Switch ipfw from ipfw1 to ipfw2.
[dragonfly/port-amd64.git] / sys / net / ipfw / ip_fw2.c
blob7a93a1228c8e93efff08e7315f91361e56518f38
1 /*
2 * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
25 * $FreeBSD: src/sys/netinet/ip_fw2.c,v 1.6.2.12 2003/04/08 10:42:32 maxim Exp $
26 * $DragonFly: src/sys/net/ipfw/ip_fw2.c,v 1.27 2007/09/02 13:27:23 sephe Exp $
29 #define DEB(x)
30 #define DDB(x) x
33 * Implement IP packet firewall (new version)
36 #if !defined(KLD_MODULE)
37 #include "opt_ipfw.h"
38 #include "opt_ipdn.h"
39 #include "opt_ipdivert.h"
40 #include "opt_inet.h"
41 #ifndef INET
42 #error IPFIREWALL requires INET.
43 #endif /* INET */
44 #endif
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/malloc.h>
49 #include <sys/mbuf.h>
50 #include <sys/kernel.h>
51 #include <sys/proc.h>
52 #include <sys/socket.h>
53 #include <sys/socketvar.h>
54 #include <sys/sysctl.h>
55 #include <sys/syslog.h>
56 #include <sys/thread2.h>
57 #include <sys/ucred.h>
58 #include <sys/in_cksum.h>
59 #include <net/if.h>
60 #include <net/route.h>
61 #include <netinet/in.h>
62 #include <netinet/in_systm.h>
63 #include <netinet/in_var.h>
64 #include <netinet/in_pcb.h>
65 #include <netinet/ip.h>
66 #include <netinet/ip_var.h>
67 #include <netinet/ip_icmp.h>
68 #include "ip_fw.h"
69 #include <net/dummynet/ip_dummynet.h>
70 #include <netinet/tcp.h>
71 #include <netinet/tcp_timer.h>
72 #include <netinet/tcp_var.h>
73 #include <netinet/tcpip.h>
74 #include <netinet/udp.h>
75 #include <netinet/udp_var.h>
77 #include <netinet/if_ether.h> /* XXX for ETHERTYPE_IP */
80 * set_disable contains one bit per set value (0..31).
81 * If the bit is set, all rules with the corresponding set
82 * are disabled. Set 31 is reserved for the default rule
83 * and CANNOT be disabled.
85 static u_int32_t set_disable;
87 static int fw_verbose;
88 static int verbose_limit;
90 static struct callout ipfw_timeout_h;
91 #define IPFW_DEFAULT_RULE 65535
94 * list of rules for layer 3
96 static struct ip_fw *layer3_chain;
98 MALLOC_DEFINE(M_IPFW, "IpFw/IpAcct", "IpFw/IpAcct chain's");
100 static int fw_debug = 1;
101 static int autoinc_step = 100; /* bounded to 1..1000 in add_rule() */
103 #ifdef SYSCTL_NODE
104 SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
105 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, enable, CTLFLAG_RW,
106 &fw_enable, 0, "Enable ipfw");
107 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step, CTLFLAG_RW,
108 &autoinc_step, 0, "Rule number autincrement step");
109 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO,one_pass,CTLFLAG_RW,
110 &fw_one_pass, 0,
111 "Only do a single pass through ipfw when using dummynet(4)");
112 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, debug, CTLFLAG_RW,
113 &fw_debug, 0, "Enable printing of debug ip_fw statements");
114 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose, CTLFLAG_RW,
115 &fw_verbose, 0, "Log matches to ipfw rules");
116 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit, CTLFLAG_RW,
117 &verbose_limit, 0, "Set upper limit of matches of ipfw rules logged");
120 * Description of dynamic rules.
122 * Dynamic rules are stored in lists accessed through a hash table
123 * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can
124 * be modified through the sysctl variable dyn_buckets which is
125 * updated when the table becomes empty.
127 * XXX currently there is only one list, ipfw_dyn.
129 * When a packet is received, its address fields are first masked
130 * with the mask defined for the rule, then hashed, then matched
131 * against the entries in the corresponding list.
132 * Dynamic rules can be used for different purposes:
133 * + stateful rules;
134 * + enforcing limits on the number of sessions;
135 * + in-kernel NAT (not implemented yet)
137 * The lifetime of dynamic rules is regulated by dyn_*_lifetime,
138 * measured in seconds and depending on the flags.
140 * The total number of dynamic rules is stored in dyn_count.
141 * The max number of dynamic rules is dyn_max. When we reach
142 * the maximum number of rules we do not create anymore. This is
143 * done to avoid consuming too much memory, but also too much
144 * time when searching on each packet (ideally, we should try instead
145 * to put a limit on the length of the list on each bucket...).
147 * Each dynamic rule holds a pointer to the parent ipfw rule so
148 * we know what action to perform. Dynamic rules are removed when
149 * the parent rule is deleted. XXX we should make them survive.
151 * There are some limitations with dynamic rules -- we do not
152 * obey the 'randomized match', and we do not do multiple
153 * passes through the firewall. XXX check the latter!!!
155 static ipfw_dyn_rule **ipfw_dyn_v = NULL;
156 static u_int32_t dyn_buckets = 256; /* must be power of 2 */
157 static u_int32_t curr_dyn_buckets = 256; /* must be power of 2 */
160 * Timeouts for various events in handing dynamic rules.
162 static u_int32_t dyn_ack_lifetime = 300;
163 static u_int32_t dyn_syn_lifetime = 20;
164 static u_int32_t dyn_fin_lifetime = 1;
165 static u_int32_t dyn_rst_lifetime = 1;
166 static u_int32_t dyn_udp_lifetime = 10;
167 static u_int32_t dyn_short_lifetime = 5;
170 * Keepalives are sent if dyn_keepalive is set. They are sent every
171 * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
172 * seconds of lifetime of a rule.
173 * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
174 * than dyn_keepalive_period.
177 static u_int32_t dyn_keepalive_interval = 20;
178 static u_int32_t dyn_keepalive_period = 5;
179 static u_int32_t dyn_keepalive = 1; /* do send keepalives */
181 static u_int32_t static_count; /* # of static rules */
182 static u_int32_t static_len; /* size in bytes of static rules */
183 static u_int32_t dyn_count; /* # of dynamic rules */
184 static u_int32_t dyn_max = 4096; /* max # of dynamic rules */
186 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_buckets, CTLFLAG_RW,
187 &dyn_buckets, 0, "Number of dyn. buckets");
188 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets, CTLFLAG_RD,
189 &curr_dyn_buckets, 0, "Current Number of dyn. buckets");
190 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_count, CTLFLAG_RD,
191 &dyn_count, 0, "Number of dyn. rules");
192 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_max, CTLFLAG_RW,
193 &dyn_max, 0, "Max number of dyn. rules");
194 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, static_count, CTLFLAG_RD,
195 &static_count, 0, "Number of static rules");
196 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime, CTLFLAG_RW,
197 &dyn_ack_lifetime, 0, "Lifetime of dyn. rules for acks");
198 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime, CTLFLAG_RW,
199 &dyn_syn_lifetime, 0, "Lifetime of dyn. rules for syn");
200 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime, CTLFLAG_RW,
201 &dyn_fin_lifetime, 0, "Lifetime of dyn. rules for fin");
202 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime, CTLFLAG_RW,
203 &dyn_rst_lifetime, 0, "Lifetime of dyn. rules for rst");
204 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime, CTLFLAG_RW,
205 &dyn_udp_lifetime, 0, "Lifetime of dyn. rules for UDP");
206 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime, CTLFLAG_RW,
207 &dyn_short_lifetime, 0, "Lifetime of dyn. rules for other situations");
208 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_keepalive, CTLFLAG_RW,
209 &dyn_keepalive, 0, "Enable keepalives for dyn. rules");
211 #endif /* SYSCTL_NODE */
214 static ip_fw_chk_t ipfw_chk;
216 ip_dn_ruledel_t *ip_dn_ruledel_ptr = NULL; /* hook into dummynet */
219 * This macro maps an ip pointer into a layer3 header pointer of type T
221 #define L3HDR(T, ip) ((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
223 static __inline int
224 icmptype_match(struct ip *ip, ipfw_insn_u32 *cmd)
226 int type = L3HDR(struct icmp,ip)->icmp_type;
228 return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
231 #define TT ( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
232 (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
234 static int
235 is_icmp_query(struct ip *ip)
237 int type = L3HDR(struct icmp, ip)->icmp_type;
238 return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
240 #undef TT
243 * The following checks use two arrays of 8 or 16 bits to store the
244 * bits that we want set or clear, respectively. They are in the
245 * low and high half of cmd->arg1 or cmd->d[0].
247 * We scan options and store the bits we find set. We succeed if
249 * (want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
251 * The code is sometimes optimized not to store additional variables.
254 static int
255 flags_match(ipfw_insn *cmd, u_int8_t bits)
257 u_char want_clear;
258 bits = ~bits;
260 if ( ((cmd->arg1 & 0xff) & bits) != 0)
261 return 0; /* some bits we want set were clear */
262 want_clear = (cmd->arg1 >> 8) & 0xff;
263 if ( (want_clear & bits) != want_clear)
264 return 0; /* some bits we want clear were set */
265 return 1;
268 static int
269 ipopts_match(struct ip *ip, ipfw_insn *cmd)
271 int optlen, bits = 0;
272 u_char *cp = (u_char *)(ip + 1);
273 int x = (ip->ip_hl << 2) - sizeof (struct ip);
275 for (; x > 0; x -= optlen, cp += optlen) {
276 int opt = cp[IPOPT_OPTVAL];
278 if (opt == IPOPT_EOL)
279 break;
280 if (opt == IPOPT_NOP)
281 optlen = 1;
282 else {
283 optlen = cp[IPOPT_OLEN];
284 if (optlen <= 0 || optlen > x)
285 return 0; /* invalid or truncated */
287 switch (opt) {
289 default:
290 break;
292 case IPOPT_LSRR:
293 bits |= IP_FW_IPOPT_LSRR;
294 break;
296 case IPOPT_SSRR:
297 bits |= IP_FW_IPOPT_SSRR;
298 break;
300 case IPOPT_RR:
301 bits |= IP_FW_IPOPT_RR;
302 break;
304 case IPOPT_TS:
305 bits |= IP_FW_IPOPT_TS;
306 break;
309 return (flags_match(cmd, bits));
312 static int
313 tcpopts_match(struct ip *ip, ipfw_insn *cmd)
315 int optlen, bits = 0;
316 struct tcphdr *tcp = L3HDR(struct tcphdr,ip);
317 u_char *cp = (u_char *)(tcp + 1);
318 int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
320 for (; x > 0; x -= optlen, cp += optlen) {
321 int opt = cp[0];
322 if (opt == TCPOPT_EOL)
323 break;
324 if (opt == TCPOPT_NOP)
325 optlen = 1;
326 else {
327 optlen = cp[1];
328 if (optlen <= 0)
329 break;
332 switch (opt) {
334 default:
335 break;
337 case TCPOPT_MAXSEG:
338 bits |= IP_FW_TCPOPT_MSS;
339 break;
341 case TCPOPT_WINDOW:
342 bits |= IP_FW_TCPOPT_WINDOW;
343 break;
345 case TCPOPT_SACK_PERMITTED:
346 case TCPOPT_SACK:
347 bits |= IP_FW_TCPOPT_SACK;
348 break;
350 case TCPOPT_TIMESTAMP:
351 bits |= IP_FW_TCPOPT_TS;
352 break;
354 case TCPOPT_CC:
355 case TCPOPT_CCNEW:
356 case TCPOPT_CCECHO:
357 bits |= IP_FW_TCPOPT_CC;
358 break;
361 return (flags_match(cmd, bits));
364 static int
365 iface_match(struct ifnet *ifp, ipfw_insn_if *cmd)
367 if (ifp == NULL) /* no iface with this packet, match fails */
368 return 0;
369 /* Check by name or by IP address */
370 if (cmd->name[0] != '\0') { /* match by name */
371 /* Check name */
372 if (cmd->p.glob) {
373 if (kfnmatch(cmd->name, ifp->if_xname, 0) == 0)
374 return(1);
375 } else {
376 if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
377 return(1);
379 } else {
380 struct ifaddr *ia;
382 TAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
383 if (ia->ifa_addr == NULL)
384 continue;
385 if (ia->ifa_addr->sa_family != AF_INET)
386 continue;
387 if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
388 (ia->ifa_addr))->sin_addr.s_addr)
389 return(1); /* match */
392 return(0); /* no match, fail ... */
395 static u_int64_t norule_counter; /* counter for ipfw_log(NULL...) */
397 #define SNPARGS(buf, len) buf + len, sizeof(buf) > len ? sizeof(buf) - len : 0
398 #define SNP(buf) buf, sizeof(buf)
401 * We enter here when we have a rule with O_LOG.
402 * XXX this function alone takes about 2Kbytes of code!
404 static void
405 ipfw_log(struct ip_fw *f, u_int hlen, struct ether_header *eh,
406 struct mbuf *m, struct ifnet *oif)
408 char *action;
409 int limit_reached = 0;
410 char action2[40], proto[48], fragment[28];
412 fragment[0] = '\0';
413 proto[0] = '\0';
415 if (f == NULL) { /* bogus pkt */
416 if (verbose_limit != 0 && norule_counter >= verbose_limit)
417 return;
418 norule_counter++;
419 if (norule_counter == verbose_limit)
420 limit_reached = verbose_limit;
421 action = "Refuse";
422 } else { /* O_LOG is the first action, find the real one */
423 ipfw_insn *cmd = ACTION_PTR(f);
424 ipfw_insn_log *l = (ipfw_insn_log *)cmd;
426 if (l->max_log != 0 && l->log_left == 0)
427 return;
428 l->log_left--;
429 if (l->log_left == 0)
430 limit_reached = l->max_log;
431 cmd += F_LEN(cmd); /* point to first action */
432 if (cmd->opcode == O_PROB)
433 cmd += F_LEN(cmd);
435 action = action2;
436 switch (cmd->opcode) {
437 case O_DENY:
438 action = "Deny";
439 break;
441 case O_REJECT:
442 if (cmd->arg1==ICMP_REJECT_RST)
443 action = "Reset";
444 else if (cmd->arg1==ICMP_UNREACH_HOST)
445 action = "Reject";
446 else
447 ksnprintf(SNPARGS(action2, 0), "Unreach %d",
448 cmd->arg1);
449 break;
451 case O_ACCEPT:
452 action = "Accept";
453 break;
454 case O_COUNT:
455 action = "Count";
456 break;
457 case O_DIVERT:
458 ksnprintf(SNPARGS(action2, 0), "Divert %d",
459 cmd->arg1);
460 break;
461 case O_TEE:
462 ksnprintf(SNPARGS(action2, 0), "Tee %d",
463 cmd->arg1);
464 break;
465 case O_SKIPTO:
466 ksnprintf(SNPARGS(action2, 0), "SkipTo %d",
467 cmd->arg1);
468 break;
469 case O_PIPE:
470 ksnprintf(SNPARGS(action2, 0), "Pipe %d",
471 cmd->arg1);
472 break;
473 case O_QUEUE:
474 ksnprintf(SNPARGS(action2, 0), "Queue %d",
475 cmd->arg1);
476 break;
477 case O_FORWARD_IP: {
478 ipfw_insn_sa *sa = (ipfw_insn_sa *)cmd;
479 int len;
481 len = ksnprintf(SNPARGS(action2, 0), "Forward to %s",
482 inet_ntoa(sa->sa.sin_addr));
483 if (sa->sa.sin_port)
484 ksnprintf(SNPARGS(action2, len), ":%d",
485 sa->sa.sin_port);
487 break;
488 default:
489 action = "UNKNOWN";
490 break;
494 if (hlen == 0) { /* non-ip */
495 ksnprintf(SNPARGS(proto, 0), "MAC");
496 } else {
497 struct ip *ip = mtod(m, struct ip *);
498 /* these three are all aliases to the same thing */
499 struct icmp *const icmp = L3HDR(struct icmp, ip);
500 struct tcphdr *const tcp = (struct tcphdr *)icmp;
501 struct udphdr *const udp = (struct udphdr *)icmp;
503 int ip_off, offset, ip_len;
505 int len;
507 if (eh != NULL) { /* layer 2 packets are as on the wire */
508 ip_off = ntohs(ip->ip_off);
509 ip_len = ntohs(ip->ip_len);
510 } else {
511 ip_off = ip->ip_off;
512 ip_len = ip->ip_len;
514 offset = ip_off & IP_OFFMASK;
515 switch (ip->ip_p) {
516 case IPPROTO_TCP:
517 len = ksnprintf(SNPARGS(proto, 0), "TCP %s",
518 inet_ntoa(ip->ip_src));
519 if (offset == 0)
520 ksnprintf(SNPARGS(proto, len), ":%d %s:%d",
521 ntohs(tcp->th_sport),
522 inet_ntoa(ip->ip_dst),
523 ntohs(tcp->th_dport));
524 else
525 ksnprintf(SNPARGS(proto, len), " %s",
526 inet_ntoa(ip->ip_dst));
527 break;
529 case IPPROTO_UDP:
530 len = ksnprintf(SNPARGS(proto, 0), "UDP %s",
531 inet_ntoa(ip->ip_src));
532 if (offset == 0)
533 ksnprintf(SNPARGS(proto, len), ":%d %s:%d",
534 ntohs(udp->uh_sport),
535 inet_ntoa(ip->ip_dst),
536 ntohs(udp->uh_dport));
537 else
538 ksnprintf(SNPARGS(proto, len), " %s",
539 inet_ntoa(ip->ip_dst));
540 break;
542 case IPPROTO_ICMP:
543 if (offset == 0)
544 len = ksnprintf(SNPARGS(proto, 0),
545 "ICMP:%u.%u ",
546 icmp->icmp_type, icmp->icmp_code);
547 else
548 len = ksnprintf(SNPARGS(proto, 0), "ICMP ");
549 len += ksnprintf(SNPARGS(proto, len), "%s",
550 inet_ntoa(ip->ip_src));
551 ksnprintf(SNPARGS(proto, len), " %s",
552 inet_ntoa(ip->ip_dst));
553 break;
555 default:
556 len = ksnprintf(SNPARGS(proto, 0), "P:%d %s", ip->ip_p,
557 inet_ntoa(ip->ip_src));
558 ksnprintf(SNPARGS(proto, len), " %s",
559 inet_ntoa(ip->ip_dst));
560 break;
563 if (ip_off & (IP_MF | IP_OFFMASK))
564 ksnprintf(SNPARGS(fragment, 0), " (frag %d:%d@%d%s)",
565 ntohs(ip->ip_id), ip_len - (ip->ip_hl << 2),
566 offset << 3,
567 (ip_off & IP_MF) ? "+" : "");
569 if (oif || m->m_pkthdr.rcvif)
570 log(LOG_SECURITY | LOG_INFO,
571 "ipfw: %d %s %s %s via %s%s\n",
572 f ? f->rulenum : -1,
573 action, proto, oif ? "out" : "in",
574 oif ? oif->if_xname : m->m_pkthdr.rcvif->if_xname,
575 fragment);
576 else
577 log(LOG_SECURITY | LOG_INFO,
578 "ipfw: %d %s %s [no if info]%s\n",
579 f ? f->rulenum : -1,
580 action, proto, fragment);
581 if (limit_reached)
582 log(LOG_SECURITY | LOG_NOTICE,
583 "ipfw: limit %d reached on entry %d\n",
584 limit_reached, f ? f->rulenum : -1);
588 * IMPORTANT: the hash function for dynamic rules must be commutative
589 * in source and destination (ip,port), because rules are bidirectional
590 * and we want to find both in the same bucket.
592 static __inline int
593 hash_packet(struct ipfw_flow_id *id)
595 u_int32_t i;
597 i = (id->dst_ip) ^ (id->src_ip) ^ (id->dst_port) ^ (id->src_port);
598 i &= (curr_dyn_buckets - 1);
599 return i;
603 * unlink a dynamic rule from a chain. prev is a pointer to
604 * the previous one, q is a pointer to the rule to delete,
605 * head is a pointer to the head of the queue.
606 * Modifies q and potentially also head.
608 #define UNLINK_DYN_RULE(prev, head, q) { \
609 ipfw_dyn_rule *old_q = q; \
611 /* remove a refcount to the parent */ \
612 if (q->dyn_type == O_LIMIT) \
613 q->parent->count--; \
614 DEB(kprintf("-- unlink entry 0x%08x %d -> 0x%08x %d, %d left\n", \
615 (q->id.src_ip), (q->id.src_port), \
616 (q->id.dst_ip), (q->id.dst_port), dyn_count-1 ); ) \
617 if (prev != NULL) \
618 prev->next = q = q->next; \
619 else \
620 head = q = q->next; \
621 dyn_count--; \
622 kfree(old_q, M_IPFW); }
624 #define TIME_LEQ(a,b) ((int)((a)-(b)) <= 0)
627 * Remove dynamic rules pointing to "rule", or all of them if rule == NULL.
629 * If keep_me == NULL, rules are deleted even if not expired,
630 * otherwise only expired rules are removed.
632 * The value of the second parameter is also used to point to identify
633 * a rule we absolutely do not want to remove (e.g. because we are
634 * holding a reference to it -- this is the case with O_LIMIT_PARENT
635 * rules). The pointer is only used for comparison, so any non-null
636 * value will do.
638 static void
639 remove_dyn_rule(struct ip_fw *rule, ipfw_dyn_rule *keep_me)
641 static u_int32_t last_remove = 0;
643 #define FORCE (keep_me == NULL)
645 ipfw_dyn_rule *prev, *q;
646 int i, pass = 0, max_pass = 0;
648 if (ipfw_dyn_v == NULL || dyn_count == 0)
649 return;
650 /* do not expire more than once per second, it is useless */
651 if (!FORCE && last_remove == time_second)
652 return;
653 last_remove = time_second;
656 * because O_LIMIT refer to parent rules, during the first pass only
657 * remove child and mark any pending LIMIT_PARENT, and remove
658 * them in a second pass.
660 next_pass:
661 for (i = 0 ; i < curr_dyn_buckets ; i++) {
662 for (prev=NULL, q = ipfw_dyn_v[i] ; q ; ) {
664 * Logic can become complex here, so we split tests.
666 if (q == keep_me)
667 goto next;
668 if (rule != NULL && rule != q->rule)
669 goto next; /* not the one we are looking for */
670 if (q->dyn_type == O_LIMIT_PARENT) {
672 * handle parent in the second pass,
673 * record we need one.
675 max_pass = 1;
676 if (pass == 0)
677 goto next;
678 if (FORCE && q->count != 0 ) {
679 /* XXX should not happen! */
680 kprintf( "OUCH! cannot remove rule,"
681 " count %d\n", q->count);
683 } else {
684 if (!FORCE &&
685 !TIME_LEQ( q->expire, time_second ))
686 goto next;
688 UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
689 continue;
690 next:
691 prev=q;
692 q=q->next;
695 if (pass++ < max_pass)
696 goto next_pass;
701 * lookup a dynamic rule.
703 static ipfw_dyn_rule *
704 lookup_dyn_rule(struct ipfw_flow_id *pkt, int *match_direction,
705 struct tcphdr *tcp)
708 * stateful ipfw extensions.
709 * Lookup into dynamic session queue
711 #define MATCH_REVERSE 0
712 #define MATCH_FORWARD 1
713 #define MATCH_NONE 2
714 #define MATCH_UNKNOWN 3
715 int i, dir = MATCH_NONE;
716 ipfw_dyn_rule *prev, *q=NULL;
718 if (ipfw_dyn_v == NULL)
719 goto done; /* not found */
720 i = hash_packet( pkt );
721 for (prev=NULL, q = ipfw_dyn_v[i] ; q != NULL ; ) {
722 if (q->dyn_type == O_LIMIT_PARENT)
723 goto next;
724 if (TIME_LEQ( q->expire, time_second)) { /* expire entry */
725 UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
726 continue;
728 if ( pkt->proto == q->id.proto) {
729 if (pkt->src_ip == q->id.src_ip &&
730 pkt->dst_ip == q->id.dst_ip &&
731 pkt->src_port == q->id.src_port &&
732 pkt->dst_port == q->id.dst_port ) {
733 dir = MATCH_FORWARD;
734 break;
736 if (pkt->src_ip == q->id.dst_ip &&
737 pkt->dst_ip == q->id.src_ip &&
738 pkt->src_port == q->id.dst_port &&
739 pkt->dst_port == q->id.src_port ) {
740 dir = MATCH_REVERSE;
741 break;
744 next:
745 prev = q;
746 q = q->next;
748 if (q == NULL)
749 goto done; /* q = NULL, not found */
751 if ( prev != NULL) { /* found and not in front */
752 prev->next = q->next;
753 q->next = ipfw_dyn_v[i];
754 ipfw_dyn_v[i] = q;
756 if (pkt->proto == IPPROTO_TCP) { /* update state according to flags */
757 u_char flags = pkt->flags & (TH_FIN|TH_SYN|TH_RST);
759 #define BOTH_SYN (TH_SYN | (TH_SYN << 8))
760 #define BOTH_FIN (TH_FIN | (TH_FIN << 8))
761 q->state |= (dir == MATCH_FORWARD ) ? flags : (flags << 8);
762 switch (q->state) {
763 case TH_SYN: /* opening */
764 q->expire = time_second + dyn_syn_lifetime;
765 break;
767 case BOTH_SYN: /* move to established */
768 case BOTH_SYN | TH_FIN : /* one side tries to close */
769 case BOTH_SYN | (TH_FIN << 8) :
770 if (tcp) {
771 #define _SEQ_GE(a,b) ((int)(a) - (int)(b) >= 0)
772 u_int32_t ack = ntohl(tcp->th_ack);
773 if (dir == MATCH_FORWARD) {
774 if (q->ack_fwd == 0 || _SEQ_GE(ack, q->ack_fwd))
775 q->ack_fwd = ack;
776 else { /* ignore out-of-sequence */
777 break;
779 } else {
780 if (q->ack_rev == 0 || _SEQ_GE(ack, q->ack_rev))
781 q->ack_rev = ack;
782 else { /* ignore out-of-sequence */
783 break;
787 q->expire = time_second + dyn_ack_lifetime;
788 break;
790 case BOTH_SYN | BOTH_FIN: /* both sides closed */
791 if (dyn_fin_lifetime >= dyn_keepalive_period)
792 dyn_fin_lifetime = dyn_keepalive_period - 1;
793 q->expire = time_second + dyn_fin_lifetime;
794 break;
796 default:
797 #if 0
799 * reset or some invalid combination, but can also
800 * occur if we use keep-state the wrong way.
802 if ( (q->state & ((TH_RST << 8)|TH_RST)) == 0)
803 kprintf("invalid state: 0x%x\n", q->state);
804 #endif
805 if (dyn_rst_lifetime >= dyn_keepalive_period)
806 dyn_rst_lifetime = dyn_keepalive_period - 1;
807 q->expire = time_second + dyn_rst_lifetime;
808 break;
810 } else if (pkt->proto == IPPROTO_UDP) {
811 q->expire = time_second + dyn_udp_lifetime;
812 } else {
813 /* other protocols */
814 q->expire = time_second + dyn_short_lifetime;
816 done:
817 if (match_direction)
818 *match_direction = dir;
819 return q;
822 static void
823 realloc_dynamic_table(void)
826 * Try reallocation, make sure we have a power of 2 and do
827 * not allow more than 64k entries. In case of overflow,
828 * default to 1024.
831 if (dyn_buckets > 65536)
832 dyn_buckets = 1024;
833 if ((dyn_buckets & (dyn_buckets-1)) != 0) { /* not a power of 2 */
834 dyn_buckets = curr_dyn_buckets; /* reset */
835 return;
837 curr_dyn_buckets = dyn_buckets;
838 if (ipfw_dyn_v != NULL)
839 kfree(ipfw_dyn_v, M_IPFW);
840 for (;;) {
841 ipfw_dyn_v = kmalloc(curr_dyn_buckets * sizeof(ipfw_dyn_rule *),
842 M_IPFW, M_WAITOK | M_ZERO);
843 if (ipfw_dyn_v != NULL || curr_dyn_buckets <= 2)
844 break;
845 curr_dyn_buckets /= 2;
850 * Install state of type 'type' for a dynamic session.
851 * The hash table contains two type of rules:
852 * - regular rules (O_KEEP_STATE)
853 * - rules for sessions with limited number of sess per user
854 * (O_LIMIT). When they are created, the parent is
855 * increased by 1, and decreased on delete. In this case,
856 * the third parameter is the parent rule and not the chain.
857 * - "parent" rules for the above (O_LIMIT_PARENT).
859 static ipfw_dyn_rule *
860 add_dyn_rule(struct ipfw_flow_id *id, u_int8_t dyn_type, struct ip_fw *rule)
862 ipfw_dyn_rule *r;
863 int i;
865 if (ipfw_dyn_v == NULL ||
866 (dyn_count == 0 && dyn_buckets != curr_dyn_buckets)) {
867 realloc_dynamic_table();
868 if (ipfw_dyn_v == NULL)
869 return NULL; /* failed ! */
871 i = hash_packet(id);
873 r = kmalloc(sizeof *r, M_IPFW, M_WAITOK | M_ZERO);
874 if (r == NULL) {
875 kprintf ("sorry cannot allocate state\n");
876 return NULL;
879 /* increase refcount on parent, and set pointer */
880 if (dyn_type == O_LIMIT) {
881 ipfw_dyn_rule *parent = (ipfw_dyn_rule *)rule;
882 if ( parent->dyn_type != O_LIMIT_PARENT)
883 panic("invalid parent");
884 parent->count++;
885 r->parent = parent;
886 rule = parent->rule;
889 r->id = *id;
890 r->expire = time_second + dyn_syn_lifetime;
891 r->rule = rule;
892 r->dyn_type = dyn_type;
893 r->pcnt = r->bcnt = 0;
894 r->count = 0;
896 r->bucket = i;
897 r->next = ipfw_dyn_v[i];
898 ipfw_dyn_v[i] = r;
899 dyn_count++;
900 DEB(kprintf("-- add dyn entry ty %d 0x%08x %d -> 0x%08x %d, total %d\n",
901 dyn_type,
902 (r->id.src_ip), (r->id.src_port),
903 (r->id.dst_ip), (r->id.dst_port),
904 dyn_count ); )
905 return r;
909 * lookup dynamic parent rule using pkt and rule as search keys.
910 * If the lookup fails, then install one.
912 static ipfw_dyn_rule *
913 lookup_dyn_parent(struct ipfw_flow_id *pkt, struct ip_fw *rule)
915 ipfw_dyn_rule *q;
916 int i;
918 if (ipfw_dyn_v) {
919 i = hash_packet( pkt );
920 for (q = ipfw_dyn_v[i] ; q != NULL ; q=q->next)
921 if (q->dyn_type == O_LIMIT_PARENT &&
922 rule== q->rule &&
923 pkt->proto == q->id.proto &&
924 pkt->src_ip == q->id.src_ip &&
925 pkt->dst_ip == q->id.dst_ip &&
926 pkt->src_port == q->id.src_port &&
927 pkt->dst_port == q->id.dst_port) {
928 q->expire = time_second + dyn_short_lifetime;
929 DEB(kprintf("lookup_dyn_parent found 0x%p\n",q);)
930 return q;
933 return add_dyn_rule(pkt, O_LIMIT_PARENT, rule);
937 * Install dynamic state for rule type cmd->o.opcode
939 * Returns 1 (failure) if state is not installed because of errors or because
940 * session limitations are enforced.
942 static int
943 install_state(struct ip_fw *rule, ipfw_insn_limit *cmd,
944 struct ip_fw_args *args)
946 static int last_log;
948 ipfw_dyn_rule *q;
950 DEB(kprintf("-- install state type %d 0x%08x %u -> 0x%08x %u\n",
951 cmd->o.opcode,
952 (args->f_id.src_ip), (args->f_id.src_port),
953 (args->f_id.dst_ip), (args->f_id.dst_port) );)
955 q = lookup_dyn_rule(&args->f_id, NULL, NULL);
957 if (q != NULL) { /* should never occur */
958 if (last_log != time_second) {
959 last_log = time_second;
960 kprintf(" install_state: entry already present, done\n");
962 return 0;
965 if (dyn_count >= dyn_max)
967 * Run out of slots, try to remove any expired rule.
969 remove_dyn_rule(NULL, (ipfw_dyn_rule *)1);
971 if (dyn_count >= dyn_max) {
972 if (last_log != time_second) {
973 last_log = time_second;
974 kprintf("install_state: Too many dynamic rules\n");
976 return 1; /* cannot install, notify caller */
979 switch (cmd->o.opcode) {
980 case O_KEEP_STATE: /* bidir rule */
981 add_dyn_rule(&args->f_id, O_KEEP_STATE, rule);
982 break;
984 case O_LIMIT: /* limit number of sessions */
986 u_int16_t limit_mask = cmd->limit_mask;
987 struct ipfw_flow_id id;
988 ipfw_dyn_rule *parent;
990 DEB(kprintf("installing dyn-limit rule %d\n", cmd->conn_limit);)
992 id.dst_ip = id.src_ip = 0;
993 id.dst_port = id.src_port = 0;
994 id.proto = args->f_id.proto;
996 if (limit_mask & DYN_SRC_ADDR)
997 id.src_ip = args->f_id.src_ip;
998 if (limit_mask & DYN_DST_ADDR)
999 id.dst_ip = args->f_id.dst_ip;
1000 if (limit_mask & DYN_SRC_PORT)
1001 id.src_port = args->f_id.src_port;
1002 if (limit_mask & DYN_DST_PORT)
1003 id.dst_port = args->f_id.dst_port;
1004 parent = lookup_dyn_parent(&id, rule);
1005 if (parent == NULL) {
1006 kprintf("add parent failed\n");
1007 return 1;
1009 if (parent->count >= cmd->conn_limit) {
1011 * See if we can remove some expired rule.
1013 remove_dyn_rule(rule, parent);
1014 if (parent->count >= cmd->conn_limit) {
1015 if (fw_verbose && last_log != time_second) {
1016 last_log = time_second;
1017 log(LOG_SECURITY | LOG_DEBUG,
1018 "drop session, too many entries\n");
1020 return 1;
1023 add_dyn_rule(&args->f_id, O_LIMIT, (struct ip_fw *)parent);
1025 break;
1026 default:
1027 kprintf("unknown dynamic rule type %u\n", cmd->o.opcode);
1028 return 1;
1030 lookup_dyn_rule(&args->f_id, NULL, NULL); /* XXX just set lifetime */
1031 return 0;
1035 * Transmit a TCP packet, containing either a RST or a keepalive.
1036 * When flags & TH_RST, we are sending a RST packet, because of a
1037 * "reset" action matched the packet.
1038 * Otherwise we are sending a keepalive, and flags & TH_
1040 static void
1041 send_pkt(struct ipfw_flow_id *id, u_int32_t seq, u_int32_t ack, int flags)
1043 struct mbuf *m;
1044 struct ip *ip;
1045 struct tcphdr *tcp;
1046 struct route sro; /* fake route */
1048 MGETHDR(m, MB_DONTWAIT, MT_HEADER);
1049 if (m == 0)
1050 return;
1051 m->m_pkthdr.rcvif = (struct ifnet *)0;
1052 m->m_pkthdr.len = m->m_len = sizeof(struct ip) + sizeof(struct tcphdr);
1053 m->m_data += max_linkhdr;
1055 ip = mtod(m, struct ip *);
1056 bzero(ip, m->m_len);
1057 tcp = (struct tcphdr *)(ip + 1); /* no IP options */
1058 ip->ip_p = IPPROTO_TCP;
1059 tcp->th_off = 5;
1061 * Assume we are sending a RST (or a keepalive in the reverse
1062 * direction), swap src and destination addresses and ports.
1064 ip->ip_src.s_addr = htonl(id->dst_ip);
1065 ip->ip_dst.s_addr = htonl(id->src_ip);
1066 tcp->th_sport = htons(id->dst_port);
1067 tcp->th_dport = htons(id->src_port);
1068 if (flags & TH_RST) { /* we are sending a RST */
1069 if (flags & TH_ACK) {
1070 tcp->th_seq = htonl(ack);
1071 tcp->th_ack = htonl(0);
1072 tcp->th_flags = TH_RST;
1073 } else {
1074 if (flags & TH_SYN)
1075 seq++;
1076 tcp->th_seq = htonl(0);
1077 tcp->th_ack = htonl(seq);
1078 tcp->th_flags = TH_RST | TH_ACK;
1080 } else {
1082 * We are sending a keepalive. flags & TH_SYN determines
1083 * the direction, forward if set, reverse if clear.
1084 * NOTE: seq and ack are always assumed to be correct
1085 * as set by the caller. This may be confusing...
1087 if (flags & TH_SYN) {
1089 * we have to rewrite the correct addresses!
1091 ip->ip_dst.s_addr = htonl(id->dst_ip);
1092 ip->ip_src.s_addr = htonl(id->src_ip);
1093 tcp->th_dport = htons(id->dst_port);
1094 tcp->th_sport = htons(id->src_port);
1096 tcp->th_seq = htonl(seq);
1097 tcp->th_ack = htonl(ack);
1098 tcp->th_flags = TH_ACK;
1101 * set ip_len to the payload size so we can compute
1102 * the tcp checksum on the pseudoheader
1103 * XXX check this, could save a couple of words ?
1105 ip->ip_len = htons(sizeof(struct tcphdr));
1106 tcp->th_sum = in_cksum(m, m->m_pkthdr.len);
1108 * now fill fields left out earlier
1110 ip->ip_ttl = ip_defttl;
1111 ip->ip_len = m->m_pkthdr.len;
1112 bzero (&sro, sizeof (sro));
1113 ip_rtaddr(ip->ip_dst, &sro);
1114 m->m_pkthdr.fw_flags |= IPFW_MBUF_SKIP_FIREWALL;
1115 ip_output(m, NULL, &sro, 0, NULL, NULL);
1116 if (sro.ro_rt)
1117 RTFREE(sro.ro_rt);
1121 * sends a reject message, consuming the mbuf passed as an argument.
1123 static void
1124 send_reject(struct ip_fw_args *args, int code, int offset, int ip_len)
1127 if (code != ICMP_REJECT_RST) { /* Send an ICMP unreach */
1128 /* We need the IP header in host order for icmp_error(). */
1129 if (args->eh != NULL) {
1130 struct ip *ip = mtod(args->m, struct ip *);
1131 ip->ip_len = ntohs(ip->ip_len);
1132 ip->ip_off = ntohs(ip->ip_off);
1134 icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
1135 } else if (offset == 0 && args->f_id.proto == IPPROTO_TCP) {
1136 struct tcphdr *const tcp =
1137 L3HDR(struct tcphdr, mtod(args->m, struct ip *));
1138 if ( (tcp->th_flags & TH_RST) == 0)
1139 send_pkt(&(args->f_id), ntohl(tcp->th_seq),
1140 ntohl(tcp->th_ack),
1141 tcp->th_flags | TH_RST);
1142 m_freem(args->m);
1143 } else
1144 m_freem(args->m);
1145 args->m = NULL;
1150 * Given an ip_fw *, lookup_next_rule will return a pointer
1151 * to the next rule, which can be either the jump
1152 * target (for skipto instructions) or the next one in the list (in
1153 * all other cases including a missing jump target).
1154 * The result is also written in the "next_rule" field of the rule.
1155 * Backward jumps are not allowed, so start looking from the next
1156 * rule...
1158 * This never returns NULL -- in case we do not have an exact match,
1159 * the next rule is returned. When the ruleset is changed,
1160 * pointers are flushed so we are always correct.
1163 static struct ip_fw *
1164 lookup_next_rule(struct ip_fw *me)
1166 struct ip_fw *rule = NULL;
1167 ipfw_insn *cmd;
1169 /* look for action, in case it is a skipto */
1170 cmd = ACTION_PTR(me);
1171 if (cmd->opcode == O_LOG)
1172 cmd += F_LEN(cmd);
1173 if ( cmd->opcode == O_SKIPTO )
1174 for (rule = me->next; rule ; rule = rule->next)
1175 if (rule->rulenum >= cmd->arg1)
1176 break;
1177 if (rule == NULL) /* failure or not a skipto */
1178 rule = me->next;
1179 me->next_rule = rule;
1180 return rule;
1184 * The main check routine for the firewall.
1186 * All arguments are in args so we can modify them and return them
1187 * back to the caller.
1189 * Parameters:
1191 * args->m (in/out) The packet; we set to NULL when/if we nuke it.
1192 * Starts with the IP header.
1193 * args->eh (in) Mac header if present, or NULL for layer3 packet.
1194 * args->oif Outgoing interface, or NULL if packet is incoming.
1195 * The incoming interface is in the mbuf. (in)
1197 * args->rule Pointer to the last matching rule (in/out)
1198 * args->next_hop Socket we are forwarding to (out).
1199 * args->f_id Addresses grabbed from the packet (out)
1201 * Return value:
1203 * IP_FW_PORT_DENY_FLAG the packet must be dropped.
1204 * 0 The packet is to be accepted and routed normally OR
1205 * the packet was denied/rejected and has been dropped;
1206 * in the latter case, *m is equal to NULL upon return.
1207 * port Divert the packet to port, with these caveats:
1209 * - If IP_FW_PORT_TEE_FLAG is set, tee the packet instead
1210 * of diverting it (ie, 'ipfw tee').
1212 * - If IP_FW_PORT_DYNT_FLAG is set, interpret the lower
1213 * 16 bits as a dummynet pipe number instead of diverting
1216 static int
1217 ipfw_chk(struct ip_fw_args *args)
1220 * Local variables hold state during the processing of a packet.
1222 * IMPORTANT NOTE: to speed up the processing of rules, there
1223 * are some assumption on the values of the variables, which
1224 * are documented here. Should you change them, please check
1225 * the implementation of the various instructions to make sure
1226 * that they still work.
1228 * args->eh The MAC header. It is non-null for a layer2
1229 * packet, it is NULL for a layer-3 packet.
1231 * m | args->m Pointer to the mbuf, as received from the caller.
1232 * It may change if ipfw_chk() does an m_pullup, or if it
1233 * consumes the packet because it calls send_reject().
1234 * XXX This has to change, so that ipfw_chk() never modifies
1235 * or consumes the buffer.
1236 * ip is simply an alias of the value of m, and it is kept
1237 * in sync with it (the packet is supposed to start with
1238 * the ip header).
1240 struct mbuf *m = args->m;
1241 struct ip *ip = mtod(m, struct ip *);
1244 * oif | args->oif If NULL, ipfw_chk has been called on the
1245 * inbound path (ether_input, ip_input).
1246 * If non-NULL, ipfw_chk has been called on the outbound path
1247 * (ether_output, ip_output).
1249 struct ifnet *oif = args->oif;
1251 struct ip_fw *f = NULL; /* matching rule */
1252 int retval = 0;
1253 struct m_tag *mtag;
1256 * hlen The length of the IPv4 header.
1257 * hlen >0 means we have an IPv4 packet.
1259 u_int hlen = 0; /* hlen >0 means we have an IP pkt */
1262 * offset The offset of a fragment. offset != 0 means that
1263 * we have a fragment at this offset of an IPv4 packet.
1264 * offset == 0 means that (if this is an IPv4 packet)
1265 * this is the first or only fragment.
1267 u_short offset = 0;
1270 * Local copies of addresses. They are only valid if we have
1271 * an IP packet.
1273 * proto The protocol. Set to 0 for non-ip packets,
1274 * or to the protocol read from the packet otherwise.
1275 * proto != 0 means that we have an IPv4 packet.
1277 * src_port, dst_port port numbers, in HOST format. Only
1278 * valid for TCP and UDP packets.
1280 * src_ip, dst_ip ip addresses, in NETWORK format.
1281 * Only valid for IPv4 packets.
1283 u_int8_t proto;
1284 u_int16_t src_port = 0, dst_port = 0; /* NOTE: host format */
1285 struct in_addr src_ip, dst_ip; /* NOTE: network format */
1286 u_int16_t ip_len=0;
1287 int dyn_dir = MATCH_UNKNOWN;
1288 ipfw_dyn_rule *q = NULL;
1290 if (m->m_pkthdr.fw_flags & IPFW_MBUF_SKIP_FIREWALL)
1291 return 0; /* accept */
1293 * dyn_dir = MATCH_UNKNOWN when rules unchecked,
1294 * MATCH_NONE when checked and not matched (q = NULL),
1295 * MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
1298 if (args->eh == NULL || /* layer 3 packet */
1299 ( m->m_pkthdr.len >= sizeof(struct ip) &&
1300 ntohs(args->eh->ether_type) == ETHERTYPE_IP))
1301 hlen = ip->ip_hl << 2;
1304 * Collect parameters into local variables for faster matching.
1306 if (hlen == 0) { /* do not grab addresses for non-ip pkts */
1307 proto = args->f_id.proto = 0; /* mark f_id invalid */
1308 goto after_ip_checks;
1311 proto = args->f_id.proto = ip->ip_p;
1312 src_ip = ip->ip_src;
1313 dst_ip = ip->ip_dst;
1314 if (args->eh != NULL) { /* layer 2 packets are as on the wire */
1315 offset = ntohs(ip->ip_off) & IP_OFFMASK;
1316 ip_len = ntohs(ip->ip_len);
1317 } else {
1318 offset = ip->ip_off & IP_OFFMASK;
1319 ip_len = ip->ip_len;
1322 #define PULLUP_TO(len) \
1323 do { \
1324 if ((m)->m_len < (len)) { \
1325 args->m = m = m_pullup(m, (len)); \
1326 if (m == 0) \
1327 goto pullup_failed; \
1328 ip = mtod(m, struct ip *); \
1330 } while (0)
1332 if (offset == 0) {
1333 switch (proto) {
1334 case IPPROTO_TCP:
1336 struct tcphdr *tcp;
1338 PULLUP_TO(hlen + sizeof(struct tcphdr));
1339 tcp = L3HDR(struct tcphdr, ip);
1340 dst_port = tcp->th_dport;
1341 src_port = tcp->th_sport;
1342 args->f_id.flags = tcp->th_flags;
1344 break;
1346 case IPPROTO_UDP:
1348 struct udphdr *udp;
1350 PULLUP_TO(hlen + sizeof(struct udphdr));
1351 udp = L3HDR(struct udphdr, ip);
1352 dst_port = udp->uh_dport;
1353 src_port = udp->uh_sport;
1355 break;
1357 case IPPROTO_ICMP:
1358 PULLUP_TO(hlen + 4); /* type, code and checksum. */
1359 args->f_id.flags = L3HDR(struct icmp, ip)->icmp_type;
1360 break;
1362 default:
1363 break;
1365 #undef PULLUP_TO
1368 args->f_id.src_ip = ntohl(src_ip.s_addr);
1369 args->f_id.dst_ip = ntohl(dst_ip.s_addr);
1370 args->f_id.src_port = src_port = ntohs(src_port);
1371 args->f_id.dst_port = dst_port = ntohs(dst_port);
1373 after_ip_checks:
1374 if (args->rule) {
1376 * Packet has already been tagged. Look for the next rule
1377 * to restart processing.
1379 * If fw_one_pass != 0 then just accept it.
1380 * XXX should not happen here, but optimized out in
1381 * the caller.
1383 if (fw_one_pass)
1384 return 0;
1386 f = args->rule->next_rule;
1387 if (f == NULL)
1388 f = lookup_next_rule(args->rule);
1389 } else {
1391 * Find the starting rule. It can be either the first
1392 * one, or the one after divert_rule if asked so.
1394 int skipto;
1396 mtag = m_tag_find(m, PACKET_TAG_IPFW_DIVERT, NULL);
1397 if (mtag != NULL)
1398 skipto = *(u_int16_t *)m_tag_data(mtag);
1399 else
1400 skipto = 0;
1402 f = layer3_chain;
1403 if (args->eh == NULL && skipto != 0) {
1404 if (skipto >= IPFW_DEFAULT_RULE)
1405 return(IP_FW_PORT_DENY_FLAG); /* invalid */
1406 while (f && f->rulenum <= skipto)
1407 f = f->next;
1408 if (f == NULL) /* drop packet */
1409 return(IP_FW_PORT_DENY_FLAG);
1412 if ((mtag = m_tag_find(m, PACKET_TAG_IPFW_DIVERT, NULL)) != NULL)
1413 m_tag_delete(m, mtag);
1416 * Now scan the rules, and parse microinstructions for each rule.
1418 for (; f; f = f->next) {
1419 int l, cmdlen;
1420 ipfw_insn *cmd;
1421 int skip_or; /* skip rest of OR block */
1423 again:
1424 if (set_disable & (1 << f->set) )
1425 continue;
1427 skip_or = 0;
1428 for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
1429 l -= cmdlen, cmd += cmdlen) {
1430 int match;
1433 * check_body is a jump target used when we find a
1434 * CHECK_STATE, and need to jump to the body of
1435 * the target rule.
1438 check_body:
1439 cmdlen = F_LEN(cmd);
1441 * An OR block (insn_1 || .. || insn_n) has the
1442 * F_OR bit set in all but the last instruction.
1443 * The first match will set "skip_or", and cause
1444 * the following instructions to be skipped until
1445 * past the one with the F_OR bit clear.
1447 if (skip_or) { /* skip this instruction */
1448 if ((cmd->len & F_OR) == 0)
1449 skip_or = 0; /* next one is good */
1450 continue;
1452 match = 0; /* set to 1 if we succeed */
1454 switch (cmd->opcode) {
1456 * The first set of opcodes compares the packet's
1457 * fields with some pattern, setting 'match' if a
1458 * match is found. At the end of the loop there is
1459 * logic to deal with F_NOT and F_OR flags associated
1460 * with the opcode.
1462 case O_NOP:
1463 match = 1;
1464 break;
1466 case O_FORWARD_MAC:
1467 kprintf("ipfw: opcode %d unimplemented\n",
1468 cmd->opcode);
1469 break;
1471 case O_GID:
1472 case O_UID:
1474 * We only check offset == 0 && proto != 0,
1475 * as this ensures that we have an IPv4
1476 * packet with the ports info.
1478 if (offset!=0)
1479 break;
1481 struct inpcbinfo *pi;
1482 int wildcard;
1483 struct inpcb *pcb;
1485 if (proto == IPPROTO_TCP) {
1486 wildcard = 0;
1487 pi = &tcbinfo[mycpu->gd_cpuid];
1488 } else if (proto == IPPROTO_UDP) {
1489 wildcard = 1;
1490 pi = &udbinfo;
1491 } else
1492 break;
1494 pcb = (oif) ?
1495 in_pcblookup_hash(pi,
1496 dst_ip, htons(dst_port),
1497 src_ip, htons(src_port),
1498 wildcard, oif) :
1499 in_pcblookup_hash(pi,
1500 src_ip, htons(src_port),
1501 dst_ip, htons(dst_port),
1502 wildcard, NULL);
1504 if (pcb == NULL || pcb->inp_socket == NULL)
1505 break;
1506 #if defined(__DragonFly__) || (defined(__FreeBSD__) && __FreeBSD_version < 500034)
1507 #define socheckuid(a,b) ((a)->so_cred->cr_uid != (b))
1508 #endif
1509 if (cmd->opcode == O_UID) {
1510 match =
1511 !socheckuid(pcb->inp_socket,
1512 (uid_t)((ipfw_insn_u32 *)cmd)->d[0]);
1513 } else {
1514 match = groupmember(
1515 (uid_t)((ipfw_insn_u32 *)cmd)->d[0],
1516 pcb->inp_socket->so_cred);
1519 break;
1521 case O_RECV:
1522 match = iface_match(m->m_pkthdr.rcvif,
1523 (ipfw_insn_if *)cmd);
1524 break;
1526 case O_XMIT:
1527 match = iface_match(oif, (ipfw_insn_if *)cmd);
1528 break;
1530 case O_VIA:
1531 match = iface_match(oif ? oif :
1532 m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd);
1533 break;
1535 case O_MACADDR2:
1536 if (args->eh != NULL) { /* have MAC header */
1537 u_int32_t *want = (u_int32_t *)
1538 ((ipfw_insn_mac *)cmd)->addr;
1539 u_int32_t *mask = (u_int32_t *)
1540 ((ipfw_insn_mac *)cmd)->mask;
1541 u_int32_t *hdr = (u_int32_t *)args->eh;
1543 match =
1544 ( want[0] == (hdr[0] & mask[0]) &&
1545 want[1] == (hdr[1] & mask[1]) &&
1546 want[2] == (hdr[2] & mask[2]) );
1548 break;
1550 case O_MAC_TYPE:
1551 if (args->eh != NULL) {
1552 u_int16_t t =
1553 ntohs(args->eh->ether_type);
1554 u_int16_t *p =
1555 ((ipfw_insn_u16 *)cmd)->ports;
1556 int i;
1558 for (i = cmdlen - 1; !match && i>0;
1559 i--, p += 2)
1560 match = (t>=p[0] && t<=p[1]);
1562 break;
1564 case O_FRAG:
1565 match = (hlen > 0 && offset != 0);
1566 break;
1568 case O_IN: /* "out" is "not in" */
1569 match = (oif == NULL);
1570 break;
1572 case O_LAYER2:
1573 match = (args->eh != NULL);
1574 break;
1576 case O_PROTO:
1578 * We do not allow an arg of 0 so the
1579 * check of "proto" only suffices.
1581 match = (proto == cmd->arg1);
1582 break;
1584 case O_IP_SRC:
1585 match = (hlen > 0 &&
1586 ((ipfw_insn_ip *)cmd)->addr.s_addr ==
1587 src_ip.s_addr);
1588 break;
1590 case O_IP_SRC_MASK:
1591 match = (hlen > 0 &&
1592 ((ipfw_insn_ip *)cmd)->addr.s_addr ==
1593 (src_ip.s_addr &
1594 ((ipfw_insn_ip *)cmd)->mask.s_addr));
1595 break;
1597 case O_IP_SRC_ME:
1598 if (hlen > 0) {
1599 struct ifnet *tif;
1601 INADDR_TO_IFP(src_ip, tif);
1602 match = (tif != NULL);
1604 break;
1606 case O_IP_DST_SET:
1607 case O_IP_SRC_SET:
1608 if (hlen > 0) {
1609 u_int32_t *d = (u_int32_t *)(cmd+1);
1610 u_int32_t addr =
1611 cmd->opcode == O_IP_DST_SET ?
1612 args->f_id.dst_ip :
1613 args->f_id.src_ip;
1615 if (addr < d[0])
1616 break;
1617 addr -= d[0]; /* subtract base */
1618 match = (addr < cmd->arg1) &&
1619 ( d[ 1 + (addr>>5)] &
1620 (1<<(addr & 0x1f)) );
1622 break;
1624 case O_IP_DST:
1625 match = (hlen > 0 &&
1626 ((ipfw_insn_ip *)cmd)->addr.s_addr ==
1627 dst_ip.s_addr);
1628 break;
1630 case O_IP_DST_MASK:
1631 match = (hlen > 0) &&
1632 (((ipfw_insn_ip *)cmd)->addr.s_addr ==
1633 (dst_ip.s_addr &
1634 ((ipfw_insn_ip *)cmd)->mask.s_addr));
1635 break;
1637 case O_IP_DST_ME:
1638 if (hlen > 0) {
1639 struct ifnet *tif;
1641 INADDR_TO_IFP(dst_ip, tif);
1642 match = (tif != NULL);
1644 break;
1646 case O_IP_SRCPORT:
1647 case O_IP_DSTPORT:
1649 * offset == 0 && proto != 0 is enough
1650 * to guarantee that we have an IPv4
1651 * packet with port info.
1653 if ((proto==IPPROTO_UDP || proto==IPPROTO_TCP)
1654 && offset == 0) {
1655 u_int16_t x =
1656 (cmd->opcode == O_IP_SRCPORT) ?
1657 src_port : dst_port ;
1658 u_int16_t *p =
1659 ((ipfw_insn_u16 *)cmd)->ports;
1660 int i;
1662 for (i = cmdlen - 1; !match && i>0;
1663 i--, p += 2)
1664 match = (x>=p[0] && x<=p[1]);
1666 break;
1668 case O_ICMPTYPE:
1669 match = (offset == 0 && proto==IPPROTO_ICMP &&
1670 icmptype_match(ip, (ipfw_insn_u32 *)cmd) );
1671 break;
1673 case O_IPOPT:
1674 match = (hlen > 0 && ipopts_match(ip, cmd) );
1675 break;
1677 case O_IPVER:
1678 match = (hlen > 0 && cmd->arg1 == ip->ip_v);
1679 break;
1681 case O_IPTTL:
1682 match = (hlen > 0 && cmd->arg1 == ip->ip_ttl);
1683 break;
1685 case O_IPID:
1686 match = (hlen > 0 &&
1687 cmd->arg1 == ntohs(ip->ip_id));
1688 break;
1690 case O_IPLEN:
1691 match = (hlen > 0 && cmd->arg1 == ip_len);
1692 break;
1694 case O_IPPRECEDENCE:
1695 match = (hlen > 0 &&
1696 (cmd->arg1 == (ip->ip_tos & 0xe0)) );
1697 break;
1699 case O_IPTOS:
1700 match = (hlen > 0 &&
1701 flags_match(cmd, ip->ip_tos));
1702 break;
1704 case O_TCPFLAGS:
1705 match = (proto == IPPROTO_TCP && offset == 0 &&
1706 flags_match(cmd,
1707 L3HDR(struct tcphdr,ip)->th_flags));
1708 break;
1710 case O_TCPOPTS:
1711 match = (proto == IPPROTO_TCP && offset == 0 &&
1712 tcpopts_match(ip, cmd));
1713 break;
1715 case O_TCPSEQ:
1716 match = (proto == IPPROTO_TCP && offset == 0 &&
1717 ((ipfw_insn_u32 *)cmd)->d[0] ==
1718 L3HDR(struct tcphdr,ip)->th_seq);
1719 break;
1721 case O_TCPACK:
1722 match = (proto == IPPROTO_TCP && offset == 0 &&
1723 ((ipfw_insn_u32 *)cmd)->d[0] ==
1724 L3HDR(struct tcphdr,ip)->th_ack);
1725 break;
1727 case O_TCPWIN:
1728 match = (proto == IPPROTO_TCP && offset == 0 &&
1729 cmd->arg1 ==
1730 L3HDR(struct tcphdr,ip)->th_win);
1731 break;
1733 case O_ESTAB:
1734 /* reject packets which have SYN only */
1735 /* XXX should i also check for TH_ACK ? */
1736 match = (proto == IPPROTO_TCP && offset == 0 &&
1737 (L3HDR(struct tcphdr,ip)->th_flags &
1738 (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
1739 break;
1741 case O_LOG:
1742 if (fw_verbose)
1743 ipfw_log(f, hlen, args->eh, m, oif);
1744 match = 1;
1745 break;
1747 case O_PROB:
1748 match = (krandom() <
1749 ((ipfw_insn_u32 *)cmd)->d[0]);
1750 break;
1753 * The second set of opcodes represents 'actions',
1754 * i.e. the terminal part of a rule once the packet
1755 * matches all previous patterns.
1756 * Typically there is only one action for each rule,
1757 * and the opcode is stored at the end of the rule
1758 * (but there are exceptions -- see below).
1760 * In general, here we set retval and terminate the
1761 * outer loop (would be a 'break 3' in some language,
1762 * but we need to do a 'goto done').
1764 * Exceptions:
1765 * O_COUNT and O_SKIPTO actions:
1766 * instead of terminating, we jump to the next rule
1767 * ('goto next_rule', equivalent to a 'break 2'),
1768 * or to the SKIPTO target ('goto again' after
1769 * having set f, cmd and l), respectively.
1771 * O_LIMIT and O_KEEP_STATE: these opcodes are
1772 * not real 'actions', and are stored right
1773 * before the 'action' part of the rule.
1774 * These opcodes try to install an entry in the
1775 * state tables; if successful, we continue with
1776 * the next opcode (match=1; break;), otherwise
1777 * the packet * must be dropped
1778 * ('goto done' after setting retval);
1780 * O_PROBE_STATE and O_CHECK_STATE: these opcodes
1781 * cause a lookup of the state table, and a jump
1782 * to the 'action' part of the parent rule
1783 * ('goto check_body') if an entry is found, or
1784 * (CHECK_STATE only) a jump to the next rule if
1785 * the entry is not found ('goto next_rule').
1786 * The result of the lookup is cached to make
1787 * further instances of these opcodes are
1788 * effectively NOPs.
1790 case O_LIMIT:
1791 case O_KEEP_STATE:
1792 if (install_state(f,
1793 (ipfw_insn_limit *)cmd, args)) {
1794 retval = IP_FW_PORT_DENY_FLAG;
1795 goto done; /* error/limit violation */
1797 match = 1;
1798 break;
1800 case O_PROBE_STATE:
1801 case O_CHECK_STATE:
1803 * dynamic rules are checked at the first
1804 * keep-state or check-state occurrence,
1805 * with the result being stored in dyn_dir.
1806 * The compiler introduces a PROBE_STATE
1807 * instruction for us when we have a
1808 * KEEP_STATE (because PROBE_STATE needs
1809 * to be run first).
1811 if (dyn_dir == MATCH_UNKNOWN &&
1812 (q = lookup_dyn_rule(&args->f_id,
1813 &dyn_dir, proto == IPPROTO_TCP ?
1814 L3HDR(struct tcphdr, ip) : NULL))
1815 != NULL) {
1817 * Found dynamic entry, update stats
1818 * and jump to the 'action' part of
1819 * the parent rule.
1821 q->pcnt++;
1822 q->bcnt += ip_len;
1823 f = q->rule;
1824 cmd = ACTION_PTR(f);
1825 l = f->cmd_len - f->act_ofs;
1826 goto check_body;
1829 * Dynamic entry not found. If CHECK_STATE,
1830 * skip to next rule, if PROBE_STATE just
1831 * ignore and continue with next opcode.
1833 if (cmd->opcode == O_CHECK_STATE)
1834 goto next_rule;
1835 match = 1;
1836 break;
1838 case O_ACCEPT:
1839 retval = 0; /* accept */
1840 goto done;
1842 case O_PIPE:
1843 case O_QUEUE:
1844 args->rule = f; /* report matching rule */
1845 retval = cmd->arg1 | IP_FW_PORT_DYNT_FLAG;
1846 goto done;
1848 case O_DIVERT:
1849 case O_TEE:
1850 if (args->eh) /* not on layer 2 */
1851 break;
1853 mtag = m_tag_get(PACKET_TAG_IPFW_DIVERT,
1854 sizeof(u_int16_t), M_NOWAIT);
1855 if (mtag == NULL) {
1856 retval = IP_FW_PORT_DENY_FLAG;
1857 goto done;
1859 *(u_int16_t *)m_tag_data(mtag) = f->rulenum;
1860 m_tag_prepend(m, mtag);
1861 retval = (cmd->opcode == O_DIVERT) ?
1862 cmd->arg1 :
1863 cmd->arg1 | IP_FW_PORT_TEE_FLAG;
1864 goto done;
1866 case O_COUNT:
1867 case O_SKIPTO:
1868 f->pcnt++; /* update stats */
1869 f->bcnt += ip_len;
1870 f->timestamp = time_second;
1871 if (cmd->opcode == O_COUNT)
1872 goto next_rule;
1873 /* handle skipto */
1874 if (f->next_rule == NULL)
1875 lookup_next_rule(f);
1876 f = f->next_rule;
1877 goto again;
1879 case O_REJECT:
1881 * Drop the packet and send a reject notice
1882 * if the packet is not ICMP (or is an ICMP
1883 * query), and it is not multicast/broadcast.
1885 if (hlen > 0 &&
1886 (proto != IPPROTO_ICMP ||
1887 is_icmp_query(ip)) &&
1888 !(m->m_flags & (M_BCAST|M_MCAST)) &&
1889 !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
1890 send_reject(args, cmd->arg1,
1891 offset,ip_len);
1892 m = args->m;
1894 /* FALLTHROUGH */
1895 case O_DENY:
1896 retval = IP_FW_PORT_DENY_FLAG;
1897 goto done;
1899 case O_FORWARD_IP:
1900 if (args->eh) /* not valid on layer2 pkts */
1901 break;
1902 if (!q || dyn_dir == MATCH_FORWARD)
1903 args->next_hop =
1904 &((ipfw_insn_sa *)cmd)->sa;
1905 retval = 0;
1906 goto done;
1908 default:
1909 panic("-- unknown opcode %d\n", cmd->opcode);
1910 } /* end of switch() on opcodes */
1912 if (cmd->len & F_NOT)
1913 match = !match;
1915 if (match) {
1916 if (cmd->len & F_OR)
1917 skip_or = 1;
1918 } else {
1919 if (!(cmd->len & F_OR)) /* not an OR block, */
1920 break; /* try next rule */
1923 } /* end of inner for, scan opcodes */
1925 next_rule:; /* try next rule */
1927 } /* end of outer for, scan rules */
1928 kprintf("+++ ipfw: ouch!, skip past end of rules, denying packet\n");
1929 return(IP_FW_PORT_DENY_FLAG);
1931 done:
1932 /* Update statistics */
1933 f->pcnt++;
1934 f->bcnt += ip_len;
1935 f->timestamp = time_second;
1936 return retval;
1938 pullup_failed:
1939 if (fw_verbose)
1940 kprintf("pullup failed\n");
1941 return(IP_FW_PORT_DENY_FLAG);
1945 * When a rule is added/deleted, clear the next_rule pointers in all rules.
1946 * These will be reconstructed on the fly as packets are matched.
1947 * Must be called at splimp().
1949 static void
1950 flush_rule_ptrs(void)
1952 struct ip_fw *rule;
1954 for (rule = layer3_chain; rule; rule = rule->next)
1955 rule->next_rule = NULL;
1959 * When pipes/queues are deleted, clear the "pipe_ptr" pointer to a given
1960 * pipe/queue, or to all of them (match == NULL).
1961 * Must be called at splimp().
1963 void
1964 flush_pipe_ptrs(struct dn_flow_set *match)
1966 struct ip_fw *rule;
1968 for (rule = layer3_chain; rule; rule = rule->next) {
1969 ipfw_insn_pipe *cmd = (ipfw_insn_pipe *)ACTION_PTR(rule);
1971 if (cmd->o.opcode != O_PIPE && cmd->o.opcode != O_QUEUE)
1972 continue;
1973 if (match == NULL || cmd->pipe_ptr == match)
1974 cmd->pipe_ptr = NULL;
1979 * Add a new rule to the list. Copy the rule into a malloc'ed area, then
1980 * possibly create a rule number and add the rule to the list.
1981 * Update the rule_number in the input struct so the caller knows it as well.
1983 static int
1984 add_rule(struct ip_fw **head, struct ip_fw *input_rule)
1986 struct ip_fw *rule, *f, *prev;
1987 int l = RULESIZE(input_rule);
1989 if (*head == NULL && input_rule->rulenum != IPFW_DEFAULT_RULE)
1990 return (EINVAL);
1992 rule = kmalloc(l, M_IPFW, M_WAITOK | M_ZERO);
1993 if (rule == NULL)
1994 return (ENOSPC);
1996 bcopy(input_rule, rule, l);
1998 rule->next = NULL;
1999 rule->next_rule = NULL;
2001 rule->pcnt = 0;
2002 rule->bcnt = 0;
2003 rule->timestamp = 0;
2005 crit_enter();
2007 if (*head == NULL) { /* default rule */
2008 *head = rule;
2009 goto done;
2013 * If rulenum is 0, find highest numbered rule before the
2014 * default rule, and add autoinc_step
2016 if (autoinc_step < 1)
2017 autoinc_step = 1;
2018 else if (autoinc_step > 1000)
2019 autoinc_step = 1000;
2020 if (rule->rulenum == 0) {
2022 * locate the highest numbered rule before default
2024 for (f = *head; f; f = f->next) {
2025 if (f->rulenum == IPFW_DEFAULT_RULE)
2026 break;
2027 rule->rulenum = f->rulenum;
2029 if (rule->rulenum < IPFW_DEFAULT_RULE - autoinc_step)
2030 rule->rulenum += autoinc_step;
2031 input_rule->rulenum = rule->rulenum;
2035 * Now insert the new rule in the right place in the sorted list.
2037 for (prev = NULL, f = *head; f; prev = f, f = f->next) {
2038 if (f->rulenum > rule->rulenum) { /* found the location */
2039 if (prev) {
2040 rule->next = f;
2041 prev->next = rule;
2042 } else { /* head insert */
2043 rule->next = *head;
2044 *head = rule;
2046 break;
2049 flush_rule_ptrs();
2050 done:
2051 static_count++;
2052 static_len += l;
2053 crit_exit();
2054 DEB(kprintf("++ installed rule %d, static count now %d\n",
2055 rule->rulenum, static_count);)
2056 return (0);
2060 * Free storage associated with a static rule (including derived
2061 * dynamic rules).
2062 * The caller is in charge of clearing rule pointers to avoid
2063 * dangling pointers.
2064 * @return a pointer to the next entry.
2065 * Arguments are not checked, so they better be correct.
2066 * Must be called at splimp().
2068 static struct ip_fw *
2069 delete_rule(struct ip_fw **head, struct ip_fw *prev, struct ip_fw *rule)
2071 struct ip_fw *n;
2072 int l = RULESIZE(rule);
2074 n = rule->next;
2075 remove_dyn_rule(rule, NULL /* force removal */);
2076 if (prev == NULL)
2077 *head = n;
2078 else
2079 prev->next = n;
2080 static_count--;
2081 static_len -= l;
2083 if (DUMMYNET_LOADED)
2084 ip_dn_ruledel_ptr(rule);
2085 kfree(rule, M_IPFW);
2086 return n;
2090 * Deletes all rules from a chain (including the default rule
2091 * if the second argument is set).
2092 * Must be called at splimp().
2094 static void
2095 free_chain(struct ip_fw **chain, int kill_default)
2097 struct ip_fw *rule;
2099 flush_rule_ptrs(); /* more efficient to do outside the loop */
2101 while ( (rule = *chain) != NULL &&
2102 (kill_default || rule->rulenum != IPFW_DEFAULT_RULE) )
2103 delete_rule(chain, NULL, rule);
2107 * Remove all rules with given number, and also do set manipulation.
2109 * The argument is an u_int32_t. The low 16 bit are the rule or set number,
2110 * the next 8 bits are the new set, the top 8 bits are the command:
2112 * 0 delete rules with given number
2113 * 1 delete rules with given set number
2114 * 2 move rules with given number to new set
2115 * 3 move rules with given set number to new set
2116 * 4 swap sets with given numbers
2118 static int
2119 del_entry(struct ip_fw **chain, u_int32_t arg)
2121 struct ip_fw *prev, *rule;
2122 u_int16_t rulenum;
2123 u_int8_t cmd, new_set;
2125 rulenum = arg & 0xffff;
2126 cmd = (arg >> 24) & 0xff;
2127 new_set = (arg >> 16) & 0xff;
2129 if (cmd > 4)
2130 return EINVAL;
2131 if (new_set > 30)
2132 return EINVAL;
2133 if (cmd == 0 || cmd == 2) {
2134 if (rulenum == IPFW_DEFAULT_RULE)
2135 return EINVAL;
2136 } else {
2137 if (rulenum > 30)
2138 return EINVAL;
2141 switch (cmd) {
2142 case 0: /* delete rules with given number */
2144 * locate first rule to delete
2146 for (prev = NULL, rule = *chain;
2147 rule && rule->rulenum < rulenum;
2148 prev = rule, rule = rule->next)
2150 if (rule->rulenum != rulenum)
2151 return EINVAL;
2153 crit_enter(); /* no access to rules while removing */
2155 * flush pointers outside the loop, then delete all matching
2156 * rules. prev remains the same throughout the cycle.
2158 flush_rule_ptrs();
2159 while (rule && rule->rulenum == rulenum)
2160 rule = delete_rule(chain, prev, rule);
2161 crit_exit();
2162 break;
2164 case 1: /* delete all rules with given set number */
2165 crit_enter();
2166 flush_rule_ptrs();
2167 for (prev = NULL, rule = *chain; rule ; )
2168 if (rule->set == rulenum)
2169 rule = delete_rule(chain, prev, rule);
2170 else {
2171 prev = rule;
2172 rule = rule->next;
2174 crit_exit();
2175 break;
2177 case 2: /* move rules with given number to new set */
2178 crit_enter();
2179 for (rule = *chain; rule ; rule = rule->next)
2180 if (rule->rulenum == rulenum)
2181 rule->set = new_set;
2182 crit_exit();
2183 break;
2185 case 3: /* move rules with given set number to new set */
2186 crit_enter();
2187 for (rule = *chain; rule ; rule = rule->next)
2188 if (rule->set == rulenum)
2189 rule->set = new_set;
2190 crit_exit();
2191 break;
2193 case 4: /* swap two sets */
2194 crit_enter();
2195 for (rule = *chain; rule ; rule = rule->next)
2196 if (rule->set == rulenum)
2197 rule->set = new_set;
2198 else if (rule->set == new_set)
2199 rule->set = rulenum;
2200 crit_exit();
2201 break;
2203 return 0;
2207 * Clear counters for a specific rule.
2209 static void
2210 clear_counters(struct ip_fw *rule, int log_only)
2212 ipfw_insn_log *l = (ipfw_insn_log *)ACTION_PTR(rule);
2214 if (log_only == 0) {
2215 rule->bcnt = rule->pcnt = 0;
2216 rule->timestamp = 0;
2218 if (l->o.opcode == O_LOG)
2219 l->log_left = l->max_log;
2223 * Reset some or all counters on firewall rules.
2224 * @arg frwl is null to clear all entries, or contains a specific
2225 * rule number.
2226 * @arg log_only is 1 if we only want to reset logs, zero otherwise.
2228 static int
2229 zero_entry(int rulenum, int log_only)
2231 struct ip_fw *rule;
2232 char *msg;
2234 if (rulenum == 0) {
2235 crit_enter();
2236 norule_counter = 0;
2237 for (rule = layer3_chain; rule; rule = rule->next)
2238 clear_counters(rule, log_only);
2239 crit_exit();
2240 msg = log_only ? "ipfw: All logging counts reset.\n" :
2241 "ipfw: Accounting cleared.\n";
2242 } else {
2243 int cleared = 0;
2245 * We can have multiple rules with the same number, so we
2246 * need to clear them all.
2248 for (rule = layer3_chain; rule; rule = rule->next)
2249 if (rule->rulenum == rulenum) {
2250 crit_enter();
2251 while (rule && rule->rulenum == rulenum) {
2252 clear_counters(rule, log_only);
2253 rule = rule->next;
2255 crit_exit();
2256 cleared = 1;
2257 break;
2259 if (!cleared) /* we did not find any matching rules */
2260 return (EINVAL);
2261 msg = log_only ? "ipfw: Entry %d logging count reset.\n" :
2262 "ipfw: Entry %d cleared.\n";
2264 if (fw_verbose)
2265 log(LOG_SECURITY | LOG_NOTICE, msg, rulenum);
2266 return (0);
2270 * Check validity of the structure before insert.
2271 * Fortunately rules are simple, so this mostly need to check rule sizes.
2273 static int
2274 check_ipfw_struct(struct ip_fw *rule, int size)
2276 int l, cmdlen = 0;
2277 int have_action=0;
2278 ipfw_insn *cmd;
2280 if (size < sizeof(*rule)) {
2281 kprintf("ipfw: rule too short\n");
2282 return (EINVAL);
2284 /* first, check for valid size */
2285 l = RULESIZE(rule);
2286 if (l != size) {
2287 kprintf("ipfw: size mismatch (have %d want %d)\n", size, l);
2288 return (EINVAL);
2291 * Now go for the individual checks. Very simple ones, basically only
2292 * instruction sizes.
2294 for (l = rule->cmd_len, cmd = rule->cmd ;
2295 l > 0 ; l -= cmdlen, cmd += cmdlen) {
2296 cmdlen = F_LEN(cmd);
2297 if (cmdlen > l) {
2298 kprintf("ipfw: opcode %d size truncated\n",
2299 cmd->opcode);
2300 return EINVAL;
2302 DEB(kprintf("ipfw: opcode %d\n", cmd->opcode);)
2303 switch (cmd->opcode) {
2304 case O_NOP:
2305 case O_PROBE_STATE:
2306 case O_KEEP_STATE:
2307 case O_PROTO:
2308 case O_IP_SRC_ME:
2309 case O_IP_DST_ME:
2310 case O_LAYER2:
2311 case O_IN:
2312 case O_FRAG:
2313 case O_IPOPT:
2314 case O_IPLEN:
2315 case O_IPID:
2316 case O_IPTOS:
2317 case O_IPPRECEDENCE:
2318 case O_IPTTL:
2319 case O_IPVER:
2320 case O_TCPWIN:
2321 case O_TCPFLAGS:
2322 case O_TCPOPTS:
2323 case O_ESTAB:
2324 if (cmdlen != F_INSN_SIZE(ipfw_insn))
2325 goto bad_size;
2326 break;
2328 case O_UID:
2329 case O_GID:
2330 case O_IP_SRC:
2331 case O_IP_DST:
2332 case O_TCPSEQ:
2333 case O_TCPACK:
2334 case O_PROB:
2335 case O_ICMPTYPE:
2336 if (cmdlen != F_INSN_SIZE(ipfw_insn_u32))
2337 goto bad_size;
2338 break;
2340 case O_LIMIT:
2341 if (cmdlen != F_INSN_SIZE(ipfw_insn_limit))
2342 goto bad_size;
2343 break;
2345 case O_LOG:
2346 if (cmdlen != F_INSN_SIZE(ipfw_insn_log))
2347 goto bad_size;
2349 ((ipfw_insn_log *)cmd)->log_left =
2350 ((ipfw_insn_log *)cmd)->max_log;
2352 break;
2354 case O_IP_SRC_MASK:
2355 case O_IP_DST_MASK:
2356 if (cmdlen != F_INSN_SIZE(ipfw_insn_ip))
2357 goto bad_size;
2358 if (((ipfw_insn_ip *)cmd)->mask.s_addr == 0) {
2359 kprintf("ipfw: opcode %d, useless rule\n",
2360 cmd->opcode);
2361 return EINVAL;
2363 break;
2365 case O_IP_SRC_SET:
2366 case O_IP_DST_SET:
2367 if (cmd->arg1 == 0 || cmd->arg1 > 256) {
2368 kprintf("ipfw: invalid set size %d\n",
2369 cmd->arg1);
2370 return EINVAL;
2372 if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
2373 (cmd->arg1+31)/32 )
2374 goto bad_size;
2375 break;
2377 case O_MACADDR2:
2378 if (cmdlen != F_INSN_SIZE(ipfw_insn_mac))
2379 goto bad_size;
2380 break;
2382 case O_MAC_TYPE:
2383 case O_IP_SRCPORT:
2384 case O_IP_DSTPORT: /* XXX artificial limit, 30 port pairs */
2385 if (cmdlen < 2 || cmdlen > 31)
2386 goto bad_size;
2387 break;
2389 case O_RECV:
2390 case O_XMIT:
2391 case O_VIA:
2392 if (cmdlen != F_INSN_SIZE(ipfw_insn_if))
2393 goto bad_size;
2394 break;
2396 case O_PIPE:
2397 case O_QUEUE:
2398 if (cmdlen != F_INSN_SIZE(ipfw_insn_pipe))
2399 goto bad_size;
2400 goto check_action;
2402 case O_FORWARD_IP:
2403 if (cmdlen != F_INSN_SIZE(ipfw_insn_sa))
2404 goto bad_size;
2405 goto check_action;
2407 case O_FORWARD_MAC: /* XXX not implemented yet */
2408 case O_CHECK_STATE:
2409 case O_COUNT:
2410 case O_ACCEPT:
2411 case O_DENY:
2412 case O_REJECT:
2413 case O_SKIPTO:
2414 case O_DIVERT:
2415 case O_TEE:
2416 if (cmdlen != F_INSN_SIZE(ipfw_insn))
2417 goto bad_size;
2418 check_action:
2419 if (have_action) {
2420 kprintf("ipfw: opcode %d, multiple actions"
2421 " not allowed\n",
2422 cmd->opcode);
2423 return EINVAL;
2425 have_action = 1;
2426 if (l != cmdlen) {
2427 kprintf("ipfw: opcode %d, action must be"
2428 " last opcode\n",
2429 cmd->opcode);
2430 return EINVAL;
2432 break;
2433 default:
2434 kprintf("ipfw: opcode %d, unknown opcode\n",
2435 cmd->opcode);
2436 return EINVAL;
2439 if (have_action == 0) {
2440 kprintf("ipfw: missing action\n");
2441 return EINVAL;
2443 return 0;
2445 bad_size:
2446 kprintf("ipfw: opcode %d size %d wrong\n",
2447 cmd->opcode, cmdlen);
2448 return EINVAL;
2453 * {set|get}sockopt parser.
2455 static int
2456 ipfw_ctl(struct sockopt *sopt)
2458 int error, rulenum;
2459 size_t size;
2460 struct ip_fw *bp , *buf, *rule;
2462 static u_int32_t rule_buf[255]; /* we copy the data here */
2465 * Disallow modifications in really-really secure mode, but still allow
2466 * the logging counters to be reset.
2468 if (sopt->sopt_name == IP_FW_ADD ||
2469 (sopt->sopt_dir == SOPT_SET && sopt->sopt_name != IP_FW_RESETLOG)) {
2470 #if defined(__FreeBSD__) && __FreeBSD_version >= 500034
2471 error = securelevel_ge(sopt->sopt_td->td_ucred, 3);
2472 if (error)
2473 return (error);
2474 #else /* FreeBSD 4.x */
2475 if (securelevel >= 3)
2476 return (EPERM);
2477 #endif
2480 error = 0;
2482 switch (sopt->sopt_name) {
2483 case IP_FW_GET:
2485 * pass up a copy of the current rules. Static rules
2486 * come first (the last of which has number IPFW_DEFAULT_RULE),
2487 * followed by a possibly empty list of dynamic rule.
2488 * The last dynamic rule has NULL in the "next" field.
2490 crit_enter();
2491 size = static_len; /* size of static rules */
2492 if (ipfw_dyn_v) /* add size of dyn.rules */
2493 size += (dyn_count * sizeof(ipfw_dyn_rule));
2496 * XXX todo: if the user passes a short length just to know
2497 * how much room is needed, do not bother filling up the
2498 * buffer, just jump to the sooptcopyout.
2500 buf = kmalloc(size, M_TEMP, M_WAITOK);
2502 bp = buf;
2503 for (rule = layer3_chain; rule ; rule = rule->next) {
2504 int i = RULESIZE(rule);
2505 bcopy(rule, bp, i);
2507 * abuse 'next_rule' to store the set_disable word
2509 bcopy(&set_disable, &(((struct ip_fw *)bp)->next_rule),
2510 sizeof(set_disable));
2511 bp = (struct ip_fw *)((char *)bp + i);
2513 if (ipfw_dyn_v) {
2514 int i;
2515 ipfw_dyn_rule *p, *dst, *last = NULL;
2517 dst = (ipfw_dyn_rule *)bp;
2518 for (i = 0 ; i < curr_dyn_buckets ; i++ )
2519 for ( p = ipfw_dyn_v[i] ; p != NULL ;
2520 p = p->next, dst++ ) {
2521 bcopy(p, dst, sizeof *p);
2522 bcopy(&(p->rule->rulenum), &(dst->rule),
2523 sizeof(p->rule->rulenum));
2525 * store a non-null value in "next".
2526 * The userland code will interpret a
2527 * NULL here as a marker
2528 * for the last dynamic rule.
2530 dst->next = dst ;
2531 last = dst ;
2532 dst->expire =
2533 TIME_LEQ(dst->expire, time_second) ?
2534 0 : dst->expire - time_second ;
2536 if (last != NULL) /* mark last dynamic rule */
2537 last->next = NULL;
2539 crit_exit();
2541 error = sooptcopyout(sopt, buf, size);
2542 kfree(buf, M_TEMP);
2543 break;
2545 case IP_FW_FLUSH:
2547 * Normally we cannot release the lock on each iteration.
2548 * We could do it here only because we start from the head all
2549 * the times so there is no risk of missing some entries.
2550 * On the other hand, the risk is that we end up with
2551 * a very inconsistent ruleset, so better keep the lock
2552 * around the whole cycle.
2554 * XXX this code can be improved by resetting the head of
2555 * the list to point to the default rule, and then freeing
2556 * the old list without the need for a lock.
2559 crit_enter();
2560 free_chain(&layer3_chain, 0 /* keep default rule */);
2561 crit_exit();
2562 break;
2564 case IP_FW_ADD:
2565 rule = (struct ip_fw *)rule_buf; /* XXX do a malloc */
2566 error = sooptcopyin(sopt, rule, sizeof(rule_buf),
2567 sizeof(struct ip_fw) );
2568 size = sopt->sopt_valsize;
2569 if (error || (error = check_ipfw_struct(rule, size)))
2570 break;
2572 error = add_rule(&layer3_chain, rule);
2573 size = RULESIZE(rule);
2574 if (!error && sopt->sopt_dir == SOPT_GET)
2575 error = sooptcopyout(sopt, rule, size);
2576 break;
2578 case IP_FW_DEL:
2580 * IP_FW_DEL is used for deleting single rules or sets,
2581 * and (ab)used to atomically manipulate sets. Argument size
2582 * is used to distinguish between the two:
2583 * sizeof(u_int32_t)
2584 * delete single rule or set of rules,
2585 * or reassign rules (or sets) to a different set.
2586 * 2*sizeof(u_int32_t)
2587 * atomic disable/enable sets.
2588 * first u_int32_t contains sets to be disabled,
2589 * second u_int32_t contains sets to be enabled.
2591 error = sooptcopyin(sopt, rule_buf,
2592 2*sizeof(u_int32_t), sizeof(u_int32_t));
2593 if (error)
2594 break;
2595 size = sopt->sopt_valsize;
2596 if (size == sizeof(u_int32_t)) /* delete or reassign */
2597 error = del_entry(&layer3_chain, rule_buf[0]);
2598 else if (size == 2*sizeof(u_int32_t)) /* set enable/disable */
2599 set_disable =
2600 (set_disable | rule_buf[0]) & ~rule_buf[1] &
2601 ~(1<<31); /* set 31 always enabled */
2602 else
2603 error = EINVAL;
2604 break;
2606 case IP_FW_ZERO:
2607 case IP_FW_RESETLOG: /* argument is an int, the rule number */
2608 rulenum=0;
2610 if (sopt->sopt_val != 0) {
2611 error = sooptcopyin(sopt, &rulenum,
2612 sizeof(int), sizeof(int));
2613 if (error)
2614 break;
2616 error = zero_entry(rulenum, sopt->sopt_name == IP_FW_RESETLOG);
2617 break;
2619 default:
2620 kprintf("ipfw_ctl invalid option %d\n", sopt->sopt_name);
2621 error = EINVAL;
2624 return (error);
2628 * dummynet needs a reference to the default rule, because rules can be
2629 * deleted while packets hold a reference to them. When this happens,
2630 * dummynet changes the reference to the default rule (it could well be a
2631 * NULL pointer, but this way we do not need to check for the special
2632 * case, plus here he have info on the default behaviour).
2634 struct ip_fw *ip_fw_default_rule;
2637 * This procedure is only used to handle keepalives. It is invoked
2638 * every dyn_keepalive_period
2640 static void
2641 ipfw_tick(void * __unused unused)
2643 int i;
2644 ipfw_dyn_rule *q;
2646 if (dyn_keepalive == 0 || ipfw_dyn_v == NULL || dyn_count == 0)
2647 goto done;
2649 crit_enter();
2650 for (i = 0 ; i < curr_dyn_buckets ; i++) {
2651 for (q = ipfw_dyn_v[i] ; q ; q = q->next ) {
2652 if (q->dyn_type == O_LIMIT_PARENT)
2653 continue;
2654 if (q->id.proto != IPPROTO_TCP)
2655 continue;
2656 if ( (q->state & BOTH_SYN) != BOTH_SYN)
2657 continue;
2658 if (TIME_LEQ( time_second+dyn_keepalive_interval,
2659 q->expire))
2660 continue; /* too early */
2661 if (TIME_LEQ(q->expire, time_second))
2662 continue; /* too late, rule expired */
2664 send_pkt(&(q->id), q->ack_rev - 1, q->ack_fwd, TH_SYN);
2665 send_pkt(&(q->id), q->ack_fwd - 1, q->ack_rev, 0);
2668 crit_exit();
2669 done:
2670 callout_reset(&ipfw_timeout_h, dyn_keepalive_period * hz,
2671 ipfw_tick, NULL);
2674 static void
2675 ipfw_init(void)
2677 struct ip_fw default_rule;
2679 ip_fw_chk_ptr = ipfw_chk;
2680 ip_fw_ctl_ptr = ipfw_ctl;
2681 layer3_chain = NULL;
2683 bzero(&default_rule, sizeof default_rule);
2685 default_rule.act_ofs = 0;
2686 default_rule.rulenum = IPFW_DEFAULT_RULE;
2687 default_rule.cmd_len = 1;
2688 default_rule.set = 31;
2690 default_rule.cmd[0].len = 1;
2691 default_rule.cmd[0].opcode =
2692 #ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
2693 1 ? O_ACCEPT :
2694 #endif
2695 O_DENY;
2697 add_rule(&layer3_chain, &default_rule);
2699 ip_fw_default_rule = layer3_chain;
2700 kprintf("ipfw2 initialized, divert %s, "
2701 "rule-based forwarding enabled, default to %s, logging ",
2702 #ifdef IPDIVERT
2703 "enabled",
2704 #else
2705 "disabled",
2706 #endif
2707 default_rule.cmd[0].opcode == O_ACCEPT ? "accept" : "deny");
2709 #ifdef IPFIREWALL_VERBOSE
2710 fw_verbose = 1;
2711 #endif
2712 #ifdef IPFIREWALL_VERBOSE_LIMIT
2713 verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
2714 #endif
2715 if (fw_verbose == 0)
2716 kprintf("disabled\n");
2717 else if (verbose_limit == 0)
2718 kprintf("unlimited\n");
2719 else
2720 kprintf("limited to %d packets/entry by default\n",
2721 verbose_limit);
2722 callout_init(&ipfw_timeout_h);
2723 callout_reset(&ipfw_timeout_h, hz, ipfw_tick, NULL);
2726 static int
2727 ipfw_modevent(module_t mod, int type, void *unused)
2729 int err = 0;
2731 switch (type) {
2732 case MOD_LOAD:
2733 crit_enter();
2734 if (IPFW_LOADED) {
2735 crit_exit();
2736 kprintf("IP firewall already loaded\n");
2737 err = EEXIST;
2738 } else {
2739 ipfw_init();
2740 crit_exit();
2742 break;
2744 case MOD_UNLOAD:
2745 #if !defined(KLD_MODULE)
2746 kprintf("ipfw statically compiled, cannot unload\n");
2747 err = EBUSY;
2748 #else
2749 crit_enter();
2750 callout_stop(&ipfw_timeout_h);
2751 ip_fw_chk_ptr = NULL;
2752 ip_fw_ctl_ptr = NULL;
2753 free_chain(&layer3_chain, 1 /* kill default rule */);
2754 crit_exit();
2755 kprintf("IP firewall unloaded\n");
2756 #endif
2757 break;
2758 default:
2759 break;
2761 return err;
2764 static moduledata_t ipfwmod = {
2765 "ipfw",
2766 ipfw_modevent,
2769 DECLARE_MODULE(ipfw, ipfwmod, SI_SUB_PSEUDO, SI_ORDER_ANY);
2770 MODULE_VERSION(ipfw, 1);