vkernel - Fix more pagein/pageout corruption
[dragonfly.git] / sys / vm / vm_fault.c
blob80e943c99ab5e6dd6b03ea7613f752376f8e9287
1 /*
2 * Copyright (c) 2003-2014 The DragonFly Project. All rights reserved.
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * ---
36 * Copyright (c) 1991, 1993
37 * The Regents of the University of California. All rights reserved.
38 * Copyright (c) 1994 John S. Dyson
39 * All rights reserved.
40 * Copyright (c) 1994 David Greenman
41 * All rights reserved.
44 * This code is derived from software contributed to Berkeley by
45 * The Mach Operating System project at Carnegie-Mellon University.
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
49 * are met:
50 * 1. Redistributions of source code must retain the above copyright
51 * notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 * notice, this list of conditions and the following disclaimer in the
54 * documentation and/or other materials provided with the distribution.
55 * 3. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
71 * ---
73 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
74 * All rights reserved.
76 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
78 * Permission to use, copy, modify and distribute this software and
79 * its documentation is hereby granted, provided that both the copyright
80 * notice and this permission notice appear in all copies of the
81 * software, derivative works or modified versions, and any portions
82 * thereof, and that both notices appear in supporting documentation.
84 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
85 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
86 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
88 * Carnegie Mellon requests users of this software to return to
90 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
91 * School of Computer Science
92 * Carnegie Mellon University
93 * Pittsburgh PA 15213-3890
95 * any improvements or extensions that they make and grant Carnegie the
96 * rights to redistribute these changes.
100 * Page fault handling module.
103 #include <sys/param.h>
104 #include <sys/systm.h>
105 #include <sys/kernel.h>
106 #include <sys/proc.h>
107 #include <sys/vnode.h>
108 #include <sys/resourcevar.h>
109 #include <sys/vmmeter.h>
110 #include <sys/vkernel.h>
111 #include <sys/lock.h>
112 #include <sys/sysctl.h>
114 #include <cpu/lwbuf.h>
116 #include <vm/vm.h>
117 #include <vm/vm_param.h>
118 #include <vm/pmap.h>
119 #include <vm/vm_map.h>
120 #include <vm/vm_object.h>
121 #include <vm/vm_page.h>
122 #include <vm/vm_pageout.h>
123 #include <vm/vm_kern.h>
124 #include <vm/vm_pager.h>
125 #include <vm/vnode_pager.h>
126 #include <vm/vm_extern.h>
128 #include <sys/thread2.h>
129 #include <vm/vm_page2.h>
131 struct faultstate {
132 vm_page_t m;
133 vm_object_t object;
134 vm_pindex_t pindex;
135 vm_prot_t prot;
136 vm_page_t first_m;
137 vm_object_t first_object;
138 vm_prot_t first_prot;
139 vm_map_t map;
140 vm_map_entry_t entry;
141 int lookup_still_valid;
142 int hardfault;
143 int fault_flags;
144 int map_generation;
145 int shared;
146 int first_shared;
147 boolean_t wired;
148 struct vnode *vp;
151 static int debug_fault = 0;
152 SYSCTL_INT(_vm, OID_AUTO, debug_fault, CTLFLAG_RW, &debug_fault, 0, "");
153 static int debug_cluster = 0;
154 SYSCTL_INT(_vm, OID_AUTO, debug_cluster, CTLFLAG_RW, &debug_cluster, 0, "");
155 int vm_shared_fault = 1;
156 TUNABLE_INT("vm.shared_fault", &vm_shared_fault);
157 SYSCTL_INT(_vm, OID_AUTO, shared_fault, CTLFLAG_RW, &vm_shared_fault, 0,
158 "Allow shared token on vm_object");
160 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t, int);
161 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *,
162 vpte_t, int, int);
163 #if 0
164 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
165 #endif
166 static void vm_set_nosync(vm_page_t m, vm_map_entry_t entry);
167 static void vm_prefault(pmap_t pmap, vm_offset_t addra,
168 vm_map_entry_t entry, int prot, int fault_flags);
169 static void vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
170 vm_map_entry_t entry, int prot, int fault_flags);
172 static __inline void
173 release_page(struct faultstate *fs)
175 vm_page_deactivate(fs->m);
176 vm_page_wakeup(fs->m);
177 fs->m = NULL;
181 * NOTE: Once unlocked any cached fs->entry becomes invalid, any reuse
182 * requires relocking and then checking the timestamp.
184 * NOTE: vm_map_lock_read() does not bump fs->map->timestamp so we do
185 * not have to update fs->map_generation here.
187 * NOTE: This function can fail due to a deadlock against the caller's
188 * holding of a vm_page BUSY.
190 static __inline int
191 relock_map(struct faultstate *fs)
193 int error;
195 if (fs->lookup_still_valid == FALSE && fs->map) {
196 error = vm_map_lock_read_to(fs->map);
197 if (error == 0)
198 fs->lookup_still_valid = TRUE;
199 } else {
200 error = 0;
202 return error;
205 static __inline void
206 unlock_map(struct faultstate *fs)
208 if (fs->lookup_still_valid && fs->map) {
209 vm_map_lookup_done(fs->map, fs->entry, 0);
210 fs->lookup_still_valid = FALSE;
215 * Clean up after a successful call to vm_fault_object() so another call
216 * to vm_fault_object() can be made.
218 static void
219 _cleanup_successful_fault(struct faultstate *fs, int relock)
222 * We allocated a junk page for a COW operation that did
223 * not occur, the page must be freed.
225 if (fs->object != fs->first_object) {
226 KKASSERT(fs->first_shared == 0);
227 vm_page_free(fs->first_m);
228 vm_object_pip_wakeup(fs->object);
229 fs->first_m = NULL;
233 * Reset fs->object.
235 fs->object = fs->first_object;
236 if (relock && fs->lookup_still_valid == FALSE) {
237 if (fs->map)
238 vm_map_lock_read(fs->map);
239 fs->lookup_still_valid = TRUE;
243 static void
244 _unlock_things(struct faultstate *fs, int dealloc)
246 _cleanup_successful_fault(fs, 0);
247 if (dealloc) {
248 /*vm_object_deallocate(fs->first_object);*/
249 /*fs->first_object = NULL; drop used later on */
251 unlock_map(fs);
252 if (fs->vp != NULL) {
253 vput(fs->vp);
254 fs->vp = NULL;
258 #define unlock_things(fs) _unlock_things(fs, 0)
259 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
260 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
263 * TRYPAGER
265 * Determine if the pager for the current object *might* contain the page.
267 * We only need to try the pager if this is not a default object (default
268 * objects are zero-fill and have no real pager), and if we are not taking
269 * a wiring fault or if the FS entry is wired.
271 #define TRYPAGER(fs) \
272 (fs->object->type != OBJT_DEFAULT && \
273 (((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired))
276 * vm_fault:
278 * Handle a page fault occuring at the given address, requiring the given
279 * permissions, in the map specified. If successful, the page is inserted
280 * into the associated physical map.
282 * NOTE: The given address should be truncated to the proper page address.
284 * KERN_SUCCESS is returned if the page fault is handled; otherwise,
285 * a standard error specifying why the fault is fatal is returned.
287 * The map in question must be referenced, and remains so.
288 * The caller may hold no locks.
289 * No other requirements.
292 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
294 int result;
295 vm_pindex_t first_pindex;
296 struct faultstate fs;
297 struct lwp *lp;
298 struct proc *p;
299 thread_t td;
300 struct vm_map_ilock ilock;
301 int didilock;
302 int growstack;
303 int retry = 0;
304 int inherit_prot;
306 inherit_prot = fault_type & VM_PROT_NOSYNC;
307 fs.hardfault = 0;
308 fs.fault_flags = fault_flags;
309 fs.vp = NULL;
310 fs.shared = vm_shared_fault;
311 fs.first_shared = vm_shared_fault;
312 growstack = 1;
315 * vm_map interactions
317 td = curthread;
318 if ((lp = td->td_lwp) != NULL)
319 lp->lwp_flags |= LWP_PAGING;
320 lwkt_gettoken(&map->token);
322 RetryFault:
324 * Find the vm_map_entry representing the backing store and resolve
325 * the top level object and page index. This may have the side
326 * effect of executing a copy-on-write on the map entry and/or
327 * creating a shadow object, but will not COW any actual VM pages.
329 * On success fs.map is left read-locked and various other fields
330 * are initialized but not otherwise referenced or locked.
332 * NOTE! vm_map_lookup will try to upgrade the fault_type to
333 * VM_FAULT_WRITE if the map entry is a virtual page table
334 * and also writable, so we can set the 'A'accessed bit in
335 * the virtual page table entry.
337 fs.map = map;
338 result = vm_map_lookup(&fs.map, vaddr, fault_type,
339 &fs.entry, &fs.first_object,
340 &first_pindex, &fs.first_prot, &fs.wired);
343 * If the lookup failed or the map protections are incompatible,
344 * the fault generally fails.
346 * The failure could be due to TDF_NOFAULT if vm_map_lookup()
347 * tried to do a COW fault.
349 * If the caller is trying to do a user wiring we have more work
350 * to do.
352 if (result != KERN_SUCCESS) {
353 if (result == KERN_FAILURE_NOFAULT) {
354 result = KERN_FAILURE;
355 goto done;
357 if (result != KERN_PROTECTION_FAILURE ||
358 (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
360 if (result == KERN_INVALID_ADDRESS && growstack &&
361 map != &kernel_map && curproc != NULL) {
362 result = vm_map_growstack(map, vaddr);
363 if (result == KERN_SUCCESS) {
364 growstack = 0;
365 ++retry;
366 goto RetryFault;
368 result = KERN_FAILURE;
370 goto done;
374 * If we are user-wiring a r/w segment, and it is COW, then
375 * we need to do the COW operation. Note that we don't
376 * currently COW RO sections now, because it is NOT desirable
377 * to COW .text. We simply keep .text from ever being COW'ed
378 * and take the heat that one cannot debug wired .text sections.
380 result = vm_map_lookup(&fs.map, vaddr,
381 VM_PROT_READ|VM_PROT_WRITE|
382 VM_PROT_OVERRIDE_WRITE,
383 &fs.entry, &fs.first_object,
384 &first_pindex, &fs.first_prot,
385 &fs.wired);
386 if (result != KERN_SUCCESS) {
387 /* could also be KERN_FAILURE_NOFAULT */
388 result = KERN_FAILURE;
389 goto done;
393 * If we don't COW now, on a user wire, the user will never
394 * be able to write to the mapping. If we don't make this
395 * restriction, the bookkeeping would be nearly impossible.
397 * XXX We have a shared lock, this will have a MP race but
398 * I don't see how it can hurt anything.
400 if ((fs.entry->protection & VM_PROT_WRITE) == 0) {
401 atomic_clear_char(&fs.entry->max_protection,
402 VM_PROT_WRITE);
407 * fs.map is read-locked
409 * Misc checks. Save the map generation number to detect races.
411 fs.map_generation = fs.map->timestamp;
412 fs.lookup_still_valid = TRUE;
413 fs.first_m = NULL;
414 fs.object = fs.first_object; /* so unlock_and_deallocate works */
415 fs.prot = fs.first_prot; /* default (used by uksmap) */
417 if (fs.entry->eflags & (MAP_ENTRY_NOFAULT | MAP_ENTRY_KSTACK)) {
418 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
419 panic("vm_fault: fault on nofault entry, addr: %p",
420 (void *)vaddr);
422 if ((fs.entry->eflags & MAP_ENTRY_KSTACK) &&
423 vaddr >= fs.entry->start &&
424 vaddr < fs.entry->start + PAGE_SIZE) {
425 panic("vm_fault: fault on stack guard, addr: %p",
426 (void *)vaddr);
431 * A user-kernel shared map has no VM object and bypasses
432 * everything. We execute the uksmap function with a temporary
433 * fictitious vm_page. The address is directly mapped with no
434 * management.
436 if (fs.entry->maptype == VM_MAPTYPE_UKSMAP) {
437 struct vm_page fakem;
439 bzero(&fakem, sizeof(fakem));
440 fakem.pindex = first_pindex;
441 fakem.flags = PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED;
442 fakem.valid = VM_PAGE_BITS_ALL;
443 fakem.pat_mode = VM_MEMATTR_DEFAULT;
444 if (fs.entry->object.uksmap(fs.entry->aux.dev, &fakem)) {
445 result = KERN_FAILURE;
446 unlock_things(&fs);
447 goto done2;
449 pmap_enter(fs.map->pmap, vaddr, &fakem, fs.prot | inherit_prot,
450 fs.wired, fs.entry);
451 goto done_success;
455 * A system map entry may return a NULL object. No object means
456 * no pager means an unrecoverable kernel fault.
458 if (fs.first_object == NULL) {
459 panic("vm_fault: unrecoverable fault at %p in entry %p",
460 (void *)vaddr, fs.entry);
464 * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
465 * is set.
467 * Unfortunately a deadlock can occur if we are forced to page-in
468 * from swap, but diving all the way into the vm_pager_get_page()
469 * function to find out is too much. Just check the object type.
471 * The deadlock is a CAM deadlock on a busy VM page when trying
472 * to finish an I/O if another process gets stuck in
473 * vop_helper_read_shortcut() due to a swap fault.
475 if ((td->td_flags & TDF_NOFAULT) &&
476 (retry ||
477 fs.first_object->type == OBJT_VNODE ||
478 fs.first_object->type == OBJT_SWAP ||
479 fs.first_object->backing_object)) {
480 result = KERN_FAILURE;
481 unlock_things(&fs);
482 goto done2;
486 * If the entry is wired we cannot change the page protection.
488 if (fs.wired)
489 fault_type = fs.first_prot;
492 * We generally want to avoid unnecessary exclusive modes on backing
493 * and terminal objects because this can seriously interfere with
494 * heavily fork()'d processes (particularly /bin/sh scripts).
496 * However, we also want to avoid unnecessary retries due to needed
497 * shared->exclusive promotion for common faults. Exclusive mode is
498 * always needed if any page insertion, rename, or free occurs in an
499 * object (and also indirectly if any I/O is done).
501 * The main issue here is going to be fs.first_shared. If the
502 * first_object has a backing object which isn't shadowed and the
503 * process is single-threaded we might as well use an exclusive
504 * lock/chain right off the bat.
506 if (fs.first_shared && fs.first_object->backing_object &&
507 LIST_EMPTY(&fs.first_object->shadow_head) &&
508 td->td_proc && td->td_proc->p_nthreads == 1) {
509 fs.first_shared = 0;
513 * VM_FAULT_UNSWAP - swap_pager_unswapped() needs an exclusive object
514 * VM_FAULT_DIRTY - may require swap_pager_unswapped() later, but
515 * we can try shared first.
517 if (fault_flags & VM_FAULT_UNSWAP) {
518 fs.first_shared = 0;
522 * Obtain a top-level object lock, shared or exclusive depending
523 * on fs.first_shared. If a shared lock winds up being insufficient
524 * we will retry with an exclusive lock.
526 * The vnode pager lock is always shared.
528 if (fs.first_shared)
529 vm_object_hold_shared(fs.first_object);
530 else
531 vm_object_hold(fs.first_object);
532 if (fs.vp == NULL)
533 fs.vp = vnode_pager_lock(fs.first_object);
536 * The page we want is at (first_object, first_pindex), but if the
537 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
538 * page table to figure out the actual pindex.
540 * NOTE! DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
541 * ONLY
543 didilock = 0;
544 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
545 vm_map_interlock(fs.map, &ilock, vaddr, vaddr + PAGE_SIZE);
546 didilock = 1;
547 result = vm_fault_vpagetable(&fs, &first_pindex,
548 fs.entry->aux.master_pde,
549 fault_type, 1);
550 if (result == KERN_TRY_AGAIN) {
551 vm_map_deinterlock(fs.map, &ilock);
552 vm_object_drop(fs.first_object);
553 ++retry;
554 goto RetryFault;
556 if (result != KERN_SUCCESS) {
557 vm_map_deinterlock(fs.map, &ilock);
558 goto done;
563 * Now we have the actual (object, pindex), fault in the page. If
564 * vm_fault_object() fails it will unlock and deallocate the FS
565 * data. If it succeeds everything remains locked and fs->object
566 * will have an additional PIP count if it is not equal to
567 * fs->first_object
569 * vm_fault_object will set fs->prot for the pmap operation. It is
570 * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
571 * page can be safely written. However, it will force a read-only
572 * mapping for a read fault if the memory is managed by a virtual
573 * page table.
575 * If the fault code uses the shared object lock shortcut
576 * we must not try to burst (we can't allocate VM pages).
578 result = vm_fault_object(&fs, first_pindex, fault_type, 1);
580 if (debug_fault > 0) {
581 --debug_fault;
582 kprintf("VM_FAULT result %d addr=%jx type=%02x flags=%02x "
583 "fs.m=%p fs.prot=%02x fs.wired=%02x fs.entry=%p\n",
584 result, (intmax_t)vaddr, fault_type, fault_flags,
585 fs.m, fs.prot, fs.wired, fs.entry);
588 if (result == KERN_TRY_AGAIN) {
589 if (didilock)
590 vm_map_deinterlock(fs.map, &ilock);
591 vm_object_drop(fs.first_object);
592 ++retry;
593 goto RetryFault;
595 if (result != KERN_SUCCESS) {
596 if (didilock)
597 vm_map_deinterlock(fs.map, &ilock);
598 goto done;
602 * On success vm_fault_object() does not unlock or deallocate, and fs.m
603 * will contain a busied page.
605 * Enter the page into the pmap and do pmap-related adjustments.
607 KKASSERT(fs.lookup_still_valid == TRUE);
608 vm_page_flag_set(fs.m, PG_REFERENCED);
609 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot | inherit_prot,
610 fs.wired, fs.entry);
612 if (didilock)
613 vm_map_deinterlock(fs.map, &ilock);
615 /*KKASSERT(fs.m->queue == PQ_NONE); page-in op may deactivate page */
616 KKASSERT(fs.m->flags & PG_BUSY);
619 * If the page is not wired down, then put it where the pageout daemon
620 * can find it.
622 if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
623 if (fs.wired)
624 vm_page_wire(fs.m);
625 else
626 vm_page_unwire(fs.m, 1);
627 } else {
628 vm_page_activate(fs.m);
630 vm_page_wakeup(fs.m);
633 * Burst in a few more pages if possible. The fs.map should still
634 * be locked. To avoid interlocking against a vnode->getblk
635 * operation we had to be sure to unbusy our primary vm_page above
636 * first.
638 * A normal burst can continue down backing store, only execute
639 * if we are holding an exclusive lock, otherwise the exclusive
640 * locks the burst code gets might cause excessive SMP collisions.
642 * A quick burst can be utilized when there is no backing object
643 * (i.e. a shared file mmap).
645 if ((fault_flags & VM_FAULT_BURST) &&
646 (fs.fault_flags & VM_FAULT_WIRE_MASK) == 0 &&
647 fs.wired == 0) {
648 if (fs.first_shared == 0 && fs.shared == 0) {
649 vm_prefault(fs.map->pmap, vaddr,
650 fs.entry, fs.prot, fault_flags);
651 } else {
652 vm_prefault_quick(fs.map->pmap, vaddr,
653 fs.entry, fs.prot, fault_flags);
657 done_success:
658 mycpu->gd_cnt.v_vm_faults++;
659 if (td->td_lwp)
660 ++td->td_lwp->lwp_ru.ru_minflt;
663 * Unlock everything, and return
665 unlock_things(&fs);
667 if (td->td_lwp) {
668 if (fs.hardfault) {
669 td->td_lwp->lwp_ru.ru_majflt++;
670 } else {
671 td->td_lwp->lwp_ru.ru_minflt++;
675 /*vm_object_deallocate(fs.first_object);*/
676 /*fs.m = NULL; */
677 /*fs.first_object = NULL; must still drop later */
679 result = KERN_SUCCESS;
680 done:
681 if (fs.first_object)
682 vm_object_drop(fs.first_object);
683 done2:
684 lwkt_reltoken(&map->token);
685 if (lp)
686 lp->lwp_flags &= ~LWP_PAGING;
688 #if !defined(NO_SWAPPING)
690 * Check the process RSS limit and force deactivation and
691 * (asynchronous) paging if necessary. This is a complex operation,
692 * only do it for direct user-mode faults, for now.
694 * To reduce overhead implement approximately a ~16MB hysteresis.
696 p = td->td_proc;
697 if ((fault_flags & VM_FAULT_USERMODE) && lp &&
698 p->p_limit && map->pmap && vm_pageout_memuse_mode >= 1 &&
699 map != &kernel_map) {
700 vm_pindex_t limit;
701 vm_pindex_t size;
703 limit = OFF_TO_IDX(qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
704 p->p_rlimit[RLIMIT_RSS].rlim_max));
705 size = pmap_resident_tlnw_count(map->pmap);
706 if (limit >= 0 && size > 4096 && size - 4096 >= limit) {
707 vm_pageout_map_deactivate_pages(map, limit);
710 #endif
712 return (result);
716 * Fault in the specified virtual address in the current process map,
717 * returning a held VM page or NULL. See vm_fault_page() for more
718 * information.
720 * No requirements.
722 vm_page_t
723 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type,
724 int *errorp, int *busyp)
726 struct lwp *lp = curthread->td_lwp;
727 vm_page_t m;
729 m = vm_fault_page(&lp->lwp_vmspace->vm_map, va,
730 fault_type, VM_FAULT_NORMAL,
731 errorp, busyp);
732 return(m);
736 * Fault in the specified virtual address in the specified map, doing all
737 * necessary manipulation of the object store and all necessary I/O. Return
738 * a held VM page or NULL, and set *errorp. The related pmap is not
739 * updated.
741 * If busyp is not NULL then *busyp will be set to TRUE if this routine
742 * decides to return a busied page (aka VM_PROT_WRITE), or FALSE if it
743 * does not (VM_PROT_WRITE not specified or busyp is NULL). If busyp is
744 * NULL the returned page is only held.
746 * If the caller has no intention of writing to the page's contents, busyp
747 * can be passed as NULL along with VM_PROT_WRITE to force a COW operation
748 * without busying the page.
750 * The returned page will also be marked PG_REFERENCED.
752 * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an
753 * error will be returned.
755 * No requirements.
757 vm_page_t
758 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
759 int fault_flags, int *errorp, int *busyp)
761 vm_pindex_t first_pindex;
762 struct faultstate fs;
763 int result;
764 int retry;
765 int growstack;
766 vm_prot_t orig_fault_type = fault_type;
768 retry = 0;
769 fs.hardfault = 0;
770 fs.fault_flags = fault_flags;
771 KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
774 * Dive the pmap (concurrency possible). If we find the
775 * appropriate page we can terminate early and quickly.
777 * This works great for normal programs but will always return
778 * NULL for host lookups of vkernel maps in VMM mode.
780 fs.m = pmap_fault_page_quick(map->pmap, vaddr, fault_type, busyp);
781 if (fs.m) {
782 if (fault_type & (VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE))
783 vm_page_dirty(fs.m);
784 *errorp = 0;
785 return(fs.m);
789 * Otherwise take a concurrency hit and do a formal page
790 * fault.
792 fs.vp = NULL;
793 fs.shared = vm_shared_fault;
794 fs.first_shared = vm_shared_fault;
795 growstack = 1;
796 lwkt_gettoken(&map->token);
799 * VM_FAULT_UNSWAP - swap_pager_unswapped() needs an exclusive object
800 * VM_FAULT_DIRTY - may require swap_pager_unswapped() later, but
801 * we can try shared first.
803 if (fault_flags & VM_FAULT_UNSWAP) {
804 fs.first_shared = 0;
807 RetryFault:
809 * Find the vm_map_entry representing the backing store and resolve
810 * the top level object and page index. This may have the side
811 * effect of executing a copy-on-write on the map entry and/or
812 * creating a shadow object, but will not COW any actual VM pages.
814 * On success fs.map is left read-locked and various other fields
815 * are initialized but not otherwise referenced or locked.
817 * NOTE! vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
818 * if the map entry is a virtual page table and also writable,
819 * so we can set the 'A'accessed bit in the virtual page table
820 * entry.
822 fs.map = map;
823 result = vm_map_lookup(&fs.map, vaddr, fault_type,
824 &fs.entry, &fs.first_object,
825 &first_pindex, &fs.first_prot, &fs.wired);
827 if (result != KERN_SUCCESS) {
828 if (result == KERN_FAILURE_NOFAULT) {
829 *errorp = KERN_FAILURE;
830 fs.m = NULL;
831 goto done;
833 if (result != KERN_PROTECTION_FAILURE ||
834 (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
836 if (result == KERN_INVALID_ADDRESS && growstack &&
837 map != &kernel_map && curproc != NULL) {
838 result = vm_map_growstack(map, vaddr);
839 if (result == KERN_SUCCESS) {
840 growstack = 0;
841 ++retry;
842 goto RetryFault;
844 result = KERN_FAILURE;
846 fs.m = NULL;
847 *errorp = result;
848 goto done;
852 * If we are user-wiring a r/w segment, and it is COW, then
853 * we need to do the COW operation. Note that we don't
854 * currently COW RO sections now, because it is NOT desirable
855 * to COW .text. We simply keep .text from ever being COW'ed
856 * and take the heat that one cannot debug wired .text sections.
858 result = vm_map_lookup(&fs.map, vaddr,
859 VM_PROT_READ|VM_PROT_WRITE|
860 VM_PROT_OVERRIDE_WRITE,
861 &fs.entry, &fs.first_object,
862 &first_pindex, &fs.first_prot,
863 &fs.wired);
864 if (result != KERN_SUCCESS) {
865 /* could also be KERN_FAILURE_NOFAULT */
866 *errorp = KERN_FAILURE;
867 fs.m = NULL;
868 goto done;
872 * If we don't COW now, on a user wire, the user will never
873 * be able to write to the mapping. If we don't make this
874 * restriction, the bookkeeping would be nearly impossible.
876 * XXX We have a shared lock, this will have a MP race but
877 * I don't see how it can hurt anything.
879 if ((fs.entry->protection & VM_PROT_WRITE) == 0) {
880 atomic_clear_char(&fs.entry->max_protection,
881 VM_PROT_WRITE);
886 * fs.map is read-locked
888 * Misc checks. Save the map generation number to detect races.
890 fs.map_generation = fs.map->timestamp;
891 fs.lookup_still_valid = TRUE;
892 fs.first_m = NULL;
893 fs.object = fs.first_object; /* so unlock_and_deallocate works */
895 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
896 panic("vm_fault: fault on nofault entry, addr: %lx",
897 (u_long)vaddr);
901 * A user-kernel shared map has no VM object and bypasses
902 * everything. We execute the uksmap function with a temporary
903 * fictitious vm_page. The address is directly mapped with no
904 * management.
906 if (fs.entry->maptype == VM_MAPTYPE_UKSMAP) {
907 struct vm_page fakem;
909 bzero(&fakem, sizeof(fakem));
910 fakem.pindex = first_pindex;
911 fakem.flags = PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED;
912 fakem.valid = VM_PAGE_BITS_ALL;
913 fakem.pat_mode = VM_MEMATTR_DEFAULT;
914 if (fs.entry->object.uksmap(fs.entry->aux.dev, &fakem)) {
915 *errorp = KERN_FAILURE;
916 fs.m = NULL;
917 unlock_things(&fs);
918 goto done2;
920 fs.m = PHYS_TO_VM_PAGE(fakem.phys_addr);
921 vm_page_hold(fs.m);
922 if (busyp)
923 *busyp = 0; /* don't need to busy R or W */
924 unlock_things(&fs);
925 *errorp = 0;
926 goto done;
931 * A system map entry may return a NULL object. No object means
932 * no pager means an unrecoverable kernel fault.
934 if (fs.first_object == NULL) {
935 panic("vm_fault: unrecoverable fault at %p in entry %p",
936 (void *)vaddr, fs.entry);
940 * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
941 * is set.
943 * Unfortunately a deadlock can occur if we are forced to page-in
944 * from swap, but diving all the way into the vm_pager_get_page()
945 * function to find out is too much. Just check the object type.
947 if ((curthread->td_flags & TDF_NOFAULT) &&
948 (retry ||
949 fs.first_object->type == OBJT_VNODE ||
950 fs.first_object->type == OBJT_SWAP ||
951 fs.first_object->backing_object)) {
952 *errorp = KERN_FAILURE;
953 unlock_things(&fs);
954 fs.m = NULL;
955 goto done2;
959 * If the entry is wired we cannot change the page protection.
961 if (fs.wired)
962 fault_type = fs.first_prot;
965 * Make a reference to this object to prevent its disposal while we
966 * are messing with it. Once we have the reference, the map is free
967 * to be diddled. Since objects reference their shadows (and copies),
968 * they will stay around as well.
970 * The reference should also prevent an unexpected collapse of the
971 * parent that might move pages from the current object into the
972 * parent unexpectedly, resulting in corruption.
974 * Bump the paging-in-progress count to prevent size changes (e.g.
975 * truncation operations) during I/O. This must be done after
976 * obtaining the vnode lock in order to avoid possible deadlocks.
978 if (fs.first_shared)
979 vm_object_hold_shared(fs.first_object);
980 else
981 vm_object_hold(fs.first_object);
982 if (fs.vp == NULL)
983 fs.vp = vnode_pager_lock(fs.first_object); /* shared */
986 * The page we want is at (first_object, first_pindex), but if the
987 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
988 * page table to figure out the actual pindex.
990 * NOTE! DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
991 * ONLY
993 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
994 result = vm_fault_vpagetable(&fs, &first_pindex,
995 fs.entry->aux.master_pde,
996 fault_type, 1);
997 if (result == KERN_TRY_AGAIN) {
998 vm_object_drop(fs.first_object);
999 ++retry;
1000 goto RetryFault;
1002 if (result != KERN_SUCCESS) {
1003 *errorp = result;
1004 fs.m = NULL;
1005 goto done;
1010 * Now we have the actual (object, pindex), fault in the page. If
1011 * vm_fault_object() fails it will unlock and deallocate the FS
1012 * data. If it succeeds everything remains locked and fs->object
1013 * will have an additinal PIP count if it is not equal to
1014 * fs->first_object
1016 fs.m = NULL;
1017 result = vm_fault_object(&fs, first_pindex, fault_type, 1);
1019 if (result == KERN_TRY_AGAIN) {
1020 vm_object_drop(fs.first_object);
1021 ++retry;
1022 goto RetryFault;
1024 if (result != KERN_SUCCESS) {
1025 *errorp = result;
1026 fs.m = NULL;
1027 goto done;
1030 if ((orig_fault_type & VM_PROT_WRITE) &&
1031 (fs.prot & VM_PROT_WRITE) == 0) {
1032 *errorp = KERN_PROTECTION_FAILURE;
1033 unlock_and_deallocate(&fs);
1034 fs.m = NULL;
1035 goto done;
1039 * DO NOT UPDATE THE PMAP!!! This function may be called for
1040 * a pmap unrelated to the current process pmap, in which case
1041 * the current cpu core will not be listed in the pmap's pm_active
1042 * mask. Thus invalidation interlocks will fail to work properly.
1044 * (for example, 'ps' uses procfs to read program arguments from
1045 * each process's stack).
1047 * In addition to the above this function will be called to acquire
1048 * a page that might already be faulted in, re-faulting it
1049 * continuously is a waste of time.
1051 * XXX could this have been the cause of our random seg-fault
1052 * issues? procfs accesses user stacks.
1054 vm_page_flag_set(fs.m, PG_REFERENCED);
1055 #if 0
1056 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired, NULL);
1057 mycpu->gd_cnt.v_vm_faults++;
1058 if (curthread->td_lwp)
1059 ++curthread->td_lwp->lwp_ru.ru_minflt;
1060 #endif
1063 * On success vm_fault_object() does not unlock or deallocate, and fs.m
1064 * will contain a busied page. So we must unlock here after having
1065 * messed with the pmap.
1067 unlock_things(&fs);
1070 * Return a held page. We are not doing any pmap manipulation so do
1071 * not set PG_MAPPED. However, adjust the page flags according to
1072 * the fault type because the caller may not use a managed pmapping
1073 * (so we don't want to lose the fact that the page will be dirtied
1074 * if a write fault was specified).
1076 if (fault_type & VM_PROT_WRITE)
1077 vm_page_dirty(fs.m);
1078 vm_page_activate(fs.m);
1080 if (curthread->td_lwp) {
1081 if (fs.hardfault) {
1082 curthread->td_lwp->lwp_ru.ru_majflt++;
1083 } else {
1084 curthread->td_lwp->lwp_ru.ru_minflt++;
1089 * Unlock everything, and return the held or busied page.
1091 if (busyp) {
1092 if (fault_type & (VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE)) {
1093 vm_page_dirty(fs.m);
1094 *busyp = 1;
1095 } else {
1096 *busyp = 0;
1097 vm_page_hold(fs.m);
1098 vm_page_wakeup(fs.m);
1100 } else {
1101 vm_page_hold(fs.m);
1102 vm_page_wakeup(fs.m);
1104 /*vm_object_deallocate(fs.first_object);*/
1105 /*fs.first_object = NULL; */
1106 *errorp = 0;
1108 done:
1109 if (fs.first_object)
1110 vm_object_drop(fs.first_object);
1111 done2:
1112 lwkt_reltoken(&map->token);
1113 return(fs.m);
1117 * Fault in the specified (object,offset), dirty the returned page as
1118 * needed. If the requested fault_type cannot be done NULL and an
1119 * error is returned.
1121 * A held (but not busied) page is returned.
1123 * The passed in object must be held as specified by the shared
1124 * argument.
1126 vm_page_t
1127 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset,
1128 vm_prot_t fault_type, int fault_flags,
1129 int *sharedp, int *errorp)
1131 int result;
1132 vm_pindex_t first_pindex;
1133 struct faultstate fs;
1134 struct vm_map_entry entry;
1136 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1137 bzero(&entry, sizeof(entry));
1138 entry.object.vm_object = object;
1139 entry.maptype = VM_MAPTYPE_NORMAL;
1140 entry.protection = entry.max_protection = fault_type;
1142 fs.hardfault = 0;
1143 fs.fault_flags = fault_flags;
1144 fs.map = NULL;
1145 fs.shared = vm_shared_fault;
1146 fs.first_shared = *sharedp;
1147 fs.vp = NULL;
1148 KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
1151 * VM_FAULT_UNSWAP - swap_pager_unswapped() needs an exclusive object
1152 * VM_FAULT_DIRTY - may require swap_pager_unswapped() later, but
1153 * we can try shared first.
1155 if (fs.first_shared && (fault_flags & VM_FAULT_UNSWAP)) {
1156 fs.first_shared = 0;
1157 vm_object_upgrade(object);
1161 * Retry loop as needed (typically for shared->exclusive transitions)
1163 RetryFault:
1164 *sharedp = fs.first_shared;
1165 first_pindex = OFF_TO_IDX(offset);
1166 fs.first_object = object;
1167 fs.entry = &entry;
1168 fs.first_prot = fault_type;
1169 fs.wired = 0;
1170 /*fs.map_generation = 0; unused */
1173 * Make a reference to this object to prevent its disposal while we
1174 * are messing with it. Once we have the reference, the map is free
1175 * to be diddled. Since objects reference their shadows (and copies),
1176 * they will stay around as well.
1178 * The reference should also prevent an unexpected collapse of the
1179 * parent that might move pages from the current object into the
1180 * parent unexpectedly, resulting in corruption.
1182 * Bump the paging-in-progress count to prevent size changes (e.g.
1183 * truncation operations) during I/O. This must be done after
1184 * obtaining the vnode lock in order to avoid possible deadlocks.
1186 if (fs.vp == NULL)
1187 fs.vp = vnode_pager_lock(fs.first_object);
1189 fs.lookup_still_valid = TRUE;
1190 fs.first_m = NULL;
1191 fs.object = fs.first_object; /* so unlock_and_deallocate works */
1193 #if 0
1194 /* XXX future - ability to operate on VM object using vpagetable */
1195 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1196 result = vm_fault_vpagetable(&fs, &first_pindex,
1197 fs.entry->aux.master_pde,
1198 fault_type, 0);
1199 if (result == KERN_TRY_AGAIN) {
1200 if (fs.first_shared == 0 && *sharedp)
1201 vm_object_upgrade(object);
1202 goto RetryFault;
1204 if (result != KERN_SUCCESS) {
1205 *errorp = result;
1206 return (NULL);
1209 #endif
1212 * Now we have the actual (object, pindex), fault in the page. If
1213 * vm_fault_object() fails it will unlock and deallocate the FS
1214 * data. If it succeeds everything remains locked and fs->object
1215 * will have an additinal PIP count if it is not equal to
1216 * fs->first_object
1218 * On KERN_TRY_AGAIN vm_fault_object() leaves fs.first_object intact.
1219 * We may have to upgrade its lock to handle the requested fault.
1221 result = vm_fault_object(&fs, first_pindex, fault_type, 0);
1223 if (result == KERN_TRY_AGAIN) {
1224 if (fs.first_shared == 0 && *sharedp)
1225 vm_object_upgrade(object);
1226 goto RetryFault;
1228 if (result != KERN_SUCCESS) {
1229 *errorp = result;
1230 return(NULL);
1233 if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) {
1234 *errorp = KERN_PROTECTION_FAILURE;
1235 unlock_and_deallocate(&fs);
1236 return(NULL);
1240 * On success vm_fault_object() does not unlock or deallocate, so we
1241 * do it here. Note that the returned fs.m will be busied.
1243 unlock_things(&fs);
1246 * Return a held page. We are not doing any pmap manipulation so do
1247 * not set PG_MAPPED. However, adjust the page flags according to
1248 * the fault type because the caller may not use a managed pmapping
1249 * (so we don't want to lose the fact that the page will be dirtied
1250 * if a write fault was specified).
1252 vm_page_hold(fs.m);
1253 vm_page_activate(fs.m);
1254 if ((fault_type & VM_PROT_WRITE) || (fault_flags & VM_FAULT_DIRTY))
1255 vm_page_dirty(fs.m);
1256 if (fault_flags & VM_FAULT_UNSWAP)
1257 swap_pager_unswapped(fs.m);
1260 * Indicate that the page was accessed.
1262 vm_page_flag_set(fs.m, PG_REFERENCED);
1264 if (curthread->td_lwp) {
1265 if (fs.hardfault) {
1266 curthread->td_lwp->lwp_ru.ru_majflt++;
1267 } else {
1268 curthread->td_lwp->lwp_ru.ru_minflt++;
1273 * Unlock everything, and return the held page.
1275 vm_page_wakeup(fs.m);
1276 /*vm_object_deallocate(fs.first_object);*/
1277 /*fs.first_object = NULL; */
1279 *errorp = 0;
1280 return(fs.m);
1284 * Translate the virtual page number (first_pindex) that is relative
1285 * to the address space into a logical page number that is relative to the
1286 * backing object. Use the virtual page table pointed to by (vpte).
1288 * Possibly downgrade the protection based on the vpte bits.
1290 * This implements an N-level page table. Any level can terminate the
1291 * scan by setting VPTE_PS. A linear mapping is accomplished by setting
1292 * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
1294 static
1296 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex,
1297 vpte_t vpte, int fault_type, int allow_nofault)
1299 struct lwbuf *lwb;
1300 struct lwbuf lwb_cache;
1301 int vshift = VPTE_FRAME_END - PAGE_SHIFT; /* index bits remaining */
1302 int result;
1303 vpte_t *ptep;
1305 ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
1306 for (;;) {
1308 * We cannot proceed if the vpte is not valid, not readable
1309 * for a read fault, or not writable for a write fault.
1311 if ((vpte & VPTE_V) == 0) {
1312 unlock_and_deallocate(fs);
1313 return (KERN_FAILURE);
1315 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_RW) == 0) {
1316 unlock_and_deallocate(fs);
1317 return (KERN_FAILURE);
1319 if ((vpte & VPTE_PS) || vshift == 0)
1320 break;
1323 * Get the page table page. Nominally we only read the page
1324 * table, but since we are actively setting VPTE_M and VPTE_A,
1325 * tell vm_fault_object() that we are writing it.
1327 * There is currently no real need to optimize this.
1329 result = vm_fault_object(fs, (vpte & VPTE_FRAME) >> PAGE_SHIFT,
1330 VM_PROT_READ|VM_PROT_WRITE,
1331 allow_nofault);
1332 if (result != KERN_SUCCESS)
1333 return (result);
1336 * Process the returned fs.m and look up the page table
1337 * entry in the page table page.
1339 vshift -= VPTE_PAGE_BITS;
1340 lwb = lwbuf_alloc(fs->m, &lwb_cache);
1341 ptep = ((vpte_t *)lwbuf_kva(lwb) +
1342 ((*pindex >> vshift) & VPTE_PAGE_MASK));
1343 vm_page_activate(fs->m);
1346 * Page table write-back - entire operation including
1347 * validation of the pte must be atomic to avoid races
1348 * against the vkernel changing the pte.
1350 * If the vpte is valid for the* requested operation, do
1351 * a write-back to the page table.
1353 * XXX VPTE_M is not set properly for page directory pages.
1354 * It doesn't get set in the page directory if the page table
1355 * is modified during a read access.
1357 for (;;) {
1358 vpte_t nvpte;
1361 * Reload for the cmpset, but make sure the pte is
1362 * still valid.
1364 vpte = *ptep;
1365 cpu_ccfence();
1366 nvpte = vpte;
1368 if ((vpte & VPTE_V) == 0)
1369 break;
1371 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_RW))
1372 nvpte |= VPTE_M | VPTE_A;
1373 if (fault_type & VM_PROT_READ)
1374 nvpte |= VPTE_A;
1375 if (vpte == nvpte)
1376 break;
1377 if (atomic_cmpset_long(ptep, vpte, nvpte)) {
1378 vm_page_dirty(fs->m);
1379 break;
1382 lwbuf_free(lwb);
1383 vm_page_flag_set(fs->m, PG_REFERENCED);
1384 vm_page_wakeup(fs->m);
1385 fs->m = NULL;
1386 cleanup_successful_fault(fs);
1390 * When the vkernel sets VPTE_RW it expects the real kernel to
1391 * reflect VPTE_M back when the page is modified via the mapping.
1392 * In order to accomplish this the real kernel must map the page
1393 * read-only for read faults and use write faults to reflect VPTE_M
1394 * back.
1396 * Once VPTE_M has been set, the real kernel's pte allows writing.
1397 * If the vkernel clears VPTE_M the vkernel must be sure to
1398 * MADV_INVAL the real kernel's mappings to force the real kernel
1399 * to re-fault on the next write so oit can set VPTE_M again.
1401 if ((fault_type & VM_PROT_WRITE) == 0 &&
1402 (vpte & (VPTE_RW | VPTE_M)) != (VPTE_RW | VPTE_M)) {
1403 fs->first_prot &= ~VM_PROT_WRITE;
1407 * Combine remaining address bits with the vpte.
1409 *pindex = ((vpte & VPTE_FRAME) >> PAGE_SHIFT) +
1410 (*pindex & ((1L << vshift) - 1));
1411 return (KERN_SUCCESS);
1416 * This is the core of the vm_fault code.
1418 * Do all operations required to fault-in (fs.first_object, pindex). Run
1419 * through the shadow chain as necessary and do required COW or virtual
1420 * copy operations. The caller has already fully resolved the vm_map_entry
1421 * and, if appropriate, has created a copy-on-write layer. All we need to
1422 * do is iterate the object chain.
1424 * On failure (fs) is unlocked and deallocated and the caller may return or
1425 * retry depending on the failure code. On success (fs) is NOT unlocked or
1426 * deallocated, fs.m will contained a resolved, busied page, and fs.object
1427 * will have an additional PIP count if it is not equal to fs.first_object.
1429 * If locks based on fs->first_shared or fs->shared are insufficient,
1430 * clear the appropriate field(s) and return RETRY. COWs require that
1431 * first_shared be 0, while page allocations (or frees) require that
1432 * shared be 0. Renames require that both be 0.
1434 * NOTE! fs->[first_]shared might be set with VM_FAULT_DIRTY also set.
1435 * we will have to retry with it exclusive if the vm_page is
1436 * PG_SWAPPED.
1438 * fs->first_object must be held on call.
1440 static
1442 vm_fault_object(struct faultstate *fs, vm_pindex_t first_pindex,
1443 vm_prot_t fault_type, int allow_nofault)
1445 vm_object_t next_object;
1446 vm_pindex_t pindex;
1447 int error;
1449 ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
1450 fs->prot = fs->first_prot;
1451 fs->object = fs->first_object;
1452 pindex = first_pindex;
1454 vm_object_chain_acquire(fs->first_object, fs->shared);
1455 vm_object_pip_add(fs->first_object, 1);
1458 * If a read fault occurs we try to upgrade the page protection
1459 * and make it also writable if possible. There are three cases
1460 * where we cannot make the page mapping writable:
1462 * (1) The mapping is read-only or the VM object is read-only,
1463 * fs->prot above will simply not have VM_PROT_WRITE set.
1465 * (2) If the mapping is a virtual page table fs->first_prot will
1466 * have already been properly adjusted by vm_fault_vpagetable().
1467 * to detect writes so we can set VPTE_M in the virtual page
1468 * table. Used by vkernels.
1470 * (3) If the VM page is read-only or copy-on-write, upgrading would
1471 * just result in an unnecessary COW fault.
1473 * (4) If the pmap specifically requests A/M bit emulation, downgrade
1474 * here.
1476 #if 0
1477 /* see vpagetable code */
1478 if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1479 if ((fault_type & VM_PROT_WRITE) == 0)
1480 fs->prot &= ~VM_PROT_WRITE;
1482 #endif
1484 if (curthread->td_lwp && curthread->td_lwp->lwp_vmspace &&
1485 pmap_emulate_ad_bits(&curthread->td_lwp->lwp_vmspace->vm_pmap)) {
1486 if ((fault_type & VM_PROT_WRITE) == 0)
1487 fs->prot &= ~VM_PROT_WRITE;
1490 /* vm_object_hold(fs->object); implied b/c object == first_object */
1492 for (;;) {
1494 * The entire backing chain from first_object to object
1495 * inclusive is chainlocked.
1497 * If the object is dead, we stop here
1499 if (fs->object->flags & OBJ_DEAD) {
1500 vm_object_pip_wakeup(fs->first_object);
1501 vm_object_chain_release_all(fs->first_object,
1502 fs->object);
1503 if (fs->object != fs->first_object)
1504 vm_object_drop(fs->object);
1505 unlock_and_deallocate(fs);
1506 return (KERN_PROTECTION_FAILURE);
1510 * See if the page is resident. Wait/Retry if the page is
1511 * busy (lots of stuff may have changed so we can't continue
1512 * in that case).
1514 * We can theoretically allow the soft-busy case on a read
1515 * fault if the page is marked valid, but since such
1516 * pages are typically already pmap'd, putting that
1517 * special case in might be more effort then it is
1518 * worth. We cannot under any circumstances mess
1519 * around with a vm_page_t->busy page except, perhaps,
1520 * to pmap it.
1522 fs->m = vm_page_lookup_busy_try(fs->object, pindex,
1523 TRUE, &error);
1524 if (error) {
1525 vm_object_pip_wakeup(fs->first_object);
1526 vm_object_chain_release_all(fs->first_object,
1527 fs->object);
1528 if (fs->object != fs->first_object)
1529 vm_object_drop(fs->object);
1530 unlock_things(fs);
1531 vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
1532 mycpu->gd_cnt.v_intrans++;
1533 /*vm_object_deallocate(fs->first_object);*/
1534 /*fs->first_object = NULL;*/
1535 fs->m = NULL;
1536 return (KERN_TRY_AGAIN);
1538 if (fs->m) {
1540 * The page is busied for us.
1542 * If reactivating a page from PQ_CACHE we may have
1543 * to rate-limit.
1545 int queue = fs->m->queue;
1546 vm_page_unqueue_nowakeup(fs->m);
1548 if ((queue - fs->m->pc) == PQ_CACHE &&
1549 vm_page_count_severe()) {
1550 vm_page_activate(fs->m);
1551 vm_page_wakeup(fs->m);
1552 fs->m = NULL;
1553 vm_object_pip_wakeup(fs->first_object);
1554 vm_object_chain_release_all(fs->first_object,
1555 fs->object);
1556 if (fs->object != fs->first_object)
1557 vm_object_drop(fs->object);
1558 unlock_and_deallocate(fs);
1559 if (allow_nofault == 0 ||
1560 (curthread->td_flags & TDF_NOFAULT) == 0) {
1561 thread_t td;
1563 vm_wait_pfault();
1564 td = curthread;
1565 if (td->td_proc && (td->td_proc->p_flags & P_LOWMEMKILL))
1566 return (KERN_PROTECTION_FAILURE);
1568 return (KERN_TRY_AGAIN);
1572 * If it still isn't completely valid (readable),
1573 * or if a read-ahead-mark is set on the VM page,
1574 * jump to readrest, else we found the page and
1575 * can return.
1577 * We can release the spl once we have marked the
1578 * page busy.
1580 if (fs->m->object != &kernel_object) {
1581 if ((fs->m->valid & VM_PAGE_BITS_ALL) !=
1582 VM_PAGE_BITS_ALL) {
1583 goto readrest;
1585 if (fs->m->flags & PG_RAM) {
1586 if (debug_cluster)
1587 kprintf("R");
1588 vm_page_flag_clear(fs->m, PG_RAM);
1589 goto readrest;
1592 break; /* break to PAGE HAS BEEN FOUND */
1596 * Page is not resident, If this is the search termination
1597 * or the pager might contain the page, allocate a new page.
1599 if (TRYPAGER(fs) || fs->object == fs->first_object) {
1601 * Allocating, must be exclusive.
1603 if (fs->object == fs->first_object &&
1604 fs->first_shared) {
1605 fs->first_shared = 0;
1606 vm_object_pip_wakeup(fs->first_object);
1607 vm_object_chain_release_all(fs->first_object,
1608 fs->object);
1609 if (fs->object != fs->first_object)
1610 vm_object_drop(fs->object);
1611 unlock_and_deallocate(fs);
1612 return (KERN_TRY_AGAIN);
1614 if (fs->object != fs->first_object &&
1615 fs->shared) {
1616 fs->first_shared = 0;
1617 fs->shared = 0;
1618 vm_object_pip_wakeup(fs->first_object);
1619 vm_object_chain_release_all(fs->first_object,
1620 fs->object);
1621 if (fs->object != fs->first_object)
1622 vm_object_drop(fs->object);
1623 unlock_and_deallocate(fs);
1624 return (KERN_TRY_AGAIN);
1628 * If the page is beyond the object size we fail
1630 if (pindex >= fs->object->size) {
1631 vm_object_pip_wakeup(fs->first_object);
1632 vm_object_chain_release_all(fs->first_object,
1633 fs->object);
1634 if (fs->object != fs->first_object)
1635 vm_object_drop(fs->object);
1636 unlock_and_deallocate(fs);
1637 return (KERN_PROTECTION_FAILURE);
1641 * Allocate a new page for this object/offset pair.
1643 * It is possible for the allocation to race, so
1644 * handle the case.
1646 fs->m = NULL;
1647 if (!vm_page_count_severe()) {
1648 fs->m = vm_page_alloc(fs->object, pindex,
1649 ((fs->vp || fs->object->backing_object) ?
1650 VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL :
1651 VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL |
1652 VM_ALLOC_USE_GD | VM_ALLOC_ZERO));
1654 if (fs->m == NULL) {
1655 vm_object_pip_wakeup(fs->first_object);
1656 vm_object_chain_release_all(fs->first_object,
1657 fs->object);
1658 if (fs->object != fs->first_object)
1659 vm_object_drop(fs->object);
1660 unlock_and_deallocate(fs);
1661 if (allow_nofault == 0 ||
1662 (curthread->td_flags & TDF_NOFAULT) == 0) {
1663 thread_t td;
1665 vm_wait_pfault();
1666 td = curthread;
1667 if (td->td_proc && (td->td_proc->p_flags & P_LOWMEMKILL))
1668 return (KERN_PROTECTION_FAILURE);
1670 return (KERN_TRY_AGAIN);
1674 * Fall through to readrest. We have a new page which
1675 * will have to be paged (since m->valid will be 0).
1679 readrest:
1681 * We have found an invalid or partially valid page, a
1682 * page with a read-ahead mark which might be partially or
1683 * fully valid (and maybe dirty too), or we have allocated
1684 * a new page.
1686 * Attempt to fault-in the page if there is a chance that the
1687 * pager has it, and potentially fault in additional pages
1688 * at the same time.
1690 * If TRYPAGER is true then fs.m will be non-NULL and busied
1691 * for us.
1693 if (TRYPAGER(fs)) {
1694 int rv;
1695 int seqaccess;
1696 u_char behavior = vm_map_entry_behavior(fs->entry);
1698 if (behavior == MAP_ENTRY_BEHAV_RANDOM)
1699 seqaccess = 0;
1700 else
1701 seqaccess = -1;
1704 * Doing I/O may synchronously insert additional
1705 * pages so we can't be shared at this point either.
1707 * NOTE: We can't free fs->m here in the allocated
1708 * case (fs->object != fs->first_object) as
1709 * this would require an exclusively locked
1710 * VM object.
1712 if (fs->object == fs->first_object &&
1713 fs->first_shared) {
1714 vm_page_deactivate(fs->m);
1715 vm_page_wakeup(fs->m);
1716 fs->m = NULL;
1717 fs->first_shared = 0;
1718 vm_object_pip_wakeup(fs->first_object);
1719 vm_object_chain_release_all(fs->first_object,
1720 fs->object);
1721 if (fs->object != fs->first_object)
1722 vm_object_drop(fs->object);
1723 unlock_and_deallocate(fs);
1724 return (KERN_TRY_AGAIN);
1726 if (fs->object != fs->first_object &&
1727 fs->shared) {
1728 vm_page_deactivate(fs->m);
1729 vm_page_wakeup(fs->m);
1730 fs->m = NULL;
1731 fs->first_shared = 0;
1732 fs->shared = 0;
1733 vm_object_pip_wakeup(fs->first_object);
1734 vm_object_chain_release_all(fs->first_object,
1735 fs->object);
1736 if (fs->object != fs->first_object)
1737 vm_object_drop(fs->object);
1738 unlock_and_deallocate(fs);
1739 return (KERN_TRY_AGAIN);
1743 * Avoid deadlocking against the map when doing I/O.
1744 * fs.object and the page is PG_BUSY'd.
1746 * NOTE: Once unlocked, fs->entry can become stale
1747 * so this will NULL it out.
1749 * NOTE: fs->entry is invalid until we relock the
1750 * map and verify that the timestamp has not
1751 * changed.
1753 unlock_map(fs);
1756 * Acquire the page data. We still hold a ref on
1757 * fs.object and the page has been PG_BUSY's.
1759 * The pager may replace the page (for example, in
1760 * order to enter a fictitious page into the
1761 * object). If it does so it is responsible for
1762 * cleaning up the passed page and properly setting
1763 * the new page PG_BUSY.
1765 * If we got here through a PG_RAM read-ahead
1766 * mark the page may be partially dirty and thus
1767 * not freeable. Don't bother checking to see
1768 * if the pager has the page because we can't free
1769 * it anyway. We have to depend on the get_page
1770 * operation filling in any gaps whether there is
1771 * backing store or not.
1773 rv = vm_pager_get_page(fs->object, &fs->m, seqaccess);
1775 if (rv == VM_PAGER_OK) {
1777 * Relookup in case pager changed page. Pager
1778 * is responsible for disposition of old page
1779 * if moved.
1781 * XXX other code segments do relookups too.
1782 * It's a bad abstraction that needs to be
1783 * fixed/removed.
1785 fs->m = vm_page_lookup(fs->object, pindex);
1786 if (fs->m == NULL) {
1787 vm_object_pip_wakeup(fs->first_object);
1788 vm_object_chain_release_all(
1789 fs->first_object, fs->object);
1790 if (fs->object != fs->first_object)
1791 vm_object_drop(fs->object);
1792 unlock_and_deallocate(fs);
1793 return (KERN_TRY_AGAIN);
1795 ++fs->hardfault;
1796 break; /* break to PAGE HAS BEEN FOUND */
1800 * Remove the bogus page (which does not exist at this
1801 * object/offset); before doing so, we must get back
1802 * our object lock to preserve our invariant.
1804 * Also wake up any other process that may want to bring
1805 * in this page.
1807 * If this is the top-level object, we must leave the
1808 * busy page to prevent another process from rushing
1809 * past us, and inserting the page in that object at
1810 * the same time that we are.
1812 if (rv == VM_PAGER_ERROR) {
1813 if (curproc) {
1814 kprintf("vm_fault: pager read error, "
1815 "pid %d (%s)\n",
1816 curproc->p_pid,
1817 curproc->p_comm);
1818 } else {
1819 kprintf("vm_fault: pager read error, "
1820 "thread %p (%s)\n",
1821 curthread,
1822 curproc->p_comm);
1827 * Data outside the range of the pager or an I/O error
1829 * The page may have been wired during the pagein,
1830 * e.g. by the buffer cache, and cannot simply be
1831 * freed. Call vnode_pager_freepage() to deal with it.
1833 * Also note that we cannot free the page if we are
1834 * holding the related object shared. XXX not sure
1835 * what to do in that case.
1837 if (fs->object != fs->first_object) {
1838 vnode_pager_freepage(fs->m);
1839 fs->m = NULL;
1841 * XXX - we cannot just fall out at this
1842 * point, m has been freed and is invalid!
1846 * XXX - the check for kernel_map is a kludge to work
1847 * around having the machine panic on a kernel space
1848 * fault w/ I/O error.
1850 if (((fs->map != &kernel_map) &&
1851 (rv == VM_PAGER_ERROR)) || (rv == VM_PAGER_BAD)) {
1852 if (fs->m) {
1853 if (fs->first_shared) {
1854 vm_page_deactivate(fs->m);
1855 vm_page_wakeup(fs->m);
1856 } else {
1857 vnode_pager_freepage(fs->m);
1859 fs->m = NULL;
1861 vm_object_pip_wakeup(fs->first_object);
1862 vm_object_chain_release_all(fs->first_object,
1863 fs->object);
1864 if (fs->object != fs->first_object)
1865 vm_object_drop(fs->object);
1866 unlock_and_deallocate(fs);
1867 if (rv == VM_PAGER_ERROR)
1868 return (KERN_FAILURE);
1869 else
1870 return (KERN_PROTECTION_FAILURE);
1871 /* NOT REACHED */
1876 * We get here if the object has a default pager (or unwiring)
1877 * or the pager doesn't have the page.
1879 * fs->first_m will be used for the COW unless we find a
1880 * deeper page to be mapped read-only, in which case the
1881 * unlock*(fs) will free first_m.
1883 if (fs->object == fs->first_object)
1884 fs->first_m = fs->m;
1887 * Move on to the next object. The chain lock should prevent
1888 * the backing_object from getting ripped out from under us.
1890 * The object lock for the next object is governed by
1891 * fs->shared.
1893 if ((next_object = fs->object->backing_object) != NULL) {
1894 if (fs->shared)
1895 vm_object_hold_shared(next_object);
1896 else
1897 vm_object_hold(next_object);
1898 vm_object_chain_acquire(next_object, fs->shared);
1899 KKASSERT(next_object == fs->object->backing_object);
1900 pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1903 if (next_object == NULL) {
1905 * If there's no object left, fill the page in the top
1906 * object with zeros.
1908 if (fs->object != fs->first_object) {
1909 #if 0
1910 if (fs->first_object->backing_object !=
1911 fs->object) {
1912 vm_object_hold(fs->first_object->backing_object);
1914 #endif
1915 vm_object_chain_release_all(
1916 fs->first_object->backing_object,
1917 fs->object);
1918 #if 0
1919 if (fs->first_object->backing_object !=
1920 fs->object) {
1921 vm_object_drop(fs->first_object->backing_object);
1923 #endif
1924 vm_object_pip_wakeup(fs->object);
1925 vm_object_drop(fs->object);
1926 fs->object = fs->first_object;
1927 pindex = first_pindex;
1928 fs->m = fs->first_m;
1930 fs->first_m = NULL;
1933 * Zero the page and mark it valid.
1935 vm_page_zero_fill(fs->m);
1936 mycpu->gd_cnt.v_zfod++;
1937 fs->m->valid = VM_PAGE_BITS_ALL;
1938 break; /* break to PAGE HAS BEEN FOUND */
1940 if (fs->object != fs->first_object) {
1941 vm_object_pip_wakeup(fs->object);
1942 vm_object_lock_swap();
1943 vm_object_drop(fs->object);
1945 KASSERT(fs->object != next_object,
1946 ("object loop %p", next_object));
1947 fs->object = next_object;
1948 vm_object_pip_add(fs->object, 1);
1952 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1953 * is held.]
1955 * object still held.
1957 * local shared variable may be different from fs->shared.
1959 * If the page is being written, but isn't already owned by the
1960 * top-level object, we have to copy it into a new page owned by the
1961 * top-level object.
1963 KASSERT((fs->m->flags & PG_BUSY) != 0,
1964 ("vm_fault: not busy after main loop"));
1966 if (fs->object != fs->first_object) {
1968 * We only really need to copy if we want to write it.
1970 if (fault_type & VM_PROT_WRITE) {
1972 * This allows pages to be virtually copied from a
1973 * backing_object into the first_object, where the
1974 * backing object has no other refs to it, and cannot
1975 * gain any more refs. Instead of a bcopy, we just
1976 * move the page from the backing object to the
1977 * first object. Note that we must mark the page
1978 * dirty in the first object so that it will go out
1979 * to swap when needed.
1981 if (
1983 * Must be holding exclusive locks
1985 fs->first_shared == 0 &&
1986 fs->shared == 0 &&
1988 * Map, if present, has not changed
1990 (fs->map == NULL ||
1991 fs->map_generation == fs->map->timestamp) &&
1993 * Only one shadow object
1995 (fs->object->shadow_count == 1) &&
1997 * No COW refs, except us
1999 (fs->object->ref_count == 1) &&
2001 * No one else can look this object up
2003 (fs->object->handle == NULL) &&
2005 * No other ways to look the object up
2007 ((fs->object->type == OBJT_DEFAULT) ||
2008 (fs->object->type == OBJT_SWAP)) &&
2010 * We don't chase down the shadow chain
2012 (fs->object == fs->first_object->backing_object) &&
2015 * grab the lock if we need to
2017 (fs->lookup_still_valid ||
2018 fs->map == NULL ||
2019 lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0)
2022 * (first_m) and (m) are both busied. We have
2023 * move (m) into (first_m)'s object/pindex
2024 * in an atomic fashion, then free (first_m).
2026 * first_object is held so second remove
2027 * followed by the rename should wind
2028 * up being atomic. vm_page_free() might
2029 * block so we don't do it until after the
2030 * rename.
2032 fs->lookup_still_valid = 1;
2033 vm_page_protect(fs->first_m, VM_PROT_NONE);
2034 vm_page_remove(fs->first_m);
2035 vm_page_rename(fs->m, fs->first_object,
2036 first_pindex);
2037 vm_page_free(fs->first_m);
2038 fs->first_m = fs->m;
2039 fs->m = NULL;
2040 mycpu->gd_cnt.v_cow_optim++;
2041 } else {
2043 * Oh, well, lets copy it.
2045 * Why are we unmapping the original page
2046 * here? Well, in short, not all accessors
2047 * of user memory go through the pmap. The
2048 * procfs code doesn't have access user memory
2049 * via a local pmap, so vm_fault_page*()
2050 * can't call pmap_enter(). And the umtx*()
2051 * code may modify the COW'd page via a DMAP
2052 * or kernel mapping and not via the pmap,
2053 * leaving the original page still mapped
2054 * read-only into the pmap.
2056 * So we have to remove the page from at
2057 * least the current pmap if it is in it.
2058 * Just remove it from all pmaps.
2060 KKASSERT(fs->first_shared == 0);
2061 vm_page_copy(fs->m, fs->first_m);
2062 vm_page_protect(fs->m, VM_PROT_NONE);
2063 vm_page_event(fs->m, VMEVENT_COW);
2067 * We no longer need the old page or object.
2069 if (fs->m)
2070 release_page(fs);
2073 * We intend to revert to first_object, undo the
2074 * chain lock through to that.
2076 #if 0
2077 if (fs->first_object->backing_object != fs->object)
2078 vm_object_hold(fs->first_object->backing_object);
2079 #endif
2080 vm_object_chain_release_all(
2081 fs->first_object->backing_object,
2082 fs->object);
2083 #if 0
2084 if (fs->first_object->backing_object != fs->object)
2085 vm_object_drop(fs->first_object->backing_object);
2086 #endif
2089 * fs->object != fs->first_object due to above
2090 * conditional
2092 vm_object_pip_wakeup(fs->object);
2093 vm_object_drop(fs->object);
2096 * Only use the new page below...
2098 mycpu->gd_cnt.v_cow_faults++;
2099 fs->m = fs->first_m;
2100 fs->object = fs->first_object;
2101 pindex = first_pindex;
2102 } else {
2104 * If it wasn't a write fault avoid having to copy
2105 * the page by mapping it read-only.
2107 fs->prot &= ~VM_PROT_WRITE;
2112 * Relock the map if necessary, then check the generation count.
2113 * relock_map() will update fs->timestamp to account for the
2114 * relocking if necessary.
2116 * If the count has changed after relocking then all sorts of
2117 * crap may have happened and we have to retry.
2119 * NOTE: The relock_map() can fail due to a deadlock against
2120 * the vm_page we are holding BUSY.
2122 if (fs->lookup_still_valid == FALSE && fs->map) {
2123 if (relock_map(fs) ||
2124 fs->map->timestamp != fs->map_generation) {
2125 release_page(fs);
2126 vm_object_pip_wakeup(fs->first_object);
2127 vm_object_chain_release_all(fs->first_object,
2128 fs->object);
2129 if (fs->object != fs->first_object)
2130 vm_object_drop(fs->object);
2131 unlock_and_deallocate(fs);
2132 return (KERN_TRY_AGAIN);
2137 * If the fault is a write, we know that this page is being
2138 * written NOW so dirty it explicitly to save on pmap_is_modified()
2139 * calls later.
2141 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
2142 * if the page is already dirty to prevent data written with
2143 * the expectation of being synced from not being synced.
2144 * Likewise if this entry does not request NOSYNC then make
2145 * sure the page isn't marked NOSYNC. Applications sharing
2146 * data should use the same flags to avoid ping ponging.
2148 * Also tell the backing pager, if any, that it should remove
2149 * any swap backing since the page is now dirty.
2151 vm_page_activate(fs->m);
2152 if (fs->prot & VM_PROT_WRITE) {
2153 vm_object_set_writeable_dirty(fs->m->object);
2154 vm_set_nosync(fs->m, fs->entry);
2155 if (fs->fault_flags & VM_FAULT_DIRTY) {
2156 vm_page_dirty(fs->m);
2157 if (fs->m->flags & PG_SWAPPED) {
2159 * If the page is swapped out we have to call
2160 * swap_pager_unswapped() which requires an
2161 * exclusive object lock. If we are shared,
2162 * we must clear the shared flag and retry.
2164 if ((fs->object == fs->first_object &&
2165 fs->first_shared) ||
2166 (fs->object != fs->first_object &&
2167 fs->shared)) {
2168 vm_page_wakeup(fs->m);
2169 fs->m = NULL;
2170 if (fs->object == fs->first_object)
2171 fs->first_shared = 0;
2172 else
2173 fs->shared = 0;
2174 vm_object_pip_wakeup(fs->first_object);
2175 vm_object_chain_release_all(
2176 fs->first_object, fs->object);
2177 if (fs->object != fs->first_object)
2178 vm_object_drop(fs->object);
2179 unlock_and_deallocate(fs);
2180 return (KERN_TRY_AGAIN);
2182 swap_pager_unswapped(fs->m);
2187 vm_object_pip_wakeup(fs->first_object);
2188 vm_object_chain_release_all(fs->first_object, fs->object);
2189 if (fs->object != fs->first_object)
2190 vm_object_drop(fs->object);
2193 * Page had better still be busy. We are still locked up and
2194 * fs->object will have another PIP reference if it is not equal
2195 * to fs->first_object.
2197 KASSERT(fs->m->flags & PG_BUSY,
2198 ("vm_fault: page %p not busy!", fs->m));
2201 * Sanity check: page must be completely valid or it is not fit to
2202 * map into user space. vm_pager_get_pages() ensures this.
2204 if (fs->m->valid != VM_PAGE_BITS_ALL) {
2205 vm_page_zero_invalid(fs->m, TRUE);
2206 kprintf("Warning: page %p partially invalid on fault\n", fs->m);
2209 return (KERN_SUCCESS);
2213 * Wire down a range of virtual addresses in a map. The entry in question
2214 * should be marked in-transition and the map must be locked. We must
2215 * release the map temporarily while faulting-in the page to avoid a
2216 * deadlock. Note that the entry may be clipped while we are blocked but
2217 * will never be freed.
2219 * No requirements.
2222 vm_fault_wire(vm_map_t map, vm_map_entry_t entry,
2223 boolean_t user_wire, int kmflags)
2225 boolean_t fictitious;
2226 vm_offset_t start;
2227 vm_offset_t end;
2228 vm_offset_t va;
2229 pmap_t pmap;
2230 int rv;
2231 int wire_prot;
2232 int fault_flags;
2233 vm_page_t m;
2235 lwkt_gettoken(&map->token);
2237 if (user_wire) {
2238 wire_prot = VM_PROT_READ;
2239 fault_flags = VM_FAULT_USER_WIRE;
2240 } else {
2241 wire_prot = VM_PROT_READ | VM_PROT_WRITE;
2242 fault_flags = VM_FAULT_CHANGE_WIRING;
2244 if (kmflags & KM_NOTLBSYNC)
2245 wire_prot |= VM_PROT_NOSYNC;
2247 pmap = vm_map_pmap(map);
2248 start = entry->start;
2249 end = entry->end;
2250 switch(entry->maptype) {
2251 case VM_MAPTYPE_NORMAL:
2252 case VM_MAPTYPE_VPAGETABLE:
2253 fictitious = entry->object.vm_object &&
2254 ((entry->object.vm_object->type == OBJT_DEVICE) ||
2255 (entry->object.vm_object->type == OBJT_MGTDEVICE));
2256 break;
2257 case VM_MAPTYPE_UKSMAP:
2258 fictitious = TRUE;
2259 break;
2260 default:
2261 fictitious = FALSE;
2262 break;
2265 if (entry->eflags & MAP_ENTRY_KSTACK)
2266 start += PAGE_SIZE;
2267 map->timestamp++;
2268 vm_map_unlock(map);
2271 * We simulate a fault to get the page and enter it in the physical
2272 * map.
2274 for (va = start; va < end; va += PAGE_SIZE) {
2275 rv = vm_fault(map, va, wire_prot, fault_flags);
2276 if (rv) {
2277 while (va > start) {
2278 va -= PAGE_SIZE;
2279 m = pmap_unwire(pmap, va);
2280 if (m && !fictitious) {
2281 vm_page_busy_wait(m, FALSE, "vmwrpg");
2282 vm_page_unwire(m, 1);
2283 vm_page_wakeup(m);
2286 goto done;
2289 rv = KERN_SUCCESS;
2290 done:
2291 vm_map_lock(map);
2292 lwkt_reltoken(&map->token);
2293 return (rv);
2297 * Unwire a range of virtual addresses in a map. The map should be
2298 * locked.
2300 void
2301 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
2303 boolean_t fictitious;
2304 vm_offset_t start;
2305 vm_offset_t end;
2306 vm_offset_t va;
2307 pmap_t pmap;
2308 vm_page_t m;
2310 lwkt_gettoken(&map->token);
2312 pmap = vm_map_pmap(map);
2313 start = entry->start;
2314 end = entry->end;
2315 fictitious = entry->object.vm_object &&
2316 ((entry->object.vm_object->type == OBJT_DEVICE) ||
2317 (entry->object.vm_object->type == OBJT_MGTDEVICE));
2318 if (entry->eflags & MAP_ENTRY_KSTACK)
2319 start += PAGE_SIZE;
2322 * Since the pages are wired down, we must be able to get their
2323 * mappings from the physical map system.
2325 for (va = start; va < end; va += PAGE_SIZE) {
2326 m = pmap_unwire(pmap, va);
2327 if (m && !fictitious) {
2328 vm_page_busy_wait(m, FALSE, "vmwrpg");
2329 vm_page_unwire(m, 1);
2330 vm_page_wakeup(m);
2333 lwkt_reltoken(&map->token);
2337 * Copy all of the pages from a wired-down map entry to another.
2339 * The source and destination maps must be locked for write.
2340 * The source and destination maps token must be held
2341 * The source map entry must be wired down (or be a sharing map
2342 * entry corresponding to a main map entry that is wired down).
2344 * No other requirements.
2346 * XXX do segment optimization
2348 void
2349 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
2350 vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
2352 vm_object_t dst_object;
2353 vm_object_t src_object;
2354 vm_ooffset_t dst_offset;
2355 vm_ooffset_t src_offset;
2356 vm_prot_t prot;
2357 vm_offset_t vaddr;
2358 vm_page_t dst_m;
2359 vm_page_t src_m;
2361 src_object = src_entry->object.vm_object;
2362 src_offset = src_entry->offset;
2365 * Create the top-level object for the destination entry. (Doesn't
2366 * actually shadow anything - we copy the pages directly.)
2368 vm_map_entry_allocate_object(dst_entry);
2369 dst_object = dst_entry->object.vm_object;
2371 prot = dst_entry->max_protection;
2374 * Loop through all of the pages in the entry's range, copying each
2375 * one from the source object (it should be there) to the destination
2376 * object.
2378 vm_object_hold(src_object);
2379 vm_object_hold(dst_object);
2380 for (vaddr = dst_entry->start, dst_offset = 0;
2381 vaddr < dst_entry->end;
2382 vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
2385 * Allocate a page in the destination object
2387 do {
2388 dst_m = vm_page_alloc(dst_object,
2389 OFF_TO_IDX(dst_offset),
2390 VM_ALLOC_NORMAL);
2391 if (dst_m == NULL) {
2392 vm_wait(0);
2394 } while (dst_m == NULL);
2397 * Find the page in the source object, and copy it in.
2398 * (Because the source is wired down, the page will be in
2399 * memory.)
2401 src_m = vm_page_lookup(src_object,
2402 OFF_TO_IDX(dst_offset + src_offset));
2403 if (src_m == NULL)
2404 panic("vm_fault_copy_wired: page missing");
2406 vm_page_copy(src_m, dst_m);
2407 vm_page_event(src_m, VMEVENT_COW);
2410 * Enter it in the pmap...
2412 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE, dst_entry);
2415 * Mark it no longer busy, and put it on the active list.
2417 vm_page_activate(dst_m);
2418 vm_page_wakeup(dst_m);
2420 vm_object_drop(dst_object);
2421 vm_object_drop(src_object);
2424 #if 0
2427 * This routine checks around the requested page for other pages that
2428 * might be able to be faulted in. This routine brackets the viable
2429 * pages for the pages to be paged in.
2431 * Inputs:
2432 * m, rbehind, rahead
2434 * Outputs:
2435 * marray (array of vm_page_t), reqpage (index of requested page)
2437 * Return value:
2438 * number of pages in marray
2440 static int
2441 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
2442 vm_page_t *marray, int *reqpage)
2444 int i,j;
2445 vm_object_t object;
2446 vm_pindex_t pindex, startpindex, endpindex, tpindex;
2447 vm_page_t rtm;
2448 int cbehind, cahead;
2450 object = m->object;
2451 pindex = m->pindex;
2454 * we don't fault-ahead for device pager
2456 if ((object->type == OBJT_DEVICE) ||
2457 (object->type == OBJT_MGTDEVICE)) {
2458 *reqpage = 0;
2459 marray[0] = m;
2460 return 1;
2464 * if the requested page is not available, then give up now
2466 if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
2467 *reqpage = 0; /* not used by caller, fix compiler warn */
2468 return 0;
2471 if ((cbehind == 0) && (cahead == 0)) {
2472 *reqpage = 0;
2473 marray[0] = m;
2474 return 1;
2477 if (rahead > cahead) {
2478 rahead = cahead;
2481 if (rbehind > cbehind) {
2482 rbehind = cbehind;
2486 * Do not do any readahead if we have insufficient free memory.
2488 * XXX code was broken disabled before and has instability
2489 * with this conditonal fixed, so shortcut for now.
2491 if (burst_fault == 0 || vm_page_count_severe()) {
2492 marray[0] = m;
2493 *reqpage = 0;
2494 return 1;
2498 * scan backward for the read behind pages -- in memory
2500 * Assume that if the page is not found an interrupt will not
2501 * create it. Theoretically interrupts can only remove (busy)
2502 * pages, not create new associations.
2504 if (pindex > 0) {
2505 if (rbehind > pindex) {
2506 rbehind = pindex;
2507 startpindex = 0;
2508 } else {
2509 startpindex = pindex - rbehind;
2512 vm_object_hold(object);
2513 for (tpindex = pindex; tpindex > startpindex; --tpindex) {
2514 if (vm_page_lookup(object, tpindex - 1))
2515 break;
2518 i = 0;
2519 while (tpindex < pindex) {
2520 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2521 VM_ALLOC_NULL_OK);
2522 if (rtm == NULL) {
2523 for (j = 0; j < i; j++) {
2524 vm_page_free(marray[j]);
2526 vm_object_drop(object);
2527 marray[0] = m;
2528 *reqpage = 0;
2529 return 1;
2531 marray[i] = rtm;
2532 ++i;
2533 ++tpindex;
2535 vm_object_drop(object);
2536 } else {
2537 i = 0;
2541 * Assign requested page
2543 marray[i] = m;
2544 *reqpage = i;
2545 ++i;
2548 * Scan forwards for read-ahead pages
2550 tpindex = pindex + 1;
2551 endpindex = tpindex + rahead;
2552 if (endpindex > object->size)
2553 endpindex = object->size;
2555 vm_object_hold(object);
2556 while (tpindex < endpindex) {
2557 if (vm_page_lookup(object, tpindex))
2558 break;
2559 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2560 VM_ALLOC_NULL_OK);
2561 if (rtm == NULL)
2562 break;
2563 marray[i] = rtm;
2564 ++i;
2565 ++tpindex;
2567 vm_object_drop(object);
2569 return (i);
2572 #endif
2575 * vm_prefault() provides a quick way of clustering pagefaults into a
2576 * processes address space. It is a "cousin" of pmap_object_init_pt,
2577 * except it runs at page fault time instead of mmap time.
2579 * vm.fast_fault Enables pre-faulting zero-fill pages
2581 * vm.prefault_pages Number of pages (1/2 negative, 1/2 positive) to
2582 * prefault. Scan stops in either direction when
2583 * a page is found to already exist.
2585 * This code used to be per-platform pmap_prefault(). It is now
2586 * machine-independent and enhanced to also pre-fault zero-fill pages
2587 * (see vm.fast_fault) as well as make them writable, which greatly
2588 * reduces the number of page faults programs incur.
2590 * Application performance when pre-faulting zero-fill pages is heavily
2591 * dependent on the application. Very tiny applications like /bin/echo
2592 * lose a little performance while applications of any appreciable size
2593 * gain performance. Prefaulting multiple pages also reduces SMP
2594 * congestion and can improve SMP performance significantly.
2596 * NOTE! prot may allow writing but this only applies to the top level
2597 * object. If we wind up mapping a page extracted from a backing
2598 * object we have to make sure it is read-only.
2600 * NOTE! The caller has already handled any COW operations on the
2601 * vm_map_entry via the normal fault code. Do NOT call this
2602 * shortcut unless the normal fault code has run on this entry.
2604 * The related map must be locked.
2605 * No other requirements.
2607 static int vm_prefault_pages = 8;
2608 SYSCTL_INT(_vm, OID_AUTO, prefault_pages, CTLFLAG_RW, &vm_prefault_pages, 0,
2609 "Maximum number of pages to pre-fault");
2610 static int vm_fast_fault = 1;
2611 SYSCTL_INT(_vm, OID_AUTO, fast_fault, CTLFLAG_RW, &vm_fast_fault, 0,
2612 "Burst fault zero-fill regions");
2615 * Set PG_NOSYNC if the map entry indicates so, but only if the page
2616 * is not already dirty by other means. This will prevent passive
2617 * filesystem syncing as well as 'sync' from writing out the page.
2619 static void
2620 vm_set_nosync(vm_page_t m, vm_map_entry_t entry)
2622 if (entry->eflags & MAP_ENTRY_NOSYNC) {
2623 if (m->dirty == 0)
2624 vm_page_flag_set(m, PG_NOSYNC);
2625 } else {
2626 vm_page_flag_clear(m, PG_NOSYNC);
2630 static void
2631 vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, int prot,
2632 int fault_flags)
2634 struct lwp *lp;
2635 vm_page_t m;
2636 vm_offset_t addr;
2637 vm_pindex_t index;
2638 vm_pindex_t pindex;
2639 vm_object_t object;
2640 int pprot;
2641 int i;
2642 int noneg;
2643 int nopos;
2644 int maxpages;
2647 * Get stable max count value, disabled if set to 0
2649 maxpages = vm_prefault_pages;
2650 cpu_ccfence();
2651 if (maxpages <= 0)
2652 return;
2655 * We do not currently prefault mappings that use virtual page
2656 * tables. We do not prefault foreign pmaps.
2658 if (entry->maptype != VM_MAPTYPE_NORMAL)
2659 return;
2660 lp = curthread->td_lwp;
2661 if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2662 return;
2665 * Limit pre-fault count to 1024 pages.
2667 if (maxpages > 1024)
2668 maxpages = 1024;
2670 object = entry->object.vm_object;
2671 KKASSERT(object != NULL);
2672 KKASSERT(object == entry->object.vm_object);
2675 * NOTE: VM_FAULT_DIRTY allowed later so must hold object exclusively
2676 * now (or do something more complex XXX).
2678 vm_object_hold(object);
2679 vm_object_chain_acquire(object, 0);
2681 noneg = 0;
2682 nopos = 0;
2683 for (i = 0; i < maxpages; ++i) {
2684 vm_object_t lobject;
2685 vm_object_t nobject;
2686 int allocated = 0;
2687 int error;
2690 * This can eat a lot of time on a heavily contended
2691 * machine so yield on the tick if needed.
2693 if ((i & 7) == 7)
2694 lwkt_yield();
2697 * Calculate the page to pre-fault, stopping the scan in
2698 * each direction separately if the limit is reached.
2700 if (i & 1) {
2701 if (noneg)
2702 continue;
2703 addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
2704 } else {
2705 if (nopos)
2706 continue;
2707 addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
2709 if (addr < entry->start) {
2710 noneg = 1;
2711 if (noneg && nopos)
2712 break;
2713 continue;
2715 if (addr >= entry->end) {
2716 nopos = 1;
2717 if (noneg && nopos)
2718 break;
2719 continue;
2723 * Skip pages already mapped, and stop scanning in that
2724 * direction. When the scan terminates in both directions
2725 * we are done.
2727 if (pmap_prefault_ok(pmap, addr) == 0) {
2728 if (i & 1)
2729 noneg = 1;
2730 else
2731 nopos = 1;
2732 if (noneg && nopos)
2733 break;
2734 continue;
2738 * Follow the VM object chain to obtain the page to be mapped
2739 * into the pmap.
2741 * If we reach the terminal object without finding a page
2742 * and we determine it would be advantageous, then allocate
2743 * a zero-fill page for the base object. The base object
2744 * is guaranteed to be OBJT_DEFAULT for this case.
2746 * In order to not have to check the pager via *haspage*()
2747 * we stop if any non-default object is encountered. e.g.
2748 * a vnode or swap object would stop the loop.
2750 index = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2751 lobject = object;
2752 pindex = index;
2753 pprot = prot;
2755 KKASSERT(lobject == entry->object.vm_object);
2756 /*vm_object_hold(lobject); implied */
2758 while ((m = vm_page_lookup_busy_try(lobject, pindex,
2759 TRUE, &error)) == NULL) {
2760 if (lobject->type != OBJT_DEFAULT)
2761 break;
2762 if (lobject->backing_object == NULL) {
2763 if (vm_fast_fault == 0)
2764 break;
2765 if ((prot & VM_PROT_WRITE) == 0 ||
2766 vm_page_count_min(0)) {
2767 break;
2771 * NOTE: Allocated from base object
2773 m = vm_page_alloc(object, index,
2774 VM_ALLOC_NORMAL |
2775 VM_ALLOC_ZERO |
2776 VM_ALLOC_USE_GD |
2777 VM_ALLOC_NULL_OK);
2778 if (m == NULL)
2779 break;
2780 allocated = 1;
2781 pprot = prot;
2782 /* lobject = object .. not needed */
2783 break;
2785 if (lobject->backing_object_offset & PAGE_MASK)
2786 break;
2787 nobject = lobject->backing_object;
2788 vm_object_hold(nobject);
2789 KKASSERT(nobject == lobject->backing_object);
2790 pindex += lobject->backing_object_offset >> PAGE_SHIFT;
2791 if (lobject != object) {
2792 vm_object_lock_swap();
2793 vm_object_drop(lobject);
2795 lobject = nobject;
2796 pprot &= ~VM_PROT_WRITE;
2797 vm_object_chain_acquire(lobject, 0);
2801 * NOTE: A non-NULL (m) will be associated with lobject if
2802 * it was found there, otherwise it is probably a
2803 * zero-fill page associated with the base object.
2805 * Give-up if no page is available.
2807 if (m == NULL) {
2808 if (lobject != object) {
2809 #if 0
2810 if (object->backing_object != lobject)
2811 vm_object_hold(object->backing_object);
2812 #endif
2813 vm_object_chain_release_all(
2814 object->backing_object, lobject);
2815 #if 0
2816 if (object->backing_object != lobject)
2817 vm_object_drop(object->backing_object);
2818 #endif
2819 vm_object_drop(lobject);
2821 break;
2825 * The object must be marked dirty if we are mapping a
2826 * writable page. m->object is either lobject or object,
2827 * both of which are still held. Do this before we
2828 * potentially drop the object.
2830 if (pprot & VM_PROT_WRITE)
2831 vm_object_set_writeable_dirty(m->object);
2834 * Do not conditionalize on PG_RAM. If pages are present in
2835 * the VM system we assume optimal caching. If caching is
2836 * not optimal the I/O gravy train will be restarted when we
2837 * hit an unavailable page. We do not want to try to restart
2838 * the gravy train now because we really don't know how much
2839 * of the object has been cached. The cost for restarting
2840 * the gravy train should be low (since accesses will likely
2841 * be I/O bound anyway).
2843 if (lobject != object) {
2844 #if 0
2845 if (object->backing_object != lobject)
2846 vm_object_hold(object->backing_object);
2847 #endif
2848 vm_object_chain_release_all(object->backing_object,
2849 lobject);
2850 #if 0
2851 if (object->backing_object != lobject)
2852 vm_object_drop(object->backing_object);
2853 #endif
2854 vm_object_drop(lobject);
2858 * Enter the page into the pmap if appropriate. If we had
2859 * allocated the page we have to place it on a queue. If not
2860 * we just have to make sure it isn't on the cache queue
2861 * (pages on the cache queue are not allowed to be mapped).
2863 if (allocated) {
2865 * Page must be zerod.
2867 vm_page_zero_fill(m);
2868 mycpu->gd_cnt.v_zfod++;
2869 m->valid = VM_PAGE_BITS_ALL;
2872 * Handle dirty page case
2874 if (pprot & VM_PROT_WRITE)
2875 vm_set_nosync(m, entry);
2876 pmap_enter(pmap, addr, m, pprot, 0, entry);
2877 mycpu->gd_cnt.v_vm_faults++;
2878 if (curthread->td_lwp)
2879 ++curthread->td_lwp->lwp_ru.ru_minflt;
2880 vm_page_deactivate(m);
2881 if (pprot & VM_PROT_WRITE) {
2882 /*vm_object_set_writeable_dirty(m->object);*/
2883 vm_set_nosync(m, entry);
2884 if (fault_flags & VM_FAULT_DIRTY) {
2885 vm_page_dirty(m);
2886 /*XXX*/
2887 swap_pager_unswapped(m);
2890 vm_page_wakeup(m);
2891 } else if (error) {
2892 /* couldn't busy page, no wakeup */
2893 } else if (
2894 ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2895 (m->flags & PG_FICTITIOUS) == 0) {
2897 * A fully valid page not undergoing soft I/O can
2898 * be immediately entered into the pmap.
2900 if ((m->queue - m->pc) == PQ_CACHE)
2901 vm_page_deactivate(m);
2902 if (pprot & VM_PROT_WRITE) {
2903 /*vm_object_set_writeable_dirty(m->object);*/
2904 vm_set_nosync(m, entry);
2905 if (fault_flags & VM_FAULT_DIRTY) {
2906 vm_page_dirty(m);
2907 /*XXX*/
2908 swap_pager_unswapped(m);
2911 if (pprot & VM_PROT_WRITE)
2912 vm_set_nosync(m, entry);
2913 pmap_enter(pmap, addr, m, pprot, 0, entry);
2914 mycpu->gd_cnt.v_vm_faults++;
2915 if (curthread->td_lwp)
2916 ++curthread->td_lwp->lwp_ru.ru_minflt;
2917 vm_page_wakeup(m);
2918 } else {
2919 vm_page_wakeup(m);
2922 vm_object_chain_release(object);
2923 vm_object_drop(object);
2927 * Object can be held shared
2929 static void
2930 vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
2931 vm_map_entry_t entry, int prot, int fault_flags)
2933 struct lwp *lp;
2934 vm_page_t m;
2935 vm_offset_t addr;
2936 vm_pindex_t pindex;
2937 vm_object_t object;
2938 int i;
2939 int noneg;
2940 int nopos;
2941 int maxpages;
2944 * Get stable max count value, disabled if set to 0
2946 maxpages = vm_prefault_pages;
2947 cpu_ccfence();
2948 if (maxpages <= 0)
2949 return;
2952 * We do not currently prefault mappings that use virtual page
2953 * tables. We do not prefault foreign pmaps.
2955 if (entry->maptype != VM_MAPTYPE_NORMAL)
2956 return;
2957 lp = curthread->td_lwp;
2958 if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2959 return;
2960 object = entry->object.vm_object;
2961 if (object->backing_object != NULL)
2962 return;
2963 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2966 * Limit pre-fault count to 1024 pages.
2968 if (maxpages > 1024)
2969 maxpages = 1024;
2971 noneg = 0;
2972 nopos = 0;
2973 for (i = 0; i < maxpages; ++i) {
2974 int error;
2977 * Calculate the page to pre-fault, stopping the scan in
2978 * each direction separately if the limit is reached.
2980 if (i & 1) {
2981 if (noneg)
2982 continue;
2983 addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
2984 } else {
2985 if (nopos)
2986 continue;
2987 addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
2989 if (addr < entry->start) {
2990 noneg = 1;
2991 if (noneg && nopos)
2992 break;
2993 continue;
2995 if (addr >= entry->end) {
2996 nopos = 1;
2997 if (noneg && nopos)
2998 break;
2999 continue;
3003 * Follow the VM object chain to obtain the page to be mapped
3004 * into the pmap. This version of the prefault code only
3005 * works with terminal objects.
3007 * The page must already exist. If we encounter a problem
3008 * we stop here.
3010 * WARNING! We cannot call swap_pager_unswapped() or insert
3011 * a new vm_page with a shared token.
3013 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
3015 m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
3016 if (m == NULL || error)
3017 break;
3020 * Skip pages already mapped, and stop scanning in that
3021 * direction. When the scan terminates in both directions
3022 * we are done.
3024 if (pmap_prefault_ok(pmap, addr) == 0) {
3025 vm_page_wakeup(m);
3026 if (i & 1)
3027 noneg = 1;
3028 else
3029 nopos = 1;
3030 if (noneg && nopos)
3031 break;
3032 continue;
3036 * Stop if the page cannot be trivially entered into the
3037 * pmap.
3039 if (((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) ||
3040 (m->flags & PG_FICTITIOUS) ||
3041 ((m->flags & PG_SWAPPED) &&
3042 (prot & VM_PROT_WRITE) &&
3043 (fault_flags & VM_FAULT_DIRTY))) {
3044 vm_page_wakeup(m);
3045 break;
3049 * Enter the page into the pmap. The object might be held
3050 * shared so we can't do any (serious) modifying operation
3051 * on it.
3053 if ((m->queue - m->pc) == PQ_CACHE)
3054 vm_page_deactivate(m);
3055 if (prot & VM_PROT_WRITE) {
3056 vm_object_set_writeable_dirty(m->object);
3057 vm_set_nosync(m, entry);
3058 if (fault_flags & VM_FAULT_DIRTY) {
3059 vm_page_dirty(m);
3060 /* can't happeen due to conditional above */
3061 /* swap_pager_unswapped(m); */
3064 pmap_enter(pmap, addr, m, prot, 0, entry);
3065 mycpu->gd_cnt.v_vm_faults++;
3066 if (curthread->td_lwp)
3067 ++curthread->td_lwp->lwp_ru.ru_minflt;
3068 vm_page_wakeup(m);