if (CONS_MARKED_P (ptr))
5973 break;
5974 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5975 CONS_MARK (ptr);
5976 /* If the cdr is nil, avoid recursion for the car. */
5977 if (EQ (ptr->u.cdr, Qnil))
5979 obj = ptr->car;
5980 cdr_count = 0;
5981 goto loop;
5983 mark_object (ptr->car);
5984 obj = ptr->u.cdr;
5985 cdr_count++;
5986 if (cdr_count == mark_object_loop_halt)
5987 emacs_abort ();
5988 goto loop;
5991 case Lisp_Float:
5992 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5993 FLOAT_MARK (XFLOAT (obj));
5994 break;
5996 case_Lisp_Int:
5997 break;
5999 default:
6000 emacs_abort ();
6003 #undef CHECK_LIVE
6004 #undef CHECK_ALLOCATED
6005 #undef CHECK_ALLOCATED_AND_LIVE
6007 /* Mark the Lisp pointers in the terminal objects.
6008 Called by Fgarbage_collect. */
6010 static void
6011 mark_terminals (void)
6013 struct terminal *t;
6014 for (t = terminal_list; t; t = t->next_terminal)
6016 eassert (t->name != NULL);
6017 #ifdef HAVE_WINDOW_SYSTEM
6018 /* If a terminal object is reachable from a stacpro'ed object,
6019 it might have been marked already. Make sure the image cache
6020 gets marked. */
6021 mark_image_cache (t->image_cache);
6022 #endif /* HAVE_WINDOW_SYSTEM */
6023 if (!VECTOR_MARKED_P (t))
6024 mark_vectorlike ((struct Lisp_Vector *)t);
6030 /* Value is non-zero if OBJ will survive the current GC because it's
6031 either marked or does not need to be marked to survive. */
6033 bool
6034 survives_gc_p (Lisp_Object obj)
6036 bool survives_p;
6038 switch (XTYPE (obj))
6040 case_Lisp_Int:
6041 survives_p = 1;
6042 break;
6044 case Lisp_Symbol:
6045 survives_p = XSYMBOL (obj)->gcmarkbit;
6046 break;
6048 case Lisp_Misc:
6049 survives_p = XMISCANY (obj)->gcmarkbit;
6050 break;
6052 case Lisp_String:
6053 survives_p = STRING_MARKED_P (XSTRING (obj));
6054 break;
6056 case Lisp_Vectorlike:
6057 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6058 break;
6060 case Lisp_Cons:
6061 survives_p = CONS_MARKED_P (XCONS (obj));
6062 break;
6064 case Lisp_Float:
6065 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6066 break;
6068 default:
6069 emacs_abort ();
6072 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6077 /* Sweep: find all structures not marked, and free them. */
6079 static void
6080 gc_sweep (void)
6082 /* Remove or mark entries in weak hash tables.
6083 This must be done before any object is unmarked. */
6084 sweep_weak_hash_tables ();
6086 sweep_strings ();
6087 check_string_bytes (!noninteractive);
6089 /* Put all unmarked conses on free list */
6091 register struct cons_block *cblk;
6092 struct cons_block **cprev = &cons_block;
6093 register int lim = cons_block_index;
6094 EMACS_INT num_free = 0, num_used = 0;
6096 cons_free_list = 0;
6098 for (cblk = cons_block; cblk; cblk = *cprev)
6100 register int i = 0;
6101 int this_free = 0;
6102 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6104 /* Scan the mark bits an int at a time. */
6105 for (i = 0; i < ilim; i++)
6107 if (cblk->gcmarkbits[i] == -1)
6109 /* Fast path - all cons cells for this int are marked. */
6110 cblk->gcmarkbits[i] = 0;
6111 num_used += BITS_PER_INT;
6113 else
6115 /* Some cons cells for this int are not marked.
6116 Find which ones, and free them. */
6117 int start, pos, stop;
6119 start = i * BITS_PER_INT;
6120 stop = lim - start;
6121 if (stop > BITS_PER_INT)
6122 stop = BITS_PER_INT;
6123 stop += start;
6125 for (pos = start; pos < stop; pos++)
6127 if (!CONS_MARKED_P (&cblk->conses[pos]))
6129 this_free++;
6130 cblk->conses[pos].u.chain = cons_free_list;
6131 cons_free_list = &cblk->conses[pos];
6132 #if GC_MARK_STACK
6133 cons_free_list->car = Vdead;
6134 #endif
6136 else
6138 num_used++;
6139 CONS_UNMARK (&cblk->conses[pos]);
6145 lim = CONS_BLOCK_SIZE;
6146 /* If this block contains only free conses and we have already
6147 seen more than two blocks worth of free conses then deallocate
6148 this block. */
6149 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6151 *cprev = cblk->next;
6152 /* Unhook from the free list. */
6153 cons_free_list = cblk->conses[0].u.chain;
6154 lisp_align_free (cblk);
6156 else
6158 num_free += this_free;
6159 cprev = &cblk->next;
6162 total_conses = num_used;
6163 total_free_conses = num_free;
6166 /* Put all unmarked floats on free list */
6168 register struct float_block *fblk;
6169 struct float_block **fprev = &float_block;
6170 register int lim = float_block_index;
6171 EMACS_INT num_free = 0, num_used = 0;
6173 float_free_list = 0;
6175 for (fblk = float_block; fblk; fblk = *fprev)
6177 register int i;
6178 int this_free = 0;
6179 for (i = 0; i < lim; i++)
6180 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6182 this_free++;
6183 fblk->floats[i].u.chain = float_free_list;
6184 float_free_list = &fblk->floats[i];
6186 else
6188 num_used++;
6189 FLOAT_UNMARK (&fblk->floats[i]);
6191 lim = FLOAT_BLOCK_SIZE;
6192 /* If this block contains only free floats and we have already
6193 seen more than two blocks worth of free floats then deallocate
6194 this block. */
6195 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6197 *fprev = fblk->next;
6198 /* Unhook from the free list. */
6199 float_free_list = fblk->floats[0].u.chain;
6200 lisp_align_free (fblk);
6202 else
6204 num_free += this_free;
6205 fprev = &fblk->next;
6208 total_floats = num_used;
6209 total_free_floats = num_free;
6212 /* Put all unmarked intervals on free list */
6214 register struct interval_block *iblk;
6215 struct interval_block **iprev = &interval_block;
6216 register int lim = interval_block_index;
6217 EMACS_INT num_free = 0, num_used = 0;
6219 interval_free_list = 0;
6221 for (iblk = interval_block; iblk; iblk = *iprev)
6223 register int i;
6224 int this_free = 0;
6226 for (i = 0; i < lim; i++)
6228 if (!iblk->intervals[i].gcmarkbit)
6230 set_interval_parent (&iblk->intervals[i], interval_free_list);
6231 interval_free_list = &iblk->intervals[i];
6232 this_free++;
6234 else
6236 num_used++;
6237 iblk->intervals[i].gcmarkbit = 0;
6240 lim = INTERVAL_BLOCK_SIZE;
6241 /* If this block contains only free intervals and we have already
6242 seen more than two blocks worth of free intervals then
6243 deallocate this block. */
6244 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6246 *iprev = iblk->next;
6247 /* Unhook from the free list. */
6248 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6249 lisp_free (iblk);
6251 else
6253 num_free += this_free;
6254 iprev = &iblk->next;
6257 total_intervals = num_used;
6258 total_free_intervals = num_free;
6261 /* Put all unmarked symbols on free list */
6263 register struct symbol_block *sblk;
6264 struct symbol_block **sprev = &symbol_block;
6265 register int lim = symbol_block_index;
6266 EMACS_INT num_free = 0, num_used = 0;
6268 symbol_free_list = NULL;
6270 for (sblk = symbol_block; sblk; sblk = *sprev)
6272 int this_free = 0;
6273 union aligned_Lisp_Symbol *sym = sblk->symbols;
6274 union aligned_Lisp_Symbol *end = sym + lim;
6276 for (; sym < end; ++sym)
6278 /* Check if the symbol was created during loadup. In such a case
6279 it might be pointed to by pure bytecode which we don't trace,
6280 so we conservatively assume that it is live. */
6281 bool pure_p = PURE_POINTER_P (XSTRING (sym->s.name));
6283 if (!sym->s.gcmarkbit && !pure_p)
6285 if (sym->s.redirect == SYMBOL_LOCALIZED)
6286 xfree (SYMBOL_BLV (&sym->s));
6287 sym->s.next = symbol_free_list;
6288 symbol_free_list = &sym->s;
6289 #if GC_MARK_STACK
6290 symbol_free_list->function = Vdead;
6291 #endif
6292 ++this_free;
6294 else
6296 ++num_used;
6297 if (!pure_p)
6298 UNMARK_STRING (XSTRING (sym->s.name));
6299 sym->s.gcmarkbit = 0;
6303 lim = SYMBOL_BLOCK_SIZE;
6304 /* If this block contains only free symbols and we have already
6305 seen more than two blocks worth of free symbols then deallocate
6306 this block. */
6307 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6309 *sprev = sblk->next;
6310 /* Unhook from the free list. */
6311 symbol_free_list = sblk->symbols[0].s.next;
6312 lisp_free (sblk);
6314 else
6316 num_free += this_free;
6317 sprev = &sblk->next;
6320 total_symbols = num_used;
6321 total_free_symbols = num_free;
6324 /* Put all unmarked misc's on free list.
6325 For a marker, first unchain it from the buffer it points into. */
6327 register struct marker_block *mblk;
6328 struct marker_block **mprev = &marker_block;
6329 register int lim = marker_block_index;
6330 EMACS_INT num_free = 0, num_used = 0;
6332 marker_free_list = 0;
6334 for (mblk = marker_block; mblk; mblk = *mprev)
6336 register int i;
6337 int this_free = 0;
6339 for (i = 0; i < lim; i++)
6341 if (!mblk->markers[i].m.u_any.gcmarkbit)
6343 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6344 unchain_marker (&mblk->markers[i].m.u_marker);
6345 /* Set the type of the freed object to Lisp_Misc_Free.
6346 We could leave the type alone, since nobody checks it,
6347 but this might catch bugs faster. */
6348 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6349 mblk->markers[i].m.u_free.chain = marker_free_list;
6350 marker_free_list = &mblk->markers[i].m;
6351 this_free++;
6353 else
6355 num_used++;
6356 mblk->markers[i].m.u_any.gcmarkbit = 0;
6359 lim = MARKER_BLOCK_SIZE;
6360 /* If this block contains only free markers and we have already
6361 seen more than two blocks worth of free markers then deallocate
6362 this block. */
6363 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6365 *mprev = mblk->next;
6366 /* Unhook from the free list. */
6367 marker_free_list = mblk->markers[0].m.u_free.chain;
6368 lisp_free (mblk);
6370 else
6372 num_free += this_free;
6373 mprev = &mblk->next;
6377 total_markers = num_used;
6378 total_free_markers = num_free;
6381 /* Free all unmarked buffers */
6383 register struct buffer *buffer, **bprev = &all_buffers;
6385 total_buffers = 0;
6386 for (buffer = all_buffers; buffer; buffer = *bprev)
6387 if (!VECTOR_MARKED_P (buffer))
6389 *bprev = buffer->next;
6390 lisp_free (buffer);
6392 else
6394 VECTOR_UNMARK (buffer);
6395 /* Do not use buffer_(set|get)_intervals here. */
6396 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6397 total_buffers++;
6398 bprev = &buffer->next;
6402 sweep_vectors ();
6403 check_string_bytes (!noninteractive);
6409 /* Debugging aids. */
6411 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6412 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6413 This may be helpful in debugging Emacs's memory usage.
6414 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6415 (void)
6417 Lisp_Object end;
6419 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6421 return end;
6424 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6425 doc: /* Return a list of counters that measure how much consing there has been.
6426 Each of these counters increments for a certain kind of object.
6427 The counters wrap around from the largest positive integer to zero.
6428 Garbage collection does not decrease them.
6429 The elements of the value are as follows:
6430 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6431 All are in units of 1 = one object consed
6432 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6433 objects consed.
6434 MISCS include overlays, markers, and some internal types.
6435 Frames, windows, buffers, and subprocesses count as vectors
6436 (but the contents of a buffer's text do not count here). */)
6437 (void)
6439 return listn (CONSTYPE_HEAP, 8,
6440 bounded_number (cons_cells_consed),
6441 bounded_number (floats_consed),
6442 bounded_number (vector_cells_consed),
6443 bounded_number (symbols_consed),
6444 bounded_number (string_chars_consed),
6445 bounded_number (misc_objects_consed),
6446 bounded_number (intervals_consed),
6447 bounded_number (strings_consed));
6450 /* Find at most FIND_MAX symbols which have OBJ as their value or
6451 function. This is used in gdbinit's `xwhichsymbols' command. */
6453 Lisp_Object
6454 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6456 struct symbol_block *sblk;
6457 ptrdiff_t gc_count = inhibit_garbage_collection ();
6458 Lisp_Object found = Qnil;
6460 if (! DEADP (obj))
6462 for (sblk = symbol_block; sblk; sblk = sblk->next)
6464 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6465 int bn;
6467 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6469 struct Lisp_Symbol *sym = &aligned_sym->s;
6470 Lisp_Object val;
6471 Lisp_Object tem;
6473 if (sblk == symbol_block && bn >= symbol_block_index)
6474 break;
6476 XSETSYMBOL (tem, sym);
6477 val = find_symbol_value (tem);
6478 if (EQ (val, obj)
6479 || EQ (sym->function, obj)
6480 || (!NILP (sym->function)
6481 && COMPILEDP (sym->function)
6482 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6483 || (!NILP (val)
6484 && COMPILEDP (val)
6485 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6487 found = Fcons (tem, found);
6488 if (--find_max == 0)
6489 goto out;
6495 out:
6496 unbind_to (gc_count, Qnil);
6497 return found;
6500 #ifdef ENABLE_CHECKING
6502 bool suppress_checking;
6504 void
6505 die (const char *msg, const char *file, int line)
6507 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6508 file, line, msg);
6509 terminate_due_to_signal (SIGABRT, INT_MAX);
6511 #endif
6513 /* Initialization. */
6515 void
6516 init_alloc_once (void)
6518 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6519 purebeg = PUREBEG;
6520 pure_size = PURESIZE;
6522 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6523 mem_init ();
6524 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6525 #endif
6527 #ifdef DOUG_LEA_MALLOC
6528 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
6529 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
6530 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
6531 #endif
6532 init_strings ();
6533 init_vectors ();
6535 refill_memory_reserve ();
6536 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
6539 void
6540 init_alloc (void)
6542 gcprolist = 0;
6543 byte_stack_list = 0;
6544 #if GC_MARK_STACK
6545 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6546 setjmp_tested_p = longjmps_done = 0;
6547 #endif
6548 #endif
6549 Vgc_elapsed = make_float (0.0);
6550 gcs_done = 0;
6553 void
6554 syms_of_alloc (void)
6556 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6557 doc: /* Number of bytes of consing between garbage collections.
6558 Garbage collection can happen automatically once this many bytes have been
6559 allocated since the last garbage collection. All data types count.
6561 Garbage collection happens automatically only when `eval' is called.
6563 By binding this temporarily to a large number, you can effectively
6564 prevent garbage collection during a part of the program.
6565 See also `gc-cons-percentage'. */);
6567 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6568 doc: /* Portion of the heap used for allocation.
6569 Garbage collection can happen automatically once this portion of the heap
6570 has been allocated since the last garbage collection.
6571 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6572 Vgc_cons_percentage = make_float (0.1);
6574 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6575 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6577 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6578 doc: /* Number of cons cells that have been consed so far. */);
6580 DEFVAR_INT ("floats-consed", floats_consed,
6581 doc: /* Number of floats that have been consed so far. */);
6583 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6584 doc: /* Number of vector cells that have been consed so far. */);
6586 DEFVAR_INT ("symbols-consed", symbols_consed,
6587 doc: /* Number of symbols that have been consed so far. */);
6589 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6590 doc: /* Number of string characters that have been consed so far. */);
6592 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6593 doc: /* Number of miscellaneous objects that have been consed so far.
6594 These include markers and overlays, plus certain objects not visible
6595 to users. */);
6597 DEFVAR_INT ("intervals-consed", intervals_consed,
6598 doc: /* Number of intervals that have been consed so far. */);
6600 DEFVAR_INT ("strings-consed", strings_consed,
6601 doc: /* Number of strings that have been consed so far. */);
6603 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6604 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6605 This means that certain objects should be allocated in shared (pure) space.
6606 It can also be set to a hash-table, in which case this table is used to
6607 do hash-consing of the objects allocated to pure space. */);
6609 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6610 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6611 garbage_collection_messages = 0;
6613 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6614 doc: /* Hook run after garbage collection has finished. */);
6615 Vpost_gc_hook = Qnil;
6616 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6618 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6619 doc: /* Precomputed `signal' argument for memory-full error. */);
6620 /* We build this in advance because if we wait until we need it, we might
6621 not be able to allocate the memory to hold it. */
6622 Vmemory_signal_data
6623 = listn (CONSTYPE_PURE, 2, Qerror,
6624 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6626 DEFVAR_LISP ("memory-full", Vmemory_full,
6627 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6628 Vmemory_full = Qnil;
6630 DEFSYM (Qconses, "conses");
6631 DEFSYM (Qsymbols, "symbols");
6632 DEFSYM (Qmiscs, "miscs");
6633 DEFSYM (Qstrings, "strings");
6634 DEFSYM (Qvectors, "vectors");
6635 DEFSYM (Qfloats, "floats");
6636 DEFSYM (Qintervals, "intervals");
6637 DEFSYM (Qbuffers, "buffers");
6638 DEFSYM (Qstring_bytes, "string-bytes");
6639 DEFSYM (Qvector_slots, "vector-slots");
6640 DEFSYM (Qheap, "heap");
6641 DEFSYM (Qautomatic_gc, "Automatic GC");
6643 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6644 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6646 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6647 doc: /* Accumulated time elapsed in garbage collections.
6648 The time is in seconds as a floating point value. */);
6649 DEFVAR_INT ("gcs-done", gcs_done,
6650 doc: /* Accumulated number of garbage collections done. */);
6652 defsubr (&Scons);
6653 defsubr (&Slist);
6654 defsubr (&Svector);
6655 defsubr (&Smake_byte_code);
6656 defsubr (&Smake_list);
6657 defsubr (&Smake_vector);
6658 defsubr (&Smake_string);
6659 defsubr (&Smake_bool_vector);
6660 defsubr (&Smake_symbol);
6661 defsubr (&Smake_marker);
6662 defsubr (&Spurecopy);
6663 defsubr (&Sgarbage_collect);
6664 defsubr (&Smemory_limit);
6665 defsubr (&Smemory_use_counts);
6667 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6668 defsubr (&Sgc_status);
6669 #endif
6672 /* When compiled with GCC, GDB might say "No enum type named
6673 pvec_type" if we don't have at least one symbol with that type, and
6674 then xbacktrace could fail. Similarly for the other enums and
6675 their values. Some non-GCC compilers don't like these constructs. */
6676 #ifdef __GNUC__
6677 union
6679 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
6680 enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS;
6681 enum char_bits char_bits;
6682 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
6683 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
6684 enum enum_USE_LSB_TAG enum_USE_LSB_TAG;
6685 enum FLOAT_TO_STRING_BUFSIZE FLOAT_TO_STRING_BUFSIZE;
6686 enum Lisp_Bits Lisp_Bits;
6687 enum Lisp_Compiled Lisp_Compiled;
6688 enum maxargs maxargs;
6689 enum MAX_ALLOCA MAX_ALLOCA;
6690 enum More_Lisp_Bits More_Lisp_Bits;
6691 enum pvec_type pvec_type;
6692 #if USE_LSB_TAG
6693 enum lsb_bits lsb_bits;
6694 #endif
6695 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
6696 #endif /* __GNUC__ */