Save 'ipfw forward' information in mtag, use m_pkthdr.fw_flags to indicate
[dragonfly/netmp.git] / sys / netinet / ip_input.c
blobe129ff5cbceea175275d68ef9e939fa209cce289
1 /*
2 * Copyright (c) 2003, 2004 Jeffrey M. Hsu. All rights reserved.
3 * Copyright (c) 2003, 2004 The DragonFly Project. All rights reserved.
5 * This code is derived from software contributed to The DragonFly Project
6 * by Jeffrey M. Hsu.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of The DragonFly Project nor the names of its
17 * contributors may be used to endorse or promote products derived
18 * from this software without specific, prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
35 * Copyright (c) 1982, 1986, 1988, 1993
36 * The Regents of the University of California. All rights reserved.
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the University of
49 * California, Berkeley and its contributors.
50 * 4. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
66 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
67 * $FreeBSD: src/sys/netinet/ip_input.c,v 1.130.2.52 2003/03/07 07:01:28 silby Exp $
68 * $DragonFly: src/sys/netinet/ip_input.c,v 1.85 2008/08/22 09:14:16 sephe Exp $
71 #define _IP_VHL
73 #include "opt_bootp.h"
74 #include "opt_ipfw.h"
75 #include "opt_ipdn.h"
76 #include "opt_ipdivert.h"
77 #include "opt_ipfilter.h"
78 #include "opt_ipstealth.h"
79 #include "opt_ipsec.h"
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/mbuf.h>
84 #include <sys/malloc.h>
85 #include <sys/mpipe.h>
86 #include <sys/domain.h>
87 #include <sys/protosw.h>
88 #include <sys/socket.h>
89 #include <sys/time.h>
90 #include <sys/globaldata.h>
91 #include <sys/thread.h>
92 #include <sys/kernel.h>
93 #include <sys/syslog.h>
94 #include <sys/sysctl.h>
95 #include <sys/in_cksum.h>
97 #include <machine/stdarg.h>
99 #include <net/if.h>
100 #include <net/if_types.h>
101 #include <net/if_var.h>
102 #include <net/if_dl.h>
103 #include <net/pfil.h>
104 #include <net/route.h>
105 #include <net/netisr.h>
107 #include <netinet/in.h>
108 #include <netinet/in_systm.h>
109 #include <netinet/in_var.h>
110 #include <netinet/ip.h>
111 #include <netinet/in_pcb.h>
112 #include <netinet/ip_var.h>
113 #include <netinet/ip_icmp.h>
115 #include <sys/thread2.h>
116 #include <sys/msgport2.h>
117 #include <net/netmsg2.h>
119 #include <sys/socketvar.h>
121 #include <net/ipfw/ip_fw.h>
122 #include <net/dummynet/ip_dummynet.h>
124 #ifdef IPSEC
125 #include <netinet6/ipsec.h>
126 #include <netproto/key/key.h>
127 #endif
129 #ifdef FAST_IPSEC
130 #include <netproto/ipsec/ipsec.h>
131 #include <netproto/ipsec/key.h>
132 #endif
134 int rsvp_on = 0;
135 static int ip_rsvp_on;
136 struct socket *ip_rsvpd;
138 int ipforwarding = 0;
139 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
140 &ipforwarding, 0, "Enable IP forwarding between interfaces");
142 static int ipsendredirects = 1; /* XXX */
143 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
144 &ipsendredirects, 0, "Enable sending IP redirects");
146 int ip_defttl = IPDEFTTL;
147 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
148 &ip_defttl, 0, "Maximum TTL on IP packets");
150 static int ip_dosourceroute = 0;
151 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
152 &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
154 static int ip_acceptsourceroute = 0;
155 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
156 CTLFLAG_RW, &ip_acceptsourceroute, 0,
157 "Enable accepting source routed IP packets");
159 static int ip_keepfaith = 0;
160 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
161 &ip_keepfaith, 0,
162 "Enable packet capture for FAITH IPv4->IPv6 translator daemon");
164 static int nipq = 0; /* total # of reass queues */
165 static int maxnipq;
166 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
167 &maxnipq, 0,
168 "Maximum number of IPv4 fragment reassembly queue entries");
170 static int maxfragsperpacket;
171 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
172 &maxfragsperpacket, 0,
173 "Maximum number of IPv4 fragments allowed per packet");
175 static int ip_sendsourcequench = 0;
176 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
177 &ip_sendsourcequench, 0,
178 "Enable the transmission of source quench packets");
180 int ip_do_randomid = 1;
181 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
182 &ip_do_randomid, 0,
183 "Assign random ip_id values");
185 * XXX - Setting ip_checkinterface mostly implements the receive side of
186 * the Strong ES model described in RFC 1122, but since the routing table
187 * and transmit implementation do not implement the Strong ES model,
188 * setting this to 1 results in an odd hybrid.
190 * XXX - ip_checkinterface currently must be disabled if you use ipnat
191 * to translate the destination address to another local interface.
193 * XXX - ip_checkinterface must be disabled if you add IP aliases
194 * to the loopback interface instead of the interface where the
195 * packets for those addresses are received.
197 static int ip_checkinterface = 0;
198 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
199 &ip_checkinterface, 0, "Verify packet arrives on correct interface");
201 #ifdef DIAGNOSTIC
202 static int ipprintfs = 0;
203 #endif
205 extern struct domain inetdomain;
206 extern struct protosw inetsw[];
207 u_char ip_protox[IPPROTO_MAX];
208 struct in_ifaddrhead in_ifaddrheads[MAXCPU]; /* first inet address */
209 struct in_ifaddrhashhead *in_ifaddrhashtbls[MAXCPU];
210 /* inet addr hash table */
211 u_long in_ifaddrhmask; /* mask for hash table */
213 struct ip_stats ipstats_percpu[MAXCPU];
214 #ifdef SMP
215 static int
216 sysctl_ipstats(SYSCTL_HANDLER_ARGS)
218 int cpu, error = 0;
220 for (cpu = 0; cpu < ncpus; ++cpu) {
221 if ((error = SYSCTL_OUT(req, &ipstats_percpu[cpu],
222 sizeof(struct ip_stats))))
223 break;
224 if ((error = SYSCTL_IN(req, &ipstats_percpu[cpu],
225 sizeof(struct ip_stats))))
226 break;
229 return (error);
231 SYSCTL_PROC(_net_inet_ip, IPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
232 0, 0, sysctl_ipstats, "S,ip_stats", "IP statistics");
233 #else
234 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
235 &ipstat, ip_stats, "IP statistics");
236 #endif
238 /* Packet reassembly stuff */
239 #define IPREASS_NHASH_LOG2 6
240 #define IPREASS_NHASH (1 << IPREASS_NHASH_LOG2)
241 #define IPREASS_HMASK (IPREASS_NHASH - 1)
242 #define IPREASS_HASH(x,y) \
243 (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
245 static struct ipq ipq[IPREASS_NHASH];
247 #ifdef IPCTL_DEFMTU
248 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
249 &ip_mtu, 0, "Default MTU");
250 #endif
252 #ifdef IPSTEALTH
253 static int ipstealth = 0;
254 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW, &ipstealth, 0, "");
255 #else
256 static const int ipstealth = 0;
257 #endif
260 /* Firewall hooks */
261 ip_fw_chk_t *ip_fw_chk_ptr;
262 ip_fw_dn_io_t *ip_fw_dn_io_ptr;
263 int ip_fw_loaded;
264 int fw_enable = 1;
265 int fw_one_pass = 1;
267 struct pfil_head inet_pfil_hook;
270 * XXX this is ugly -- the following two global variables are
271 * used to store packet state while it travels through the stack.
272 * Note that the code even makes assumptions on the size and
273 * alignment of fields inside struct ip_srcrt so e.g. adding some
274 * fields will break the code. This needs to be fixed.
276 * We need to save the IP options in case a protocol wants to respond
277 * to an incoming packet over the same route if the packet got here
278 * using IP source routing. This allows connection establishment and
279 * maintenance when the remote end is on a network that is not known
280 * to us.
282 static int ip_nhops = 0;
284 static struct ip_srcrt {
285 struct in_addr dst; /* final destination */
286 char nop; /* one NOP to align */
287 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */
288 struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
289 } ip_srcrt;
291 static MALLOC_DEFINE(M_IPQ, "ipq", "IP Fragment Management");
292 static struct malloc_pipe ipq_mpipe;
294 static void save_rte (u_char *, struct in_addr);
295 static int ip_dooptions (struct mbuf *m, int,
296 struct sockaddr_in *next_hop);
297 static void ip_freef (struct ipq *);
298 static void ip_input_handler (struct netmsg *);
299 static struct mbuf *ip_reass (struct mbuf *, struct ipq *,
300 struct ipq *, u_int32_t *);
303 * IP initialization: fill in IP protocol switch table.
304 * All protocols not implemented in kernel go to raw IP protocol handler.
306 void
307 ip_init(void)
309 struct protosw *pr;
310 int i;
311 #ifdef SMP
312 int cpu;
313 #endif
316 * Make sure we can handle a reasonable number of fragments but
317 * cap it at 4000 (XXX).
319 mpipe_init(&ipq_mpipe, M_IPQ, sizeof(struct ipq),
320 IFQ_MAXLEN, 4000, 0, NULL);
321 for (i = 0; i < ncpus; ++i) {
322 TAILQ_INIT(&in_ifaddrheads[i]);
323 in_ifaddrhashtbls[i] =
324 hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
326 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
327 if (pr == NULL)
328 panic("ip_init");
329 for (i = 0; i < IPPROTO_MAX; i++)
330 ip_protox[i] = pr - inetsw;
331 for (pr = inetdomain.dom_protosw;
332 pr < inetdomain.dom_protoswNPROTOSW; pr++)
333 if (pr->pr_domain->dom_family == PF_INET &&
334 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
335 ip_protox[pr->pr_protocol] = pr - inetsw;
337 inet_pfil_hook.ph_type = PFIL_TYPE_AF;
338 inet_pfil_hook.ph_af = AF_INET;
339 if ((i = pfil_head_register(&inet_pfil_hook)) != 0) {
340 kprintf("%s: WARNING: unable to register pfil hook, "
341 "error %d\n", __func__, i);
344 for (i = 0; i < IPREASS_NHASH; i++)
345 ipq[i].next = ipq[i].prev = &ipq[i];
347 maxnipq = nmbclusters / 32;
348 maxfragsperpacket = 16;
350 ip_id = time_second & 0xffff;
353 * Initialize IP statistics counters for each CPU.
356 #ifdef SMP
357 for (cpu = 0; cpu < ncpus; ++cpu) {
358 bzero(&ipstats_percpu[cpu], sizeof(struct ip_stats));
360 #else
361 bzero(&ipstat, sizeof(struct ip_stats));
362 #endif
364 netisr_register(NETISR_IP, ip_mport_in, ip_input_handler);
368 * XXX watch out this one. It is perhaps used as a cache for
369 * the most recently used route ? it is cleared in in_addroute()
370 * when a new route is successfully created.
372 struct route ipforward_rt[MAXCPU];
374 /* Do transport protocol processing. */
375 static void
376 transport_processing_oncpu(struct mbuf *m, int hlen, struct ip *ip)
379 * Switch out to protocol's input routine.
381 (*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen, ip->ip_p);
384 struct netmsg_transport_packet {
385 struct netmsg nm_netmsg;
386 struct mbuf *nm_mbuf;
387 int nm_hlen;
390 static void
391 transport_processing_handler(netmsg_t netmsg)
393 struct netmsg_transport_packet *msg = (void *)netmsg;
394 struct ip *ip;
396 ip = mtod(msg->nm_mbuf, struct ip *);
397 transport_processing_oncpu(msg->nm_mbuf, msg->nm_hlen, ip);
398 lwkt_replymsg(&msg->nm_netmsg.nm_lmsg, 0);
401 static void
402 ip_input_handler(struct netmsg *msg0)
404 struct mbuf *m = ((struct netmsg_packet *)msg0)->nm_packet;
406 ip_input(m);
407 /* msg0 was embedded in the mbuf, do not reply! */
411 * IP input routine. Checksum and byte swap header. If fragmented
412 * try to reassemble. Process options. Pass to next level.
414 void
415 ip_input(struct mbuf *m)
417 struct ip *ip;
418 struct ipq *fp;
419 struct in_ifaddr *ia = NULL;
420 struct in_ifaddr_container *iac;
421 int i, hlen, checkif;
422 u_short sum;
423 struct in_addr pkt_dst;
424 u_int32_t divert_info = 0; /* packet divert/tee info */
425 struct ip_fw_args args;
426 boolean_t using_srcrt = FALSE; /* forward (by PFIL_HOOKS) */
427 boolean_t needredispatch = FALSE;
428 struct in_addr odst; /* original dst address(NAT) */
429 struct m_tag *mtag;
430 struct sockaddr_in *next_hop = NULL;
431 #ifdef FAST_IPSEC
432 struct tdb_ident *tdbi;
433 struct secpolicy *sp;
434 int error;
435 #endif
437 args.eh = NULL;
438 args.oif = NULL;
439 args.rule = NULL;
441 M_ASSERTPKTHDR(m);
443 if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
444 /* Next hop */
445 mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
446 KKASSERT(mtag != NULL);
447 next_hop = m_tag_data(mtag);
450 /* Extract info from dummynet tag */
451 mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
452 if (mtag != NULL) {
453 args.rule = ((struct dn_pkt *)m_tag_data(mtag))->dn_priv;
454 m_tag_delete(m, mtag);
457 if (args.rule != NULL) { /* dummynet already filtered us */
458 ip = mtod(m, struct ip *);
459 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
460 goto iphack;
463 ipstat.ips_total++;
465 /* length checks already done in ip_demux() */
466 KASSERT(m->m_len >= sizeof(ip), ("IP header not in one mbuf"));
468 ip = mtod(m, struct ip *);
470 if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
471 ipstat.ips_badvers++;
472 goto bad;
475 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
476 /* length checks already done in ip_demux() */
477 KASSERT(hlen >= sizeof(struct ip), ("IP header len too small"));
478 KASSERT(m->m_len >= hlen, ("packet shorter than IP header length"));
480 /* 127/8 must not appear on wire - RFC1122 */
481 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
482 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
483 if (!(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK)) {
484 ipstat.ips_badaddr++;
485 goto bad;
489 if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
490 sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
491 } else {
492 if (hlen == sizeof(struct ip)) {
493 sum = in_cksum_hdr(ip);
494 } else {
495 sum = in_cksum(m, hlen);
498 if (sum != 0) {
499 ipstat.ips_badsum++;
500 goto bad;
503 #ifdef ALTQ
504 if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
505 /* packet is dropped by traffic conditioner */
506 return;
508 #endif
510 * Convert fields to host representation.
512 ip->ip_len = ntohs(ip->ip_len);
513 if (ip->ip_len < hlen) {
514 ipstat.ips_badlen++;
515 goto bad;
517 ip->ip_off = ntohs(ip->ip_off);
520 * Check that the amount of data in the buffers
521 * is as at least much as the IP header would have us expect.
522 * Trim mbufs if longer than we expect.
523 * Drop packet if shorter than we expect.
525 if (m->m_pkthdr.len < ip->ip_len) {
526 ipstat.ips_tooshort++;
527 goto bad;
529 if (m->m_pkthdr.len > ip->ip_len) {
530 if (m->m_len == m->m_pkthdr.len) {
531 m->m_len = ip->ip_len;
532 m->m_pkthdr.len = ip->ip_len;
533 } else
534 m_adj(m, ip->ip_len - m->m_pkthdr.len);
536 #if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
538 * Bypass packet filtering for packets from a tunnel (gif).
540 if (ipsec_gethist(m, NULL))
541 goto pass;
542 #endif
545 * IpHack's section.
546 * Right now when no processing on packet has done
547 * and it is still fresh out of network we do our black
548 * deals with it.
549 * - Firewall: deny/allow/divert
550 * - Xlate: translate packet's addr/port (NAT).
551 * - Pipe: pass pkt through dummynet.
552 * - Wrap: fake packet's addr/port <unimpl.>
553 * - Encapsulate: put it in another IP and send out. <unimp.>
556 iphack:
559 * Run through list of hooks for input packets.
561 * NB: Beware of the destination address changing (e.g.
562 * by NAT rewriting). When this happens, tell
563 * ip_forward to do the right thing.
565 if (pfil_has_hooks(&inet_pfil_hook)) {
566 odst = ip->ip_dst;
567 if (pfil_run_hooks(&inet_pfil_hook, &m,
568 m->m_pkthdr.rcvif, PFIL_IN)) {
569 return;
571 if (m == NULL) /* consumed by filter */
572 return;
573 ip = mtod(m, struct ip *);
574 using_srcrt = (odst.s_addr != ip->ip_dst.s_addr);
577 if (fw_enable && IPFW_LOADED) {
579 * If we've been forwarded from the output side, then
580 * skip the firewall a second time
582 if (next_hop != NULL)
583 goto ours;
585 args.m = m;
586 i = ip_fw_chk_ptr(&args);
587 m = args.m;
589 if ((i & IP_FW_PORT_DENY_FLAG) || m == NULL) { /* drop */
590 if (m != NULL)
591 m_freem(m);
592 return;
594 ip = mtod(m, struct ip *); /* just in case m changed */
596 if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
597 mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
598 KKASSERT(mtag != NULL);
599 next_hop = m_tag_data(mtag);
602 if (i == 0 && next_hop == NULL) /* common case */
603 goto pass;
604 if (i & IP_FW_PORT_DYNT_FLAG) {
605 /* Send packet to the appropriate pipe */
606 ip_fw_dn_io_ptr(m, i&0xffff, DN_TO_IP_IN, &args);
607 return;
609 #ifdef IPDIVERT
610 if (i != 0 && !(i & IP_FW_PORT_DYNT_FLAG)) {
611 /* Divert or tee packet */
612 divert_info = i;
613 goto ours;
615 #endif
616 if (i == 0 && next_hop != NULL)
617 goto pass;
619 * if we get here, the packet must be dropped
621 m_freem(m);
622 return;
624 pass:
627 * Process options and, if not destined for us,
628 * ship it on. ip_dooptions returns 1 when an
629 * error was detected (causing an icmp message
630 * to be sent and the original packet to be freed).
632 ip_nhops = 0; /* for source routed packets */
633 if (hlen > sizeof(struct ip) && ip_dooptions(m, 0, next_hop))
634 return;
636 /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
637 * matter if it is destined to another node, or whether it is
638 * a multicast one, RSVP wants it! and prevents it from being forwarded
639 * anywhere else. Also checks if the rsvp daemon is running before
640 * grabbing the packet.
642 if (rsvp_on && ip->ip_p == IPPROTO_RSVP)
643 goto ours;
646 * Check our list of addresses, to see if the packet is for us.
647 * If we don't have any addresses, assume any unicast packet
648 * we receive might be for us (and let the upper layers deal
649 * with it).
651 if (TAILQ_EMPTY(&in_ifaddrheads[mycpuid]) &&
652 !(m->m_flags & (M_MCAST | M_BCAST)))
653 goto ours;
656 * Cache the destination address of the packet; this may be
657 * changed by use of 'ipfw fwd'.
659 pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
662 * Enable a consistency check between the destination address
663 * and the arrival interface for a unicast packet (the RFC 1122
664 * strong ES model) if IP forwarding is disabled and the packet
665 * is not locally generated and the packet is not subject to
666 * 'ipfw fwd'.
668 * XXX - Checking also should be disabled if the destination
669 * address is ipnat'ed to a different interface.
671 * XXX - Checking is incompatible with IP aliases added
672 * to the loopback interface instead of the interface where
673 * the packets are received.
675 checkif = ip_checkinterface &&
676 !ipforwarding &&
677 m->m_pkthdr.rcvif != NULL &&
678 !(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) &&
679 next_hop == NULL;
682 * Check for exact addresses in the hash bucket.
684 LIST_FOREACH(iac, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
685 ia = iac->ia;
688 * If the address matches, verify that the packet
689 * arrived via the correct interface if checking is
690 * enabled.
692 if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
693 (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
694 goto ours;
696 ia = NULL;
699 * Check for broadcast addresses.
701 * Only accept broadcast packets that arrive via the matching
702 * interface. Reception of forwarded directed broadcasts would
703 * be handled via ip_forward() and ether_output() with the loopback
704 * into the stack for SIMPLEX interfaces handled by ether_output().
706 if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
707 struct ifaddr_container *ifac;
709 TAILQ_FOREACH(ifac, &m->m_pkthdr.rcvif->if_addrheads[mycpuid],
710 ifa_link) {
711 struct ifaddr *ifa = ifac->ifa;
713 if (ifa->ifa_addr == NULL) /* shutdown/startup race */
714 continue;
715 if (ifa->ifa_addr->sa_family != AF_INET)
716 continue;
717 ia = ifatoia(ifa);
718 if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
719 pkt_dst.s_addr)
720 goto ours;
721 if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
722 goto ours;
723 #ifdef BOOTP_COMPAT
724 if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
725 goto ours;
726 #endif
729 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
730 struct in_multi *inm;
732 if (ip_mrouter != NULL) {
734 * If we are acting as a multicast router, all
735 * incoming multicast packets are passed to the
736 * kernel-level multicast forwarding function.
737 * The packet is returned (relatively) intact; if
738 * ip_mforward() returns a non-zero value, the packet
739 * must be discarded, else it may be accepted below.
741 if (ip_mforward != NULL &&
742 ip_mforward(ip, m->m_pkthdr.rcvif, m, NULL) != 0) {
743 ipstat.ips_cantforward++;
744 m_freem(m);
745 return;
749 * The process-level routing daemon needs to receive
750 * all multicast IGMP packets, whether or not this
751 * host belongs to their destination groups.
753 if (ip->ip_p == IPPROTO_IGMP)
754 goto ours;
755 ipstat.ips_forward++;
758 * See if we belong to the destination multicast group on the
759 * arrival interface.
761 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
762 if (inm == NULL) {
763 ipstat.ips_notmember++;
764 m_freem(m);
765 return;
767 goto ours;
769 if (ip->ip_dst.s_addr == INADDR_BROADCAST)
770 goto ours;
771 if (ip->ip_dst.s_addr == INADDR_ANY)
772 goto ours;
775 * FAITH(Firewall Aided Internet Translator)
777 if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
778 if (ip_keepfaith) {
779 if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
780 goto ours;
782 m_freem(m);
783 return;
787 * Not for us; forward if possible and desirable.
789 if (!ipforwarding) {
790 ipstat.ips_cantforward++;
791 m_freem(m);
792 } else {
793 #ifdef IPSEC
795 * Enforce inbound IPsec SPD.
797 if (ipsec4_in_reject(m, NULL)) {
798 ipsecstat.in_polvio++;
799 goto bad;
801 #endif
802 #ifdef FAST_IPSEC
803 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
804 crit_enter();
805 if (mtag != NULL) {
806 tdbi = (struct tdb_ident *)m_tag_data(mtag);
807 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
808 } else {
809 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
810 IP_FORWARDING, &error);
812 if (sp == NULL) { /* NB: can happen if error */
813 crit_exit();
814 /*XXX error stat???*/
815 DPRINTF(("ip_input: no SP for forwarding\n")); /*XXX*/
816 goto bad;
820 * Check security policy against packet attributes.
822 error = ipsec_in_reject(sp, m);
823 KEY_FREESP(&sp);
824 crit_exit();
825 if (error) {
826 ipstat.ips_cantforward++;
827 goto bad;
829 #endif
830 ip_forward(m, using_srcrt, next_hop);
832 return;
834 ours:
837 * IPSTEALTH: Process non-routing options only
838 * if the packet is destined for us.
840 if (ipstealth &&
841 hlen > sizeof(struct ip) &&
842 ip_dooptions(m, 1, next_hop))
843 return;
845 /* Count the packet in the ip address stats */
846 if (ia != NULL) {
847 ia->ia_ifa.if_ipackets++;
848 ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
852 * If offset or IP_MF are set, must reassemble.
853 * Otherwise, nothing need be done.
854 * (We could look in the reassembly queue to see
855 * if the packet was previously fragmented,
856 * but it's not worth the time; just let them time out.)
858 if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
860 /* If maxnipq is 0, never accept fragments. */
861 if (maxnipq == 0) {
862 ipstat.ips_fragments++;
863 ipstat.ips_fragdropped++;
864 goto bad;
867 sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
869 * Look for queue of fragments
870 * of this datagram.
872 for (fp = ipq[sum].next; fp != &ipq[sum]; fp = fp->next)
873 if (ip->ip_id == fp->ipq_id &&
874 ip->ip_src.s_addr == fp->ipq_src.s_addr &&
875 ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
876 ip->ip_p == fp->ipq_p)
877 goto found;
879 fp = NULL;
882 * Enforce upper bound on number of fragmented packets
883 * for which we attempt reassembly;
884 * If maxnipq is -1, accept all fragments without limitation.
886 if ((nipq > maxnipq) && (maxnipq > 0)) {
888 * drop something from the tail of the current queue
889 * before proceeding further
891 if (ipq[sum].prev == &ipq[sum]) { /* gak */
892 for (i = 0; i < IPREASS_NHASH; i++) {
893 if (ipq[i].prev != &ipq[i]) {
894 ipstat.ips_fragtimeout +=
895 ipq[i].prev->ipq_nfrags;
896 ip_freef(ipq[i].prev);
897 break;
900 } else {
901 ipstat.ips_fragtimeout +=
902 ipq[sum].prev->ipq_nfrags;
903 ip_freef(ipq[sum].prev);
906 found:
908 * Adjust ip_len to not reflect header,
909 * convert offset of this to bytes.
911 ip->ip_len -= hlen;
912 if (ip->ip_off & IP_MF) {
914 * Make sure that fragments have a data length
915 * that's a non-zero multiple of 8 bytes.
917 if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
918 ipstat.ips_toosmall++; /* XXX */
919 goto bad;
921 m->m_flags |= M_FRAG;
922 } else
923 m->m_flags &= ~M_FRAG;
924 ip->ip_off <<= 3;
927 * Attempt reassembly; if it succeeds, proceed.
928 * ip_reass() will return a different mbuf, and update
929 * the divert info in divert_info.
931 ipstat.ips_fragments++;
932 m->m_pkthdr.header = ip;
933 m = ip_reass(m, fp, &ipq[sum], &divert_info);
934 if (m == NULL)
935 return;
936 ipstat.ips_reassembled++;
937 needredispatch = TRUE;
938 ip = mtod(m, struct ip *);
939 /* Get the header length of the reassembled packet */
940 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
941 #ifdef IPDIVERT
942 /* Restore original checksum before diverting packet */
943 if (divert_info != 0) {
944 ip->ip_len += hlen;
945 ip->ip_len = htons(ip->ip_len);
946 ip->ip_off = htons(ip->ip_off);
947 ip->ip_sum = 0;
948 if (hlen == sizeof(struct ip))
949 ip->ip_sum = in_cksum_hdr(ip);
950 else
951 ip->ip_sum = in_cksum(m, hlen);
952 ip->ip_off = ntohs(ip->ip_off);
953 ip->ip_len = ntohs(ip->ip_len);
954 ip->ip_len -= hlen;
956 #endif
957 } else {
958 ip->ip_len -= hlen;
961 #ifdef IPDIVERT
963 * Divert or tee packet to the divert protocol if required.
965 if (divert_info != 0) {
966 struct mbuf *clone = NULL;
968 /* Clone packet if we're doing a 'tee' */
969 if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
970 clone = m_dup(m, MB_DONTWAIT);
972 /* Restore packet header fields to original values */
973 ip->ip_len += hlen;
974 ip->ip_len = htons(ip->ip_len);
975 ip->ip_off = htons(ip->ip_off);
977 /* Deliver packet to divert input routine */
978 divert_packet(m, 1, divert_info & 0xffff);
979 ipstat.ips_delivered++;
981 /* If 'tee', continue with original packet */
982 if (clone == NULL)
983 return;
984 m = clone;
985 ip = mtod(m, struct ip *);
986 ip->ip_len += hlen;
988 * Jump backwards to complete processing of the
989 * packet. But first clear divert_info to avoid
990 * entering this block again.
991 * We do not need to clear args.divert_rule as
992 * it will not be used.
994 * XXX Better safe than sorry, remove the DIVERT tag.
996 mtag = m_tag_find(m, PACKET_TAG_IPFW_DIVERT, NULL);
997 if (mtag != NULL)
998 m_tag_delete(m, mtag);
1000 divert_info = 0;
1001 goto pass;
1003 #endif
1005 #ifdef IPSEC
1007 * enforce IPsec policy checking if we are seeing last header.
1008 * note that we do not visit this with protocols with pcb layer
1009 * code - like udp/tcp/raw ip.
1011 if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) &&
1012 ipsec4_in_reject(m, NULL)) {
1013 ipsecstat.in_polvio++;
1014 goto bad;
1016 #endif
1017 #if FAST_IPSEC
1019 * enforce IPsec policy checking if we are seeing last header.
1020 * note that we do not visit this with protocols with pcb layer
1021 * code - like udp/tcp/raw ip.
1023 if (inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) {
1025 * Check if the packet has already had IPsec processing
1026 * done. If so, then just pass it along. This tag gets
1027 * set during AH, ESP, etc. input handling, before the
1028 * packet is returned to the ip input queue for delivery.
1030 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
1031 crit_enter();
1032 if (mtag != NULL) {
1033 tdbi = (struct tdb_ident *)m_tag_data(mtag);
1034 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
1035 } else {
1036 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
1037 IP_FORWARDING, &error);
1039 if (sp != NULL) {
1041 * Check security policy against packet attributes.
1043 error = ipsec_in_reject(sp, m);
1044 KEY_FREESP(&sp);
1045 } else {
1046 /* XXX error stat??? */
1047 error = EINVAL;
1048 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
1049 goto bad;
1051 crit_exit();
1052 if (error)
1053 goto bad;
1055 #endif /* FAST_IPSEC */
1057 ipstat.ips_delivered++;
1058 if (needredispatch) {
1059 struct netmsg_transport_packet *msg;
1060 lwkt_port_t port;
1062 ip->ip_off = htons(ip->ip_off);
1063 ip->ip_len = htons(ip->ip_len);
1064 port = ip_mport_in(&m);
1065 if (port == NULL)
1066 return;
1068 msg = kmalloc(sizeof(struct netmsg_transport_packet), M_LWKTMSG,
1069 M_INTWAIT | M_NULLOK);
1070 if (msg == NULL)
1071 goto bad;
1073 netmsg_init(&msg->nm_netmsg, &netisr_afree_rport, 0,
1074 transport_processing_handler);
1075 msg->nm_hlen = hlen;
1077 msg->nm_mbuf = m;
1078 ip = mtod(m, struct ip *);
1079 ip->ip_len = ntohs(ip->ip_len);
1080 ip->ip_off = ntohs(ip->ip_off);
1081 lwkt_sendmsg(port, &msg->nm_netmsg.nm_lmsg);
1082 } else {
1083 transport_processing_oncpu(m, hlen, ip);
1085 return;
1087 bad:
1088 m_freem(m);
1092 * Take incoming datagram fragment and try to reassemble it into
1093 * whole datagram. If a chain for reassembly of this datagram already
1094 * exists, then it is given as fp; otherwise have to make a chain.
1096 * When IPDIVERT enabled, keep additional state with each packet that
1097 * tells us if we need to divert or tee the packet we're building.
1098 * In particular, *divinfo includes the port and TEE flag.
1101 static struct mbuf *
1102 ip_reass(struct mbuf *m, struct ipq *fp, struct ipq *where,
1103 u_int32_t *divinfo)
1105 struct ip *ip = mtod(m, struct ip *);
1106 struct mbuf *p = NULL, *q, *nq;
1107 struct mbuf *n;
1108 int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1109 int i, next;
1110 #ifdef IPDIVERT
1111 struct m_tag *mtag;
1112 #endif
1115 * If the hardware has not done csum over this fragment
1116 * then csum_data is not valid at all.
1118 if ((m->m_pkthdr.csum_flags & (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID))
1119 == (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID)) {
1120 m->m_pkthdr.csum_data = 0;
1121 m->m_pkthdr.csum_flags &= ~(CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1125 * Presence of header sizes in mbufs
1126 * would confuse code below.
1128 m->m_data += hlen;
1129 m->m_len -= hlen;
1132 * If first fragment to arrive, create a reassembly queue.
1134 if (fp == NULL) {
1135 if ((fp = mpipe_alloc_nowait(&ipq_mpipe)) == NULL)
1136 goto dropfrag;
1137 insque(fp, where);
1138 nipq++;
1139 fp->ipq_nfrags = 1;
1140 fp->ipq_ttl = IPFRAGTTL;
1141 fp->ipq_p = ip->ip_p;
1142 fp->ipq_id = ip->ip_id;
1143 fp->ipq_src = ip->ip_src;
1144 fp->ipq_dst = ip->ip_dst;
1145 fp->ipq_frags = m;
1146 m->m_nextpkt = NULL;
1147 #ifdef IPDIVERT
1148 fp->ipq_div_info = 0;
1149 #endif
1150 goto inserted;
1151 } else {
1152 fp->ipq_nfrags++;
1155 #define GETIP(m) ((struct ip*)((m)->m_pkthdr.header))
1158 * Find a segment which begins after this one does.
1160 for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1161 if (GETIP(q)->ip_off > ip->ip_off)
1162 break;
1165 * If there is a preceding segment, it may provide some of
1166 * our data already. If so, drop the data from the incoming
1167 * segment. If it provides all of our data, drop us, otherwise
1168 * stick new segment in the proper place.
1170 * If some of the data is dropped from the the preceding
1171 * segment, then it's checksum is invalidated.
1173 if (p) {
1174 i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1175 if (i > 0) {
1176 if (i >= ip->ip_len)
1177 goto dropfrag;
1178 m_adj(m, i);
1179 m->m_pkthdr.csum_flags = 0;
1180 ip->ip_off += i;
1181 ip->ip_len -= i;
1183 m->m_nextpkt = p->m_nextpkt;
1184 p->m_nextpkt = m;
1185 } else {
1186 m->m_nextpkt = fp->ipq_frags;
1187 fp->ipq_frags = m;
1191 * While we overlap succeeding segments trim them or,
1192 * if they are completely covered, dequeue them.
1194 for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1195 q = nq) {
1196 i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1197 if (i < GETIP(q)->ip_len) {
1198 GETIP(q)->ip_len -= i;
1199 GETIP(q)->ip_off += i;
1200 m_adj(q, i);
1201 q->m_pkthdr.csum_flags = 0;
1202 break;
1204 nq = q->m_nextpkt;
1205 m->m_nextpkt = nq;
1206 ipstat.ips_fragdropped++;
1207 fp->ipq_nfrags--;
1208 q->m_nextpkt = NULL;
1209 m_freem(q);
1212 inserted:
1214 #ifdef IPDIVERT
1216 * Transfer firewall instructions to the fragment structure.
1217 * Only trust info in the fragment at offset 0.
1219 if (ip->ip_off == 0) {
1220 fp->ipq_div_info = *divinfo;
1221 } else {
1222 mtag = m_tag_find(m, PACKET_TAG_IPFW_DIVERT, NULL);
1223 if (mtag != NULL)
1224 m_tag_delete(m, mtag);
1226 *divinfo = 0;
1227 #endif
1230 * Check for complete reassembly and perform frag per packet
1231 * limiting.
1233 * Frag limiting is performed here so that the nth frag has
1234 * a chance to complete the packet before we drop the packet.
1235 * As a result, n+1 frags are actually allowed per packet, but
1236 * only n will ever be stored. (n = maxfragsperpacket.)
1239 next = 0;
1240 for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1241 if (GETIP(q)->ip_off != next) {
1242 if (fp->ipq_nfrags > maxfragsperpacket) {
1243 ipstat.ips_fragdropped += fp->ipq_nfrags;
1244 ip_freef(fp);
1246 return (NULL);
1248 next += GETIP(q)->ip_len;
1250 /* Make sure the last packet didn't have the IP_MF flag */
1251 if (p->m_flags & M_FRAG) {
1252 if (fp->ipq_nfrags > maxfragsperpacket) {
1253 ipstat.ips_fragdropped += fp->ipq_nfrags;
1254 ip_freef(fp);
1256 return (NULL);
1260 * Reassembly is complete. Make sure the packet is a sane size.
1262 q = fp->ipq_frags;
1263 ip = GETIP(q);
1264 if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1265 ipstat.ips_toolong++;
1266 ipstat.ips_fragdropped += fp->ipq_nfrags;
1267 ip_freef(fp);
1268 return (NULL);
1272 * Concatenate fragments.
1274 m = q;
1275 n = m->m_next;
1276 m->m_next = NULL;
1277 m_cat(m, n);
1278 nq = q->m_nextpkt;
1279 q->m_nextpkt = NULL;
1280 for (q = nq; q != NULL; q = nq) {
1281 nq = q->m_nextpkt;
1282 q->m_nextpkt = NULL;
1283 m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1284 m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1285 m_cat(m, q);
1289 * Clean up the 1's complement checksum. Carry over 16 bits must
1290 * be added back. This assumes no more then 65535 packet fragments
1291 * were reassembled. A second carry can also occur (but not a third).
1293 m->m_pkthdr.csum_data = (m->m_pkthdr.csum_data & 0xffff) +
1294 (m->m_pkthdr.csum_data >> 16);
1295 if (m->m_pkthdr.csum_data > 0xFFFF)
1296 m->m_pkthdr.csum_data -= 0xFFFF;
1299 #ifdef IPDIVERT
1301 * Extract firewall instructions from the fragment structure.
1303 *divinfo = fp->ipq_div_info;
1304 #endif
1307 * Create header for new ip packet by
1308 * modifying header of first packet;
1309 * dequeue and discard fragment reassembly header.
1310 * Make header visible.
1312 ip->ip_len = next;
1313 ip->ip_src = fp->ipq_src;
1314 ip->ip_dst = fp->ipq_dst;
1315 remque(fp);
1316 nipq--;
1317 mpipe_free(&ipq_mpipe, fp);
1318 m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1319 m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1320 /* some debugging cruft by sklower, below, will go away soon */
1321 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1322 int plen = 0;
1324 for (n = m; n; n = n->m_next)
1325 plen += n->m_len;
1326 m->m_pkthdr.len = plen;
1328 return (m);
1330 dropfrag:
1331 #ifdef IPDIVERT
1332 *divinfo = 0;
1333 #endif
1334 ipstat.ips_fragdropped++;
1335 if (fp != NULL)
1336 fp->ipq_nfrags--;
1337 m_freem(m);
1338 return (NULL);
1340 #undef GETIP
1344 * Free a fragment reassembly header and all
1345 * associated datagrams.
1347 static void
1348 ip_freef(struct ipq *fp)
1350 struct mbuf *q;
1352 while (fp->ipq_frags) {
1353 q = fp->ipq_frags;
1354 fp->ipq_frags = q->m_nextpkt;
1355 q->m_nextpkt = NULL;
1356 m_freem(q);
1358 remque(fp);
1359 mpipe_free(&ipq_mpipe, fp);
1360 nipq--;
1364 * IP timer processing;
1365 * if a timer expires on a reassembly
1366 * queue, discard it.
1368 void
1369 ip_slowtimo(void)
1371 struct ipq *fp;
1372 int i;
1374 crit_enter();
1375 for (i = 0; i < IPREASS_NHASH; i++) {
1376 fp = ipq[i].next;
1377 if (fp == NULL)
1378 continue;
1379 while (fp != &ipq[i]) {
1380 --fp->ipq_ttl;
1381 fp = fp->next;
1382 if (fp->prev->ipq_ttl == 0) {
1383 ipstat.ips_fragtimeout += fp->prev->ipq_nfrags;
1384 ip_freef(fp->prev);
1389 * If we are over the maximum number of fragments
1390 * (due to the limit being lowered), drain off
1391 * enough to get down to the new limit.
1393 if (maxnipq >= 0 && nipq > maxnipq) {
1394 for (i = 0; i < IPREASS_NHASH; i++) {
1395 while (nipq > maxnipq &&
1396 (ipq[i].next != &ipq[i])) {
1397 ipstat.ips_fragdropped +=
1398 ipq[i].next->ipq_nfrags;
1399 ip_freef(ipq[i].next);
1403 ipflow_slowtimo();
1404 crit_exit();
1408 * Drain off all datagram fragments.
1410 void
1411 ip_drain(void)
1413 int i;
1415 for (i = 0; i < IPREASS_NHASH; i++) {
1416 while (ipq[i].next != &ipq[i]) {
1417 ipstat.ips_fragdropped += ipq[i].next->ipq_nfrags;
1418 ip_freef(ipq[i].next);
1421 in_rtqdrain();
1425 * Do option processing on a datagram,
1426 * possibly discarding it if bad options are encountered,
1427 * or forwarding it if source-routed.
1428 * The pass argument is used when operating in the IPSTEALTH
1429 * mode to tell what options to process:
1430 * [LS]SRR (pass 0) or the others (pass 1).
1431 * The reason for as many as two passes is that when doing IPSTEALTH,
1432 * non-routing options should be processed only if the packet is for us.
1433 * Returns 1 if packet has been forwarded/freed,
1434 * 0 if the packet should be processed further.
1436 static int
1437 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1439 struct sockaddr_in ipaddr = { sizeof ipaddr, AF_INET };
1440 struct ip *ip = mtod(m, struct ip *);
1441 u_char *cp;
1442 struct in_ifaddr *ia;
1443 int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB;
1444 boolean_t forward = FALSE;
1445 struct in_addr *sin, dst;
1446 n_time ntime;
1448 dst = ip->ip_dst;
1449 cp = (u_char *)(ip + 1);
1450 cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1451 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1452 opt = cp[IPOPT_OPTVAL];
1453 if (opt == IPOPT_EOL)
1454 break;
1455 if (opt == IPOPT_NOP)
1456 optlen = 1;
1457 else {
1458 if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1459 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1460 goto bad;
1462 optlen = cp[IPOPT_OLEN];
1463 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1464 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1465 goto bad;
1468 switch (opt) {
1470 default:
1471 break;
1474 * Source routing with record.
1475 * Find interface with current destination address.
1476 * If none on this machine then drop if strictly routed,
1477 * or do nothing if loosely routed.
1478 * Record interface address and bring up next address
1479 * component. If strictly routed make sure next
1480 * address is on directly accessible net.
1482 case IPOPT_LSRR:
1483 case IPOPT_SSRR:
1484 if (ipstealth && pass > 0)
1485 break;
1486 if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1487 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1488 goto bad;
1490 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1491 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1492 goto bad;
1494 ipaddr.sin_addr = ip->ip_dst;
1495 ia = (struct in_ifaddr *)
1496 ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1497 if (ia == NULL) {
1498 if (opt == IPOPT_SSRR) {
1499 type = ICMP_UNREACH;
1500 code = ICMP_UNREACH_SRCFAIL;
1501 goto bad;
1503 if (!ip_dosourceroute)
1504 goto nosourcerouting;
1506 * Loose routing, and not at next destination
1507 * yet; nothing to do except forward.
1509 break;
1511 off--; /* 0 origin */
1512 if (off > optlen - (int)sizeof(struct in_addr)) {
1514 * End of source route. Should be for us.
1516 if (!ip_acceptsourceroute)
1517 goto nosourcerouting;
1518 save_rte(cp, ip->ip_src);
1519 break;
1521 if (ipstealth)
1522 goto dropit;
1523 if (!ip_dosourceroute) {
1524 if (ipforwarding) {
1525 char buf[sizeof "aaa.bbb.ccc.ddd"];
1528 * Acting as a router, so generate ICMP
1530 nosourcerouting:
1531 strcpy(buf, inet_ntoa(ip->ip_dst));
1532 log(LOG_WARNING,
1533 "attempted source route from %s to %s\n",
1534 inet_ntoa(ip->ip_src), buf);
1535 type = ICMP_UNREACH;
1536 code = ICMP_UNREACH_SRCFAIL;
1537 goto bad;
1538 } else {
1540 * Not acting as a router,
1541 * so silently drop.
1543 dropit:
1544 ipstat.ips_cantforward++;
1545 m_freem(m);
1546 return (1);
1551 * locate outgoing interface
1553 memcpy(&ipaddr.sin_addr, cp + off,
1554 sizeof ipaddr.sin_addr);
1556 if (opt == IPOPT_SSRR) {
1557 #define INA struct in_ifaddr *
1558 #define SA struct sockaddr *
1559 if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr))
1560 == NULL)
1561 ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1562 } else
1563 ia = ip_rtaddr(ipaddr.sin_addr,
1564 &ipforward_rt[mycpuid]);
1565 if (ia == NULL) {
1566 type = ICMP_UNREACH;
1567 code = ICMP_UNREACH_SRCFAIL;
1568 goto bad;
1570 ip->ip_dst = ipaddr.sin_addr;
1571 memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1572 sizeof(struct in_addr));
1573 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1575 * Let ip_intr's mcast routing check handle mcast pkts
1577 forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1578 break;
1580 case IPOPT_RR:
1581 if (ipstealth && pass == 0)
1582 break;
1583 if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1584 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1585 goto bad;
1587 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1588 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1589 goto bad;
1592 * If no space remains, ignore.
1594 off--; /* 0 origin */
1595 if (off > optlen - (int)sizeof(struct in_addr))
1596 break;
1597 memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1598 sizeof ipaddr.sin_addr);
1600 * locate outgoing interface; if we're the destination,
1601 * use the incoming interface (should be same).
1603 if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == NULL &&
1604 (ia = ip_rtaddr(ipaddr.sin_addr,
1605 &ipforward_rt[mycpuid]))
1606 == NULL) {
1607 type = ICMP_UNREACH;
1608 code = ICMP_UNREACH_HOST;
1609 goto bad;
1611 memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1612 sizeof(struct in_addr));
1613 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1614 break;
1616 case IPOPT_TS:
1617 if (ipstealth && pass == 0)
1618 break;
1619 code = cp - (u_char *)ip;
1620 if (optlen < 4 || optlen > 40) {
1621 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1622 goto bad;
1624 if ((off = cp[IPOPT_OFFSET]) < 5) {
1625 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1626 goto bad;
1628 if (off > optlen - (int)sizeof(int32_t)) {
1629 cp[IPOPT_OFFSET + 1] += (1 << 4);
1630 if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1631 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1632 goto bad;
1634 break;
1636 off--; /* 0 origin */
1637 sin = (struct in_addr *)(cp + off);
1638 switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1640 case IPOPT_TS_TSONLY:
1641 break;
1643 case IPOPT_TS_TSANDADDR:
1644 if (off + sizeof(n_time) +
1645 sizeof(struct in_addr) > optlen) {
1646 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1647 goto bad;
1649 ipaddr.sin_addr = dst;
1650 ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1651 m->m_pkthdr.rcvif);
1652 if (ia == NULL)
1653 continue;
1654 memcpy(sin, &IA_SIN(ia)->sin_addr,
1655 sizeof(struct in_addr));
1656 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1657 off += sizeof(struct in_addr);
1658 break;
1660 case IPOPT_TS_PRESPEC:
1661 if (off + sizeof(n_time) +
1662 sizeof(struct in_addr) > optlen) {
1663 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1664 goto bad;
1666 memcpy(&ipaddr.sin_addr, sin,
1667 sizeof(struct in_addr));
1668 if (ifa_ifwithaddr((SA)&ipaddr) == NULL)
1669 continue;
1670 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1671 off += sizeof(struct in_addr);
1672 break;
1674 default:
1675 code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1676 goto bad;
1678 ntime = iptime();
1679 memcpy(cp + off, &ntime, sizeof(n_time));
1680 cp[IPOPT_OFFSET] += sizeof(n_time);
1683 if (forward && ipforwarding) {
1684 ip_forward(m, TRUE, next_hop);
1685 return (1);
1687 return (0);
1688 bad:
1689 icmp_error(m, type, code, 0, 0);
1690 ipstat.ips_badoptions++;
1691 return (1);
1695 * Given address of next destination (final or next hop),
1696 * return internet address info of interface to be used to get there.
1698 struct in_ifaddr *
1699 ip_rtaddr(struct in_addr dst, struct route *ro)
1701 struct sockaddr_in *sin;
1703 sin = (struct sockaddr_in *)&ro->ro_dst;
1705 if (ro->ro_rt == NULL || dst.s_addr != sin->sin_addr.s_addr) {
1706 if (ro->ro_rt != NULL) {
1707 RTFREE(ro->ro_rt);
1708 ro->ro_rt = NULL;
1710 sin->sin_family = AF_INET;
1711 sin->sin_len = sizeof *sin;
1712 sin->sin_addr = dst;
1713 rtalloc_ign(ro, RTF_PRCLONING);
1716 if (ro->ro_rt == NULL)
1717 return (NULL);
1719 return (ifatoia(ro->ro_rt->rt_ifa));
1723 * Save incoming source route for use in replies,
1724 * to be picked up later by ip_srcroute if the receiver is interested.
1726 void
1727 save_rte(u_char *option, struct in_addr dst)
1729 unsigned olen;
1731 olen = option[IPOPT_OLEN];
1732 #ifdef DIAGNOSTIC
1733 if (ipprintfs)
1734 kprintf("save_rte: olen %d\n", olen);
1735 #endif
1736 if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1737 return;
1738 bcopy(option, ip_srcrt.srcopt, olen);
1739 ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1740 ip_srcrt.dst = dst;
1744 * Retrieve incoming source route for use in replies,
1745 * in the same form used by setsockopt.
1746 * The first hop is placed before the options, will be removed later.
1748 struct mbuf *
1749 ip_srcroute(void)
1751 struct in_addr *p, *q;
1752 struct mbuf *m;
1754 if (ip_nhops == 0)
1755 return (NULL);
1756 m = m_get(MB_DONTWAIT, MT_HEADER);
1757 if (m == NULL)
1758 return (NULL);
1760 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1762 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1763 m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1764 OPTSIZ;
1765 #ifdef DIAGNOSTIC
1766 if (ipprintfs)
1767 kprintf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1768 #endif
1771 * First save first hop for return route
1773 p = &ip_srcrt.route[ip_nhops - 1];
1774 *(mtod(m, struct in_addr *)) = *p--;
1775 #ifdef DIAGNOSTIC
1776 if (ipprintfs)
1777 kprintf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1778 #endif
1781 * Copy option fields and padding (nop) to mbuf.
1783 ip_srcrt.nop = IPOPT_NOP;
1784 ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1785 memcpy(mtod(m, caddr_t) + sizeof(struct in_addr), &ip_srcrt.nop,
1786 OPTSIZ);
1787 q = (struct in_addr *)(mtod(m, caddr_t) +
1788 sizeof(struct in_addr) + OPTSIZ);
1789 #undef OPTSIZ
1791 * Record return path as an IP source route,
1792 * reversing the path (pointers are now aligned).
1794 while (p >= ip_srcrt.route) {
1795 #ifdef DIAGNOSTIC
1796 if (ipprintfs)
1797 kprintf(" %x", ntohl(q->s_addr));
1798 #endif
1799 *q++ = *p--;
1802 * Last hop goes to final destination.
1804 *q = ip_srcrt.dst;
1805 #ifdef DIAGNOSTIC
1806 if (ipprintfs)
1807 kprintf(" %x\n", ntohl(q->s_addr));
1808 #endif
1809 return (m);
1813 * Strip out IP options.
1815 void
1816 ip_stripoptions(struct mbuf *m)
1818 int datalen;
1819 struct ip *ip = mtod(m, struct ip *);
1820 caddr_t opts;
1821 int optlen;
1823 optlen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1824 opts = (caddr_t)(ip + 1);
1825 datalen = m->m_len - (sizeof(struct ip) + optlen);
1826 bcopy(opts + optlen, opts, datalen);
1827 m->m_len -= optlen;
1828 if (m->m_flags & M_PKTHDR)
1829 m->m_pkthdr.len -= optlen;
1830 ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1833 u_char inetctlerrmap[PRC_NCMDS] = {
1834 0, 0, 0, 0,
1835 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH,
1836 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED,
1837 EMSGSIZE, EHOSTUNREACH, 0, 0,
1838 0, 0, 0, 0,
1839 ENOPROTOOPT, ECONNREFUSED
1843 * Forward a packet. If some error occurs return the sender
1844 * an icmp packet. Note we can't always generate a meaningful
1845 * icmp message because icmp doesn't have a large enough repertoire
1846 * of codes and types.
1848 * If not forwarding, just drop the packet. This could be confusing
1849 * if ipforwarding was zero but some routing protocol was advancing
1850 * us as a gateway to somewhere. However, we must let the routing
1851 * protocol deal with that.
1853 * The using_srcrt parameter indicates whether the packet is being forwarded
1854 * via a source route.
1856 void
1857 ip_forward(struct mbuf *m, boolean_t using_srcrt, struct sockaddr_in *next_hop)
1859 struct ip *ip = mtod(m, struct ip *);
1860 struct sockaddr_in *ipforward_rtaddr;
1861 struct rtentry *rt;
1862 int error, type = 0, code = 0, destmtu = 0;
1863 struct mbuf *mcopy;
1864 n_long dest;
1865 struct in_addr pkt_dst;
1866 struct route *cache_rt = &ipforward_rt[mycpuid];
1868 dest = INADDR_ANY;
1870 * Cache the destination address of the packet; this may be
1871 * changed by use of 'ipfw fwd'.
1873 pkt_dst = (next_hop != NULL) ? next_hop->sin_addr : ip->ip_dst;
1875 #ifdef DIAGNOSTIC
1876 if (ipprintfs)
1877 kprintf("forward: src %x dst %x ttl %x\n",
1878 ip->ip_src.s_addr, pkt_dst.s_addr, ip->ip_ttl);
1879 #endif
1881 if (m->m_flags & (M_BCAST | M_MCAST) || !in_canforward(pkt_dst)) {
1882 ipstat.ips_cantforward++;
1883 m_freem(m);
1884 return;
1886 if (!ipstealth && ip->ip_ttl <= IPTTLDEC) {
1887 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1888 return;
1891 ipforward_rtaddr = (struct sockaddr_in *) &cache_rt->ro_dst;
1892 if (cache_rt->ro_rt == NULL ||
1893 ipforward_rtaddr->sin_addr.s_addr != pkt_dst.s_addr) {
1894 if (cache_rt->ro_rt != NULL) {
1895 RTFREE(cache_rt->ro_rt);
1896 cache_rt->ro_rt = NULL;
1898 ipforward_rtaddr->sin_family = AF_INET;
1899 ipforward_rtaddr->sin_len = sizeof(struct sockaddr_in);
1900 ipforward_rtaddr->sin_addr = pkt_dst;
1901 rtalloc_ign(cache_rt, RTF_PRCLONING);
1902 if (cache_rt->ro_rt == NULL) {
1903 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1904 return;
1907 rt = cache_rt->ro_rt;
1910 * Save the IP header and at most 8 bytes of the payload,
1911 * in case we need to generate an ICMP message to the src.
1913 * XXX this can be optimized a lot by saving the data in a local
1914 * buffer on the stack (72 bytes at most), and only allocating the
1915 * mbuf if really necessary. The vast majority of the packets
1916 * are forwarded without having to send an ICMP back (either
1917 * because unnecessary, or because rate limited), so we are
1918 * really we are wasting a lot of work here.
1920 * We don't use m_copy() because it might return a reference
1921 * to a shared cluster. Both this function and ip_output()
1922 * assume exclusive access to the IP header in `m', so any
1923 * data in a cluster may change before we reach icmp_error().
1925 MGETHDR(mcopy, MB_DONTWAIT, m->m_type);
1926 if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, MB_DONTWAIT)) {
1928 * It's probably ok if the pkthdr dup fails (because
1929 * the deep copy of the tag chain failed), but for now
1930 * be conservative and just discard the copy since
1931 * code below may some day want the tags.
1933 m_free(mcopy);
1934 mcopy = NULL;
1936 if (mcopy != NULL) {
1937 mcopy->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
1938 (int)ip->ip_len);
1939 mcopy->m_pkthdr.len = mcopy->m_len;
1940 m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1943 if (!ipstealth)
1944 ip->ip_ttl -= IPTTLDEC;
1947 * If forwarding packet using same interface that it came in on,
1948 * perhaps should send a redirect to sender to shortcut a hop.
1949 * Only send redirect if source is sending directly to us,
1950 * and if packet was not source routed (or has any options).
1951 * Also, don't send redirect if forwarding using a default route
1952 * or a route modified by a redirect.
1954 if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1955 !(rt->rt_flags & (RTF_DYNAMIC | RTF_MODIFIED)) &&
1956 satosin(rt_key(rt))->sin_addr.s_addr != INADDR_ANY &&
1957 ipsendredirects && !using_srcrt && next_hop == NULL) {
1958 u_long src = ntohl(ip->ip_src.s_addr);
1959 struct in_ifaddr *rt_ifa = (struct in_ifaddr *)rt->rt_ifa;
1961 if (rt_ifa != NULL &&
1962 (src & rt_ifa->ia_subnetmask) == rt_ifa->ia_subnet) {
1963 if (rt->rt_flags & RTF_GATEWAY)
1964 dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1965 else
1966 dest = pkt_dst.s_addr;
1968 * Router requirements says to only send
1969 * host redirects.
1971 type = ICMP_REDIRECT;
1972 code = ICMP_REDIRECT_HOST;
1973 #ifdef DIAGNOSTIC
1974 if (ipprintfs)
1975 kprintf("redirect (%d) to %x\n", code, dest);
1976 #endif
1980 error = ip_output(m, NULL, cache_rt, IP_FORWARDING, NULL, NULL);
1981 if (error == 0) {
1982 ipstat.ips_forward++;
1983 if (type == 0) {
1984 if (mcopy) {
1985 ipflow_create(cache_rt, mcopy);
1986 m_freem(mcopy);
1988 return; /* most common case */
1989 } else {
1990 ipstat.ips_redirectsent++;
1992 } else {
1993 ipstat.ips_cantforward++;
1996 if (mcopy == NULL)
1997 return;
2000 * Send ICMP message.
2003 switch (error) {
2005 case 0: /* forwarded, but need redirect */
2006 /* type, code set above */
2007 break;
2009 case ENETUNREACH: /* shouldn't happen, checked above */
2010 case EHOSTUNREACH:
2011 case ENETDOWN:
2012 case EHOSTDOWN:
2013 default:
2014 type = ICMP_UNREACH;
2015 code = ICMP_UNREACH_HOST;
2016 break;
2018 case EMSGSIZE:
2019 type = ICMP_UNREACH;
2020 code = ICMP_UNREACH_NEEDFRAG;
2021 #ifdef IPSEC
2023 * If the packet is routed over IPsec tunnel, tell the
2024 * originator the tunnel MTU.
2025 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2026 * XXX quickhack!!!
2028 if (cache_rt->ro_rt != NULL) {
2029 struct secpolicy *sp = NULL;
2030 int ipsecerror;
2031 int ipsechdr;
2032 struct route *ro;
2034 sp = ipsec4_getpolicybyaddr(mcopy,
2035 IPSEC_DIR_OUTBOUND,
2036 IP_FORWARDING,
2037 &ipsecerror);
2039 if (sp == NULL)
2040 destmtu = cache_rt->ro_rt->rt_ifp->if_mtu;
2041 else {
2042 /* count IPsec header size */
2043 ipsechdr = ipsec4_hdrsiz(mcopy,
2044 IPSEC_DIR_OUTBOUND,
2045 NULL);
2048 * find the correct route for outer IPv4
2049 * header, compute tunnel MTU.
2052 if (sp->req != NULL && sp->req->sav != NULL &&
2053 sp->req->sav->sah != NULL) {
2054 ro = &sp->req->sav->sah->sa_route;
2055 if (ro->ro_rt != NULL &&
2056 ro->ro_rt->rt_ifp != NULL) {
2057 destmtu =
2058 ro->ro_rt->rt_ifp->if_mtu;
2059 destmtu -= ipsechdr;
2063 key_freesp(sp);
2066 #elif FAST_IPSEC
2068 * If the packet is routed over IPsec tunnel, tell the
2069 * originator the tunnel MTU.
2070 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2071 * XXX quickhack!!!
2073 if (cache_rt->ro_rt != NULL) {
2074 struct secpolicy *sp = NULL;
2075 int ipsecerror;
2076 int ipsechdr;
2077 struct route *ro;
2079 sp = ipsec_getpolicybyaddr(mcopy,
2080 IPSEC_DIR_OUTBOUND,
2081 IP_FORWARDING,
2082 &ipsecerror);
2084 if (sp == NULL)
2085 destmtu = cache_rt->ro_rt->rt_ifp->if_mtu;
2086 else {
2087 /* count IPsec header size */
2088 ipsechdr = ipsec4_hdrsiz(mcopy,
2089 IPSEC_DIR_OUTBOUND,
2090 NULL);
2093 * find the correct route for outer IPv4
2094 * header, compute tunnel MTU.
2097 if (sp->req != NULL &&
2098 sp->req->sav != NULL &&
2099 sp->req->sav->sah != NULL) {
2100 ro = &sp->req->sav->sah->sa_route;
2101 if (ro->ro_rt != NULL &&
2102 ro->ro_rt->rt_ifp != NULL) {
2103 destmtu =
2104 ro->ro_rt->rt_ifp->if_mtu;
2105 destmtu -= ipsechdr;
2109 KEY_FREESP(&sp);
2112 #else /* !IPSEC && !FAST_IPSEC */
2113 if (cache_rt->ro_rt != NULL)
2114 destmtu = cache_rt->ro_rt->rt_ifp->if_mtu;
2115 #endif /*IPSEC*/
2116 ipstat.ips_cantfrag++;
2117 break;
2119 case ENOBUFS:
2121 * A router should not generate ICMP_SOURCEQUENCH as
2122 * required in RFC1812 Requirements for IP Version 4 Routers.
2123 * Source quench could be a big problem under DoS attacks,
2124 * or if the underlying interface is rate-limited.
2125 * Those who need source quench packets may re-enable them
2126 * via the net.inet.ip.sendsourcequench sysctl.
2128 if (!ip_sendsourcequench) {
2129 m_freem(mcopy);
2130 return;
2131 } else {
2132 type = ICMP_SOURCEQUENCH;
2133 code = 0;
2135 break;
2137 case EACCES: /* ipfw denied packet */
2138 m_freem(mcopy);
2139 return;
2141 icmp_error(mcopy, type, code, dest, destmtu);
2144 void
2145 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2146 struct mbuf *m)
2148 if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2149 struct timeval tv;
2151 microtime(&tv);
2152 *mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2153 SCM_TIMESTAMP, SOL_SOCKET);
2154 if (*mp)
2155 mp = &(*mp)->m_next;
2157 if (inp->inp_flags & INP_RECVDSTADDR) {
2158 *mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2159 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2160 if (*mp)
2161 mp = &(*mp)->m_next;
2163 if (inp->inp_flags & INP_RECVTTL) {
2164 *mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
2165 sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
2166 if (*mp)
2167 mp = &(*mp)->m_next;
2169 #ifdef notyet
2170 /* XXX
2171 * Moving these out of udp_input() made them even more broken
2172 * than they already were.
2174 /* options were tossed already */
2175 if (inp->inp_flags & INP_RECVOPTS) {
2176 *mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2177 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2178 if (*mp)
2179 mp = &(*mp)->m_next;
2181 /* ip_srcroute doesn't do what we want here, need to fix */
2182 if (inp->inp_flags & INP_RECVRETOPTS) {
2183 *mp = sbcreatecontrol((caddr_t) ip_srcroute(),
2184 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2185 if (*mp)
2186 mp = &(*mp)->m_next;
2188 #endif
2189 if (inp->inp_flags & INP_RECVIF) {
2190 struct ifnet *ifp;
2191 struct sdlbuf {
2192 struct sockaddr_dl sdl;
2193 u_char pad[32];
2194 } sdlbuf;
2195 struct sockaddr_dl *sdp;
2196 struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2198 if (((ifp = m->m_pkthdr.rcvif)) &&
2199 ((ifp->if_index != 0) && (ifp->if_index <= if_index))) {
2200 sdp = IF_LLSOCKADDR(ifp);
2202 * Change our mind and don't try copy.
2204 if ((sdp->sdl_family != AF_LINK) ||
2205 (sdp->sdl_len > sizeof(sdlbuf))) {
2206 goto makedummy;
2208 bcopy(sdp, sdl2, sdp->sdl_len);
2209 } else {
2210 makedummy:
2211 sdl2->sdl_len =
2212 offsetof(struct sockaddr_dl, sdl_data[0]);
2213 sdl2->sdl_family = AF_LINK;
2214 sdl2->sdl_index = 0;
2215 sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2217 *mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2218 IP_RECVIF, IPPROTO_IP);
2219 if (*mp)
2220 mp = &(*mp)->m_next;
2225 * XXX these routines are called from the upper part of the kernel.
2227 * They could also be moved to ip_mroute.c, since all the RSVP
2228 * handling is done there already.
2231 ip_rsvp_init(struct socket *so)
2233 if (so->so_type != SOCK_RAW ||
2234 so->so_proto->pr_protocol != IPPROTO_RSVP)
2235 return EOPNOTSUPP;
2237 if (ip_rsvpd != NULL)
2238 return EADDRINUSE;
2240 ip_rsvpd = so;
2242 * This may seem silly, but we need to be sure we don't over-increment
2243 * the RSVP counter, in case something slips up.
2245 if (!ip_rsvp_on) {
2246 ip_rsvp_on = 1;
2247 rsvp_on++;
2250 return 0;
2254 ip_rsvp_done(void)
2256 ip_rsvpd = NULL;
2258 * This may seem silly, but we need to be sure we don't over-decrement
2259 * the RSVP counter, in case something slips up.
2261 if (ip_rsvp_on) {
2262 ip_rsvp_on = 0;
2263 rsvp_on--;
2265 return 0;
2268 void
2269 rsvp_input(struct mbuf *m, ...) /* XXX must fixup manually */
2271 int off, proto;
2272 __va_list ap;
2274 __va_start(ap, m);
2275 off = __va_arg(ap, int);
2276 proto = __va_arg(ap, int);
2277 __va_end(ap);
2279 if (rsvp_input_p) { /* call the real one if loaded */
2280 rsvp_input_p(m, off, proto);
2281 return;
2284 /* Can still get packets with rsvp_on = 0 if there is a local member
2285 * of the group to which the RSVP packet is addressed. But in this
2286 * case we want to throw the packet away.
2289 if (!rsvp_on) {
2290 m_freem(m);
2291 return;
2294 if (ip_rsvpd != NULL) {
2295 rip_input(m, off, proto);
2296 return;
2298 /* Drop the packet */
2299 m_freem(m);