vkernel - Fix more pagein/pageout corruption
[dragonfly.git] / sys / vm / vm_zone.c
blobf6ce8749f23b955328694e8f8de8fb1e762e731c
1 /*
2 * (MPSAFE)
4 * Copyright (c) 1997, 1998 John S. Dyson
5 * All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice immediately at the beginning of the file, without modification,
12 * this list of conditions, and the following disclaimer.
13 * 2. Absolutely no warranty of function or purpose is made by the author
14 * John S. Dyson.
16 * $FreeBSD: src/sys/vm/vm_zone.c,v 1.30.2.6 2002/10/10 19:50:16 dillon Exp $
19 #include <sys/param.h>
20 #include <sys/queue.h>
21 #include <sys/systm.h>
22 #include <sys/kernel.h>
23 #include <sys/lock.h>
24 #include <sys/malloc.h>
25 #include <sys/sysctl.h>
26 #include <sys/vmmeter.h>
28 #include <vm/vm.h>
29 #include <vm/vm_object.h>
30 #include <vm/vm_page.h>
31 #include <vm/vm_map.h>
32 #include <vm/vm_kern.h>
33 #include <vm/vm_extern.h>
34 #include <vm/vm_zone.h>
36 #include <sys/spinlock2.h>
37 #include <vm/vm_page2.h>
39 static MALLOC_DEFINE(M_ZONE, "ZONE", "Zone header");
41 #define ZONE_ERROR_INVALID 0
42 #define ZONE_ERROR_NOTFREE 1
43 #define ZONE_ERROR_ALREADYFREE 2
45 #define ZONE_ROUNDING 32
47 #define ZENTRY_FREE 0x12342378
49 long zone_burst = 128;
51 static void *zget(vm_zone_t z);
54 * Return an item from the specified zone. This function is non-blocking for
55 * ZONE_INTERRUPT zones.
57 * No requirements.
59 void *
60 zalloc(vm_zone_t z)
62 globaldata_t gd = mycpu;
63 vm_zpcpu_t *zpcpu;
64 void *item;
65 long n;
67 #ifdef INVARIANTS
68 if (z == NULL)
69 zerror(ZONE_ERROR_INVALID);
70 #endif
71 zpcpu = &z->zpcpu[gd->gd_cpuid];
72 retry:
74 * Avoid spinlock contention by allocating from a per-cpu queue
76 if (zpcpu->zfreecnt > 0) {
77 crit_enter_gd(gd);
78 if (zpcpu->zfreecnt > 0) {
79 item = zpcpu->zitems;
80 #ifdef INVARIANTS
81 KASSERT(item != NULL,
82 ("zitems_pcpu unexpectedly NULL"));
83 if (((void **)item)[1] != (void *)ZENTRY_FREE)
84 zerror(ZONE_ERROR_NOTFREE);
85 ((void **)item)[1] = NULL;
86 #endif
87 zpcpu->zitems = ((void **) item)[0];
88 --zpcpu->zfreecnt;
89 ++zpcpu->znalloc;
90 crit_exit_gd(gd);
92 return item;
94 crit_exit_gd(gd);
98 * Per-zone spinlock for the remainder. Always load at least one
99 * item.
101 spin_lock(&z->zlock);
102 if (z->zfreecnt > z->zfreemin) {
103 n = zone_burst;
104 do {
105 item = z->zitems;
106 #ifdef INVARIANTS
107 KASSERT(item != NULL, ("zitems unexpectedly NULL"));
108 if (((void **)item)[1] != (void *)ZENTRY_FREE)
109 zerror(ZONE_ERROR_NOTFREE);
110 #endif
111 z->zitems = ((void **)item)[0];
112 --z->zfreecnt;
113 ((void **)item)[0] = zpcpu->zitems;
114 zpcpu->zitems = item;
115 ++zpcpu->zfreecnt;
116 } while (--n > 0 && z->zfreecnt > z->zfreemin);
117 spin_unlock(&z->zlock);
118 goto retry;
119 } else {
120 spin_unlock(&z->zlock);
121 item = zget(z);
123 * PANICFAIL allows the caller to assume that the zalloc()
124 * will always succeed. If it doesn't, we panic here.
126 if (item == NULL && (z->zflags & ZONE_PANICFAIL))
127 panic("zalloc(%s) failed", z->zname);
129 return item;
133 * Free an item to the specified zone.
135 * No requirements.
137 void
138 zfree(vm_zone_t z, void *item)
140 globaldata_t gd = mycpu;
141 vm_zpcpu_t *zpcpu;
142 void *tail_item;
143 long count;
144 long zmax;
146 zpcpu = &z->zpcpu[gd->gd_cpuid];
149 * Avoid spinlock contention by freeing into a per-cpu queue
151 zmax = z->zmax_pcpu;
152 if (zmax < 1024)
153 zmax = 1024;
156 * Add to pcpu cache
158 crit_enter_gd(gd);
159 ((void **)item)[0] = zpcpu->zitems;
160 #ifdef INVARIANTS
161 if (((void **)item)[1] == (void *)ZENTRY_FREE)
162 zerror(ZONE_ERROR_ALREADYFREE);
163 ((void **)item)[1] = (void *)ZENTRY_FREE;
164 #endif
165 zpcpu->zitems = item;
166 ++zpcpu->zfreecnt;
168 if (zpcpu->zfreecnt < zmax) {
169 crit_exit_gd(gd);
170 return;
174 * Hystereis, move (zmax) (calculated below) items to the pool.
176 zmax = zmax / 2;
177 if (zmax > zone_burst)
178 zmax = zone_burst;
179 tail_item = item;
180 count = 1;
182 while (count < zmax) {
183 tail_item = ((void **)tail_item)[0];
184 ++count;
186 zpcpu->zitems = ((void **)tail_item)[0];
187 zpcpu->zfreecnt -= count;
190 * Per-zone spinlock for the remainder.
192 * Also implement hysteresis by freeing a number of pcpu
193 * entries.
195 spin_lock(&z->zlock);
196 ((void **)tail_item)[0] = z->zitems;
197 z->zitems = item;
198 z->zfreecnt += count;
199 spin_unlock(&z->zlock);
201 crit_exit_gd(gd);
205 * This file comprises a very simple zone allocator. This is used
206 * in lieu of the malloc allocator, where needed or more optimal.
208 * Note that the initial implementation of this had coloring, and
209 * absolutely no improvement (actually perf degradation) occurred.
211 * Note also that the zones are type stable. The only restriction is
212 * that the first two longwords of a data structure can be changed
213 * between allocations. Any data that must be stable between allocations
214 * must reside in areas after the first two longwords.
216 * zinitna, zinit, zbootinit are the initialization routines.
217 * zalloc, zfree, are the allocation/free routines.
220 LIST_HEAD(zlist, vm_zone) zlist = LIST_HEAD_INITIALIZER(zlist);
221 static int sysctl_vm_zone(SYSCTL_HANDLER_ARGS);
222 static vm_pindex_t zone_kmem_pages, zone_kern_pages;
223 static long zone_kmem_kvaspace;
226 * Create a zone, but don't allocate the zone structure. If the
227 * zone had been previously created by the zone boot code, initialize
228 * various parts of the zone code.
230 * If waits are not allowed during allocation (e.g. during interrupt
231 * code), a-priori allocate the kernel virtual space, and allocate
232 * only pages when needed.
234 * Arguments:
235 * z pointer to zone structure.
236 * obj pointer to VM object (opt).
237 * name name of zone.
238 * size size of zone entries.
239 * nentries number of zone entries allocated (only ZONE_INTERRUPT.)
240 * flags ZONE_INTERRUPT -- items can be allocated at interrupt time.
241 * zalloc number of pages allocated when memory is needed.
243 * Note that when using ZONE_INTERRUPT, the size of the zone is limited
244 * by the nentries argument. The size of the memory allocatable is
245 * unlimited if ZONE_INTERRUPT is not set.
247 * No requirements.
250 zinitna(vm_zone_t z, vm_object_t obj, char *name, size_t size,
251 long nentries, uint32_t flags)
253 size_t totsize;
256 * Only zones created with zinit() are destroyable.
258 if (z->zflags & ZONE_DESTROYABLE)
259 panic("zinitna: can't create destroyable zone");
262 * NOTE: We can only adjust zsize if we previously did not
263 * use zbootinit().
265 if ((z->zflags & ZONE_BOOT) == 0) {
266 z->zsize = roundup2(size, ZONE_ROUNDING);
267 spin_init(&z->zlock, "zinitna");
268 z->zfreecnt = 0;
269 z->ztotal = 0;
270 z->zmax = 0;
271 z->zname = name;
272 z->zitems = NULL;
274 lwkt_gettoken(&vm_token);
275 LIST_INSERT_HEAD(&zlist, z, zlink);
276 lwkt_reltoken(&vm_token);
278 bzero(z->zpcpu, sizeof(z->zpcpu));
281 z->zkmvec = NULL;
282 z->zkmcur = z->zkmmax = 0;
283 z->zflags |= flags;
286 * If we cannot wait, allocate KVA space up front, and we will fill
287 * in pages as needed. This is particularly required when creating
288 * an allocation space for map entries in kernel_map, because we
289 * do not want to go into a recursion deadlock with
290 * vm_map_entry_reserve().
292 if (z->zflags & ZONE_INTERRUPT) {
293 totsize = round_page((size_t)z->zsize * nentries);
294 atomic_add_long(&zone_kmem_kvaspace, totsize);
296 z->zkva = kmem_alloc_pageable(&kernel_map, totsize,
297 VM_SUBSYS_ZALLOC);
298 if (z->zkva == 0) {
299 LIST_REMOVE(z, zlink);
300 return 0;
303 z->zpagemax = totsize / PAGE_SIZE;
304 if (obj == NULL) {
305 z->zobj = vm_object_allocate(OBJT_DEFAULT, z->zpagemax);
306 } else {
307 z->zobj = obj;
308 _vm_object_allocate(OBJT_DEFAULT, z->zpagemax, obj);
309 vm_object_drop(obj);
311 z->zallocflag = VM_ALLOC_SYSTEM | VM_ALLOC_INTERRUPT |
312 VM_ALLOC_NORMAL | VM_ALLOC_RETRY;
313 z->zmax += nentries;
314 z->zmax_pcpu = z->zmax / ncpus / 16;
317 * Set reasonable pcpu cache bounds. Low-memory systems
318 * might try to cache too little, large-memory systems
319 * might try to cache more than necessarsy.
321 * In particular, pvzone can wind up being excessive and
322 * waste memory unnecessarily.
324 if (z->zmax_pcpu < 1024)
325 z->zmax_pcpu = 1024;
326 if (z->zmax_pcpu * z->zsize > 16*1024*1024)
327 z->zmax_pcpu = 16*1024*1024 / z->zsize;
328 } else {
329 z->zallocflag = VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM;
330 z->zmax = 0;
331 z->zmax_pcpu = 8192;
335 if (z->zsize > PAGE_SIZE)
336 z->zfreemin = 1;
337 else
338 z->zfreemin = PAGE_SIZE / z->zsize;
340 z->zpagecount = 0;
343 * Reduce kernel_map spam by allocating in chunks of 4 pages.
345 z->zalloc = 4;
348 * Populate the interrrupt zone at creation time rather than
349 * on first allocation, as this is a potentially long operation.
351 if (z->zflags & ZONE_INTERRUPT) {
352 void *buf;
354 buf = zget(z);
355 zfree(z, buf);
358 return 1;
362 * Subroutine same as zinitna, except zone data structure is allocated
363 * automatically by malloc. This routine should normally be used, except
364 * in certain tricky startup conditions in the VM system -- then
365 * zbootinit and zinitna can be used. Zinit is the standard zone
366 * initialization call.
368 * No requirements.
370 vm_zone_t
371 zinit(char *name, size_t size, long nentries, uint32_t flags)
373 vm_zone_t z;
375 z = (vm_zone_t) kmalloc(sizeof (struct vm_zone), M_ZONE, M_NOWAIT);
376 if (z == NULL)
377 return NULL;
379 z->zflags = 0;
380 if (zinitna(z, NULL, name, size, nentries,
381 flags & ~ZONE_DESTROYABLE) == 0) {
382 kfree(z, M_ZONE);
383 return NULL;
386 if (flags & ZONE_DESTROYABLE)
387 z->zflags |= ZONE_DESTROYABLE;
389 return z;
393 * Initialize a zone before the system is fully up. This routine should
394 * only be called before full VM startup.
396 * Called from the low level boot code only.
398 void
399 zbootinit(vm_zone_t z, char *name, size_t size, void *item, long nitems)
401 long i;
403 spin_init(&z->zlock, "zbootinit");
404 bzero(z->zpcpu, sizeof(z->zpcpu));
405 z->zname = name;
406 z->zsize = size;
407 z->zpagemax = 0;
408 z->zobj = NULL;
409 z->zflags = ZONE_BOOT;
410 z->zfreemin = 0;
411 z->zallocflag = 0;
412 z->zpagecount = 0;
413 z->zalloc = 0;
415 bzero(item, (size_t)nitems * z->zsize);
416 z->zitems = NULL;
417 for (i = 0; i < nitems; i++) {
418 ((void **)item)[0] = z->zitems;
419 #ifdef INVARIANTS
420 ((void **)item)[1] = (void *)ZENTRY_FREE;
421 #endif
422 z->zitems = item;
423 item = (uint8_t *)item + z->zsize;
425 z->zfreecnt = nitems;
426 z->zmax = nitems;
427 z->ztotal = nitems;
429 lwkt_gettoken(&vm_token);
430 LIST_INSERT_HEAD(&zlist, z, zlink);
431 lwkt_reltoken(&vm_token);
435 * Release all resources owned by zone created with zinit().
437 * No requirements.
439 void
440 zdestroy(vm_zone_t z)
442 vm_page_t m;
443 vm_pindex_t i;
445 if (z == NULL)
446 panic("zdestroy: null zone");
447 if ((z->zflags & ZONE_DESTROYABLE) == 0)
448 panic("zdestroy: undestroyable zone");
450 lwkt_gettoken(&vm_token);
451 LIST_REMOVE(z, zlink);
452 lwkt_reltoken(&vm_token);
455 * Release virtual mappings, physical memory and update sysctl stats.
457 if (z->zflags & ZONE_INTERRUPT) {
459 * Pages mapped via pmap_kenter() must be removed from the
460 * kernel_pmap() before calling kmem_free() to avoid issues
461 * with kernel_pmap.pm_stats.resident_count.
463 pmap_qremove(z->zkva, z->zpagemax);
464 vm_object_hold(z->zobj);
465 for (i = 0; i < z->zpagecount; ++i) {
466 m = vm_page_lookup_busy_wait(z->zobj, i, TRUE, "vmzd");
467 vm_page_unwire(m, 0);
468 vm_page_free(m);
472 * Free the mapping.
474 kmem_free(&kernel_map, z->zkva,
475 (size_t)z->zpagemax * PAGE_SIZE);
476 atomic_subtract_long(&zone_kmem_kvaspace,
477 (size_t)z->zpagemax * PAGE_SIZE);
480 * Free the backing object and physical pages.
482 vm_object_deallocate(z->zobj);
483 vm_object_drop(z->zobj);
484 atomic_subtract_long(&zone_kmem_pages, z->zpagecount);
485 } else {
486 for (i = 0; i < z->zkmcur; i++) {
487 kmem_free(&kernel_map, z->zkmvec[i],
488 (size_t)z->zalloc * PAGE_SIZE);
489 atomic_subtract_long(&zone_kern_pages, z->zalloc);
491 if (z->zkmvec != NULL)
492 kfree(z->zkmvec, M_ZONE);
495 spin_uninit(&z->zlock);
496 kfree(z, M_ZONE);
501 * void *zalloc(vm_zone_t zone) --
502 * Returns an item from a specified zone. May not be called from a
503 * FAST interrupt or IPI function.
505 * void zfree(vm_zone_t zone, void *item) --
506 * Frees an item back to a specified zone. May not be called from a
507 * FAST interrupt or IPI function.
511 * Internal zone routine. Not to be called from external (non vm_zone) code.
513 * No requirements.
515 static void *
516 zget(vm_zone_t z)
518 vm_page_t m;
519 long nitems;
520 long savezpc;
521 size_t nbytes;
522 size_t noffset;
523 void *item;
524 vm_pindex_t npages;
525 vm_pindex_t i;
527 if (z == NULL)
528 panic("zget: null zone");
530 if (z->zflags & ZONE_INTERRUPT) {
532 * Interrupt zones do not mess with the kernel_map, they
533 * simply populate an existing mapping.
535 * First reserve the required space.
537 vm_object_hold(z->zobj);
538 noffset = (size_t)z->zpagecount * PAGE_SIZE;
539 noffset -= noffset % z->zsize;
540 savezpc = z->zpagecount;
541 if (z->zpagecount + z->zalloc > z->zpagemax)
542 z->zpagecount = z->zpagemax;
543 else
544 z->zpagecount += z->zalloc;
545 item = (char *)z->zkva + noffset;
546 npages = z->zpagecount - savezpc;
547 nitems = ((size_t)(savezpc + npages) * PAGE_SIZE - noffset) /
548 z->zsize;
549 atomic_add_long(&zone_kmem_pages, npages);
552 * Now allocate the pages. Note that we can block in the
553 * loop, so we've already done all the necessary calculations
554 * and reservations above.
556 for (i = 0; i < npages; ++i) {
557 vm_offset_t zkva;
559 m = vm_page_alloc(z->zobj, savezpc + i, z->zallocflag);
560 KKASSERT(m != NULL);
561 /* note: z might be modified due to blocking */
563 KKASSERT(m->queue == PQ_NONE);
564 m->valid = VM_PAGE_BITS_ALL;
565 vm_page_wire(m);
566 vm_page_wakeup(m);
568 zkva = z->zkva + (size_t)(savezpc + i) * PAGE_SIZE;
569 pmap_kenter(zkva, VM_PAGE_TO_PHYS(m));
570 bzero((void *)zkva, PAGE_SIZE);
572 vm_object_drop(z->zobj);
573 } else if (z->zflags & ZONE_SPECIAL) {
575 * The special zone is the one used for vm_map_entry_t's.
576 * We have to avoid an infinite recursion in
577 * vm_map_entry_reserve() by using vm_map_entry_kreserve()
578 * instead. The map entries are pre-reserved by the kernel
579 * by vm_map_entry_reserve_cpu_init().
581 nbytes = (size_t)z->zalloc * PAGE_SIZE;
583 item = (void *)kmem_alloc3(&kernel_map, nbytes,
584 VM_SUBSYS_ZALLOC, KM_KRESERVE);
586 /* note: z might be modified due to blocking */
587 if (item != NULL) {
588 atomic_add_long(&zone_kern_pages, z->zalloc);
589 bzero(item, nbytes);
590 } else {
591 nbytes = 0;
593 nitems = nbytes / z->zsize;
594 } else {
596 * Otherwise allocate KVA from the kernel_map.
598 nbytes = (size_t)z->zalloc * PAGE_SIZE;
600 item = (void *)kmem_alloc3(&kernel_map, nbytes,
601 VM_SUBSYS_ZALLOC, 0);
603 /* note: z might be modified due to blocking */
604 if (item != NULL) {
605 atomic_add_long(&zone_kern_pages, z->zalloc);
606 bzero(item, nbytes);
608 if (z->zflags & ZONE_DESTROYABLE) {
609 if (z->zkmcur == z->zkmmax) {
610 z->zkmmax =
611 z->zkmmax==0 ? 1 : z->zkmmax*2;
612 z->zkmvec = krealloc(z->zkmvec,
613 z->zkmmax * sizeof(z->zkmvec[0]),
614 M_ZONE, M_WAITOK);
616 z->zkmvec[z->zkmcur++] = (vm_offset_t)item;
618 } else {
619 nbytes = 0;
621 nitems = nbytes / z->zsize;
624 spin_lock(&z->zlock);
625 z->ztotal += nitems;
628 * Save one for immediate allocation
630 if (nitems != 0) {
631 nitems -= 1;
632 for (i = 0; i < nitems; i++) {
633 ((void **)item)[0] = z->zitems;
634 #ifdef INVARIANTS
635 ((void **)item)[1] = (void *)ZENTRY_FREE;
636 #endif
637 z->zitems = item;
638 item = (uint8_t *)item + z->zsize;
640 z->zfreecnt += nitems;
641 ++z->znalloc;
642 } else if (z->zfreecnt > 0) {
643 item = z->zitems;
644 z->zitems = ((void **)item)[0];
645 #ifdef INVARIANTS
646 if (((void **)item)[1] != (void *)ZENTRY_FREE)
647 zerror(ZONE_ERROR_NOTFREE);
648 ((void **) item)[1] = NULL;
649 #endif
650 --z->zfreecnt;
651 ++z->znalloc;
652 } else {
653 item = NULL;
655 spin_unlock(&z->zlock);
658 * A special zone may have used a kernel-reserved vm_map_entry. If
659 * so we have to be sure to recover our reserve so we don't run out.
660 * We will panic if we run out.
662 if (z->zflags & ZONE_SPECIAL)
663 vm_map_entry_reserve(0);
665 return item;
669 * No requirements.
671 static int
672 sysctl_vm_zone(SYSCTL_HANDLER_ARGS)
674 vm_zone_t curzone;
675 char tmpbuf[128];
676 char tmpname[14];
677 int error = 0;
679 ksnprintf(tmpbuf, sizeof(tmpbuf),
680 "\nITEM SIZE LIMIT USED FREE REQUESTS\n");
681 error = SYSCTL_OUT(req, tmpbuf, strlen(tmpbuf));
682 if (error)
683 return (error);
685 lwkt_gettoken(&vm_token);
686 LIST_FOREACH(curzone, &zlist, zlink) {
687 size_t i;
688 size_t len;
689 int offset;
690 long freecnt;
691 long znalloc;
692 int n;
694 len = strlen(curzone->zname);
695 if (len >= (sizeof(tmpname) - 1))
696 len = (sizeof(tmpname) - 1);
697 for(i = 0; i < sizeof(tmpname) - 1; i++)
698 tmpname[i] = ' ';
699 tmpname[i] = 0;
700 memcpy(tmpname, curzone->zname, len);
701 tmpname[len] = ':';
702 offset = 0;
703 if (curzone == LIST_FIRST(&zlist)) {
704 offset = 1;
705 tmpbuf[0] = '\n';
707 freecnt = curzone->zfreecnt;
708 znalloc = curzone->znalloc;
709 for (n = 0; n < ncpus; ++n) {
710 freecnt += curzone->zpcpu[n].zfreecnt;
711 znalloc += curzone->zpcpu[n].znalloc;
714 ksnprintf(tmpbuf + offset, sizeof(tmpbuf) - offset,
715 "%s %6.6lu, %8.8lu, %6.6lu, %6.6lu, %8.8lu\n",
716 tmpname, curzone->zsize, curzone->zmax,
717 (curzone->ztotal - freecnt),
718 freecnt, znalloc);
720 len = strlen((char *)tmpbuf);
721 if (LIST_NEXT(curzone, zlink) == NULL)
722 tmpbuf[len - 1] = 0;
724 error = SYSCTL_OUT(req, tmpbuf, len);
726 if (error)
727 break;
729 lwkt_reltoken(&vm_token);
730 return (error);
733 #if defined(INVARIANTS)
736 * Debugging only.
738 void
739 zerror(int error)
741 char *msg;
743 switch (error) {
744 case ZONE_ERROR_INVALID:
745 msg = "zone: invalid zone";
746 break;
747 case ZONE_ERROR_NOTFREE:
748 msg = "zone: entry not free";
749 break;
750 case ZONE_ERROR_ALREADYFREE:
751 msg = "zone: freeing free entry";
752 break;
753 default:
754 msg = "zone: invalid error";
755 break;
757 panic("%s", msg);
759 #endif
761 SYSCTL_OID(_vm, OID_AUTO, zone, CTLTYPE_STRING|CTLFLAG_RD, \
762 NULL, 0, sysctl_vm_zone, "A", "Zone Info");
764 SYSCTL_LONG(_vm, OID_AUTO, zone_kmem_pages,
765 CTLFLAG_RD, &zone_kmem_pages, 0, "Number of interrupt safe pages allocated by zone");
766 SYSCTL_LONG(_vm, OID_AUTO, zone_burst,
767 CTLFLAG_RW, &zone_burst, 0, "Burst from depot to pcpu cache");
768 SYSCTL_LONG(_vm, OID_AUTO, zone_kmem_kvaspace,
769 CTLFLAG_RD, &zone_kmem_kvaspace, 0, "KVA space allocated by zone");
770 SYSCTL_LONG(_vm, OID_AUTO, zone_kern_pages,
771 CTLFLAG_RD, &zone_kern_pages, 0, "Number of non-interrupt safe pages allocated by zone");