vkernel - Fix more pagein/pageout corruption
[dragonfly.git] / sys / vm / vm_map.c
blob07ffd4c9f75c185ee5085a3633916ba96c9d91d4
1 /*
2 * (MPSAFE)
4 * Copyright (c) 1991, 1993
5 * The Regents of the University of California. All rights reserved.
7 * This code is derived from software contributed to Berkeley by
8 * The Mach Operating System project at Carnegie-Mellon University.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 * Carnegie Mellon requests users of this software to return to
54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
55 * School of Computer Science
56 * Carnegie Mellon University
57 * Pittsburgh PA 15213-3890
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
62 * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
66 * Virtual memory mapping module.
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/kernel.h>
72 #include <sys/proc.h>
73 #include <sys/serialize.h>
74 #include <sys/lock.h>
75 #include <sys/vmmeter.h>
76 #include <sys/mman.h>
77 #include <sys/vnode.h>
78 #include <sys/resourcevar.h>
79 #include <sys/shm.h>
80 #include <sys/tree.h>
81 #include <sys/malloc.h>
82 #include <sys/objcache.h>
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_page.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_pager.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_zone.h>
96 #include <sys/random.h>
97 #include <sys/sysctl.h>
98 #include <sys/spinlock.h>
100 #include <sys/thread2.h>
101 #include <sys/spinlock2.h>
104 * Virtual memory maps provide for the mapping, protection, and sharing
105 * of virtual memory objects. In addition, this module provides for an
106 * efficient virtual copy of memory from one map to another.
108 * Synchronization is required prior to most operations.
110 * Maps consist of an ordered doubly-linked list of simple entries.
111 * A hint and a RB tree is used to speed-up lookups.
113 * Callers looking to modify maps specify start/end addresses which cause
114 * the related map entry to be clipped if necessary, and then later
115 * recombined if the pieces remained compatible.
117 * Virtual copy operations are performed by copying VM object references
118 * from one map to another, and then marking both regions as copy-on-write.
120 static boolean_t vmspace_ctor(void *obj, void *privdata, int ocflags);
121 static void vmspace_dtor(void *obj, void *privdata);
122 static void vmspace_terminate(struct vmspace *vm, int final);
124 MALLOC_DEFINE(M_VMSPACE, "vmspace", "vmspace objcache backingstore");
125 static struct objcache *vmspace_cache;
128 * per-cpu page table cross mappings are initialized in early boot
129 * and might require a considerable number of vm_map_entry structures.
131 #define MAPENTRYBSP_CACHE (MAXCPU+1)
132 #define MAPENTRYAP_CACHE 8
134 static struct vm_zone mapentzone_store;
135 static vm_zone_t mapentzone;
136 static struct vm_object mapentobj;
138 static struct vm_map_entry map_entry_init[MAX_MAPENT];
139 static struct vm_map_entry cpu_map_entry_init_bsp[MAPENTRYBSP_CACHE];
140 static struct vm_map_entry cpu_map_entry_init_ap[MAXCPU][MAPENTRYAP_CACHE];
142 static int randomize_mmap;
143 SYSCTL_INT(_vm, OID_AUTO, randomize_mmap, CTLFLAG_RW, &randomize_mmap, 0,
144 "Randomize mmap offsets");
145 static int vm_map_relock_enable = 1;
146 SYSCTL_INT(_vm, OID_AUTO, map_relock_enable, CTLFLAG_RW,
147 &vm_map_relock_enable, 0, "Randomize mmap offsets");
149 static void vmspace_drop_notoken(struct vmspace *vm);
150 static void vm_map_entry_shadow(vm_map_entry_t entry, int addref);
151 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
152 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
153 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
154 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
155 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
156 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
157 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
158 vm_map_entry_t);
159 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
162 * Initialize the vm_map module. Must be called before any other vm_map
163 * routines.
165 * Map and entry structures are allocated from the general purpose
166 * memory pool with some exceptions:
168 * - The kernel map is allocated statically.
169 * - Initial kernel map entries are allocated out of a static pool.
170 * - We must set ZONE_SPECIAL here or the early boot code can get
171 * stuck if there are >63 cores.
173 * These restrictions are necessary since malloc() uses the
174 * maps and requires map entries.
176 * Called from the low level boot code only.
178 void
179 vm_map_startup(void)
181 mapentzone = &mapentzone_store;
182 zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
183 map_entry_init, MAX_MAPENT);
184 mapentzone_store.zflags |= ZONE_SPECIAL;
188 * Called prior to any vmspace allocations.
190 * Called from the low level boot code only.
192 void
193 vm_init2(void)
195 vmspace_cache = objcache_create_mbacked(M_VMSPACE,
196 sizeof(struct vmspace),
197 0, ncpus * 4,
198 vmspace_ctor, vmspace_dtor,
199 NULL);
200 zinitna(mapentzone, &mapentobj, NULL, 0, 0,
201 ZONE_USE_RESERVE | ZONE_SPECIAL);
202 pmap_init2();
203 vm_object_init2();
207 * objcache support. We leave the pmap root cached as long as possible
208 * for performance reasons.
210 static
211 boolean_t
212 vmspace_ctor(void *obj, void *privdata, int ocflags)
214 struct vmspace *vm = obj;
216 bzero(vm, sizeof(*vm));
217 vm->vm_refcnt = VM_REF_DELETED;
219 return 1;
222 static
223 void
224 vmspace_dtor(void *obj, void *privdata)
226 struct vmspace *vm = obj;
228 KKASSERT(vm->vm_refcnt == VM_REF_DELETED);
229 pmap_puninit(vmspace_pmap(vm));
233 * Red black tree functions
235 * The caller must hold the related map lock.
237 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b);
238 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare);
240 /* a->start is address, and the only field has to be initialized */
241 static int
242 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b)
244 if (a->start < b->start)
245 return(-1);
246 else if (a->start > b->start)
247 return(1);
248 return(0);
252 * Initialize vmspace ref/hold counts vmspace0. There is a holdcnt for
253 * every refcnt.
255 void
256 vmspace_initrefs(struct vmspace *vm)
258 vm->vm_refcnt = 1;
259 vm->vm_holdcnt = 0;
263 * Allocate a vmspace structure, including a vm_map and pmap.
264 * Initialize numerous fields. While the initial allocation is zerod,
265 * subsequence reuse from the objcache leaves elements of the structure
266 * intact (particularly the pmap), so portions must be zerod.
268 * Returns a referenced vmspace.
270 * No requirements.
272 struct vmspace *
273 vmspace_alloc(vm_offset_t min, vm_offset_t max)
275 struct vmspace *vm;
277 vm = objcache_get(vmspace_cache, M_WAITOK);
279 bzero(&vm->vm_startcopy,
280 (char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy);
281 vm_map_init(&vm->vm_map, min, max, NULL); /* initializes token */
284 * NOTE: hold to acquires token for safety.
286 * On return vmspace is referenced (refs=1, hold=1). That is,
287 * each refcnt also has a holdcnt. There can be additional holds
288 * (holdcnt) above and beyond the refcnt. Finalization is handled in
289 * two stages, one on refs 1->0, and the the second on hold 1->0.
291 KKASSERT(vm->vm_holdcnt == 0);
292 KKASSERT(vm->vm_refcnt == VM_REF_DELETED);
293 vmspace_initrefs(vm);
294 vmspace_hold(vm);
295 pmap_pinit(vmspace_pmap(vm)); /* (some fields reused) */
296 vm->vm_map.pmap = vmspace_pmap(vm); /* XXX */
297 vm->vm_shm = NULL;
298 vm->vm_flags = 0;
299 cpu_vmspace_alloc(vm);
300 vmspace_drop(vm);
302 return (vm);
306 * NOTE: Can return 0 if the vmspace is exiting.
309 vmspace_getrefs(struct vmspace *vm)
311 return ((int)(vm->vm_refcnt & ~VM_REF_DELETED));
314 void
315 vmspace_hold(struct vmspace *vm)
317 atomic_add_int(&vm->vm_holdcnt, 1);
318 lwkt_gettoken(&vm->vm_map.token);
321 void
322 vmspace_drop(struct vmspace *vm)
324 lwkt_reltoken(&vm->vm_map.token);
325 vmspace_drop_notoken(vm);
328 static void
329 vmspace_drop_notoken(struct vmspace *vm)
331 if (atomic_fetchadd_int(&vm->vm_holdcnt, -1) == 1) {
332 if (vm->vm_refcnt & VM_REF_DELETED)
333 vmspace_terminate(vm, 1);
338 * A vmspace object must not be in a terminated state to be able to obtain
339 * additional refs on it.
341 * These are official references to the vmspace, the count is used to check
342 * for vmspace sharing. Foreign accessors should use 'hold' and not 'ref'.
344 * XXX we need to combine hold & ref together into one 64-bit field to allow
345 * holds to prevent stage-1 termination.
347 void
348 vmspace_ref(struct vmspace *vm)
350 uint32_t n;
352 n = atomic_fetchadd_int(&vm->vm_refcnt, 1);
353 KKASSERT((n & VM_REF_DELETED) == 0);
357 * Release a ref on the vmspace. On the 1->0 transition we do stage-1
358 * termination of the vmspace. Then, on the final drop of the hold we
359 * will do stage-2 final termination.
361 void
362 vmspace_rel(struct vmspace *vm)
364 uint32_t n;
366 for (;;) {
367 n = vm->vm_refcnt;
368 cpu_ccfence();
369 KKASSERT((int)n > 0); /* at least one ref & not deleted */
371 if (n == 1) {
373 * We must have a hold first to interlock the
374 * VM_REF_DELETED check that the drop tests.
376 atomic_add_int(&vm->vm_holdcnt, 1);
377 if (atomic_cmpset_int(&vm->vm_refcnt, n,
378 VM_REF_DELETED)) {
379 vmspace_terminate(vm, 0);
380 vmspace_drop_notoken(vm);
381 break;
383 vmspace_drop_notoken(vm);
384 } else if (atomic_cmpset_int(&vm->vm_refcnt, n, n - 1)) {
385 break;
386 } /* else retry */
391 * This is called during exit indicating that the vmspace is no
392 * longer in used by an exiting process, but the process has not yet
393 * been reaped.
395 * We drop refs, allowing for stage-1 termination, but maintain a holdcnt
396 * to prevent stage-2 until the process is reaped. Note hte order of
397 * operation, we must hold first.
399 * No requirements.
401 void
402 vmspace_relexit(struct vmspace *vm)
404 atomic_add_int(&vm->vm_holdcnt, 1);
405 vmspace_rel(vm);
409 * Called during reap to disconnect the remainder of the vmspace from
410 * the process. On the hold drop the vmspace termination is finalized.
412 * No requirements.
414 void
415 vmspace_exitfree(struct proc *p)
417 struct vmspace *vm;
419 vm = p->p_vmspace;
420 p->p_vmspace = NULL;
421 vmspace_drop_notoken(vm);
425 * Called in two cases:
427 * (1) When the last refcnt is dropped and the vmspace becomes inactive,
428 * called with final == 0. refcnt will be (u_int)-1 at this point,
429 * and holdcnt will still be non-zero.
431 * (2) When holdcnt becomes 0, called with final == 1. There should no
432 * longer be anyone with access to the vmspace.
434 * VMSPACE_EXIT1 flags the primary deactivation
435 * VMSPACE_EXIT2 flags the last reap
437 static void
438 vmspace_terminate(struct vmspace *vm, int final)
440 int count;
442 lwkt_gettoken(&vm->vm_map.token);
443 if (final == 0) {
444 KKASSERT((vm->vm_flags & VMSPACE_EXIT1) == 0);
445 vm->vm_flags |= VMSPACE_EXIT1;
448 * Get rid of most of the resources. Leave the kernel pmap
449 * intact.
451 * If the pmap does not contain wired pages we can bulk-delete
452 * the pmap as a performance optimization before removing the
453 * related mappings.
455 * If the pmap contains wired pages we cannot do this
456 * pre-optimization because currently vm_fault_unwire()
457 * expects the pmap pages to exist and will not decrement
458 * p->wire_count if they do not.
460 shmexit(vm);
461 if (vmspace_pmap(vm)->pm_stats.wired_count) {
462 vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
463 VM_MAX_USER_ADDRESS);
464 pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
465 VM_MAX_USER_ADDRESS);
466 } else {
467 pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
468 VM_MAX_USER_ADDRESS);
469 vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
470 VM_MAX_USER_ADDRESS);
472 lwkt_reltoken(&vm->vm_map.token);
473 } else {
474 KKASSERT((vm->vm_flags & VMSPACE_EXIT1) != 0);
475 KKASSERT((vm->vm_flags & VMSPACE_EXIT2) == 0);
478 * Get rid of remaining basic resources.
480 vm->vm_flags |= VMSPACE_EXIT2;
481 shmexit(vm);
483 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
484 vm_map_lock(&vm->vm_map);
485 cpu_vmspace_free(vm);
488 * Lock the map, to wait out all other references to it.
489 * Delete all of the mappings and pages they hold, then call
490 * the pmap module to reclaim anything left.
492 vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
493 vm->vm_map.max_offset, &count);
494 vm_map_unlock(&vm->vm_map);
495 vm_map_entry_release(count);
497 pmap_release(vmspace_pmap(vm));
498 lwkt_reltoken(&vm->vm_map.token);
499 objcache_put(vmspace_cache, vm);
504 * Swap useage is determined by taking the proportional swap used by
505 * VM objects backing the VM map. To make up for fractional losses,
506 * if the VM object has any swap use at all the associated map entries
507 * count for at least 1 swap page.
509 * No requirements.
511 vm_offset_t
512 vmspace_swap_count(struct vmspace *vm)
514 vm_map_t map = &vm->vm_map;
515 vm_map_entry_t cur;
516 vm_object_t object;
517 vm_offset_t count = 0;
518 vm_offset_t n;
520 vmspace_hold(vm);
521 for (cur = map->header.next; cur != &map->header; cur = cur->next) {
522 switch(cur->maptype) {
523 case VM_MAPTYPE_NORMAL:
524 case VM_MAPTYPE_VPAGETABLE:
525 if ((object = cur->object.vm_object) == NULL)
526 break;
527 if (object->swblock_count) {
528 n = (cur->end - cur->start) / PAGE_SIZE;
529 count += object->swblock_count *
530 SWAP_META_PAGES * n / object->size + 1;
532 break;
533 default:
534 break;
537 vmspace_drop(vm);
539 return(count);
543 * Calculate the approximate number of anonymous pages in use by
544 * this vmspace. To make up for fractional losses, we count each
545 * VM object as having at least 1 anonymous page.
547 * No requirements.
549 vm_offset_t
550 vmspace_anonymous_count(struct vmspace *vm)
552 vm_map_t map = &vm->vm_map;
553 vm_map_entry_t cur;
554 vm_object_t object;
555 vm_offset_t count = 0;
557 vmspace_hold(vm);
558 for (cur = map->header.next; cur != &map->header; cur = cur->next) {
559 switch(cur->maptype) {
560 case VM_MAPTYPE_NORMAL:
561 case VM_MAPTYPE_VPAGETABLE:
562 if ((object = cur->object.vm_object) == NULL)
563 break;
564 if (object->type != OBJT_DEFAULT &&
565 object->type != OBJT_SWAP) {
566 break;
568 count += object->resident_page_count;
569 break;
570 default:
571 break;
574 vmspace_drop(vm);
576 return(count);
580 * Initialize an existing vm_map structure such as that in the vmspace
581 * structure. The pmap is initialized elsewhere.
583 * No requirements.
585 void
586 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max, pmap_t pmap)
588 map->header.next = map->header.prev = &map->header;
589 RB_INIT(&map->rb_root);
590 spin_init(&map->ilock_spin, "ilock");
591 map->ilock_base = NULL;
592 map->nentries = 0;
593 map->size = 0;
594 map->system_map = 0;
595 map->min_offset = min;
596 map->max_offset = max;
597 map->pmap = pmap;
598 map->first_free = &map->header;
599 map->hint = &map->header;
600 map->timestamp = 0;
601 map->flags = 0;
602 lwkt_token_init(&map->token, "vm_map");
603 lockinit(&map->lock, "vm_maplk", (hz + 9) / 10, 0);
607 * Shadow the vm_map_entry's object. This typically needs to be done when
608 * a write fault is taken on an entry which had previously been cloned by
609 * fork(). The shared object (which might be NULL) must become private so
610 * we add a shadow layer above it.
612 * Object allocation for anonymous mappings is defered as long as possible.
613 * When creating a shadow, however, the underlying object must be instantiated
614 * so it can be shared.
616 * If the map segment is governed by a virtual page table then it is
617 * possible to address offsets beyond the mapped area. Just allocate
618 * a maximally sized object for this case.
620 * If addref is non-zero an additional reference is added to the returned
621 * entry. This mechanic exists because the additional reference might have
622 * to be added atomically and not after return to prevent a premature
623 * collapse.
625 * The vm_map must be exclusively locked.
626 * No other requirements.
628 static
629 void
630 vm_map_entry_shadow(vm_map_entry_t entry, int addref)
632 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
633 vm_object_shadow(&entry->object.vm_object, &entry->offset,
634 0x7FFFFFFF, addref); /* XXX */
635 } else {
636 vm_object_shadow(&entry->object.vm_object, &entry->offset,
637 atop(entry->end - entry->start), addref);
639 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
643 * Allocate an object for a vm_map_entry.
645 * Object allocation for anonymous mappings is defered as long as possible.
646 * This function is called when we can defer no longer, generally when a map
647 * entry might be split or forked or takes a page fault.
649 * If the map segment is governed by a virtual page table then it is
650 * possible to address offsets beyond the mapped area. Just allocate
651 * a maximally sized object for this case.
653 * The vm_map must be exclusively locked.
654 * No other requirements.
656 void
657 vm_map_entry_allocate_object(vm_map_entry_t entry)
659 vm_object_t obj;
661 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
662 obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */
663 } else {
664 obj = vm_object_allocate(OBJT_DEFAULT,
665 atop(entry->end - entry->start));
667 entry->object.vm_object = obj;
668 entry->offset = 0;
672 * Set an initial negative count so the first attempt to reserve
673 * space preloads a bunch of vm_map_entry's for this cpu. Also
674 * pre-allocate 2 vm_map_entries which will be needed by zalloc() to
675 * map a new page for vm_map_entry structures. SMP systems are
676 * particularly sensitive.
678 * This routine is called in early boot so we cannot just call
679 * vm_map_entry_reserve().
681 * Called from the low level boot code only (for each cpu)
683 * WARNING! Take care not to have too-big a static/BSS structure here
684 * as MAXCPU can be 256+, otherwise the loader's 64MB heap
685 * can get blown out by the kernel plus the initrd image.
687 void
688 vm_map_entry_reserve_cpu_init(globaldata_t gd)
690 vm_map_entry_t entry;
691 int count;
692 int i;
694 gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2;
695 if (gd->gd_cpuid == 0) {
696 entry = &cpu_map_entry_init_bsp[0];
697 count = MAPENTRYBSP_CACHE;
698 } else {
699 entry = &cpu_map_entry_init_ap[gd->gd_cpuid][0];
700 count = MAPENTRYAP_CACHE;
702 for (i = 0; i < count; ++i, ++entry) {
703 entry->next = gd->gd_vme_base;
704 gd->gd_vme_base = entry;
709 * Reserves vm_map_entry structures so code later on can manipulate
710 * map_entry structures within a locked map without blocking trying
711 * to allocate a new vm_map_entry.
713 * No requirements.
716 vm_map_entry_reserve(int count)
718 struct globaldata *gd = mycpu;
719 vm_map_entry_t entry;
722 * Make sure we have enough structures in gd_vme_base to handle
723 * the reservation request.
725 * The critical section protects access to the per-cpu gd.
727 crit_enter();
728 while (gd->gd_vme_avail < count) {
729 entry = zalloc(mapentzone);
730 entry->next = gd->gd_vme_base;
731 gd->gd_vme_base = entry;
732 ++gd->gd_vme_avail;
734 gd->gd_vme_avail -= count;
735 crit_exit();
737 return(count);
741 * Releases previously reserved vm_map_entry structures that were not
742 * used. If we have too much junk in our per-cpu cache clean some of
743 * it out.
745 * No requirements.
747 void
748 vm_map_entry_release(int count)
750 struct globaldata *gd = mycpu;
751 vm_map_entry_t entry;
753 crit_enter();
754 gd->gd_vme_avail += count;
755 while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
756 entry = gd->gd_vme_base;
757 KKASSERT(entry != NULL);
758 gd->gd_vme_base = entry->next;
759 --gd->gd_vme_avail;
760 crit_exit();
761 zfree(mapentzone, entry);
762 crit_enter();
764 crit_exit();
768 * Reserve map entry structures for use in kernel_map itself. These
769 * entries have *ALREADY* been reserved on a per-cpu basis when the map
770 * was inited. This function is used by zalloc() to avoid a recursion
771 * when zalloc() itself needs to allocate additional kernel memory.
773 * This function works like the normal reserve but does not load the
774 * vm_map_entry cache (because that would result in an infinite
775 * recursion). Note that gd_vme_avail may go negative. This is expected.
777 * Any caller of this function must be sure to renormalize after
778 * potentially eating entries to ensure that the reserve supply
779 * remains intact.
781 * No requirements.
784 vm_map_entry_kreserve(int count)
786 struct globaldata *gd = mycpu;
788 crit_enter();
789 gd->gd_vme_avail -= count;
790 crit_exit();
791 KASSERT(gd->gd_vme_base != NULL,
792 ("no reserved entries left, gd_vme_avail = %d",
793 gd->gd_vme_avail));
794 return(count);
798 * Release previously reserved map entries for kernel_map. We do not
799 * attempt to clean up like the normal release function as this would
800 * cause an unnecessary (but probably not fatal) deep procedure call.
802 * No requirements.
804 void
805 vm_map_entry_krelease(int count)
807 struct globaldata *gd = mycpu;
809 crit_enter();
810 gd->gd_vme_avail += count;
811 crit_exit();
815 * Allocates a VM map entry for insertion. No entry fields are filled in.
817 * The entries should have previously been reserved. The reservation count
818 * is tracked in (*countp).
820 * No requirements.
822 static vm_map_entry_t
823 vm_map_entry_create(vm_map_t map, int *countp)
825 struct globaldata *gd = mycpu;
826 vm_map_entry_t entry;
828 KKASSERT(*countp > 0);
829 --*countp;
830 crit_enter();
831 entry = gd->gd_vme_base;
832 KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
833 gd->gd_vme_base = entry->next;
834 crit_exit();
836 return(entry);
840 * Dispose of a vm_map_entry that is no longer being referenced.
842 * No requirements.
844 static void
845 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
847 struct globaldata *gd = mycpu;
849 KKASSERT(map->hint != entry);
850 KKASSERT(map->first_free != entry);
852 ++*countp;
853 crit_enter();
854 entry->next = gd->gd_vme_base;
855 gd->gd_vme_base = entry;
856 crit_exit();
861 * Insert/remove entries from maps.
863 * The related map must be exclusively locked.
864 * The caller must hold map->token
865 * No other requirements.
867 static __inline void
868 vm_map_entry_link(vm_map_t map,
869 vm_map_entry_t after_where,
870 vm_map_entry_t entry)
872 ASSERT_VM_MAP_LOCKED(map);
874 map->nentries++;
875 entry->prev = after_where;
876 entry->next = after_where->next;
877 entry->next->prev = entry;
878 after_where->next = entry;
879 if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry))
880 panic("vm_map_entry_link: dup addr map %p ent %p", map, entry);
883 static __inline void
884 vm_map_entry_unlink(vm_map_t map,
885 vm_map_entry_t entry)
887 vm_map_entry_t prev;
888 vm_map_entry_t next;
890 ASSERT_VM_MAP_LOCKED(map);
892 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
893 panic("vm_map_entry_unlink: attempt to mess with "
894 "locked entry! %p", entry);
896 prev = entry->prev;
897 next = entry->next;
898 next->prev = prev;
899 prev->next = next;
900 vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry);
901 map->nentries--;
905 * Finds the map entry containing (or immediately preceding) the specified
906 * address in the given map. The entry is returned in (*entry).
908 * The boolean result indicates whether the address is actually contained
909 * in the map.
911 * The related map must be locked.
912 * No other requirements.
914 boolean_t
915 vm_map_lookup_entry(vm_map_t map, vm_offset_t address, vm_map_entry_t *entry)
917 vm_map_entry_t tmp;
918 vm_map_entry_t last;
920 ASSERT_VM_MAP_LOCKED(map);
921 #if 0
923 * XXX TEMPORARILY DISABLED. For some reason our attempt to revive
924 * the hint code with the red-black lookup meets with system crashes
925 * and lockups. We do not yet know why.
927 * It is possible that the problem is related to the setting
928 * of the hint during map_entry deletion, in the code specified
929 * at the GGG comment later on in this file.
931 * YYY More likely it's because this function can be called with
932 * a shared lock on the map, resulting in map->hint updates possibly
933 * racing. Fixed now but untested.
936 * Quickly check the cached hint, there's a good chance of a match.
938 tmp = map->hint;
939 cpu_ccfence();
940 if (tmp != &map->header) {
941 if (address >= tmp->start && address < tmp->end) {
942 *entry = tmp;
943 return(TRUE);
946 #endif
949 * Locate the record from the top of the tree. 'last' tracks the
950 * closest prior record and is returned if no match is found, which
951 * in binary tree terms means tracking the most recent right-branch
952 * taken. If there is no prior record, &map->header is returned.
954 last = &map->header;
955 tmp = RB_ROOT(&map->rb_root);
957 while (tmp) {
958 if (address >= tmp->start) {
959 if (address < tmp->end) {
960 *entry = tmp;
961 map->hint = tmp;
962 return(TRUE);
964 last = tmp;
965 tmp = RB_RIGHT(tmp, rb_entry);
966 } else {
967 tmp = RB_LEFT(tmp, rb_entry);
970 *entry = last;
971 return (FALSE);
975 * Inserts the given whole VM object into the target map at the specified
976 * address range. The object's size should match that of the address range.
978 * The map must be exclusively locked.
979 * The object must be held.
980 * The caller must have reserved sufficient vm_map_entry structures.
982 * If object is non-NULL, ref count must be bumped by caller prior to
983 * making call to account for the new entry.
986 vm_map_insert(vm_map_t map, int *countp, void *map_object, void *map_aux,
987 vm_ooffset_t offset, vm_offset_t start, vm_offset_t end,
988 vm_maptype_t maptype, vm_subsys_t id,
989 vm_prot_t prot, vm_prot_t max, int cow)
991 vm_map_entry_t new_entry;
992 vm_map_entry_t prev_entry;
993 vm_map_entry_t temp_entry;
994 vm_eflags_t protoeflags;
995 int must_drop = 0;
996 vm_object_t object;
998 if (maptype == VM_MAPTYPE_UKSMAP)
999 object = NULL;
1000 else
1001 object = map_object;
1003 ASSERT_VM_MAP_LOCKED(map);
1004 if (object)
1005 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1008 * Check that the start and end points are not bogus.
1010 if ((start < map->min_offset) || (end > map->max_offset) ||
1011 (start >= end))
1012 return (KERN_INVALID_ADDRESS);
1015 * Find the entry prior to the proposed starting address; if it's part
1016 * of an existing entry, this range is bogus.
1018 if (vm_map_lookup_entry(map, start, &temp_entry))
1019 return (KERN_NO_SPACE);
1021 prev_entry = temp_entry;
1024 * Assert that the next entry doesn't overlap the end point.
1027 if ((prev_entry->next != &map->header) &&
1028 (prev_entry->next->start < end))
1029 return (KERN_NO_SPACE);
1031 protoeflags = 0;
1033 if (cow & MAP_COPY_ON_WRITE)
1034 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
1036 if (cow & MAP_NOFAULT) {
1037 protoeflags |= MAP_ENTRY_NOFAULT;
1039 KASSERT(object == NULL,
1040 ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1042 if (cow & MAP_DISABLE_SYNCER)
1043 protoeflags |= MAP_ENTRY_NOSYNC;
1044 if (cow & MAP_DISABLE_COREDUMP)
1045 protoeflags |= MAP_ENTRY_NOCOREDUMP;
1046 if (cow & MAP_IS_STACK)
1047 protoeflags |= MAP_ENTRY_STACK;
1048 if (cow & MAP_IS_KSTACK)
1049 protoeflags |= MAP_ENTRY_KSTACK;
1051 lwkt_gettoken(&map->token);
1053 if (object) {
1055 * When object is non-NULL, it could be shared with another
1056 * process. We have to set or clear OBJ_ONEMAPPING
1057 * appropriately.
1059 * NOTE: This flag is only applicable to DEFAULT and SWAP
1060 * objects and will already be clear in other types
1061 * of objects, so a shared object lock is ok for
1062 * VNODE objects.
1064 if ((object->ref_count > 1) || (object->shadow_count != 0)) {
1065 vm_object_clear_flag(object, OBJ_ONEMAPPING);
1068 else if ((prev_entry != &map->header) &&
1069 (prev_entry->eflags == protoeflags) &&
1070 (prev_entry->end == start) &&
1071 (prev_entry->wired_count == 0) &&
1072 (prev_entry->id == id) &&
1073 prev_entry->maptype == maptype &&
1074 maptype == VM_MAPTYPE_NORMAL &&
1075 ((prev_entry->object.vm_object == NULL) ||
1076 vm_object_coalesce(prev_entry->object.vm_object,
1077 OFF_TO_IDX(prev_entry->offset),
1078 (vm_size_t)(prev_entry->end - prev_entry->start),
1079 (vm_size_t)(end - prev_entry->end)))) {
1081 * We were able to extend the object. Determine if we
1082 * can extend the previous map entry to include the
1083 * new range as well.
1085 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
1086 (prev_entry->protection == prot) &&
1087 (prev_entry->max_protection == max)) {
1088 map->size += (end - prev_entry->end);
1089 prev_entry->end = end;
1090 vm_map_simplify_entry(map, prev_entry, countp);
1091 lwkt_reltoken(&map->token);
1092 return (KERN_SUCCESS);
1096 * If we can extend the object but cannot extend the
1097 * map entry, we have to create a new map entry. We
1098 * must bump the ref count on the extended object to
1099 * account for it. object may be NULL.
1101 * XXX if object is NULL should we set offset to 0 here ?
1103 object = prev_entry->object.vm_object;
1104 offset = prev_entry->offset +
1105 (prev_entry->end - prev_entry->start);
1106 if (object) {
1107 vm_object_hold(object);
1108 vm_object_chain_wait(object, 0);
1109 vm_object_reference_locked(object);
1110 must_drop = 1;
1111 map_object = object;
1116 * NOTE: if conditionals fail, object can be NULL here. This occurs
1117 * in things like the buffer map where we manage kva but do not manage
1118 * backing objects.
1122 * Create a new entry
1125 new_entry = vm_map_entry_create(map, countp);
1126 new_entry->start = start;
1127 new_entry->end = end;
1128 new_entry->id = id;
1130 new_entry->maptype = maptype;
1131 new_entry->eflags = protoeflags;
1132 new_entry->object.map_object = map_object;
1133 new_entry->aux.master_pde = 0; /* in case size is different */
1134 new_entry->aux.map_aux = map_aux;
1135 new_entry->offset = offset;
1137 new_entry->inheritance = VM_INHERIT_DEFAULT;
1138 new_entry->protection = prot;
1139 new_entry->max_protection = max;
1140 new_entry->wired_count = 0;
1143 * Insert the new entry into the list
1146 vm_map_entry_link(map, prev_entry, new_entry);
1147 map->size += new_entry->end - new_entry->start;
1150 * Update the free space hint. Entries cannot overlap.
1151 * An exact comparison is needed to avoid matching
1152 * against the map->header.
1154 if ((map->first_free == prev_entry) &&
1155 (prev_entry->end == new_entry->start)) {
1156 map->first_free = new_entry;
1159 #if 0
1161 * Temporarily removed to avoid MAP_STACK panic, due to
1162 * MAP_STACK being a huge hack. Will be added back in
1163 * when MAP_STACK (and the user stack mapping) is fixed.
1166 * It may be possible to simplify the entry
1168 vm_map_simplify_entry(map, new_entry, countp);
1169 #endif
1172 * Try to pre-populate the page table. Mappings governed by virtual
1173 * page tables cannot be prepopulated without a lot of work, so
1174 * don't try.
1176 if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) &&
1177 maptype != VM_MAPTYPE_VPAGETABLE &&
1178 maptype != VM_MAPTYPE_UKSMAP) {
1179 int dorelock = 0;
1180 if (vm_map_relock_enable && (cow & MAP_PREFAULT_RELOCK)) {
1181 dorelock = 1;
1182 vm_object_lock_swap();
1183 vm_object_drop(object);
1185 pmap_object_init_pt(map->pmap, start, prot,
1186 object, OFF_TO_IDX(offset), end - start,
1187 cow & MAP_PREFAULT_PARTIAL);
1188 if (dorelock) {
1189 vm_object_hold(object);
1190 vm_object_lock_swap();
1193 if (must_drop)
1194 vm_object_drop(object);
1196 lwkt_reltoken(&map->token);
1197 return (KERN_SUCCESS);
1201 * Find sufficient space for `length' bytes in the given map, starting at
1202 * `start'. Returns 0 on success, 1 on no space.
1204 * This function will returned an arbitrarily aligned pointer. If no
1205 * particular alignment is required you should pass align as 1. Note that
1206 * the map may return PAGE_SIZE aligned pointers if all the lengths used in
1207 * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
1208 * argument.
1210 * 'align' should be a power of 2 but is not required to be.
1212 * The map must be exclusively locked.
1213 * No other requirements.
1216 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1217 vm_size_t align, int flags, vm_offset_t *addr)
1219 vm_map_entry_t entry, next;
1220 vm_offset_t end;
1221 vm_offset_t align_mask;
1223 if (start < map->min_offset)
1224 start = map->min_offset;
1225 if (start > map->max_offset)
1226 return (1);
1229 * If the alignment is not a power of 2 we will have to use
1230 * a mod/division, set align_mask to a special value.
1232 if ((align | (align - 1)) + 1 != (align << 1))
1233 align_mask = (vm_offset_t)-1;
1234 else
1235 align_mask = align - 1;
1238 * Look for the first possible address; if there's already something
1239 * at this address, we have to start after it.
1241 if (start == map->min_offset) {
1242 if ((entry = map->first_free) != &map->header)
1243 start = entry->end;
1244 } else {
1245 vm_map_entry_t tmp;
1247 if (vm_map_lookup_entry(map, start, &tmp))
1248 start = tmp->end;
1249 entry = tmp;
1253 * Look through the rest of the map, trying to fit a new region in the
1254 * gap between existing regions, or after the very last region.
1256 for (;; start = (entry = next)->end) {
1258 * Adjust the proposed start by the requested alignment,
1259 * be sure that we didn't wrap the address.
1261 if (align_mask == (vm_offset_t)-1)
1262 end = roundup(start, align);
1263 else
1264 end = (start + align_mask) & ~align_mask;
1265 if (end < start)
1266 return (1);
1267 start = end;
1269 * Find the end of the proposed new region. Be sure we didn't
1270 * go beyond the end of the map, or wrap around the address.
1271 * Then check to see if this is the last entry or if the
1272 * proposed end fits in the gap between this and the next
1273 * entry.
1275 end = start + length;
1276 if (end > map->max_offset || end < start)
1277 return (1);
1278 next = entry->next;
1281 * If the next entry's start address is beyond the desired
1282 * end address we may have found a good entry.
1284 * If the next entry is a stack mapping we do not map into
1285 * the stack's reserved space.
1287 * XXX continue to allow mapping into the stack's reserved
1288 * space if doing a MAP_STACK mapping inside a MAP_STACK
1289 * mapping, for backwards compatibility. But the caller
1290 * really should use MAP_STACK | MAP_TRYFIXED if they
1291 * want to do that.
1293 if (next == &map->header)
1294 break;
1295 if (next->start >= end) {
1296 if ((next->eflags & MAP_ENTRY_STACK) == 0)
1297 break;
1298 if (flags & MAP_STACK)
1299 break;
1300 if (next->start - next->aux.avail_ssize >= end)
1301 break;
1304 map->hint = entry;
1307 * Grow the kernel_map if necessary. pmap_growkernel() will panic
1308 * if it fails. The kernel_map is locked and nothing can steal
1309 * our address space if pmap_growkernel() blocks.
1311 * NOTE: This may be unconditionally called for kldload areas on
1312 * x86_64 because these do not bump kernel_vm_end (which would
1313 * fill 128G worth of page tables!). Therefore we must not
1314 * retry.
1316 if (map == &kernel_map) {
1317 vm_offset_t kstop;
1319 kstop = round_page(start + length);
1320 if (kstop > kernel_vm_end)
1321 pmap_growkernel(start, kstop);
1323 *addr = start;
1324 return (0);
1328 * vm_map_find finds an unallocated region in the target address map with
1329 * the given length and allocates it. The search is defined to be first-fit
1330 * from the specified address; the region found is returned in the same
1331 * parameter.
1333 * If object is non-NULL, ref count must be bumped by caller
1334 * prior to making call to account for the new entry.
1336 * No requirements. This function will lock the map temporarily.
1339 vm_map_find(vm_map_t map, void *map_object, void *map_aux,
1340 vm_ooffset_t offset, vm_offset_t *addr,
1341 vm_size_t length, vm_size_t align, boolean_t fitit,
1342 vm_maptype_t maptype, vm_subsys_t id,
1343 vm_prot_t prot, vm_prot_t max, int cow)
1345 vm_offset_t start;
1346 vm_object_t object;
1347 int result;
1348 int count;
1350 if (maptype == VM_MAPTYPE_UKSMAP)
1351 object = NULL;
1352 else
1353 object = map_object;
1355 start = *addr;
1357 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1358 vm_map_lock(map);
1359 if (object)
1360 vm_object_hold_shared(object);
1361 if (fitit) {
1362 if (vm_map_findspace(map, start, length, align, 0, addr)) {
1363 if (object)
1364 vm_object_drop(object);
1365 vm_map_unlock(map);
1366 vm_map_entry_release(count);
1367 return (KERN_NO_SPACE);
1369 start = *addr;
1371 result = vm_map_insert(map, &count, map_object, map_aux,
1372 offset, start, start + length,
1373 maptype, id, prot, max, cow);
1374 if (object)
1375 vm_object_drop(object);
1376 vm_map_unlock(map);
1377 vm_map_entry_release(count);
1379 return (result);
1383 * Simplify the given map entry by merging with either neighbor. This
1384 * routine also has the ability to merge with both neighbors.
1386 * This routine guarentees that the passed entry remains valid (though
1387 * possibly extended). When merging, this routine may delete one or
1388 * both neighbors. No action is taken on entries which have their
1389 * in-transition flag set.
1391 * The map must be exclusively locked.
1393 void
1394 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
1396 vm_map_entry_t next, prev;
1397 vm_size_t prevsize, esize;
1399 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1400 ++mycpu->gd_cnt.v_intrans_coll;
1401 return;
1404 if (entry->maptype == VM_MAPTYPE_SUBMAP)
1405 return;
1406 if (entry->maptype == VM_MAPTYPE_UKSMAP)
1407 return;
1409 prev = entry->prev;
1410 if (prev != &map->header) {
1411 prevsize = prev->end - prev->start;
1412 if ( (prev->end == entry->start) &&
1413 (prev->maptype == entry->maptype) &&
1414 (prev->object.vm_object == entry->object.vm_object) &&
1415 (!prev->object.vm_object ||
1416 (prev->offset + prevsize == entry->offset)) &&
1417 (prev->eflags == entry->eflags) &&
1418 (prev->protection == entry->protection) &&
1419 (prev->max_protection == entry->max_protection) &&
1420 (prev->inheritance == entry->inheritance) &&
1421 (prev->id == entry->id) &&
1422 (prev->wired_count == entry->wired_count)) {
1423 if (map->first_free == prev)
1424 map->first_free = entry;
1425 if (map->hint == prev)
1426 map->hint = entry;
1427 vm_map_entry_unlink(map, prev);
1428 entry->start = prev->start;
1429 entry->offset = prev->offset;
1430 if (prev->object.vm_object)
1431 vm_object_deallocate(prev->object.vm_object);
1432 vm_map_entry_dispose(map, prev, countp);
1436 next = entry->next;
1437 if (next != &map->header) {
1438 esize = entry->end - entry->start;
1439 if ((entry->end == next->start) &&
1440 (next->maptype == entry->maptype) &&
1441 (next->object.vm_object == entry->object.vm_object) &&
1442 (!entry->object.vm_object ||
1443 (entry->offset + esize == next->offset)) &&
1444 (next->eflags == entry->eflags) &&
1445 (next->protection == entry->protection) &&
1446 (next->max_protection == entry->max_protection) &&
1447 (next->inheritance == entry->inheritance) &&
1448 (next->id == entry->id) &&
1449 (next->wired_count == entry->wired_count)) {
1450 if (map->first_free == next)
1451 map->first_free = entry;
1452 if (map->hint == next)
1453 map->hint = entry;
1454 vm_map_entry_unlink(map, next);
1455 entry->end = next->end;
1456 if (next->object.vm_object)
1457 vm_object_deallocate(next->object.vm_object);
1458 vm_map_entry_dispose(map, next, countp);
1464 * Asserts that the given entry begins at or after the specified address.
1465 * If necessary, it splits the entry into two.
1467 #define vm_map_clip_start(map, entry, startaddr, countp) \
1469 if (startaddr > entry->start) \
1470 _vm_map_clip_start(map, entry, startaddr, countp); \
1474 * This routine is called only when it is known that the entry must be split.
1476 * The map must be exclusively locked.
1478 static void
1479 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start,
1480 int *countp)
1482 vm_map_entry_t new_entry;
1485 * Split off the front portion -- note that we must insert the new
1486 * entry BEFORE this one, so that this entry has the specified
1487 * starting address.
1490 vm_map_simplify_entry(map, entry, countp);
1493 * If there is no object backing this entry, we might as well create
1494 * one now. If we defer it, an object can get created after the map
1495 * is clipped, and individual objects will be created for the split-up
1496 * map. This is a bit of a hack, but is also about the best place to
1497 * put this improvement.
1499 if (entry->object.vm_object == NULL && !map->system_map) {
1500 vm_map_entry_allocate_object(entry);
1503 new_entry = vm_map_entry_create(map, countp);
1504 *new_entry = *entry;
1506 new_entry->end = start;
1507 entry->offset += (start - entry->start);
1508 entry->start = start;
1510 vm_map_entry_link(map, entry->prev, new_entry);
1512 switch(entry->maptype) {
1513 case VM_MAPTYPE_NORMAL:
1514 case VM_MAPTYPE_VPAGETABLE:
1515 if (new_entry->object.vm_object) {
1516 vm_object_hold(new_entry->object.vm_object);
1517 vm_object_chain_wait(new_entry->object.vm_object, 0);
1518 vm_object_reference_locked(new_entry->object.vm_object);
1519 vm_object_drop(new_entry->object.vm_object);
1521 break;
1522 default:
1523 break;
1528 * Asserts that the given entry ends at or before the specified address.
1529 * If necessary, it splits the entry into two.
1531 * The map must be exclusively locked.
1533 #define vm_map_clip_end(map, entry, endaddr, countp) \
1535 if (endaddr < entry->end) \
1536 _vm_map_clip_end(map, entry, endaddr, countp); \
1540 * This routine is called only when it is known that the entry must be split.
1542 * The map must be exclusively locked.
1544 static void
1545 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end,
1546 int *countp)
1548 vm_map_entry_t new_entry;
1551 * If there is no object backing this entry, we might as well create
1552 * one now. If we defer it, an object can get created after the map
1553 * is clipped, and individual objects will be created for the split-up
1554 * map. This is a bit of a hack, but is also about the best place to
1555 * put this improvement.
1558 if (entry->object.vm_object == NULL && !map->system_map) {
1559 vm_map_entry_allocate_object(entry);
1563 * Create a new entry and insert it AFTER the specified entry
1566 new_entry = vm_map_entry_create(map, countp);
1567 *new_entry = *entry;
1569 new_entry->start = entry->end = end;
1570 new_entry->offset += (end - entry->start);
1572 vm_map_entry_link(map, entry, new_entry);
1574 switch(entry->maptype) {
1575 case VM_MAPTYPE_NORMAL:
1576 case VM_MAPTYPE_VPAGETABLE:
1577 if (new_entry->object.vm_object) {
1578 vm_object_hold(new_entry->object.vm_object);
1579 vm_object_chain_wait(new_entry->object.vm_object, 0);
1580 vm_object_reference_locked(new_entry->object.vm_object);
1581 vm_object_drop(new_entry->object.vm_object);
1583 break;
1584 default:
1585 break;
1590 * Asserts that the starting and ending region addresses fall within the
1591 * valid range for the map.
1593 #define VM_MAP_RANGE_CHECK(map, start, end) \
1595 if (start < vm_map_min(map)) \
1596 start = vm_map_min(map); \
1597 if (end > vm_map_max(map)) \
1598 end = vm_map_max(map); \
1599 if (start > end) \
1600 start = end; \
1604 * Used to block when an in-transition collison occurs. The map
1605 * is unlocked for the sleep and relocked before the return.
1607 void
1608 vm_map_transition_wait(vm_map_t map)
1610 tsleep_interlock(map, 0);
1611 vm_map_unlock(map);
1612 tsleep(map, PINTERLOCKED, "vment", 0);
1613 vm_map_lock(map);
1617 * When we do blocking operations with the map lock held it is
1618 * possible that a clip might have occured on our in-transit entry,
1619 * requiring an adjustment to the entry in our loop. These macros
1620 * help the pageable and clip_range code deal with the case. The
1621 * conditional costs virtually nothing if no clipping has occured.
1624 #define CLIP_CHECK_BACK(entry, save_start) \
1625 do { \
1626 while (entry->start != save_start) { \
1627 entry = entry->prev; \
1628 KASSERT(entry != &map->header, ("bad entry clip")); \
1630 } while(0)
1632 #define CLIP_CHECK_FWD(entry, save_end) \
1633 do { \
1634 while (entry->end != save_end) { \
1635 entry = entry->next; \
1636 KASSERT(entry != &map->header, ("bad entry clip")); \
1638 } while(0)
1642 * Clip the specified range and return the base entry. The
1643 * range may cover several entries starting at the returned base
1644 * and the first and last entry in the covering sequence will be
1645 * properly clipped to the requested start and end address.
1647 * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1648 * flag.
1650 * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1651 * covered by the requested range.
1653 * The map must be exclusively locked on entry and will remain locked
1654 * on return. If no range exists or the range contains holes and you
1655 * specified that no holes were allowed, NULL will be returned. This
1656 * routine may temporarily unlock the map in order avoid a deadlock when
1657 * sleeping.
1659 static
1660 vm_map_entry_t
1661 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end,
1662 int *countp, int flags)
1664 vm_map_entry_t start_entry;
1665 vm_map_entry_t entry;
1668 * Locate the entry and effect initial clipping. The in-transition
1669 * case does not occur very often so do not try to optimize it.
1671 again:
1672 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1673 return (NULL);
1674 entry = start_entry;
1675 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1676 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1677 ++mycpu->gd_cnt.v_intrans_coll;
1678 ++mycpu->gd_cnt.v_intrans_wait;
1679 vm_map_transition_wait(map);
1681 * entry and/or start_entry may have been clipped while
1682 * we slept, or may have gone away entirely. We have
1683 * to restart from the lookup.
1685 goto again;
1689 * Since we hold an exclusive map lock we do not have to restart
1690 * after clipping, even though clipping may block in zalloc.
1692 vm_map_clip_start(map, entry, start, countp);
1693 vm_map_clip_end(map, entry, end, countp);
1694 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1697 * Scan entries covered by the range. When working on the next
1698 * entry a restart need only re-loop on the current entry which
1699 * we have already locked, since 'next' may have changed. Also,
1700 * even though entry is safe, it may have been clipped so we
1701 * have to iterate forwards through the clip after sleeping.
1703 while (entry->next != &map->header && entry->next->start < end) {
1704 vm_map_entry_t next = entry->next;
1706 if (flags & MAP_CLIP_NO_HOLES) {
1707 if (next->start > entry->end) {
1708 vm_map_unclip_range(map, start_entry,
1709 start, entry->end, countp, flags);
1710 return(NULL);
1714 if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1715 vm_offset_t save_end = entry->end;
1716 next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1717 ++mycpu->gd_cnt.v_intrans_coll;
1718 ++mycpu->gd_cnt.v_intrans_wait;
1719 vm_map_transition_wait(map);
1722 * clips might have occured while we blocked.
1724 CLIP_CHECK_FWD(entry, save_end);
1725 CLIP_CHECK_BACK(start_entry, start);
1726 continue;
1729 * No restart necessary even though clip_end may block, we
1730 * are holding the map lock.
1732 vm_map_clip_end(map, next, end, countp);
1733 next->eflags |= MAP_ENTRY_IN_TRANSITION;
1734 entry = next;
1736 if (flags & MAP_CLIP_NO_HOLES) {
1737 if (entry->end != end) {
1738 vm_map_unclip_range(map, start_entry,
1739 start, entry->end, countp, flags);
1740 return(NULL);
1743 return(start_entry);
1747 * Undo the effect of vm_map_clip_range(). You should pass the same
1748 * flags and the same range that you passed to vm_map_clip_range().
1749 * This code will clear the in-transition flag on the entries and
1750 * wake up anyone waiting. This code will also simplify the sequence
1751 * and attempt to merge it with entries before and after the sequence.
1753 * The map must be locked on entry and will remain locked on return.
1755 * Note that you should also pass the start_entry returned by
1756 * vm_map_clip_range(). However, if you block between the two calls
1757 * with the map unlocked please be aware that the start_entry may
1758 * have been clipped and you may need to scan it backwards to find
1759 * the entry corresponding with the original start address. You are
1760 * responsible for this, vm_map_unclip_range() expects the correct
1761 * start_entry to be passed to it and will KASSERT otherwise.
1763 static
1764 void
1765 vm_map_unclip_range(vm_map_t map, vm_map_entry_t start_entry,
1766 vm_offset_t start, vm_offset_t end,
1767 int *countp, int flags)
1769 vm_map_entry_t entry;
1771 entry = start_entry;
1773 KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1774 while (entry != &map->header && entry->start < end) {
1775 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
1776 ("in-transition flag not set during unclip on: %p",
1777 entry));
1778 KASSERT(entry->end <= end,
1779 ("unclip_range: tail wasn't clipped"));
1780 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1781 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1782 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1783 wakeup(map);
1785 entry = entry->next;
1789 * Simplification does not block so there is no restart case.
1791 entry = start_entry;
1792 while (entry != &map->header && entry->start < end) {
1793 vm_map_simplify_entry(map, entry, countp);
1794 entry = entry->next;
1799 * Mark the given range as handled by a subordinate map.
1801 * This range must have been created with vm_map_find(), and no other
1802 * operations may have been performed on this range prior to calling
1803 * vm_map_submap().
1805 * Submappings cannot be removed.
1807 * No requirements.
1810 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1812 vm_map_entry_t entry;
1813 int result = KERN_INVALID_ARGUMENT;
1814 int count;
1816 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1817 vm_map_lock(map);
1819 VM_MAP_RANGE_CHECK(map, start, end);
1821 if (vm_map_lookup_entry(map, start, &entry)) {
1822 vm_map_clip_start(map, entry, start, &count);
1823 } else {
1824 entry = entry->next;
1827 vm_map_clip_end(map, entry, end, &count);
1829 if ((entry->start == start) && (entry->end == end) &&
1830 ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1831 (entry->object.vm_object == NULL)) {
1832 entry->object.sub_map = submap;
1833 entry->maptype = VM_MAPTYPE_SUBMAP;
1834 result = KERN_SUCCESS;
1836 vm_map_unlock(map);
1837 vm_map_entry_release(count);
1839 return (result);
1843 * Sets the protection of the specified address region in the target map.
1844 * If "set_max" is specified, the maximum protection is to be set;
1845 * otherwise, only the current protection is affected.
1847 * The protection is not applicable to submaps, but is applicable to normal
1848 * maps and maps governed by virtual page tables. For example, when operating
1849 * on a virtual page table our protection basically controls how COW occurs
1850 * on the backing object, whereas the virtual page table abstraction itself
1851 * is an abstraction for userland.
1853 * No requirements.
1856 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1857 vm_prot_t new_prot, boolean_t set_max)
1859 vm_map_entry_t current;
1860 vm_map_entry_t entry;
1861 int count;
1863 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1864 vm_map_lock(map);
1866 VM_MAP_RANGE_CHECK(map, start, end);
1868 if (vm_map_lookup_entry(map, start, &entry)) {
1869 vm_map_clip_start(map, entry, start, &count);
1870 } else {
1871 entry = entry->next;
1875 * Make a first pass to check for protection violations.
1877 current = entry;
1878 while ((current != &map->header) && (current->start < end)) {
1879 if (current->maptype == VM_MAPTYPE_SUBMAP) {
1880 vm_map_unlock(map);
1881 vm_map_entry_release(count);
1882 return (KERN_INVALID_ARGUMENT);
1884 if ((new_prot & current->max_protection) != new_prot) {
1885 vm_map_unlock(map);
1886 vm_map_entry_release(count);
1887 return (KERN_PROTECTION_FAILURE);
1889 current = current->next;
1893 * Go back and fix up protections. [Note that clipping is not
1894 * necessary the second time.]
1896 current = entry;
1898 while ((current != &map->header) && (current->start < end)) {
1899 vm_prot_t old_prot;
1901 vm_map_clip_end(map, current, end, &count);
1903 old_prot = current->protection;
1904 if (set_max) {
1905 current->max_protection = new_prot;
1906 current->protection = new_prot & old_prot;
1907 } else {
1908 current->protection = new_prot;
1912 * Update physical map if necessary. Worry about copy-on-write
1913 * here -- CHECK THIS XXX
1916 if (current->protection != old_prot) {
1917 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1918 VM_PROT_ALL)
1920 pmap_protect(map->pmap, current->start,
1921 current->end,
1922 current->protection & MASK(current));
1923 #undef MASK
1926 vm_map_simplify_entry(map, current, &count);
1928 current = current->next;
1931 vm_map_unlock(map);
1932 vm_map_entry_release(count);
1933 return (KERN_SUCCESS);
1937 * This routine traverses a processes map handling the madvise
1938 * system call. Advisories are classified as either those effecting
1939 * the vm_map_entry structure, or those effecting the underlying
1940 * objects.
1942 * The <value> argument is used for extended madvise calls.
1944 * No requirements.
1947 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end,
1948 int behav, off_t value)
1950 vm_map_entry_t current, entry;
1951 int modify_map = 0;
1952 int error = 0;
1953 int count;
1956 * Some madvise calls directly modify the vm_map_entry, in which case
1957 * we need to use an exclusive lock on the map and we need to perform
1958 * various clipping operations. Otherwise we only need a read-lock
1959 * on the map.
1961 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1963 switch(behav) {
1964 case MADV_NORMAL:
1965 case MADV_SEQUENTIAL:
1966 case MADV_RANDOM:
1967 case MADV_NOSYNC:
1968 case MADV_AUTOSYNC:
1969 case MADV_NOCORE:
1970 case MADV_CORE:
1971 case MADV_SETMAP:
1972 modify_map = 1;
1973 vm_map_lock(map);
1974 break;
1975 case MADV_INVAL:
1976 case MADV_WILLNEED:
1977 case MADV_DONTNEED:
1978 case MADV_FREE:
1979 vm_map_lock_read(map);
1980 break;
1981 default:
1982 vm_map_entry_release(count);
1983 return (EINVAL);
1987 * Locate starting entry and clip if necessary.
1990 VM_MAP_RANGE_CHECK(map, start, end);
1992 if (vm_map_lookup_entry(map, start, &entry)) {
1993 if (modify_map)
1994 vm_map_clip_start(map, entry, start, &count);
1995 } else {
1996 entry = entry->next;
1999 if (modify_map) {
2001 * madvise behaviors that are implemented in the vm_map_entry.
2003 * We clip the vm_map_entry so that behavioral changes are
2004 * limited to the specified address range.
2006 for (current = entry;
2007 (current != &map->header) && (current->start < end);
2008 current = current->next
2010 if (current->maptype == VM_MAPTYPE_SUBMAP)
2011 continue;
2013 vm_map_clip_end(map, current, end, &count);
2015 switch (behav) {
2016 case MADV_NORMAL:
2017 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2018 break;
2019 case MADV_SEQUENTIAL:
2020 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2021 break;
2022 case MADV_RANDOM:
2023 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2024 break;
2025 case MADV_NOSYNC:
2026 current->eflags |= MAP_ENTRY_NOSYNC;
2027 break;
2028 case MADV_AUTOSYNC:
2029 current->eflags &= ~MAP_ENTRY_NOSYNC;
2030 break;
2031 case MADV_NOCORE:
2032 current->eflags |= MAP_ENTRY_NOCOREDUMP;
2033 break;
2034 case MADV_CORE:
2035 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2036 break;
2037 case MADV_SETMAP:
2039 * Set the page directory page for a map
2040 * governed by a virtual page table. Mark
2041 * the entry as being governed by a virtual
2042 * page table if it is not.
2044 * XXX the page directory page is stored
2045 * in the avail_ssize field if the map_entry.
2047 * XXX the map simplification code does not
2048 * compare this field so weird things may
2049 * happen if you do not apply this function
2050 * to the entire mapping governed by the
2051 * virtual page table.
2053 if (current->maptype != VM_MAPTYPE_VPAGETABLE) {
2054 error = EINVAL;
2055 break;
2057 current->aux.master_pde = value;
2058 pmap_remove(map->pmap,
2059 current->start, current->end);
2060 break;
2061 case MADV_INVAL:
2063 * Invalidate the related pmap entries, used
2064 * to flush portions of the real kernel's
2065 * pmap when the caller has removed or
2066 * modified existing mappings in a virtual
2067 * page table.
2069 * (exclusive locked map version does not
2070 * need the range interlock).
2072 pmap_remove(map->pmap,
2073 current->start, current->end);
2074 break;
2075 default:
2076 error = EINVAL;
2077 break;
2079 vm_map_simplify_entry(map, current, &count);
2081 vm_map_unlock(map);
2082 } else {
2083 vm_pindex_t pindex;
2084 vm_pindex_t delta;
2087 * madvise behaviors that are implemented in the underlying
2088 * vm_object.
2090 * Since we don't clip the vm_map_entry, we have to clip
2091 * the vm_object pindex and count.
2093 * NOTE! These functions are only supported on normal maps,
2094 * except MADV_INVAL which is also supported on
2095 * virtual page tables.
2097 for (current = entry;
2098 (current != &map->header) && (current->start < end);
2099 current = current->next
2101 vm_offset_t useStart;
2103 if (current->maptype != VM_MAPTYPE_NORMAL &&
2104 (current->maptype != VM_MAPTYPE_VPAGETABLE ||
2105 behav != MADV_INVAL)) {
2106 continue;
2109 pindex = OFF_TO_IDX(current->offset);
2110 delta = atop(current->end - current->start);
2111 useStart = current->start;
2113 if (current->start < start) {
2114 pindex += atop(start - current->start);
2115 delta -= atop(start - current->start);
2116 useStart = start;
2118 if (current->end > end)
2119 delta -= atop(current->end - end);
2121 if ((vm_spindex_t)delta <= 0)
2122 continue;
2124 if (behav == MADV_INVAL) {
2126 * Invalidate the related pmap entries, used
2127 * to flush portions of the real kernel's
2128 * pmap when the caller has removed or
2129 * modified existing mappings in a virtual
2130 * page table.
2132 * (shared locked map version needs the
2133 * interlock, see vm_fault()).
2135 struct vm_map_ilock ilock;
2137 KASSERT(useStart >= VM_MIN_USER_ADDRESS &&
2138 useStart + ptoa(delta) <=
2139 VM_MAX_USER_ADDRESS,
2140 ("Bad range %016jx-%016jx (%016jx)",
2141 useStart, useStart + ptoa(delta),
2142 delta));
2143 vm_map_interlock(map, &ilock,
2144 useStart,
2145 useStart + ptoa(delta));
2146 pmap_remove(map->pmap,
2147 useStart,
2148 useStart + ptoa(delta));
2149 vm_map_deinterlock(map, &ilock);
2150 } else {
2151 vm_object_madvise(current->object.vm_object,
2152 pindex, delta, behav);
2156 * Try to populate the page table. Mappings governed
2157 * by virtual page tables cannot be pre-populated
2158 * without a lot of work so don't try.
2160 if (behav == MADV_WILLNEED &&
2161 current->maptype != VM_MAPTYPE_VPAGETABLE) {
2162 pmap_object_init_pt(
2163 map->pmap,
2164 useStart,
2165 current->protection,
2166 current->object.vm_object,
2167 pindex,
2168 (count << PAGE_SHIFT),
2169 MAP_PREFAULT_MADVISE
2173 vm_map_unlock_read(map);
2175 vm_map_entry_release(count);
2176 return(error);
2181 * Sets the inheritance of the specified address range in the target map.
2182 * Inheritance affects how the map will be shared with child maps at the
2183 * time of vm_map_fork.
2186 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2187 vm_inherit_t new_inheritance)
2189 vm_map_entry_t entry;
2190 vm_map_entry_t temp_entry;
2191 int count;
2193 switch (new_inheritance) {
2194 case VM_INHERIT_NONE:
2195 case VM_INHERIT_COPY:
2196 case VM_INHERIT_SHARE:
2197 break;
2198 default:
2199 return (KERN_INVALID_ARGUMENT);
2202 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2203 vm_map_lock(map);
2205 VM_MAP_RANGE_CHECK(map, start, end);
2207 if (vm_map_lookup_entry(map, start, &temp_entry)) {
2208 entry = temp_entry;
2209 vm_map_clip_start(map, entry, start, &count);
2210 } else
2211 entry = temp_entry->next;
2213 while ((entry != &map->header) && (entry->start < end)) {
2214 vm_map_clip_end(map, entry, end, &count);
2216 entry->inheritance = new_inheritance;
2218 vm_map_simplify_entry(map, entry, &count);
2220 entry = entry->next;
2222 vm_map_unlock(map);
2223 vm_map_entry_release(count);
2224 return (KERN_SUCCESS);
2228 * Implement the semantics of mlock
2231 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end,
2232 boolean_t new_pageable)
2234 vm_map_entry_t entry;
2235 vm_map_entry_t start_entry;
2236 vm_offset_t end;
2237 int rv = KERN_SUCCESS;
2238 int count;
2240 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2241 vm_map_lock(map);
2242 VM_MAP_RANGE_CHECK(map, start, real_end);
2243 end = real_end;
2245 start_entry = vm_map_clip_range(map, start, end, &count,
2246 MAP_CLIP_NO_HOLES);
2247 if (start_entry == NULL) {
2248 vm_map_unlock(map);
2249 vm_map_entry_release(count);
2250 return (KERN_INVALID_ADDRESS);
2253 if (new_pageable == 0) {
2254 entry = start_entry;
2255 while ((entry != &map->header) && (entry->start < end)) {
2256 vm_offset_t save_start;
2257 vm_offset_t save_end;
2260 * Already user wired or hard wired (trivial cases)
2262 if (entry->eflags & MAP_ENTRY_USER_WIRED) {
2263 entry = entry->next;
2264 continue;
2266 if (entry->wired_count != 0) {
2267 entry->wired_count++;
2268 entry->eflags |= MAP_ENTRY_USER_WIRED;
2269 entry = entry->next;
2270 continue;
2274 * A new wiring requires instantiation of appropriate
2275 * management structures and the faulting in of the
2276 * page.
2278 if (entry->maptype == VM_MAPTYPE_NORMAL ||
2279 entry->maptype == VM_MAPTYPE_VPAGETABLE) {
2280 int copyflag = entry->eflags &
2281 MAP_ENTRY_NEEDS_COPY;
2282 if (copyflag && ((entry->protection &
2283 VM_PROT_WRITE) != 0)) {
2284 vm_map_entry_shadow(entry, 0);
2285 } else if (entry->object.vm_object == NULL &&
2286 !map->system_map) {
2287 vm_map_entry_allocate_object(entry);
2290 entry->wired_count++;
2291 entry->eflags |= MAP_ENTRY_USER_WIRED;
2294 * Now fault in the area. Note that vm_fault_wire()
2295 * may release the map lock temporarily, it will be
2296 * relocked on return. The in-transition
2297 * flag protects the entries.
2299 save_start = entry->start;
2300 save_end = entry->end;
2301 rv = vm_fault_wire(map, entry, TRUE, 0);
2302 if (rv) {
2303 CLIP_CHECK_BACK(entry, save_start);
2304 for (;;) {
2305 KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
2306 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2307 entry->wired_count = 0;
2308 if (entry->end == save_end)
2309 break;
2310 entry = entry->next;
2311 KASSERT(entry != &map->header, ("bad entry clip during backout"));
2313 end = save_start; /* unwire the rest */
2314 break;
2317 * note that even though the entry might have been
2318 * clipped, the USER_WIRED flag we set prevents
2319 * duplication so we do not have to do a
2320 * clip check.
2322 entry = entry->next;
2326 * If we failed fall through to the unwiring section to
2327 * unwire what we had wired so far. 'end' has already
2328 * been adjusted.
2330 if (rv)
2331 new_pageable = 1;
2334 * start_entry might have been clipped if we unlocked the
2335 * map and blocked. No matter how clipped it has gotten
2336 * there should be a fragment that is on our start boundary.
2338 CLIP_CHECK_BACK(start_entry, start);
2342 * Deal with the unwiring case.
2344 if (new_pageable) {
2346 * This is the unwiring case. We must first ensure that the
2347 * range to be unwired is really wired down. We know there
2348 * are no holes.
2350 entry = start_entry;
2351 while ((entry != &map->header) && (entry->start < end)) {
2352 if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2353 rv = KERN_INVALID_ARGUMENT;
2354 goto done;
2356 KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
2357 entry = entry->next;
2361 * Now decrement the wiring count for each region. If a region
2362 * becomes completely unwired, unwire its physical pages and
2363 * mappings.
2366 * The map entries are processed in a loop, checking to
2367 * make sure the entry is wired and asserting it has a wired
2368 * count. However, another loop was inserted more-or-less in
2369 * the middle of the unwiring path. This loop picks up the
2370 * "entry" loop variable from the first loop without first
2371 * setting it to start_entry. Naturally, the secound loop
2372 * is never entered and the pages backing the entries are
2373 * never unwired. This can lead to a leak of wired pages.
2375 entry = start_entry;
2376 while ((entry != &map->header) && (entry->start < end)) {
2377 KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED,
2378 ("expected USER_WIRED on entry %p", entry));
2379 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2380 entry->wired_count--;
2381 if (entry->wired_count == 0)
2382 vm_fault_unwire(map, entry);
2383 entry = entry->next;
2386 done:
2387 vm_map_unclip_range(map, start_entry, start, real_end, &count,
2388 MAP_CLIP_NO_HOLES);
2389 map->timestamp++;
2390 vm_map_unlock(map);
2391 vm_map_entry_release(count);
2392 return (rv);
2396 * Sets the pageability of the specified address range in the target map.
2397 * Regions specified as not pageable require locked-down physical
2398 * memory and physical page maps.
2400 * The map must not be locked, but a reference must remain to the map
2401 * throughout the call.
2403 * This function may be called via the zalloc path and must properly
2404 * reserve map entries for kernel_map.
2406 * No requirements.
2409 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
2411 vm_map_entry_t entry;
2412 vm_map_entry_t start_entry;
2413 vm_offset_t end;
2414 int rv = KERN_SUCCESS;
2415 int count;
2417 if (kmflags & KM_KRESERVE)
2418 count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
2419 else
2420 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2421 vm_map_lock(map);
2422 VM_MAP_RANGE_CHECK(map, start, real_end);
2423 end = real_end;
2425 start_entry = vm_map_clip_range(map, start, end, &count,
2426 MAP_CLIP_NO_HOLES);
2427 if (start_entry == NULL) {
2428 vm_map_unlock(map);
2429 rv = KERN_INVALID_ADDRESS;
2430 goto failure;
2432 if ((kmflags & KM_PAGEABLE) == 0) {
2434 * Wiring.
2436 * 1. Holding the write lock, we create any shadow or zero-fill
2437 * objects that need to be created. Then we clip each map
2438 * entry to the region to be wired and increment its wiring
2439 * count. We create objects before clipping the map entries
2440 * to avoid object proliferation.
2442 * 2. We downgrade to a read lock, and call vm_fault_wire to
2443 * fault in the pages for any newly wired area (wired_count is
2444 * 1).
2446 * Downgrading to a read lock for vm_fault_wire avoids a
2447 * possible deadlock with another process that may have faulted
2448 * on one of the pages to be wired (it would mark the page busy,
2449 * blocking us, then in turn block on the map lock that we
2450 * hold). Because of problems in the recursive lock package,
2451 * we cannot upgrade to a write lock in vm_map_lookup. Thus,
2452 * any actions that require the write lock must be done
2453 * beforehand. Because we keep the read lock on the map, the
2454 * copy-on-write status of the entries we modify here cannot
2455 * change.
2457 entry = start_entry;
2458 while ((entry != &map->header) && (entry->start < end)) {
2460 * Trivial case if the entry is already wired
2462 if (entry->wired_count) {
2463 entry->wired_count++;
2464 entry = entry->next;
2465 continue;
2469 * The entry is being newly wired, we have to setup
2470 * appropriate management structures. A shadow
2471 * object is required for a copy-on-write region,
2472 * or a normal object for a zero-fill region. We
2473 * do not have to do this for entries that point to sub
2474 * maps because we won't hold the lock on the sub map.
2476 if (entry->maptype == VM_MAPTYPE_NORMAL ||
2477 entry->maptype == VM_MAPTYPE_VPAGETABLE) {
2478 int copyflag = entry->eflags &
2479 MAP_ENTRY_NEEDS_COPY;
2480 if (copyflag && ((entry->protection &
2481 VM_PROT_WRITE) != 0)) {
2482 vm_map_entry_shadow(entry, 0);
2483 } else if (entry->object.vm_object == NULL &&
2484 !map->system_map) {
2485 vm_map_entry_allocate_object(entry);
2489 entry->wired_count++;
2490 entry = entry->next;
2494 * Pass 2.
2498 * HACK HACK HACK HACK
2500 * vm_fault_wire() temporarily unlocks the map to avoid
2501 * deadlocks. The in-transition flag from vm_map_clip_range
2502 * call should protect us from changes while the map is
2503 * unlocked. T
2505 * NOTE: Previously this comment stated that clipping might
2506 * still occur while the entry is unlocked, but from
2507 * what I can tell it actually cannot.
2509 * It is unclear whether the CLIP_CHECK_*() calls
2510 * are still needed but we keep them in anyway.
2512 * HACK HACK HACK HACK
2515 entry = start_entry;
2516 while (entry != &map->header && entry->start < end) {
2518 * If vm_fault_wire fails for any page we need to undo
2519 * what has been done. We decrement the wiring count
2520 * for those pages which have not yet been wired (now)
2521 * and unwire those that have (later).
2523 vm_offset_t save_start = entry->start;
2524 vm_offset_t save_end = entry->end;
2526 if (entry->wired_count == 1)
2527 rv = vm_fault_wire(map, entry, FALSE, kmflags);
2528 if (rv) {
2529 CLIP_CHECK_BACK(entry, save_start);
2530 for (;;) {
2531 KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
2532 entry->wired_count = 0;
2533 if (entry->end == save_end)
2534 break;
2535 entry = entry->next;
2536 KASSERT(entry != &map->header, ("bad entry clip during backout"));
2538 end = save_start;
2539 break;
2541 CLIP_CHECK_FWD(entry, save_end);
2542 entry = entry->next;
2546 * If a failure occured undo everything by falling through
2547 * to the unwiring code. 'end' has already been adjusted
2548 * appropriately.
2550 if (rv)
2551 kmflags |= KM_PAGEABLE;
2554 * start_entry is still IN_TRANSITION but may have been
2555 * clipped since vm_fault_wire() unlocks and relocks the
2556 * map. No matter how clipped it has gotten there should
2557 * be a fragment that is on our start boundary.
2559 CLIP_CHECK_BACK(start_entry, start);
2562 if (kmflags & KM_PAGEABLE) {
2564 * This is the unwiring case. We must first ensure that the
2565 * range to be unwired is really wired down. We know there
2566 * are no holes.
2568 entry = start_entry;
2569 while ((entry != &map->header) && (entry->start < end)) {
2570 if (entry->wired_count == 0) {
2571 rv = KERN_INVALID_ARGUMENT;
2572 goto done;
2574 entry = entry->next;
2578 * Now decrement the wiring count for each region. If a region
2579 * becomes completely unwired, unwire its physical pages and
2580 * mappings.
2582 entry = start_entry;
2583 while ((entry != &map->header) && (entry->start < end)) {
2584 entry->wired_count--;
2585 if (entry->wired_count == 0)
2586 vm_fault_unwire(map, entry);
2587 entry = entry->next;
2590 done:
2591 vm_map_unclip_range(map, start_entry, start, real_end,
2592 &count, MAP_CLIP_NO_HOLES);
2593 map->timestamp++;
2594 vm_map_unlock(map);
2595 failure:
2596 if (kmflags & KM_KRESERVE)
2597 vm_map_entry_krelease(count);
2598 else
2599 vm_map_entry_release(count);
2600 return (rv);
2604 * Mark a newly allocated address range as wired but do not fault in
2605 * the pages. The caller is expected to load the pages into the object.
2607 * The map must be locked on entry and will remain locked on return.
2608 * No other requirements.
2610 void
2611 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size,
2612 int *countp)
2614 vm_map_entry_t scan;
2615 vm_map_entry_t entry;
2617 entry = vm_map_clip_range(map, addr, addr + size,
2618 countp, MAP_CLIP_NO_HOLES);
2619 for (scan = entry;
2620 scan != &map->header && scan->start < addr + size;
2621 scan = scan->next) {
2622 KKASSERT(scan->wired_count == 0);
2623 scan->wired_count = 1;
2625 vm_map_unclip_range(map, entry, addr, addr + size,
2626 countp, MAP_CLIP_NO_HOLES);
2630 * Push any dirty cached pages in the address range to their pager.
2631 * If syncio is TRUE, dirty pages are written synchronously.
2632 * If invalidate is TRUE, any cached pages are freed as well.
2634 * This routine is called by sys_msync()
2636 * Returns an error if any part of the specified range is not mapped.
2638 * No requirements.
2641 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end,
2642 boolean_t syncio, boolean_t invalidate)
2644 vm_map_entry_t current;
2645 vm_map_entry_t entry;
2646 vm_size_t size;
2647 vm_object_t object;
2648 vm_object_t tobj;
2649 vm_ooffset_t offset;
2651 vm_map_lock_read(map);
2652 VM_MAP_RANGE_CHECK(map, start, end);
2653 if (!vm_map_lookup_entry(map, start, &entry)) {
2654 vm_map_unlock_read(map);
2655 return (KERN_INVALID_ADDRESS);
2657 lwkt_gettoken(&map->token);
2660 * Make a first pass to check for holes.
2662 for (current = entry; current->start < end; current = current->next) {
2663 if (current->maptype == VM_MAPTYPE_SUBMAP) {
2664 lwkt_reltoken(&map->token);
2665 vm_map_unlock_read(map);
2666 return (KERN_INVALID_ARGUMENT);
2668 if (end > current->end &&
2669 (current->next == &map->header ||
2670 current->end != current->next->start)) {
2671 lwkt_reltoken(&map->token);
2672 vm_map_unlock_read(map);
2673 return (KERN_INVALID_ADDRESS);
2677 if (invalidate)
2678 pmap_remove(vm_map_pmap(map), start, end);
2681 * Make a second pass, cleaning/uncaching pages from the indicated
2682 * objects as we go.
2684 for (current = entry; current->start < end; current = current->next) {
2685 offset = current->offset + (start - current->start);
2686 size = (end <= current->end ? end : current->end) - start;
2688 switch(current->maptype) {
2689 case VM_MAPTYPE_SUBMAP:
2691 vm_map_t smap;
2692 vm_map_entry_t tentry;
2693 vm_size_t tsize;
2695 smap = current->object.sub_map;
2696 vm_map_lock_read(smap);
2697 vm_map_lookup_entry(smap, offset, &tentry);
2698 tsize = tentry->end - offset;
2699 if (tsize < size)
2700 size = tsize;
2701 object = tentry->object.vm_object;
2702 offset = tentry->offset + (offset - tentry->start);
2703 vm_map_unlock_read(smap);
2704 break;
2706 case VM_MAPTYPE_NORMAL:
2707 case VM_MAPTYPE_VPAGETABLE:
2708 object = current->object.vm_object;
2709 break;
2710 default:
2711 object = NULL;
2712 break;
2715 if (object)
2716 vm_object_hold(object);
2719 * Note that there is absolutely no sense in writing out
2720 * anonymous objects, so we track down the vnode object
2721 * to write out.
2722 * We invalidate (remove) all pages from the address space
2723 * anyway, for semantic correctness.
2725 * note: certain anonymous maps, such as MAP_NOSYNC maps,
2726 * may start out with a NULL object.
2728 while (object && (tobj = object->backing_object) != NULL) {
2729 vm_object_hold(tobj);
2730 if (tobj == object->backing_object) {
2731 vm_object_lock_swap();
2732 offset += object->backing_object_offset;
2733 vm_object_drop(object);
2734 object = tobj;
2735 if (object->size < OFF_TO_IDX(offset + size))
2736 size = IDX_TO_OFF(object->size) -
2737 offset;
2738 break;
2740 vm_object_drop(tobj);
2742 if (object && (object->type == OBJT_VNODE) &&
2743 (current->protection & VM_PROT_WRITE) &&
2744 (object->flags & OBJ_NOMSYNC) == 0) {
2746 * Flush pages if writing is allowed, invalidate them
2747 * if invalidation requested. Pages undergoing I/O
2748 * will be ignored by vm_object_page_remove().
2750 * We cannot lock the vnode and then wait for paging
2751 * to complete without deadlocking against vm_fault.
2752 * Instead we simply call vm_object_page_remove() and
2753 * allow it to block internally on a page-by-page
2754 * basis when it encounters pages undergoing async
2755 * I/O.
2757 int flags;
2759 /* no chain wait needed for vnode objects */
2760 vm_object_reference_locked(object);
2761 vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY);
2762 flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2763 flags |= invalidate ? OBJPC_INVAL : 0;
2766 * When operating on a virtual page table just
2767 * flush the whole object. XXX we probably ought
2768 * to
2770 switch(current->maptype) {
2771 case VM_MAPTYPE_NORMAL:
2772 vm_object_page_clean(object,
2773 OFF_TO_IDX(offset),
2774 OFF_TO_IDX(offset + size + PAGE_MASK),
2775 flags);
2776 break;
2777 case VM_MAPTYPE_VPAGETABLE:
2778 vm_object_page_clean(object, 0, 0, flags);
2779 break;
2781 vn_unlock(((struct vnode *)object->handle));
2782 vm_object_deallocate_locked(object);
2784 if (object && invalidate &&
2785 ((object->type == OBJT_VNODE) ||
2786 (object->type == OBJT_DEVICE) ||
2787 (object->type == OBJT_MGTDEVICE))) {
2788 int clean_only =
2789 ((object->type == OBJT_DEVICE) ||
2790 (object->type == OBJT_MGTDEVICE)) ? FALSE : TRUE;
2791 /* no chain wait needed for vnode/device objects */
2792 vm_object_reference_locked(object);
2793 switch(current->maptype) {
2794 case VM_MAPTYPE_NORMAL:
2795 vm_object_page_remove(object,
2796 OFF_TO_IDX(offset),
2797 OFF_TO_IDX(offset + size + PAGE_MASK),
2798 clean_only);
2799 break;
2800 case VM_MAPTYPE_VPAGETABLE:
2801 vm_object_page_remove(object, 0, 0, clean_only);
2802 break;
2804 vm_object_deallocate_locked(object);
2806 start += size;
2807 if (object)
2808 vm_object_drop(object);
2811 lwkt_reltoken(&map->token);
2812 vm_map_unlock_read(map);
2814 return (KERN_SUCCESS);
2818 * Make the region specified by this entry pageable.
2820 * The vm_map must be exclusively locked.
2822 static void
2823 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2825 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2826 entry->wired_count = 0;
2827 vm_fault_unwire(map, entry);
2831 * Deallocate the given entry from the target map.
2833 * The vm_map must be exclusively locked.
2835 static void
2836 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2838 vm_map_entry_unlink(map, entry);
2839 map->size -= entry->end - entry->start;
2841 switch(entry->maptype) {
2842 case VM_MAPTYPE_NORMAL:
2843 case VM_MAPTYPE_VPAGETABLE:
2844 case VM_MAPTYPE_SUBMAP:
2845 vm_object_deallocate(entry->object.vm_object);
2846 break;
2847 case VM_MAPTYPE_UKSMAP:
2848 /* XXX TODO */
2849 break;
2850 default:
2851 break;
2854 vm_map_entry_dispose(map, entry, countp);
2858 * Deallocates the given address range from the target map.
2860 * The vm_map must be exclusively locked.
2863 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2865 vm_object_t object;
2866 vm_map_entry_t entry;
2867 vm_map_entry_t first_entry;
2869 ASSERT_VM_MAP_LOCKED(map);
2870 lwkt_gettoken(&map->token);
2871 again:
2873 * Find the start of the region, and clip it. Set entry to point
2874 * at the first record containing the requested address or, if no
2875 * such record exists, the next record with a greater address. The
2876 * loop will run from this point until a record beyond the termination
2877 * address is encountered.
2879 * map->hint must be adjusted to not point to anything we delete,
2880 * so set it to the entry prior to the one being deleted.
2882 * GGG see other GGG comment.
2884 if (vm_map_lookup_entry(map, start, &first_entry)) {
2885 entry = first_entry;
2886 vm_map_clip_start(map, entry, start, countp);
2887 map->hint = entry->prev; /* possible problem XXX */
2888 } else {
2889 map->hint = first_entry; /* possible problem XXX */
2890 entry = first_entry->next;
2894 * If a hole opens up prior to the current first_free then
2895 * adjust first_free. As with map->hint, map->first_free
2896 * cannot be left set to anything we might delete.
2898 if (entry == &map->header) {
2899 map->first_free = &map->header;
2900 } else if (map->first_free->start >= start) {
2901 map->first_free = entry->prev;
2905 * Step through all entries in this region
2907 while ((entry != &map->header) && (entry->start < end)) {
2908 vm_map_entry_t next;
2909 vm_offset_t s, e;
2910 vm_pindex_t offidxstart, offidxend, count;
2913 * If we hit an in-transition entry we have to sleep and
2914 * retry. It's easier (and not really slower) to just retry
2915 * since this case occurs so rarely and the hint is already
2916 * pointing at the right place. We have to reset the
2917 * start offset so as not to accidently delete an entry
2918 * another process just created in vacated space.
2920 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2921 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2922 start = entry->start;
2923 ++mycpu->gd_cnt.v_intrans_coll;
2924 ++mycpu->gd_cnt.v_intrans_wait;
2925 vm_map_transition_wait(map);
2926 goto again;
2928 vm_map_clip_end(map, entry, end, countp);
2930 s = entry->start;
2931 e = entry->end;
2932 next = entry->next;
2934 offidxstart = OFF_TO_IDX(entry->offset);
2935 count = OFF_TO_IDX(e - s);
2937 switch(entry->maptype) {
2938 case VM_MAPTYPE_NORMAL:
2939 case VM_MAPTYPE_VPAGETABLE:
2940 case VM_MAPTYPE_SUBMAP:
2941 object = entry->object.vm_object;
2942 break;
2943 default:
2944 object = NULL;
2945 break;
2949 * Unwire before removing addresses from the pmap; otherwise,
2950 * unwiring will put the entries back in the pmap.
2952 if (entry->wired_count != 0)
2953 vm_map_entry_unwire(map, entry);
2955 offidxend = offidxstart + count;
2957 if (object == &kernel_object) {
2958 vm_object_hold(object);
2959 vm_object_page_remove(object, offidxstart,
2960 offidxend, FALSE);
2961 vm_object_drop(object);
2962 } else if (object && object->type != OBJT_DEFAULT &&
2963 object->type != OBJT_SWAP) {
2965 * vnode object routines cannot be chain-locked,
2966 * but since we aren't removing pages from the
2967 * object here we can use a shared hold.
2969 vm_object_hold_shared(object);
2970 pmap_remove(map->pmap, s, e);
2971 vm_object_drop(object);
2972 } else if (object) {
2973 vm_object_hold(object);
2974 vm_object_chain_acquire(object, 0);
2975 pmap_remove(map->pmap, s, e);
2977 if (object != NULL &&
2978 object->ref_count != 1 &&
2979 (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) ==
2980 OBJ_ONEMAPPING &&
2981 (object->type == OBJT_DEFAULT ||
2982 object->type == OBJT_SWAP)) {
2983 vm_object_collapse(object, NULL);
2984 vm_object_page_remove(object, offidxstart,
2985 offidxend, FALSE);
2986 if (object->type == OBJT_SWAP) {
2987 swap_pager_freespace(object,
2988 offidxstart,
2989 count);
2991 if (offidxend >= object->size &&
2992 offidxstart < object->size) {
2993 object->size = offidxstart;
2996 vm_object_chain_release(object);
2997 vm_object_drop(object);
2998 } else if (entry->maptype == VM_MAPTYPE_UKSMAP) {
2999 pmap_remove(map->pmap, s, e);
3003 * Delete the entry (which may delete the object) only after
3004 * removing all pmap entries pointing to its pages.
3005 * (Otherwise, its page frames may be reallocated, and any
3006 * modify bits will be set in the wrong object!)
3008 vm_map_entry_delete(map, entry, countp);
3009 entry = next;
3011 lwkt_reltoken(&map->token);
3012 return (KERN_SUCCESS);
3016 * Remove the given address range from the target map.
3017 * This is the exported form of vm_map_delete.
3019 * No requirements.
3022 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3024 int result;
3025 int count;
3027 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3028 vm_map_lock(map);
3029 VM_MAP_RANGE_CHECK(map, start, end);
3030 result = vm_map_delete(map, start, end, &count);
3031 vm_map_unlock(map);
3032 vm_map_entry_release(count);
3034 return (result);
3038 * Assert that the target map allows the specified privilege on the
3039 * entire address region given. The entire region must be allocated.
3041 * The caller must specify whether the vm_map is already locked or not.
3043 boolean_t
3044 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3045 vm_prot_t protection, boolean_t have_lock)
3047 vm_map_entry_t entry;
3048 vm_map_entry_t tmp_entry;
3049 boolean_t result;
3051 if (have_lock == FALSE)
3052 vm_map_lock_read(map);
3054 if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
3055 if (have_lock == FALSE)
3056 vm_map_unlock_read(map);
3057 return (FALSE);
3059 entry = tmp_entry;
3061 result = TRUE;
3062 while (start < end) {
3063 if (entry == &map->header) {
3064 result = FALSE;
3065 break;
3068 * No holes allowed!
3071 if (start < entry->start) {
3072 result = FALSE;
3073 break;
3076 * Check protection associated with entry.
3079 if ((entry->protection & protection) != protection) {
3080 result = FALSE;
3081 break;
3083 /* go to next entry */
3085 start = entry->end;
3086 entry = entry->next;
3088 if (have_lock == FALSE)
3089 vm_map_unlock_read(map);
3090 return (result);
3094 * If appropriate this function shadows the original object with a new object
3095 * and moves the VM pages from the original object to the new object.
3096 * The original object will also be collapsed, if possible.
3098 * We can only do this for normal memory objects with a single mapping, and
3099 * it only makes sense to do it if there are 2 or more refs on the original
3100 * object. i.e. typically a memory object that has been extended into
3101 * multiple vm_map_entry's with non-overlapping ranges.
3103 * This makes it easier to remove unused pages and keeps object inheritance
3104 * from being a negative impact on memory usage.
3106 * On return the (possibly new) entry->object.vm_object will have an
3107 * additional ref on it for the caller to dispose of (usually by cloning
3108 * the vm_map_entry). The additional ref had to be done in this routine
3109 * to avoid racing a collapse. The object's ONEMAPPING flag will also be
3110 * cleared.
3112 * The vm_map must be locked and its token held.
3114 static void
3115 vm_map_split(vm_map_entry_t entry)
3117 /* OPTIMIZED */
3118 vm_object_t oobject, nobject, bobject;
3119 vm_offset_t s, e;
3120 vm_page_t m;
3121 vm_pindex_t offidxstart, offidxend, idx;
3122 vm_size_t size;
3123 vm_ooffset_t offset;
3124 int useshadowlist;
3127 * Optimize away object locks for vnode objects. Important exit/exec
3128 * critical path.
3130 * OBJ_ONEMAPPING doesn't apply to vnode objects but clear the flag
3131 * anyway.
3133 oobject = entry->object.vm_object;
3134 if (oobject->type != OBJT_DEFAULT && oobject->type != OBJT_SWAP) {
3135 vm_object_reference_quick(oobject);
3136 vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3137 return;
3141 * Setup. Chain lock the original object throughout the entire
3142 * routine to prevent new page faults from occuring.
3144 * XXX can madvise WILLNEED interfere with us too?
3146 vm_object_hold(oobject);
3147 vm_object_chain_acquire(oobject, 0);
3150 * Original object cannot be split? Might have also changed state.
3152 if (oobject->handle == NULL || (oobject->type != OBJT_DEFAULT &&
3153 oobject->type != OBJT_SWAP)) {
3154 vm_object_chain_release(oobject);
3155 vm_object_reference_locked(oobject);
3156 vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3157 vm_object_drop(oobject);
3158 return;
3162 * Collapse original object with its backing store as an
3163 * optimization to reduce chain lengths when possible.
3165 * If ref_count <= 1 there aren't other non-overlapping vm_map_entry's
3166 * for oobject, so there's no point collapsing it.
3168 * Then re-check whether the object can be split.
3170 vm_object_collapse(oobject, NULL);
3172 if (oobject->ref_count <= 1 ||
3173 (oobject->type != OBJT_DEFAULT && oobject->type != OBJT_SWAP) ||
3174 (oobject->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) != OBJ_ONEMAPPING) {
3175 vm_object_chain_release(oobject);
3176 vm_object_reference_locked(oobject);
3177 vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3178 vm_object_drop(oobject);
3179 return;
3183 * Acquire the chain lock on the backing object.
3185 * Give bobject an additional ref count for when it will be shadowed
3186 * by nobject.
3188 useshadowlist = 0;
3189 if ((bobject = oobject->backing_object) != NULL) {
3190 if (bobject->type != OBJT_VNODE) {
3191 useshadowlist = 1;
3192 vm_object_hold(bobject);
3193 vm_object_chain_wait(bobject, 0);
3194 /* ref for shadowing below */
3195 vm_object_reference_locked(bobject);
3196 vm_object_chain_acquire(bobject, 0);
3197 KKASSERT(bobject->backing_object == bobject);
3198 KKASSERT((bobject->flags & OBJ_DEAD) == 0);
3199 } else {
3201 * vnodes are not placed on the shadow list but
3202 * they still get another ref for the backing_object
3203 * reference.
3205 vm_object_reference_quick(bobject);
3210 * Calculate the object page range and allocate the new object.
3212 offset = entry->offset;
3213 s = entry->start;
3214 e = entry->end;
3216 offidxstart = OFF_TO_IDX(offset);
3217 offidxend = offidxstart + OFF_TO_IDX(e - s);
3218 size = offidxend - offidxstart;
3220 switch(oobject->type) {
3221 case OBJT_DEFAULT:
3222 nobject = default_pager_alloc(NULL, IDX_TO_OFF(size),
3223 VM_PROT_ALL, 0);
3224 break;
3225 case OBJT_SWAP:
3226 nobject = swap_pager_alloc(NULL, IDX_TO_OFF(size),
3227 VM_PROT_ALL, 0);
3228 break;
3229 default:
3230 /* not reached */
3231 nobject = NULL;
3232 KKASSERT(0);
3235 if (nobject == NULL) {
3236 if (bobject) {
3237 if (useshadowlist) {
3238 vm_object_chain_release(bobject);
3239 vm_object_deallocate(bobject);
3240 vm_object_drop(bobject);
3241 } else {
3242 vm_object_deallocate(bobject);
3245 vm_object_chain_release(oobject);
3246 vm_object_reference_locked(oobject);
3247 vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3248 vm_object_drop(oobject);
3249 return;
3253 * The new object will replace entry->object.vm_object so it needs
3254 * a second reference (the caller expects an additional ref).
3256 vm_object_hold(nobject);
3257 vm_object_reference_locked(nobject);
3258 vm_object_chain_acquire(nobject, 0);
3261 * nobject shadows bobject (oobject already shadows bobject).
3263 * Adding an object to bobject's shadow list requires refing bobject
3264 * which we did above in the useshadowlist case.
3266 if (bobject) {
3267 nobject->backing_object_offset =
3268 oobject->backing_object_offset + IDX_TO_OFF(offidxstart);
3269 nobject->backing_object = bobject;
3270 if (useshadowlist) {
3271 bobject->shadow_count++;
3272 atomic_add_int(&bobject->generation, 1);
3273 LIST_INSERT_HEAD(&bobject->shadow_head,
3274 nobject, shadow_list);
3275 vm_object_clear_flag(bobject, OBJ_ONEMAPPING); /*XXX*/
3276 vm_object_chain_release(bobject);
3277 vm_object_drop(bobject);
3278 vm_object_set_flag(nobject, OBJ_ONSHADOW);
3283 * Move the VM pages from oobject to nobject
3285 for (idx = 0; idx < size; idx++) {
3286 vm_page_t m;
3288 m = vm_page_lookup_busy_wait(oobject, offidxstart + idx,
3289 TRUE, "vmpg");
3290 if (m == NULL)
3291 continue;
3294 * We must wait for pending I/O to complete before we can
3295 * rename the page.
3297 * We do not have to VM_PROT_NONE the page as mappings should
3298 * not be changed by this operation.
3300 * NOTE: The act of renaming a page updates chaingen for both
3301 * objects.
3303 vm_page_rename(m, nobject, idx);
3304 /* page automatically made dirty by rename and cache handled */
3305 /* page remains busy */
3308 if (oobject->type == OBJT_SWAP) {
3309 vm_object_pip_add(oobject, 1);
3311 * copy oobject pages into nobject and destroy unneeded
3312 * pages in shadow object.
3314 swap_pager_copy(oobject, nobject, offidxstart, 0);
3315 vm_object_pip_wakeup(oobject);
3319 * Wakeup the pages we played with. No spl protection is needed
3320 * for a simple wakeup.
3322 for (idx = 0; idx < size; idx++) {
3323 m = vm_page_lookup(nobject, idx);
3324 if (m) {
3325 KKASSERT(m->flags & PG_BUSY);
3326 vm_page_wakeup(m);
3329 entry->object.vm_object = nobject;
3330 entry->offset = 0LL;
3333 * Cleanup
3335 * NOTE: There is no need to remove OBJ_ONEMAPPING from oobject, the
3336 * related pages were moved and are no longer applicable to the
3337 * original object.
3339 * NOTE: Deallocate oobject (due to its entry->object.vm_object being
3340 * replaced by nobject).
3342 vm_object_chain_release(nobject);
3343 vm_object_drop(nobject);
3344 if (bobject && useshadowlist) {
3345 vm_object_chain_release(bobject);
3346 vm_object_drop(bobject);
3348 vm_object_chain_release(oobject);
3349 /*vm_object_clear_flag(oobject, OBJ_ONEMAPPING);*/
3350 vm_object_deallocate_locked(oobject);
3351 vm_object_drop(oobject);
3355 * Copies the contents of the source entry to the destination
3356 * entry. The entries *must* be aligned properly.
3358 * The vm_maps must be exclusively locked.
3359 * The vm_map's token must be held.
3361 * Because the maps are locked no faults can be in progress during the
3362 * operation.
3364 static void
3365 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
3366 vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
3368 vm_object_t src_object;
3370 if (dst_entry->maptype == VM_MAPTYPE_SUBMAP ||
3371 dst_entry->maptype == VM_MAPTYPE_UKSMAP)
3372 return;
3373 if (src_entry->maptype == VM_MAPTYPE_SUBMAP ||
3374 src_entry->maptype == VM_MAPTYPE_UKSMAP)
3375 return;
3377 if (src_entry->wired_count == 0) {
3379 * If the source entry is marked needs_copy, it is already
3380 * write-protected.
3382 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
3383 pmap_protect(src_map->pmap,
3384 src_entry->start,
3385 src_entry->end,
3386 src_entry->protection & ~VM_PROT_WRITE);
3390 * Make a copy of the object.
3392 * The object must be locked prior to checking the object type
3393 * and for the call to vm_object_collapse() and vm_map_split().
3394 * We cannot use *_hold() here because the split code will
3395 * probably try to destroy the object. The lock is a pool
3396 * token and doesn't care.
3398 * We must bump src_map->timestamp when setting
3399 * MAP_ENTRY_NEEDS_COPY to force any concurrent fault
3400 * to retry, otherwise the concurrent fault might improperly
3401 * install a RW pte when its supposed to be a RO(COW) pte.
3402 * This race can occur because a vnode-backed fault may have
3403 * to temporarily release the map lock.
3405 if (src_entry->object.vm_object != NULL) {
3406 vm_map_split(src_entry);
3407 src_object = src_entry->object.vm_object;
3408 dst_entry->object.vm_object = src_object;
3409 src_entry->eflags |= (MAP_ENTRY_COW |
3410 MAP_ENTRY_NEEDS_COPY);
3411 dst_entry->eflags |= (MAP_ENTRY_COW |
3412 MAP_ENTRY_NEEDS_COPY);
3413 dst_entry->offset = src_entry->offset;
3414 ++src_map->timestamp;
3415 } else {
3416 dst_entry->object.vm_object = NULL;
3417 dst_entry->offset = 0;
3420 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3421 dst_entry->end - dst_entry->start, src_entry->start);
3422 } else {
3424 * Of course, wired down pages can't be set copy-on-write.
3425 * Cause wired pages to be copied into the new map by
3426 * simulating faults (the new pages are pageable)
3428 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
3433 * vmspace_fork:
3434 * Create a new process vmspace structure and vm_map
3435 * based on those of an existing process. The new map
3436 * is based on the old map, according to the inheritance
3437 * values on the regions in that map.
3439 * The source map must not be locked.
3440 * No requirements.
3442 static void vmspace_fork_normal_entry(vm_map_t old_map, vm_map_t new_map,
3443 vm_map_entry_t old_entry, int *countp);
3444 static void vmspace_fork_uksmap_entry(vm_map_t old_map, vm_map_t new_map,
3445 vm_map_entry_t old_entry, int *countp);
3447 struct vmspace *
3448 vmspace_fork(struct vmspace *vm1)
3450 struct vmspace *vm2;
3451 vm_map_t old_map = &vm1->vm_map;
3452 vm_map_t new_map;
3453 vm_map_entry_t old_entry;
3454 int count;
3456 lwkt_gettoken(&vm1->vm_map.token);
3457 vm_map_lock(old_map);
3459 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
3460 lwkt_gettoken(&vm2->vm_map.token);
3461 bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
3462 (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
3463 new_map = &vm2->vm_map; /* XXX */
3464 new_map->timestamp = 1;
3466 vm_map_lock(new_map);
3468 count = 0;
3469 old_entry = old_map->header.next;
3470 while (old_entry != &old_map->header) {
3471 ++count;
3472 old_entry = old_entry->next;
3475 count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
3477 old_entry = old_map->header.next;
3478 while (old_entry != &old_map->header) {
3479 switch(old_entry->maptype) {
3480 case VM_MAPTYPE_SUBMAP:
3481 panic("vm_map_fork: encountered a submap");
3482 break;
3483 case VM_MAPTYPE_UKSMAP:
3484 vmspace_fork_uksmap_entry(old_map, new_map,
3485 old_entry, &count);
3486 break;
3487 case VM_MAPTYPE_NORMAL:
3488 case VM_MAPTYPE_VPAGETABLE:
3489 vmspace_fork_normal_entry(old_map, new_map,
3490 old_entry, &count);
3491 break;
3493 old_entry = old_entry->next;
3496 new_map->size = old_map->size;
3497 vm_map_unlock(old_map);
3498 vm_map_unlock(new_map);
3499 vm_map_entry_release(count);
3501 lwkt_reltoken(&vm2->vm_map.token);
3502 lwkt_reltoken(&vm1->vm_map.token);
3504 return (vm2);
3507 static
3508 void
3509 vmspace_fork_normal_entry(vm_map_t old_map, vm_map_t new_map,
3510 vm_map_entry_t old_entry, int *countp)
3512 vm_map_entry_t new_entry;
3513 vm_object_t object;
3515 switch (old_entry->inheritance) {
3516 case VM_INHERIT_NONE:
3517 break;
3518 case VM_INHERIT_SHARE:
3520 * Clone the entry, creating the shared object if
3521 * necessary.
3523 if (old_entry->object.vm_object == NULL)
3524 vm_map_entry_allocate_object(old_entry);
3526 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3528 * Shadow a map_entry which needs a copy,
3529 * replacing its object with a new object
3530 * that points to the old one. Ask the
3531 * shadow code to automatically add an
3532 * additional ref. We can't do it afterwords
3533 * because we might race a collapse. The call
3534 * to vm_map_entry_shadow() will also clear
3535 * OBJ_ONEMAPPING.
3537 vm_map_entry_shadow(old_entry, 1);
3538 } else if (old_entry->object.vm_object) {
3540 * We will make a shared copy of the object,
3541 * and must clear OBJ_ONEMAPPING.
3543 * Optimize vnode objects. OBJ_ONEMAPPING
3544 * is non-applicable but clear it anyway,
3545 * and its terminal so we don'th ave to deal
3546 * with chains. Reduces SMP conflicts.
3548 * XXX assert that object.vm_object != NULL
3549 * since we allocate it above.
3551 object = old_entry->object.vm_object;
3552 if (object->type == OBJT_VNODE) {
3553 vm_object_reference_quick(object);
3554 vm_object_clear_flag(object,
3555 OBJ_ONEMAPPING);
3556 } else {
3557 vm_object_hold(object);
3558 vm_object_chain_wait(object, 0);
3559 vm_object_reference_locked(object);
3560 vm_object_clear_flag(object,
3561 OBJ_ONEMAPPING);
3562 vm_object_drop(object);
3567 * Clone the entry. We've already bumped the ref on
3568 * any vm_object.
3570 new_entry = vm_map_entry_create(new_map, countp);
3571 *new_entry = *old_entry;
3572 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3573 new_entry->wired_count = 0;
3576 * Insert the entry into the new map -- we know we're
3577 * inserting at the end of the new map.
3580 vm_map_entry_link(new_map, new_map->header.prev,
3581 new_entry);
3584 * Update the physical map
3586 pmap_copy(new_map->pmap, old_map->pmap,
3587 new_entry->start,
3588 (old_entry->end - old_entry->start),
3589 old_entry->start);
3590 break;
3591 case VM_INHERIT_COPY:
3593 * Clone the entry and link into the map.
3595 new_entry = vm_map_entry_create(new_map, countp);
3596 *new_entry = *old_entry;
3597 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3598 new_entry->wired_count = 0;
3599 new_entry->object.vm_object = NULL;
3600 vm_map_entry_link(new_map, new_map->header.prev,
3601 new_entry);
3602 vm_map_copy_entry(old_map, new_map, old_entry,
3603 new_entry);
3604 break;
3609 * When forking user-kernel shared maps, the map might change in the
3610 * child so do not try to copy the underlying pmap entries.
3612 static
3613 void
3614 vmspace_fork_uksmap_entry(vm_map_t old_map, vm_map_t new_map,
3615 vm_map_entry_t old_entry, int *countp)
3617 vm_map_entry_t new_entry;
3619 new_entry = vm_map_entry_create(new_map, countp);
3620 *new_entry = *old_entry;
3621 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3622 new_entry->wired_count = 0;
3623 vm_map_entry_link(new_map, new_map->header.prev,
3624 new_entry);
3628 * Create an auto-grow stack entry
3630 * No requirements.
3633 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3634 int flags, vm_prot_t prot, vm_prot_t max, int cow)
3636 vm_map_entry_t prev_entry;
3637 vm_map_entry_t new_stack_entry;
3638 vm_size_t init_ssize;
3639 int rv;
3640 int count;
3641 vm_offset_t tmpaddr;
3643 cow |= MAP_IS_STACK;
3645 if (max_ssize < sgrowsiz)
3646 init_ssize = max_ssize;
3647 else
3648 init_ssize = sgrowsiz;
3650 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3651 vm_map_lock(map);
3654 * Find space for the mapping
3656 if ((flags & (MAP_FIXED | MAP_TRYFIXED)) == 0) {
3657 if (vm_map_findspace(map, addrbos, max_ssize, 1,
3658 flags, &tmpaddr)) {
3659 vm_map_unlock(map);
3660 vm_map_entry_release(count);
3661 return (KERN_NO_SPACE);
3663 addrbos = tmpaddr;
3666 /* If addr is already mapped, no go */
3667 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3668 vm_map_unlock(map);
3669 vm_map_entry_release(count);
3670 return (KERN_NO_SPACE);
3673 #if 0
3674 /* XXX already handled by kern_mmap() */
3675 /* If we would blow our VMEM resource limit, no go */
3676 if (map->size + init_ssize >
3677 curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3678 vm_map_unlock(map);
3679 vm_map_entry_release(count);
3680 return (KERN_NO_SPACE);
3682 #endif
3685 * If we can't accomodate max_ssize in the current mapping,
3686 * no go. However, we need to be aware that subsequent user
3687 * mappings might map into the space we have reserved for
3688 * stack, and currently this space is not protected.
3690 * Hopefully we will at least detect this condition
3691 * when we try to grow the stack.
3693 if ((prev_entry->next != &map->header) &&
3694 (prev_entry->next->start < addrbos + max_ssize)) {
3695 vm_map_unlock(map);
3696 vm_map_entry_release(count);
3697 return (KERN_NO_SPACE);
3701 * We initially map a stack of only init_ssize. We will
3702 * grow as needed later. Since this is to be a grow
3703 * down stack, we map at the top of the range.
3705 * Note: we would normally expect prot and max to be
3706 * VM_PROT_ALL, and cow to be 0. Possibly we should
3707 * eliminate these as input parameters, and just
3708 * pass these values here in the insert call.
3710 rv = vm_map_insert(map, &count, NULL, NULL,
3711 0, addrbos + max_ssize - init_ssize,
3712 addrbos + max_ssize,
3713 VM_MAPTYPE_NORMAL,
3714 VM_SUBSYS_STACK, prot, max, cow);
3716 /* Now set the avail_ssize amount */
3717 if (rv == KERN_SUCCESS) {
3718 if (prev_entry != &map->header)
3719 vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
3720 new_stack_entry = prev_entry->next;
3721 if (new_stack_entry->end != addrbos + max_ssize ||
3722 new_stack_entry->start != addrbos + max_ssize - init_ssize)
3723 panic ("Bad entry start/end for new stack entry");
3724 else
3725 new_stack_entry->aux.avail_ssize = max_ssize - init_ssize;
3728 vm_map_unlock(map);
3729 vm_map_entry_release(count);
3730 return (rv);
3734 * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the
3735 * desired address is already mapped, or if we successfully grow
3736 * the stack. Also returns KERN_SUCCESS if addr is outside the
3737 * stack range (this is strange, but preserves compatibility with
3738 * the grow function in vm_machdep.c).
3740 * No requirements.
3743 vm_map_growstack (vm_map_t map, vm_offset_t addr)
3745 vm_map_entry_t prev_entry;
3746 vm_map_entry_t stack_entry;
3747 vm_map_entry_t new_stack_entry;
3748 struct vmspace *vm;
3749 struct lwp *lp;
3750 struct proc *p;
3751 vm_offset_t end;
3752 int grow_amount;
3753 int rv = KERN_SUCCESS;
3754 int is_procstack;
3755 int use_read_lock = 1;
3756 int count;
3759 * Find the vm
3761 lp = curthread->td_lwp;
3762 p = curthread->td_proc;
3763 KKASSERT(lp != NULL);
3764 vm = lp->lwp_vmspace;
3765 KKASSERT(map == &vm->vm_map);
3767 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3768 Retry:
3769 if (use_read_lock)
3770 vm_map_lock_read(map);
3771 else
3772 vm_map_lock(map);
3774 /* If addr is already in the entry range, no need to grow.*/
3775 if (vm_map_lookup_entry(map, addr, &prev_entry))
3776 goto done;
3778 if ((stack_entry = prev_entry->next) == &map->header)
3779 goto done;
3780 if (prev_entry == &map->header)
3781 end = stack_entry->start - stack_entry->aux.avail_ssize;
3782 else
3783 end = prev_entry->end;
3786 * This next test mimics the old grow function in vm_machdep.c.
3787 * It really doesn't quite make sense, but we do it anyway
3788 * for compatibility.
3790 * If not growable stack, return success. This signals the
3791 * caller to proceed as he would normally with normal vm.
3793 if (stack_entry->aux.avail_ssize < 1 ||
3794 addr >= stack_entry->start ||
3795 addr < stack_entry->start - stack_entry->aux.avail_ssize) {
3796 goto done;
3799 /* Find the minimum grow amount */
3800 grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
3801 if (grow_amount > stack_entry->aux.avail_ssize) {
3802 rv = KERN_NO_SPACE;
3803 goto done;
3807 * If there is no longer enough space between the entries
3808 * nogo, and adjust the available space. Note: this
3809 * should only happen if the user has mapped into the
3810 * stack area after the stack was created, and is
3811 * probably an error.
3813 * This also effectively destroys any guard page the user
3814 * might have intended by limiting the stack size.
3816 if (grow_amount > stack_entry->start - end) {
3817 if (use_read_lock && vm_map_lock_upgrade(map)) {
3818 /* lost lock */
3819 use_read_lock = 0;
3820 goto Retry;
3822 use_read_lock = 0;
3823 stack_entry->aux.avail_ssize = stack_entry->start - end;
3824 rv = KERN_NO_SPACE;
3825 goto done;
3828 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
3830 /* If this is the main process stack, see if we're over the
3831 * stack limit.
3833 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3834 p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3835 rv = KERN_NO_SPACE;
3836 goto done;
3839 /* Round up the grow amount modulo SGROWSIZ */
3840 grow_amount = roundup (grow_amount, sgrowsiz);
3841 if (grow_amount > stack_entry->aux.avail_ssize) {
3842 grow_amount = stack_entry->aux.avail_ssize;
3844 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3845 p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3846 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
3847 ctob(vm->vm_ssize);
3850 /* If we would blow our VMEM resource limit, no go */
3851 if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3852 rv = KERN_NO_SPACE;
3853 goto done;
3856 if (use_read_lock && vm_map_lock_upgrade(map)) {
3857 /* lost lock */
3858 use_read_lock = 0;
3859 goto Retry;
3861 use_read_lock = 0;
3863 /* Get the preliminary new entry start value */
3864 addr = stack_entry->start - grow_amount;
3866 /* If this puts us into the previous entry, cut back our growth
3867 * to the available space. Also, see the note above.
3869 if (addr < end) {
3870 stack_entry->aux.avail_ssize = stack_entry->start - end;
3871 addr = end;
3874 rv = vm_map_insert(map, &count, NULL, NULL,
3875 0, addr, stack_entry->start,
3876 VM_MAPTYPE_NORMAL,
3877 VM_SUBSYS_STACK, VM_PROT_ALL, VM_PROT_ALL, 0);
3879 /* Adjust the available stack space by the amount we grew. */
3880 if (rv == KERN_SUCCESS) {
3881 if (prev_entry != &map->header)
3882 vm_map_clip_end(map, prev_entry, addr, &count);
3883 new_stack_entry = prev_entry->next;
3884 if (new_stack_entry->end != stack_entry->start ||
3885 new_stack_entry->start != addr)
3886 panic ("Bad stack grow start/end in new stack entry");
3887 else {
3888 new_stack_entry->aux.avail_ssize =
3889 stack_entry->aux.avail_ssize -
3890 (new_stack_entry->end - new_stack_entry->start);
3891 if (is_procstack)
3892 vm->vm_ssize += btoc(new_stack_entry->end -
3893 new_stack_entry->start);
3896 if (map->flags & MAP_WIREFUTURE)
3897 vm_map_unwire(map, new_stack_entry->start,
3898 new_stack_entry->end, FALSE);
3901 done:
3902 if (use_read_lock)
3903 vm_map_unlock_read(map);
3904 else
3905 vm_map_unlock(map);
3906 vm_map_entry_release(count);
3907 return (rv);
3911 * Unshare the specified VM space for exec. If other processes are
3912 * mapped to it, then create a new one. The new vmspace is null.
3914 * No requirements.
3916 void
3917 vmspace_exec(struct proc *p, struct vmspace *vmcopy)
3919 struct vmspace *oldvmspace = p->p_vmspace;
3920 struct vmspace *newvmspace;
3921 vm_map_t map = &p->p_vmspace->vm_map;
3924 * If we are execing a resident vmspace we fork it, otherwise
3925 * we create a new vmspace. Note that exitingcnt is not
3926 * copied to the new vmspace.
3928 lwkt_gettoken(&oldvmspace->vm_map.token);
3929 if (vmcopy) {
3930 newvmspace = vmspace_fork(vmcopy);
3931 lwkt_gettoken(&newvmspace->vm_map.token);
3932 } else {
3933 newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
3934 lwkt_gettoken(&newvmspace->vm_map.token);
3935 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
3936 (caddr_t)&oldvmspace->vm_endcopy -
3937 (caddr_t)&oldvmspace->vm_startcopy);
3941 * Finish initializing the vmspace before assigning it
3942 * to the process. The vmspace will become the current vmspace
3943 * if p == curproc.
3945 pmap_pinit2(vmspace_pmap(newvmspace));
3946 pmap_replacevm(p, newvmspace, 0);
3947 lwkt_reltoken(&newvmspace->vm_map.token);
3948 lwkt_reltoken(&oldvmspace->vm_map.token);
3949 vmspace_rel(oldvmspace);
3953 * Unshare the specified VM space for forcing COW. This
3954 * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3956 void
3957 vmspace_unshare(struct proc *p)
3959 struct vmspace *oldvmspace = p->p_vmspace;
3960 struct vmspace *newvmspace;
3962 lwkt_gettoken(&oldvmspace->vm_map.token);
3963 if (vmspace_getrefs(oldvmspace) == 1) {
3964 lwkt_reltoken(&oldvmspace->vm_map.token);
3965 return;
3967 newvmspace = vmspace_fork(oldvmspace);
3968 lwkt_gettoken(&newvmspace->vm_map.token);
3969 pmap_pinit2(vmspace_pmap(newvmspace));
3970 pmap_replacevm(p, newvmspace, 0);
3971 lwkt_reltoken(&newvmspace->vm_map.token);
3972 lwkt_reltoken(&oldvmspace->vm_map.token);
3973 vmspace_rel(oldvmspace);
3977 * vm_map_hint: return the beginning of the best area suitable for
3978 * creating a new mapping with "prot" protection.
3980 * No requirements.
3982 vm_offset_t
3983 vm_map_hint(struct proc *p, vm_offset_t addr, vm_prot_t prot)
3985 struct vmspace *vms = p->p_vmspace;
3987 if (!randomize_mmap || addr != 0) {
3989 * Set a reasonable start point for the hint if it was
3990 * not specified or if it falls within the heap space.
3991 * Hinted mmap()s do not allocate out of the heap space.
3993 if (addr == 0 ||
3994 (addr >= round_page((vm_offset_t)vms->vm_taddr) &&
3995 addr < round_page((vm_offset_t)vms->vm_daddr + maxdsiz))) {
3996 addr = round_page((vm_offset_t)vms->vm_daddr + maxdsiz);
3999 return addr;
4001 addr = (vm_offset_t)vms->vm_daddr + MAXDSIZ;
4002 addr += karc4random() & (MIN((256 * 1024 * 1024), MAXDSIZ) - 1);
4004 return (round_page(addr));
4008 * Finds the VM object, offset, and protection for a given virtual address
4009 * in the specified map, assuming a page fault of the type specified.
4011 * Leaves the map in question locked for read; return values are guaranteed
4012 * until a vm_map_lookup_done call is performed. Note that the map argument
4013 * is in/out; the returned map must be used in the call to vm_map_lookup_done.
4015 * A handle (out_entry) is returned for use in vm_map_lookup_done, to make
4016 * that fast.
4018 * If a lookup is requested with "write protection" specified, the map may
4019 * be changed to perform virtual copying operations, although the data
4020 * referenced will remain the same.
4022 * No requirements.
4025 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */
4026 vm_offset_t vaddr,
4027 vm_prot_t fault_typea,
4028 vm_map_entry_t *out_entry, /* OUT */
4029 vm_object_t *object, /* OUT */
4030 vm_pindex_t *pindex, /* OUT */
4031 vm_prot_t *out_prot, /* OUT */
4032 boolean_t *wired) /* OUT */
4034 vm_map_entry_t entry;
4035 vm_map_t map = *var_map;
4036 vm_prot_t prot;
4037 vm_prot_t fault_type = fault_typea;
4038 int use_read_lock = 1;
4039 int rv = KERN_SUCCESS;
4041 RetryLookup:
4042 if (use_read_lock)
4043 vm_map_lock_read(map);
4044 else
4045 vm_map_lock(map);
4048 * If the map has an interesting hint, try it before calling full
4049 * blown lookup routine.
4051 entry = map->hint;
4052 cpu_ccfence();
4053 *out_entry = entry;
4054 *object = NULL;
4056 if ((entry == &map->header) ||
4057 (vaddr < entry->start) || (vaddr >= entry->end)) {
4058 vm_map_entry_t tmp_entry;
4061 * Entry was either not a valid hint, or the vaddr was not
4062 * contained in the entry, so do a full lookup.
4064 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
4065 rv = KERN_INVALID_ADDRESS;
4066 goto done;
4069 entry = tmp_entry;
4070 *out_entry = entry;
4074 * Handle submaps.
4076 if (entry->maptype == VM_MAPTYPE_SUBMAP) {
4077 vm_map_t old_map = map;
4079 *var_map = map = entry->object.sub_map;
4080 if (use_read_lock)
4081 vm_map_unlock_read(old_map);
4082 else
4083 vm_map_unlock(old_map);
4084 use_read_lock = 1;
4085 goto RetryLookup;
4089 * Check whether this task is allowed to have this page.
4090 * Note the special case for MAP_ENTRY_COW pages with an override.
4091 * This is to implement a forced COW for debuggers.
4093 if (fault_type & VM_PROT_OVERRIDE_WRITE)
4094 prot = entry->max_protection;
4095 else
4096 prot = entry->protection;
4098 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
4099 if ((fault_type & prot) != fault_type) {
4100 rv = KERN_PROTECTION_FAILURE;
4101 goto done;
4104 if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
4105 (entry->eflags & MAP_ENTRY_COW) &&
4106 (fault_type & VM_PROT_WRITE) &&
4107 (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
4108 rv = KERN_PROTECTION_FAILURE;
4109 goto done;
4113 * If this page is not pageable, we have to get it for all possible
4114 * accesses.
4116 *wired = (entry->wired_count != 0);
4117 if (*wired)
4118 prot = fault_type = entry->protection;
4121 * Virtual page tables may need to update the accessed (A) bit
4122 * in a page table entry. Upgrade the fault to a write fault for
4123 * that case if the map will support it. If the map does not support
4124 * it the page table entry simply will not be updated.
4126 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
4127 if (prot & VM_PROT_WRITE)
4128 fault_type |= VM_PROT_WRITE;
4131 if (curthread->td_lwp && curthread->td_lwp->lwp_vmspace &&
4132 pmap_emulate_ad_bits(&curthread->td_lwp->lwp_vmspace->vm_pmap)) {
4133 if ((prot & VM_PROT_WRITE) == 0)
4134 fault_type |= VM_PROT_WRITE;
4138 * Only NORMAL and VPAGETABLE maps are object-based. UKSMAPs are not.
4140 if (entry->maptype != VM_MAPTYPE_NORMAL &&
4141 entry->maptype != VM_MAPTYPE_VPAGETABLE) {
4142 *object = NULL;
4143 goto skip;
4147 * If the entry was copy-on-write, we either ...
4149 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4151 * If we want to write the page, we may as well handle that
4152 * now since we've got the map locked.
4154 * If we don't need to write the page, we just demote the
4155 * permissions allowed.
4158 if (fault_type & VM_PROT_WRITE) {
4160 * Not allowed if TDF_NOFAULT is set as the shadowing
4161 * operation can deadlock against the faulting
4162 * function due to the copy-on-write.
4164 if (curthread->td_flags & TDF_NOFAULT) {
4165 rv = KERN_FAILURE_NOFAULT;
4166 goto done;
4170 * Make a new object, and place it in the object
4171 * chain. Note that no new references have appeared
4172 * -- one just moved from the map to the new
4173 * object.
4176 if (use_read_lock && vm_map_lock_upgrade(map)) {
4177 /* lost lock */
4178 use_read_lock = 0;
4179 goto RetryLookup;
4181 use_read_lock = 0;
4183 vm_map_entry_shadow(entry, 0);
4184 } else {
4186 * We're attempting to read a copy-on-write page --
4187 * don't allow writes.
4190 prot &= ~VM_PROT_WRITE;
4195 * Create an object if necessary.
4197 if (entry->object.vm_object == NULL && !map->system_map) {
4198 if (use_read_lock && vm_map_lock_upgrade(map)) {
4199 /* lost lock */
4200 use_read_lock = 0;
4201 goto RetryLookup;
4203 use_read_lock = 0;
4204 vm_map_entry_allocate_object(entry);
4208 * Return the object/offset from this entry. If the entry was
4209 * copy-on-write or empty, it has been fixed up.
4211 *object = entry->object.vm_object;
4213 skip:
4214 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4217 * Return whether this is the only map sharing this data. On
4218 * success we return with a read lock held on the map. On failure
4219 * we return with the map unlocked.
4221 *out_prot = prot;
4222 done:
4223 if (rv == KERN_SUCCESS) {
4224 if (use_read_lock == 0)
4225 vm_map_lock_downgrade(map);
4226 } else if (use_read_lock) {
4227 vm_map_unlock_read(map);
4228 } else {
4229 vm_map_unlock(map);
4231 return (rv);
4235 * Releases locks acquired by a vm_map_lookup()
4236 * (according to the handle returned by that lookup).
4238 * No other requirements.
4240 void
4241 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
4244 * Unlock the main-level map
4246 vm_map_unlock_read(map);
4247 if (count)
4248 vm_map_entry_release(count);
4252 * Quick hack, needs some help to make it more SMP friendly.
4254 void
4255 vm_map_interlock(vm_map_t map, struct vm_map_ilock *ilock,
4256 vm_offset_t ran_beg, vm_offset_t ran_end)
4258 struct vm_map_ilock *scan;
4260 ilock->ran_beg = ran_beg;
4261 ilock->ran_end = ran_end;
4262 ilock->flags = 0;
4264 spin_lock(&map->ilock_spin);
4265 restart:
4266 for (scan = map->ilock_base; scan; scan = scan->next) {
4267 if (ran_end > scan->ran_beg && ran_beg < scan->ran_end) {
4268 scan->flags |= ILOCK_WAITING;
4269 ssleep(scan, &map->ilock_spin, 0, "ilock", 0);
4270 goto restart;
4273 ilock->next = map->ilock_base;
4274 map->ilock_base = ilock;
4275 spin_unlock(&map->ilock_spin);
4278 void
4279 vm_map_deinterlock(vm_map_t map, struct vm_map_ilock *ilock)
4281 struct vm_map_ilock *scan;
4282 struct vm_map_ilock **scanp;
4284 spin_lock(&map->ilock_spin);
4285 scanp = &map->ilock_base;
4286 while ((scan = *scanp) != NULL) {
4287 if (scan == ilock) {
4288 *scanp = ilock->next;
4289 spin_unlock(&map->ilock_spin);
4290 if (ilock->flags & ILOCK_WAITING)
4291 wakeup(ilock);
4292 return;
4294 scanp = &scan->next;
4296 spin_unlock(&map->ilock_spin);
4297 panic("vm_map_deinterlock: missing ilock!");
4300 #include "opt_ddb.h"
4301 #ifdef DDB
4302 #include <sys/kernel.h>
4304 #include <ddb/ddb.h>
4307 * Debugging only
4309 DB_SHOW_COMMAND(map, vm_map_print)
4311 static int nlines;
4312 /* XXX convert args. */
4313 vm_map_t map = (vm_map_t)addr;
4314 boolean_t full = have_addr;
4316 vm_map_entry_t entry;
4318 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4319 (void *)map,
4320 (void *)map->pmap, map->nentries, map->timestamp);
4321 nlines++;
4323 if (!full && db_indent)
4324 return;
4326 db_indent += 2;
4327 for (entry = map->header.next; entry != &map->header;
4328 entry = entry->next) {
4329 db_iprintf("map entry %p: start=%p, end=%p\n",
4330 (void *)entry, (void *)entry->start, (void *)entry->end);
4331 nlines++;
4333 static char *inheritance_name[4] =
4334 {"share", "copy", "none", "donate_copy"};
4336 db_iprintf(" prot=%x/%x/%s",
4337 entry->protection,
4338 entry->max_protection,
4339 inheritance_name[(int)(unsigned char)
4340 entry->inheritance]);
4341 if (entry->wired_count != 0)
4342 db_printf(", wired");
4344 switch(entry->maptype) {
4345 case VM_MAPTYPE_SUBMAP:
4346 /* XXX no %qd in kernel. Truncate entry->offset. */
4347 db_printf(", share=%p, offset=0x%lx\n",
4348 (void *)entry->object.sub_map,
4349 (long)entry->offset);
4350 nlines++;
4351 if ((entry->prev == &map->header) ||
4352 (entry->prev->object.sub_map !=
4353 entry->object.sub_map)) {
4354 db_indent += 2;
4355 vm_map_print((db_expr_t)(intptr_t)
4356 entry->object.sub_map,
4357 full, 0, NULL);
4358 db_indent -= 2;
4360 break;
4361 case VM_MAPTYPE_NORMAL:
4362 case VM_MAPTYPE_VPAGETABLE:
4363 /* XXX no %qd in kernel. Truncate entry->offset. */
4364 db_printf(", object=%p, offset=0x%lx",
4365 (void *)entry->object.vm_object,
4366 (long)entry->offset);
4367 if (entry->eflags & MAP_ENTRY_COW)
4368 db_printf(", copy (%s)",
4369 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4370 db_printf("\n");
4371 nlines++;
4373 if ((entry->prev == &map->header) ||
4374 (entry->prev->object.vm_object !=
4375 entry->object.vm_object)) {
4376 db_indent += 2;
4377 vm_object_print((db_expr_t)(intptr_t)
4378 entry->object.vm_object,
4379 full, 0, NULL);
4380 nlines += 4;
4381 db_indent -= 2;
4383 break;
4384 case VM_MAPTYPE_UKSMAP:
4385 db_printf(", uksmap=%p, offset=0x%lx",
4386 (void *)entry->object.uksmap,
4387 (long)entry->offset);
4388 if (entry->eflags & MAP_ENTRY_COW)
4389 db_printf(", copy (%s)",
4390 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4391 db_printf("\n");
4392 nlines++;
4393 break;
4394 default:
4395 break;
4398 db_indent -= 2;
4399 if (db_indent == 0)
4400 nlines = 0;
4404 * Debugging only
4406 DB_SHOW_COMMAND(procvm, procvm)
4408 struct proc *p;
4410 if (have_addr) {
4411 p = (struct proc *) addr;
4412 } else {
4413 p = curproc;
4416 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4417 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4418 (void *)vmspace_pmap(p->p_vmspace));
4420 vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
4423 #endif /* DDB */