usr.sbin/makefs: Fix -Wformat warnings on other platforms
[dragonfly.git] / usr.sbin / makefs / hammer2 / hammer2_chain.c
blob4caa4153278e53ea05538ecb19ef5f4420d3c7c2
1 /*
2 * SPDX-License-Identifier: BSD-3-Clause
4 * Copyright (c) 2022 Tomohiro Kusumi <tkusumi@netbsd.org>
5 * Copyright (c) 2011-2022 The DragonFly Project. All rights reserved.
7 * This code is derived from software contributed to The DragonFly Project
8 * by Matthew Dillon <dillon@dragonflybsd.org>
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in
18 * the documentation and/or other materials provided with the
19 * distribution.
20 * 3. Neither the name of The DragonFly Project nor the names of its
21 * contributors may be used to endorse or promote products derived
22 * from this software without specific, prior written permission.
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
28 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
30 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
32 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
33 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
34 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
38 * This subsystem implements most of the core support functions for
39 * the hammer2_chain structure.
41 * Chains are the in-memory version on media objects (volume header, inodes,
42 * indirect blocks, data blocks, etc). Chains represent a portion of the
43 * HAMMER2 topology.
45 * Chains are no-longer delete-duplicated. Instead, the original in-memory
46 * chain will be moved along with its block reference (e.g. for things like
47 * renames, hardlink operations, modifications, etc), and will be indexed
48 * on a secondary list for flush handling instead of propagating a flag
49 * upward to the root.
51 * Concurrent front-end operations can still run against backend flushes
52 * as long as they do not cross the current flush boundary. An operation
53 * running above the current flush (in areas not yet flushed) can become
54 * part of the current flush while ano peration running below the current
55 * flush can become part of the next flush.
58 #include <sys/cdefs.h>
59 #include <sys/param.h>
60 #include <sys/systm.h>
61 #include <sys/types.h>
62 #include <sys/lock.h>
63 #include <sys/buf.h>
65 #include <crypto/sha2/sha2.h>
68 #include "hammer2.h"
70 static hammer2_chain_t *hammer2_chain_create_indirect(
71 hammer2_chain_t *parent,
72 hammer2_key_t key, int keybits,
73 hammer2_tid_t mtid, int for_type, int *errorp);
74 static int hammer2_chain_delete_obref(hammer2_chain_t *parent,
75 hammer2_chain_t *chain,
76 hammer2_tid_t mtid, int flags,
77 hammer2_blockref_t *obref);
78 static hammer2_chain_t *hammer2_combined_find(
79 hammer2_chain_t *parent,
80 hammer2_blockref_t *base, int count,
81 hammer2_key_t *key_nextp,
82 hammer2_key_t key_beg, hammer2_key_t key_end,
83 hammer2_blockref_t **brefp);
84 static hammer2_chain_t *hammer2_chain_lastdrop(hammer2_chain_t *chain,
85 int depth);
86 static void hammer2_chain_lru_flush(hammer2_pfs_t *pmp);
89 * There are many degenerate situations where an extreme rate of console
90 * output can occur from warnings and errors. Make sure this output does
91 * not impede operations.
94 static struct krate krate_h2chk = { .freq = 5 };
95 static struct krate krate_h2me = { .freq = 1 };
96 static struct krate krate_h2em = { .freq = 1 };
100 * Basic RBTree for chains (core.rbtree).
102 RB_GENERATE(hammer2_chain_tree, hammer2_chain, rbnode, hammer2_chain_cmp);
105 hammer2_chain_cmp(hammer2_chain_t *chain1, hammer2_chain_t *chain2)
107 hammer2_key_t c1_beg;
108 hammer2_key_t c1_end;
109 hammer2_key_t c2_beg;
110 hammer2_key_t c2_end;
113 * Compare chains. Overlaps are not supposed to happen and catch
114 * any software issues early we count overlaps as a match.
116 c1_beg = chain1->bref.key;
117 c1_end = c1_beg + ((hammer2_key_t)1 << chain1->bref.keybits) - 1;
118 c2_beg = chain2->bref.key;
119 c2_end = c2_beg + ((hammer2_key_t)1 << chain2->bref.keybits) - 1;
121 if (c1_end < c2_beg) /* fully to the left */
122 return(-1);
123 if (c1_beg > c2_end) /* fully to the right */
124 return(1);
125 return(0); /* overlap (must not cross edge boundary) */
129 * Assert that a chain has no media data associated with it.
131 static __inline void
132 hammer2_chain_assert_no_data(hammer2_chain_t *chain)
134 KKASSERT(chain->dio == NULL);
135 if (chain->bref.type != HAMMER2_BREF_TYPE_VOLUME &&
136 chain->bref.type != HAMMER2_BREF_TYPE_FREEMAP &&
137 chain->data) {
138 panic("hammer2_chain_assert_no_data: chain %p still has data",
139 chain);
144 * Make a chain visible to the flusher. The flusher operates using a top-down
145 * recursion based on the ONFLUSH flag. It locates MODIFIED and UPDATE chains,
146 * flushes them, and updates blocks back to the volume root.
148 * This routine sets the ONFLUSH flag upward from the triggering chain until
149 * it hits an inode root or the volume root. Inode chains serve as inflection
150 * points, requiring the flusher to bridge across trees. Inodes include
151 * regular inodes, PFS roots (pmp->iroot), and the media super root
152 * (spmp->iroot).
154 void
155 hammer2_chain_setflush(hammer2_chain_t *chain)
157 hammer2_chain_t *parent;
159 if ((chain->flags & HAMMER2_CHAIN_ONFLUSH) == 0) {
160 hammer2_spin_sh(&chain->core.spin);
161 while ((chain->flags & HAMMER2_CHAIN_ONFLUSH) == 0) {
162 atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONFLUSH);
163 if (chain->bref.type == HAMMER2_BREF_TYPE_INODE)
164 break;
165 if ((parent = chain->parent) == NULL)
166 break;
167 hammer2_spin_sh(&parent->core.spin);
168 hammer2_spin_unsh(&chain->core.spin);
169 chain = parent;
171 hammer2_spin_unsh(&chain->core.spin);
176 * Allocate a new disconnected chain element representing the specified
177 * bref. chain->refs is set to 1 and the passed bref is copied to
178 * chain->bref. chain->bytes is derived from the bref.
180 * chain->pmp inherits pmp unless the chain is an inode (other than the
181 * super-root inode).
183 * NOTE: Returns a referenced but unlocked (because there is no core) chain.
185 hammer2_chain_t *
186 hammer2_chain_alloc(hammer2_dev_t *hmp, hammer2_pfs_t *pmp,
187 hammer2_blockref_t *bref)
189 hammer2_chain_t *chain;
190 u_int bytes;
193 * Special case - radix of 0 indicates a chain that does not
194 * need a data reference (context is completely embedded in the
195 * bref).
197 if ((int)(bref->data_off & HAMMER2_OFF_MASK_RADIX))
198 bytes = 1U << (int)(bref->data_off & HAMMER2_OFF_MASK_RADIX);
199 else
200 bytes = 0;
202 switch(bref->type) {
203 case HAMMER2_BREF_TYPE_INODE:
204 case HAMMER2_BREF_TYPE_INDIRECT:
205 case HAMMER2_BREF_TYPE_DATA:
206 case HAMMER2_BREF_TYPE_DIRENT:
207 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
208 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
209 case HAMMER2_BREF_TYPE_FREEMAP:
210 case HAMMER2_BREF_TYPE_VOLUME:
211 chain = kmalloc_obj(sizeof(*chain), hmp->mchain,
212 M_WAITOK | M_ZERO);
213 atomic_add_long(&hammer2_chain_allocs, 1);
214 break;
215 case HAMMER2_BREF_TYPE_EMPTY:
216 default:
217 panic("hammer2_chain_alloc: unrecognized blockref type: %d",
218 bref->type);
219 break;
223 * Initialize the new chain structure. pmp must be set to NULL for
224 * chains belonging to the super-root topology of a device mount.
226 if (pmp == hmp->spmp)
227 chain->pmp = NULL;
228 else
229 chain->pmp = pmp;
231 chain->hmp = hmp;
232 chain->bref = *bref;
233 chain->bytes = bytes;
234 chain->refs = 1;
235 chain->flags = HAMMER2_CHAIN_ALLOCATED;
236 lockinit(&chain->diolk, "chdio", 0, 0);
239 * Set the PFS boundary flag if this chain represents a PFS root.
241 if (bref->flags & HAMMER2_BREF_FLAG_PFSROOT)
242 atomic_set_int(&chain->flags, HAMMER2_CHAIN_PFSBOUNDARY);
243 hammer2_chain_init(chain);
245 return (chain);
249 * A common function to initialize chains including fchain and vchain.
251 void
252 hammer2_chain_init(hammer2_chain_t *chain)
254 RB_INIT(&chain->core.rbtree); /* live chains */
255 hammer2_mtx_init(&chain->lock, "h2chain");
256 hammer2_spin_init(&chain->core.spin, "h2chain");
260 * Add a reference to a chain element, preventing its destruction.
262 * (can be called with spinlock held)
264 void
265 hammer2_chain_ref(hammer2_chain_t *chain)
267 if (atomic_fetchadd_int(&chain->refs, 1) == 0) {
269 * Just flag that the chain was used and should be recycled
270 * on the LRU if it encounters it later.
272 if (chain->flags & HAMMER2_CHAIN_ONLRU)
273 atomic_set_int(&chain->flags, HAMMER2_CHAIN_LRUHINT);
275 #if 0
277 * REMOVED - reduces contention, lru_list is more heuristical
278 * now.
280 * 0->non-zero transition must ensure that chain is removed
281 * from the LRU list.
283 * NOTE: Already holding lru_spin here so we cannot call
284 * hammer2_chain_ref() to get it off lru_list, do
285 * it manually.
287 if (chain->flags & HAMMER2_CHAIN_ONLRU) {
288 hammer2_pfs_t *pmp = chain->pmp;
289 hammer2_spin_ex(&pmp->lru_spin);
290 if (chain->flags & HAMMER2_CHAIN_ONLRU) {
291 atomic_add_int(&pmp->lru_count, -1);
292 atomic_clear_int(&chain->flags,
293 HAMMER2_CHAIN_ONLRU);
294 TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
296 hammer2_spin_unex(&pmp->lru_spin);
298 #endif
303 * Ref a locked chain and force the data to be held across an unlock.
304 * Chain must be currently locked. The user of the chain who desires
305 * to release the hold must call hammer2_chain_lock_unhold() to relock
306 * and unhold the chain, then unlock normally, or may simply call
307 * hammer2_chain_drop_unhold() (which is safer against deadlocks).
309 void
310 hammer2_chain_ref_hold(hammer2_chain_t *chain)
312 atomic_add_int(&chain->lockcnt, 1);
313 hammer2_chain_ref(chain);
317 * Insert the chain in the core rbtree.
319 * Normal insertions are placed in the live rbtree. Insertion of a deleted
320 * chain is a special case used by the flush code that is placed on the
321 * unstaged deleted list to avoid confusing the live view.
323 #define HAMMER2_CHAIN_INSERT_SPIN 0x0001
324 #define HAMMER2_CHAIN_INSERT_LIVE 0x0002
325 #define HAMMER2_CHAIN_INSERT_RACE 0x0004
327 static
329 hammer2_chain_insert(hammer2_chain_t *parent, hammer2_chain_t *chain,
330 int flags, int generation)
332 hammer2_chain_t *xchain __debugvar;
333 int error = 0;
335 if (flags & HAMMER2_CHAIN_INSERT_SPIN)
336 hammer2_spin_ex(&parent->core.spin);
339 * Interlocked by spinlock, check for race
341 if ((flags & HAMMER2_CHAIN_INSERT_RACE) &&
342 parent->core.generation != generation) {
343 error = HAMMER2_ERROR_EAGAIN;
344 goto failed;
348 * Insert chain
350 xchain = RB_INSERT(hammer2_chain_tree, &parent->core.rbtree, chain);
351 KASSERT(xchain == NULL,
352 ("hammer2_chain_insert: collision %p %p (key=%016jx)",
353 chain, xchain, chain->bref.key));
354 atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
355 chain->parent = parent;
356 ++parent->core.chain_count;
357 ++parent->core.generation; /* XXX incs for _get() too, XXX */
360 * We have to keep track of the effective live-view blockref count
361 * so the create code knows when to push an indirect block.
363 if (flags & HAMMER2_CHAIN_INSERT_LIVE)
364 atomic_add_int(&parent->core.live_count, 1);
365 failed:
366 if (flags & HAMMER2_CHAIN_INSERT_SPIN)
367 hammer2_spin_unex(&parent->core.spin);
368 return error;
372 * Drop the caller's reference to the chain. When the ref count drops to
373 * zero this function will try to disassociate the chain from its parent and
374 * deallocate it, then recursely drop the parent using the implied ref
375 * from the chain's chain->parent.
377 * Nobody should own chain's mutex on the 1->0 transition, unless this drop
378 * races an acquisition by another cpu. Therefore we can loop if we are
379 * unable to acquire the mutex, and refs is unlikely to be 1 unless we again
380 * race against another drop.
382 void
383 hammer2_chain_drop(hammer2_chain_t *chain)
385 u_int refs;
387 KKASSERT(chain->refs > 0);
389 while (chain) {
390 refs = chain->refs;
391 cpu_ccfence();
392 KKASSERT(refs > 0);
394 if (refs == 1) {
395 if (hammer2_mtx_ex_try(&chain->lock) == 0)
396 chain = hammer2_chain_lastdrop(chain, 0);
397 /* retry the same chain, or chain from lastdrop */
398 } else {
399 if (atomic_cmpset_int(&chain->refs, refs, refs - 1))
400 break;
401 /* retry the same chain */
403 cpu_pause();
408 * Unhold a held and probably not-locked chain, ensure that the data is
409 * dropped on the 1->0 transition of lockcnt by obtaining an exclusive
410 * lock and then simply unlocking the chain.
412 void
413 hammer2_chain_unhold(hammer2_chain_t *chain)
415 u_int lockcnt;
416 int iter = 0;
418 for (;;) {
419 lockcnt = chain->lockcnt;
420 cpu_ccfence();
421 if (lockcnt > 1) {
422 if (atomic_cmpset_int(&chain->lockcnt,
423 lockcnt, lockcnt - 1)) {
424 break;
426 } else if (hammer2_mtx_ex_try(&chain->lock) == 0) {
427 hammer2_chain_unlock(chain);
428 break;
429 } else {
431 * This situation can easily occur on SMP due to
432 * the gap inbetween the 1->0 transition and the
433 * final unlock. We cannot safely block on the
434 * mutex because lockcnt might go above 1.
436 * XXX Sleep for one tick if it takes too long.
438 if (++iter > 1000) {
439 if (iter > 1000 + hz) {
440 kprintf("hammer2: h2race1 %p\n", chain);
441 iter = 1000;
443 tsleep(&iter, 0, "h2race1", 1);
445 cpu_pause();
450 void
451 hammer2_chain_drop_unhold(hammer2_chain_t *chain)
453 hammer2_chain_unhold(chain);
454 hammer2_chain_drop(chain);
457 void
458 hammer2_chain_rehold(hammer2_chain_t *chain)
460 hammer2_chain_lock(chain, HAMMER2_RESOLVE_SHARED);
461 atomic_add_int(&chain->lockcnt, 1);
462 hammer2_chain_unlock(chain);
466 * Handles the (potential) last drop of chain->refs from 1->0. Called with
467 * the mutex exclusively locked, refs == 1, and lockcnt 0. SMP races are
468 * possible against refs and lockcnt. We must dispose of the mutex on chain.
470 * This function returns an unlocked chain for recursive drop or NULL. It
471 * can return the same chain if it determines it has raced another ref.
473 * --
475 * When two chains need to be recursively dropped we use the chain we
476 * would otherwise free to placehold the additional chain. It's a bit
477 * convoluted but we can't just recurse without potentially blowing out
478 * the kernel stack.
480 * The chain cannot be freed if it has any children.
481 * The chain cannot be freed if flagged MODIFIED unless we can dispose of it.
482 * The chain cannot be freed if flagged UPDATE unless we can dispose of it.
483 * Any dedup registration can remain intact.
485 * The core spinlock is allowed to nest child-to-parent (not parent-to-child).
487 static
488 hammer2_chain_t *
489 hammer2_chain_lastdrop(hammer2_chain_t *chain, int depth)
491 hammer2_pfs_t *pmp;
492 hammer2_dev_t *hmp;
493 hammer2_chain_t *parent;
494 hammer2_chain_t *rdrop;
497 * We need chain's spinlock to interlock the sub-tree test.
498 * We already have chain's mutex, protecting chain->parent.
500 * Remember that chain->refs can be in flux.
502 hammer2_spin_ex(&chain->core.spin);
504 if (chain->parent != NULL) {
506 * If the chain has a parent the UPDATE bit prevents scrapping
507 * as the chain is needed to properly flush the parent. Try
508 * to complete the 1->0 transition and return NULL. Retry
509 * (return chain) if we are unable to complete the 1->0
510 * transition, else return NULL (nothing more to do).
512 * If the chain has a parent the MODIFIED bit prevents
513 * scrapping.
515 * Chains with UPDATE/MODIFIED are *not* put on the LRU list!
517 if (chain->flags & (HAMMER2_CHAIN_UPDATE |
518 HAMMER2_CHAIN_MODIFIED)) {
519 if (atomic_cmpset_int(&chain->refs, 1, 0)) {
520 hammer2_spin_unex(&chain->core.spin);
521 hammer2_chain_assert_no_data(chain);
522 hammer2_mtx_unlock(&chain->lock);
523 chain = NULL;
524 } else {
525 hammer2_spin_unex(&chain->core.spin);
526 hammer2_mtx_unlock(&chain->lock);
528 return (chain);
530 /* spinlock still held */
531 } else if (chain->bref.type == HAMMER2_BREF_TYPE_VOLUME ||
532 chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP) {
534 * Retain the static vchain and fchain. Clear bits that
535 * are not relevant. Do not clear the MODIFIED bit,
536 * and certainly do not put it on the delayed-flush queue.
538 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
539 } else {
541 * The chain has no parent and can be flagged for destruction.
542 * Since it has no parent, UPDATE can also be cleared.
544 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
545 if (chain->flags & HAMMER2_CHAIN_UPDATE)
546 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
549 * If the chain has children we must propagate the DESTROY
550 * flag downward and rip the disconnected topology apart.
551 * This is accomplished by calling hammer2_flush() on the
552 * chain.
554 * Any dedup is already handled by the underlying DIO, so
555 * we do not have to specifically flush it here.
557 if (chain->core.chain_count) {
558 hammer2_spin_unex(&chain->core.spin);
559 hammer2_flush(chain, HAMMER2_FLUSH_TOP |
560 HAMMER2_FLUSH_ALL);
561 hammer2_mtx_unlock(&chain->lock);
563 return(chain); /* retry drop */
567 * Otherwise we can scrap the MODIFIED bit if it is set,
568 * and continue along the freeing path.
570 * Be sure to clean-out any dedup bits. Without a parent
571 * this chain will no longer be visible to the flush code.
572 * Easy check data_off to avoid the volume root.
574 if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
575 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
576 atomic_add_long(&hammer2_count_modified_chains, -1);
577 if (chain->pmp)
578 hammer2_pfs_memory_wakeup(chain->pmp, -1);
580 /* spinlock still held */
583 /* spinlock still held */
586 * If any children exist we must leave the chain intact with refs == 0.
587 * They exist because chains are retained below us which have refs or
588 * may require flushing.
590 * Retry (return chain) if we fail to transition the refs to 0, else
591 * return NULL indication nothing more to do.
593 * Chains with children are NOT put on the LRU list.
595 if (chain->core.chain_count) {
596 if (atomic_cmpset_int(&chain->refs, 1, 0)) {
597 hammer2_spin_unex(&chain->core.spin);
598 hammer2_chain_assert_no_data(chain);
599 hammer2_mtx_unlock(&chain->lock);
600 chain = NULL;
601 } else {
602 hammer2_spin_unex(&chain->core.spin);
603 hammer2_mtx_unlock(&chain->lock);
605 return (chain);
607 /* spinlock still held */
608 /* no chains left under us */
611 * chain->core has no children left so no accessors can get to our
612 * chain from there. Now we have to lock the parent core to interlock
613 * remaining possible accessors that might bump chain's refs before
614 * we can safely drop chain's refs with intent to free the chain.
616 hmp = chain->hmp;
617 pmp = chain->pmp; /* can be NULL */
618 rdrop = NULL;
620 parent = chain->parent;
623 * WARNING! chain's spin lock is still held here, and other spinlocks
624 * will be acquired and released in the code below. We
625 * cannot be making fancy procedure calls!
629 * We can cache the chain if it is associated with a pmp
630 * and not flagged as being destroyed or requesting a full
631 * release. In this situation the chain is not removed
632 * from its parent, i.e. it can still be looked up.
634 * We intentionally do not cache DATA chains because these
635 * were likely used to load data into the logical buffer cache
636 * and will not be accessed again for some time.
638 if ((chain->flags &
639 (HAMMER2_CHAIN_DESTROY | HAMMER2_CHAIN_RELEASE)) == 0 &&
640 chain->pmp &&
641 chain->bref.type != HAMMER2_BREF_TYPE_DATA) {
642 if (parent)
643 hammer2_spin_ex(&parent->core.spin);
644 if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
646 * 1->0 transition failed, retry. Do not drop
647 * the chain's data yet!
649 if (parent)
650 hammer2_spin_unex(&parent->core.spin);
651 hammer2_spin_unex(&chain->core.spin);
652 hammer2_mtx_unlock(&chain->lock);
654 return(chain);
658 * Success
660 hammer2_chain_assert_no_data(chain);
663 * Make sure we are on the LRU list, clean up excessive
664 * LRU entries. We can only really drop one but there might
665 * be other entries that we can remove from the lru_list
666 * without dropping.
668 * NOTE: HAMMER2_CHAIN_ONLRU may only be safely set when
669 * chain->core.spin AND pmp->lru_spin are held, but
670 * can be safely cleared only holding pmp->lru_spin.
672 if ((chain->flags & HAMMER2_CHAIN_ONLRU) == 0) {
673 hammer2_spin_ex(&pmp->lru_spin);
674 if ((chain->flags & HAMMER2_CHAIN_ONLRU) == 0) {
675 atomic_set_int(&chain->flags,
676 HAMMER2_CHAIN_ONLRU);
677 TAILQ_INSERT_TAIL(&pmp->lru_list,
678 chain, lru_node);
679 atomic_add_int(&pmp->lru_count, 1);
681 if (pmp->lru_count < HAMMER2_LRU_LIMIT)
682 depth = 1; /* disable lru_list flush */
683 hammer2_spin_unex(&pmp->lru_spin);
684 } else {
685 /* disable lru flush */
686 depth = 1;
689 if (parent) {
690 hammer2_spin_unex(&parent->core.spin);
691 parent = NULL; /* safety */
693 hammer2_spin_unex(&chain->core.spin);
694 hammer2_mtx_unlock(&chain->lock);
697 * lru_list hysteresis (see above for depth overrides).
698 * Note that depth also prevents excessive lastdrop recursion.
700 if (depth == 0)
701 hammer2_chain_lru_flush(pmp);
703 return NULL;
704 /* NOT REACHED */
708 * Make sure we are not on the LRU list.
710 if (chain->flags & HAMMER2_CHAIN_ONLRU) {
711 hammer2_spin_ex(&pmp->lru_spin);
712 if (chain->flags & HAMMER2_CHAIN_ONLRU) {
713 atomic_add_int(&pmp->lru_count, -1);
714 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
715 TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
717 hammer2_spin_unex(&pmp->lru_spin);
721 * Spinlock the parent and try to drop the last ref on chain.
722 * On success determine if we should dispose of the chain
723 * (remove the chain from its parent, etc).
725 * (normal core locks are top-down recursive but we define
726 * core spinlocks as bottom-up recursive, so this is safe).
728 if (parent) {
729 hammer2_spin_ex(&parent->core.spin);
730 if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
732 * 1->0 transition failed, retry.
734 hammer2_spin_unex(&parent->core.spin);
735 hammer2_spin_unex(&chain->core.spin);
736 hammer2_mtx_unlock(&chain->lock);
738 return(chain);
742 * 1->0 transition successful, parent spin held to prevent
743 * new lookups, chain spinlock held to protect parent field.
744 * Remove chain from the parent.
746 * If the chain is being removed from the parent's rbtree but
747 * is not blkmapped, we have to adjust live_count downward. If
748 * it is blkmapped then the blockref is retained in the parent
749 * as is its associated live_count. This case can occur when
750 * a chain added to the topology is unable to flush and is
751 * then later deleted.
753 if (chain->flags & HAMMER2_CHAIN_ONRBTREE) {
754 if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) &&
755 (chain->flags & HAMMER2_CHAIN_BLKMAPPED) == 0) {
756 atomic_add_int(&parent->core.live_count, -1);
758 RB_REMOVE(hammer2_chain_tree,
759 &parent->core.rbtree, chain);
760 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
761 --parent->core.chain_count;
762 chain->parent = NULL;
766 * If our chain was the last chain in the parent's core the
767 * core is now empty and its parent might have to be
768 * re-dropped if it has 0 refs.
770 if (parent->core.chain_count == 0) {
771 rdrop = parent;
772 atomic_add_int(&rdrop->refs, 1);
774 if (atomic_cmpset_int(&rdrop->refs, 0, 1) == 0)
775 rdrop = NULL;
778 hammer2_spin_unex(&parent->core.spin);
779 parent = NULL; /* safety */
780 /* FALL THROUGH */
781 } else {
783 * No-parent case.
785 if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
787 * 1->0 transition failed, retry.
789 hammer2_spin_unex(&parent->core.spin);
790 hammer2_spin_unex(&chain->core.spin);
791 hammer2_mtx_unlock(&chain->lock);
793 return(chain);
798 * Successful 1->0 transition, no parent, no children... no way for
799 * anyone to ref this chain any more. We can clean-up and free it.
801 * We still have the core spinlock, and core's chain_count is 0.
802 * Any parent spinlock is gone.
804 hammer2_spin_unex(&chain->core.spin);
805 hammer2_chain_assert_no_data(chain);
806 hammer2_mtx_unlock(&chain->lock);
807 KKASSERT(RB_EMPTY(&chain->core.rbtree) &&
808 chain->core.chain_count == 0);
811 * All locks are gone, no pointers remain to the chain, finish
812 * freeing it.
814 KKASSERT((chain->flags & (HAMMER2_CHAIN_UPDATE |
815 HAMMER2_CHAIN_MODIFIED)) == 0);
818 * Once chain resources are gone we can use the now dead chain
819 * structure to placehold what might otherwise require a recursive
820 * drop, because we have potentially two things to drop and can only
821 * return one directly.
823 if (chain->flags & HAMMER2_CHAIN_ALLOCATED) {
824 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ALLOCATED);
825 chain->hmp = NULL;
826 kfree_obj(chain, hmp->mchain);
827 atomic_add_long(&hammer2_chain_allocs, -1);
831 * Possible chaining loop when parent re-drop needed.
833 return(rdrop);
837 * Heuristical flush of the LRU, try to reduce the number of entries
838 * on the LRU to (HAMMER2_LRU_LIMIT * 2 / 3). This procedure is called
839 * only when lru_count exceeds HAMMER2_LRU_LIMIT.
841 static
842 void
843 hammer2_chain_lru_flush(hammer2_pfs_t *pmp)
845 hammer2_chain_t *chain;
847 again:
848 chain = NULL;
849 hammer2_spin_ex(&pmp->lru_spin);
850 while (pmp->lru_count > HAMMER2_LRU_LIMIT * 2 / 3) {
852 * Pick a chain off the lru_list, just recycle it quickly
853 * if LRUHINT is set (the chain was ref'd but left on
854 * the lru_list, so cycle to the end).
856 chain = TAILQ_FIRST(&pmp->lru_list);
857 TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
859 if (chain->flags & HAMMER2_CHAIN_LRUHINT) {
860 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_LRUHINT);
861 TAILQ_INSERT_TAIL(&pmp->lru_list, chain, lru_node);
862 chain = NULL;
863 continue;
867 * Ok, we are off the LRU. We must adjust refs before we
868 * can safely clear the ONLRU flag.
870 atomic_add_int(&pmp->lru_count, -1);
871 if (atomic_cmpset_int(&chain->refs, 0, 1)) {
872 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
873 atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE);
874 break;
876 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
877 chain = NULL;
879 hammer2_spin_unex(&pmp->lru_spin);
880 if (chain == NULL)
881 return;
884 * If we picked a chain off the lru list we may be able to lastdrop
885 * it. Use a depth of 1 to prevent excessive lastdrop recursion.
887 while (chain) {
888 u_int refs;
890 refs = chain->refs;
891 cpu_ccfence();
892 KKASSERT(refs > 0);
894 if (refs == 1) {
895 if (hammer2_mtx_ex_try(&chain->lock) == 0)
896 chain = hammer2_chain_lastdrop(chain, 1);
897 /* retry the same chain, or chain from lastdrop */
898 } else {
899 if (atomic_cmpset_int(&chain->refs, refs, refs - 1))
900 break;
901 /* retry the same chain */
903 cpu_pause();
905 goto again;
909 * On last lock release.
911 static hammer2_io_t *
912 hammer2_chain_drop_data(hammer2_chain_t *chain)
914 hammer2_io_t *dio;
916 if ((dio = chain->dio) != NULL) {
917 chain->dio = NULL;
918 chain->data = NULL;
919 } else {
920 switch(chain->bref.type) {
921 case HAMMER2_BREF_TYPE_VOLUME:
922 case HAMMER2_BREF_TYPE_FREEMAP:
923 break;
924 default:
925 if (chain->data != NULL) {
926 hammer2_spin_unex(&chain->core.spin);
927 panic("chain data not null: "
928 "chain %p bref %016jx.%02x "
929 "refs %d parent %p dio %p data %p",
930 chain, chain->bref.data_off,
931 chain->bref.type, chain->refs,
932 chain->parent,
933 chain->dio, chain->data);
935 KKASSERT(chain->data == NULL);
936 break;
939 return dio;
943 * Lock a referenced chain element, acquiring its data with I/O if necessary,
944 * and specify how you would like the data to be resolved.
946 * If an I/O or other fatal error occurs, chain->error will be set to non-zero.
948 * The lock is allowed to recurse, multiple locking ops will aggregate
949 * the requested resolve types. Once data is assigned it will not be
950 * removed until the last unlock.
952 * HAMMER2_RESOLVE_NEVER - Do not resolve the data element.
953 * (typically used to avoid device/logical buffer
954 * aliasing for data)
956 * HAMMER2_RESOLVE_MAYBE - Do not resolve data elements for chains in
957 * the INITIAL-create state (indirect blocks only).
959 * Do not resolve data elements for DATA chains.
960 * (typically used to avoid device/logical buffer
961 * aliasing for data)
963 * HAMMER2_RESOLVE_ALWAYS- Always resolve the data element.
965 * HAMMER2_RESOLVE_SHARED- (flag) The chain is locked shared, otherwise
966 * it will be locked exclusive.
968 * HAMMER2_RESOLVE_NONBLOCK- (flag) The chain is locked non-blocking. If
969 * the lock fails, EAGAIN is returned.
971 * NOTE: Embedded elements (volume header, inodes) are always resolved
972 * regardless.
974 * NOTE: Specifying HAMMER2_RESOLVE_ALWAYS on a newly-created non-embedded
975 * element will instantiate and zero its buffer, and flush it on
976 * release.
978 * NOTE: (data) elements are normally locked RESOLVE_NEVER or RESOLVE_MAYBE
979 * so as not to instantiate a device buffer, which could alias against
980 * a logical file buffer. However, if ALWAYS is specified the
981 * device buffer will be instantiated anyway.
983 * NOTE: The return value is always 0 unless NONBLOCK is specified, in which
984 * case it can be either 0 or EAGAIN.
986 * WARNING! This function blocks on I/O if data needs to be fetched. This
987 * blocking can run concurrent with other compatible lock holders
988 * who do not need data returning. The lock is not upgraded to
989 * exclusive during a data fetch, a separate bit is used to
990 * interlock I/O. However, an exclusive lock holder can still count
991 * on being interlocked against an I/O fetch managed by a shared
992 * lock holder.
995 hammer2_chain_lock(hammer2_chain_t *chain, int how)
997 KKASSERT(chain->refs > 0);
999 if (how & HAMMER2_RESOLVE_NONBLOCK) {
1001 * We still have to bump lockcnt before acquiring the lock,
1002 * even for non-blocking operation, because the unlock code
1003 * live-loops on lockcnt == 1 when dropping the last lock.
1005 * If the non-blocking operation fails we have to use an
1006 * unhold sequence to undo the mess.
1008 * NOTE: LOCKAGAIN must always succeed without blocking,
1009 * even if NONBLOCK is specified.
1011 atomic_add_int(&chain->lockcnt, 1);
1012 if (how & HAMMER2_RESOLVE_SHARED) {
1013 if (how & HAMMER2_RESOLVE_LOCKAGAIN) {
1014 hammer2_mtx_sh_again(&chain->lock);
1015 } else {
1016 if (hammer2_mtx_sh_try(&chain->lock) != 0) {
1017 hammer2_chain_unhold(chain);
1018 return EAGAIN;
1021 } else {
1022 if (hammer2_mtx_ex_try(&chain->lock) != 0) {
1023 hammer2_chain_unhold(chain);
1024 return EAGAIN;
1027 } else {
1029 * Get the appropriate lock. If LOCKAGAIN is flagged with
1030 * SHARED the caller expects a shared lock to already be
1031 * present and we are giving it another ref. This case must
1032 * importantly not block if there is a pending exclusive lock
1033 * request.
1035 atomic_add_int(&chain->lockcnt, 1);
1036 if (how & HAMMER2_RESOLVE_SHARED) {
1037 if (how & HAMMER2_RESOLVE_LOCKAGAIN) {
1038 hammer2_mtx_sh_again(&chain->lock);
1039 } else {
1040 hammer2_mtx_sh(&chain->lock);
1042 } else {
1043 hammer2_mtx_ex(&chain->lock);
1048 * If we already have a valid data pointer make sure the data is
1049 * synchronized to the current cpu, and then no further action is
1050 * necessary.
1052 if (chain->data) {
1053 if (chain->dio)
1054 hammer2_io_bkvasync(chain->dio);
1055 return 0;
1059 * Do we have to resolve the data? This is generally only
1060 * applicable to HAMMER2_BREF_TYPE_DATA which is special-cased.
1061 * Other BREF types expects the data to be there.
1063 switch(how & HAMMER2_RESOLVE_MASK) {
1064 case HAMMER2_RESOLVE_NEVER:
1065 return 0;
1066 case HAMMER2_RESOLVE_MAYBE:
1067 if (chain->flags & HAMMER2_CHAIN_INITIAL)
1068 return 0;
1069 if (chain->bref.type == HAMMER2_BREF_TYPE_DATA)
1070 return 0;
1071 #if 0
1072 if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE)
1073 return 0;
1074 if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF)
1075 return 0;
1076 #endif
1077 /* fall through */
1078 case HAMMER2_RESOLVE_ALWAYS:
1079 default:
1080 break;
1084 * Caller requires data
1086 hammer2_chain_load_data(chain);
1088 return 0;
1091 #if 0
1093 * Lock the chain, retain the hold, and drop the data persistence count.
1094 * The data should remain valid because we never transitioned lockcnt
1095 * through 0.
1097 void
1098 hammer2_chain_lock_unhold(hammer2_chain_t *chain, int how)
1100 hammer2_chain_lock(chain, how);
1101 atomic_add_int(&chain->lockcnt, -1);
1105 * Downgrade an exclusive chain lock to a shared chain lock.
1107 * NOTE: There is no upgrade equivalent due to the ease of
1108 * deadlocks in that direction.
1110 void
1111 hammer2_chain_lock_downgrade(hammer2_chain_t *chain)
1113 hammer2_mtx_downgrade(&chain->lock);
1115 #endif
1118 * Issue I/O and install chain->data. Caller must hold a chain lock, lock
1119 * may be of any type.
1121 * Once chain->data is set it cannot be disposed of until all locks are
1122 * released.
1124 * Make sure the data is synchronized to the current cpu.
1126 void
1127 hammer2_chain_load_data(hammer2_chain_t *chain)
1129 hammer2_blockref_t *bref;
1130 hammer2_dev_t *hmp;
1131 hammer2_io_t *dio;
1132 char *bdata;
1133 int error;
1136 * Degenerate case, data already present, or chain has no media
1137 * reference to load.
1139 KKASSERT(chain->lock.mtx_lock & MTX_MASK);
1140 if (chain->data) {
1141 if (chain->dio)
1142 hammer2_io_bkvasync(chain->dio);
1143 return;
1145 if ((chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX) == 0)
1146 return;
1148 hmp = chain->hmp;
1149 KKASSERT(hmp != NULL);
1152 * Gain the IOINPROG bit, interlocked block.
1154 for (;;) {
1155 u_int oflags;
1156 u_int nflags;
1158 oflags = chain->flags;
1159 cpu_ccfence();
1160 if (oflags & HAMMER2_CHAIN_IOINPROG) {
1161 nflags = oflags | HAMMER2_CHAIN_IOSIGNAL;
1162 tsleep_interlock(&chain->flags, 0);
1163 if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1164 tsleep(&chain->flags, PINTERLOCKED,
1165 "h2iocw", 0);
1167 /* retry */
1168 } else {
1169 nflags = oflags | HAMMER2_CHAIN_IOINPROG;
1170 if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1171 break;
1173 /* retry */
1178 * We own CHAIN_IOINPROG
1180 * Degenerate case if we raced another load.
1182 if (chain->data) {
1183 if (chain->dio)
1184 hammer2_io_bkvasync(chain->dio);
1185 goto done;
1189 * We must resolve to a device buffer, either by issuing I/O or
1190 * by creating a zero-fill element. We do not mark the buffer
1191 * dirty when creating a zero-fill element (the hammer2_chain_modify()
1192 * API must still be used to do that).
1194 * The device buffer is variable-sized in powers of 2 down
1195 * to HAMMER2_MIN_ALLOC (typically 1K). A 64K physical storage
1196 * chunk always contains buffers of the same size. (XXX)
1198 * The minimum physical IO size may be larger than the variable
1199 * block size.
1201 bref = &chain->bref;
1204 * The getblk() optimization can only be used on newly created
1205 * elements if the physical block size matches the request.
1207 if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1208 error = hammer2_io_new(hmp, bref->type,
1209 bref->data_off, chain->bytes,
1210 &chain->dio);
1211 } else {
1212 error = hammer2_io_bread(hmp, bref->type,
1213 bref->data_off, chain->bytes,
1214 &chain->dio);
1215 hammer2_adjreadcounter(chain->bref.type, chain->bytes);
1217 if (error) {
1218 chain->error = HAMMER2_ERROR_EIO;
1219 kprintf("hammer2_chain_load_data: I/O error %016jx: %d\n",
1220 (intmax_t)bref->data_off, error);
1221 hammer2_io_bqrelse(&chain->dio);
1222 goto done;
1224 chain->error = 0;
1227 * This isn't perfect and can be ignored on OSs which do not have
1228 * an indication as to whether a buffer is coming from cache or
1229 * if I/O was actually issued for the read. TESTEDGOOD will work
1230 * pretty well without the B_IOISSUED logic because chains are
1231 * cached, but in that situation (without B_IOISSUED) it will not
1232 * detect whether a re-read via I/O is corrupted verses the original
1233 * read.
1235 * We can't re-run the CRC on every fresh lock. That would be
1236 * insanely expensive.
1238 * If the underlying kernel buffer covers the entire chain we can
1239 * use the B_IOISSUED indication to determine if we have to re-run
1240 * the CRC on chain data for chains that managed to stay cached
1241 * across the kernel disposal of the original buffer.
1243 if ((dio = chain->dio) != NULL && dio->bp) {
1244 //struct m_buf *bp = dio->bp;
1246 if (dio->psize == chain->bytes //&&
1247 /*(bp->b_flags & B_IOISSUED)*/) {
1248 atomic_clear_int(&chain->flags,
1249 HAMMER2_CHAIN_TESTEDGOOD);
1250 //bp->b_flags &= ~B_IOISSUED;
1255 * NOTE: A locked chain's data cannot be modified without first
1256 * calling hammer2_chain_modify().
1260 * NOTE: hammer2_io_data() call issues bkvasync()
1262 bdata = hammer2_io_data(chain->dio, chain->bref.data_off);
1264 if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1266 * Clear INITIAL. In this case we used io_new() and the
1267 * buffer has been zero'd and marked dirty.
1269 * CHAIN_MODIFIED has not been set yet, and we leave it
1270 * that way for now. Set a temporary CHAIN_NOTTESTED flag
1271 * to prevent hammer2_chain_testcheck() from trying to match
1272 * a check code that has not yet been generated. This bit
1273 * should NOT end up on the actual media.
1275 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1276 atomic_set_int(&chain->flags, HAMMER2_CHAIN_NOTTESTED);
1277 } else if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
1279 * check data not currently synchronized due to
1280 * modification. XXX assumes data stays in the buffer
1281 * cache, which might not be true (need biodep on flush
1282 * to calculate crc? or simple crc?).
1284 } else if ((chain->flags & HAMMER2_CHAIN_TESTEDGOOD) == 0) {
1285 if (hammer2_chain_testcheck(chain, bdata) == 0) {
1286 chain->error = HAMMER2_ERROR_CHECK;
1287 } else {
1288 atomic_set_int(&chain->flags, HAMMER2_CHAIN_TESTEDGOOD);
1293 * Setup the data pointer by pointing it into the buffer.
1294 * WARNING! Other threads can start using the data the instant we
1295 * set chain->data non-NULL.
1297 switch (bref->type) {
1298 case HAMMER2_BREF_TYPE_VOLUME:
1299 case HAMMER2_BREF_TYPE_FREEMAP:
1300 panic("hammer2_chain_load_data: unresolved volume header");
1301 break;
1302 case HAMMER2_BREF_TYPE_DIRENT:
1303 KKASSERT(chain->bytes != 0);
1304 /* fall through */
1305 case HAMMER2_BREF_TYPE_INODE:
1306 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
1307 case HAMMER2_BREF_TYPE_INDIRECT:
1308 case HAMMER2_BREF_TYPE_DATA:
1309 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1310 default:
1312 * Point data at the device buffer and leave dio intact.
1314 chain->data = (void *)bdata;
1315 break;
1319 * Release HAMMER2_CHAIN_IOINPROG and signal waiters if requested.
1321 done:
1322 for (;;) {
1323 u_int oflags;
1324 u_int nflags;
1326 oflags = chain->flags;
1327 nflags = oflags & ~(HAMMER2_CHAIN_IOINPROG |
1328 HAMMER2_CHAIN_IOSIGNAL);
1329 KKASSERT(oflags & HAMMER2_CHAIN_IOINPROG);
1330 if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1331 if (oflags & HAMMER2_CHAIN_IOSIGNAL)
1332 wakeup(&chain->flags);
1333 break;
1339 * Unlock and deref a chain element.
1341 * Remember that the presence of children under chain prevent the chain's
1342 * destruction but do not add additional references, so the dio will still
1343 * be dropped.
1345 void
1346 hammer2_chain_unlock(hammer2_chain_t *chain)
1348 hammer2_io_t *dio;
1349 u_int lockcnt;
1350 int iter = 0;
1353 * If multiple locks are present (or being attempted) on this
1354 * particular chain we can just unlock, drop refs, and return.
1356 * Otherwise fall-through on the 1->0 transition.
1358 for (;;) {
1359 lockcnt = chain->lockcnt;
1360 KKASSERT(lockcnt > 0);
1361 cpu_ccfence();
1362 if (lockcnt > 1) {
1363 if (atomic_cmpset_int(&chain->lockcnt,
1364 lockcnt, lockcnt - 1)) {
1365 hammer2_mtx_unlock(&chain->lock);
1366 return;
1368 } else if (hammer2_mtx_upgrade_try(&chain->lock) == 0) {
1369 /* while holding the mutex exclusively */
1370 if (atomic_cmpset_int(&chain->lockcnt, 1, 0))
1371 break;
1372 } else {
1374 * This situation can easily occur on SMP due to
1375 * the gap inbetween the 1->0 transition and the
1376 * final unlock. We cannot safely block on the
1377 * mutex because lockcnt might go above 1.
1379 * XXX Sleep for one tick if it takes too long.
1381 if (++iter > 1000) {
1382 if (iter > 1000 + hz) {
1383 kprintf("hammer2: h2race2 %p\n", chain);
1384 iter = 1000;
1386 tsleep(&iter, 0, "h2race2", 1);
1388 cpu_pause();
1390 /* retry */
1394 * Last unlock / mutex upgraded to exclusive. Drop the data
1395 * reference.
1397 dio = hammer2_chain_drop_data(chain);
1398 if (dio)
1399 hammer2_io_bqrelse(&dio);
1400 hammer2_mtx_unlock(&chain->lock);
1403 #if 0
1405 * Unlock and hold chain data intact
1407 void
1408 hammer2_chain_unlock_hold(hammer2_chain_t *chain)
1410 atomic_add_int(&chain->lockcnt, 1);
1411 hammer2_chain_unlock(chain);
1413 #endif
1416 * Helper to obtain the blockref[] array base and count for a chain.
1418 * XXX Not widely used yet, various use cases need to be validated and
1419 * converted to use this function.
1421 static
1422 hammer2_blockref_t *
1423 hammer2_chain_base_and_count(hammer2_chain_t *parent, int *countp)
1425 hammer2_blockref_t *base;
1426 int count;
1428 if (parent->flags & HAMMER2_CHAIN_INITIAL) {
1429 base = NULL;
1431 switch(parent->bref.type) {
1432 case HAMMER2_BREF_TYPE_INODE:
1433 count = HAMMER2_SET_COUNT;
1434 break;
1435 case HAMMER2_BREF_TYPE_INDIRECT:
1436 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1437 count = parent->bytes / sizeof(hammer2_blockref_t);
1438 break;
1439 case HAMMER2_BREF_TYPE_VOLUME:
1440 count = HAMMER2_SET_COUNT;
1441 break;
1442 case HAMMER2_BREF_TYPE_FREEMAP:
1443 count = HAMMER2_SET_COUNT;
1444 break;
1445 default:
1446 panic("hammer2_chain_base_and_count: "
1447 "unrecognized blockref type: %d",
1448 parent->bref.type);
1449 count = 0;
1450 break;
1452 } else {
1453 switch(parent->bref.type) {
1454 case HAMMER2_BREF_TYPE_INODE:
1455 base = &parent->data->ipdata.u.blockset.blockref[0];
1456 count = HAMMER2_SET_COUNT;
1457 break;
1458 case HAMMER2_BREF_TYPE_INDIRECT:
1459 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1460 base = &parent->data->npdata[0];
1461 count = parent->bytes / sizeof(hammer2_blockref_t);
1462 break;
1463 case HAMMER2_BREF_TYPE_VOLUME:
1464 base = &parent->data->voldata.
1465 sroot_blockset.blockref[0];
1466 count = HAMMER2_SET_COUNT;
1467 break;
1468 case HAMMER2_BREF_TYPE_FREEMAP:
1469 base = &parent->data->blkset.blockref[0];
1470 count = HAMMER2_SET_COUNT;
1471 break;
1472 default:
1473 panic("hammer2_chain_base_and_count: "
1474 "unrecognized blockref type: %d",
1475 parent->bref.type);
1476 base = NULL;
1477 count = 0;
1478 break;
1481 *countp = count;
1483 return base;
1487 * This counts the number of live blockrefs in a block array and
1488 * also calculates the point at which all remaining blockrefs are empty.
1489 * This routine can only be called on a live chain.
1491 * Caller holds the chain locked, but possibly with a shared lock. We
1492 * must use an exclusive spinlock to prevent corruption.
1494 * NOTE: Flag is not set until after the count is complete, allowing
1495 * callers to test the flag without holding the spinlock.
1497 * NOTE: If base is NULL the related chain is still in the INITIAL
1498 * state and there are no blockrefs to count.
1500 * NOTE: live_count may already have some counts accumulated due to
1501 * creation and deletion and could even be initially negative.
1503 void
1504 hammer2_chain_countbrefs(hammer2_chain_t *chain,
1505 hammer2_blockref_t *base, int count)
1507 hammer2_spin_ex(&chain->core.spin);
1508 if ((chain->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0) {
1509 if (base) {
1510 while (--count >= 0) {
1511 if (base[count].type != HAMMER2_BREF_TYPE_EMPTY)
1512 break;
1514 chain->core.live_zero = count + 1;
1515 while (count >= 0) {
1516 if (base[count].type != HAMMER2_BREF_TYPE_EMPTY)
1517 atomic_add_int(&chain->core.live_count,
1519 --count;
1521 } else {
1522 chain->core.live_zero = 0;
1524 /* else do not modify live_count */
1525 atomic_set_int(&chain->flags, HAMMER2_CHAIN_COUNTEDBREFS);
1527 hammer2_spin_unex(&chain->core.spin);
1531 * Resize the chain's physical storage allocation in-place. This function does
1532 * not usually adjust the data pointer and must be followed by (typically) a
1533 * hammer2_chain_modify() call to copy any old data over and adjust the
1534 * data pointer.
1536 * Chains can be resized smaller without reallocating the storage. Resizing
1537 * larger will reallocate the storage. Excess or prior storage is reclaimed
1538 * asynchronously at a later time.
1540 * An nradix value of 0 is special-cased to mean that the storage should
1541 * be disassociated, that is the chain is being resized to 0 bytes (not 1
1542 * byte).
1544 * Must be passed an exclusively locked parent and chain.
1546 * This function is mostly used with DATA blocks locked RESOLVE_NEVER in order
1547 * to avoid instantiating a device buffer that conflicts with the vnode data
1548 * buffer. However, because H2 can compress or encrypt data, the chain may
1549 * have a dio assigned to it in those situations, and they do not conflict.
1551 * XXX return error if cannot resize.
1554 hammer2_chain_resize(hammer2_chain_t *chain,
1555 hammer2_tid_t mtid, hammer2_off_t dedup_off,
1556 int nradix, int flags)
1558 hammer2_dev_t *hmp;
1559 size_t obytes;
1560 size_t nbytes;
1561 int error;
1563 hmp = chain->hmp;
1566 * Only data and indirect blocks can be resized for now.
1567 * (The volu root, inodes, and freemap elements use a fixed size).
1569 KKASSERT(chain != &hmp->vchain);
1570 KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1571 chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
1572 chain->bref.type == HAMMER2_BREF_TYPE_DIRENT);
1575 * Nothing to do if the element is already the proper size
1577 obytes = chain->bytes;
1578 nbytes = (nradix) ? (1U << nradix) : 0;
1579 if (obytes == nbytes)
1580 return (chain->error);
1583 * Make sure the old data is instantiated so we can copy it. If this
1584 * is a data block, the device data may be superfluous since the data
1585 * might be in a logical block, but compressed or encrypted data is
1586 * another matter.
1588 * NOTE: The modify will set BLKMAPUPD for us if BLKMAPPED is set.
1590 error = hammer2_chain_modify(chain, mtid, dedup_off, 0);
1591 if (error)
1592 return error;
1595 * Reallocate the block, even if making it smaller (because different
1596 * block sizes may be in different regions).
1598 * NOTE: Operation does not copy the data and may only be used
1599 * to resize data blocks in-place, or directory entry blocks
1600 * which are about to be modified in some manner.
1602 error = hammer2_freemap_alloc(chain, nbytes);
1603 if (error)
1604 return error;
1606 chain->bytes = nbytes;
1609 * We don't want the followup chain_modify() to try to copy data
1610 * from the old (wrong-sized) buffer. It won't know how much to
1611 * copy. This case should only occur during writes when the
1612 * originator already has the data to write in-hand.
1614 if (chain->dio) {
1615 KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1616 chain->bref.type == HAMMER2_BREF_TYPE_DIRENT);
1617 hammer2_io_brelse(&chain->dio);
1618 chain->data = NULL;
1620 return (chain->error);
1624 * Set the chain modified so its data can be changed by the caller, or
1625 * install deduplicated data. The caller must call this routine for each
1626 * set of modifications it makes, even if the chain is already flagged
1627 * MODIFIED.
1629 * Sets bref.modify_tid to mtid only if mtid != 0. Note that bref.modify_tid
1630 * is a CLC (cluster level change) field and is not updated by parent
1631 * propagation during a flush.
1633 * Returns an appropriate HAMMER2_ERROR_* code, which will generally reflect
1634 * chain->error except for HAMMER2_ERROR_ENOSPC. If the allocation fails
1635 * due to no space available, HAMMER2_ERROR_ENOSPC is returned and the chain
1636 * remains unmodified with its old data ref intact and chain->error
1637 * unchanged.
1639 * Dedup Handling
1641 * If the DEDUPABLE flag is set in the chain the storage must be reallocated
1642 * even if the chain is still flagged MODIFIED. In this case the chain's
1643 * DEDUPABLE flag will be cleared once the new storage has been assigned.
1645 * If the caller passes a non-zero dedup_off we will use it to assign the
1646 * new storage. The MODIFIED flag will be *CLEARED* in this case, and
1647 * DEDUPABLE will be set (NOTE: the UPDATE flag is always set). The caller
1648 * must not modify the data content upon return.
1651 hammer2_chain_modify(hammer2_chain_t *chain, hammer2_tid_t mtid,
1652 hammer2_off_t dedup_off, int flags)
1654 hammer2_dev_t *hmp;
1655 hammer2_io_t *dio;
1656 int error;
1657 int wasinitial;
1658 int setmodified;
1659 int setupdate;
1660 int newmod;
1661 char *bdata;
1663 hmp = chain->hmp;
1664 KKASSERT(chain->lock.mtx_lock & MTX_EXCLUSIVE);
1667 * Data is not optional for freemap chains (we must always be sure
1668 * to copy the data on COW storage allocations).
1670 if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
1671 chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
1672 KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) ||
1673 (flags & HAMMER2_MODIFY_OPTDATA) == 0);
1677 * Data must be resolved if already assigned, unless explicitly
1678 * flagged otherwise. If we cannot safety load the data the
1679 * modification fails and we return early.
1681 if (chain->data == NULL && chain->bytes != 0 &&
1682 (flags & HAMMER2_MODIFY_OPTDATA) == 0 &&
1683 (chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX)) {
1684 hammer2_chain_load_data(chain);
1685 if (chain->error)
1686 return (chain->error);
1688 error = 0;
1691 * Set MODIFIED to indicate that the chain has been modified. A new
1692 * allocation is required when modifying a chain.
1694 * Set UPDATE to ensure that the blockref is updated in the parent.
1696 * If MODIFIED is already set determine if we can reuse the assigned
1697 * data block or if we need a new data block.
1699 if ((chain->flags & HAMMER2_CHAIN_MODIFIED) == 0) {
1701 * Must set modified bit.
1703 atomic_add_long(&hammer2_count_modified_chains, 1);
1704 atomic_set_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1705 hammer2_pfs_memory_inc(chain->pmp); /* can be NULL */
1706 setmodified = 1;
1709 * We may be able to avoid a copy-on-write if the chain's
1710 * check mode is set to NONE and the chain's current
1711 * modify_tid is beyond the last explicit snapshot tid.
1713 * This implements HAMMER2's overwrite-in-place feature.
1715 * NOTE! This data-block cannot be used as a de-duplication
1716 * source when the check mode is set to NONE.
1718 if ((chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1719 chain->bref.type == HAMMER2_BREF_TYPE_DIRENT) &&
1720 (chain->flags & HAMMER2_CHAIN_INITIAL) == 0 &&
1721 (chain->flags & HAMMER2_CHAIN_DEDUPABLE) == 0 &&
1722 HAMMER2_DEC_CHECK(chain->bref.methods) ==
1723 HAMMER2_CHECK_NONE &&
1724 chain->pmp &&
1725 chain->bref.modify_tid >
1726 chain->pmp->iroot->meta.pfs_lsnap_tid) {
1728 * Sector overwrite allowed.
1730 newmod = 0;
1731 } else if ((hmp->hflags & HMNT2_EMERG) &&
1732 chain->pmp &&
1733 chain->bref.modify_tid >
1734 chain->pmp->iroot->meta.pfs_lsnap_tid) {
1736 * If in emergency delete mode then do a modify-in-
1737 * place on any chain type belonging to the PFS as
1738 * long as it doesn't mess up a snapshot. We might
1739 * be forced to do this anyway a little further down
1740 * in the code if the allocation fails.
1742 * Also note that in emergency mode, these modify-in-
1743 * place operations are NOT SAFE. A storage failure,
1744 * power failure, or panic can corrupt the filesystem.
1746 newmod = 0;
1747 } else {
1749 * Sector overwrite not allowed, must copy-on-write.
1751 newmod = 1;
1753 } else if (chain->flags & HAMMER2_CHAIN_DEDUPABLE) {
1755 * If the modified chain was registered for dedup we need
1756 * a new allocation. This only happens for delayed-flush
1757 * chains (i.e. which run through the front-end buffer
1758 * cache).
1760 newmod = 1;
1761 setmodified = 0;
1762 } else {
1764 * Already flagged modified, no new allocation is needed.
1766 newmod = 0;
1767 setmodified = 0;
1771 * Flag parent update required.
1773 if ((chain->flags & HAMMER2_CHAIN_UPDATE) == 0) {
1774 atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
1775 setupdate = 1;
1776 } else {
1777 setupdate = 0;
1781 * The XOP code returns held but unlocked focus chains. This
1782 * prevents the chain from being destroyed but does not prevent
1783 * it from being modified. diolk is used to interlock modifications
1784 * against XOP frontend accesses to the focus.
1786 * This allows us to theoretically avoid deadlocking the frontend
1787 * if one of the backends lock up by not formally locking the
1788 * focused chain in the frontend. In addition, the synchronization
1789 * code relies on this mechanism to avoid deadlocking concurrent
1790 * synchronization threads.
1792 lockmgr(&chain->diolk, LK_EXCLUSIVE);
1795 * The modification or re-modification requires an allocation and
1796 * possible COW. If an error occurs, the previous content and data
1797 * reference is retained and the modification fails.
1799 * If dedup_off is non-zero, the caller is requesting a deduplication
1800 * rather than a modification. The MODIFIED bit is not set and the
1801 * data offset is set to the deduplication offset. The data cannot
1802 * be modified.
1804 * NOTE: The dedup offset is allowed to be in a partially free state
1805 * and we must be sure to reset it to a fully allocated state
1806 * to force two bulkfree passes to free it again.
1808 * NOTE: Only applicable when chain->bytes != 0.
1810 * XXX can a chain already be marked MODIFIED without a data
1811 * assignment? If not, assert here instead of testing the case.
1813 if (chain != &hmp->vchain && chain != &hmp->fchain &&
1814 chain->bytes) {
1815 if ((chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX) == 0 ||
1816 newmod
1819 * NOTE: We do not have to remove the dedup
1820 * registration because the area is still
1821 * allocated and the underlying DIO will
1822 * still be flushed.
1824 if (dedup_off) {
1825 chain->bref.data_off = dedup_off;
1826 if ((int)(dedup_off & HAMMER2_OFF_MASK_RADIX))
1827 chain->bytes = 1 <<
1828 (int)(dedup_off &
1829 HAMMER2_OFF_MASK_RADIX);
1830 else
1831 chain->bytes = 0;
1832 chain->error = 0;
1833 atomic_clear_int(&chain->flags,
1834 HAMMER2_CHAIN_MODIFIED);
1835 atomic_add_long(&hammer2_count_modified_chains,
1836 -1);
1837 if (chain->pmp) {
1838 hammer2_pfs_memory_wakeup(
1839 chain->pmp, -1);
1841 hammer2_freemap_adjust(hmp, &chain->bref,
1842 HAMMER2_FREEMAP_DORECOVER);
1843 atomic_set_int(&chain->flags,
1844 HAMMER2_CHAIN_DEDUPABLE);
1845 } else {
1846 error = hammer2_freemap_alloc(chain,
1847 chain->bytes);
1848 atomic_clear_int(&chain->flags,
1849 HAMMER2_CHAIN_DEDUPABLE);
1852 * If we are unable to allocate a new block
1853 * but we are in emergency mode, issue a
1854 * warning to the console and reuse the same
1855 * block.
1857 * We behave as if the allocation were
1858 * successful.
1860 * THIS IS IMPORTANT: These modifications
1861 * are virtually guaranteed to corrupt any
1862 * snapshots related to this filesystem.
1864 if (error && (hmp->hflags & HMNT2_EMERG)) {
1865 error = 0;
1866 chain->bref.flags |=
1867 HAMMER2_BREF_FLAG_EMERG_MIP;
1869 krateprintf(&krate_h2em,
1870 "hammer2: Emergency Mode WARNING: "
1871 "Operation will likely corrupt "
1872 "related snapshot: "
1873 "%016jx.%02x key=%016jx\n",
1874 chain->bref.data_off,
1875 chain->bref.type,
1876 chain->bref.key);
1877 } else if (error == 0) {
1878 chain->bref.flags &=
1879 ~HAMMER2_BREF_FLAG_EMERG_MIP;
1886 * Stop here if error. We have to undo any flag bits we might
1887 * have set above.
1889 if (error) {
1890 if (setmodified) {
1891 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1892 atomic_add_long(&hammer2_count_modified_chains, -1);
1893 if (chain->pmp)
1894 hammer2_pfs_memory_wakeup(chain->pmp, -1);
1896 if (setupdate) {
1897 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
1899 lockmgr(&chain->diolk, LK_RELEASE);
1901 return error;
1905 * Update mirror_tid and modify_tid. modify_tid is only updated
1906 * if not passed as zero (during flushes, parent propagation passes
1907 * the value 0).
1909 * NOTE: chain->pmp could be the device spmp.
1911 chain->bref.mirror_tid = hmp->voldata.mirror_tid + 1;
1912 if (mtid)
1913 chain->bref.modify_tid = mtid;
1916 * Set BLKMAPUPD to tell the flush code that an existing blockmap entry
1917 * requires updating as well as to tell the delete code that the
1918 * chain's blockref might not exactly match (in terms of physical size
1919 * or block offset) the one in the parent's blocktable. The base key
1920 * of course will still match.
1922 if (chain->flags & HAMMER2_CHAIN_BLKMAPPED)
1923 atomic_set_int(&chain->flags, HAMMER2_CHAIN_BLKMAPUPD);
1926 * Short-cut data block handling when the caller does not need an
1927 * actual data reference to (aka OPTDATA), as long as the chain does
1928 * not already have a data pointer to the data and no de-duplication
1929 * occurred.
1931 * This generally means that the modifications are being done via the
1932 * logical buffer cache.
1934 * NOTE: If deduplication occurred we have to run through the data
1935 * stuff to clear INITIAL, and the caller will likely want to
1936 * assign the check code anyway. Leaving INITIAL set on a
1937 * dedup can be deadly (it can cause the block to be zero'd!).
1939 * This code also handles bytes == 0 (most dirents).
1941 if (chain->bref.type == HAMMER2_BREF_TYPE_DATA &&
1942 (flags & HAMMER2_MODIFY_OPTDATA) &&
1943 chain->data == NULL) {
1944 if (dedup_off == 0) {
1945 KKASSERT(chain->dio == NULL);
1946 goto skip2;
1951 * Clearing the INITIAL flag (for indirect blocks) indicates that
1952 * we've processed the uninitialized storage allocation.
1954 * If this flag is already clear we are likely in a copy-on-write
1955 * situation but we have to be sure NOT to bzero the storage if
1956 * no data is present.
1958 * Clearing of NOTTESTED is allowed if the MODIFIED bit is set,
1960 if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1961 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1962 wasinitial = 1;
1963 } else {
1964 wasinitial = 0;
1968 * Instantiate data buffer and possibly execute COW operation
1970 switch(chain->bref.type) {
1971 case HAMMER2_BREF_TYPE_VOLUME:
1972 case HAMMER2_BREF_TYPE_FREEMAP:
1974 * The data is embedded, no copy-on-write operation is
1975 * needed.
1977 KKASSERT(chain->dio == NULL);
1978 break;
1979 case HAMMER2_BREF_TYPE_DIRENT:
1981 * The data might be fully embedded.
1983 if (chain->bytes == 0) {
1984 KKASSERT(chain->dio == NULL);
1985 break;
1987 /* fall through */
1988 case HAMMER2_BREF_TYPE_INODE:
1989 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
1990 case HAMMER2_BREF_TYPE_DATA:
1991 case HAMMER2_BREF_TYPE_INDIRECT:
1992 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1994 * Perform the copy-on-write operation
1996 * zero-fill or copy-on-write depending on whether
1997 * chain->data exists or not and set the dirty state for
1998 * the new buffer. hammer2_io_new() will handle the
1999 * zero-fill.
2001 * If a dedup_off was supplied this is an existing block
2002 * and no COW, copy, or further modification is required.
2004 KKASSERT(chain != &hmp->vchain && chain != &hmp->fchain);
2006 if (wasinitial && dedup_off == 0) {
2007 error = hammer2_io_new(hmp, chain->bref.type,
2008 chain->bref.data_off,
2009 chain->bytes, &dio);
2010 } else {
2011 error = hammer2_io_bread(hmp, chain->bref.type,
2012 chain->bref.data_off,
2013 chain->bytes, &dio);
2015 hammer2_adjreadcounter(chain->bref.type, chain->bytes);
2018 * If an I/O error occurs make sure callers cannot accidently
2019 * modify the old buffer's contents and corrupt the filesystem.
2021 * NOTE: hammer2_io_data() call issues bkvasync()
2023 if (error) {
2024 kprintf("hammer2_chain_modify: hmp=%p I/O error\n",
2025 hmp);
2026 chain->error = HAMMER2_ERROR_EIO;
2027 hammer2_io_brelse(&dio);
2028 hammer2_io_brelse(&chain->dio);
2029 chain->data = NULL;
2030 break;
2032 chain->error = 0;
2033 bdata = hammer2_io_data(dio, chain->bref.data_off);
2035 if (chain->data) {
2037 * COW (unless a dedup).
2039 KKASSERT(chain->dio != NULL);
2040 if (chain->data != (void *)bdata && dedup_off == 0) {
2041 bcopy(chain->data, bdata, chain->bytes);
2043 } else if (wasinitial == 0 && dedup_off == 0) {
2045 * We have a problem. We were asked to COW but
2046 * we don't have any data to COW with!
2048 panic("hammer2_chain_modify: having a COW %p\n",
2049 chain);
2053 * Retire the old buffer, replace with the new. Dirty or
2054 * redirty the new buffer.
2056 * WARNING! The system buffer cache may have already flushed
2057 * the buffer, so we must be sure to [re]dirty it
2058 * for further modification.
2060 * If dedup_off was supplied, the caller is not
2061 * expected to make any further modification to the
2062 * buffer.
2064 * WARNING! hammer2_get_gdata() assumes dio never transitions
2065 * through NULL in order to optimize away unnecessary
2066 * diolk operations.
2069 hammer2_io_t *tio;
2071 if ((tio = chain->dio) != NULL)
2072 hammer2_io_bqrelse(&tio);
2073 chain->data = (void *)bdata;
2074 chain->dio = dio;
2075 if (dedup_off == 0)
2076 hammer2_io_setdirty(dio);
2078 break;
2079 default:
2080 panic("hammer2_chain_modify: illegal non-embedded type %d",
2081 chain->bref.type);
2082 break;
2085 skip2:
2087 * setflush on parent indicating that the parent must recurse down
2088 * to us. Do not call on chain itself which might already have it
2089 * set.
2091 if (chain->parent)
2092 hammer2_chain_setflush(chain->parent);
2093 lockmgr(&chain->diolk, LK_RELEASE);
2095 return (chain->error);
2099 * Modify the chain associated with an inode.
2102 hammer2_chain_modify_ip(hammer2_inode_t *ip, hammer2_chain_t *chain,
2103 hammer2_tid_t mtid, int flags)
2105 int error;
2107 hammer2_inode_modify(ip);
2108 error = hammer2_chain_modify(chain, mtid, 0, flags);
2110 return error;
2114 * This function returns the chain at the nearest key within the specified
2115 * range. The returned chain will be referenced but not locked.
2117 * This function will recurse through chain->rbtree as necessary and will
2118 * return a *key_nextp suitable for iteration. *key_nextp is only set if
2119 * the iteration value is less than the current value of *key_nextp.
2121 * The caller should use (*key_nextp) to calculate the actual range of
2122 * the returned element, which will be (key_beg to *key_nextp - 1), because
2123 * there might be another element which is superior to the returned element
2124 * and overlaps it.
2126 * (*key_nextp) can be passed as key_beg in an iteration only while non-NULL
2127 * chains continue to be returned. On EOF (*key_nextp) may overflow since
2128 * it will wind up being (key_end + 1).
2130 * WARNING! Must be called with child's spinlock held. Spinlock remains
2131 * held through the operation.
2133 struct hammer2_chain_find_info {
2134 hammer2_chain_t *best;
2135 hammer2_key_t key_beg;
2136 hammer2_key_t key_end;
2137 hammer2_key_t key_next;
2140 static int hammer2_chain_find_cmp(hammer2_chain_t *child, void *data);
2141 static int hammer2_chain_find_callback(hammer2_chain_t *child, void *data);
2143 static
2144 hammer2_chain_t *
2145 hammer2_chain_find(hammer2_chain_t *parent, hammer2_key_t *key_nextp,
2146 hammer2_key_t key_beg, hammer2_key_t key_end)
2148 struct hammer2_chain_find_info info;
2150 info.best = NULL;
2151 info.key_beg = key_beg;
2152 info.key_end = key_end;
2153 info.key_next = *key_nextp;
2155 RB_SCAN(hammer2_chain_tree, &parent->core.rbtree,
2156 hammer2_chain_find_cmp, hammer2_chain_find_callback,
2157 &info);
2158 *key_nextp = info.key_next;
2159 #if 0
2160 kprintf("chain_find %p %016jx:%016jx next=%016jx\n",
2161 parent, key_beg, key_end, *key_nextp);
2162 #endif
2164 return (info.best);
2167 static
2169 hammer2_chain_find_cmp(hammer2_chain_t *child, void *data)
2171 struct hammer2_chain_find_info *info = data;
2172 hammer2_key_t child_beg;
2173 hammer2_key_t child_end;
2175 child_beg = child->bref.key;
2176 child_end = child_beg + ((hammer2_key_t)1 << child->bref.keybits) - 1;
2178 if (child_end < info->key_beg)
2179 return(-1);
2180 if (child_beg > info->key_end)
2181 return(1);
2182 return(0);
2185 static
2187 hammer2_chain_find_callback(hammer2_chain_t *child, void *data)
2189 struct hammer2_chain_find_info *info = data;
2190 hammer2_chain_t *best;
2191 hammer2_key_t child_end;
2193 if ((best = info->best) == NULL) {
2195 * No previous best. Assign best
2197 info->best = child;
2198 } else if (best->bref.key <= info->key_beg &&
2199 child->bref.key <= info->key_beg) {
2201 * Illegal overlap.
2203 KKASSERT(0);
2204 /*info->best = child;*/
2205 } else if (child->bref.key < best->bref.key) {
2207 * Child has a nearer key and best is not flush with key_beg.
2208 * Set best to child. Truncate key_next to the old best key.
2210 info->best = child;
2211 if (info->key_next > best->bref.key || info->key_next == 0)
2212 info->key_next = best->bref.key;
2213 } else if (child->bref.key == best->bref.key) {
2215 * If our current best is flush with the child then this
2216 * is an illegal overlap.
2218 * key_next will automatically be limited to the smaller of
2219 * the two end-points.
2221 KKASSERT(0);
2222 info->best = child;
2223 } else {
2225 * Keep the current best but truncate key_next to the child's
2226 * base.
2228 * key_next will also automatically be limited to the smaller
2229 * of the two end-points (probably not necessary for this case
2230 * but we do it anyway).
2232 if (info->key_next > child->bref.key || info->key_next == 0)
2233 info->key_next = child->bref.key;
2237 * Always truncate key_next based on child's end-of-range.
2239 child_end = child->bref.key + ((hammer2_key_t)1 << child->bref.keybits);
2240 if (child_end && (info->key_next > child_end || info->key_next == 0))
2241 info->key_next = child_end;
2243 return(0);
2247 * Retrieve the specified chain from a media blockref, creating the
2248 * in-memory chain structure which reflects it. The returned chain is
2249 * held and locked according to (how) (HAMMER2_RESOLVE_*). The caller must
2250 * handle crc-checks and so forth, and should check chain->error before
2251 * assuming that the data is good.
2253 * To handle insertion races pass the INSERT_RACE flag along with the
2254 * generation number of the core. NULL will be returned if the generation
2255 * number changes before we have a chance to insert the chain. Insert
2256 * races can occur because the parent might be held shared.
2258 * Caller must hold the parent locked shared or exclusive since we may
2259 * need the parent's bref array to find our block.
2261 * WARNING! chain->pmp is always set to NULL for any chain representing
2262 * part of the super-root topology.
2264 hammer2_chain_t *
2265 hammer2_chain_get(hammer2_chain_t *parent, int generation,
2266 hammer2_blockref_t *bref, int how)
2268 hammer2_dev_t *hmp = parent->hmp;
2269 hammer2_chain_t *chain;
2270 int error;
2273 * Allocate a chain structure representing the existing media
2274 * entry. Resulting chain has one ref and is not locked.
2276 if (bref->flags & HAMMER2_BREF_FLAG_PFSROOT)
2277 chain = hammer2_chain_alloc(hmp, NULL, bref);
2278 else
2279 chain = hammer2_chain_alloc(hmp, parent->pmp, bref);
2280 /* ref'd chain returned */
2283 * Flag that the chain is in the parent's blockmap so delete/flush
2284 * knows what to do with it.
2286 atomic_set_int(&chain->flags, HAMMER2_CHAIN_BLKMAPPED);
2289 * chain must be locked to avoid unexpected ripouts
2291 hammer2_chain_lock(chain, how);
2294 * Link the chain into its parent. A spinlock is required to safely
2295 * access the RBTREE, and it is possible to collide with another
2296 * hammer2_chain_get() operation because the caller might only hold
2297 * a shared lock on the parent.
2299 * NOTE: Get races can occur quite often when we distribute
2300 * asynchronous read-aheads across multiple threads.
2302 KKASSERT(parent->refs > 0);
2303 error = hammer2_chain_insert(parent, chain,
2304 HAMMER2_CHAIN_INSERT_SPIN |
2305 HAMMER2_CHAIN_INSERT_RACE,
2306 generation);
2307 if (error) {
2308 KKASSERT((chain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
2309 /*kprintf("chain %p get race\n", chain);*/
2310 hammer2_chain_unlock(chain);
2311 hammer2_chain_drop(chain);
2312 chain = NULL;
2313 } else {
2314 KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
2318 * Return our new chain referenced but not locked, or NULL if
2319 * a race occurred.
2321 return (chain);
2325 * Lookup initialization/completion API
2327 hammer2_chain_t *
2328 hammer2_chain_lookup_init(hammer2_chain_t *parent, int flags)
2330 hammer2_chain_ref(parent);
2331 if (flags & HAMMER2_LOOKUP_SHARED) {
2332 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS |
2333 HAMMER2_RESOLVE_SHARED);
2334 } else {
2335 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
2337 return (parent);
2340 void
2341 hammer2_chain_lookup_done(hammer2_chain_t *parent)
2343 if (parent) {
2344 hammer2_chain_unlock(parent);
2345 hammer2_chain_drop(parent);
2350 * Take the locked chain and return a locked parent. The chain remains
2351 * locked on return, but may have to be temporarily unlocked to acquire
2352 * the parent. Because of this, (chain) must be stable and cannot be
2353 * deleted while it was temporarily unlocked (typically means that (chain)
2354 * is an inode).
2356 * Pass HAMMER2_RESOLVE_* flags in flags.
2358 * This will work even if the chain is errored, and the caller can check
2359 * parent->error on return if desired since the parent will be locked.
2361 * This function handles the lock order reversal.
2363 hammer2_chain_t *
2364 hammer2_chain_getparent(hammer2_chain_t *chain, int flags)
2366 hammer2_chain_t *parent;
2369 * Be careful of order, chain must be unlocked before parent
2370 * is locked below to avoid a deadlock. Try it trivially first.
2372 parent = chain->parent;
2373 if (parent == NULL)
2374 panic("hammer2_chain_getparent: no parent");
2375 hammer2_chain_ref(parent);
2376 if (hammer2_chain_lock(parent, flags|HAMMER2_RESOLVE_NONBLOCK) == 0)
2377 return parent;
2379 for (;;) {
2380 hammer2_chain_unlock(chain);
2381 hammer2_chain_lock(parent, flags);
2382 hammer2_chain_lock(chain, flags);
2385 * Parent relinking races are quite common. We have to get
2386 * it right or we will blow up the block table.
2388 if (chain->parent == parent)
2389 break;
2390 hammer2_chain_unlock(parent);
2391 hammer2_chain_drop(parent);
2392 cpu_ccfence();
2393 parent = chain->parent;
2394 if (parent == NULL)
2395 panic("hammer2_chain_getparent: no parent");
2396 hammer2_chain_ref(parent);
2398 return parent;
2402 * Take the locked chain and return a locked parent. The chain is unlocked
2403 * and dropped. *chainp is set to the returned parent as a convenience.
2404 * Pass HAMMER2_RESOLVE_* flags in flags.
2406 * This will work even if the chain is errored, and the caller can check
2407 * parent->error on return if desired since the parent will be locked.
2409 * The chain does NOT need to be stable. We use a tracking structure
2410 * to track the expected parent if the chain is deleted out from under us.
2412 * This function handles the lock order reversal.
2414 hammer2_chain_t *
2415 hammer2_chain_repparent(hammer2_chain_t **chainp, int flags)
2417 hammer2_chain_t *chain;
2418 hammer2_chain_t *parent;
2419 struct hammer2_reptrack reptrack;
2420 struct hammer2_reptrack **repp;
2423 * Be careful of order, chain must be unlocked before parent
2424 * is locked below to avoid a deadlock. Try it trivially first.
2426 chain = *chainp;
2427 parent = chain->parent;
2428 if (parent == NULL) {
2429 hammer2_spin_unex(&chain->core.spin);
2430 panic("hammer2_chain_repparent: no parent");
2432 hammer2_chain_ref(parent);
2433 if (hammer2_chain_lock(parent, flags|HAMMER2_RESOLVE_NONBLOCK) == 0) {
2434 hammer2_chain_unlock(chain);
2435 hammer2_chain_drop(chain);
2436 *chainp = parent;
2438 return parent;
2442 * Ok, now it gets a bit nasty. There are multiple situations where
2443 * the parent might be in the middle of a deletion, or where the child
2444 * (chain) might be deleted the instant we let go of its lock.
2445 * We can potentially end up in a no-win situation!
2447 * In particular, the indirect_maintenance() case can cause these
2448 * situations.
2450 * To deal with this we install a reptrack structure in the parent
2451 * This reptrack structure 'owns' the parent ref and will automatically
2452 * migrate to the parent's parent if the parent is deleted permanently.
2454 hammer2_spin_init(&reptrack.spin, "h2reptrk");
2455 reptrack.chain = parent;
2456 hammer2_chain_ref(parent); /* for the reptrack */
2458 hammer2_spin_ex(&parent->core.spin);
2459 reptrack.next = parent->core.reptrack;
2460 parent->core.reptrack = &reptrack;
2461 hammer2_spin_unex(&parent->core.spin);
2463 hammer2_chain_unlock(chain);
2464 hammer2_chain_drop(chain);
2465 chain = NULL; /* gone */
2468 * At the top of this loop, chain is gone and parent is refd both
2469 * by us explicitly AND via our reptrack. We are attempting to
2470 * lock parent.
2472 for (;;) {
2473 hammer2_chain_lock(parent, flags);
2475 if (reptrack.chain == parent)
2476 break;
2477 hammer2_chain_unlock(parent);
2478 hammer2_chain_drop(parent);
2480 kprintf("hammer2: debug REPTRACK %p->%p\n",
2481 parent, reptrack.chain);
2482 hammer2_spin_ex(&reptrack.spin);
2483 parent = reptrack.chain;
2484 hammer2_chain_ref(parent);
2485 hammer2_spin_unex(&reptrack.spin);
2489 * Once parent is locked and matches our reptrack, our reptrack
2490 * will be stable and we have our parent. We can unlink our
2491 * reptrack.
2493 * WARNING! Remember that the chain lock might be shared. Chains
2494 * locked shared have stable parent linkages.
2496 hammer2_spin_ex(&parent->core.spin);
2497 repp = &parent->core.reptrack;
2498 while (*repp != &reptrack)
2499 repp = &(*repp)->next;
2500 *repp = reptrack.next;
2501 hammer2_spin_unex(&parent->core.spin);
2503 hammer2_chain_drop(parent); /* reptrack ref */
2504 *chainp = parent; /* return parent lock+ref */
2506 return parent;
2510 * Dispose of any linked reptrack structures in (chain) by shifting them to
2511 * (parent). Both (chain) and (parent) must be exclusively locked.
2513 * This is interlocked against any children of (chain) on the other side.
2514 * No children so remain as-of when this is called so we can test
2515 * core.reptrack without holding the spin-lock.
2517 * Used whenever the caller intends to permanently delete chains related
2518 * to topological recursions (BREF_TYPE_INDIRECT, BREF_TYPE_FREEMAP_NODE),
2519 * where the chains underneath the node being deleted are given a new parent
2520 * above the node being deleted.
2522 static
2523 void
2524 hammer2_chain_repchange(hammer2_chain_t *parent, hammer2_chain_t *chain)
2526 struct hammer2_reptrack *reptrack;
2528 KKASSERT(chain->core.live_count == 0 && RB_EMPTY(&chain->core.rbtree));
2529 while (chain->core.reptrack) {
2530 hammer2_spin_ex(&parent->core.spin);
2531 hammer2_spin_ex(&chain->core.spin);
2532 reptrack = chain->core.reptrack;
2533 if (reptrack == NULL) {
2534 hammer2_spin_unex(&chain->core.spin);
2535 hammer2_spin_unex(&parent->core.spin);
2536 break;
2538 hammer2_spin_ex(&reptrack->spin);
2539 chain->core.reptrack = reptrack->next;
2540 reptrack->chain = parent;
2541 reptrack->next = parent->core.reptrack;
2542 parent->core.reptrack = reptrack;
2543 hammer2_chain_ref(parent); /* reptrack */
2545 hammer2_spin_unex(&chain->core.spin);
2546 hammer2_spin_unex(&parent->core.spin);
2547 kprintf("hammer2: debug repchange %p %p->%p\n",
2548 reptrack, chain, parent);
2549 hammer2_chain_drop(chain); /* reptrack */
2554 * Locate the first chain whos key range overlaps (key_beg, key_end) inclusive.
2555 * (*parentp) typically points to an inode but can also point to a related
2556 * indirect block and this function will recurse upwards and find the inode
2557 * or the nearest undeleted indirect block covering the key range.
2559 * This function unconditionally sets *errorp, replacing any previous value.
2561 * (*parentp) must be exclusive or shared locked (depending on flags) and
2562 * referenced and can be an inode or an existing indirect block within the
2563 * inode.
2565 * If (*parent) is errored out, this function will not attempt to recurse
2566 * the radix tree and will return NULL along with an appropriate *errorp.
2567 * If NULL is returned and *errorp is 0, the requested lookup could not be
2568 * located.
2570 * On return (*parentp) will be modified to point at the deepest parent chain
2571 * element encountered during the search, as a helper for an insertion or
2572 * deletion.
2574 * The new (*parentp) will be locked shared or exclusive (depending on flags),
2575 * and referenced, and the old will be unlocked and dereferenced (no change
2576 * if they are both the same). This is particularly important if the caller
2577 * wishes to insert a new chain, (*parentp) will be set properly even if NULL
2578 * is returned, as long as no error occurred.
2580 * The matching chain will be returned locked according to flags.
2582 * --
2584 * NULL is returned if no match was found, but (*parentp) will still
2585 * potentially be adjusted.
2587 * On return (*key_nextp) will point to an iterative value for key_beg.
2588 * (If NULL is returned (*key_nextp) is set to (key_end + 1)).
2590 * This function will also recurse up the chain if the key is not within the
2591 * current parent's range. (*parentp) can never be set to NULL. An iteration
2592 * can simply allow (*parentp) to float inside the loop.
2594 * NOTE! chain->data is not always resolved. By default it will not be
2595 * resolved for BREF_TYPE_DATA, FREEMAP_NODE, or FREEMAP_LEAF. Use
2596 * HAMMER2_LOOKUP_ALWAYS to force resolution (but be careful w/
2597 * BREF_TYPE_DATA as the device buffer can alias the logical file
2598 * buffer).
2600 hammer2_chain_t *
2601 hammer2_chain_lookup(hammer2_chain_t **parentp, hammer2_key_t *key_nextp,
2602 hammer2_key_t key_beg, hammer2_key_t key_end,
2603 int *errorp, int flags)
2605 hammer2_chain_t *parent;
2606 hammer2_chain_t *chain;
2607 hammer2_blockref_t *base;
2608 hammer2_blockref_t *bref;
2609 hammer2_blockref_t bsave;
2610 hammer2_key_t scan_beg;
2611 hammer2_key_t scan_end;
2612 int count = 0;
2613 int how_always = HAMMER2_RESOLVE_ALWAYS;
2614 int how_maybe = HAMMER2_RESOLVE_MAYBE;
2615 int how;
2616 int generation;
2617 int maxloops = 300000;
2619 if (flags & HAMMER2_LOOKUP_ALWAYS) {
2620 how_maybe = how_always;
2621 how = HAMMER2_RESOLVE_ALWAYS;
2622 } else if (flags & HAMMER2_LOOKUP_NODATA) {
2623 how = HAMMER2_RESOLVE_NEVER;
2624 } else {
2625 how = HAMMER2_RESOLVE_MAYBE;
2627 if (flags & HAMMER2_LOOKUP_SHARED) {
2628 how_maybe |= HAMMER2_RESOLVE_SHARED;
2629 how_always |= HAMMER2_RESOLVE_SHARED;
2630 how |= HAMMER2_RESOLVE_SHARED;
2634 * Recurse (*parentp) upward if necessary until the parent completely
2635 * encloses the key range or we hit the inode.
2637 * Handle races against the flusher deleting indirect nodes on its
2638 * way back up by continuing to recurse upward past the deletion.
2640 parent = *parentp;
2641 *errorp = 0;
2643 while (parent->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
2644 parent->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2645 scan_beg = parent->bref.key;
2646 scan_end = scan_beg +
2647 ((hammer2_key_t)1 << parent->bref.keybits) - 1;
2648 if ((parent->flags & HAMMER2_CHAIN_DELETED) == 0) {
2649 if (key_beg >= scan_beg && key_end <= scan_end)
2650 break;
2652 parent = hammer2_chain_repparent(parentp, how_maybe);
2654 again:
2655 if (--maxloops == 0)
2656 panic("hammer2_chain_lookup: maxloops");
2659 * MATCHIND case that does not require parent->data (do prior to
2660 * parent->error check).
2662 switch(parent->bref.type) {
2663 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2664 case HAMMER2_BREF_TYPE_INDIRECT:
2665 if (flags & HAMMER2_LOOKUP_MATCHIND) {
2666 scan_beg = parent->bref.key;
2667 scan_end = scan_beg +
2668 ((hammer2_key_t)1 << parent->bref.keybits) - 1;
2669 if (key_beg == scan_beg && key_end == scan_end) {
2670 chain = parent;
2671 hammer2_chain_ref(chain);
2672 hammer2_chain_lock(chain, how_maybe);
2673 *key_nextp = scan_end + 1;
2674 goto done;
2677 break;
2678 default:
2679 break;
2683 * No lookup is possible if the parent is errored. We delayed
2684 * this check as long as we could to ensure that the parent backup,
2685 * embedded data, and MATCHIND code could still execute.
2687 if (parent->error) {
2688 *errorp = parent->error;
2689 return NULL;
2693 * Locate the blockref array. Currently we do a fully associative
2694 * search through the array.
2696 switch(parent->bref.type) {
2697 case HAMMER2_BREF_TYPE_INODE:
2699 * Special shortcut for embedded data returns the inode
2700 * itself. Callers must detect this condition and access
2701 * the embedded data (the strategy code does this for us).
2703 * This is only applicable to regular files and softlinks.
2705 * We need a second lock on parent. Since we already have
2706 * a lock we must pass LOCKAGAIN to prevent unexpected
2707 * blocking (we don't want to block on a second shared
2708 * ref if an exclusive lock is pending)
2710 if (parent->data->ipdata.meta.op_flags &
2711 HAMMER2_OPFLAG_DIRECTDATA) {
2712 if (flags & HAMMER2_LOOKUP_NODIRECT) {
2713 chain = NULL;
2714 *key_nextp = key_end + 1;
2715 goto done;
2717 hammer2_chain_ref(parent);
2718 hammer2_chain_lock(parent, how_always |
2719 HAMMER2_RESOLVE_LOCKAGAIN);
2720 *key_nextp = key_end + 1;
2721 return (parent);
2723 base = &parent->data->ipdata.u.blockset.blockref[0];
2724 count = HAMMER2_SET_COUNT;
2725 break;
2726 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2727 case HAMMER2_BREF_TYPE_INDIRECT:
2729 * Optimize indirect blocks in the INITIAL state to avoid
2730 * I/O.
2732 * Debugging: Enter permanent wait state instead of
2733 * panicing on unexpectedly NULL data for the moment.
2735 if (parent->flags & HAMMER2_CHAIN_INITIAL) {
2736 base = NULL;
2737 } else {
2738 if (parent->data == NULL) {
2739 kprintf("hammer2: unexpected NULL data "
2740 "on %p\n", parent);
2741 while (1)
2742 tsleep(parent, 0, "xxx", 0);
2744 base = &parent->data->npdata[0];
2746 count = parent->bytes / sizeof(hammer2_blockref_t);
2747 break;
2748 case HAMMER2_BREF_TYPE_VOLUME:
2749 base = &parent->data->voldata.sroot_blockset.blockref[0];
2750 count = HAMMER2_SET_COUNT;
2751 break;
2752 case HAMMER2_BREF_TYPE_FREEMAP:
2753 base = &parent->data->blkset.blockref[0];
2754 count = HAMMER2_SET_COUNT;
2755 break;
2756 default:
2757 panic("hammer2_chain_lookup: unrecognized "
2758 "blockref(B) type: %d",
2759 parent->bref.type);
2760 base = NULL; /* safety */
2761 count = 0; /* safety */
2762 break;
2766 * Merged scan to find next candidate.
2768 * hammer2_base_*() functions require the parent->core.live_* fields
2769 * to be synchronized.
2771 * We need to hold the spinlock to access the block array and RB tree
2772 * and to interlock chain creation.
2774 if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
2775 hammer2_chain_countbrefs(parent, base, count);
2778 * Combined search
2780 hammer2_spin_ex(&parent->core.spin);
2781 chain = hammer2_combined_find(parent, base, count,
2782 key_nextp,
2783 key_beg, key_end,
2784 &bref);
2785 generation = parent->core.generation;
2788 * Exhausted parent chain, iterate.
2790 if (bref == NULL) {
2791 KKASSERT(chain == NULL);
2792 hammer2_spin_unex(&parent->core.spin);
2793 if (key_beg == key_end) /* short cut single-key case */
2794 return (NULL);
2797 * Stop if we reached the end of the iteration.
2799 if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
2800 parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2801 return (NULL);
2805 * Calculate next key, stop if we reached the end of the
2806 * iteration, otherwise go up one level and loop.
2808 key_beg = parent->bref.key +
2809 ((hammer2_key_t)1 << parent->bref.keybits);
2810 if (key_beg == 0 || key_beg > key_end)
2811 return (NULL);
2812 parent = hammer2_chain_repparent(parentp, how_maybe);
2813 goto again;
2817 * Selected from blockref or in-memory chain.
2819 bsave = *bref;
2820 if (chain == NULL) {
2821 hammer2_spin_unex(&parent->core.spin);
2822 if (bsave.type == HAMMER2_BREF_TYPE_INDIRECT ||
2823 bsave.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2824 chain = hammer2_chain_get(parent, generation,
2825 &bsave, how_maybe);
2826 } else {
2827 chain = hammer2_chain_get(parent, generation,
2828 &bsave, how);
2830 if (chain == NULL)
2831 goto again;
2832 } else {
2833 hammer2_chain_ref(chain);
2834 hammer2_spin_unex(&parent->core.spin);
2837 * chain is referenced but not locked. We must lock the
2838 * chain to obtain definitive state.
2840 if (bsave.type == HAMMER2_BREF_TYPE_INDIRECT ||
2841 bsave.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2842 hammer2_chain_lock(chain, how_maybe);
2843 } else {
2844 hammer2_chain_lock(chain, how);
2846 KKASSERT(chain->parent == parent);
2848 if (bcmp(&bsave, &chain->bref, sizeof(bsave)) ||
2849 chain->parent != parent) {
2850 hammer2_chain_unlock(chain);
2851 hammer2_chain_drop(chain);
2852 chain = NULL; /* SAFETY */
2853 goto again;
2858 * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
2860 * NOTE: Chain's key range is not relevant as there might be
2861 * one-offs within the range that are not deleted.
2863 * NOTE: Lookups can race delete-duplicate because
2864 * delete-duplicate does not lock the parent's core
2865 * (they just use the spinlock on the core).
2867 if (chain->flags & HAMMER2_CHAIN_DELETED) {
2868 kprintf("skip deleted chain %016jx.%02x key=%016jx\n",
2869 chain->bref.data_off, chain->bref.type,
2870 chain->bref.key);
2871 hammer2_chain_unlock(chain);
2872 hammer2_chain_drop(chain);
2873 chain = NULL; /* SAFETY */
2874 key_beg = *key_nextp;
2875 if (key_beg == 0 || key_beg > key_end)
2876 return(NULL);
2877 goto again;
2881 * If the chain element is an indirect block it becomes the new
2882 * parent and we loop on it. We must maintain our top-down locks
2883 * to prevent the flusher from interfering (i.e. doing a
2884 * delete-duplicate and leaving us recursing down a deleted chain).
2886 * The parent always has to be locked with at least RESOLVE_MAYBE
2887 * so we can access its data. It might need a fixup if the caller
2888 * passed incompatible flags. Be careful not to cause a deadlock
2889 * as a data-load requires an exclusive lock.
2891 * If HAMMER2_LOOKUP_MATCHIND is set and the indirect block's key
2892 * range is within the requested key range we return the indirect
2893 * block and do NOT loop. This is usually only used to acquire
2894 * freemap nodes.
2896 if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
2897 chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2898 hammer2_chain_unlock(parent);
2899 hammer2_chain_drop(parent);
2900 *parentp = parent = chain;
2901 chain = NULL; /* SAFETY */
2902 goto again;
2904 done:
2906 * All done, return the locked chain.
2908 * If the caller does not want a locked chain, replace the lock with
2909 * a ref. Perhaps this can eventually be optimized to not obtain the
2910 * lock in the first place for situations where the data does not
2911 * need to be resolved.
2913 * NOTE! A chain->error must be tested by the caller upon return.
2914 * *errorp is only set based on issues which occur while
2915 * trying to reach the chain.
2917 return (chain);
2921 * After having issued a lookup we can iterate all matching keys.
2923 * If chain is non-NULL we continue the iteration from just after it's index.
2925 * If chain is NULL we assume the parent was exhausted and continue the
2926 * iteration at the next parent.
2928 * If a fatal error occurs (typically an I/O error), a dummy chain is
2929 * returned with chain->error and error-identifying information set. This
2930 * chain will assert if you try to do anything fancy with it.
2932 * XXX Depending on where the error occurs we should allow continued iteration.
2934 * parent must be locked on entry and remains locked throughout. chain's
2935 * lock status must match flags. Chain is always at least referenced.
2937 * WARNING! The MATCHIND flag does not apply to this function.
2939 hammer2_chain_t *
2940 hammer2_chain_next(hammer2_chain_t **parentp, hammer2_chain_t *chain,
2941 hammer2_key_t *key_nextp,
2942 hammer2_key_t key_beg, hammer2_key_t key_end,
2943 int *errorp, int flags)
2945 hammer2_chain_t *parent;
2946 int how_maybe;
2949 * Calculate locking flags for upward recursion.
2951 how_maybe = HAMMER2_RESOLVE_MAYBE;
2952 if (flags & HAMMER2_LOOKUP_SHARED)
2953 how_maybe |= HAMMER2_RESOLVE_SHARED;
2955 parent = *parentp;
2956 *errorp = 0;
2959 * Calculate the next index and recalculate the parent if necessary.
2961 if (chain) {
2962 key_beg = chain->bref.key +
2963 ((hammer2_key_t)1 << chain->bref.keybits);
2964 hammer2_chain_unlock(chain);
2965 hammer2_chain_drop(chain);
2968 * chain invalid past this point, but we can still do a
2969 * pointer comparison w/parent.
2971 * Any scan where the lookup returned degenerate data embedded
2972 * in the inode has an invalid index and must terminate.
2974 if (chain == parent)
2975 return(NULL);
2976 if (key_beg == 0 || key_beg > key_end)
2977 return(NULL);
2978 chain = NULL;
2979 } else if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
2980 parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2982 * We reached the end of the iteration.
2984 return (NULL);
2985 } else {
2987 * Continue iteration with next parent unless the current
2988 * parent covers the range.
2990 * (This also handles the case of a deleted, empty indirect
2991 * node).
2993 key_beg = parent->bref.key +
2994 ((hammer2_key_t)1 << parent->bref.keybits);
2995 if (key_beg == 0 || key_beg > key_end)
2996 return (NULL);
2997 parent = hammer2_chain_repparent(parentp, how_maybe);
3001 * And execute
3003 return (hammer2_chain_lookup(parentp, key_nextp,
3004 key_beg, key_end,
3005 errorp, flags));
3009 * Caller wishes to iterate chains under parent, loading new chains into
3010 * chainp. Caller must initialize *chainp to NULL and *firstp to 1, and
3011 * then call hammer2_chain_scan() repeatedly until a non-zero return.
3012 * During the scan, *firstp will be set to 0 and (*chainp) will be replaced
3013 * with the returned chain for the scan. The returned *chainp will be
3014 * locked and referenced. Any prior contents will be unlocked and dropped.
3016 * Caller should check the return value. A normal scan EOF will return
3017 * exactly HAMMER2_ERROR_EOF. Any other non-zero value indicates an
3018 * error trying to access parent data. Any error in the returned chain
3019 * must be tested separately by the caller.
3021 * (*chainp) is dropped on each scan, but will only be set if the returned
3022 * element itself can recurse. Leaf elements are NOT resolved, loaded, or
3023 * returned via *chainp. The caller will get their bref only.
3025 * The raw scan function is similar to lookup/next but does not seek to a key.
3026 * Blockrefs are iterated via first_bref = (parent, NULL) and
3027 * next_chain = (parent, bref).
3029 * The passed-in parent must be locked and its data resolved. The function
3030 * nominally returns a locked and referenced *chainp != NULL for chains
3031 * the caller might need to recurse on (and will dipose of any *chainp passed
3032 * in). The caller must check the chain->bref.type either way.
3035 hammer2_chain_scan(hammer2_chain_t *parent, hammer2_chain_t **chainp,
3036 hammer2_blockref_t *bref, int *firstp,
3037 int flags)
3039 hammer2_blockref_t *base;
3040 hammer2_blockref_t *bref_ptr;
3041 hammer2_key_t key;
3042 hammer2_key_t next_key;
3043 hammer2_chain_t *chain = NULL;
3044 int count = 0;
3045 int how;
3046 int generation;
3047 int maxloops = 300000;
3048 int error;
3050 error = 0;
3053 * Scan flags borrowed from lookup.
3055 if (flags & HAMMER2_LOOKUP_ALWAYS) {
3056 how = HAMMER2_RESOLVE_ALWAYS;
3057 } else if (flags & HAMMER2_LOOKUP_NODATA) {
3058 how = HAMMER2_RESOLVE_NEVER;
3059 } else {
3060 how = HAMMER2_RESOLVE_MAYBE;
3062 if (flags & HAMMER2_LOOKUP_SHARED) {
3063 how |= HAMMER2_RESOLVE_SHARED;
3067 * Calculate key to locate first/next element, unlocking the previous
3068 * element as we go. Be careful, the key calculation can overflow.
3070 * (also reset bref to NULL)
3072 if (*firstp) {
3073 key = 0;
3074 *firstp = 0;
3075 } else {
3076 key = bref->key + ((hammer2_key_t)1 << bref->keybits);
3077 if ((chain = *chainp) != NULL) {
3078 *chainp = NULL;
3079 hammer2_chain_unlock(chain);
3080 hammer2_chain_drop(chain);
3081 chain = NULL;
3083 if (key == 0) {
3084 error |= HAMMER2_ERROR_EOF;
3085 goto done;
3089 again:
3090 if (parent->error) {
3091 error = parent->error;
3092 goto done;
3094 if (--maxloops == 0)
3095 panic("hammer2_chain_scan: maxloops");
3098 * Locate the blockref array. Currently we do a fully associative
3099 * search through the array.
3101 switch(parent->bref.type) {
3102 case HAMMER2_BREF_TYPE_INODE:
3104 * An inode with embedded data has no sub-chains.
3106 * WARNING! Bulk scan code may pass a static chain marked
3107 * as BREF_TYPE_INODE with a copy of the volume
3108 * root blockset to snapshot the volume.
3110 if (parent->data->ipdata.meta.op_flags &
3111 HAMMER2_OPFLAG_DIRECTDATA) {
3112 error |= HAMMER2_ERROR_EOF;
3113 goto done;
3115 base = &parent->data->ipdata.u.blockset.blockref[0];
3116 count = HAMMER2_SET_COUNT;
3117 break;
3118 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3119 case HAMMER2_BREF_TYPE_INDIRECT:
3121 * Optimize indirect blocks in the INITIAL state to avoid
3122 * I/O.
3124 if (parent->flags & HAMMER2_CHAIN_INITIAL) {
3125 base = NULL;
3126 } else {
3127 if (parent->data == NULL)
3128 panic("parent->data is NULL");
3129 base = &parent->data->npdata[0];
3131 count = parent->bytes / sizeof(hammer2_blockref_t);
3132 break;
3133 case HAMMER2_BREF_TYPE_VOLUME:
3134 base = &parent->data->voldata.sroot_blockset.blockref[0];
3135 count = HAMMER2_SET_COUNT;
3136 break;
3137 case HAMMER2_BREF_TYPE_FREEMAP:
3138 base = &parent->data->blkset.blockref[0];
3139 count = HAMMER2_SET_COUNT;
3140 break;
3141 default:
3142 panic("hammer2_chain_scan: unrecognized blockref type: %d",
3143 parent->bref.type);
3144 base = NULL; /* safety */
3145 count = 0; /* safety */
3146 break;
3150 * Merged scan to find next candidate.
3152 * hammer2_base_*() functions require the parent->core.live_* fields
3153 * to be synchronized.
3155 * We need to hold the spinlock to access the block array and RB tree
3156 * and to interlock chain creation.
3158 if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
3159 hammer2_chain_countbrefs(parent, base, count);
3161 next_key = 0;
3162 bref_ptr = NULL;
3163 hammer2_spin_ex(&parent->core.spin);
3164 chain = hammer2_combined_find(parent, base, count,
3165 &next_key,
3166 key, HAMMER2_KEY_MAX,
3167 &bref_ptr);
3168 generation = parent->core.generation;
3171 * Exhausted parent chain, we're done.
3173 if (bref_ptr == NULL) {
3174 hammer2_spin_unex(&parent->core.spin);
3175 KKASSERT(chain == NULL);
3176 error |= HAMMER2_ERROR_EOF;
3177 goto done;
3181 * Copy into the supplied stack-based blockref.
3183 *bref = *bref_ptr;
3186 * Selected from blockref or in-memory chain.
3188 if (chain == NULL) {
3189 switch(bref->type) {
3190 case HAMMER2_BREF_TYPE_INODE:
3191 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3192 case HAMMER2_BREF_TYPE_INDIRECT:
3193 case HAMMER2_BREF_TYPE_VOLUME:
3194 case HAMMER2_BREF_TYPE_FREEMAP:
3196 * Recursion, always get the chain
3198 hammer2_spin_unex(&parent->core.spin);
3199 chain = hammer2_chain_get(parent, generation,
3200 bref, how);
3201 if (chain == NULL)
3202 goto again;
3203 break;
3204 default:
3206 * No recursion, do not waste time instantiating
3207 * a chain, just iterate using the bref.
3209 hammer2_spin_unex(&parent->core.spin);
3210 break;
3212 } else {
3214 * Recursion or not we need the chain in order to supply
3215 * the bref.
3217 hammer2_chain_ref(chain);
3218 hammer2_spin_unex(&parent->core.spin);
3219 hammer2_chain_lock(chain, how);
3221 if (chain &&
3222 (bcmp(bref, &chain->bref, sizeof(*bref)) ||
3223 chain->parent != parent)) {
3224 hammer2_chain_unlock(chain);
3225 hammer2_chain_drop(chain);
3226 chain = NULL;
3227 goto again;
3231 * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
3233 * NOTE: chain's key range is not relevant as there might be
3234 * one-offs within the range that are not deleted.
3236 * NOTE: XXX this could create problems with scans used in
3237 * situations other than mount-time recovery.
3239 * NOTE: Lookups can race delete-duplicate because
3240 * delete-duplicate does not lock the parent's core
3241 * (they just use the spinlock on the core).
3243 if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
3244 hammer2_chain_unlock(chain);
3245 hammer2_chain_drop(chain);
3246 chain = NULL;
3248 key = next_key;
3249 if (key == 0) {
3250 error |= HAMMER2_ERROR_EOF;
3251 goto done;
3253 goto again;
3256 done:
3258 * All done, return the bref or NULL, supply chain if necessary.
3260 if (chain)
3261 *chainp = chain;
3262 return (error);
3266 * Create and return a new hammer2 system memory structure of the specified
3267 * key, type and size and insert it under (*parentp). This is a full
3268 * insertion, based on the supplied key/keybits, and may involve creating
3269 * indirect blocks and moving other chains around via delete/duplicate.
3271 * This call can be made with parent == NULL as long as a non -1 methods
3272 * is supplied. hmp must also be supplied in this situation (otherwise
3273 * hmp is extracted from the supplied parent). The chain will be detached
3274 * from the topology. A later call with both parent and chain can be made
3275 * to attach it.
3277 * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (*parentp) TO THE INSERTION
3278 * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
3279 * FULL. This typically means that the caller is creating the chain after
3280 * doing a hammer2_chain_lookup().
3282 * (*parentp) must be exclusive locked and may be replaced on return
3283 * depending on how much work the function had to do.
3285 * (*parentp) must not be errored or this function will assert.
3287 * (*chainp) usually starts out NULL and returns the newly created chain,
3288 * but if the caller desires the caller may allocate a disconnected chain
3289 * and pass it in instead.
3291 * This function should NOT be used to insert INDIRECT blocks. It is
3292 * typically used to create/insert inodes and data blocks.
3294 * Caller must pass-in an exclusively locked parent the new chain is to
3295 * be inserted under, and optionally pass-in a disconnected, exclusively
3296 * locked chain to insert (else we create a new chain). The function will
3297 * adjust (*parentp) as necessary, create or connect the chain, and
3298 * return an exclusively locked chain in *chainp.
3300 * When creating a PFSROOT inode under the super-root, pmp is typically NULL
3301 * and will be reassigned.
3303 * NOTE: returns HAMMER_ERROR_* flags
3306 hammer2_chain_create(hammer2_chain_t **parentp, hammer2_chain_t **chainp,
3307 hammer2_dev_t *hmp, hammer2_pfs_t *pmp, int methods,
3308 hammer2_key_t key, int keybits, int type, size_t bytes,
3309 hammer2_tid_t mtid, hammer2_off_t dedup_off, int flags)
3311 hammer2_chain_t *chain;
3312 hammer2_chain_t *parent;
3313 hammer2_blockref_t *base;
3314 hammer2_blockref_t dummy;
3315 int allocated = 0;
3316 int error = 0;
3317 int count;
3318 int maxloops = 300000;
3321 * Topology may be crossing a PFS boundary.
3323 parent = *parentp;
3324 if (parent) {
3325 KKASSERT(hammer2_mtx_owned(&parent->lock));
3326 KKASSERT(parent->error == 0);
3327 hmp = parent->hmp;
3329 chain = *chainp;
3331 if (chain == NULL) {
3333 * First allocate media space and construct the dummy bref,
3334 * then allocate the in-memory chain structure. Set the
3335 * INITIAL flag for fresh chains which do not have embedded
3336 * data.
3338 bzero(&dummy, sizeof(dummy));
3339 dummy.type = type;
3340 dummy.key = key;
3341 dummy.keybits = keybits;
3342 dummy.data_off = hammer2_getradix(bytes);
3345 * Inherit methods from parent by default. Primarily used
3346 * for BREF_TYPE_DATA. Non-data types *must* be set to
3347 * a non-NONE check algorithm.
3349 if (methods == HAMMER2_METH_DEFAULT)
3350 dummy.methods = parent->bref.methods;
3351 else
3352 dummy.methods = (uint8_t)methods;
3354 if (type != HAMMER2_BREF_TYPE_DATA &&
3355 HAMMER2_DEC_CHECK(dummy.methods) == HAMMER2_CHECK_NONE) {
3356 dummy.methods |=
3357 HAMMER2_ENC_CHECK(HAMMER2_CHECK_DEFAULT);
3360 chain = hammer2_chain_alloc(hmp, pmp, &dummy);
3363 * Lock the chain manually, chain_lock will load the chain
3364 * which we do NOT want to do. (note: chain->refs is set
3365 * to 1 by chain_alloc() for us, but lockcnt is not).
3367 chain->lockcnt = 1;
3368 hammer2_mtx_ex(&chain->lock);
3369 allocated = 1;
3372 * Set INITIAL to optimize I/O. The flag will generally be
3373 * processed when we call hammer2_chain_modify().
3375 switch(type) {
3376 case HAMMER2_BREF_TYPE_VOLUME:
3377 case HAMMER2_BREF_TYPE_FREEMAP:
3378 panic("hammer2_chain_create: called with volume type");
3379 break;
3380 case HAMMER2_BREF_TYPE_INDIRECT:
3381 panic("hammer2_chain_create: cannot be used to"
3382 "create indirect block");
3383 break;
3384 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3385 panic("hammer2_chain_create: cannot be used to"
3386 "create freemap root or node");
3387 break;
3388 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
3389 KKASSERT(bytes == sizeof(chain->data->bmdata));
3390 /* fall through */
3391 case HAMMER2_BREF_TYPE_DIRENT:
3392 case HAMMER2_BREF_TYPE_INODE:
3393 case HAMMER2_BREF_TYPE_DATA:
3394 default:
3396 * leave chain->data NULL, set INITIAL
3398 KKASSERT(chain->data == NULL);
3399 atomic_set_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
3400 break;
3402 } else {
3404 * We are reattaching a previously deleted chain, possibly
3405 * under a new parent and possibly with a new key/keybits.
3406 * The chain does not have to be in a modified state. The
3407 * UPDATE flag will be set later on in this routine.
3409 * Do NOT mess with the current state of the INITIAL flag.
3411 chain->bref.key = key;
3412 chain->bref.keybits = keybits;
3413 if (chain->flags & HAMMER2_CHAIN_DELETED)
3414 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3415 KKASSERT(chain->parent == NULL);
3419 * Set the appropriate bref flag if requested.
3421 * NOTE! Callers can call this function to move chains without
3422 * knowing about special flags, so don't clear bref flags
3423 * here!
3425 if (flags & HAMMER2_INSERT_PFSROOT)
3426 chain->bref.flags |= HAMMER2_BREF_FLAG_PFSROOT;
3428 if (parent == NULL)
3429 goto skip;
3432 * Calculate how many entries we have in the blockref array and
3433 * determine if an indirect block is required when inserting into
3434 * the parent.
3436 again:
3437 if (--maxloops == 0)
3438 panic("hammer2_chain_create: maxloops");
3440 switch(parent->bref.type) {
3441 case HAMMER2_BREF_TYPE_INODE:
3442 if ((parent->data->ipdata.meta.op_flags &
3443 HAMMER2_OPFLAG_DIRECTDATA) != 0) {
3444 kprintf("hammer2: parent set for direct-data! "
3445 "pkey=%016jx ckey=%016jx\n",
3446 parent->bref.key,
3447 chain->bref.key);
3449 KKASSERT((parent->data->ipdata.meta.op_flags &
3450 HAMMER2_OPFLAG_DIRECTDATA) == 0);
3451 KKASSERT(parent->data != NULL);
3452 base = &parent->data->ipdata.u.blockset.blockref[0];
3453 count = HAMMER2_SET_COUNT;
3454 break;
3455 case HAMMER2_BREF_TYPE_INDIRECT:
3456 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3457 if (parent->flags & HAMMER2_CHAIN_INITIAL)
3458 base = NULL;
3459 else
3460 base = &parent->data->npdata[0];
3461 count = parent->bytes / sizeof(hammer2_blockref_t);
3462 break;
3463 case HAMMER2_BREF_TYPE_VOLUME:
3464 KKASSERT(parent->data != NULL);
3465 base = &parent->data->voldata.sroot_blockset.blockref[0];
3466 count = HAMMER2_SET_COUNT;
3467 break;
3468 case HAMMER2_BREF_TYPE_FREEMAP:
3469 KKASSERT(parent->data != NULL);
3470 base = &parent->data->blkset.blockref[0];
3471 count = HAMMER2_SET_COUNT;
3472 break;
3473 default:
3474 panic("hammer2_chain_create: unrecognized blockref type: %d",
3475 parent->bref.type);
3476 base = NULL;
3477 count = 0;
3478 break;
3482 * Make sure we've counted the brefs
3484 if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
3485 hammer2_chain_countbrefs(parent, base, count);
3487 KASSERT(parent->core.live_count >= 0 &&
3488 parent->core.live_count <= count,
3489 ("bad live_count %d/%d (%02x, %d)",
3490 parent->core.live_count, count,
3491 parent->bref.type, parent->bytes));
3494 * If no free blockref could be found we must create an indirect
3495 * block and move a number of blockrefs into it. With the parent
3496 * locked we can safely lock each child in order to delete+duplicate
3497 * it without causing a deadlock.
3499 * This may return the new indirect block or the old parent depending
3500 * on where the key falls. NULL is returned on error.
3502 if (parent->core.live_count == count) {
3503 hammer2_chain_t *nparent;
3505 KKASSERT((flags & HAMMER2_INSERT_SAMEPARENT) == 0);
3507 nparent = hammer2_chain_create_indirect(parent, key, keybits,
3508 mtid, type, &error);
3509 if (nparent == NULL) {
3510 if (allocated)
3511 hammer2_chain_drop(chain);
3512 chain = NULL;
3513 goto done;
3515 if (parent != nparent) {
3516 hammer2_chain_unlock(parent);
3517 hammer2_chain_drop(parent);
3518 parent = *parentp = nparent;
3520 goto again;
3524 * fall through if parent, or skip to here if no parent.
3526 skip:
3527 if (chain->flags & HAMMER2_CHAIN_DELETED)
3528 kprintf("Inserting deleted chain @%016jx\n",
3529 chain->bref.key);
3532 * Link the chain into its parent.
3534 if (chain->parent != NULL)
3535 panic("hammer2: hammer2_chain_create: chain already connected");
3536 KKASSERT(chain->parent == NULL);
3537 if (parent) {
3538 KKASSERT(parent->core.live_count < count);
3539 hammer2_chain_insert(parent, chain,
3540 HAMMER2_CHAIN_INSERT_SPIN |
3541 HAMMER2_CHAIN_INSERT_LIVE,
3545 if (allocated) {
3547 * Mark the newly created chain modified. This will cause
3548 * UPDATE to be set and process the INITIAL flag.
3550 * Device buffers are not instantiated for DATA elements
3551 * as these are handled by logical buffers.
3553 * Indirect and freemap node indirect blocks are handled
3554 * by hammer2_chain_create_indirect() and not by this
3555 * function.
3557 * Data for all other bref types is expected to be
3558 * instantiated (INODE, LEAF).
3560 switch(chain->bref.type) {
3561 case HAMMER2_BREF_TYPE_DATA:
3562 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
3563 case HAMMER2_BREF_TYPE_DIRENT:
3564 case HAMMER2_BREF_TYPE_INODE:
3565 error = hammer2_chain_modify(chain, mtid, dedup_off,
3566 HAMMER2_MODIFY_OPTDATA);
3567 break;
3568 default:
3570 * Remaining types are not supported by this function.
3571 * In particular, INDIRECT and LEAF_NODE types are
3572 * handled by create_indirect().
3574 panic("hammer2_chain_create: bad type: %d",
3575 chain->bref.type);
3576 /* NOT REACHED */
3577 break;
3579 } else {
3581 * When reconnecting a chain we must set UPDATE and
3582 * setflush so the flush recognizes that it must update
3583 * the bref in the parent.
3585 if ((chain->flags & HAMMER2_CHAIN_UPDATE) == 0)
3586 atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
3590 * We must setflush(parent) to ensure that it recurses through to
3591 * chain. setflush(chain) might not work because ONFLUSH is possibly
3592 * already set in the chain (so it won't recurse up to set it in the
3593 * parent).
3595 if (parent)
3596 hammer2_chain_setflush(parent);
3598 done:
3599 *chainp = chain;
3601 return (error);
3605 * Move the chain from its old parent to a new parent. The chain must have
3606 * already been deleted or already disconnected (or never associated) with
3607 * a parent. The chain is reassociated with the new parent and the deleted
3608 * flag will be cleared (no longer deleted). The chain's modification state
3609 * is not altered.
3611 * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (parent) TO THE INSERTION
3612 * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
3613 * FULL. This typically means that the caller is creating the chain after
3614 * doing a hammer2_chain_lookup().
3616 * Neither (parent) or (chain) can be errored.
3618 * If (parent) is non-NULL then the chain is inserted under the parent.
3620 * If (parent) is NULL then the newly duplicated chain is not inserted
3621 * anywhere, similar to if it had just been chain_alloc()'d (suitable for
3622 * passing into hammer2_chain_create() after this function returns).
3624 * WARNING! This function calls create which means it can insert indirect
3625 * blocks. This can cause other unrelated chains in the parent to
3626 * be moved to a newly inserted indirect block in addition to the
3627 * specific chain.
3629 void
3630 hammer2_chain_rename(hammer2_chain_t **parentp, hammer2_chain_t *chain,
3631 hammer2_tid_t mtid, int flags)
3633 hammer2_blockref_t *bref;
3634 hammer2_chain_t *parent;
3637 * WARNING! We should never resolve DATA to device buffers
3638 * (XXX allow it if the caller did?), and since
3639 * we currently do not have the logical buffer cache
3640 * buffer in-hand to fix its cached physical offset
3641 * we also force the modify code to not COW it. XXX
3643 * NOTE! We allow error'd chains to be renamed. The bref itself
3644 * is good and can be renamed. The content, however, may
3645 * be inaccessible.
3647 KKASSERT(chain->parent == NULL);
3648 /*KKASSERT(chain->error == 0); allow */
3649 bref = &chain->bref;
3652 * If parent is not NULL the duplicated chain will be entered under
3653 * the parent and the UPDATE bit set to tell flush to update
3654 * the blockref.
3656 * We must setflush(parent) to ensure that it recurses through to
3657 * chain. setflush(chain) might not work because ONFLUSH is possibly
3658 * already set in the chain (so it won't recurse up to set it in the
3659 * parent).
3661 * Having both chains locked is extremely important for atomicy.
3663 if (parentp && (parent = *parentp) != NULL) {
3664 KKASSERT(hammer2_mtx_owned(&parent->lock));
3665 KKASSERT(parent->refs > 0);
3666 KKASSERT(parent->error == 0);
3668 hammer2_chain_create(parentp, &chain, NULL, chain->pmp,
3669 HAMMER2_METH_DEFAULT,
3670 bref->key, bref->keybits, bref->type,
3671 chain->bytes, mtid, 0, flags);
3672 KKASSERT(chain->flags & HAMMER2_CHAIN_UPDATE);
3673 hammer2_chain_setflush(*parentp);
3678 * This works in tandem with delete_obref() to install a blockref in
3679 * (typically) an indirect block that is associated with the chain being
3680 * moved to *parentp.
3682 * The reason we need this function is that the caller needs to maintain
3683 * the blockref as it was, and not generate a new blockref for what might
3684 * be a modified chain. Otherwise stuff will leak into the flush that
3685 * the flush code's FLUSH_INODE_STOP flag is unable to catch.
3687 * It is EXTREMELY important that we properly set CHAIN_BLKMAPUPD and
3688 * CHAIN_UPDATE. We must set BLKMAPUPD if the bref does not match, and
3689 * we must clear CHAIN_UPDATE (that was likely set by the chain_rename) if
3690 * it does. Otherwise we can end up in a situation where H2 is unable to
3691 * clean up the in-memory chain topology.
3693 * The reason for this is that flushes do not generally flush through
3694 * BREF_TYPE_INODE chains and depend on a hammer2_inode_t queued to syncq
3695 * or sideq to properly flush and dispose of the related inode chain's flags.
3696 * Situations where the inode is not actually modified by the frontend,
3697 * but where we have to move the related chains around as we insert or cleanup
3698 * indirect blocks, can leave us with a 'dirty' (non-disposable) in-memory
3699 * inode chain that does not have a hammer2_inode_t associated with it.
3701 static void
3702 hammer2_chain_rename_obref(hammer2_chain_t **parentp, hammer2_chain_t *chain,
3703 hammer2_tid_t mtid, int flags,
3704 hammer2_blockref_t *obref)
3706 hammer2_chain_rename(parentp, chain, mtid, flags);
3708 if (obref->type != HAMMER2_BREF_TYPE_EMPTY) {
3709 hammer2_blockref_t *tbase;
3710 int tcount;
3712 KKASSERT((chain->flags & HAMMER2_CHAIN_BLKMAPPED) == 0);
3713 hammer2_chain_modify(*parentp, mtid, 0, 0);
3714 tbase = hammer2_chain_base_and_count(*parentp, &tcount);
3715 hammer2_base_insert(*parentp, tbase, tcount, chain, obref);
3716 if (bcmp(obref, &chain->bref, sizeof(chain->bref))) {
3717 atomic_set_int(&chain->flags, HAMMER2_CHAIN_BLKMAPUPD |
3718 HAMMER2_CHAIN_UPDATE);
3719 } else {
3720 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
3726 * Helper function for deleting chains.
3728 * The chain is removed from the live view (the RBTREE) as well as the parent's
3729 * blockmap. Both chain and its parent must be locked.
3731 * parent may not be errored. chain can be errored.
3733 static int
3734 _hammer2_chain_delete_helper(hammer2_chain_t *parent, hammer2_chain_t *chain,
3735 hammer2_tid_t mtid, int flags,
3736 hammer2_blockref_t *obref)
3738 int error = 0;
3740 KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0);
3741 KKASSERT(chain->parent == parent);
3743 if (chain->flags & HAMMER2_CHAIN_BLKMAPPED) {
3745 * Chain is blockmapped, so there must be a parent.
3746 * Atomically remove the chain from the parent and remove
3747 * the blockmap entry. The parent must be set modified
3748 * to remove the blockmap entry.
3750 hammer2_blockref_t *base;
3751 int count;
3753 KKASSERT(parent != NULL);
3754 KKASSERT(parent->error == 0);
3755 KKASSERT((parent->flags & HAMMER2_CHAIN_INITIAL) == 0);
3756 error = hammer2_chain_modify(parent, mtid, 0, 0);
3757 if (error)
3758 goto done;
3761 * Calculate blockmap pointer
3763 KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
3764 hammer2_spin_ex(&chain->core.spin);
3765 hammer2_spin_ex(&parent->core.spin);
3767 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3768 atomic_add_int(&parent->core.live_count, -1);
3769 ++parent->core.generation;
3770 RB_REMOVE(hammer2_chain_tree, &parent->core.rbtree, chain);
3771 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
3772 --parent->core.chain_count;
3773 chain->parent = NULL;
3775 switch(parent->bref.type) {
3776 case HAMMER2_BREF_TYPE_INODE:
3778 * Access the inode's block array. However, there
3779 * is no block array if the inode is flagged
3780 * DIRECTDATA.
3782 if (parent->data &&
3783 (parent->data->ipdata.meta.op_flags &
3784 HAMMER2_OPFLAG_DIRECTDATA) == 0) {
3785 base =
3786 &parent->data->ipdata.u.blockset.blockref[0];
3787 } else {
3788 base = NULL;
3790 count = HAMMER2_SET_COUNT;
3791 break;
3792 case HAMMER2_BREF_TYPE_INDIRECT:
3793 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3794 if (parent->data)
3795 base = &parent->data->npdata[0];
3796 else
3797 base = NULL;
3798 count = parent->bytes / sizeof(hammer2_blockref_t);
3799 break;
3800 case HAMMER2_BREF_TYPE_VOLUME:
3801 base = &parent->data->voldata.
3802 sroot_blockset.blockref[0];
3803 count = HAMMER2_SET_COUNT;
3804 break;
3805 case HAMMER2_BREF_TYPE_FREEMAP:
3806 base = &parent->data->blkset.blockref[0];
3807 count = HAMMER2_SET_COUNT;
3808 break;
3809 default:
3810 base = NULL;
3811 count = 0;
3812 panic("_hammer2_chain_delete_helper: "
3813 "unrecognized blockref type: %d",
3814 parent->bref.type);
3815 break;
3819 * delete blockmapped chain from its parent.
3821 * The parent is not affected by any statistics in chain
3822 * which are pending synchronization. That is, there is
3823 * nothing to undo in the parent since they have not yet
3824 * been incorporated into the parent.
3826 * The parent is affected by statistics stored in inodes.
3827 * Those have already been synchronized, so they must be
3828 * undone. XXX split update possible w/delete in middle?
3830 if (base) {
3831 hammer2_base_delete(parent, base, count, chain, obref);
3833 hammer2_spin_unex(&parent->core.spin);
3834 hammer2_spin_unex(&chain->core.spin);
3835 } else if (chain->flags & HAMMER2_CHAIN_ONRBTREE) {
3837 * Chain is not blockmapped but a parent is present.
3838 * Atomically remove the chain from the parent. There is
3839 * no blockmap entry to remove.
3841 * Because chain was associated with a parent but not
3842 * synchronized, the chain's *_count_up fields contain
3843 * inode adjustment statistics which must be undone.
3845 hammer2_spin_ex(&chain->core.spin);
3846 hammer2_spin_ex(&parent->core.spin);
3847 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3848 atomic_add_int(&parent->core.live_count, -1);
3849 ++parent->core.generation;
3850 RB_REMOVE(hammer2_chain_tree, &parent->core.rbtree, chain);
3851 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
3852 --parent->core.chain_count;
3853 chain->parent = NULL;
3854 hammer2_spin_unex(&parent->core.spin);
3855 hammer2_spin_unex(&chain->core.spin);
3856 } else {
3858 * Chain is not blockmapped and has no parent. This
3859 * is a degenerate case.
3861 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3863 done:
3864 return error;
3868 * Create an indirect block that covers one or more of the elements in the
3869 * current parent. Either returns the existing parent with no locking or
3870 * ref changes or returns the new indirect block locked and referenced
3871 * and leaving the original parent lock/ref intact as well.
3873 * If an error occurs, NULL is returned and *errorp is set to the H2 error.
3875 * The returned chain depends on where the specified key falls.
3877 * The key/keybits for the indirect mode only needs to follow three rules:
3879 * (1) That all elements underneath it fit within its key space and
3881 * (2) That all elements outside it are outside its key space.
3883 * (3) When creating the new indirect block any elements in the current
3884 * parent that fit within the new indirect block's keyspace must be
3885 * moved into the new indirect block.
3887 * (4) The keyspace chosen for the inserted indirect block CAN cover a wider
3888 * keyspace the the current parent, but lookup/iteration rules will
3889 * ensure (and must ensure) that rule (2) for all parents leading up
3890 * to the nearest inode or the root volume header is adhered to. This
3891 * is accomplished by always recursing through matching keyspaces in
3892 * the hammer2_chain_lookup() and hammer2_chain_next() API.
3894 * The current implementation calculates the current worst-case keyspace by
3895 * iterating the current parent and then divides it into two halves, choosing
3896 * whichever half has the most elements (not necessarily the half containing
3897 * the requested key).
3899 * We can also opt to use the half with the least number of elements. This
3900 * causes lower-numbered keys (aka logical file offsets) to recurse through
3901 * fewer indirect blocks and higher-numbered keys to recurse through more.
3902 * This also has the risk of not moving enough elements to the new indirect
3903 * block and being forced to create several indirect blocks before the element
3904 * can be inserted.
3906 * Must be called with an exclusively locked parent.
3908 * NOTE: *errorp set to HAMMER_ERROR_* flags
3910 static int hammer2_chain_indkey_freemap(hammer2_chain_t *parent,
3911 hammer2_key_t *keyp, int keybits,
3912 hammer2_blockref_t *base, int count);
3913 static int hammer2_chain_indkey_file(hammer2_chain_t *parent,
3914 hammer2_key_t *keyp, int keybits,
3915 hammer2_blockref_t *base, int count,
3916 int ncount);
3917 static int hammer2_chain_indkey_dir(hammer2_chain_t *parent,
3918 hammer2_key_t *keyp, int keybits,
3919 hammer2_blockref_t *base, int count,
3920 int ncount);
3921 static
3922 hammer2_chain_t *
3923 hammer2_chain_create_indirect(hammer2_chain_t *parent,
3924 hammer2_key_t create_key, int create_bits,
3925 hammer2_tid_t mtid, int for_type, int *errorp)
3927 hammer2_dev_t *hmp;
3928 hammer2_blockref_t *base;
3929 hammer2_blockref_t *bref;
3930 hammer2_blockref_t bsave;
3931 hammer2_blockref_t dummy;
3932 hammer2_chain_t *chain;
3933 hammer2_chain_t *ichain;
3934 hammer2_key_t key = create_key;
3935 hammer2_key_t key_beg;
3936 hammer2_key_t key_end;
3937 hammer2_key_t key_next;
3938 int keybits = create_bits;
3939 int count;
3940 int ncount;
3941 int nbytes;
3942 int loops;
3943 int error;
3944 int reason;
3945 int generation;
3946 int maxloops = 300000;
3949 * Calculate the base blockref pointer or NULL if the chain
3950 * is known to be empty. We need to calculate the array count
3951 * for RB lookups either way.
3953 hmp = parent->hmp;
3954 KKASSERT(hammer2_mtx_owned(&parent->lock));
3957 * Pre-modify the parent now to avoid having to deal with error
3958 * processing if we tried to later (in the middle of our loop).
3960 * We are going to be moving bref's around, the indirect blocks
3961 * cannot be in an initial state. Do not pass MODIFY_OPTDATA.
3963 *errorp = hammer2_chain_modify(parent, mtid, 0, 0);
3964 if (*errorp) {
3965 kprintf("hammer2_chain_create_indirect: error %08x %s\n",
3966 *errorp, hammer2_error_str(*errorp));
3967 return NULL;
3969 KKASSERT((parent->flags & HAMMER2_CHAIN_INITIAL) == 0);
3971 /*hammer2_chain_modify(&parent, HAMMER2_MODIFY_OPTDATA);*/
3972 base = hammer2_chain_base_and_count(parent, &count);
3975 * How big should our new indirect block be? It has to be at least
3976 * as large as its parent for splits to work properly.
3978 * The freemap uses a specific indirect block size. The number of
3979 * levels are built dynamically and ultimately depend on the size
3980 * volume. Because freemap blocks are taken from the reserved areas
3981 * of the volume our goal is efficiency (fewer levels) and not so
3982 * much to save disk space.
3984 * The first indirect block level for a directory usually uses
3985 * HAMMER2_IND_BYTES_MIN (4KB = 32 directory entries). Due to
3986 * the hash mechanism, this typically gives us a nominal
3987 * 32 * 4 entries with one level of indirection.
3989 * We use HAMMER2_IND_BYTES_NOM (16KB = 128 blockrefs) for FILE
3990 * indirect blocks. The initial 4 entries in the inode gives us
3991 * 256KB. Up to 4 indirect blocks gives us 32MB. Three levels
3992 * of indirection gives us 137GB, and so forth. H2 can support
3993 * huge file sizes but they are not typical, so we try to stick
3994 * with compactness and do not use a larger indirect block size.
3996 * We could use 64KB (PBUFSIZE), giving us 512 blockrefs, but
3997 * due to the way indirect blocks are created this usually winds
3998 * up being extremely inefficient for small files. Even though
3999 * 16KB requires more levels of indirection for very large files,
4000 * the 16KB records can be ganged together into 64KB DIOs.
4002 if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
4003 for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
4004 nbytes = HAMMER2_FREEMAP_LEVELN_PSIZE;
4005 } else if (parent->bref.type == HAMMER2_BREF_TYPE_INODE) {
4006 if (parent->data->ipdata.meta.type ==
4007 HAMMER2_OBJTYPE_DIRECTORY)
4008 nbytes = HAMMER2_IND_BYTES_MIN; /* 4KB = 32 entries */
4009 else
4010 nbytes = HAMMER2_IND_BYTES_NOM; /* 16KB = ~8MB file */
4012 } else {
4013 nbytes = HAMMER2_IND_BYTES_NOM;
4015 if (nbytes < count * sizeof(hammer2_blockref_t)) {
4016 KKASSERT(for_type != HAMMER2_BREF_TYPE_FREEMAP_NODE &&
4017 for_type != HAMMER2_BREF_TYPE_FREEMAP_LEAF);
4018 nbytes = count * sizeof(hammer2_blockref_t);
4020 ncount = nbytes / sizeof(hammer2_blockref_t);
4023 * When creating an indirect block for a freemap node or leaf
4024 * the key/keybits must be fitted to static radix levels because
4025 * particular radix levels use particular reserved blocks in the
4026 * related zone.
4028 * This routine calculates the key/radix of the indirect block
4029 * we need to create, and whether it is on the high-side or the
4030 * low-side.
4032 switch(for_type) {
4033 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
4034 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
4035 keybits = hammer2_chain_indkey_freemap(parent, &key, keybits,
4036 base, count);
4037 break;
4038 case HAMMER2_BREF_TYPE_DATA:
4039 keybits = hammer2_chain_indkey_file(parent, &key, keybits,
4040 base, count, ncount);
4041 break;
4042 case HAMMER2_BREF_TYPE_DIRENT:
4043 case HAMMER2_BREF_TYPE_INODE:
4044 keybits = hammer2_chain_indkey_dir(parent, &key, keybits,
4045 base, count, ncount);
4046 break;
4047 default:
4048 panic("illegal indirect block for bref type %d", for_type);
4049 break;
4053 * Normalize the key for the radix being represented, keeping the
4054 * high bits and throwing away the low bits.
4056 key &= ~(((hammer2_key_t)1 << keybits) - 1);
4059 * Ok, create our new indirect block
4061 bzero(&dummy, sizeof(dummy));
4062 if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
4063 for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
4064 dummy.type = HAMMER2_BREF_TYPE_FREEMAP_NODE;
4065 } else {
4066 dummy.type = HAMMER2_BREF_TYPE_INDIRECT;
4068 dummy.key = key;
4069 dummy.keybits = keybits;
4070 dummy.data_off = hammer2_getradix(nbytes);
4071 dummy.methods =
4072 HAMMER2_ENC_CHECK(HAMMER2_DEC_CHECK(parent->bref.methods)) |
4073 HAMMER2_ENC_COMP(HAMMER2_COMP_NONE);
4075 ichain = hammer2_chain_alloc(hmp, parent->pmp, &dummy);
4076 atomic_set_int(&ichain->flags, HAMMER2_CHAIN_INITIAL);
4077 hammer2_chain_lock(ichain, HAMMER2_RESOLVE_MAYBE);
4078 /* ichain has one ref at this point */
4081 * We have to mark it modified to allocate its block, but use
4082 * OPTDATA to allow it to remain in the INITIAL state. Otherwise
4083 * it won't be acted upon by the flush code.
4085 * XXX remove OPTDATA, we need a fully initialized indirect block to
4086 * be able to move the original blockref.
4088 *errorp = hammer2_chain_modify(ichain, mtid, 0, 0);
4089 if (*errorp) {
4090 kprintf("hammer2_chain_create_indirect: error %08x %s\n",
4091 *errorp, hammer2_error_str(*errorp));
4092 hammer2_chain_unlock(ichain);
4093 hammer2_chain_drop(ichain);
4094 return NULL;
4096 KKASSERT((ichain->flags & HAMMER2_CHAIN_INITIAL) == 0);
4099 * Iterate the original parent and move the matching brefs into
4100 * the new indirect block.
4102 * XXX handle flushes.
4104 key_beg = 0;
4105 key_end = HAMMER2_KEY_MAX;
4106 key_next = 0; /* avoid gcc warnings */
4107 hammer2_spin_ex(&parent->core.spin);
4108 loops = 0;
4109 reason = 0;
4111 for (;;) {
4113 * Parent may have been modified, relocating its block array.
4114 * Reload the base pointer.
4116 base = hammer2_chain_base_and_count(parent, &count);
4118 if (++loops > 100000) {
4119 hammer2_spin_unex(&parent->core.spin);
4120 panic("excessive loops r=%d p=%p base/count %p:%d %016jx\n",
4121 reason, parent, base, count, key_next);
4125 * NOTE: spinlock stays intact, returned chain (if not NULL)
4126 * is not referenced or locked which means that we
4127 * cannot safely check its flagged / deletion status
4128 * until we lock it.
4130 chain = hammer2_combined_find(parent, base, count,
4131 &key_next,
4132 key_beg, key_end,
4133 &bref);
4134 generation = parent->core.generation;
4135 if (bref == NULL)
4136 break;
4137 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4140 * Skip keys that are not within the key/radix of the new
4141 * indirect block. They stay in the parent.
4143 if (rounddown2(key ^ bref->key, (hammer2_key_t)1 << keybits) != 0) {
4144 goto next_key_spinlocked;
4148 * Load the new indirect block by acquiring the related
4149 * chains (potentially from media as it might not be
4150 * in-memory). Then move it to the new parent (ichain).
4152 * chain is referenced but not locked. We must lock the
4153 * chain to obtain definitive state.
4155 bsave = *bref;
4156 if (chain) {
4158 * Use chain already present in the RBTREE
4160 hammer2_chain_ref(chain);
4161 hammer2_spin_unex(&parent->core.spin);
4162 hammer2_chain_lock(chain, HAMMER2_RESOLVE_NEVER);
4163 } else {
4165 * Get chain for blockref element. _get returns NULL
4166 * on insertion race.
4168 hammer2_spin_unex(&parent->core.spin);
4169 chain = hammer2_chain_get(parent, generation, &bsave,
4170 HAMMER2_RESOLVE_NEVER);
4171 if (chain == NULL) {
4172 reason = 1;
4173 hammer2_spin_ex(&parent->core.spin);
4174 continue;
4179 * This is always live so if the chain has been deleted
4180 * we raced someone and we have to retry.
4182 * NOTE: Lookups can race delete-duplicate because
4183 * delete-duplicate does not lock the parent's core
4184 * (they just use the spinlock on the core).
4186 * (note reversed logic for this one)
4188 if (bcmp(&bsave, &chain->bref, sizeof(bsave)) ||
4189 chain->parent != parent ||
4190 (chain->flags & HAMMER2_CHAIN_DELETED)) {
4191 hammer2_chain_unlock(chain);
4192 hammer2_chain_drop(chain);
4193 if (hammer2_debug & 0x0040) {
4194 kprintf("LOST PARENT RETRY "
4195 "RETRY (%p,%p)->%p %08x\n",
4196 parent, chain->parent, chain, chain->flags);
4198 hammer2_spin_ex(&parent->core.spin);
4199 continue;
4203 * Shift the chain to the indirect block.
4205 * WARNING! No reason for us to load chain data, pass NOSTATS
4206 * to prevent delete/insert from trying to access
4207 * inode stats (and thus asserting if there is no
4208 * chain->data loaded).
4210 * WARNING! The (parent, chain) deletion may modify the parent
4211 * and invalidate the base pointer.
4213 * WARNING! Parent must already be marked modified, so we
4214 * can assume that chain_delete always suceeds.
4216 * WARNING! hammer2_chain_repchange() does not have to be
4217 * called (and doesn't work anyway because we are
4218 * only doing a partial shift). A recursion that is
4219 * in-progress can continue at the current parent
4220 * and will be able to properly find its next key.
4222 error = hammer2_chain_delete_obref(parent, chain, mtid, 0,
4223 &bsave);
4224 KKASSERT(error == 0);
4225 hammer2_chain_rename_obref(&ichain, chain, mtid, 0, &bsave);
4226 hammer2_chain_unlock(chain);
4227 hammer2_chain_drop(chain);
4228 KKASSERT(parent->refs > 0);
4229 chain = NULL;
4230 base = NULL; /* safety */
4231 hammer2_spin_ex(&parent->core.spin);
4232 next_key_spinlocked:
4233 if (--maxloops == 0)
4234 panic("hammer2_chain_create_indirect: maxloops");
4235 reason = 4;
4236 if (key_next == 0 || key_next > key_end)
4237 break;
4238 key_beg = key_next;
4239 /* loop */
4241 hammer2_spin_unex(&parent->core.spin);
4244 * Insert the new indirect block into the parent now that we've
4245 * cleared out some entries in the parent. We calculated a good
4246 * insertion index in the loop above (ichain->index).
4248 * We don't have to set UPDATE here because we mark ichain
4249 * modified down below (so the normal modified -> flush -> set-moved
4250 * sequence applies).
4252 * The insertion shouldn't race as this is a completely new block
4253 * and the parent is locked.
4255 base = NULL; /* safety, parent modify may change address */
4256 KKASSERT((ichain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
4257 KKASSERT(parent->core.live_count < count);
4258 hammer2_chain_insert(parent, ichain,
4259 HAMMER2_CHAIN_INSERT_SPIN |
4260 HAMMER2_CHAIN_INSERT_LIVE,
4264 * Make sure flushes propogate after our manual insertion.
4266 hammer2_chain_setflush(ichain);
4267 hammer2_chain_setflush(parent);
4270 * Figure out what to return.
4272 if (rounddown2(create_key ^ key, (hammer2_key_t)1 << keybits) != 0) {
4274 * Key being created is outside the key range,
4275 * return the original parent.
4277 hammer2_chain_unlock(ichain);
4278 hammer2_chain_drop(ichain);
4279 } else {
4281 * Otherwise its in the range, return the new parent.
4282 * (leave both the new and old parent locked).
4284 parent = ichain;
4287 return(parent);
4291 * Do maintenance on an indirect chain. Both parent and chain are locked.
4293 * Returns non-zero if (chain) is deleted, either due to being empty or
4294 * because its children were safely moved into the parent.
4297 hammer2_chain_indirect_maintenance(hammer2_chain_t *parent,
4298 hammer2_chain_t *chain)
4300 hammer2_blockref_t *chain_base;
4301 hammer2_blockref_t *base;
4302 hammer2_blockref_t *bref;
4303 hammer2_blockref_t bsave;
4304 hammer2_key_t key_next;
4305 hammer2_key_t key_beg;
4306 hammer2_key_t key_end;
4307 hammer2_chain_t *sub;
4308 int chain_count;
4309 int count;
4310 int error;
4311 int generation;
4314 * Make sure we have an accurate live_count
4316 if ((chain->flags & (HAMMER2_CHAIN_INITIAL |
4317 HAMMER2_CHAIN_COUNTEDBREFS)) == 0) {
4318 base = &chain->data->npdata[0];
4319 count = chain->bytes / sizeof(hammer2_blockref_t);
4320 hammer2_chain_countbrefs(chain, base, count);
4324 * If the indirect block is empty we can delete it.
4325 * (ignore deletion error)
4327 if (chain->core.live_count == 0 && RB_EMPTY(&chain->core.rbtree)) {
4328 hammer2_chain_delete(parent, chain,
4329 chain->bref.modify_tid,
4330 HAMMER2_DELETE_PERMANENT);
4331 hammer2_chain_repchange(parent, chain);
4332 return 1;
4335 base = hammer2_chain_base_and_count(parent, &count);
4337 if ((parent->flags & (HAMMER2_CHAIN_INITIAL |
4338 HAMMER2_CHAIN_COUNTEDBREFS)) == 0) {
4339 hammer2_chain_countbrefs(parent, base, count);
4343 * Determine if we can collapse chain into parent, calculate
4344 * hysteresis for chain emptiness.
4346 if (parent->core.live_count + chain->core.live_count - 1 > count)
4347 return 0;
4348 chain_count = chain->bytes / sizeof(hammer2_blockref_t);
4349 if (chain->core.live_count > chain_count * 3 / 4)
4350 return 0;
4353 * Ok, theoretically we can collapse chain's contents into
4354 * parent. chain is locked, but any in-memory children of chain
4355 * are not. For this to work, we must be able to dispose of any
4356 * in-memory children of chain.
4358 * For now require that there are no in-memory children of chain.
4360 * WARNING! Both chain and parent must remain locked across this
4361 * entire operation.
4365 * Parent must be marked modified. Don't try to collapse it if we
4366 * can't mark it modified. Once modified, destroy chain to make room
4367 * and to get rid of what will be a conflicting key (this is included
4368 * in the calculation above). Finally, move the children of chain
4369 * into chain's parent.
4371 * This order creates an accounting problem for bref.embed.stats
4372 * because we destroy chain before we remove its children. Any
4373 * elements whos blockref is already synchronized will be counted
4374 * twice. To deal with the problem we clean out chain's stats prior
4375 * to deleting it.
4377 error = hammer2_chain_modify(parent, 0, 0, 0);
4378 if (error) {
4379 krateprintf(&krate_h2me, "hammer2: indirect_maint: %s\n",
4380 hammer2_error_str(error));
4381 return 0;
4383 error = hammer2_chain_modify(chain, chain->bref.modify_tid, 0, 0);
4384 if (error) {
4385 krateprintf(&krate_h2me, "hammer2: indirect_maint: %s\n",
4386 hammer2_error_str(error));
4387 return 0;
4390 chain->bref.embed.stats.inode_count = 0;
4391 chain->bref.embed.stats.data_count = 0;
4392 error = hammer2_chain_delete(parent, chain,
4393 chain->bref.modify_tid,
4394 HAMMER2_DELETE_PERMANENT);
4395 KKASSERT(error == 0);
4398 * The combined_find call requires core.spin to be held. One would
4399 * think there wouldn't be any conflicts since we hold chain
4400 * exclusively locked, but the caching mechanism for 0-ref children
4401 * does not require a chain lock.
4403 hammer2_spin_ex(&chain->core.spin);
4405 key_next = 0;
4406 key_beg = 0;
4407 key_end = HAMMER2_KEY_MAX;
4408 for (;;) {
4409 chain_base = &chain->data->npdata[0];
4410 chain_count = chain->bytes / sizeof(hammer2_blockref_t);
4411 sub = hammer2_combined_find(chain, chain_base, chain_count,
4412 &key_next,
4413 key_beg, key_end,
4414 &bref);
4415 generation = chain->core.generation;
4416 if (bref == NULL)
4417 break;
4418 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4420 bsave = *bref;
4421 if (sub) {
4422 hammer2_chain_ref(sub);
4423 hammer2_spin_unex(&chain->core.spin);
4424 hammer2_chain_lock(sub, HAMMER2_RESOLVE_NEVER);
4425 } else {
4426 hammer2_spin_unex(&chain->core.spin);
4427 sub = hammer2_chain_get(chain, generation, &bsave,
4428 HAMMER2_RESOLVE_NEVER);
4429 if (sub == NULL) {
4430 hammer2_spin_ex(&chain->core.spin);
4431 continue;
4434 if (bcmp(&bsave, &sub->bref, sizeof(bsave)) ||
4435 sub->parent != chain ||
4436 (sub->flags & HAMMER2_CHAIN_DELETED)) {
4437 hammer2_chain_unlock(sub);
4438 hammer2_chain_drop(sub);
4439 hammer2_spin_ex(&chain->core.spin);
4440 sub = NULL; /* safety */
4441 continue;
4443 error = hammer2_chain_delete_obref(chain, sub,
4444 sub->bref.modify_tid, 0,
4445 &bsave);
4446 KKASSERT(error == 0);
4447 hammer2_chain_rename_obref(&parent, sub,
4448 sub->bref.modify_tid,
4449 HAMMER2_INSERT_SAMEPARENT, &bsave);
4450 hammer2_chain_unlock(sub);
4451 hammer2_chain_drop(sub);
4452 hammer2_spin_ex(&chain->core.spin);
4454 if (key_next == 0)
4455 break;
4456 key_beg = key_next;
4458 hammer2_spin_unex(&chain->core.spin);
4460 hammer2_chain_repchange(parent, chain);
4462 return 1;
4466 * Freemap indirect blocks
4468 * Calculate the keybits and highside/lowside of the freemap node the
4469 * caller is creating.
4471 * This routine will specify the next higher-level freemap key/radix
4472 * representing the lowest-ordered set. By doing so, eventually all
4473 * low-ordered sets will be moved one level down.
4475 * We have to be careful here because the freemap reserves a limited
4476 * number of blocks for a limited number of levels. So we can't just
4477 * push indiscriminately.
4480 hammer2_chain_indkey_freemap(hammer2_chain_t *parent, hammer2_key_t *keyp,
4481 int keybits, hammer2_blockref_t *base, int count)
4483 hammer2_chain_t *chain;
4484 hammer2_blockref_t *bref;
4485 hammer2_key_t key;
4486 hammer2_key_t key_beg;
4487 hammer2_key_t key_end;
4488 hammer2_key_t key_next;
4489 int maxloops = 300000;
4491 key = *keyp;
4492 keybits = 64;
4495 * Calculate the range of keys in the array being careful to skip
4496 * slots which are overridden with a deletion.
4498 key_beg = 0;
4499 key_end = HAMMER2_KEY_MAX;
4500 hammer2_spin_ex(&parent->core.spin);
4502 for (;;) {
4503 if (--maxloops == 0) {
4504 panic("indkey_freemap shit %p %p:%d\n",
4505 parent, base, count);
4507 chain = hammer2_combined_find(parent, base, count,
4508 &key_next,
4509 key_beg, key_end,
4510 &bref);
4513 * Exhausted search
4515 if (bref == NULL)
4516 break;
4519 * Skip deleted chains.
4521 if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4522 if (key_next == 0 || key_next > key_end)
4523 break;
4524 key_beg = key_next;
4525 continue;
4529 * Use the full live (not deleted) element for the scan
4530 * iteration. HAMMER2 does not allow partial replacements.
4532 * XXX should be built into hammer2_combined_find().
4534 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4536 if (keybits > bref->keybits) {
4537 key = bref->key;
4538 keybits = bref->keybits;
4539 } else if (keybits == bref->keybits && bref->key < key) {
4540 key = bref->key;
4542 if (key_next == 0)
4543 break;
4544 key_beg = key_next;
4546 hammer2_spin_unex(&parent->core.spin);
4549 * Return the keybits for a higher-level FREEMAP_NODE covering
4550 * this node.
4552 switch(keybits) {
4553 case HAMMER2_FREEMAP_LEVEL0_RADIX:
4554 keybits = HAMMER2_FREEMAP_LEVEL1_RADIX;
4555 break;
4556 case HAMMER2_FREEMAP_LEVEL1_RADIX:
4557 keybits = HAMMER2_FREEMAP_LEVEL2_RADIX;
4558 break;
4559 case HAMMER2_FREEMAP_LEVEL2_RADIX:
4560 keybits = HAMMER2_FREEMAP_LEVEL3_RADIX;
4561 break;
4562 case HAMMER2_FREEMAP_LEVEL3_RADIX:
4563 keybits = HAMMER2_FREEMAP_LEVEL4_RADIX;
4564 break;
4565 case HAMMER2_FREEMAP_LEVEL4_RADIX:
4566 keybits = HAMMER2_FREEMAP_LEVEL5_RADIX;
4567 break;
4568 case HAMMER2_FREEMAP_LEVEL5_RADIX:
4569 panic("hammer2_chain_indkey_freemap: level too high");
4570 break;
4571 default:
4572 panic("hammer2_chain_indkey_freemap: bad radix");
4573 break;
4575 *keyp = key;
4577 return (keybits);
4581 * File indirect blocks
4583 * Calculate the key/keybits for the indirect block to create by scanning
4584 * existing keys. The key being created is also passed in *keyp and can be
4585 * inside or outside the indirect block. Regardless, the indirect block
4586 * must hold at least two keys in order to guarantee sufficient space.
4588 * We use a modified version of the freemap's fixed radix tree, but taylored
4589 * for file data. Basically we configure an indirect block encompassing the
4590 * smallest key.
4592 static int
4593 hammer2_chain_indkey_file(hammer2_chain_t *parent, hammer2_key_t *keyp,
4594 int keybits, hammer2_blockref_t *base, int count,
4595 int ncount)
4597 hammer2_chain_t *chain;
4598 hammer2_blockref_t *bref;
4599 hammer2_key_t key;
4600 hammer2_key_t key_beg;
4601 hammer2_key_t key_end;
4602 hammer2_key_t key_next;
4603 int nradix;
4604 int maxloops = 300000;
4606 key = *keyp;
4607 keybits = 64;
4610 * Calculate the range of keys in the array being careful to skip
4611 * slots which are overridden with a deletion.
4613 * Locate the smallest key.
4615 key_beg = 0;
4616 key_end = HAMMER2_KEY_MAX;
4617 hammer2_spin_ex(&parent->core.spin);
4619 for (;;) {
4620 if (--maxloops == 0) {
4621 panic("indkey_freemap shit %p %p:%d\n",
4622 parent, base, count);
4624 chain = hammer2_combined_find(parent, base, count,
4625 &key_next,
4626 key_beg, key_end,
4627 &bref);
4630 * Exhausted search
4632 if (bref == NULL)
4633 break;
4636 * Skip deleted chains.
4638 if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4639 if (key_next == 0 || key_next > key_end)
4640 break;
4641 key_beg = key_next;
4642 continue;
4646 * Use the full live (not deleted) element for the scan
4647 * iteration. HAMMER2 does not allow partial replacements.
4649 * XXX should be built into hammer2_combined_find().
4651 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4653 if (keybits > bref->keybits) {
4654 key = bref->key;
4655 keybits = bref->keybits;
4656 } else if (keybits == bref->keybits && bref->key < key) {
4657 key = bref->key;
4659 if (key_next == 0)
4660 break;
4661 key_beg = key_next;
4663 hammer2_spin_unex(&parent->core.spin);
4666 * Calculate the static keybits for a higher-level indirect block
4667 * that contains the key.
4669 *keyp = key;
4671 switch(ncount) {
4672 case HAMMER2_IND_COUNT_MIN:
4673 nradix = HAMMER2_IND_RADIX_MIN - HAMMER2_BLOCKREF_RADIX;
4674 break;
4675 case HAMMER2_IND_COUNT_NOM:
4676 nradix = HAMMER2_IND_RADIX_NOM - HAMMER2_BLOCKREF_RADIX;
4677 break;
4678 case HAMMER2_IND_COUNT_MAX:
4679 nradix = HAMMER2_IND_RADIX_MAX - HAMMER2_BLOCKREF_RADIX;
4680 break;
4681 default:
4682 panic("bad ncount %d\n", ncount);
4683 nradix = 0;
4684 break;
4688 * The largest radix that can be returned for an indirect block is
4689 * 63 bits. (The largest practical indirect block radix is actually
4690 * 62 bits because the top-level inode or volume root contains four
4691 * entries, but allow 63 to be returned).
4693 if (nradix >= 64)
4694 nradix = 63;
4696 return keybits + nradix;
4699 #if 1
4702 * Directory indirect blocks.
4704 * Covers both the inode index (directory of inodes), and directory contents
4705 * (filenames hardlinked to inodes).
4707 * Because directory keys are hashed we generally try to cut the space in
4708 * half. We accomodate the inode index (which tends to have linearly
4709 * increasing inode numbers) by ensuring that the keyspace is at least large
4710 * enough to fill up the indirect block being created.
4712 static int
4713 hammer2_chain_indkey_dir(hammer2_chain_t *parent, hammer2_key_t *keyp,
4714 int keybits, hammer2_blockref_t *base, int count,
4715 int ncount)
4717 hammer2_blockref_t *bref;
4718 hammer2_chain_t *chain;
4719 hammer2_key_t key_beg;
4720 hammer2_key_t key_end;
4721 hammer2_key_t key_next;
4722 hammer2_key_t key;
4723 int nkeybits;
4724 int locount;
4725 int hicount;
4726 int maxloops = 300000;
4729 * NOTE: We can't take a shortcut here anymore for inodes because
4730 * the root directory can contain a mix of inodes and directory
4731 * entries (we used to just return 63 if parent->bref.type was
4732 * HAMMER2_BREF_TYPE_INODE.
4734 key = *keyp;
4735 locount = 0;
4736 hicount = 0;
4739 * Calculate the range of keys in the array being careful to skip
4740 * slots which are overridden with a deletion.
4742 key_beg = 0;
4743 key_end = HAMMER2_KEY_MAX;
4744 hammer2_spin_ex(&parent->core.spin);
4746 for (;;) {
4747 if (--maxloops == 0) {
4748 panic("indkey_freemap shit %p %p:%d\n",
4749 parent, base, count);
4751 chain = hammer2_combined_find(parent, base, count,
4752 &key_next,
4753 key_beg, key_end,
4754 &bref);
4757 * Exhausted search
4759 if (bref == NULL)
4760 break;
4763 * Deleted object
4765 if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4766 if (key_next == 0 || key_next > key_end)
4767 break;
4768 key_beg = key_next;
4769 continue;
4773 * Use the full live (not deleted) element for the scan
4774 * iteration. HAMMER2 does not allow partial replacements.
4776 * XXX should be built into hammer2_combined_find().
4778 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4781 * Expand our calculated key range (key, keybits) to fit
4782 * the scanned key. nkeybits represents the full range
4783 * that we will later cut in half (two halves @ nkeybits - 1).
4785 nkeybits = keybits;
4786 if (nkeybits < bref->keybits) {
4787 if (bref->keybits > 64) {
4788 kprintf("bad bref chain %p bref %p\n",
4789 chain, bref);
4790 Debugger("fubar");
4792 nkeybits = bref->keybits;
4794 while (nkeybits < 64 &&
4795 rounddown2(key ^ bref->key, (hammer2_key_t)1 << nkeybits) != 0) {
4796 ++nkeybits;
4800 * If the new key range is larger we have to determine
4801 * which side of the new key range the existing keys fall
4802 * under by checking the high bit, then collapsing the
4803 * locount into the hicount or vise-versa.
4805 if (keybits != nkeybits) {
4806 if (((hammer2_key_t)1 << (nkeybits - 1)) & key) {
4807 hicount += locount;
4808 locount = 0;
4809 } else {
4810 locount += hicount;
4811 hicount = 0;
4813 keybits = nkeybits;
4817 * The newly scanned key will be in the lower half or the
4818 * upper half of the (new) key range.
4820 if (((hammer2_key_t)1 << (nkeybits - 1)) & bref->key)
4821 ++hicount;
4822 else
4823 ++locount;
4825 if (key_next == 0)
4826 break;
4827 key_beg = key_next;
4829 hammer2_spin_unex(&parent->core.spin);
4830 bref = NULL; /* now invalid (safety) */
4833 * Adjust keybits to represent half of the full range calculated
4834 * above (radix 63 max) for our new indirect block.
4836 --keybits;
4839 * Expand keybits to hold at least ncount elements. ncount will be
4840 * a power of 2. This is to try to completely fill leaf nodes (at
4841 * least for keys which are not hashes).
4843 * We aren't counting 'in' or 'out', we are counting 'high side'
4844 * and 'low side' based on the bit at (1LL << keybits). We want
4845 * everything to be inside in these cases so shift it all to
4846 * the low or high side depending on the new high bit.
4848 while (((hammer2_key_t)1 << keybits) < ncount) {
4849 ++keybits;
4850 if (key & ((hammer2_key_t)1 << keybits)) {
4851 hicount += locount;
4852 locount = 0;
4853 } else {
4854 locount += hicount;
4855 hicount = 0;
4859 if (hicount > locount)
4860 key |= (hammer2_key_t)1 << keybits;
4861 else
4862 key &= ~(hammer2_key_t)1 << keybits;
4864 *keyp = key;
4866 return (keybits);
4869 #else
4872 * Directory indirect blocks.
4874 * Covers both the inode index (directory of inodes), and directory contents
4875 * (filenames hardlinked to inodes).
4877 * Because directory keys are hashed we generally try to cut the space in
4878 * half. We accomodate the inode index (which tends to have linearly
4879 * increasing inode numbers) by ensuring that the keyspace is at least large
4880 * enough to fill up the indirect block being created.
4882 static int
4883 hammer2_chain_indkey_dir(hammer2_chain_t *parent, hammer2_key_t *keyp,
4884 int keybits, hammer2_blockref_t *base, int count,
4885 int ncount)
4887 hammer2_blockref_t *bref;
4888 hammer2_chain_t *chain;
4889 hammer2_key_t key_beg;
4890 hammer2_key_t key_end;
4891 hammer2_key_t key_next;
4892 hammer2_key_t key;
4893 int nkeybits;
4894 int locount;
4895 int hicount;
4896 int maxloops = 300000;
4899 * Shortcut if the parent is the inode. In this situation the
4900 * parent has 4+1 directory entries and we are creating an indirect
4901 * block capable of holding many more.
4903 if (parent->bref.type == HAMMER2_BREF_TYPE_INODE) {
4904 return 63;
4907 key = *keyp;
4908 locount = 0;
4909 hicount = 0;
4912 * Calculate the range of keys in the array being careful to skip
4913 * slots which are overridden with a deletion.
4915 key_beg = 0;
4916 key_end = HAMMER2_KEY_MAX;
4917 hammer2_spin_ex(&parent->core.spin);
4919 for (;;) {
4920 if (--maxloops == 0) {
4921 panic("indkey_freemap shit %p %p:%d\n",
4922 parent, base, count);
4924 chain = hammer2_combined_find(parent, base, count,
4925 &key_next,
4926 key_beg, key_end,
4927 &bref);
4930 * Exhausted search
4932 if (bref == NULL)
4933 break;
4936 * Deleted object
4938 if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4939 if (key_next == 0 || key_next > key_end)
4940 break;
4941 key_beg = key_next;
4942 continue;
4946 * Use the full live (not deleted) element for the scan
4947 * iteration. HAMMER2 does not allow partial replacements.
4949 * XXX should be built into hammer2_combined_find().
4951 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4954 * Expand our calculated key range (key, keybits) to fit
4955 * the scanned key. nkeybits represents the full range
4956 * that we will later cut in half (two halves @ nkeybits - 1).
4958 nkeybits = keybits;
4959 if (nkeybits < bref->keybits) {
4960 if (bref->keybits > 64) {
4961 kprintf("bad bref chain %p bref %p\n",
4962 chain, bref);
4963 Debugger("fubar");
4965 nkeybits = bref->keybits;
4967 while (nkeybits < 64 &&
4968 (~(((hammer2_key_t)1 << nkeybits) - 1) &
4969 (key ^ bref->key)) != 0) {
4970 ++nkeybits;
4974 * If the new key range is larger we have to determine
4975 * which side of the new key range the existing keys fall
4976 * under by checking the high bit, then collapsing the
4977 * locount into the hicount or vise-versa.
4979 if (keybits != nkeybits) {
4980 if (((hammer2_key_t)1 << (nkeybits - 1)) & key) {
4981 hicount += locount;
4982 locount = 0;
4983 } else {
4984 locount += hicount;
4985 hicount = 0;
4987 keybits = nkeybits;
4991 * The newly scanned key will be in the lower half or the
4992 * upper half of the (new) key range.
4994 if (((hammer2_key_t)1 << (nkeybits - 1)) & bref->key)
4995 ++hicount;
4996 else
4997 ++locount;
4999 if (key_next == 0)
5000 break;
5001 key_beg = key_next;
5003 hammer2_spin_unex(&parent->core.spin);
5004 bref = NULL; /* now invalid (safety) */
5007 * Adjust keybits to represent half of the full range calculated
5008 * above (radix 63 max) for our new indirect block.
5010 --keybits;
5013 * Expand keybits to hold at least ncount elements. ncount will be
5014 * a power of 2. This is to try to completely fill leaf nodes (at
5015 * least for keys which are not hashes).
5017 * We aren't counting 'in' or 'out', we are counting 'high side'
5018 * and 'low side' based on the bit at (1LL << keybits). We want
5019 * everything to be inside in these cases so shift it all to
5020 * the low or high side depending on the new high bit.
5022 while (((hammer2_key_t)1 << keybits) < ncount) {
5023 ++keybits;
5024 if (key & ((hammer2_key_t)1 << keybits)) {
5025 hicount += locount;
5026 locount = 0;
5027 } else {
5028 locount += hicount;
5029 hicount = 0;
5033 if (hicount > locount)
5034 key |= (hammer2_key_t)1 << keybits;
5035 else
5036 key &= ~(hammer2_key_t)1 << keybits;
5038 *keyp = key;
5040 return (keybits);
5043 #endif
5046 * Sets CHAIN_DELETED and remove the chain's blockref from the parent if
5047 * it exists.
5049 * Both parent and chain must be locked exclusively.
5051 * This function will modify the parent if the blockref requires removal
5052 * from the parent's block table.
5054 * This function is NOT recursive. Any entity already pushed into the
5055 * chain (such as an inode) may still need visibility into its contents,
5056 * as well as the ability to read and modify the contents. For example,
5057 * for an unlinked file which is still open.
5059 * Also note that the flusher is responsible for cleaning up empty
5060 * indirect blocks.
5063 hammer2_chain_delete(hammer2_chain_t *parent, hammer2_chain_t *chain,
5064 hammer2_tid_t mtid, int flags)
5066 int error = 0;
5068 KKASSERT(hammer2_mtx_owned(&chain->lock));
5071 * Nothing to do if already marked.
5073 * We need the spinlock on the core whos RBTREE contains chain
5074 * to protect against races.
5076 if ((chain->flags & HAMMER2_CHAIN_DELETED) == 0) {
5077 KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0 &&
5078 chain->parent == parent);
5079 error = _hammer2_chain_delete_helper(parent, chain,
5080 mtid, flags, NULL);
5084 * Permanent deletions mark the chain as destroyed.
5086 * NOTE: We do not setflush the chain unless the deletion is
5087 * permanent, since the deletion of a chain does not actually
5088 * require it to be flushed.
5090 if (error == 0) {
5091 if (flags & HAMMER2_DELETE_PERMANENT) {
5092 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
5093 hammer2_chain_setflush(chain);
5097 return error;
5100 static int
5101 hammer2_chain_delete_obref(hammer2_chain_t *parent, hammer2_chain_t *chain,
5102 hammer2_tid_t mtid, int flags,
5103 hammer2_blockref_t *obref)
5105 int error = 0;
5107 KKASSERT(hammer2_mtx_owned(&chain->lock));
5110 * Nothing to do if already marked.
5112 * We need the spinlock on the core whos RBTREE contains chain
5113 * to protect against races.
5115 obref->type = HAMMER2_BREF_TYPE_EMPTY;
5116 if ((chain->flags & HAMMER2_CHAIN_DELETED) == 0) {
5117 KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0 &&
5118 chain->parent == parent);
5119 error = _hammer2_chain_delete_helper(parent, chain,
5120 mtid, flags, obref);
5124 * Permanent deletions mark the chain as destroyed.
5126 * NOTE: We do not setflush the chain unless the deletion is
5127 * permanent, since the deletion of a chain does not actually
5128 * require it to be flushed.
5130 if (error == 0) {
5131 if (flags & HAMMER2_DELETE_PERMANENT) {
5132 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
5133 hammer2_chain_setflush(chain);
5137 return error;
5141 * Returns the index of the nearest element in the blockref array >= elm.
5142 * Returns (count) if no element could be found.
5144 * Sets *key_nextp to the next key for loop purposes but does not modify
5145 * it if the next key would be higher than the current value of *key_nextp.
5146 * Note that *key_nexp can overflow to 0, which should be tested by the
5147 * caller.
5149 * WARNING! Must be called with parent's spinlock held. Spinlock remains
5150 * held through the operation.
5152 static int
5153 hammer2_base_find(hammer2_chain_t *parent,
5154 hammer2_blockref_t *base, int count,
5155 hammer2_key_t *key_nextp,
5156 hammer2_key_t key_beg, hammer2_key_t key_end)
5158 hammer2_blockref_t *scan;
5159 hammer2_key_t scan_end;
5160 int i;
5161 int limit;
5164 * Require the live chain's already have their core's counted
5165 * so we can optimize operations.
5167 KKASSERT(parent->flags & HAMMER2_CHAIN_COUNTEDBREFS);
5170 * Degenerate case
5172 if (count == 0 || base == NULL)
5173 return(count);
5176 * Sequential optimization using parent->cache_index. This is
5177 * the most likely scenario.
5179 * We can avoid trailing empty entries on live chains, otherwise
5180 * we might have to check the whole block array.
5182 i = parent->cache_index; /* SMP RACE OK */
5183 cpu_ccfence();
5184 limit = parent->core.live_zero;
5185 if (i >= limit)
5186 i = limit - 1;
5187 if (i < 0)
5188 i = 0;
5189 KKASSERT(i < count);
5192 * Search backwards
5194 scan = &base[i];
5195 while (i > 0 && (scan->type == HAMMER2_BREF_TYPE_EMPTY ||
5196 scan->key > key_beg)) {
5197 --scan;
5198 --i;
5200 parent->cache_index = i;
5203 * Search forwards, stop when we find a scan element which
5204 * encloses the key or until we know that there are no further
5205 * elements.
5207 while (i < count) {
5208 if (scan->type != HAMMER2_BREF_TYPE_EMPTY) {
5209 scan_end = scan->key +
5210 ((hammer2_key_t)1 << scan->keybits) - 1;
5211 if (scan->key > key_beg || scan_end >= key_beg)
5212 break;
5214 if (i >= limit)
5215 return (count);
5216 ++scan;
5217 ++i;
5219 if (i != count) {
5220 parent->cache_index = i;
5221 if (i >= limit) {
5222 i = count;
5223 } else {
5224 scan_end = scan->key +
5225 ((hammer2_key_t)1 << scan->keybits);
5226 if (scan_end && (*key_nextp > scan_end ||
5227 *key_nextp == 0)) {
5228 *key_nextp = scan_end;
5232 return (i);
5236 * Do a combined search and return the next match either from the blockref
5237 * array or from the in-memory chain. Sets *brefp to the returned bref in
5238 * both cases, or sets it to NULL if the search exhausted. Only returns
5239 * a non-NULL chain if the search matched from the in-memory chain.
5241 * When no in-memory chain has been found and a non-NULL bref is returned
5242 * in *brefp.
5245 * The returned chain is not locked or referenced. Use the returned bref
5246 * to determine if the search exhausted or not. Iterate if the base find
5247 * is chosen but matches a deleted chain.
5249 * WARNING! Must be called with parent's spinlock held. Spinlock remains
5250 * held through the operation.
5252 static hammer2_chain_t *
5253 hammer2_combined_find(hammer2_chain_t *parent,
5254 hammer2_blockref_t *base, int count,
5255 hammer2_key_t *key_nextp,
5256 hammer2_key_t key_beg, hammer2_key_t key_end,
5257 hammer2_blockref_t **brefp)
5259 hammer2_blockref_t *bref;
5260 hammer2_chain_t *chain;
5261 int i;
5264 * Lookup in block array and in rbtree.
5266 *key_nextp = key_end + 1;
5267 i = hammer2_base_find(parent, base, count, key_nextp,
5268 key_beg, key_end);
5269 chain = hammer2_chain_find(parent, key_nextp, key_beg, key_end);
5272 * Neither matched
5274 if (i == count && chain == NULL) {
5275 *brefp = NULL;
5276 return(NULL);
5280 * Only chain matched.
5282 if (i == count) {
5283 bref = &chain->bref;
5284 goto found;
5288 * Only blockref matched.
5290 if (chain == NULL) {
5291 bref = &base[i];
5292 goto found;
5296 * Both in-memory and blockref matched, select the nearer element.
5298 * If both are flush with the left-hand side or both are the
5299 * same distance away, select the chain. In this situation the
5300 * chain must have been loaded from the matching blockmap.
5302 if ((chain->bref.key <= key_beg && base[i].key <= key_beg) ||
5303 chain->bref.key == base[i].key) {
5304 KKASSERT(chain->bref.key == base[i].key);
5305 bref = &chain->bref;
5306 goto found;
5310 * Select the nearer key
5312 if (chain->bref.key < base[i].key) {
5313 bref = &chain->bref;
5314 } else {
5315 bref = &base[i];
5316 chain = NULL;
5320 * If the bref is out of bounds we've exhausted our search.
5322 found:
5323 if (bref->key > key_end) {
5324 *brefp = NULL;
5325 chain = NULL;
5326 } else {
5327 *brefp = bref;
5329 return(chain);
5333 * Locate the specified block array element and delete it. The element
5334 * must exist.
5336 * The spin lock on the related chain must be held.
5338 * NOTE: live_count was adjusted when the chain was deleted, so it does not
5339 * need to be adjusted when we commit the media change.
5341 void
5342 hammer2_base_delete(hammer2_chain_t *parent,
5343 hammer2_blockref_t *base, int count,
5344 hammer2_chain_t *chain,
5345 hammer2_blockref_t *obref)
5347 hammer2_blockref_t *elm = &chain->bref;
5348 hammer2_blockref_t *scan;
5349 hammer2_key_t key_next;
5350 int i;
5353 * Delete element. Expect the element to exist.
5355 * XXX see caller, flush code not yet sophisticated enough to prevent
5356 * re-flushed in some cases.
5358 key_next = 0; /* max range */
5359 i = hammer2_base_find(parent, base, count, &key_next,
5360 elm->key, elm->key);
5361 scan = &base[i];
5362 if (i == count || scan->type == HAMMER2_BREF_TYPE_EMPTY ||
5363 scan->key != elm->key ||
5364 ((chain->flags & HAMMER2_CHAIN_BLKMAPUPD) == 0 &&
5365 scan->keybits != elm->keybits)) {
5366 hammer2_spin_unex(&parent->core.spin);
5367 panic("delete base %p element not found at %d/%d elm %p\n",
5368 base, i, count, elm);
5369 return;
5373 * Update stats and zero the entry.
5375 * NOTE: Handle radix == 0 (0 bytes) case.
5377 if ((int)(scan->data_off & HAMMER2_OFF_MASK_RADIX)) {
5378 parent->bref.embed.stats.data_count -= (hammer2_off_t)1 <<
5379 (int)(scan->data_off & HAMMER2_OFF_MASK_RADIX);
5381 switch(scan->type) {
5382 case HAMMER2_BREF_TYPE_INODE:
5383 --parent->bref.embed.stats.inode_count;
5384 /* fall through */
5385 case HAMMER2_BREF_TYPE_DATA:
5386 if (parent->bref.leaf_count == HAMMER2_BLOCKREF_LEAF_MAX) {
5387 atomic_set_int(&chain->flags,
5388 HAMMER2_CHAIN_HINT_LEAF_COUNT);
5389 } else {
5390 if (parent->bref.leaf_count)
5391 --parent->bref.leaf_count;
5393 /* fall through */
5394 case HAMMER2_BREF_TYPE_INDIRECT:
5395 if (scan->type != HAMMER2_BREF_TYPE_DATA) {
5396 parent->bref.embed.stats.data_count -=
5397 scan->embed.stats.data_count;
5398 parent->bref.embed.stats.inode_count -=
5399 scan->embed.stats.inode_count;
5401 if (scan->type == HAMMER2_BREF_TYPE_INODE)
5402 break;
5403 if (parent->bref.leaf_count == HAMMER2_BLOCKREF_LEAF_MAX) {
5404 atomic_set_int(&chain->flags,
5405 HAMMER2_CHAIN_HINT_LEAF_COUNT);
5406 } else {
5407 if (parent->bref.leaf_count <= scan->leaf_count)
5408 parent->bref.leaf_count = 0;
5409 else
5410 parent->bref.leaf_count -= scan->leaf_count;
5412 break;
5413 case HAMMER2_BREF_TYPE_DIRENT:
5414 if (parent->bref.leaf_count == HAMMER2_BLOCKREF_LEAF_MAX) {
5415 atomic_set_int(&chain->flags,
5416 HAMMER2_CHAIN_HINT_LEAF_COUNT);
5417 } else {
5418 if (parent->bref.leaf_count)
5419 --parent->bref.leaf_count;
5421 default:
5422 break;
5425 if (obref)
5426 *obref = *scan;
5427 bzero(scan, sizeof(*scan));
5430 * We can only optimize parent->core.live_zero for live chains.
5432 if (parent->core.live_zero == i + 1) {
5433 while (--i >= 0 && base[i].type == HAMMER2_BREF_TYPE_EMPTY)
5435 parent->core.live_zero = i + 1;
5439 * Clear appropriate blockmap flags in chain.
5441 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_BLKMAPPED |
5442 HAMMER2_CHAIN_BLKMAPUPD);
5446 * Insert the specified element. The block array must not already have the
5447 * element and must have space available for the insertion.
5449 * The spin lock on the related chain must be held.
5451 * NOTE: live_count was adjusted when the chain was deleted, so it does not
5452 * need to be adjusted when we commit the media change.
5454 void
5455 hammer2_base_insert(hammer2_chain_t *parent,
5456 hammer2_blockref_t *base, int count,
5457 hammer2_chain_t *chain, hammer2_blockref_t *elm)
5459 hammer2_key_t key_next;
5460 hammer2_key_t xkey;
5461 int i;
5462 int j;
5463 int k;
5464 int l;
5465 int u = 1;
5468 * Insert new element. Expect the element to not already exist
5469 * unless we are replacing it.
5471 * XXX see caller, flush code not yet sophisticated enough to prevent
5472 * re-flushed in some cases.
5474 key_next = 0; /* max range */
5475 i = hammer2_base_find(parent, base, count, &key_next,
5476 elm->key, elm->key);
5479 * Shortcut fill optimization, typical ordered insertion(s) may not
5480 * require a search.
5482 KKASSERT(i >= 0 && i <= count);
5485 * Set appropriate blockmap flags in chain (if not NULL)
5487 if (chain)
5488 atomic_set_int(&chain->flags, HAMMER2_CHAIN_BLKMAPPED);
5491 * Update stats and zero the entry
5493 if ((int)(elm->data_off & HAMMER2_OFF_MASK_RADIX)) {
5494 parent->bref.embed.stats.data_count += (hammer2_off_t)1 <<
5495 (int)(elm->data_off & HAMMER2_OFF_MASK_RADIX);
5497 switch(elm->type) {
5498 case HAMMER2_BREF_TYPE_INODE:
5499 ++parent->bref.embed.stats.inode_count;
5500 /* fall through */
5501 case HAMMER2_BREF_TYPE_DATA:
5502 if (parent->bref.leaf_count != HAMMER2_BLOCKREF_LEAF_MAX)
5503 ++parent->bref.leaf_count;
5504 /* fall through */
5505 case HAMMER2_BREF_TYPE_INDIRECT:
5506 if (elm->type != HAMMER2_BREF_TYPE_DATA) {
5507 parent->bref.embed.stats.data_count +=
5508 elm->embed.stats.data_count;
5509 parent->bref.embed.stats.inode_count +=
5510 elm->embed.stats.inode_count;
5512 if (elm->type == HAMMER2_BREF_TYPE_INODE)
5513 break;
5514 if (parent->bref.leaf_count + elm->leaf_count <
5515 HAMMER2_BLOCKREF_LEAF_MAX) {
5516 parent->bref.leaf_count += elm->leaf_count;
5517 } else {
5518 parent->bref.leaf_count = HAMMER2_BLOCKREF_LEAF_MAX;
5520 break;
5521 case HAMMER2_BREF_TYPE_DIRENT:
5522 if (parent->bref.leaf_count != HAMMER2_BLOCKREF_LEAF_MAX)
5523 ++parent->bref.leaf_count;
5524 break;
5525 default:
5526 break;
5531 * We can only optimize parent->core.live_zero for live chains.
5533 if (i == count && parent->core.live_zero < count) {
5534 i = parent->core.live_zero++;
5535 base[i] = *elm;
5536 return;
5539 xkey = elm->key + ((hammer2_key_t)1 << elm->keybits) - 1;
5540 if (i != count && (base[i].key < elm->key || xkey >= base[i].key)) {
5541 hammer2_spin_unex(&parent->core.spin);
5542 panic("insert base %p overlapping elements at %d elm %p\n",
5543 base, i, elm);
5547 * Try to find an empty slot before or after.
5549 j = i;
5550 k = i;
5551 while (j > 0 || k < count) {
5552 --j;
5553 if (j >= 0 && base[j].type == HAMMER2_BREF_TYPE_EMPTY) {
5554 if (j == i - 1) {
5555 base[j] = *elm;
5556 } else {
5557 bcopy(&base[j+1], &base[j],
5558 (i - j - 1) * sizeof(*base));
5559 base[i - 1] = *elm;
5561 goto validate;
5563 ++k;
5564 if (k < count && base[k].type == HAMMER2_BREF_TYPE_EMPTY) {
5565 bcopy(&base[i], &base[i+1],
5566 (k - i) * sizeof(hammer2_blockref_t));
5567 base[i] = *elm;
5570 * We can only update parent->core.live_zero for live
5571 * chains.
5573 if (parent->core.live_zero <= k)
5574 parent->core.live_zero = k + 1;
5575 u = 2;
5576 goto validate;
5579 panic("hammer2_base_insert: no room!");
5582 * Debugging
5584 validate:
5585 key_next = 0;
5586 for (l = 0; l < count; ++l) {
5587 if (base[l].type != HAMMER2_BREF_TYPE_EMPTY) {
5588 key_next = base[l].key +
5589 ((hammer2_key_t)1 << base[l].keybits) - 1;
5590 break;
5593 while (++l < count) {
5594 if (base[l].type != HAMMER2_BREF_TYPE_EMPTY) {
5595 if (base[l].key <= key_next)
5596 panic("base_insert %d %d,%d,%d fail %p:%d", u, i, j, k, base, l);
5597 key_next = base[l].key +
5598 ((hammer2_key_t)1 << base[l].keybits) - 1;
5605 #if 0
5608 * Sort the blockref array for the chain. Used by the flush code to
5609 * sort the blockref[] array.
5611 * The chain must be exclusively locked AND spin-locked.
5613 typedef hammer2_blockref_t *hammer2_blockref_p;
5615 static
5617 hammer2_base_sort_callback(const void *v1, const void *v2)
5619 hammer2_blockref_p bref1 = *(const hammer2_blockref_p *)v1;
5620 hammer2_blockref_p bref2 = *(const hammer2_blockref_p *)v2;
5623 * Make sure empty elements are placed at the end of the array
5625 if (bref1->type == HAMMER2_BREF_TYPE_EMPTY) {
5626 if (bref2->type == HAMMER2_BREF_TYPE_EMPTY)
5627 return(0);
5628 return(1);
5629 } else if (bref2->type == HAMMER2_BREF_TYPE_EMPTY) {
5630 return(-1);
5634 * Sort by key
5636 if (bref1->key < bref2->key)
5637 return(-1);
5638 if (bref1->key > bref2->key)
5639 return(1);
5640 return(0);
5643 void
5644 hammer2_base_sort(hammer2_chain_t *chain)
5646 hammer2_blockref_t *base;
5647 int count;
5649 switch(chain->bref.type) {
5650 case HAMMER2_BREF_TYPE_INODE:
5652 * Special shortcut for embedded data returns the inode
5653 * itself. Callers must detect this condition and access
5654 * the embedded data (the strategy code does this for us).
5656 * This is only applicable to regular files and softlinks.
5658 if (chain->data->ipdata.meta.op_flags &
5659 HAMMER2_OPFLAG_DIRECTDATA) {
5660 return;
5662 base = &chain->data->ipdata.u.blockset.blockref[0];
5663 count = HAMMER2_SET_COUNT;
5664 break;
5665 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
5666 case HAMMER2_BREF_TYPE_INDIRECT:
5668 * Optimize indirect blocks in the INITIAL state to avoid
5669 * I/O.
5671 KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) == 0);
5672 base = &chain->data->npdata[0];
5673 count = chain->bytes / sizeof(hammer2_blockref_t);
5674 break;
5675 case HAMMER2_BREF_TYPE_VOLUME:
5676 base = &chain->data->voldata.sroot_blockset.blockref[0];
5677 count = HAMMER2_SET_COUNT;
5678 break;
5679 case HAMMER2_BREF_TYPE_FREEMAP:
5680 base = &chain->data->blkset.blockref[0];
5681 count = HAMMER2_SET_COUNT;
5682 break;
5683 default:
5684 panic("hammer2_base_sort: unrecognized "
5685 "blockref(A) type: %d",
5686 chain->bref.type);
5687 base = NULL; /* safety */
5688 count = 0; /* safety */
5689 break;
5691 kqsort(base, count, sizeof(*base), hammer2_base_sort_callback);
5694 #endif
5697 * Set the check data for a chain. This can be a heavy-weight operation
5698 * and typically only runs on-flush. For file data check data is calculated
5699 * when the logical buffers are flushed.
5701 void
5702 hammer2_chain_setcheck(hammer2_chain_t *chain, void *bdata)
5704 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_NOTTESTED);
5706 switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
5707 case HAMMER2_CHECK_NONE:
5708 break;
5709 case HAMMER2_CHECK_DISABLED:
5710 break;
5711 case HAMMER2_CHECK_ISCSI32:
5712 chain->bref.check.iscsi32.value =
5713 hammer2_icrc32(bdata, chain->bytes);
5714 break;
5715 case HAMMER2_CHECK_XXHASH64:
5716 chain->bref.check.xxhash64.value =
5717 XXH64(bdata, chain->bytes, XXH_HAMMER2_SEED);
5718 break;
5719 case HAMMER2_CHECK_SHA192:
5720 assert(0); /* XXX unsupported */
5723 SHA256_CTX hash_ctx;
5724 union {
5725 uint8_t digest[SHA256_DIGEST_LENGTH];
5726 uint64_t digest64[SHA256_DIGEST_LENGTH/8];
5727 } u;
5729 SHA256_Init(&hash_ctx);
5730 SHA256_Update(&hash_ctx, bdata, chain->bytes);
5731 SHA256_Final(u.digest, &hash_ctx);
5732 u.digest64[2] ^= u.digest64[3];
5733 bcopy(u.digest,
5734 chain->bref.check.sha192.data,
5735 sizeof(chain->bref.check.sha192.data));
5738 break;
5739 case HAMMER2_CHECK_FREEMAP:
5740 chain->bref.check.freemap.icrc32 =
5741 hammer2_icrc32(bdata, chain->bytes);
5742 break;
5743 default:
5744 kprintf("hammer2_chain_setcheck: unknown check type %02x\n",
5745 chain->bref.methods);
5746 break;
5751 * Characterize a failed check code and try to trace back to the inode.
5753 static void
5754 hammer2_characterize_failed_chain(hammer2_chain_t *chain, uint64_t check,
5755 int bits)
5757 hammer2_chain_t *lchain;
5758 hammer2_chain_t *ochain;
5759 int did;
5761 did = krateprintf(&krate_h2chk,
5762 "chain %016jx.%02x (%s) meth=%02x CHECK FAIL "
5763 "(flags=%08x, bref/data ",
5764 chain->bref.data_off,
5765 chain->bref.type,
5766 hammer2_bref_type_str(chain->bref.type),
5767 chain->bref.methods,
5768 chain->flags);
5769 if (did == 0)
5770 return;
5772 if (bits == 32) {
5773 kprintf("%08x/%08x)\n",
5774 chain->bref.check.iscsi32.value,
5775 (uint32_t)check);
5776 } else {
5777 kprintf("%016jx/%016jx)\n",
5778 chain->bref.check.xxhash64.value,
5779 check);
5783 * Run up the chains to try to find the governing inode so we
5784 * can report it.
5786 * XXX This error reporting is not really MPSAFE
5788 ochain = chain;
5789 lchain = chain;
5790 while (chain && chain->bref.type != HAMMER2_BREF_TYPE_INODE) {
5791 lchain = chain;
5792 chain = chain->parent;
5795 if (chain && chain->bref.type == HAMMER2_BREF_TYPE_INODE &&
5796 ((chain->bref.flags & HAMMER2_BREF_FLAG_PFSROOT) == 0 ||
5797 (lchain->bref.key & HAMMER2_DIRHASH_VISIBLE))) {
5798 kprintf(" Resides at/in inode %ld\n",
5799 (long)chain->bref.key);
5800 } else if (chain && chain->bref.type == HAMMER2_BREF_TYPE_INODE) {
5801 kprintf(" Resides in inode index - CRITICAL!!!\n");
5802 } else {
5803 kprintf(" Resides in root index - CRITICAL!!!\n");
5805 if (ochain->hmp) {
5806 const char *pfsname = "UNKNOWN";
5807 int i;
5809 if (ochain->pmp) {
5810 for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
5811 if (ochain->pmp->pfs_hmps[i] == ochain->hmp &&
5812 ochain->pmp->pfs_names[i]) {
5813 pfsname = ochain->pmp->pfs_names[i];
5814 break;
5818 kprintf(" In pfs %s on device %s\n",
5819 pfsname, ochain->hmp->devrepname);
5824 * Returns non-zero on success, 0 on failure.
5827 hammer2_chain_testcheck(hammer2_chain_t *chain, void *bdata)
5829 uint32_t check32;
5830 uint64_t check64;
5831 int r;
5833 if (chain->flags & HAMMER2_CHAIN_NOTTESTED)
5834 return 1;
5836 switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
5837 case HAMMER2_CHECK_NONE:
5838 r = 1;
5839 break;
5840 case HAMMER2_CHECK_DISABLED:
5841 r = 1;
5842 break;
5843 case HAMMER2_CHECK_ISCSI32:
5844 check32 = hammer2_icrc32(bdata, chain->bytes);
5845 r = (chain->bref.check.iscsi32.value == check32);
5846 if (r == 0) {
5847 hammer2_characterize_failed_chain(chain, check32, 32);
5849 hammer2_process_icrc32 += chain->bytes;
5850 break;
5851 case HAMMER2_CHECK_XXHASH64:
5852 check64 = XXH64(bdata, chain->bytes, XXH_HAMMER2_SEED);
5853 r = (chain->bref.check.xxhash64.value == check64);
5854 if (r == 0) {
5855 hammer2_characterize_failed_chain(chain, check64, 64);
5857 hammer2_process_xxhash64 += chain->bytes;
5858 break;
5859 case HAMMER2_CHECK_SHA192:
5860 assert(0); /* XXX unsupported */
5863 SHA256_CTX hash_ctx;
5864 union {
5865 uint8_t digest[SHA256_DIGEST_LENGTH];
5866 uint64_t digest64[SHA256_DIGEST_LENGTH/8];
5867 } u;
5869 SHA256_Init(&hash_ctx);
5870 SHA256_Update(&hash_ctx, bdata, chain->bytes);
5871 SHA256_Final(u.digest, &hash_ctx);
5872 u.digest64[2] ^= u.digest64[3];
5873 if (bcmp(u.digest,
5874 chain->bref.check.sha192.data,
5875 sizeof(chain->bref.check.sha192.data)) == 0) {
5876 r = 1;
5877 } else {
5878 r = 0;
5879 krateprintf(&krate_h2chk,
5880 "chain %016jx.%02x meth=%02x "
5881 "CHECK FAIL\n",
5882 chain->bref.data_off,
5883 chain->bref.type,
5884 chain->bref.methods);
5888 break;
5889 case HAMMER2_CHECK_FREEMAP:
5890 r = (chain->bref.check.freemap.icrc32 ==
5891 hammer2_icrc32(bdata, chain->bytes));
5892 if (r == 0) {
5893 int did;
5895 did = krateprintf(&krate_h2chk,
5896 "chain %016jx.%02x meth=%02x "
5897 "CHECK FAIL\n",
5898 chain->bref.data_off,
5899 chain->bref.type,
5900 chain->bref.methods);
5901 if (did) {
5902 kprintf("freemap.icrc %08x icrc32 %08x (%d)\n",
5903 chain->bref.check.freemap.icrc32,
5904 hammer2_icrc32(bdata, chain->bytes),
5905 chain->bytes);
5906 if (chain->dio) {
5907 kprintf("dio %p buf %016jx,%ld "
5908 "bdata %p/%p\n",
5909 chain->dio,
5910 (intmax_t)chain->dio->bp->b_loffset,
5911 chain->dio->bp->b_bufsize,
5912 bdata,
5913 chain->dio->bp->b_data);
5917 break;
5918 default:
5919 kprintf("hammer2_chain_testcheck: unknown check type %02x\n",
5920 chain->bref.methods);
5921 r = 1;
5922 break;
5924 return r;
5928 * Acquire the chain and parent representing the specified inode for the
5929 * device at the specified cluster index.
5931 * The flags passed in are LOOKUP flags, not RESOLVE flags.
5933 * If we are unable to locate the inode, HAMMER2_ERROR_EIO or HAMMER2_ERROR_CHECK
5934 * is returned. In case of error, *chainp and/or *parentp may still be returned
5935 * non-NULL.
5937 * The caller may pass-in a locked *parentp and/or *chainp, or neither.
5938 * They will be unlocked and released by this function. The *parentp and
5939 * *chainp representing the located inode are returned locked.
5941 * The returned error includes any error on the returned chain in addition to
5942 * errors incurred while trying to lookup the inode. However, a chain->error
5943 * might not be recognized if HAMMER2_LOOKUP_NODATA is passed. This flag may
5944 * not be passed to this function.
5947 hammer2_chain_inode_find(hammer2_pfs_t *pmp, hammer2_key_t inum,
5948 int clindex, int flags,
5949 hammer2_chain_t **parentp, hammer2_chain_t **chainp)
5951 hammer2_chain_t *parent;
5952 hammer2_chain_t *rchain;
5953 hammer2_key_t key_dummy;
5954 hammer2_inode_t *ip;
5955 int resolve_flags;
5956 int error;
5958 KKASSERT((flags & HAMMER2_LOOKUP_NODATA) == 0);
5960 resolve_flags = (flags & HAMMER2_LOOKUP_SHARED) ?
5961 HAMMER2_RESOLVE_SHARED : 0;
5964 * Caller expects us to replace these.
5966 if (*chainp) {
5967 hammer2_chain_unlock(*chainp);
5968 hammer2_chain_drop(*chainp);
5969 *chainp = NULL;
5971 if (*parentp) {
5972 hammer2_chain_unlock(*parentp);
5973 hammer2_chain_drop(*parentp);
5974 *parentp = NULL;
5978 * Be very careful, this is a backend function and we CANNOT
5979 * lock any frontend inode structure we find. But we have to
5980 * look the inode up this way first in case it exists but is
5981 * detached from the radix tree.
5983 ip = hammer2_inode_lookup(pmp, inum);
5984 if (ip) {
5985 *chainp = hammer2_inode_chain_and_parent(ip, clindex,
5986 parentp,
5987 resolve_flags);
5988 hammer2_inode_drop(ip);
5989 if (*chainp)
5990 return (*chainp)->error;
5991 hammer2_chain_unlock(*chainp);
5992 hammer2_chain_drop(*chainp);
5993 *chainp = NULL;
5994 if (*parentp) {
5995 hammer2_chain_unlock(*parentp);
5996 hammer2_chain_drop(*parentp);
5997 *parentp = NULL;
6002 * Inodes hang off of the iroot (bit 63 is clear, differentiating
6003 * inodes from root directory entries in the key lookup).
6005 parent = hammer2_inode_chain(pmp->iroot, clindex, resolve_flags);
6006 rchain = NULL;
6007 if (parent) {
6009 * NOTE: rchain can be returned as NULL even if error == 0
6010 * (i.e. not found)
6012 rchain = hammer2_chain_lookup(&parent, &key_dummy,
6013 inum, inum,
6014 &error, flags);
6016 * Propagate a chain-specific error to caller.
6018 * If the chain is not errored, we must still validate that the inode
6019 * number is correct, because all hell will break loose if it isn't
6020 * correct. It should always be correct so print to the console and
6021 * simulate a CHECK error if it is not.
6023 if (error == 0 && rchain) {
6024 error = rchain->error;
6025 if (error == 0 && rchain->data) {
6026 if (inum != rchain->data->ipdata.meta.inum) {
6027 kprintf("hammer2_chain_inode_find: lookup inum %ld, "
6028 "got valid inode but with inum %ld\n",
6029 (long)inum, (long)rchain->data->ipdata.meta.inum);
6030 error = HAMMER2_ERROR_CHECK;
6031 rchain->error = error;
6035 } else {
6036 error = HAMMER2_ERROR_EIO;
6038 *parentp = parent;
6039 *chainp = rchain;
6041 return error;
6045 * Used by the bulkscan code to snapshot the synchronized storage for
6046 * a volume, allowing it to be scanned concurrently against normal
6047 * operation.
6049 hammer2_chain_t *
6050 hammer2_chain_bulksnap(hammer2_dev_t *hmp)
6052 hammer2_chain_t *copy;
6054 copy = hammer2_chain_alloc(hmp, hmp->spmp, &hmp->vchain.bref);
6055 copy->data = kmalloc(sizeof(copy->data->voldata),
6056 hmp->mmsg, M_WAITOK | M_ZERO);
6057 hammer2_voldata_lock(hmp);
6058 copy->data->voldata = hmp->volsync;
6059 hammer2_voldata_unlock(hmp);
6061 return copy;
6064 void
6065 hammer2_chain_bulkdrop(hammer2_chain_t *copy)
6067 KKASSERT(copy->bref.type == HAMMER2_BREF_TYPE_VOLUME);
6068 KKASSERT(copy->data);
6069 kfree(copy->data, copy->hmp->mmsg);
6070 copy->data = NULL;
6071 hammer2_chain_drop(copy);
6075 * Returns non-zero if the chain (INODE or DIRENT) matches the
6076 * filename.
6079 hammer2_chain_dirent_test(hammer2_chain_t *chain, const char *name,
6080 size_t name_len)
6082 const hammer2_inode_data_t *ripdata;
6084 if (chain->bref.type == HAMMER2_BREF_TYPE_INODE) {
6085 ripdata = &chain->data->ipdata;
6086 if (ripdata->meta.name_len == name_len &&
6087 bcmp(ripdata->filename, name, name_len) == 0) {
6088 return 1;
6091 if (chain->bref.type == HAMMER2_BREF_TYPE_DIRENT &&
6092 chain->bref.embed.dirent.namlen == name_len) {
6093 if (name_len > sizeof(chain->bref.check.buf) &&
6094 bcmp(chain->data->buf, name, name_len) == 0) {
6095 return 1;
6097 if (name_len <= sizeof(chain->bref.check.buf) &&
6098 bcmp(chain->bref.check.buf, name, name_len) == 0) {
6099 return 1;
6102 return 0;
6106 * Debugging
6108 void
6109 hammer2_dump_chain(hammer2_chain_t *chain, int tab, int bi, int *countp,
6110 char pfx, u_int flags)
6112 hammer2_chain_t *scan;
6113 hammer2_chain_t *parent;
6115 --*countp;
6116 if (*countp == 0) {
6117 kprintf("%*.*s...\n", tab, tab, "");
6118 return;
6120 if (*countp < 0)
6121 return;
6122 kprintf("%*.*s%c-chain %p %s.%-3d %016jx %016jx/%-2d mir=%016jx\n",
6123 tab, tab, "", pfx, chain,
6124 hammer2_bref_type_str(chain->bref.type), bi,
6125 chain->bref.data_off, chain->bref.key, chain->bref.keybits,
6126 chain->bref.mirror_tid);
6128 kprintf("%*.*s [%08x] (%s) refs=%d",
6129 tab, tab, "",
6130 chain->flags,
6131 ((chain->bref.type == HAMMER2_BREF_TYPE_INODE &&
6132 chain->data) ? (char *)chain->data->ipdata.filename : "?"),
6133 chain->refs);
6135 parent = chain->parent;
6136 if (parent)
6137 kprintf("\n%*.*s p=%p [pflags %08x prefs %d]",
6138 tab, tab, "",
6139 parent, parent->flags, parent->refs);
6140 if (RB_EMPTY(&chain->core.rbtree)) {
6141 kprintf("\n");
6142 } else {
6143 int bi = 0;
6144 kprintf(" {\n");
6145 RB_FOREACH(scan, hammer2_chain_tree, &chain->core.rbtree) {
6146 if ((scan->flags & flags) || flags == (u_int)-1) {
6147 hammer2_dump_chain(scan, tab + 4, bi, countp,
6148 'a', flags);
6150 bi++;
6152 if (chain->bref.type == HAMMER2_BREF_TYPE_INODE && chain->data)
6153 kprintf("%*.*s}(%s)\n", tab, tab, "",
6154 chain->data->ipdata.filename);
6155 else
6156 kprintf("%*.*s}\n", tab, tab, "");
6160 void
6161 hammer2_dump_chains(hammer2_dev_t *hmp, char vpfx, char fpfx)
6163 int dumpcnt;
6165 dumpcnt = 50;
6166 hammer2_dump_chain(&hmp->vchain, 0, 0, &dumpcnt, vpfx, (u_int)-1);
6168 dumpcnt = 50;
6169 hammer2_dump_chain(&hmp->fchain, 0, 0, &dumpcnt, fpfx, (u_int)-1);