kgdb(1): Add missing "
[dragonfly.git] / sys / kern / uipc_mbuf.c
bloba60d8fd33b80de595eb24face4aa7af28af5c51f
1 /*
2 * (MPSAFE)
4 * Copyright (c) 2004 Jeffrey M. Hsu. All rights reserved.
5 * Copyright (c) 2004 The DragonFly Project. All rights reserved.
6 *
7 * This code is derived from software contributed to The DragonFly Project
8 * by Jeffrey M. Hsu.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of The DragonFly Project nor the names of its
19 * contributors may be used to endorse or promote products derived
20 * from this software without specific, prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
26 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
37 * Copyright (c) 1982, 1986, 1988, 1991, 1993
38 * The Regents of the University of California. All rights reserved.
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. Neither the name of the University nor the names of its contributors
49 * may be used to endorse or promote products derived from this software
50 * without specific prior written permission.
52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * SUCH DAMAGE.
64 * @(#)uipc_mbuf.c 8.2 (Berkeley) 1/4/94
65 * $FreeBSD: src/sys/kern/uipc_mbuf.c,v 1.51.2.24 2003/04/15 06:59:29 silby Exp $
68 #include "opt_param.h"
69 #include "opt_mbuf_stress_test.h"
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/file.h>
73 #include <sys/malloc.h>
74 #include <sys/mbuf.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/domain.h>
78 #include <sys/objcache.h>
79 #include <sys/tree.h>
80 #include <sys/protosw.h>
81 #include <sys/uio.h>
82 #include <sys/thread.h>
83 #include <sys/proc.h>
84 #include <sys/globaldata.h>
86 #include <sys/thread2.h>
87 #include <sys/spinlock2.h>
89 #include <machine/atomic.h>
90 #include <machine/limits.h>
92 #include <vm/vm.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_extern.h>
96 #ifdef INVARIANTS
97 #include <machine/cpu.h>
98 #endif
101 * mbuf cluster meta-data
103 struct mbcluster {
104 int32_t mcl_refs;
105 void *mcl_data;
109 * mbuf tracking for debugging purposes
111 #ifdef MBUF_DEBUG
113 static MALLOC_DEFINE(M_MTRACK, "mtrack", "mtrack");
115 struct mbctrack;
116 RB_HEAD(mbuf_rb_tree, mbtrack);
117 RB_PROTOTYPE2(mbuf_rb_tree, mbtrack, rb_node, mbtrack_cmp, struct mbuf *);
119 struct mbtrack {
120 RB_ENTRY(mbtrack) rb_node;
121 int trackid;
122 struct mbuf *m;
125 static int
126 mbtrack_cmp(struct mbtrack *mb1, struct mbtrack *mb2)
128 if (mb1->m < mb2->m)
129 return(-1);
130 if (mb1->m > mb2->m)
131 return(1);
132 return(0);
135 RB_GENERATE2(mbuf_rb_tree, mbtrack, rb_node, mbtrack_cmp, struct mbuf *, m);
137 struct mbuf_rb_tree mbuf_track_root;
138 static struct spinlock mbuf_track_spin = SPINLOCK_INITIALIZER(mbuf_track_spin, "mbuf_track_spin");
140 static void
141 mbuftrack(struct mbuf *m)
143 struct mbtrack *mbt;
145 mbt = kmalloc(sizeof(*mbt), M_MTRACK, M_INTWAIT|M_ZERO);
146 spin_lock(&mbuf_track_spin);
147 mbt->m = m;
148 if (mbuf_rb_tree_RB_INSERT(&mbuf_track_root, mbt)) {
149 spin_unlock(&mbuf_track_spin);
150 panic("mbuftrack: mbuf %p already being tracked", m);
152 spin_unlock(&mbuf_track_spin);
155 static void
156 mbufuntrack(struct mbuf *m)
158 struct mbtrack *mbt;
160 spin_lock(&mbuf_track_spin);
161 mbt = mbuf_rb_tree_RB_LOOKUP(&mbuf_track_root, m);
162 if (mbt == NULL) {
163 spin_unlock(&mbuf_track_spin);
164 panic("mbufuntrack: mbuf %p was not tracked", m);
165 } else {
166 mbuf_rb_tree_RB_REMOVE(&mbuf_track_root, mbt);
167 spin_unlock(&mbuf_track_spin);
168 kfree(mbt, M_MTRACK);
172 void
173 mbuftrackid(struct mbuf *m, int trackid)
175 struct mbtrack *mbt;
176 struct mbuf *n;
178 spin_lock(&mbuf_track_spin);
179 while (m) {
180 n = m->m_nextpkt;
181 while (m) {
182 mbt = mbuf_rb_tree_RB_LOOKUP(&mbuf_track_root, m);
183 if (mbt == NULL) {
184 spin_unlock(&mbuf_track_spin);
185 panic("mbuftrackid: mbuf %p not tracked", m);
187 mbt->trackid = trackid;
188 m = m->m_next;
190 m = n;
192 spin_unlock(&mbuf_track_spin);
195 static int
196 mbuftrack_callback(struct mbtrack *mbt, void *arg)
198 struct sysctl_req *req = arg;
199 char buf[64];
200 int error;
202 ksnprintf(buf, sizeof(buf), "mbuf %p track %d\n", mbt->m, mbt->trackid);
204 spin_unlock(&mbuf_track_spin);
205 error = SYSCTL_OUT(req, buf, strlen(buf));
206 spin_lock(&mbuf_track_spin);
207 if (error)
208 return(-error);
209 return(0);
212 static int
213 mbuftrack_show(SYSCTL_HANDLER_ARGS)
215 int error;
217 spin_lock(&mbuf_track_spin);
218 error = mbuf_rb_tree_RB_SCAN(&mbuf_track_root, NULL,
219 mbuftrack_callback, req);
220 spin_unlock(&mbuf_track_spin);
221 return (-error);
223 SYSCTL_PROC(_kern_ipc, OID_AUTO, showmbufs, CTLFLAG_RD|CTLTYPE_STRING,
224 0, 0, mbuftrack_show, "A", "Show all in-use mbufs");
226 #else
228 #define mbuftrack(m)
229 #define mbufuntrack(m)
231 #endif
233 static void mbinit(void *);
234 SYSINIT(mbuf, SI_BOOT2_MACHDEP, SI_ORDER_FIRST, mbinit, NULL);
236 struct mbtypes_stat {
237 u_long stats[MT_NTYPES];
238 } __cachealign;
240 static struct mbtypes_stat mbtypes[SMP_MAXCPU];
242 static struct mbstat mbstat[SMP_MAXCPU] __cachealign;
243 int max_linkhdr;
244 int max_protohdr;
245 int max_hdr;
246 int max_datalen;
247 int m_defragpackets;
248 int m_defragbytes;
249 int m_defraguseless;
250 int m_defragfailure;
251 #ifdef MBUF_STRESS_TEST
252 int m_defragrandomfailures;
253 #endif
255 struct objcache *mbuf_cache, *mbufphdr_cache;
256 struct objcache *mclmeta_cache, *mjclmeta_cache;
257 struct objcache *mbufcluster_cache, *mbufphdrcluster_cache;
258 struct objcache *mbufjcluster_cache, *mbufphdrjcluster_cache;
260 struct lock mbupdate_lk = LOCK_INITIALIZER("mbupdate", 0, LK_CANRECURSE);
262 int nmbclusters;
263 static int nmbjclusters;
264 int nmbufs;
266 static int mjclph_cachefrac;
267 static int mjcl_cachefrac;
268 static int mclph_cachefrac;
269 static int mcl_cachefrac;
271 SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RW,
272 &max_linkhdr, 0, "Max size of a link-level header");
273 SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RW,
274 &max_protohdr, 0, "Max size of a protocol header");
275 SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RW, &max_hdr, 0,
276 "Max size of link+protocol headers");
277 SYSCTL_INT(_kern_ipc, KIPC_MAX_DATALEN, max_datalen, CTLFLAG_RW,
278 &max_datalen, 0, "Max data payload size without headers");
279 SYSCTL_INT(_kern_ipc, OID_AUTO, mbuf_wait, CTLFLAG_RW,
280 &mbuf_wait, 0, "Time in ticks to sleep after failed mbuf allocations");
281 static int do_mbstat(SYSCTL_HANDLER_ARGS);
283 SYSCTL_PROC(_kern_ipc, KIPC_MBSTAT, mbstat, CTLTYPE_STRUCT|CTLFLAG_RD,
284 0, 0, do_mbstat, "S,mbstat", "mbuf usage statistics");
286 static int do_mbtypes(SYSCTL_HANDLER_ARGS);
288 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbtypes, CTLTYPE_ULONG|CTLFLAG_RD,
289 0, 0, do_mbtypes, "LU", "");
291 static int
292 do_mbstat(SYSCTL_HANDLER_ARGS)
294 struct mbstat mbstat_total;
295 struct mbstat *mbstat_totalp;
296 int i;
298 bzero(&mbstat_total, sizeof(mbstat_total));
299 mbstat_totalp = &mbstat_total;
301 for (i = 0; i < ncpus; i++) {
302 mbstat_total.m_mbufs += mbstat[i].m_mbufs;
303 mbstat_total.m_clusters += mbstat[i].m_clusters;
304 mbstat_total.m_jclusters += mbstat[i].m_jclusters;
305 mbstat_total.m_clfree += mbstat[i].m_clfree;
306 mbstat_total.m_drops += mbstat[i].m_drops;
307 mbstat_total.m_wait += mbstat[i].m_wait;
308 mbstat_total.m_drain += mbstat[i].m_drain;
309 mbstat_total.m_mcfail += mbstat[i].m_mcfail;
310 mbstat_total.m_mpfail += mbstat[i].m_mpfail;
314 * The following fields are not cumulative fields so just
315 * get their values once.
317 mbstat_total.m_msize = mbstat[0].m_msize;
318 mbstat_total.m_mclbytes = mbstat[0].m_mclbytes;
319 mbstat_total.m_minclsize = mbstat[0].m_minclsize;
320 mbstat_total.m_mlen = mbstat[0].m_mlen;
321 mbstat_total.m_mhlen = mbstat[0].m_mhlen;
323 return(sysctl_handle_opaque(oidp, mbstat_totalp, sizeof(mbstat_total), req));
326 static int
327 do_mbtypes(SYSCTL_HANDLER_ARGS)
329 u_long totals[MT_NTYPES];
330 int i, j;
332 for (i = 0; i < MT_NTYPES; i++)
333 totals[i] = 0;
335 for (i = 0; i < ncpus; i++) {
336 for (j = 0; j < MT_NTYPES; j++)
337 totals[j] += mbtypes[i].stats[j];
340 return(sysctl_handle_opaque(oidp, totals, sizeof(totals), req));
344 * The variables may be set as boot-time tunables or live. Setting these
345 * values too low can deadlock your network. Network interfaces may also
346 * adjust nmbclusters and/or nmbjclusters to account for preloading the
347 * hardware rings.
349 static int sysctl_nmbclusters(SYSCTL_HANDLER_ARGS);
350 static int sysctl_nmbjclusters(SYSCTL_HANDLER_ARGS);
351 static int sysctl_nmbufs(SYSCTL_HANDLER_ARGS);
352 SYSCTL_PROC(_kern_ipc, KIPC_NMBCLUSTERS, nmbclusters, CTLTYPE_INT | CTLFLAG_RW,
353 0, 0, sysctl_nmbclusters, "I",
354 "Maximum number of mbuf clusters available");
355 SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbjclusters, CTLTYPE_INT | CTLFLAG_RW,
356 0, 0, sysctl_nmbjclusters, "I",
357 "Maximum number of mbuf jclusters available");
358 SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbufs, CTLTYPE_INT | CTLFLAG_RW,
359 0, 0, sysctl_nmbufs, "I",
360 "Maximum number of mbufs available");
362 SYSCTL_INT(_kern_ipc, OID_AUTO, mjclph_cachefrac, CTLFLAG_RD,
363 &mjclph_cachefrac, 0,
364 "Fraction of cacheable mbuf jclusters w/ pkthdr");
365 SYSCTL_INT(_kern_ipc, OID_AUTO, mjcl_cachefrac, CTLFLAG_RD,
366 &mjcl_cachefrac, 0,
367 "Fraction of cacheable mbuf jclusters");
368 SYSCTL_INT(_kern_ipc, OID_AUTO, mclph_cachefrac, CTLFLAG_RD,
369 &mclph_cachefrac, 0,
370 "Fraction of cacheable mbuf clusters w/ pkthdr");
371 SYSCTL_INT(_kern_ipc, OID_AUTO, mcl_cachefrac, CTLFLAG_RD,
372 &mcl_cachefrac, 0, "Fraction of cacheable mbuf clusters");
374 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD,
375 &m_defragpackets, 0, "Number of defragment packets");
376 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD,
377 &m_defragbytes, 0, "Number of defragment bytes");
378 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD,
379 &m_defraguseless, 0, "Number of useless defragment mbuf chain operations");
380 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD,
381 &m_defragfailure, 0, "Number of failed defragment mbuf chain operations");
382 #ifdef MBUF_STRESS_TEST
383 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW,
384 &m_defragrandomfailures, 0, "");
385 #endif
387 static MALLOC_DEFINE(M_MBUF, "mbuf", "mbuf");
388 static MALLOC_DEFINE(M_MBUFCL, "mbufcl", "mbufcl");
389 static MALLOC_DEFINE(M_MCLMETA, "mclmeta", "mclmeta");
391 static void m_reclaim (void);
392 static void m_mclref(void *arg);
393 static void m_mclfree(void *arg);
394 static void m_mjclfree(void *arg);
396 static void mbupdatelimits(void);
399 * Generally scale default mbufs to maxproc.
401 * NOTE: Default NMBUFS must take into account a possible DOS attack
402 * using fd passing on unix domain sockets.
404 #ifndef NMBCLUSTERS
405 #define NMBCLUSTERS (512 + maxproc * 4)
406 #endif
407 #ifndef BASE_CACHEFRAC
408 #define BASE_CACHEFRAC 16
409 #endif
410 #ifndef MJCLPH_CACHEFRAC
411 #define MJCLPH_CACHEFRAC (BASE_CACHEFRAC * 2)
412 #endif
413 #ifndef MJCL_CACHEFRAC
414 #define MJCL_CACHEFRAC (BASE_CACHEFRAC * 2)
415 #endif
416 #ifndef MCLPH_CACHEFRAC
417 #define MCLPH_CACHEFRAC (BASE_CACHEFRAC * 2)
418 #endif
419 #ifndef MCL_CACHEFRAC
420 #define MCL_CACHEFRAC (BASE_CACHEFRAC * 2)
421 #endif
422 #ifndef NMBJCLUSTERS
423 #define NMBJCLUSTERS (NMBCLUSTERS / 4)
424 #endif
425 #ifndef NMBUFS
426 #define NMBUFS (nmbclusters / 2 + maxfiles)
427 #endif
429 #define NMBCLUSTERS_MIN (NMBCLUSTERS / 2)
430 #define NMBJCLUSTERS_MIN (NMBJCLUSTERS / 2)
431 #define NMBUFS_MIN (NMBUFS / 2)
434 * Perform sanity checks of tunables declared above.
436 static void
437 tunable_mbinit(void *dummy)
440 * This has to be done before VM init.
442 nmbclusters = NMBCLUSTERS;
443 TUNABLE_INT_FETCH("kern.ipc.nmbclusters", &nmbclusters);
444 mjclph_cachefrac = MJCLPH_CACHEFRAC;
445 TUNABLE_INT_FETCH("kern.ipc.mjclph_cachefrac", &mjclph_cachefrac);
446 mjcl_cachefrac = MJCL_CACHEFRAC;
447 TUNABLE_INT_FETCH("kern.ipc.mjcl_cachefrac", &mjcl_cachefrac);
448 mclph_cachefrac = MCLPH_CACHEFRAC;
449 TUNABLE_INT_FETCH("kern.ipc.mclph_cachefrac", &mclph_cachefrac);
450 mcl_cachefrac = MCL_CACHEFRAC;
451 TUNABLE_INT_FETCH("kern.ipc.mcl_cachefrac", &mcl_cachefrac);
454 * WARNING! each mcl cache feeds two mbuf caches, so the minimum
455 * cachefrac is 2. For safety, use 3.
457 if (mjclph_cachefrac < 3)
458 mjclph_cachefrac = 3;
459 if (mjcl_cachefrac < 3)
460 mjcl_cachefrac = 3;
461 if (mclph_cachefrac < 3)
462 mclph_cachefrac = 3;
463 if (mcl_cachefrac < 3)
464 mcl_cachefrac = 3;
466 nmbjclusters = NMBJCLUSTERS;
467 TUNABLE_INT_FETCH("kern.ipc.nmbjclusters", &nmbjclusters);
469 nmbufs = NMBUFS;
470 TUNABLE_INT_FETCH("kern.ipc.nmbufs", &nmbufs);
472 /* Sanity checks */
473 if (nmbufs < nmbclusters * 2)
474 nmbufs = nmbclusters * 2;
476 SYSINIT(tunable_mbinit, SI_BOOT1_TUNABLES, SI_ORDER_ANY,
477 tunable_mbinit, NULL);
479 static void
480 mbinclimit(int *limit, int inc, int minlim)
482 int new_limit;
484 lockmgr(&mbupdate_lk, LK_EXCLUSIVE);
486 new_limit = *limit + inc;
487 if (new_limit < minlim)
488 new_limit = minlim;
490 if (*limit != new_limit) {
491 *limit = new_limit;
492 mbupdatelimits();
495 lockmgr(&mbupdate_lk, LK_RELEASE);
498 static int
499 mbsetlimit(int *limit, int new_limit, int minlim)
501 if (new_limit < minlim)
502 return EINVAL;
504 lockmgr(&mbupdate_lk, LK_EXCLUSIVE);
505 mbinclimit(limit, new_limit - *limit, minlim);
506 lockmgr(&mbupdate_lk, LK_RELEASE);
507 return 0;
510 static int
511 sysctl_mblimit(SYSCTL_HANDLER_ARGS, int *limit, int minlim)
513 int error, value;
515 value = *limit;
516 error = sysctl_handle_int(oidp, &value, 0, req);
517 if (error || req->newptr == NULL)
518 return error;
520 return mbsetlimit(limit, value, minlim);
524 * Sysctl support to update nmbclusters, nmbjclusters, and nmbufs.
526 static int
527 sysctl_nmbclusters(SYSCTL_HANDLER_ARGS)
529 return sysctl_mblimit(oidp, arg1, arg2, req, &nmbclusters,
530 NMBCLUSTERS_MIN);
533 static int
534 sysctl_nmbjclusters(SYSCTL_HANDLER_ARGS)
536 return sysctl_mblimit(oidp, arg1, arg2, req, &nmbjclusters,
537 NMBJCLUSTERS_MIN);
540 static int
541 sysctl_nmbufs(SYSCTL_HANDLER_ARGS)
543 return sysctl_mblimit(oidp, arg1, arg2, req, &nmbufs, NMBUFS_MIN);
546 void
547 mcl_inclimit(int inc)
549 mbinclimit(&nmbclusters, inc, NMBCLUSTERS_MIN);
552 void
553 mjcl_inclimit(int inc)
555 mbinclimit(&nmbjclusters, inc, NMBJCLUSTERS_MIN);
558 void
559 mb_inclimit(int inc)
561 mbinclimit(&nmbufs, inc, NMBUFS_MIN);
564 /* "number of clusters of pages" */
565 #define NCL_INIT 1
567 #define NMB_INIT 16
570 * The mbuf object cache only guarantees that m_next and m_nextpkt are
571 * NULL and that m_data points to the beginning of the data area. In
572 * particular, m_len and m_pkthdr.len are uninitialized. It is the
573 * responsibility of the caller to initialize those fields before use.
575 static __inline boolean_t
576 mbuf_ctor(void *obj, void *private, int ocflags)
578 struct mbuf *m = obj;
580 m->m_next = NULL;
581 m->m_nextpkt = NULL;
582 m->m_data = m->m_dat;
583 m->m_flags = 0;
585 return (TRUE);
589 * Initialize the mbuf and the packet header fields.
591 static boolean_t
592 mbufphdr_ctor(void *obj, void *private, int ocflags)
594 struct mbuf *m = obj;
596 m->m_next = NULL;
597 m->m_nextpkt = NULL;
598 m->m_data = m->m_pktdat;
599 m->m_flags = M_PKTHDR | M_PHCACHE;
601 m->m_pkthdr.rcvif = NULL; /* eliminate XXX JH */
602 SLIST_INIT(&m->m_pkthdr.tags);
603 m->m_pkthdr.csum_flags = 0; /* eliminate XXX JH */
604 m->m_pkthdr.fw_flags = 0; /* eliminate XXX JH */
606 return (TRUE);
610 * A mbcluster object consists of 2K (MCLBYTES) cluster and a refcount.
612 static boolean_t
613 mclmeta_ctor(void *obj, void *private, int ocflags)
615 struct mbcluster *cl = obj;
616 void *buf;
618 if (ocflags & M_NOWAIT)
619 buf = kmalloc(MCLBYTES, M_MBUFCL, M_NOWAIT | M_ZERO);
620 else
621 buf = kmalloc(MCLBYTES, M_MBUFCL, M_INTWAIT | M_ZERO);
622 if (buf == NULL)
623 return (FALSE);
624 cl->mcl_refs = 0;
625 cl->mcl_data = buf;
626 return (TRUE);
629 static boolean_t
630 mjclmeta_ctor(void *obj, void *private, int ocflags)
632 struct mbcluster *cl = obj;
633 void *buf;
635 if (ocflags & M_NOWAIT)
636 buf = kmalloc(MJUMPAGESIZE, M_MBUFCL, M_NOWAIT | M_ZERO);
637 else
638 buf = kmalloc(MJUMPAGESIZE, M_MBUFCL, M_INTWAIT | M_ZERO);
639 if (buf == NULL)
640 return (FALSE);
641 cl->mcl_refs = 0;
642 cl->mcl_data = buf;
643 return (TRUE);
646 static void
647 mclmeta_dtor(void *obj, void *private)
649 struct mbcluster *mcl = obj;
651 KKASSERT(mcl->mcl_refs == 0);
652 kfree(mcl->mcl_data, M_MBUFCL);
655 static void
656 linkjcluster(struct mbuf *m, struct mbcluster *cl, uint size)
659 * Add the cluster to the mbuf. The caller will detect that the
660 * mbuf now has an attached cluster.
662 m->m_ext.ext_arg = cl;
663 m->m_ext.ext_buf = cl->mcl_data;
664 m->m_ext.ext_ref = m_mclref;
665 if (size != MCLBYTES)
666 m->m_ext.ext_free = m_mjclfree;
667 else
668 m->m_ext.ext_free = m_mclfree;
669 m->m_ext.ext_size = size;
670 atomic_add_int(&cl->mcl_refs, 1);
672 m->m_data = m->m_ext.ext_buf;
673 m->m_flags |= M_EXT | M_EXT_CLUSTER;
676 static void
677 linkcluster(struct mbuf *m, struct mbcluster *cl)
679 linkjcluster(m, cl, MCLBYTES);
682 static boolean_t
683 mbufphdrcluster_ctor(void *obj, void *private, int ocflags)
685 struct mbuf *m = obj;
686 struct mbcluster *cl;
688 mbufphdr_ctor(obj, private, ocflags);
689 cl = objcache_get(mclmeta_cache, ocflags);
690 if (cl == NULL) {
691 ++mbstat[mycpu->gd_cpuid].m_drops;
692 return (FALSE);
694 m->m_flags |= M_CLCACHE;
695 linkcluster(m, cl);
696 return (TRUE);
699 static boolean_t
700 mbufphdrjcluster_ctor(void *obj, void *private, int ocflags)
702 struct mbuf *m = obj;
703 struct mbcluster *cl;
705 mbufphdr_ctor(obj, private, ocflags);
706 cl = objcache_get(mjclmeta_cache, ocflags);
707 if (cl == NULL) {
708 ++mbstat[mycpu->gd_cpuid].m_drops;
709 return (FALSE);
711 m->m_flags |= M_CLCACHE;
712 linkjcluster(m, cl, MJUMPAGESIZE);
713 return (TRUE);
716 static boolean_t
717 mbufcluster_ctor(void *obj, void *private, int ocflags)
719 struct mbuf *m = obj;
720 struct mbcluster *cl;
722 mbuf_ctor(obj, private, ocflags);
723 cl = objcache_get(mclmeta_cache, ocflags);
724 if (cl == NULL) {
725 ++mbstat[mycpu->gd_cpuid].m_drops;
726 return (FALSE);
728 m->m_flags |= M_CLCACHE;
729 linkcluster(m, cl);
730 return (TRUE);
733 static boolean_t
734 mbufjcluster_ctor(void *obj, void *private, int ocflags)
736 struct mbuf *m = obj;
737 struct mbcluster *cl;
739 mbuf_ctor(obj, private, ocflags);
740 cl = objcache_get(mjclmeta_cache, ocflags);
741 if (cl == NULL) {
742 ++mbstat[mycpu->gd_cpuid].m_drops;
743 return (FALSE);
745 m->m_flags |= M_CLCACHE;
746 linkjcluster(m, cl, MJUMPAGESIZE);
747 return (TRUE);
751 * Used for both the cluster and cluster PHDR caches.
753 * The mbuf may have lost its cluster due to sharing, deal
754 * with the situation by checking M_EXT.
756 static void
757 mbufcluster_dtor(void *obj, void *private)
759 struct mbuf *m = obj;
760 struct mbcluster *mcl;
762 if (m->m_flags & M_EXT) {
763 KKASSERT((m->m_flags & M_EXT_CLUSTER) != 0);
764 mcl = m->m_ext.ext_arg;
765 KKASSERT(mcl->mcl_refs == 1);
766 mcl->mcl_refs = 0;
767 if (m->m_flags & M_EXT && m->m_ext.ext_size != MCLBYTES)
768 objcache_put(mjclmeta_cache, mcl);
769 else
770 objcache_put(mclmeta_cache, mcl);
774 struct objcache_malloc_args mbuf_malloc_args = { MSIZE, M_MBUF };
775 struct objcache_malloc_args mclmeta_malloc_args =
776 { sizeof(struct mbcluster), M_MCLMETA };
778 /* ARGSUSED*/
779 static void
780 mbinit(void *dummy)
782 int mb_limit, cl_limit, ncl_limit, jcl_limit;
783 int limit;
784 int i;
787 * Initialize statistics
789 for (i = 0; i < ncpus; i++) {
790 mbstat[i].m_msize = MSIZE;
791 mbstat[i].m_mclbytes = MCLBYTES;
792 mbstat[i].m_mjumpagesize = MJUMPAGESIZE;
793 mbstat[i].m_minclsize = MINCLSIZE;
794 mbstat[i].m_mlen = MLEN;
795 mbstat[i].m_mhlen = MHLEN;
799 * Create object caches and save cluster limits, which will
800 * be used to adjust backing kmalloc pools' limit later.
803 mb_limit = cl_limit = 0;
805 limit = nmbufs;
806 mbuf_cache = objcache_create("mbuf",
807 limit, nmbufs / BASE_CACHEFRAC,
808 mbuf_ctor, NULL, NULL,
809 objcache_malloc_alloc, objcache_malloc_free, &mbuf_malloc_args);
810 mb_limit += limit;
812 limit = nmbufs;
813 mbufphdr_cache = objcache_create("mbuf pkt hdr",
814 limit, nmbufs / BASE_CACHEFRAC,
815 mbufphdr_ctor, NULL, NULL,
816 objcache_malloc_alloc, objcache_malloc_free, &mbuf_malloc_args);
817 mb_limit += limit;
819 ncl_limit = nmbclusters;
820 mclmeta_cache = objcache_create("cluster mbuf",
821 ncl_limit, nmbclusters / BASE_CACHEFRAC,
822 mclmeta_ctor, mclmeta_dtor, NULL,
823 objcache_malloc_alloc, objcache_malloc_free, &mclmeta_malloc_args);
824 cl_limit += ncl_limit;
826 jcl_limit = nmbjclusters;
827 mjclmeta_cache = objcache_create("jcluster mbuf",
828 jcl_limit, nmbjclusters / BASE_CACHEFRAC,
829 mjclmeta_ctor, mclmeta_dtor, NULL,
830 objcache_malloc_alloc, objcache_malloc_free, &mclmeta_malloc_args);
831 cl_limit += jcl_limit;
833 limit = nmbclusters;
834 mbufcluster_cache = objcache_create("mbuf + cluster",
835 limit, nmbclusters / mcl_cachefrac,
836 mbufcluster_ctor, mbufcluster_dtor, NULL,
837 objcache_malloc_alloc, objcache_malloc_free, &mbuf_malloc_args);
838 mb_limit += limit;
840 limit = nmbclusters;
841 mbufphdrcluster_cache = objcache_create("mbuf pkt hdr + cluster",
842 limit, nmbclusters / mclph_cachefrac,
843 mbufphdrcluster_ctor, mbufcluster_dtor, NULL,
844 objcache_malloc_alloc, objcache_malloc_free, &mbuf_malloc_args);
845 mb_limit += limit;
847 limit = nmbjclusters;
848 mbufjcluster_cache = objcache_create("mbuf + jcluster",
849 limit, nmbjclusters / mjcl_cachefrac,
850 mbufjcluster_ctor, mbufcluster_dtor, NULL,
851 objcache_malloc_alloc, objcache_malloc_free, &mbuf_malloc_args);
852 mb_limit += limit;
854 limit = nmbjclusters;
855 mbufphdrjcluster_cache = objcache_create("mbuf pkt hdr + jcluster",
856 limit, nmbjclusters / mjclph_cachefrac,
857 mbufphdrjcluster_ctor, mbufcluster_dtor, NULL,
858 objcache_malloc_alloc, objcache_malloc_free, &mbuf_malloc_args);
859 mb_limit += limit;
862 * Adjust backing kmalloc pools' limit
864 * NOTE: We raise the limit by another 1/8 to take the effect
865 * of loosememuse into account.
867 cl_limit += cl_limit / 8;
868 kmalloc_raise_limit(mclmeta_malloc_args.mtype,
869 mclmeta_malloc_args.objsize * (size_t)cl_limit);
870 kmalloc_raise_limit(M_MBUFCL,
871 (MCLBYTES * (size_t)ncl_limit) +
872 (MJUMPAGESIZE * (size_t)jcl_limit));
874 mb_limit += mb_limit / 8;
875 kmalloc_raise_limit(mbuf_malloc_args.mtype,
876 mbuf_malloc_args.objsize * (size_t)mb_limit);
880 * Adjust mbuf limits after changes have been made
882 * Caller must hold mbupdate_lk
884 static void
885 mbupdatelimits(void)
887 int mb_limit, cl_limit, ncl_limit, jcl_limit;
888 int limit;
890 KASSERT(lockstatus(&mbupdate_lk, curthread) != 0,
891 ("mbupdate_lk is not held"));
894 * Figure out adjustments to object caches after nmbufs, nmbclusters,
895 * or nmbjclusters has been modified.
897 mb_limit = cl_limit = 0;
899 limit = nmbufs;
900 objcache_set_cluster_limit(mbuf_cache, limit);
901 mb_limit += limit;
903 limit = nmbufs;
904 objcache_set_cluster_limit(mbufphdr_cache, limit);
905 mb_limit += limit;
907 ncl_limit = nmbclusters;
908 objcache_set_cluster_limit(mclmeta_cache, ncl_limit);
909 cl_limit += ncl_limit;
911 jcl_limit = nmbjclusters;
912 objcache_set_cluster_limit(mjclmeta_cache, jcl_limit);
913 cl_limit += jcl_limit;
915 limit = nmbclusters;
916 objcache_set_cluster_limit(mbufcluster_cache, limit);
917 mb_limit += limit;
919 limit = nmbclusters;
920 objcache_set_cluster_limit(mbufphdrcluster_cache, limit);
921 mb_limit += limit;
923 limit = nmbjclusters;
924 objcache_set_cluster_limit(mbufjcluster_cache, limit);
925 mb_limit += limit;
927 limit = nmbjclusters;
928 objcache_set_cluster_limit(mbufphdrjcluster_cache, limit);
929 mb_limit += limit;
932 * Adjust backing kmalloc pools' limit
934 * NOTE: We raise the limit by another 1/8 to take the effect
935 * of loosememuse into account.
937 cl_limit += cl_limit / 8;
938 kmalloc_raise_limit(mclmeta_malloc_args.mtype,
939 mclmeta_malloc_args.objsize * (size_t)cl_limit);
940 kmalloc_raise_limit(M_MBUFCL,
941 (MCLBYTES * (size_t)ncl_limit) +
942 (MJUMPAGESIZE * (size_t)jcl_limit));
943 mb_limit += mb_limit / 8;
944 kmalloc_raise_limit(mbuf_malloc_args.mtype,
945 mbuf_malloc_args.objsize * (size_t)mb_limit);
949 * Return the number of references to this mbuf's data. 0 is returned
950 * if the mbuf is not M_EXT, a reference count is returned if it is
951 * M_EXT | M_EXT_CLUSTER, and 99 is returned if it is a special M_EXT.
954 m_sharecount(struct mbuf *m)
956 switch (m->m_flags & (M_EXT | M_EXT_CLUSTER)) {
957 case 0:
958 return (0);
959 case M_EXT:
960 return (99);
961 case M_EXT | M_EXT_CLUSTER:
962 return (((struct mbcluster *)m->m_ext.ext_arg)->mcl_refs);
964 /* NOTREACHED */
965 return (0); /* to shut up compiler */
969 * change mbuf to new type
971 void
972 m_chtype(struct mbuf *m, int type)
974 struct globaldata *gd = mycpu;
976 ++mbtypes[gd->gd_cpuid].stats[type];
977 --mbtypes[gd->gd_cpuid].stats[m->m_type];
978 m->m_type = type;
981 static void
982 m_reclaim(void)
984 struct domain *dp;
985 struct protosw *pr;
987 kprintf("Debug: m_reclaim() called\n");
989 SLIST_FOREACH(dp, &domains, dom_next) {
990 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
991 if (pr->pr_drain)
992 (*pr->pr_drain)();
995 ++mbstat[mycpu->gd_cpuid].m_drain;
998 static __inline void
999 updatestats(struct mbuf *m, int type)
1001 struct globaldata *gd = mycpu;
1003 m->m_type = type;
1004 mbuftrack(m);
1005 #ifdef MBUF_DEBUG
1006 KASSERT(m->m_next == NULL, ("mbuf %p: bad m_next in get", m));
1007 KASSERT(m->m_nextpkt == NULL, ("mbuf %p: bad m_nextpkt in get", m));
1008 #endif
1010 ++mbtypes[gd->gd_cpuid].stats[type];
1011 ++mbstat[gd->gd_cpuid].m_mbufs;
1016 * Allocate an mbuf.
1018 struct mbuf *
1019 m_get(int how, int type)
1021 struct mbuf *m;
1022 int ntries = 0;
1023 int ocf = MB_OCFLAG(how);
1025 retryonce:
1027 m = objcache_get(mbuf_cache, ocf);
1029 if (m == NULL) {
1030 if ((ocf & M_WAITOK) && ntries++ == 0) {
1031 struct objcache *reclaimlist[] = {
1032 mbufphdr_cache,
1033 mbufcluster_cache,
1034 mbufphdrcluster_cache,
1035 mbufjcluster_cache,
1036 mbufphdrjcluster_cache
1038 const int nreclaims = NELEM(reclaimlist);
1040 if (!objcache_reclaimlist(reclaimlist, nreclaims, ocf))
1041 m_reclaim();
1042 goto retryonce;
1044 ++mbstat[mycpu->gd_cpuid].m_drops;
1045 return (NULL);
1047 #ifdef MBUF_DEBUG
1048 KASSERT(m->m_data == m->m_dat, ("mbuf %p: bad m_data in get", m));
1049 #endif
1050 m->m_len = 0;
1052 updatestats(m, type);
1053 return (m);
1056 struct mbuf *
1057 m_gethdr(int how, int type)
1059 struct mbuf *m;
1060 int ocf = MB_OCFLAG(how);
1061 int ntries = 0;
1063 retryonce:
1065 m = objcache_get(mbufphdr_cache, ocf);
1067 if (m == NULL) {
1068 if ((ocf & M_WAITOK) && ntries++ == 0) {
1069 struct objcache *reclaimlist[] = {
1070 mbuf_cache,
1071 mbufcluster_cache, mbufphdrcluster_cache,
1072 mbufjcluster_cache, mbufphdrjcluster_cache
1074 const int nreclaims = NELEM(reclaimlist);
1076 if (!objcache_reclaimlist(reclaimlist, nreclaims, ocf))
1077 m_reclaim();
1078 goto retryonce;
1080 ++mbstat[mycpu->gd_cpuid].m_drops;
1081 return (NULL);
1083 #ifdef MBUF_DEBUG
1084 KASSERT(m->m_data == m->m_pktdat, ("mbuf %p: bad m_data in get", m));
1085 #endif
1086 m->m_len = 0;
1087 m->m_pkthdr.len = 0;
1089 updatestats(m, type);
1090 return (m);
1094 * Get a mbuf (not a mbuf cluster!) and zero it.
1095 * Deprecated.
1097 struct mbuf *
1098 m_getclr(int how, int type)
1100 struct mbuf *m;
1102 m = m_get(how, type);
1103 if (m != NULL)
1104 bzero(m->m_data, MLEN);
1105 return (m);
1108 static struct mbuf *
1109 m_getcl_cache(int how, short type, int flags, struct objcache *mbclc,
1110 struct objcache *mbphclc, u_long *cl_stats)
1112 struct mbuf *m = NULL;
1113 int ocflags = MB_OCFLAG(how);
1114 int ntries = 0;
1116 retryonce:
1118 if (flags & M_PKTHDR)
1119 m = objcache_get(mbphclc, ocflags);
1120 else
1121 m = objcache_get(mbclc, ocflags);
1123 if (m == NULL) {
1124 if ((ocflags & M_WAITOK) && ntries++ == 0) {
1125 struct objcache *reclaimlist[1];
1127 if (flags & M_PKTHDR)
1128 reclaimlist[0] = mbclc;
1129 else
1130 reclaimlist[0] = mbphclc;
1131 if (!objcache_reclaimlist(reclaimlist, 1, ocflags))
1132 m_reclaim();
1133 goto retryonce;
1135 ++mbstat[mycpu->gd_cpuid].m_drops;
1136 return (NULL);
1139 #ifdef MBUF_DEBUG
1140 KASSERT(m->m_data == m->m_ext.ext_buf,
1141 ("mbuf %p: bad m_data in get", m));
1142 #endif
1143 m->m_type = type;
1144 m->m_len = 0;
1145 m->m_pkthdr.len = 0; /* just do it unconditonally */
1147 mbuftrack(m);
1149 ++mbtypes[mycpu->gd_cpuid].stats[type];
1150 ++(*cl_stats);
1151 return (m);
1154 struct mbuf *
1155 m_getjcl(int how, short type, int flags, size_t size)
1157 struct objcache *mbclc, *mbphclc;
1158 u_long *cl_stats;
1160 switch (size) {
1161 case MCLBYTES:
1162 mbclc = mbufcluster_cache;
1163 mbphclc = mbufphdrcluster_cache;
1164 cl_stats = &mbstat[mycpu->gd_cpuid].m_clusters;
1165 break;
1167 default:
1168 mbclc = mbufjcluster_cache;
1169 mbphclc = mbufphdrjcluster_cache;
1170 cl_stats = &mbstat[mycpu->gd_cpuid].m_jclusters;
1171 break;
1173 return m_getcl_cache(how, type, flags, mbclc, mbphclc, cl_stats);
1177 * Returns an mbuf with an attached cluster.
1178 * Because many network drivers use this kind of buffers a lot, it is
1179 * convenient to keep a small pool of free buffers of this kind.
1180 * Even a small size such as 10 gives about 10% improvement in the
1181 * forwarding rate in a bridge or router.
1183 struct mbuf *
1184 m_getcl(int how, short type, int flags)
1186 return m_getcl_cache(how, type, flags,
1187 mbufcluster_cache, mbufphdrcluster_cache,
1188 &mbstat[mycpu->gd_cpuid].m_clusters);
1192 * Allocate chain of requested length.
1194 struct mbuf *
1195 m_getc(int len, int how, int type)
1197 struct mbuf *n, *nfirst = NULL, **ntail = &nfirst;
1198 int nsize;
1200 while (len > 0) {
1201 n = m_getl(len, how, type, 0, &nsize);
1202 if (n == NULL)
1203 goto failed;
1204 n->m_len = 0;
1205 *ntail = n;
1206 ntail = &n->m_next;
1207 len -= nsize;
1209 return (nfirst);
1211 failed:
1212 m_freem(nfirst);
1213 return (NULL);
1217 * Allocate len-worth of mbufs and/or mbuf clusters (whatever fits best)
1218 * and return a pointer to the head of the allocated chain. If m0 is
1219 * non-null, then we assume that it is a single mbuf or an mbuf chain to
1220 * which we want len bytes worth of mbufs and/or clusters attached, and so
1221 * if we succeed in allocating it, we will just return a pointer to m0.
1223 * If we happen to fail at any point during the allocation, we will free
1224 * up everything we have already allocated and return NULL.
1226 * Deprecated. Use m_getc() and m_cat() instead.
1228 struct mbuf *
1229 m_getm(struct mbuf *m0, int len, int type, int how)
1231 struct mbuf *nfirst;
1233 nfirst = m_getc(len, how, type);
1235 if (m0 != NULL) {
1236 m_last(m0)->m_next = nfirst;
1237 return (m0);
1240 return (nfirst);
1244 * Adds a cluster to a normal mbuf, M_EXT is set on success.
1245 * Deprecated. Use m_getcl() instead.
1247 void
1248 m_mclget(struct mbuf *m, int how)
1250 struct mbcluster *mcl;
1252 KKASSERT((m->m_flags & M_EXT) == 0);
1253 mcl = objcache_get(mclmeta_cache, MB_OCFLAG(how));
1254 if (mcl != NULL) {
1255 linkcluster(m, mcl);
1256 ++mbstat[mycpu->gd_cpuid].m_clusters;
1257 } else {
1258 ++mbstat[mycpu->gd_cpuid].m_drops;
1263 * Updates to mbcluster must be MPSAFE. Only an entity which already has
1264 * a reference to the cluster can ref it, so we are in no danger of
1265 * racing an add with a subtract. But the operation must still be atomic
1266 * since multiple entities may have a reference on the cluster.
1268 * m_mclfree() is almost the same but it must contend with two entities
1269 * freeing the cluster at the same time.
1271 static void
1272 m_mclref(void *arg)
1274 struct mbcluster *mcl = arg;
1276 atomic_add_int(&mcl->mcl_refs, 1);
1280 * When dereferencing a cluster we have to deal with a N->0 race, where
1281 * N entities free their references simultaniously. To do this we use
1282 * atomic_fetchadd_int().
1284 static void
1285 m_mclfree(void *arg)
1287 struct mbcluster *mcl = arg;
1289 if (atomic_fetchadd_int(&mcl->mcl_refs, -1) == 1) {
1290 --mbstat[mycpu->gd_cpuid].m_clusters;
1291 objcache_put(mclmeta_cache, mcl);
1295 static void
1296 m_mjclfree(void *arg)
1298 struct mbcluster *mcl = arg;
1300 if (atomic_fetchadd_int(&mcl->mcl_refs, -1) == 1) {
1301 --mbstat[mycpu->gd_cpuid].m_jclusters;
1302 objcache_put(mjclmeta_cache, mcl);
1307 * Free a single mbuf and any associated external storage. The successor,
1308 * if any, is returned.
1310 * We do need to check non-first mbuf for m_aux, since some of existing
1311 * code does not call M_PREPEND properly.
1312 * (example: call to bpf_mtap from drivers)
1315 #ifdef MBUF_DEBUG
1317 struct mbuf *
1318 _m_free(struct mbuf *m, const char *func)
1320 #else
1322 struct mbuf *
1323 m_free(struct mbuf *m)
1325 #endif
1327 struct mbuf *n;
1328 struct globaldata *gd = mycpu;
1330 KASSERT(m->m_type != MT_FREE, ("freeing free mbuf %p", m));
1331 KASSERT(M_TRAILINGSPACE(m) >= 0, ("overflowed mbuf %p", m));
1332 --mbtypes[gd->gd_cpuid].stats[m->m_type];
1334 n = m->m_next;
1337 * Make sure the mbuf is in constructed state before returning it
1338 * to the objcache.
1340 m->m_next = NULL;
1341 mbufuntrack(m);
1342 #ifdef MBUF_DEBUG
1343 m->m_hdr.mh_lastfunc = func;
1344 #endif
1345 #ifdef notyet
1346 KKASSERT(m->m_nextpkt == NULL);
1347 #else
1348 if (m->m_nextpkt != NULL) {
1349 static int afewtimes = 10;
1351 if (afewtimes-- > 0) {
1352 kprintf("mfree: m->m_nextpkt != NULL\n");
1353 print_backtrace(-1);
1355 m->m_nextpkt = NULL;
1357 #endif
1358 if (m->m_flags & M_PKTHDR) {
1359 m_tag_delete_chain(m); /* eliminate XXX JH */
1362 m->m_flags &= (M_EXT | M_EXT_CLUSTER | M_CLCACHE | M_PHCACHE);
1365 * Clean the M_PKTHDR state so we can return the mbuf to its original
1366 * cache. This is based on the PHCACHE flag which tells us whether
1367 * the mbuf was originally allocated out of a packet-header cache
1368 * or a non-packet-header cache.
1370 if (m->m_flags & M_PHCACHE) {
1371 m->m_flags |= M_PKTHDR;
1372 m->m_pkthdr.rcvif = NULL; /* eliminate XXX JH */
1373 m->m_pkthdr.csum_flags = 0; /* eliminate XXX JH */
1374 m->m_pkthdr.fw_flags = 0; /* eliminate XXX JH */
1375 SLIST_INIT(&m->m_pkthdr.tags);
1379 * Handle remaining flags combinations. M_CLCACHE tells us whether
1380 * the mbuf was originally allocated from a cluster cache or not,
1381 * and is totally separate from whether the mbuf is currently
1382 * associated with a cluster.
1384 switch(m->m_flags & (M_CLCACHE | M_EXT | M_EXT_CLUSTER)) {
1385 case M_CLCACHE | M_EXT | M_EXT_CLUSTER:
1387 * mbuf+cluster cache case. The mbuf was allocated from the
1388 * combined mbuf_cluster cache and can be returned to the
1389 * cache if the cluster hasn't been shared.
1391 if (m_sharecount(m) == 1) {
1393 * The cluster has not been shared, we can just
1394 * reset the data pointer and return the mbuf
1395 * to the cluster cache. Note that the reference
1396 * count is left intact (it is still associated with
1397 * an mbuf).
1399 m->m_data = m->m_ext.ext_buf;
1400 if (m->m_flags & M_EXT && m->m_ext.ext_size != MCLBYTES) {
1401 if (m->m_flags & M_PHCACHE)
1402 objcache_put(mbufphdrjcluster_cache, m);
1403 else
1404 objcache_put(mbufjcluster_cache, m);
1405 --mbstat[mycpu->gd_cpuid].m_jclusters;
1406 } else {
1407 if (m->m_flags & M_PHCACHE)
1408 objcache_put(mbufphdrcluster_cache, m);
1409 else
1410 objcache_put(mbufcluster_cache, m);
1411 --mbstat[mycpu->gd_cpuid].m_clusters;
1413 } else {
1415 * Hell. Someone else has a ref on this cluster,
1416 * we have to disconnect it which means we can't
1417 * put it back into the mbufcluster_cache, we
1418 * have to destroy the mbuf.
1420 * Other mbuf references to the cluster will typically
1421 * be M_EXT | M_EXT_CLUSTER but without M_CLCACHE.
1423 * XXX we could try to connect another cluster to
1424 * it.
1426 m->m_ext.ext_free(m->m_ext.ext_arg);
1427 m->m_flags &= ~(M_EXT | M_EXT_CLUSTER);
1428 if (m->m_ext.ext_size == MCLBYTES) {
1429 if (m->m_flags & M_PHCACHE)
1430 objcache_dtor(mbufphdrcluster_cache, m);
1431 else
1432 objcache_dtor(mbufcluster_cache, m);
1433 } else {
1434 if (m->m_flags & M_PHCACHE)
1435 objcache_dtor(mbufphdrjcluster_cache, m);
1436 else
1437 objcache_dtor(mbufjcluster_cache, m);
1440 break;
1441 case M_EXT | M_EXT_CLUSTER:
1442 case M_EXT:
1444 * Normal cluster association case, disconnect the cluster from
1445 * the mbuf. The cluster may or may not be custom.
1447 m->m_ext.ext_free(m->m_ext.ext_arg);
1448 m->m_flags &= ~(M_EXT | M_EXT_CLUSTER);
1449 /* fall through */
1450 case 0:
1452 * return the mbuf to the mbuf cache.
1454 if (m->m_flags & M_PHCACHE) {
1455 m->m_data = m->m_pktdat;
1456 objcache_put(mbufphdr_cache, m);
1457 } else {
1458 m->m_data = m->m_dat;
1459 objcache_put(mbuf_cache, m);
1461 --mbstat[mycpu->gd_cpuid].m_mbufs;
1462 break;
1463 default:
1464 if (!panicstr)
1465 panic("bad mbuf flags %p %08x", m, m->m_flags);
1466 break;
1468 return (n);
1471 #ifdef MBUF_DEBUG
1473 void
1474 _m_freem(struct mbuf *m, const char *func)
1476 while (m)
1477 m = _m_free(m, func);
1480 #else
1482 void
1483 m_freem(struct mbuf *m)
1485 while (m)
1486 m = m_free(m);
1489 #endif
1491 void
1492 m_extadd(struct mbuf *m, caddr_t buf, u_int size, void (*reff)(void *),
1493 void (*freef)(void *), void *arg)
1495 m->m_ext.ext_arg = arg;
1496 m->m_ext.ext_buf = buf;
1497 m->m_ext.ext_ref = reff;
1498 m->m_ext.ext_free = freef;
1499 m->m_ext.ext_size = size;
1500 reff(arg);
1501 m->m_data = buf;
1502 m->m_flags |= M_EXT;
1506 * mbuf utility routines
1510 * Lesser-used path for M_PREPEND: allocate new mbuf to prepend to chain and
1511 * copy junk along.
1513 struct mbuf *
1514 m_prepend(struct mbuf *m, int len, int how)
1516 struct mbuf *mn;
1518 if (m->m_flags & M_PKTHDR)
1519 mn = m_gethdr(how, m->m_type);
1520 else
1521 mn = m_get(how, m->m_type);
1522 if (mn == NULL) {
1523 m_freem(m);
1524 return (NULL);
1526 if (m->m_flags & M_PKTHDR)
1527 M_MOVE_PKTHDR(mn, m);
1528 mn->m_next = m;
1529 m = mn;
1530 if (len < MHLEN)
1531 MH_ALIGN(m, len);
1532 m->m_len = len;
1533 return (m);
1537 * Make a copy of an mbuf chain starting "off0" bytes from the beginning,
1538 * continuing for "len" bytes. If len is M_COPYALL, copy to end of mbuf.
1539 * The wait parameter is a choice of M_WAITOK/M_NOWAIT from caller.
1540 * Note that the copy is read-only, because clusters are not copied,
1541 * only their reference counts are incremented.
1543 struct mbuf *
1544 m_copym(const struct mbuf *m, int off0, int len, int wait)
1546 struct mbuf *n, **np;
1547 int off = off0;
1548 struct mbuf *top;
1549 int copyhdr = 0;
1551 KASSERT(off >= 0, ("m_copym, negative off %d", off));
1552 KASSERT(len >= 0, ("m_copym, negative len %d", len));
1553 if (off == 0 && (m->m_flags & M_PKTHDR))
1554 copyhdr = 1;
1555 while (off > 0) {
1556 KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain"));
1557 if (off < m->m_len)
1558 break;
1559 off -= m->m_len;
1560 m = m->m_next;
1562 np = &top;
1563 top = NULL;
1564 while (len > 0) {
1565 if (m == NULL) {
1566 KASSERT(len == M_COPYALL,
1567 ("m_copym, length > size of mbuf chain"));
1568 break;
1571 * Because we are sharing any cluster attachment below,
1572 * be sure to get an mbuf that does not have a cluster
1573 * associated with it.
1575 if (copyhdr)
1576 n = m_gethdr(wait, m->m_type);
1577 else
1578 n = m_get(wait, m->m_type);
1579 *np = n;
1580 if (n == NULL)
1581 goto nospace;
1582 if (copyhdr) {
1583 if (!m_dup_pkthdr(n, m, wait))
1584 goto nospace;
1585 if (len == M_COPYALL)
1586 n->m_pkthdr.len -= off0;
1587 else
1588 n->m_pkthdr.len = len;
1589 copyhdr = 0;
1591 n->m_len = min(len, m->m_len - off);
1592 if (m->m_flags & M_EXT) {
1593 KKASSERT((n->m_flags & M_EXT) == 0);
1594 n->m_data = m->m_data + off;
1595 m->m_ext.ext_ref(m->m_ext.ext_arg);
1596 n->m_ext = m->m_ext;
1597 n->m_flags |= m->m_flags & (M_EXT | M_EXT_CLUSTER);
1598 } else {
1599 bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t),
1600 (unsigned)n->m_len);
1602 if (len != M_COPYALL)
1603 len -= n->m_len;
1604 off = 0;
1605 m = m->m_next;
1606 np = &n->m_next;
1608 if (top == NULL)
1609 ++mbstat[mycpu->gd_cpuid].m_mcfail;
1610 return (top);
1611 nospace:
1612 m_freem(top);
1613 ++mbstat[mycpu->gd_cpuid].m_mcfail;
1614 return (NULL);
1618 * Copy an entire packet, including header (which must be present).
1619 * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'.
1620 * Note that the copy is read-only, because clusters are not copied,
1621 * only their reference counts are incremented.
1622 * Preserve alignment of the first mbuf so if the creator has left
1623 * some room at the beginning (e.g. for inserting protocol headers)
1624 * the copies also have the room available.
1626 struct mbuf *
1627 m_copypacket(struct mbuf *m, int how)
1629 struct mbuf *top, *n, *o;
1631 n = m_gethdr(how, m->m_type);
1632 top = n;
1633 if (!n)
1634 goto nospace;
1636 if (!m_dup_pkthdr(n, m, how))
1637 goto nospace;
1638 n->m_len = m->m_len;
1639 if (m->m_flags & M_EXT) {
1640 KKASSERT((n->m_flags & M_EXT) == 0);
1641 n->m_data = m->m_data;
1642 m->m_ext.ext_ref(m->m_ext.ext_arg);
1643 n->m_ext = m->m_ext;
1644 n->m_flags |= m->m_flags & (M_EXT | M_EXT_CLUSTER);
1645 } else {
1646 n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat );
1647 bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
1650 m = m->m_next;
1651 while (m) {
1652 o = m_get(how, m->m_type);
1653 if (!o)
1654 goto nospace;
1656 n->m_next = o;
1657 n = n->m_next;
1659 n->m_len = m->m_len;
1660 if (m->m_flags & M_EXT) {
1661 KKASSERT((n->m_flags & M_EXT) == 0);
1662 n->m_data = m->m_data;
1663 m->m_ext.ext_ref(m->m_ext.ext_arg);
1664 n->m_ext = m->m_ext;
1665 n->m_flags |= m->m_flags & (M_EXT | M_EXT_CLUSTER);
1666 } else {
1667 bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
1670 m = m->m_next;
1672 return top;
1673 nospace:
1674 m_freem(top);
1675 ++mbstat[mycpu->gd_cpuid].m_mcfail;
1676 return (NULL);
1680 * Copy data from an mbuf chain starting "off" bytes from the beginning,
1681 * continuing for "len" bytes, into the indicated buffer.
1683 void
1684 m_copydata(const struct mbuf *m, int off, int len, caddr_t cp)
1686 unsigned count;
1688 KASSERT(off >= 0, ("m_copydata, negative off %d", off));
1689 KASSERT(len >= 0, ("m_copydata, negative len %d", len));
1690 while (off > 0) {
1691 KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain"));
1692 if (off < m->m_len)
1693 break;
1694 off -= m->m_len;
1695 m = m->m_next;
1697 while (len > 0) {
1698 KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain"));
1699 count = min(m->m_len - off, len);
1700 bcopy(mtod(m, caddr_t) + off, cp, count);
1701 len -= count;
1702 cp += count;
1703 off = 0;
1704 m = m->m_next;
1709 * Copy a packet header mbuf chain into a completely new chain, including
1710 * copying any mbuf clusters. Use this instead of m_copypacket() when
1711 * you need a writable copy of an mbuf chain.
1713 struct mbuf *
1714 m_dup(struct mbuf *m, int how)
1716 struct mbuf **p, *top = NULL;
1717 int remain, moff, nsize;
1719 /* Sanity check */
1720 if (m == NULL)
1721 return (NULL);
1722 KASSERT((m->m_flags & M_PKTHDR) != 0, ("%s: !PKTHDR", __func__));
1724 /* While there's more data, get a new mbuf, tack it on, and fill it */
1725 remain = m->m_pkthdr.len;
1726 moff = 0;
1727 p = &top;
1728 while (remain > 0 || top == NULL) { /* allow m->m_pkthdr.len == 0 */
1729 struct mbuf *n;
1731 /* Get the next new mbuf */
1732 n = m_getl(remain, how, m->m_type, top == NULL ? M_PKTHDR : 0,
1733 &nsize);
1734 if (n == NULL)
1735 goto nospace;
1736 if (top == NULL)
1737 if (!m_dup_pkthdr(n, m, how))
1738 goto nospace0;
1740 /* Link it into the new chain */
1741 *p = n;
1742 p = &n->m_next;
1744 /* Copy data from original mbuf(s) into new mbuf */
1745 n->m_len = 0;
1746 while (n->m_len < nsize && m != NULL) {
1747 int chunk = min(nsize - n->m_len, m->m_len - moff);
1749 bcopy(m->m_data + moff, n->m_data + n->m_len, chunk);
1750 moff += chunk;
1751 n->m_len += chunk;
1752 remain -= chunk;
1753 if (moff == m->m_len) {
1754 m = m->m_next;
1755 moff = 0;
1759 /* Check correct total mbuf length */
1760 KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL),
1761 ("%s: bogus m_pkthdr.len", __func__));
1763 return (top);
1765 nospace:
1766 m_freem(top);
1767 nospace0:
1768 ++mbstat[mycpu->gd_cpuid].m_mcfail;
1769 return (NULL);
1773 * Copy the non-packet mbuf data chain into a new set of mbufs, including
1774 * copying any mbuf clusters. This is typically used to realign a data
1775 * chain by nfs_realign().
1777 * The original chain is left intact. how should be M_WAITOK or M_NOWAIT
1778 * and NULL can be returned if M_NOWAIT is passed.
1780 * Be careful to use cluster mbufs, a large mbuf chain converted to non
1781 * cluster mbufs can exhaust our supply of mbufs.
1783 struct mbuf *
1784 m_dup_data(struct mbuf *m, int how)
1786 struct mbuf **p, *n, *top = NULL;
1787 int mlen, moff, chunk, gsize, nsize;
1790 * Degenerate case
1792 if (m == NULL)
1793 return (NULL);
1796 * Optimize the mbuf allocation but do not get too carried away.
1798 if (m->m_next || m->m_len > MLEN)
1799 if (m->m_flags & M_EXT && m->m_ext.ext_size == MCLBYTES)
1800 gsize = MCLBYTES;
1801 else
1802 gsize = MJUMPAGESIZE;
1803 else
1804 gsize = MLEN;
1806 /* Chain control */
1807 p = &top;
1808 n = NULL;
1809 nsize = 0;
1812 * Scan the mbuf chain until nothing is left, the new mbuf chain
1813 * will be allocated on the fly as needed.
1815 while (m) {
1816 mlen = m->m_len;
1817 moff = 0;
1819 while (mlen) {
1820 KKASSERT(m->m_type == MT_DATA);
1821 if (n == NULL) {
1822 n = m_getl(gsize, how, MT_DATA, 0, &nsize);
1823 n->m_len = 0;
1824 if (n == NULL)
1825 goto nospace;
1826 *p = n;
1827 p = &n->m_next;
1829 chunk = imin(mlen, nsize);
1830 bcopy(m->m_data + moff, n->m_data + n->m_len, chunk);
1831 mlen -= chunk;
1832 moff += chunk;
1833 n->m_len += chunk;
1834 nsize -= chunk;
1835 if (nsize == 0)
1836 n = NULL;
1838 m = m->m_next;
1840 *p = NULL;
1841 return(top);
1842 nospace:
1843 *p = NULL;
1844 m_freem(top);
1845 ++mbstat[mycpu->gd_cpuid].m_mcfail;
1846 return (NULL);
1850 * Concatenate mbuf chain n to m.
1851 * Both chains must be of the same type (e.g. MT_DATA).
1852 * Any m_pkthdr is not updated.
1854 void
1855 m_cat(struct mbuf *m, struct mbuf *n)
1857 m = m_last(m);
1858 while (n) {
1859 if (m->m_flags & M_EXT ||
1860 m->m_data + m->m_len + n->m_len >= &m->m_dat[MLEN]) {
1861 /* just join the two chains */
1862 m->m_next = n;
1863 return;
1865 /* splat the data from one into the other */
1866 bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
1867 (u_int)n->m_len);
1868 m->m_len += n->m_len;
1869 n = m_free(n);
1873 void
1874 m_adj(struct mbuf *mp, int req_len)
1876 int len = req_len;
1877 struct mbuf *m;
1878 int count;
1880 if ((m = mp) == NULL)
1881 return;
1882 if (len >= 0) {
1884 * Trim from head.
1886 while (m != NULL && len > 0) {
1887 if (m->m_len <= len) {
1888 len -= m->m_len;
1889 m->m_len = 0;
1890 m = m->m_next;
1891 } else {
1892 m->m_len -= len;
1893 m->m_data += len;
1894 len = 0;
1897 m = mp;
1898 if (mp->m_flags & M_PKTHDR)
1899 m->m_pkthdr.len -= (req_len - len);
1900 } else {
1902 * Trim from tail. Scan the mbuf chain,
1903 * calculating its length and finding the last mbuf.
1904 * If the adjustment only affects this mbuf, then just
1905 * adjust and return. Otherwise, rescan and truncate
1906 * after the remaining size.
1908 len = -len;
1909 count = 0;
1910 for (;;) {
1911 count += m->m_len;
1912 if (m->m_next == NULL)
1913 break;
1914 m = m->m_next;
1916 if (m->m_len >= len) {
1917 m->m_len -= len;
1918 if (mp->m_flags & M_PKTHDR)
1919 mp->m_pkthdr.len -= len;
1920 return;
1922 count -= len;
1923 if (count < 0)
1924 count = 0;
1926 * Correct length for chain is "count".
1927 * Find the mbuf with last data, adjust its length,
1928 * and toss data from remaining mbufs on chain.
1930 m = mp;
1931 if (m->m_flags & M_PKTHDR)
1932 m->m_pkthdr.len = count;
1933 for (; m; m = m->m_next) {
1934 if (m->m_len >= count) {
1935 m->m_len = count;
1936 break;
1938 count -= m->m_len;
1940 while (m->m_next)
1941 (m = m->m_next) ->m_len = 0;
1946 * Set the m_data pointer of a newly-allocated mbuf
1947 * to place an object of the specified size at the
1948 * end of the mbuf, longword aligned.
1950 void
1951 m_align(struct mbuf *m, int len)
1953 int adjust;
1955 if (m->m_flags & M_EXT)
1956 adjust = m->m_ext.ext_size - len;
1957 else if (m->m_flags & M_PKTHDR)
1958 adjust = MHLEN - len;
1959 else
1960 adjust = MLEN - len;
1961 m->m_data += adjust &~ (sizeof(long)-1);
1965 * Create a writable copy of the mbuf chain. While doing this
1966 * we compact the chain with a goal of producing a chain with
1967 * at most two mbufs. The second mbuf in this chain is likely
1968 * to be a cluster. The primary purpose of this work is to create
1969 * a writable packet for encryption, compression, etc. The
1970 * secondary goal is to linearize the data so the data can be
1971 * passed to crypto hardware in the most efficient manner possible.
1973 struct mbuf *
1974 m_unshare(struct mbuf *m0, int how)
1976 struct mbuf *m, *mprev;
1977 struct mbuf *n, *mfirst, *mlast;
1978 int len, off;
1980 mprev = NULL;
1981 for (m = m0; m != NULL; m = mprev->m_next) {
1983 * Regular mbufs are ignored unless there's a cluster
1984 * in front of it that we can use to coalesce. We do
1985 * the latter mainly so later clusters can be coalesced
1986 * also w/o having to handle them specially (i.e. convert
1987 * mbuf+cluster -> cluster). This optimization is heavily
1988 * influenced by the assumption that we're running over
1989 * Ethernet where MCLBYTES is large enough that the max
1990 * packet size will permit lots of coalescing into a
1991 * single cluster. This in turn permits efficient
1992 * crypto operations, especially when using hardware.
1994 if ((m->m_flags & M_EXT) == 0) {
1995 if (mprev && (mprev->m_flags & M_EXT) &&
1996 m->m_len <= M_TRAILINGSPACE(mprev)) {
1997 /* XXX: this ignores mbuf types */
1998 memcpy(mtod(mprev, caddr_t) + mprev->m_len,
1999 mtod(m, caddr_t), m->m_len);
2000 mprev->m_len += m->m_len;
2001 mprev->m_next = m->m_next; /* unlink from chain */
2002 m_free(m); /* reclaim mbuf */
2003 } else {
2004 mprev = m;
2006 continue;
2009 * Writable mbufs are left alone (for now).
2011 if (M_WRITABLE(m)) {
2012 mprev = m;
2013 continue;
2017 * Not writable, replace with a copy or coalesce with
2018 * the previous mbuf if possible (since we have to copy
2019 * it anyway, we try to reduce the number of mbufs and
2020 * clusters so that future work is easier).
2022 KASSERT(m->m_flags & M_EXT, ("m_flags 0x%x", m->m_flags));
2023 /* NB: we only coalesce into a cluster or larger */
2024 if (mprev != NULL && (mprev->m_flags & M_EXT) &&
2025 m->m_len <= M_TRAILINGSPACE(mprev)) {
2026 /* XXX: this ignores mbuf types */
2027 memcpy(mtod(mprev, caddr_t) + mprev->m_len,
2028 mtod(m, caddr_t), m->m_len);
2029 mprev->m_len += m->m_len;
2030 mprev->m_next = m->m_next; /* unlink from chain */
2031 m_free(m); /* reclaim mbuf */
2032 continue;
2036 * Allocate new space to hold the copy...
2038 /* XXX why can M_PKTHDR be set past the first mbuf? */
2039 if (mprev == NULL && (m->m_flags & M_PKTHDR)) {
2041 * NB: if a packet header is present we must
2042 * allocate the mbuf separately from any cluster
2043 * because M_MOVE_PKTHDR will smash the data
2044 * pointer and drop the M_EXT marker.
2046 MGETHDR(n, how, m->m_type);
2047 if (n == NULL) {
2048 m_freem(m0);
2049 return (NULL);
2051 M_MOVE_PKTHDR(n, m);
2052 MCLGET(n, how);
2053 if ((n->m_flags & M_EXT) == 0) {
2054 m_free(n);
2055 m_freem(m0);
2056 return (NULL);
2058 } else {
2059 n = m_getcl(how, m->m_type, m->m_flags);
2060 if (n == NULL) {
2061 m_freem(m0);
2062 return (NULL);
2066 * ... and copy the data. We deal with jumbo mbufs
2067 * (i.e. m_len > MCLBYTES) by splitting them into
2068 * clusters. We could just malloc a buffer and make
2069 * it external but too many device drivers don't know
2070 * how to break up the non-contiguous memory when
2071 * doing DMA.
2073 len = m->m_len;
2074 off = 0;
2075 mfirst = n;
2076 mlast = NULL;
2077 for (;;) {
2078 int cc = min(len, MCLBYTES);
2079 memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + off, cc);
2080 n->m_len = cc;
2081 if (mlast != NULL)
2082 mlast->m_next = n;
2083 mlast = n;
2085 len -= cc;
2086 if (len <= 0)
2087 break;
2088 off += cc;
2090 n = m_getcl(how, m->m_type, m->m_flags);
2091 if (n == NULL) {
2092 m_freem(mfirst);
2093 m_freem(m0);
2094 return (NULL);
2097 n->m_next = m->m_next;
2098 if (mprev == NULL)
2099 m0 = mfirst; /* new head of chain */
2100 else
2101 mprev->m_next = mfirst; /* replace old mbuf */
2102 m_free(m); /* release old mbuf */
2103 mprev = mfirst;
2105 return (m0);
2109 * Rearrange an mbuf chain so that len bytes are contiguous
2110 * and in the data area of an mbuf (so that mtod will work for a structure
2111 * of size len). Returns the resulting mbuf chain on success, frees it and
2112 * returns null on failure. If there is room, it will add up to
2113 * max_protohdr-len extra bytes to the contiguous region in an attempt to
2114 * avoid being called next time.
2116 struct mbuf *
2117 m_pullup(struct mbuf *n, int len)
2119 struct mbuf *m;
2120 int count;
2121 int space;
2124 * If first mbuf has no cluster, and has room for len bytes
2125 * without shifting current data, pullup into it,
2126 * otherwise allocate a new mbuf to prepend to the chain.
2128 if (!(n->m_flags & M_EXT) &&
2129 n->m_data + len < &n->m_dat[MLEN] &&
2130 n->m_next) {
2131 if (n->m_len >= len)
2132 return (n);
2133 m = n;
2134 n = n->m_next;
2135 len -= m->m_len;
2136 } else {
2137 if (len > MHLEN)
2138 goto bad;
2139 if (n->m_flags & M_PKTHDR)
2140 m = m_gethdr(M_NOWAIT, n->m_type);
2141 else
2142 m = m_get(M_NOWAIT, n->m_type);
2143 if (m == NULL)
2144 goto bad;
2145 m->m_len = 0;
2146 if (n->m_flags & M_PKTHDR)
2147 M_MOVE_PKTHDR(m, n);
2149 space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
2150 do {
2151 count = min(min(max(len, max_protohdr), space), n->m_len);
2152 bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
2153 (unsigned)count);
2154 len -= count;
2155 m->m_len += count;
2156 n->m_len -= count;
2157 space -= count;
2158 if (n->m_len)
2159 n->m_data += count;
2160 else
2161 n = m_free(n);
2162 } while (len > 0 && n);
2163 if (len > 0) {
2164 m_free(m);
2165 goto bad;
2167 m->m_next = n;
2168 return (m);
2169 bad:
2170 m_freem(n);
2171 ++mbstat[mycpu->gd_cpuid].m_mcfail;
2172 return (NULL);
2176 * Partition an mbuf chain in two pieces, returning the tail --
2177 * all but the first len0 bytes. In case of failure, it returns NULL and
2178 * attempts to restore the chain to its original state.
2180 * Note that the resulting mbufs might be read-only, because the new
2181 * mbuf can end up sharing an mbuf cluster with the original mbuf if
2182 * the "breaking point" happens to lie within a cluster mbuf. Use the
2183 * M_WRITABLE() macro to check for this case.
2185 struct mbuf *
2186 m_split(struct mbuf *m0, int len0, int wait)
2188 struct mbuf *m, *n;
2189 unsigned len = len0, remain;
2191 for (m = m0; m && len > m->m_len; m = m->m_next)
2192 len -= m->m_len;
2193 if (m == NULL)
2194 return (NULL);
2195 remain = m->m_len - len;
2196 if (m0->m_flags & M_PKTHDR) {
2197 n = m_gethdr(wait, m0->m_type);
2198 if (n == NULL)
2199 return (NULL);
2200 n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
2201 n->m_pkthdr.len = m0->m_pkthdr.len - len0;
2202 m0->m_pkthdr.len = len0;
2203 if (m->m_flags & M_EXT)
2204 goto extpacket;
2205 if (remain > MHLEN) {
2206 /* m can't be the lead packet */
2207 MH_ALIGN(n, 0);
2208 n->m_next = m_split(m, len, wait);
2209 if (n->m_next == NULL) {
2210 m_free(n);
2211 return (NULL);
2212 } else {
2213 n->m_len = 0;
2214 return (n);
2216 } else
2217 MH_ALIGN(n, remain);
2218 } else if (remain == 0) {
2219 n = m->m_next;
2220 m->m_next = NULL;
2221 return (n);
2222 } else {
2223 n = m_get(wait, m->m_type);
2224 if (n == NULL)
2225 return (NULL);
2226 M_ALIGN(n, remain);
2228 extpacket:
2229 if (m->m_flags & M_EXT) {
2230 KKASSERT((n->m_flags & M_EXT) == 0);
2231 n->m_data = m->m_data + len;
2232 m->m_ext.ext_ref(m->m_ext.ext_arg);
2233 n->m_ext = m->m_ext;
2234 n->m_flags |= m->m_flags & (M_EXT | M_EXT_CLUSTER);
2235 } else {
2236 bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain);
2238 n->m_len = remain;
2239 m->m_len = len;
2240 n->m_next = m->m_next;
2241 m->m_next = NULL;
2242 return (n);
2246 * Routine to copy from device local memory into mbufs.
2247 * Note: "offset" is ill-defined and always called as 0, so ignore it.
2249 struct mbuf *
2250 m_devget(char *buf, int len, int offset, struct ifnet *ifp)
2252 struct mbuf *m, *mfirst = NULL, **mtail;
2253 int nsize, flags;
2255 mtail = &mfirst;
2256 flags = M_PKTHDR;
2258 while (len > 0) {
2259 m = m_getl(len, M_NOWAIT, MT_DATA, flags, &nsize);
2260 if (m == NULL) {
2261 m_freem(mfirst);
2262 return (NULL);
2264 m->m_len = min(len, nsize);
2266 if (flags & M_PKTHDR) {
2267 if (len + max_linkhdr <= nsize)
2268 m->m_data += max_linkhdr;
2269 m->m_pkthdr.rcvif = ifp;
2270 m->m_pkthdr.len = len;
2271 flags = 0;
2274 bcopy(buf, m->m_data, (unsigned)m->m_len);
2275 buf += m->m_len;
2276 len -= m->m_len;
2277 *mtail = m;
2278 mtail = &m->m_next;
2281 return (mfirst);
2285 * Routine to pad mbuf to the specified length 'padto'.
2288 m_devpad(struct mbuf *m, int padto)
2290 struct mbuf *last = NULL;
2291 int padlen;
2293 if (padto <= m->m_pkthdr.len)
2294 return 0;
2296 padlen = padto - m->m_pkthdr.len;
2298 /* if there's only the packet-header and we can pad there, use it. */
2299 if (m->m_pkthdr.len == m->m_len && M_TRAILINGSPACE(m) >= padlen) {
2300 last = m;
2301 } else {
2303 * Walk packet chain to find last mbuf. We will either
2304 * pad there, or append a new mbuf and pad it
2306 for (last = m; last->m_next != NULL; last = last->m_next)
2307 ; /* EMPTY */
2309 /* `last' now points to last in chain. */
2310 if (M_TRAILINGSPACE(last) < padlen) {
2311 struct mbuf *n;
2313 /* Allocate new empty mbuf, pad it. Compact later. */
2314 MGET(n, M_NOWAIT, MT_DATA);
2315 if (n == NULL)
2316 return ENOBUFS;
2317 n->m_len = 0;
2318 last->m_next = n;
2319 last = n;
2322 KKASSERT(M_TRAILINGSPACE(last) >= padlen);
2323 KKASSERT(M_WRITABLE(last));
2325 /* Now zero the pad area */
2326 bzero(mtod(last, char *) + last->m_len, padlen);
2327 last->m_len += padlen;
2328 m->m_pkthdr.len += padlen;
2329 return 0;
2333 * Copy data from a buffer back into the indicated mbuf chain,
2334 * starting "off" bytes from the beginning, extending the mbuf
2335 * chain if necessary.
2337 void
2338 m_copyback(struct mbuf *m0, int off, int len, caddr_t cp)
2340 int mlen;
2341 struct mbuf *m = m0, *n;
2342 int totlen = 0;
2344 if (m0 == NULL)
2345 return;
2346 while (off > (mlen = m->m_len)) {
2347 off -= mlen;
2348 totlen += mlen;
2349 if (m->m_next == NULL) {
2350 n = m_getclr(M_NOWAIT, m->m_type);
2351 if (n == NULL)
2352 goto out;
2353 n->m_len = min(MLEN, len + off);
2354 m->m_next = n;
2356 m = m->m_next;
2358 while (len > 0) {
2359 mlen = min (m->m_len - off, len);
2360 bcopy(cp, off + mtod(m, caddr_t), (unsigned)mlen);
2361 cp += mlen;
2362 len -= mlen;
2363 mlen += off;
2364 off = 0;
2365 totlen += mlen;
2366 if (len == 0)
2367 break;
2368 if (m->m_next == NULL) {
2369 n = m_get(M_NOWAIT, m->m_type);
2370 if (n == NULL)
2371 break;
2372 n->m_len = min(MLEN, len);
2373 m->m_next = n;
2375 m = m->m_next;
2377 out: if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen))
2378 m->m_pkthdr.len = totlen;
2382 * Append the specified data to the indicated mbuf chain,
2383 * Extend the mbuf chain if the new data does not fit in
2384 * existing space.
2386 * Return 1 if able to complete the job; otherwise 0.
2389 m_append(struct mbuf *m0, int len, c_caddr_t cp)
2391 struct mbuf *m, *n;
2392 int remainder, space;
2394 for (m = m0; m->m_next != NULL; m = m->m_next)
2396 remainder = len;
2397 space = M_TRAILINGSPACE(m);
2398 if (space > 0) {
2400 * Copy into available space.
2402 if (space > remainder)
2403 space = remainder;
2404 bcopy(cp, mtod(m, caddr_t) + m->m_len, space);
2405 m->m_len += space;
2406 cp += space, remainder -= space;
2408 while (remainder > 0) {
2410 * Allocate a new mbuf; could check space
2411 * and allocate a cluster instead.
2413 n = m_get(M_NOWAIT, m->m_type);
2414 if (n == NULL)
2415 break;
2416 n->m_len = min(MLEN, remainder);
2417 bcopy(cp, mtod(n, caddr_t), n->m_len);
2418 cp += n->m_len, remainder -= n->m_len;
2419 m->m_next = n;
2420 m = n;
2422 if (m0->m_flags & M_PKTHDR)
2423 m0->m_pkthdr.len += len - remainder;
2424 return (remainder == 0);
2428 * Apply function f to the data in an mbuf chain starting "off" bytes from
2429 * the beginning, continuing for "len" bytes.
2432 m_apply(struct mbuf *m, int off, int len,
2433 int (*f)(void *, void *, u_int), void *arg)
2435 u_int count;
2436 int rval;
2438 KASSERT(off >= 0, ("m_apply, negative off %d", off));
2439 KASSERT(len >= 0, ("m_apply, negative len %d", len));
2440 while (off > 0) {
2441 KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
2442 if (off < m->m_len)
2443 break;
2444 off -= m->m_len;
2445 m = m->m_next;
2447 while (len > 0) {
2448 KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
2449 count = min(m->m_len - off, len);
2450 rval = (*f)(arg, mtod(m, caddr_t) + off, count);
2451 if (rval)
2452 return (rval);
2453 len -= count;
2454 off = 0;
2455 m = m->m_next;
2457 return (0);
2461 * Return a pointer to mbuf/offset of location in mbuf chain.
2463 struct mbuf *
2464 m_getptr(struct mbuf *m, int loc, int *off)
2467 while (loc >= 0) {
2468 /* Normal end of search. */
2469 if (m->m_len > loc) {
2470 *off = loc;
2471 return (m);
2472 } else {
2473 loc -= m->m_len;
2474 if (m->m_next == NULL) {
2475 if (loc == 0) {
2476 /* Point at the end of valid data. */
2477 *off = m->m_len;
2478 return (m);
2480 return (NULL);
2482 m = m->m_next;
2485 return (NULL);
2488 void
2489 m_print(const struct mbuf *m)
2491 int len;
2492 const struct mbuf *m2;
2493 char *hexstr;
2495 len = m->m_pkthdr.len;
2496 m2 = m;
2497 hexstr = kmalloc(HEX_NCPYLEN(len), M_TEMP, M_ZERO | M_WAITOK);
2498 while (len) {
2499 kprintf("%p %s\n", m2, hexncpy(m2->m_data, m2->m_len, hexstr,
2500 HEX_NCPYLEN(m2->m_len), "-"));
2501 len -= m2->m_len;
2502 m2 = m2->m_next;
2504 kfree(hexstr, M_TEMP);
2505 return;
2509 * "Move" mbuf pkthdr from "from" to "to".
2510 * "from" must have M_PKTHDR set, and "to" must be empty.
2512 void
2513 m_move_pkthdr(struct mbuf *to, struct mbuf *from)
2515 KASSERT((to->m_flags & M_PKTHDR), ("m_move_pkthdr: not packet header"));
2517 to->m_flags |= from->m_flags & M_COPYFLAGS;
2518 to->m_pkthdr = from->m_pkthdr; /* especially tags */
2519 SLIST_INIT(&from->m_pkthdr.tags); /* purge tags from src */
2523 * Duplicate "from"'s mbuf pkthdr in "to".
2524 * "from" must have M_PKTHDR set, and "to" must be empty.
2525 * In particular, this does a deep copy of the packet tags.
2528 m_dup_pkthdr(struct mbuf *to, const struct mbuf *from, int how)
2530 KASSERT((to->m_flags & M_PKTHDR), ("m_dup_pkthdr: not packet header"));
2532 to->m_flags = (from->m_flags & M_COPYFLAGS) |
2533 (to->m_flags & ~M_COPYFLAGS);
2534 to->m_pkthdr = from->m_pkthdr;
2535 SLIST_INIT(&to->m_pkthdr.tags);
2536 return (m_tag_copy_chain(to, from, how));
2540 * Defragment a mbuf chain, returning the shortest possible
2541 * chain of mbufs and clusters. If allocation fails and
2542 * this cannot be completed, NULL will be returned, but
2543 * the passed in chain will be unchanged. Upon success,
2544 * the original chain will be freed, and the new chain
2545 * will be returned.
2547 * If a non-packet header is passed in, the original
2548 * mbuf (chain?) will be returned unharmed.
2550 * m_defrag_nofree doesn't free the passed in mbuf.
2552 struct mbuf *
2553 m_defrag(struct mbuf *m0, int how)
2555 struct mbuf *m_new;
2557 if ((m_new = m_defrag_nofree(m0, how)) == NULL)
2558 return (NULL);
2559 if (m_new != m0)
2560 m_freem(m0);
2561 return (m_new);
2564 struct mbuf *
2565 m_defrag_nofree(struct mbuf *m0, int how)
2567 struct mbuf *m_new = NULL, *m_final = NULL;
2568 int progress = 0, length, nsize;
2570 if (!(m0->m_flags & M_PKTHDR))
2571 return (m0);
2573 #ifdef MBUF_STRESS_TEST
2574 if (m_defragrandomfailures) {
2575 int temp = karc4random() & 0xff;
2576 if (temp == 0xba)
2577 goto nospace;
2579 #endif
2581 m_final = m_getl(m0->m_pkthdr.len, how, MT_DATA, M_PKTHDR, &nsize);
2582 if (m_final == NULL)
2583 goto nospace;
2584 m_final->m_len = 0; /* in case m0->m_pkthdr.len is zero */
2586 if (m_dup_pkthdr(m_final, m0, how) == 0)
2587 goto nospace;
2589 m_new = m_final;
2591 while (progress < m0->m_pkthdr.len) {
2592 length = m0->m_pkthdr.len - progress;
2593 if (length > MCLBYTES)
2594 length = MCLBYTES;
2596 if (m_new == NULL) {
2597 m_new = m_getl(length, how, MT_DATA, 0, &nsize);
2598 if (m_new == NULL)
2599 goto nospace;
2602 m_copydata(m0, progress, length, mtod(m_new, caddr_t));
2603 progress += length;
2604 m_new->m_len = length;
2605 if (m_new != m_final)
2606 m_cat(m_final, m_new);
2607 m_new = NULL;
2609 if (m0->m_next == NULL)
2610 m_defraguseless++;
2611 m_defragpackets++;
2612 m_defragbytes += m_final->m_pkthdr.len;
2613 return (m_final);
2614 nospace:
2615 m_defragfailure++;
2616 if (m_new)
2617 m_free(m_new);
2618 m_freem(m_final);
2619 return (NULL);
2623 * Move data from uio into mbufs.
2625 struct mbuf *
2626 m_uiomove(struct uio *uio)
2628 struct mbuf *m; /* current working mbuf */
2629 struct mbuf *head = NULL; /* result mbuf chain */
2630 struct mbuf **mp = &head;
2631 int flags = M_PKTHDR;
2632 int nsize;
2633 int error;
2634 int resid;
2636 do {
2637 if (uio->uio_resid > INT_MAX)
2638 resid = INT_MAX;
2639 else
2640 resid = (int)uio->uio_resid;
2641 m = m_getl(resid, M_WAITOK, MT_DATA, flags, &nsize);
2642 if (flags) {
2643 m->m_pkthdr.len = 0;
2644 /* Leave room for protocol headers. */
2645 if (resid < MHLEN)
2646 MH_ALIGN(m, resid);
2647 flags = 0;
2649 m->m_len = imin(nsize, resid);
2650 error = uiomove(mtod(m, caddr_t), m->m_len, uio);
2651 if (error) {
2652 m_free(m);
2653 goto failed;
2655 *mp = m;
2656 mp = &m->m_next;
2657 head->m_pkthdr.len += m->m_len;
2658 } while (uio->uio_resid > 0);
2660 return (head);
2662 failed:
2663 m_freem(head);
2664 return (NULL);
2667 struct mbuf *
2668 m_last(struct mbuf *m)
2670 while (m->m_next)
2671 m = m->m_next;
2672 return (m);
2676 * Return the number of bytes in an mbuf chain.
2677 * If lastm is not NULL, also return the last mbuf.
2679 u_int
2680 m_lengthm(struct mbuf *m, struct mbuf **lastm)
2682 u_int len = 0;
2683 struct mbuf *prev = m;
2685 while (m) {
2686 len += m->m_len;
2687 prev = m;
2688 m = m->m_next;
2690 if (lastm != NULL)
2691 *lastm = prev;
2692 return (len);
2696 * Like m_lengthm(), except also keep track of mbuf usage.
2698 u_int
2699 m_countm(struct mbuf *m, struct mbuf **lastm, u_int *pmbcnt)
2701 u_int len = 0, mbcnt = 0;
2702 struct mbuf *prev = m;
2704 while (m) {
2705 len += m->m_len;
2706 mbcnt += MSIZE;
2707 if (m->m_flags & M_EXT)
2708 mbcnt += m->m_ext.ext_size;
2709 prev = m;
2710 m = m->m_next;
2712 if (lastm != NULL)
2713 *lastm = prev;
2714 *pmbcnt = mbcnt;
2715 return (len);