Start flushing out the IPI routines and do some clean-up.
[dragonfly/vkernel-mp.git] / sys / platform / vkernel / i386 / cpu_regs.c
blobe3007bcd67f3a421923c5c3941ee61e744ff3e7b
1 /*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (C) 1994, David Greenman
4 * Copyright (c) 1982, 1987, 1990, 1993
5 * The Regents of the University of California. All rights reserved.
7 * This code is derived from software contributed to Berkeley by
8 * William Jolitz.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
38 * from: @(#)machdep.c 7.4 (Berkeley) 6/3/91
39 * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
40 * $DragonFly: src/sys/platform/vkernel/i386/cpu_regs.c,v 1.16 2007/06/29 21:54:11 dillon Exp $
43 #include "use_ether.h"
44 #include "use_npx.h"
45 #include "use_isa.h"
46 #include "opt_atalk.h"
47 #include "opt_compat.h"
48 #include "opt_ddb.h"
49 #include "opt_directio.h"
50 #include "opt_inet.h"
51 #include "opt_ipx.h"
52 #include "opt_msgbuf.h"
53 #include "opt_swap.h"
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/sysproto.h>
58 #include <sys/signalvar.h>
59 #include <sys/kernel.h>
60 #include <sys/linker.h>
61 #include <sys/malloc.h>
62 #include <sys/proc.h>
63 #include <sys/buf.h>
64 #include <sys/reboot.h>
65 #include <sys/mbuf.h>
66 #include <sys/msgbuf.h>
67 #include <sys/sysent.h>
68 #include <sys/sysctl.h>
69 #include <sys/vmmeter.h>
70 #include <sys/bus.h>
71 #include <sys/upcall.h>
72 #include <sys/usched.h>
73 #include <sys/reg.h>
75 #include <vm/vm.h>
76 #include <vm/vm_param.h>
77 #include <sys/lock.h>
78 #include <vm/vm_kern.h>
79 #include <vm/vm_object.h>
80 #include <vm/vm_page.h>
81 #include <vm/vm_map.h>
82 #include <vm/vm_pager.h>
83 #include <vm/vm_extern.h>
85 #include <sys/thread2.h>
87 #include <sys/user.h>
88 #include <sys/exec.h>
89 #include <sys/cons.h>
91 #include <ddb/ddb.h>
93 #include <machine/cpu.h>
94 #include <machine/clock.h>
95 #include <machine/specialreg.h>
96 #include <machine/md_var.h>
97 #include <machine/pcb_ext.h> /* pcb.h included via sys/user.h */
98 #include <machine/globaldata.h> /* CPU_prvspace */
99 #include <machine/smp.h>
100 #ifdef PERFMON
101 #include <machine/perfmon.h>
102 #endif
103 #include <machine/cputypes.h>
105 #include <bus/isa/rtc.h>
106 #include <machine/vm86.h>
107 #include <sys/random.h>
108 #include <sys/ptrace.h>
109 #include <machine/sigframe.h>
111 extern void dblfault_handler (void);
113 #ifndef CPU_DISABLE_SSE
114 static void set_fpregs_xmm (struct save87 *, struct savexmm *);
115 static void fill_fpregs_xmm (struct savexmm *, struct save87 *);
116 #endif /* CPU_DISABLE_SSE */
117 #ifdef DIRECTIO
118 extern void ffs_rawread_setup(void);
119 #endif /* DIRECTIO */
121 #ifdef SMP
122 int64_t tsc_offsets[MAXCPU];
123 #else
124 int64_t tsc_offsets[1];
125 #endif
127 #if defined(SWTCH_OPTIM_STATS)
128 extern int swtch_optim_stats;
129 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
130 CTLFLAG_RD, &swtch_optim_stats, 0, "");
131 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
132 CTLFLAG_RD, &tlb_flush_count, 0, "");
133 #endif
135 static int
136 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
138 int error = sysctl_handle_int(oidp, 0, ctob((int)Maxmem), req);
139 return (error);
142 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_INT|CTLFLAG_RD,
143 0, 0, sysctl_hw_physmem, "IU", "");
145 static int
146 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
148 int error = sysctl_handle_int(oidp, 0,
149 ctob((int)Maxmem - vmstats.v_wire_count), req);
150 return (error);
153 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
154 0, 0, sysctl_hw_usermem, "IU", "");
156 SYSCTL_ULONG(_hw, OID_AUTO, availpages, CTLFLAG_RD, &Maxmem, NULL, "");
158 #if 0
160 static int
161 sysctl_machdep_msgbuf(SYSCTL_HANDLER_ARGS)
163 int error;
165 /* Unwind the buffer, so that it's linear (possibly starting with
166 * some initial nulls).
168 error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr+msgbufp->msg_bufr,
169 msgbufp->msg_size-msgbufp->msg_bufr,req);
170 if(error) return(error);
171 if(msgbufp->msg_bufr>0) {
172 error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr,
173 msgbufp->msg_bufr,req);
175 return(error);
178 SYSCTL_PROC(_machdep, OID_AUTO, msgbuf, CTLTYPE_STRING|CTLFLAG_RD,
179 0, 0, sysctl_machdep_msgbuf, "A","Contents of kernel message buffer");
181 static int msgbuf_clear;
183 static int
184 sysctl_machdep_msgbuf_clear(SYSCTL_HANDLER_ARGS)
186 int error;
187 error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
188 req);
189 if (!error && req->newptr) {
190 /* Clear the buffer and reset write pointer */
191 bzero(msgbufp->msg_ptr,msgbufp->msg_size);
192 msgbufp->msg_bufr=msgbufp->msg_bufx=0;
193 msgbuf_clear=0;
195 return (error);
198 SYSCTL_PROC(_machdep, OID_AUTO, msgbuf_clear, CTLTYPE_INT|CTLFLAG_RW,
199 &msgbuf_clear, 0, sysctl_machdep_msgbuf_clear, "I",
200 "Clear kernel message buffer");
202 #endif
205 * Send an interrupt to process.
207 * Stack is set up to allow sigcode stored
208 * at top to call routine, followed by kcall
209 * to sigreturn routine below. After sigreturn
210 * resets the signal mask, the stack, and the
211 * frame pointer, it returns to the user
212 * specified pc, psl.
214 void
215 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
217 struct lwp *lp = curthread->td_lwp;
218 struct proc *p = lp->lwp_proc;
219 struct trapframe *regs;
220 struct sigacts *psp = p->p_sigacts;
221 struct sigframe sf, *sfp;
222 int oonstack;
224 regs = lp->lwp_md.md_regs;
225 oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
227 /* save user context */
228 bzero(&sf, sizeof(struct sigframe));
229 sf.sf_uc.uc_sigmask = *mask;
230 sf.sf_uc.uc_stack = lp->lwp_sigstk;
231 sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
232 bcopy(regs, &sf.sf_uc.uc_mcontext.mc_gs, sizeof(struct trapframe));
234 /* make the size of the saved context visible to userland */
235 sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
237 /* save mailbox pending state for syscall interlock semantics */
238 if (p->p_flag & P_MAILBOX)
239 sf.sf_uc.uc_mcontext.mc_xflags |= PGEX_MAILBOX;
242 /* Allocate and validate space for the signal handler context. */
243 if ((lp->lwp_flag & LWP_ALTSTACK) != 0 && !oonstack &&
244 SIGISMEMBER(psp->ps_sigonstack, sig)) {
245 sfp = (struct sigframe *)(lp->lwp_sigstk.ss_sp +
246 lp->lwp_sigstk.ss_size - sizeof(struct sigframe));
247 lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
249 else
250 sfp = (struct sigframe *)regs->tf_esp - 1;
252 /* Translate the signal is appropriate */
253 if (p->p_sysent->sv_sigtbl) {
254 if (sig <= p->p_sysent->sv_sigsize)
255 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
258 /* Build the argument list for the signal handler. */
259 sf.sf_signum = sig;
260 sf.sf_ucontext = (register_t)&sfp->sf_uc;
261 if (SIGISMEMBER(psp->ps_siginfo, sig)) {
262 /* Signal handler installed with SA_SIGINFO. */
263 sf.sf_siginfo = (register_t)&sfp->sf_si;
264 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
266 /* fill siginfo structure */
267 sf.sf_si.si_signo = sig;
268 sf.sf_si.si_code = code;
269 sf.sf_si.si_addr = (void*)regs->tf_err;
271 else {
272 /* Old FreeBSD-style arguments. */
273 sf.sf_siginfo = code;
274 sf.sf_addr = regs->tf_err;
275 sf.sf_ahu.sf_handler = catcher;
278 #if 0
280 * If we're a vm86 process, we want to save the segment registers.
281 * We also change eflags to be our emulated eflags, not the actual
282 * eflags.
284 if (regs->tf_eflags & PSL_VM) {
285 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
286 struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
288 sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
289 sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
290 sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
291 sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
293 if (vm86->vm86_has_vme == 0)
294 sf.sf_uc.uc_mcontext.mc_eflags =
295 (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
296 (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
299 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
300 * syscalls made by the signal handler. This just avoids
301 * wasting time for our lazy fixup of such faults. PSL_NT
302 * does nothing in vm86 mode, but vm86 programs can set it
303 * almost legitimately in probes for old cpu types.
305 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
307 #endif
310 * Copy the sigframe out to the user's stack.
312 if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
314 * Something is wrong with the stack pointer.
315 * ...Kill the process.
317 sigexit(p, SIGILL);
320 regs->tf_esp = (int)sfp;
321 regs->tf_eip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
322 regs->tf_eflags &= ~PSL_T;
323 regs->tf_cs = _ucodesel;
324 regs->tf_ds = _udatasel;
325 regs->tf_es = _udatasel;
326 if (regs->tf_trapno == T_PROTFLT) {
327 regs->tf_fs = _udatasel;
328 regs->tf_gs = _udatasel;
330 regs->tf_ss = _udatasel;
334 * Sanitize the trapframe for a virtual kernel passing control to a custom
335 * VM context.
337 * Allow userland to set or maintain PSL_RF, the resume flag. This flag
338 * basically controls whether the return PC should skip the first instruction
339 * (as in an explicit system call) or re-execute it (as in an exception).
342 cpu_sanitize_frame(struct trapframe *frame)
344 frame->tf_cs = _ucodesel;
345 frame->tf_ds = _udatasel;
346 frame->tf_es = _udatasel;
347 #if 0
348 frame->tf_fs = _udatasel;
349 frame->tf_gs = _udatasel;
350 #endif
351 frame->tf_ss = _udatasel;
352 frame->tf_eflags &= (PSL_RF | PSL_USERCHANGE);
353 frame->tf_eflags |= PSL_RESERVED_DEFAULT | PSL_I;
354 return(0);
358 cpu_sanitize_tls(struct savetls *tls)
360 struct segment_descriptor *desc;
361 int i;
363 for (i = 0; i < NGTLS; ++i) {
364 desc = &tls->tls[i];
365 if (desc->sd_dpl == 0 && desc->sd_type == 0)
366 continue;
367 if (desc->sd_def32 == 0)
368 return(ENXIO);
369 if (desc->sd_type != SDT_MEMRWA)
370 return(ENXIO);
371 if (desc->sd_dpl != SEL_UPL)
372 return(ENXIO);
373 if (desc->sd_xx != 0 || desc->sd_p != 1)
374 return(ENXIO);
376 return(0);
380 * sigreturn(ucontext_t *sigcntxp)
382 * System call to cleanup state after a signal
383 * has been taken. Reset signal mask and
384 * stack state from context left by sendsig (above).
385 * Return to previous pc and psl as specified by
386 * context left by sendsig. Check carefully to
387 * make sure that the user has not modified the
388 * state to gain improper privileges.
390 #define EFL_SECURE(ef, oef) ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
391 #define CS_SECURE(cs) (ISPL(cs) == SEL_UPL)
394 sys_sigreturn(struct sigreturn_args *uap)
396 struct lwp *lp = curthread->td_lwp;
397 struct proc *p = lp->lwp_proc;
398 struct trapframe *regs;
399 ucontext_t ucp;
400 int cs;
401 int eflags;
402 int error;
404 error = copyin(uap->sigcntxp, &ucp, sizeof(ucp));
405 if (error)
406 return (error);
408 regs = lp->lwp_md.md_regs;
409 eflags = ucp.uc_mcontext.mc_eflags;
411 #if 0
412 if (eflags & PSL_VM) {
413 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
414 struct vm86_kernel *vm86;
417 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
418 * set up the vm86 area, and we can't enter vm86 mode.
420 if (lp->lwp_thread->td_pcb->pcb_ext == 0)
421 return (EINVAL);
422 vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
423 if (vm86->vm86_inited == 0)
424 return (EINVAL);
426 /* go back to user mode if both flags are set */
427 if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
428 trapsignal(lp->lwp_proc, SIGBUS, 0);
430 if (vm86->vm86_has_vme) {
431 eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
432 (eflags & VME_USERCHANGE) | PSL_VM;
433 } else {
434 vm86->vm86_eflags = eflags; /* save VIF, VIP */
435 eflags = (tf->tf_eflags & ~VM_USERCHANGE) | (eflags & VM_USERCHANGE) | PSL_VM;
437 bcopy(&ucp.uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
438 tf->tf_eflags = eflags;
439 tf->tf_vm86_ds = tf->tf_ds;
440 tf->tf_vm86_es = tf->tf_es;
441 tf->tf_vm86_fs = tf->tf_fs;
442 tf->tf_vm86_gs = tf->tf_gs;
443 tf->tf_ds = _udatasel;
444 tf->tf_es = _udatasel;
445 #if 0
446 tf->tf_fs = _udatasel;
447 tf->tf_gs = _udatasel;
448 #endif
449 } else
450 #endif
453 * Don't allow users to change privileged or reserved flags.
456 * XXX do allow users to change the privileged flag PSL_RF.
457 * The cpu sets PSL_RF in tf_eflags for faults. Debuggers
458 * should sometimes set it there too. tf_eflags is kept in
459 * the signal context during signal handling and there is no
460 * other place to remember it, so the PSL_RF bit may be
461 * corrupted by the signal handler without us knowing.
462 * Corruption of the PSL_RF bit at worst causes one more or
463 * one less debugger trap, so allowing it is fairly harmless.
465 if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
466 kprintf("sigreturn: eflags = 0x%x\n", eflags);
467 return(EINVAL);
471 * Don't allow users to load a valid privileged %cs. Let the
472 * hardware check for invalid selectors, excess privilege in
473 * other selectors, invalid %eip's and invalid %esp's.
475 cs = ucp.uc_mcontext.mc_cs;
476 if (!CS_SECURE(cs)) {
477 kprintf("sigreturn: cs = 0x%x\n", cs);
478 trapsignal(lp, SIGBUS, T_PROTFLT);
479 return(EINVAL);
481 bcopy(&ucp.uc_mcontext.mc_gs, regs, sizeof(struct trapframe));
485 * Merge saved signal mailbox pending flag to maintain interlock
486 * semantics against system calls.
488 if (ucp.uc_mcontext.mc_xflags & PGEX_MAILBOX)
489 p->p_flag |= P_MAILBOX;
491 if (ucp.uc_mcontext.mc_onstack & 1)
492 lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
493 else
494 lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
496 lp->lwp_sigmask = ucp.uc_sigmask;
497 SIG_CANTMASK(lp->lwp_sigmask);
498 return(EJUSTRETURN);
502 * Stack frame on entry to function. %eax will contain the function vector,
503 * %ecx will contain the function data. flags, ecx, and eax will have
504 * already been pushed on the stack.
506 struct upc_frame {
507 register_t eax;
508 register_t ecx;
509 register_t edx;
510 register_t flags;
511 register_t oldip;
514 void
515 sendupcall(struct vmupcall *vu, int morepending)
517 struct lwp *lp = curthread->td_lwp;
518 struct trapframe *regs;
519 struct upcall upcall;
520 struct upc_frame upc_frame;
521 int crit_count = 0;
524 * If we are a virtual kernel running an emulated user process
525 * context, switch back to the virtual kernel context before
526 * trying to post the signal.
528 if (lp->lwp_ve) {
529 lp->lwp_md.md_regs->tf_trapno = 0;
530 vkernel_trap(lp, lp->lwp_md.md_regs);
534 * Get the upcall data structure
536 if (copyin(lp->lwp_upcall, &upcall, sizeof(upcall)) ||
537 copyin((char *)upcall.upc_uthread + upcall.upc_critoff, &crit_count, sizeof(int))
539 vu->vu_pending = 0;
540 kprintf("bad upcall address\n");
541 return;
545 * If the data structure is already marked pending or has a critical
546 * section count, mark the data structure as pending and return
547 * without doing an upcall. vu_pending is left set.
549 if (upcall.upc_pending || crit_count >= vu->vu_pending) {
550 if (upcall.upc_pending < vu->vu_pending) {
551 upcall.upc_pending = vu->vu_pending;
552 copyout(&upcall.upc_pending, &lp->lwp_upcall->upc_pending,
553 sizeof(upcall.upc_pending));
555 return;
559 * We can run this upcall now, clear vu_pending.
561 * Bump our critical section count and set or clear the
562 * user pending flag depending on whether more upcalls are
563 * pending. The user will be responsible for calling
564 * upc_dispatch(-1) to process remaining upcalls.
566 vu->vu_pending = 0;
567 upcall.upc_pending = morepending;
568 crit_count += TDPRI_CRIT;
569 copyout(&upcall.upc_pending, &lp->lwp_upcall->upc_pending,
570 sizeof(upcall.upc_pending));
571 copyout(&crit_count, (char *)upcall.upc_uthread + upcall.upc_critoff,
572 sizeof(int));
575 * Construct a stack frame and issue the upcall
577 regs = lp->lwp_md.md_regs;
578 upc_frame.eax = regs->tf_eax;
579 upc_frame.ecx = regs->tf_ecx;
580 upc_frame.edx = regs->tf_edx;
581 upc_frame.flags = regs->tf_eflags;
582 upc_frame.oldip = regs->tf_eip;
583 if (copyout(&upc_frame, (void *)(regs->tf_esp - sizeof(upc_frame)),
584 sizeof(upc_frame)) != 0) {
585 kprintf("bad stack on upcall\n");
586 } else {
587 regs->tf_eax = (register_t)vu->vu_func;
588 regs->tf_ecx = (register_t)vu->vu_data;
589 regs->tf_edx = (register_t)lp->lwp_upcall;
590 regs->tf_eip = (register_t)vu->vu_ctx;
591 regs->tf_esp -= sizeof(upc_frame);
596 * fetchupcall occurs in the context of a system call, which means that
597 * we have to return EJUSTRETURN in order to prevent eax and edx from
598 * being overwritten by the syscall return value.
600 * if vu is not NULL we return the new context in %edx, the new data in %ecx,
601 * and the function pointer in %eax.
604 fetchupcall (struct vmupcall *vu, int morepending, void *rsp)
606 struct upc_frame upc_frame;
607 struct lwp *lp = curthread->td_lwp;
608 struct trapframe *regs;
609 int error;
610 struct upcall upcall;
611 int crit_count;
613 regs = lp->lwp_md.md_regs;
615 error = copyout(&morepending, &lp->lwp_upcall->upc_pending, sizeof(int));
616 if (error == 0) {
617 if (vu) {
619 * This jumps us to the next ready context.
621 vu->vu_pending = 0;
622 error = copyin(lp->lwp_upcall, &upcall, sizeof(upcall));
623 crit_count = 0;
624 if (error == 0)
625 error = copyin((char *)upcall.upc_uthread + upcall.upc_critoff, &crit_count, sizeof(int));
626 crit_count += TDPRI_CRIT;
627 if (error == 0)
628 error = copyout(&crit_count, (char *)upcall.upc_uthread + upcall.upc_critoff, sizeof(int));
629 regs->tf_eax = (register_t)vu->vu_func;
630 regs->tf_ecx = (register_t)vu->vu_data;
631 regs->tf_edx = (register_t)lp->lwp_upcall;
632 regs->tf_eip = (register_t)vu->vu_ctx;
633 regs->tf_esp = (register_t)rsp;
634 } else {
636 * This returns us to the originally interrupted code.
638 error = copyin(rsp, &upc_frame, sizeof(upc_frame));
639 regs->tf_eax = upc_frame.eax;
640 regs->tf_ecx = upc_frame.ecx;
641 regs->tf_edx = upc_frame.edx;
642 regs->tf_eflags = (regs->tf_eflags & ~PSL_USERCHANGE) |
643 (upc_frame.flags & PSL_USERCHANGE);
644 regs->tf_eip = upc_frame.oldip;
645 regs->tf_esp = (register_t)((char *)rsp + sizeof(upc_frame));
648 if (error == 0)
649 error = EJUSTRETURN;
650 return(error);
654 * cpu_idle() represents the idle LWKT. You cannot return from this function
655 * (unless you want to blow things up!). Instead we look for runnable threads
656 * and loop or halt as appropriate. Giant is not held on entry to the thread.
658 * The main loop is entered with a critical section held, we must release
659 * the critical section before doing anything else. lwkt_switch() will
660 * check for pending interrupts due to entering and exiting its own
661 * critical section.
663 * Note on cpu_idle_hlt: On an SMP system we rely on a scheduler IPI
664 * to wake a HLTed cpu up. However, there are cases where the idlethread
665 * will be entered with the possibility that no IPI will occur and in such
666 * cases lwkt_switch() sets TDF_IDLE_NOHLT.
669 /* XXX since we don't have IPIs implemented don't let the CPU halt */
670 static int cpu_idle_hlt = 1;
671 static int cpu_idle_hltcnt;
672 static int cpu_idle_spincnt;
673 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
674 &cpu_idle_hlt, 0, "Idle loop HLT enable");
675 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hltcnt, CTLFLAG_RW,
676 &cpu_idle_hltcnt, 0, "Idle loop entry halts");
677 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_spincnt, CTLFLAG_RW,
678 &cpu_idle_spincnt, 0, "Idle loop entry spins");
680 void
681 cpu_idle(void)
683 struct thread *td = curthread;
685 crit_exit();
686 KKASSERT(td->td_pri < TDPRI_CRIT);
687 for (;;) {
689 * See if there are any LWKTs ready to go.
691 lwkt_switch();
694 * If we are going to halt call splz unconditionally after
695 * CLIing to catch any interrupt races. Note that we are
696 * at SPL0 and interrupts are enabled.
698 * We must poll our mailbox signals prior to calling
699 * sigpause() in order to properly interlock with them.
701 if (cpu_idle_hlt && !lwkt_runnable() &&
702 (td->td_flags & TDF_IDLE_NOHLT) == 0) {
703 splz();
704 signalmailbox(NULL);
705 if (!lwkt_runnable()) {
706 sigpause(0);
708 #ifdef SMP
709 else {
710 __asm __volatile("pause");
712 #endif
713 ++cpu_idle_hltcnt;
714 } else {
715 td->td_flags &= ~TDF_IDLE_NOHLT;
716 splz();
717 signalmailbox(NULL);
718 #ifdef SMP
719 /*__asm __volatile("sti; pause");*/
720 __asm __volatile("pause");
721 #else
722 /*__asm __volatile("sti");*/
723 #endif
724 ++cpu_idle_spincnt;
730 * Clear registers on exec
732 void
733 exec_setregs(u_long entry, u_long stack, u_long ps_strings)
735 struct thread *td = curthread;
736 struct lwp *lp = td->td_lwp;
737 struct trapframe *regs = lp->lwp_md.md_regs;
738 struct pcb *pcb = lp->lwp_thread->td_pcb;
740 /* was i386_user_cleanup() in NetBSD */
741 user_ldt_free(pcb);
743 bzero((char *)regs, sizeof(struct trapframe));
744 regs->tf_eip = entry;
745 regs->tf_esp = stack;
746 regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
747 regs->tf_ss = 0;
748 regs->tf_ds = 0;
749 regs->tf_es = 0;
750 regs->tf_fs = 0;
751 regs->tf_gs = 0;
752 regs->tf_cs = 0;
754 /* PS_STRINGS value for BSD/OS binaries. It is 0 for non-BSD/OS. */
755 regs->tf_ebx = ps_strings;
758 * Reset the hardware debug registers if they were in use.
759 * They won't have any meaning for the newly exec'd process.
761 if (pcb->pcb_flags & PCB_DBREGS) {
762 pcb->pcb_dr0 = 0;
763 pcb->pcb_dr1 = 0;
764 pcb->pcb_dr2 = 0;
765 pcb->pcb_dr3 = 0;
766 pcb->pcb_dr6 = 0;
767 pcb->pcb_dr7 = 0;
768 if (pcb == td->td_pcb) {
770 * Clear the debug registers on the running
771 * CPU, otherwise they will end up affecting
772 * the next process we switch to.
774 reset_dbregs();
776 pcb->pcb_flags &= ~PCB_DBREGS;
780 * Initialize the math emulator (if any) for the current process.
781 * Actually, just clear the bit that says that the emulator has
782 * been initialized. Initialization is delayed until the process
783 * traps to the emulator (if it is done at all) mainly because
784 * emulators don't provide an entry point for initialization.
786 pcb->pcb_flags &= ~FP_SOFTFP;
789 * note: do not set CR0_TS here. npxinit() must do it after clearing
790 * gd_npxthread. Otherwise a preemptive interrupt thread may panic
791 * in npxdna().
793 crit_enter();
794 #if 0
795 load_cr0(rcr0() | CR0_MP);
796 #endif
798 #if NNPX > 0
799 /* Initialize the npx (if any) for the current process. */
800 npxinit(__INITIAL_NPXCW__);
801 #endif
802 crit_exit();
805 * note: linux emulator needs edx to be 0x0 on entry, which is
806 * handled in execve simply by setting the 64 bit syscall
807 * return value to 0.
811 void
812 cpu_setregs(void)
814 #if 0
815 unsigned int cr0;
817 cr0 = rcr0();
818 cr0 |= CR0_NE; /* Done by npxinit() */
819 cr0 |= CR0_MP | CR0_TS; /* Done at every execve() too. */
820 #ifdef I386_CPU
821 if (cpu_class != CPUCLASS_386)
822 #endif
823 cr0 |= CR0_WP | CR0_AM;
824 load_cr0(cr0);
825 load_gs(_udatasel);
826 #endif
829 static int
830 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
832 int error;
833 error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
834 req);
835 if (!error && req->newptr)
836 resettodr();
837 return (error);
840 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
841 &adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
843 extern u_long bootdev; /* not a cdev_t - encoding is different */
844 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
845 CTLFLAG_RD, &bootdev, 0, "Boot device (not in cdev_t format)");
848 * Initialize 386 and configure to run kernel
852 * Initialize segments & interrupt table
855 extern struct user *proc0paddr;
857 #if 0
859 extern inthand_t
860 IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
861 IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
862 IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
863 IDTVEC(page), IDTVEC(mchk), IDTVEC(fpu), IDTVEC(align),
864 IDTVEC(xmm), IDTVEC(syscall),
865 IDTVEC(rsvd0);
866 extern inthand_t
867 IDTVEC(int0x80_syscall);
869 #endif
871 #ifdef DEBUG_INTERRUPTS
872 extern inthand_t *Xrsvdary[256];
873 #endif
876 ptrace_set_pc(struct lwp *lp, unsigned long addr)
878 lp->lwp_md.md_regs->tf_eip = addr;
879 return (0);
883 ptrace_single_step(struct lwp *lp)
885 lp->lwp_md.md_regs->tf_eflags |= PSL_T;
886 return (0);
890 fill_regs(struct lwp *lp, struct reg *regs)
892 struct trapframe *tp;
894 tp = lp->lwp_md.md_regs;
895 regs->r_gs = tp->tf_gs;
896 regs->r_fs = tp->tf_fs;
897 regs->r_es = tp->tf_es;
898 regs->r_ds = tp->tf_ds;
899 regs->r_edi = tp->tf_edi;
900 regs->r_esi = tp->tf_esi;
901 regs->r_ebp = tp->tf_ebp;
902 regs->r_ebx = tp->tf_ebx;
903 regs->r_edx = tp->tf_edx;
904 regs->r_ecx = tp->tf_ecx;
905 regs->r_eax = tp->tf_eax;
906 regs->r_eip = tp->tf_eip;
907 regs->r_cs = tp->tf_cs;
908 regs->r_eflags = tp->tf_eflags;
909 regs->r_esp = tp->tf_esp;
910 regs->r_ss = tp->tf_ss;
911 return (0);
915 set_regs(struct lwp *lp, struct reg *regs)
917 struct trapframe *tp;
919 tp = lp->lwp_md.md_regs;
920 if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
921 !CS_SECURE(regs->r_cs))
922 return (EINVAL);
923 tp->tf_gs = regs->r_gs;
924 tp->tf_fs = regs->r_fs;
925 tp->tf_es = regs->r_es;
926 tp->tf_ds = regs->r_ds;
927 tp->tf_edi = regs->r_edi;
928 tp->tf_esi = regs->r_esi;
929 tp->tf_ebp = regs->r_ebp;
930 tp->tf_ebx = regs->r_ebx;
931 tp->tf_edx = regs->r_edx;
932 tp->tf_ecx = regs->r_ecx;
933 tp->tf_eax = regs->r_eax;
934 tp->tf_eip = regs->r_eip;
935 tp->tf_cs = regs->r_cs;
936 tp->tf_eflags = regs->r_eflags;
937 tp->tf_esp = regs->r_esp;
938 tp->tf_ss = regs->r_ss;
939 return (0);
942 #ifndef CPU_DISABLE_SSE
943 static void
944 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
946 struct env87 *penv_87 = &sv_87->sv_env;
947 struct envxmm *penv_xmm = &sv_xmm->sv_env;
948 int i;
950 /* FPU control/status */
951 penv_87->en_cw = penv_xmm->en_cw;
952 penv_87->en_sw = penv_xmm->en_sw;
953 penv_87->en_tw = penv_xmm->en_tw;
954 penv_87->en_fip = penv_xmm->en_fip;
955 penv_87->en_fcs = penv_xmm->en_fcs;
956 penv_87->en_opcode = penv_xmm->en_opcode;
957 penv_87->en_foo = penv_xmm->en_foo;
958 penv_87->en_fos = penv_xmm->en_fos;
960 /* FPU registers */
961 for (i = 0; i < 8; ++i)
962 sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
964 sv_87->sv_ex_sw = sv_xmm->sv_ex_sw;
967 static void
968 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
970 struct env87 *penv_87 = &sv_87->sv_env;
971 struct envxmm *penv_xmm = &sv_xmm->sv_env;
972 int i;
974 /* FPU control/status */
975 penv_xmm->en_cw = penv_87->en_cw;
976 penv_xmm->en_sw = penv_87->en_sw;
977 penv_xmm->en_tw = penv_87->en_tw;
978 penv_xmm->en_fip = penv_87->en_fip;
979 penv_xmm->en_fcs = penv_87->en_fcs;
980 penv_xmm->en_opcode = penv_87->en_opcode;
981 penv_xmm->en_foo = penv_87->en_foo;
982 penv_xmm->en_fos = penv_87->en_fos;
984 /* FPU registers */
985 for (i = 0; i < 8; ++i)
986 sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
988 sv_xmm->sv_ex_sw = sv_87->sv_ex_sw;
990 #endif /* CPU_DISABLE_SSE */
993 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
995 #ifndef CPU_DISABLE_SSE
996 if (cpu_fxsr) {
997 fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
998 (struct save87 *)fpregs);
999 return (0);
1001 #endif /* CPU_DISABLE_SSE */
1002 bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
1003 return (0);
1007 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
1009 #ifndef CPU_DISABLE_SSE
1010 if (cpu_fxsr) {
1011 set_fpregs_xmm((struct save87 *)fpregs,
1012 &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
1013 return (0);
1015 #endif /* CPU_DISABLE_SSE */
1016 bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
1017 return (0);
1021 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
1023 if (lp == NULL) {
1024 dbregs->dr0 = rdr0();
1025 dbregs->dr1 = rdr1();
1026 dbregs->dr2 = rdr2();
1027 dbregs->dr3 = rdr3();
1028 dbregs->dr4 = rdr4();
1029 dbregs->dr5 = rdr5();
1030 dbregs->dr6 = rdr6();
1031 dbregs->dr7 = rdr7();
1032 } else {
1033 struct pcb *pcb;
1035 pcb = lp->lwp_thread->td_pcb;
1036 dbregs->dr0 = pcb->pcb_dr0;
1037 dbregs->dr1 = pcb->pcb_dr1;
1038 dbregs->dr2 = pcb->pcb_dr2;
1039 dbregs->dr3 = pcb->pcb_dr3;
1040 dbregs->dr4 = 0;
1041 dbregs->dr5 = 0;
1042 dbregs->dr6 = pcb->pcb_dr6;
1043 dbregs->dr7 = pcb->pcb_dr7;
1045 return (0);
1049 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
1051 if (lp == NULL) {
1052 load_dr0(dbregs->dr0);
1053 load_dr1(dbregs->dr1);
1054 load_dr2(dbregs->dr2);
1055 load_dr3(dbregs->dr3);
1056 load_dr4(dbregs->dr4);
1057 load_dr5(dbregs->dr5);
1058 load_dr6(dbregs->dr6);
1059 load_dr7(dbregs->dr7);
1060 } else {
1061 struct pcb *pcb;
1062 struct ucred *ucred;
1063 int i;
1064 uint32_t mask1, mask2;
1067 * Don't let an illegal value for dr7 get set. Specifically,
1068 * check for undefined settings. Setting these bit patterns
1069 * result in undefined behaviour and can lead to an unexpected
1070 * TRCTRAP.
1072 for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 8;
1073 i++, mask1 <<= 2, mask2 <<= 2)
1074 if ((dbregs->dr7 & mask1) == mask2)
1075 return (EINVAL);
1077 pcb = lp->lwp_thread->td_pcb;
1078 ucred = lp->lwp_proc->p_ucred;
1081 * Don't let a process set a breakpoint that is not within the
1082 * process's address space. If a process could do this, it
1083 * could halt the system by setting a breakpoint in the kernel
1084 * (if ddb was enabled). Thus, we need to check to make sure
1085 * that no breakpoints are being enabled for addresses outside
1086 * process's address space, unless, perhaps, we were called by
1087 * uid 0.
1089 * XXX - what about when the watched area of the user's
1090 * address space is written into from within the kernel
1091 * ... wouldn't that still cause a breakpoint to be generated
1092 * from within kernel mode?
1095 if (suser_cred(ucred, 0) != 0) {
1096 if (dbregs->dr7 & 0x3) {
1097 /* dr0 is enabled */
1098 if (dbregs->dr0 >= VM_MAX_USER_ADDRESS)
1099 return (EINVAL);
1102 if (dbregs->dr7 & (0x3<<2)) {
1103 /* dr1 is enabled */
1104 if (dbregs->dr1 >= VM_MAX_USER_ADDRESS)
1105 return (EINVAL);
1108 if (dbregs->dr7 & (0x3<<4)) {
1109 /* dr2 is enabled */
1110 if (dbregs->dr2 >= VM_MAX_USER_ADDRESS)
1111 return (EINVAL);
1114 if (dbregs->dr7 & (0x3<<6)) {
1115 /* dr3 is enabled */
1116 if (dbregs->dr3 >= VM_MAX_USER_ADDRESS)
1117 return (EINVAL);
1121 pcb->pcb_dr0 = dbregs->dr0;
1122 pcb->pcb_dr1 = dbregs->dr1;
1123 pcb->pcb_dr2 = dbregs->dr2;
1124 pcb->pcb_dr3 = dbregs->dr3;
1125 pcb->pcb_dr6 = dbregs->dr6;
1126 pcb->pcb_dr7 = dbregs->dr7;
1128 pcb->pcb_flags |= PCB_DBREGS;
1131 return (0);
1134 #if 0
1136 * Return > 0 if a hardware breakpoint has been hit, and the
1137 * breakpoint was in user space. Return 0, otherwise.
1140 user_dbreg_trap(void)
1142 u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
1143 u_int32_t bp; /* breakpoint bits extracted from dr6 */
1144 int nbp; /* number of breakpoints that triggered */
1145 caddr_t addr[4]; /* breakpoint addresses */
1146 int i;
1148 dr7 = rdr7();
1149 if ((dr7 & 0x000000ff) == 0) {
1151 * all GE and LE bits in the dr7 register are zero,
1152 * thus the trap couldn't have been caused by the
1153 * hardware debug registers
1155 return 0;
1158 nbp = 0;
1159 dr6 = rdr6();
1160 bp = dr6 & 0x0000000f;
1162 if (!bp) {
1164 * None of the breakpoint bits are set meaning this
1165 * trap was not caused by any of the debug registers
1167 return 0;
1171 * at least one of the breakpoints were hit, check to see
1172 * which ones and if any of them are user space addresses
1175 if (bp & 0x01) {
1176 addr[nbp++] = (caddr_t)rdr0();
1178 if (bp & 0x02) {
1179 addr[nbp++] = (caddr_t)rdr1();
1181 if (bp & 0x04) {
1182 addr[nbp++] = (caddr_t)rdr2();
1184 if (bp & 0x08) {
1185 addr[nbp++] = (caddr_t)rdr3();
1188 for (i=0; i<nbp; i++) {
1189 if (addr[i] <
1190 (caddr_t)VM_MAX_USER_ADDRESS) {
1192 * addr[i] is in user space
1194 return nbp;
1199 * None of the breakpoints are in user space.
1201 return 0;
1204 #endif
1207 #ifndef DDB
1208 void
1209 Debugger(const char *msg)
1211 kprintf("Debugger(\"%s\") called.\n", msg);
1213 #endif /* no DDB */