kernel - SWAP CACHE part 20/many - add 'cache' and 'noscache' chflags.
[dragonfly.git] / sys / vm / vm_swapcache.c
blob3cf5d45101937b7778659e25eaddb424f34e82b4
1 /*
2 * Copyright (c) 2010 The DragonFly Project. All rights reserved.
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
36 * Implement the swapcache daemon. When enabled swap is assumed to be
37 * configured on a fast storage device such as a SSD. Swap is assigned
38 * to clean vnode-backed pages in the inactive queue, clustered by object
39 * if possible, and written out. The swap assignment sticks around even
40 * after the underlying pages have been recycled.
42 * The daemon manages write bandwidth based on sysctl settings to control
43 * wear on the SSD.
45 * The vnode strategy code will check for the swap assignments and divert
46 * reads to the swap device when the data is present in the swapcache.
48 * This operates on both regular files and the block device vnodes used by
49 * filesystems to manage meta-data.
52 #include "opt_vm.h"
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/kernel.h>
56 #include <sys/proc.h>
57 #include <sys/kthread.h>
58 #include <sys/resourcevar.h>
59 #include <sys/signalvar.h>
60 #include <sys/vnode.h>
61 #include <sys/vmmeter.h>
62 #include <sys/sysctl.h>
64 #include <vm/vm.h>
65 #include <vm/vm_param.h>
66 #include <sys/lock.h>
67 #include <vm/vm_object.h>
68 #include <vm/vm_page.h>
69 #include <vm/vm_map.h>
70 #include <vm/vm_pageout.h>
71 #include <vm/vm_pager.h>
72 #include <vm/swap_pager.h>
73 #include <vm/vm_extern.h>
75 #include <sys/thread2.h>
76 #include <vm/vm_page2.h>
78 #define INACTIVE_LIST (&vm_page_queues[PQ_INACTIVE].pl)
80 /* the kernel process "vm_pageout"*/
81 static void vm_swapcached (void);
82 static int vm_swapcached_flush (vm_page_t m);
83 static int vm_swapcache_test(vm_page_t m);
84 static void vm_swapcache_writing(vm_page_t marker);
85 static void vm_swapcache_cleaning(vm_object_t marker);
86 struct thread *swapcached_thread;
88 static struct kproc_desc swpc_kp = {
89 "swapcached",
90 vm_swapcached,
91 &swapcached_thread
93 SYSINIT(swapcached, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start, &swpc_kp)
95 SYSCTL_NODE(_vm, OID_AUTO, swapcache, CTLFLAG_RW, NULL, NULL);
97 int vm_swapcache_read_enable;
98 static int vm_swapcache_sleep;
99 static int vm_swapcache_maxlaunder = 256;
100 static int vm_swapcache_data_enable = 0;
101 static int vm_swapcache_meta_enable = 0;
102 static int vm_swapcache_maxswappct = 75;
103 static int vm_swapcache_use_chflags = 1; /* require chflags cache */
104 static int64_t vm_swapcache_minburst = 10000000LL; /* 10MB */
105 static int64_t vm_swapcache_curburst = 4000000000LL; /* 4G after boot */
106 static int64_t vm_swapcache_maxburst = 2000000000LL; /* 2G nominal max */
107 static int64_t vm_swapcache_accrate = 100000LL; /* 100K/s */
108 static int64_t vm_swapcache_write_count;
109 static int64_t vm_swapcache_maxfilesize;
111 SYSCTL_INT(_vm_swapcache, OID_AUTO, maxlaunder,
112 CTLFLAG_RW, &vm_swapcache_maxlaunder, 0, "");
114 SYSCTL_INT(_vm_swapcache, OID_AUTO, data_enable,
115 CTLFLAG_RW, &vm_swapcache_data_enable, 0, "");
116 SYSCTL_INT(_vm_swapcache, OID_AUTO, meta_enable,
117 CTLFLAG_RW, &vm_swapcache_meta_enable, 0, "");
118 SYSCTL_INT(_vm_swapcache, OID_AUTO, read_enable,
119 CTLFLAG_RW, &vm_swapcache_read_enable, 0, "");
120 SYSCTL_INT(_vm_swapcache, OID_AUTO, maxswappct,
121 CTLFLAG_RW, &vm_swapcache_maxswappct, 0, "");
122 SYSCTL_INT(_vm_swapcache, OID_AUTO, use_chflags,
123 CTLFLAG_RW, &vm_swapcache_use_chflags, 0, "");
125 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, minburst,
126 CTLFLAG_RW, &vm_swapcache_minburst, 0, "");
127 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, curburst,
128 CTLFLAG_RW, &vm_swapcache_curburst, 0, "");
129 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, maxburst,
130 CTLFLAG_RW, &vm_swapcache_maxburst, 0, "");
131 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, maxfilesize,
132 CTLFLAG_RW, &vm_swapcache_maxfilesize, 0, "");
133 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, accrate,
134 CTLFLAG_RW, &vm_swapcache_accrate, 0, "");
135 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, write_count,
136 CTLFLAG_RW, &vm_swapcache_write_count, 0, "");
138 #define SWAPMAX(adj) \
139 ((int64_t)vm_swap_max * (vm_swapcache_maxswappct + (adj)) / 100)
142 * vm_swapcached is the high level pageout daemon.
144 static void
145 vm_swapcached(void)
147 enum { SWAPC_WRITING, SWAPC_CLEANING } state = SWAPC_WRITING;
148 enum { SWAPB_BURSTING, SWAPB_RECOVERING } burst = SWAPB_BURSTING;
149 struct vm_page page_marker;
150 struct vm_object object_marker;
153 * Thread setup
155 curthread->td_flags |= TDF_SYSTHREAD;
156 crit_enter();
159 * Initialize our marker for the inactive scan (SWAPC_WRITING)
161 bzero(&page_marker, sizeof(page_marker));
162 page_marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
163 page_marker.queue = PQ_INACTIVE;
164 page_marker.wire_count = 1;
165 TAILQ_INSERT_HEAD(INACTIVE_LIST, &page_marker, pageq);
168 * Initialize our marker for the vm_object scan (SWAPC_CLEANING)
170 bzero(&object_marker, sizeof(object_marker));
171 object_marker.type = OBJT_MARKER;
172 TAILQ_INSERT_HEAD(&vm_object_list, &object_marker, object_list);
174 for (;;) {
176 * Check every 5 seconds when not enabled or if no swap
177 * is present.
179 if ((vm_swapcache_data_enable == 0 &&
180 vm_swapcache_meta_enable == 0) ||
181 vm_swap_max == 0) {
182 tsleep(&vm_swapcache_sleep, 0, "csleep", hz * 5);
183 continue;
187 * Polling rate when enabled is approximately 10 hz.
189 tsleep(&vm_swapcache_sleep, 0, "csleep", hz / 10);
192 * State hysteresis. Generate write activity up to 75% of
193 * swap, then clean out swap assignments down to 70%, then
194 * repeat.
196 if (state == SWAPC_WRITING) {
197 if (vm_swap_cache_use > SWAPMAX(0))
198 state = SWAPC_CLEANING;
199 } else {
200 if (vm_swap_cache_use < SWAPMAX(-5))
201 state = SWAPC_WRITING;
205 * We are allowed to continue accumulating burst value
206 * in either state. Allow the user to set curburst > maxburst
207 * for the initial load-in.
209 if (vm_swapcache_curburst < vm_swapcache_maxburst) {
210 vm_swapcache_curburst += vm_swapcache_accrate / 10;
211 if (vm_swapcache_curburst > vm_swapcache_maxburst)
212 vm_swapcache_curburst = vm_swapcache_maxburst;
216 * We don't want to nickle-and-dime the scan as that will
217 * create unnecessary fragmentation. The minimum burst
218 * is one-seconds worth of accumulation.
220 if (state == SWAPC_WRITING) {
221 if (vm_swapcache_curburst >= vm_swapcache_accrate) {
222 if (burst == SWAPB_BURSTING) {
223 vm_swapcache_writing(&page_marker);
224 if (vm_swapcache_curburst <= 0)
225 burst = SWAPB_RECOVERING;
226 } else if (vm_swapcache_curburst >
227 vm_swapcache_minburst) {
228 vm_swapcache_writing(&page_marker);
229 burst = SWAPB_BURSTING;
232 } else {
233 vm_swapcache_cleaning(&object_marker);
236 TAILQ_REMOVE(INACTIVE_LIST, &page_marker, pageq);
237 TAILQ_REMOVE(&vm_object_list, &object_marker, object_list);
238 crit_exit();
241 static void
242 vm_swapcache_writing(vm_page_t marker)
244 vm_object_t object;
245 struct vnode *vp;
246 vm_page_t m;
247 int count;
250 * Scan the inactive queue from our marker to locate
251 * suitable pages to push to the swap cache.
253 * We are looking for clean vnode-backed pages.
255 * NOTE: PG_SWAPPED pages in particular are not part of
256 * our count because once the cache stabilizes we
257 * can end up with a very high datarate of VM pages
258 * cycling from it.
260 m = marker;
261 count = vm_swapcache_maxlaunder;
263 while ((m = TAILQ_NEXT(m, pageq)) != NULL && count--) {
264 if (m->flags & (PG_MARKER | PG_SWAPPED)) {
265 ++count;
266 continue;
268 if (vm_swapcache_curburst < 0)
269 break;
270 if (vm_swapcache_test(m))
271 continue;
272 object = m->object;
273 vp = object->handle;
274 if (vp == NULL)
275 continue;
277 switch(vp->v_type) {
278 case VREG:
280 * If data_enable is 0 do not try to swapcache data.
281 * If use_chflags is set then only swapcache data for
282 * VSWAPCACHE marked vnodes, otherwise any vnode.
284 if (vm_swapcache_data_enable == 0 ||
285 ((vp->v_flag & VSWAPCACHE) == 0 &&
286 vm_swapcache_use_chflags)) {
287 continue;
289 if (vm_swapcache_maxfilesize &&
290 object->size >
291 (vm_swapcache_maxfilesize >> PAGE_SHIFT)) {
292 continue;
294 break;
295 case VCHR:
296 if (vm_swapcache_meta_enable == 0)
297 continue;
298 break;
299 default:
300 continue;
304 * Ok, move the marker and soft-busy the page.
306 TAILQ_REMOVE(INACTIVE_LIST, marker, pageq);
307 TAILQ_INSERT_AFTER(INACTIVE_LIST, m, marker, pageq);
310 * Assign swap and initiate I/O.
312 * (adjust for the --count which also occurs in the loop)
314 count -= vm_swapcached_flush(m) - 1;
317 * Setup for next loop using marker.
319 m = marker;
323 * Cleanup marker position. If we hit the end of the
324 * list the marker is placed at the tail. Newly deactivated
325 * pages will be placed after it.
327 * Earlier inactive pages that were dirty and become clean
328 * are typically moved to the end of PQ_INACTIVE by virtue
329 * of vfs_vmio_release() when they become unwired from the
330 * buffer cache.
332 TAILQ_REMOVE(INACTIVE_LIST, marker, pageq);
333 if (m)
334 TAILQ_INSERT_BEFORE(m, marker, pageq);
335 else
336 TAILQ_INSERT_TAIL(INACTIVE_LIST, marker, pageq);
340 * Flush the specified page using the swap_pager.
342 * Try to collect surrounding pages, including pages which may
343 * have already been assigned swap. Try to cluster within a
344 * contiguous aligned SMAP_META_PAGES (typ 16 x PAGE_SIZE) block
345 * to match what swap_pager_putpages() can do.
347 * We also want to try to match against the buffer cache blocksize
348 * but we don't really know what it is here. Since the buffer cache
349 * wires and unwires pages in groups the fact that we skip wired pages
350 * should be sufficient.
352 * Returns a count of pages we might have flushed (minimum 1)
354 static
356 vm_swapcached_flush(vm_page_t m)
358 vm_object_t object;
359 vm_page_t marray[SWAP_META_PAGES];
360 vm_pindex_t basei;
361 int rtvals[SWAP_META_PAGES];
362 int x;
363 int i;
364 int j;
365 int count;
367 vm_page_io_start(m);
368 vm_page_protect(m, VM_PROT_READ);
369 object = m->object;
372 * Try to cluster around (m), keeping in mind that the swap pager
373 * can only do SMAP_META_PAGES worth of continguous write.
375 x = (int)m->pindex & SWAP_META_MASK;
376 marray[x] = m;
377 basei = m->pindex;
379 for (i = x - 1; i >= 0; --i) {
380 m = vm_page_lookup(object, basei - x + i);
381 if (m == NULL)
382 break;
383 if (vm_swapcache_test(m))
384 break;
385 vm_page_io_start(m);
386 vm_page_protect(m, VM_PROT_READ);
387 if (m->queue - m->pc == PQ_CACHE) {
388 vm_page_unqueue_nowakeup(m);
389 vm_page_deactivate(m);
391 marray[i] = m;
393 ++i;
395 for (j = x + 1; j < SWAP_META_PAGES; ++j) {
396 m = vm_page_lookup(object, basei - x + j);
397 if (m == NULL)
398 break;
399 if (vm_swapcache_test(m))
400 break;
401 vm_page_io_start(m);
402 vm_page_protect(m, VM_PROT_READ);
403 if (m->queue - m->pc == PQ_CACHE) {
404 vm_page_unqueue_nowakeup(m);
405 vm_page_deactivate(m);
407 marray[j] = m;
410 count = j - i;
411 vm_object_pip_add(object, count);
412 swap_pager_putpages(object, marray + i, count, FALSE, rtvals + i);
413 vm_swapcache_write_count += count * PAGE_SIZE;
414 vm_swapcache_curburst -= count * PAGE_SIZE;
416 while (i < j) {
417 if (rtvals[i] != VM_PAGER_PEND) {
418 vm_page_io_finish(marray[i]);
419 vm_object_pip_wakeup(object);
421 ++i;
423 return(count);
427 * Test whether a VM page is suitable for writing to the swapcache.
428 * Does not test m->queue, PG_MARKER, or PG_SWAPPED.
430 * Returns 0 on success, 1 on failure
432 static int
433 vm_swapcache_test(vm_page_t m)
435 vm_object_t object;
437 if (m->flags & (PG_BUSY | PG_UNMANAGED | PG_NOTMETA))
438 return(1);
439 if (m->busy || m->hold_count || m->wire_count)
440 return(1);
441 if (m->valid != VM_PAGE_BITS_ALL)
442 return(1);
443 if (m->dirty & m->valid)
444 return(1);
445 if ((object = m->object) == NULL)
446 return(1);
447 if (object->type != OBJT_VNODE ||
448 (object->flags & OBJ_DEAD)) {
449 return(1);
451 vm_page_test_dirty(m);
452 if (m->dirty & m->valid)
453 return(1);
454 return(0);
458 * Cleaning pass
460 static
461 void
462 vm_swapcache_cleaning(vm_object_t marker)
464 vm_object_t object;
465 struct vnode *vp;
466 int count;
467 int n;
469 object = marker;
470 count = vm_swapcache_maxlaunder;
473 * Look for vnode objects
475 while ((object = TAILQ_NEXT(object, object_list)) != NULL && count--) {
476 if (object->type != OBJT_VNODE)
477 continue;
478 if ((object->flags & OBJ_DEAD) || object->swblock_count == 0)
479 continue;
480 if ((vp = object->handle) == NULL)
481 continue;
482 if (vp->v_type != VREG && vp->v_type != VCHR)
483 continue;
486 * Adjust iterator.
488 if (marker->backing_object != object)
489 marker->size = 0;
492 * Move the marker so we can work on the VM object
494 TAILQ_REMOVE(&vm_object_list, marker, object_list);
495 TAILQ_INSERT_AFTER(&vm_object_list, object,
496 marker, object_list);
499 * Look for swblocks starting at our iterator.
501 * The swap_pager_condfree() function attempts to free
502 * swap space starting at the specified index. The index
503 * will be updated on return. The function will return
504 * a scan factor (NOT the number of blocks freed).
506 * If it must cut its scan of the object short due to an
507 * excessive number of swblocks, or is able to free the
508 * requested number of blocks, it will return n >= count
509 * and we break and pick it back up on a future attempt.
511 n = swap_pager_condfree(object, &marker->size, count);
512 count -= n;
513 if (count < 0)
514 break;
517 * Setup for loop.
519 marker->size = 0;
520 object = marker;
524 * Adjust marker so we continue the scan from where we left off.
525 * When we reach the end we start back at the beginning.
527 TAILQ_REMOVE(&vm_object_list, marker, object_list);
528 if (object)
529 TAILQ_INSERT_BEFORE(object, marker, object_list);
530 else
531 TAILQ_INSERT_HEAD(&vm_object_list, marker, object_list);
532 marker->backing_object = object;