kernel - Fix races created by a comedy of circumstansces (3)
[dragonfly.git] / sys / platform / pc64 / x86_64 / pmap.c
blobcd3a222ba6d8f97b7e9204c93c0e9d7fde4677f9
1 /*
2 * Copyright (c) 1991 Regents of the University of California.
3 * Copyright (c) 1994 John S. Dyson
4 * Copyright (c) 1994 David Greenman
5 * Copyright (c) 2003 Peter Wemm
6 * Copyright (c) 2005-2008 Alan L. Cox <alc@cs.rice.edu>
7 * Copyright (c) 2008, 2009 The DragonFly Project.
8 * Copyright (c) 2008, 2009 Jordan Gordeev.
9 * Copyright (c) 2011-2012 Matthew Dillon
10 * All rights reserved.
12 * This code is derived from software contributed to Berkeley by
13 * the Systems Programming Group of the University of Utah Computer
14 * Science Department and William Jolitz of UUNET Technologies Inc.
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. All advertising materials mentioning features or use of this software
25 * must display the following acknowledgement:
26 * This product includes software developed by the University of
27 * California, Berkeley and its contributors.
28 * 4. Neither the name of the University nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
45 * Manage physical address maps for x86-64 systems.
48 #if 0 /* JG */
49 #include "opt_disable_pse.h"
50 #include "opt_pmap.h"
51 #endif
52 #include "opt_msgbuf.h"
54 #include <sys/param.h>
55 #include <sys/kernel.h>
56 #include <sys/proc.h>
57 #include <sys/msgbuf.h>
58 #include <sys/vmmeter.h>
59 #include <sys/mman.h>
60 #include <sys/systm.h>
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <sys/sysctl.h>
65 #include <sys/lock.h>
66 #include <vm/vm_kern.h>
67 #include <vm/vm_page.h>
68 #include <vm/vm_map.h>
69 #include <vm/vm_object.h>
70 #include <vm/vm_extern.h>
71 #include <vm/vm_pageout.h>
72 #include <vm/vm_pager.h>
73 #include <vm/vm_zone.h>
75 #include <sys/user.h>
76 #include <sys/thread2.h>
77 #include <sys/sysref2.h>
78 #include <sys/spinlock2.h>
79 #include <vm/vm_page2.h>
81 #include <machine/cputypes.h>
82 #include <machine/md_var.h>
83 #include <machine/specialreg.h>
84 #include <machine/smp.h>
85 #include <machine_base/apic/apicreg.h>
86 #include <machine/globaldata.h>
87 #include <machine/pmap.h>
88 #include <machine/pmap_inval.h>
89 #include <machine/inttypes.h>
91 #include <ddb/ddb.h>
93 #define PMAP_KEEP_PDIRS
94 #ifndef PMAP_SHPGPERPROC
95 #define PMAP_SHPGPERPROC 2000
96 #endif
98 #if defined(DIAGNOSTIC)
99 #define PMAP_DIAGNOSTIC
100 #endif
102 #define MINPV 2048
105 * pmap debugging will report who owns a pv lock when blocking.
107 #ifdef PMAP_DEBUG
109 #define PMAP_DEBUG_DECL ,const char *func, int lineno
110 #define PMAP_DEBUG_ARGS , __func__, __LINE__
111 #define PMAP_DEBUG_COPY , func, lineno
113 #define pv_get(pmap, pindex, pmarkp) _pv_get(pmap, pindex, pmarkp \
114 PMAP_DEBUG_ARGS)
115 #define pv_lock(pv) _pv_lock(pv \
116 PMAP_DEBUG_ARGS)
117 #define pv_hold_try(pv) _pv_hold_try(pv \
118 PMAP_DEBUG_ARGS)
119 #define pv_alloc(pmap, pindex, isnewp) _pv_alloc(pmap, pindex, isnewp \
120 PMAP_DEBUG_ARGS)
122 #define pv_free(pv, pvp) _pv_free(pv, pvp PMAP_DEBUG_ARGS)
124 #else
126 #define PMAP_DEBUG_DECL
127 #define PMAP_DEBUG_ARGS
128 #define PMAP_DEBUG_COPY
130 #define pv_get(pmap, pindex, pmarkp) _pv_get(pmap, pindex, pmarkp)
131 #define pv_lock(pv) _pv_lock(pv)
132 #define pv_hold_try(pv) _pv_hold_try(pv)
133 #define pv_alloc(pmap, pindex, isnewp) _pv_alloc(pmap, pindex, isnewp)
134 #define pv_free(pv, pvp) _pv_free(pv, pvp)
136 #endif
139 * Get PDEs and PTEs for user/kernel address space
141 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
143 #define pmap_pde_v(pmap, pte) ((*(pd_entry_t *)pte & pmap->pmap_bits[PG_V_IDX]) != 0)
144 #define pmap_pte_w(pmap, pte) ((*(pt_entry_t *)pte & pmap->pmap_bits[PG_W_IDX]) != 0)
145 #define pmap_pte_m(pmap, pte) ((*(pt_entry_t *)pte & pmap->pmap_bits[PG_M_IDX]) != 0)
146 #define pmap_pte_u(pmap, pte) ((*(pt_entry_t *)pte & pmap->pmap_bits[PG_U_IDX]) != 0)
147 #define pmap_pte_v(pmap, pte) ((*(pt_entry_t *)pte & pmap->pmap_bits[PG_V_IDX]) != 0)
150 * Given a map and a machine independent protection code,
151 * convert to a vax protection code.
153 #define pte_prot(m, p) \
154 (m->protection_codes[p & (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE)])
155 static int protection_codes[PROTECTION_CODES_SIZE];
157 struct pmap kernel_pmap;
159 MALLOC_DEFINE(M_OBJPMAP, "objpmap", "pmaps associated with VM objects");
161 vm_paddr_t avail_start; /* PA of first available physical page */
162 vm_paddr_t avail_end; /* PA of last available physical page */
163 vm_offset_t virtual2_start; /* cutout free area prior to kernel start */
164 vm_offset_t virtual2_end;
165 vm_offset_t virtual_start; /* VA of first avail page (after kernel bss) */
166 vm_offset_t virtual_end; /* VA of last avail page (end of kernel AS) */
167 vm_offset_t KvaStart; /* VA start of KVA space */
168 vm_offset_t KvaEnd; /* VA end of KVA space (non-inclusive) */
169 vm_offset_t KvaSize; /* max size of kernel virtual address space */
170 static boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
171 //static int pgeflag; /* PG_G or-in */
172 //static int pseflag; /* PG_PS or-in */
173 uint64_t PatMsr;
175 static int ndmpdp;
176 static vm_paddr_t dmaplimit;
177 static int nkpt;
178 vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
180 static pt_entry_t pat_pte_index[PAT_INDEX_SIZE]; /* PAT -> PG_ bits */
181 /*static pt_entry_t pat_pde_index[PAT_INDEX_SIZE];*/ /* PAT -> PG_ bits */
183 static uint64_t KPTbase;
184 static uint64_t KPTphys;
185 static uint64_t KPDphys; /* phys addr of kernel level 2 */
186 static uint64_t KPDbase; /* phys addr of kernel level 2 @ KERNBASE */
187 uint64_t KPDPphys; /* phys addr of kernel level 3 */
188 uint64_t KPML4phys; /* phys addr of kernel level 4 */
190 static uint64_t DMPDphys; /* phys addr of direct mapped level 2 */
191 static uint64_t DMPDPphys; /* phys addr of direct mapped level 3 */
194 * Data for the pv entry allocation mechanism
196 static vm_zone_t pvzone;
197 static struct vm_zone pvzone_store;
198 static struct vm_object pvzone_obj;
199 static int pv_entry_max=0, pv_entry_high_water=0;
200 static int pmap_pagedaemon_waken = 0;
201 static struct pv_entry *pvinit;
204 * All those kernel PT submaps that BSD is so fond of
206 pt_entry_t *CMAP1 = NULL, *ptmmap;
207 caddr_t CADDR1 = NULL, ptvmmap = NULL;
208 static pt_entry_t *msgbufmap;
209 struct msgbuf *msgbufp=NULL;
212 * PMAP default PG_* bits. Needed to be able to add
213 * EPT/NPT pagetable pmap_bits for the VMM module
215 uint64_t pmap_bits_default[] = {
216 REGULAR_PMAP, /* TYPE_IDX 0 */
217 X86_PG_V, /* PG_V_IDX 1 */
218 X86_PG_RW, /* PG_RW_IDX 2 */
219 X86_PG_U, /* PG_U_IDX 3 */
220 X86_PG_A, /* PG_A_IDX 4 */
221 X86_PG_M, /* PG_M_IDX 5 */
222 X86_PG_PS, /* PG_PS_IDX3 6 */
223 X86_PG_G, /* PG_G_IDX 7 */
224 X86_PG_AVAIL1, /* PG_AVAIL1_IDX 8 */
225 X86_PG_AVAIL2, /* PG_AVAIL2_IDX 9 */
226 X86_PG_AVAIL3, /* PG_AVAIL3_IDX 10 */
227 X86_PG_NC_PWT | X86_PG_NC_PCD, /* PG_N_IDX 11 */
230 * Crashdump maps.
232 static pt_entry_t *pt_crashdumpmap;
233 static caddr_t crashdumpmap;
235 static int pmap_debug = 0;
236 SYSCTL_INT(_machdep, OID_AUTO, pmap_debug, CTLFLAG_RW,
237 &pmap_debug, 0, "Debug pmap's");
238 #ifdef PMAP_DEBUG2
239 static int pmap_enter_debug = 0;
240 SYSCTL_INT(_machdep, OID_AUTO, pmap_enter_debug, CTLFLAG_RW,
241 &pmap_enter_debug, 0, "Debug pmap_enter's");
242 #endif
243 static int pmap_yield_count = 64;
244 SYSCTL_INT(_machdep, OID_AUTO, pmap_yield_count, CTLFLAG_RW,
245 &pmap_yield_count, 0, "Yield during init_pt/release");
246 static int pmap_mmu_optimize = 0;
247 SYSCTL_INT(_machdep, OID_AUTO, pmap_mmu_optimize, CTLFLAG_RW,
248 &pmap_mmu_optimize, 0, "Share page table pages when possible");
249 int pmap_fast_kernel_cpusync = 0;
250 SYSCTL_INT(_machdep, OID_AUTO, pmap_fast_kernel_cpusync, CTLFLAG_RW,
251 &pmap_fast_kernel_cpusync, 0, "Share page table pages when possible");
252 int pmap_dynamic_delete = -1;
253 SYSCTL_INT(_machdep, OID_AUTO, pmap_dynamic_delete, CTLFLAG_RW,
254 &pmap_dynamic_delete, 0, "Dynamically delete PT/PD/PDPs");
256 #define DISABLE_PSE
258 /* Standard user access funtions */
259 extern int std_copyinstr (const void *udaddr, void *kaddr, size_t len,
260 size_t *lencopied);
261 extern int std_copyin (const void *udaddr, void *kaddr, size_t len);
262 extern int std_copyout (const void *kaddr, void *udaddr, size_t len);
263 extern int std_fubyte (const uint8_t *base);
264 extern int std_subyte (uint8_t *base, uint8_t byte);
265 extern int32_t std_fuword32 (const uint32_t *base);
266 extern int64_t std_fuword64 (const uint64_t *base);
267 extern int std_suword64 (uint64_t *base, uint64_t word);
268 extern int std_suword32 (uint32_t *base, int word);
269 extern uint32_t std_swapu32 (volatile uint32_t *base, uint32_t v);
270 extern uint64_t std_swapu64 (volatile uint64_t *base, uint64_t v);
272 static void pv_hold(pv_entry_t pv);
273 static int _pv_hold_try(pv_entry_t pv
274 PMAP_DEBUG_DECL);
275 static void pv_drop(pv_entry_t pv);
276 static void _pv_lock(pv_entry_t pv
277 PMAP_DEBUG_DECL);
278 static void pv_unlock(pv_entry_t pv);
279 static pv_entry_t _pv_alloc(pmap_t pmap, vm_pindex_t pindex, int *isnew
280 PMAP_DEBUG_DECL);
281 static pv_entry_t _pv_get(pmap_t pmap, vm_pindex_t pindex, vm_pindex_t **pmarkp
282 PMAP_DEBUG_DECL);
283 static void _pv_free(pv_entry_t pv, pv_entry_t pvp PMAP_DEBUG_DECL);
284 static pv_entry_t pv_get_try(pmap_t pmap, vm_pindex_t pindex,
285 vm_pindex_t **pmarkp, int *errorp);
286 static void pv_put(pv_entry_t pv);
287 static void *pv_pte_lookup(pv_entry_t pv, vm_pindex_t pindex);
288 static pv_entry_t pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex,
289 pv_entry_t *pvpp);
290 static pv_entry_t pmap_allocpte_seg(pmap_t pmap, vm_pindex_t ptepindex,
291 pv_entry_t *pvpp, vm_map_entry_t entry, vm_offset_t va);
292 static void pmap_remove_pv_pte(pv_entry_t pv, pv_entry_t pvp,
293 pmap_inval_bulk_t *bulk, int destroy);
294 static vm_page_t pmap_remove_pv_page(pv_entry_t pv);
295 static int pmap_release_pv(pv_entry_t pv, pv_entry_t pvp,
296 pmap_inval_bulk_t *bulk);
298 struct pmap_scan_info;
299 static void pmap_remove_callback(pmap_t pmap, struct pmap_scan_info *info,
300 pv_entry_t pte_pv, vm_pindex_t *pte_placemark,
301 pv_entry_t pt_pv, int sharept,
302 vm_offset_t va, pt_entry_t *ptep, void *arg __unused);
303 static void pmap_protect_callback(pmap_t pmap, struct pmap_scan_info *info,
304 pv_entry_t pte_pv, vm_pindex_t *pte_placemark,
305 pv_entry_t pt_pv, int sharept,
306 vm_offset_t va, pt_entry_t *ptep, void *arg __unused);
308 static void i386_protection_init (void);
309 static void create_pagetables(vm_paddr_t *firstaddr);
310 static void pmap_remove_all (vm_page_t m);
311 static boolean_t pmap_testbit (vm_page_t m, int bit);
313 static pt_entry_t * pmap_pte_quick (pmap_t pmap, vm_offset_t va);
314 static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
316 static void pmap_pinit_defaults(struct pmap *pmap);
317 static void pv_placemarker_wait(pmap_t pmap, vm_pindex_t *pmark);
318 static void pv_placemarker_wakeup(pmap_t pmap, vm_pindex_t *pmark);
320 static unsigned pdir4mb;
322 static int
323 pv_entry_compare(pv_entry_t pv1, pv_entry_t pv2)
325 if (pv1->pv_pindex < pv2->pv_pindex)
326 return(-1);
327 if (pv1->pv_pindex > pv2->pv_pindex)
328 return(1);
329 return(0);
332 RB_GENERATE2(pv_entry_rb_tree, pv_entry, pv_entry,
333 pv_entry_compare, vm_pindex_t, pv_pindex);
335 static __inline
336 void
337 pmap_page_stats_adding(vm_page_t m)
339 globaldata_t gd = mycpu;
341 if (TAILQ_EMPTY(&m->md.pv_list)) {
342 ++gd->gd_vmtotal.t_arm;
343 } else if (TAILQ_FIRST(&m->md.pv_list) ==
344 TAILQ_LAST(&m->md.pv_list, md_page_pv_list)) {
345 ++gd->gd_vmtotal.t_armshr;
346 ++gd->gd_vmtotal.t_avmshr;
347 } else {
348 ++gd->gd_vmtotal.t_avmshr;
352 static __inline
353 void
354 pmap_page_stats_deleting(vm_page_t m)
356 globaldata_t gd = mycpu;
358 if (TAILQ_EMPTY(&m->md.pv_list)) {
359 --gd->gd_vmtotal.t_arm;
360 } else if (TAILQ_FIRST(&m->md.pv_list) ==
361 TAILQ_LAST(&m->md.pv_list, md_page_pv_list)) {
362 --gd->gd_vmtotal.t_armshr;
363 --gd->gd_vmtotal.t_avmshr;
364 } else {
365 --gd->gd_vmtotal.t_avmshr;
370 * Move the kernel virtual free pointer to the next
371 * 2MB. This is used to help improve performance
372 * by using a large (2MB) page for much of the kernel
373 * (.text, .data, .bss)
375 static
376 vm_offset_t
377 pmap_kmem_choose(vm_offset_t addr)
379 vm_offset_t newaddr = addr;
381 newaddr = roundup2(addr, NBPDR);
382 return newaddr;
386 * pmap_pte_quick:
388 * Super fast pmap_pte routine best used when scanning the pv lists.
389 * This eliminates many course-grained invltlb calls. Note that many of
390 * the pv list scans are across different pmaps and it is very wasteful
391 * to do an entire invltlb when checking a single mapping.
393 static __inline pt_entry_t *pmap_pte(pmap_t pmap, vm_offset_t va);
395 static
396 pt_entry_t *
397 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
399 return pmap_pte(pmap, va);
403 * Returns the pindex of a page table entry (representing a terminal page).
404 * There are NUPTE_TOTAL page table entries possible (a huge number)
406 * x86-64 has a 48-bit address space, where bit 47 is sign-extended out.
407 * We want to properly translate negative KVAs.
409 static __inline
410 vm_pindex_t
411 pmap_pte_pindex(vm_offset_t va)
413 return ((va >> PAGE_SHIFT) & (NUPTE_TOTAL - 1));
417 * Returns the pindex of a page table.
419 static __inline
420 vm_pindex_t
421 pmap_pt_pindex(vm_offset_t va)
423 return (NUPTE_TOTAL + ((va >> PDRSHIFT) & (NUPT_TOTAL - 1)));
427 * Returns the pindex of a page directory.
429 static __inline
430 vm_pindex_t
431 pmap_pd_pindex(vm_offset_t va)
433 return (NUPTE_TOTAL + NUPT_TOTAL +
434 ((va >> PDPSHIFT) & (NUPD_TOTAL - 1)));
437 static __inline
438 vm_pindex_t
439 pmap_pdp_pindex(vm_offset_t va)
441 return (NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL +
442 ((va >> PML4SHIFT) & (NUPDP_TOTAL - 1)));
445 static __inline
446 vm_pindex_t
447 pmap_pml4_pindex(void)
449 return (NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL);
453 * Return various clipped indexes for a given VA
455 * Returns the index of a pt in a page directory, representing a page
456 * table.
458 static __inline
459 vm_pindex_t
460 pmap_pt_index(vm_offset_t va)
462 return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
466 * Returns the index of a pd in a page directory page, representing a page
467 * directory.
469 static __inline
470 vm_pindex_t
471 pmap_pd_index(vm_offset_t va)
473 return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
477 * Returns the index of a pdp in the pml4 table, representing a page
478 * directory page.
480 static __inline
481 vm_pindex_t
482 pmap_pdp_index(vm_offset_t va)
484 return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
488 * The placemarker hash must be broken up into four zones so lock
489 * ordering semantics continue to work (e.g. pte, pt, pd, then pdp).
491 * Placemarkers are used to 'lock' page table indices that do not have
492 * a pv_entry. This allows the pmap to support managed and unmanaged
493 * pages and shared page tables.
495 #define PM_PLACE_BASE (PM_PLACEMARKS >> 2)
497 static __inline
498 vm_pindex_t *
499 pmap_placemarker_hash(pmap_t pmap, vm_pindex_t pindex)
501 int hi;
503 if (pindex < pmap_pt_pindex(0)) /* zone 0 - PTE */
504 hi = 0;
505 else if (pindex < pmap_pd_pindex(0)) /* zone 1 - PT */
506 hi = PM_PLACE_BASE;
507 else if (pindex < pmap_pdp_pindex(0)) /* zone 2 - PD */
508 hi = PM_PLACE_BASE << 1;
509 else /* zone 3 - PDP (and PML4E) */
510 hi = PM_PLACE_BASE | (PM_PLACE_BASE << 1);
511 hi += pindex & (PM_PLACE_BASE - 1);
513 return (&pmap->pm_placemarks[hi]);
518 * Generic procedure to index a pte from a pt, pd, or pdp.
520 * NOTE: Normally passed pindex as pmap_xx_index(). pmap_xx_pindex() is NOT
521 * a page table page index but is instead of PV lookup index.
523 static
524 void *
525 pv_pte_lookup(pv_entry_t pv, vm_pindex_t pindex)
527 pt_entry_t *pte;
529 pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pv->pv_m));
530 return(&pte[pindex]);
534 * Return pointer to PDP slot in the PML4
536 static __inline
537 pml4_entry_t *
538 pmap_pdp(pmap_t pmap, vm_offset_t va)
540 return (&pmap->pm_pml4[pmap_pdp_index(va)]);
544 * Return pointer to PD slot in the PDP given a pointer to the PDP
546 static __inline
547 pdp_entry_t *
548 pmap_pdp_to_pd(pml4_entry_t pdp_pte, vm_offset_t va)
550 pdp_entry_t *pd;
552 pd = (pdp_entry_t *)PHYS_TO_DMAP(pdp_pte & PG_FRAME);
553 return (&pd[pmap_pd_index(va)]);
557 * Return pointer to PD slot in the PDP.
559 static __inline
560 pdp_entry_t *
561 pmap_pd(pmap_t pmap, vm_offset_t va)
563 pml4_entry_t *pdp;
565 pdp = pmap_pdp(pmap, va);
566 if ((*pdp & pmap->pmap_bits[PG_V_IDX]) == 0)
567 return NULL;
568 return (pmap_pdp_to_pd(*pdp, va));
572 * Return pointer to PT slot in the PD given a pointer to the PD
574 static __inline
575 pd_entry_t *
576 pmap_pd_to_pt(pdp_entry_t pd_pte, vm_offset_t va)
578 pd_entry_t *pt;
580 pt = (pd_entry_t *)PHYS_TO_DMAP(pd_pte & PG_FRAME);
581 return (&pt[pmap_pt_index(va)]);
585 * Return pointer to PT slot in the PD
587 * SIMPLE PMAP NOTE: Simple pmaps (embedded in objects) do not have PDPs,
588 * so we cannot lookup the PD via the PDP. Instead we
589 * must look it up via the pmap.
591 static __inline
592 pd_entry_t *
593 pmap_pt(pmap_t pmap, vm_offset_t va)
595 pdp_entry_t *pd;
596 pv_entry_t pv;
597 vm_pindex_t pd_pindex;
599 if (pmap->pm_flags & PMAP_FLAG_SIMPLE) {
600 pd_pindex = pmap_pd_pindex(va);
601 spin_lock(&pmap->pm_spin);
602 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pd_pindex);
603 spin_unlock(&pmap->pm_spin);
604 if (pv == NULL || pv->pv_m == NULL)
605 return NULL;
606 return (pmap_pd_to_pt(VM_PAGE_TO_PHYS(pv->pv_m), va));
607 } else {
608 pd = pmap_pd(pmap, va);
609 if (pd == NULL || (*pd & pmap->pmap_bits[PG_V_IDX]) == 0)
610 return NULL;
611 return (pmap_pd_to_pt(*pd, va));
616 * Return pointer to PTE slot in the PT given a pointer to the PT
618 static __inline
619 pt_entry_t *
620 pmap_pt_to_pte(pd_entry_t pt_pte, vm_offset_t va)
622 pt_entry_t *pte;
624 pte = (pt_entry_t *)PHYS_TO_DMAP(pt_pte & PG_FRAME);
625 return (&pte[pmap_pte_index(va)]);
629 * Return pointer to PTE slot in the PT
631 static __inline
632 pt_entry_t *
633 pmap_pte(pmap_t pmap, vm_offset_t va)
635 pd_entry_t *pt;
637 pt = pmap_pt(pmap, va);
638 if (pt == NULL || (*pt & pmap->pmap_bits[PG_V_IDX]) == 0)
639 return NULL;
640 if ((*pt & pmap->pmap_bits[PG_PS_IDX]) != 0)
641 return ((pt_entry_t *)pt);
642 return (pmap_pt_to_pte(*pt, va));
646 * Of all the layers (PTE, PT, PD, PDP, PML4) the best one to cache is
647 * the PT layer. This will speed up core pmap operations considerably.
649 * NOTE: The pmap spinlock does not need to be held but the passed-in pv
650 * must be in a known associated state (typically by being locked when
651 * the pmap spinlock isn't held). We allow the race for that case.
653 * NOTE: pm_pvhint is only accessed (read) with the spin-lock held, using
654 * cpu_ccfence() to prevent compiler optimizations from reloading the
655 * field.
657 static __inline
658 void
659 pv_cache(pv_entry_t pv, vm_pindex_t pindex)
661 if (pindex >= pmap_pt_pindex(0) && pindex < pmap_pd_pindex(0)) {
662 if (pv->pv_pmap)
663 pv->pv_pmap->pm_pvhint = pv;
669 * Return address of PT slot in PD (KVM only)
671 * Cannot be used for user page tables because it might interfere with
672 * the shared page-table-page optimization (pmap_mmu_optimize).
674 static __inline
675 pd_entry_t *
676 vtopt(vm_offset_t va)
678 uint64_t mask = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
679 NPML4EPGSHIFT)) - 1);
681 return (PDmap + ((va >> PDRSHIFT) & mask));
685 * KVM - return address of PTE slot in PT
687 static __inline
688 pt_entry_t *
689 vtopte(vm_offset_t va)
691 uint64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT +
692 NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
694 return (PTmap + ((va >> PAGE_SHIFT) & mask));
697 static uint64_t
698 allocpages(vm_paddr_t *firstaddr, long n)
700 uint64_t ret;
702 ret = *firstaddr;
703 bzero((void *)ret, n * PAGE_SIZE);
704 *firstaddr += n * PAGE_SIZE;
705 return (ret);
708 static
709 void
710 create_pagetables(vm_paddr_t *firstaddr)
712 long i; /* must be 64 bits */
713 long nkpt_base;
714 long nkpt_phys;
715 int j;
718 * We are running (mostly) V=P at this point
720 * Calculate NKPT - number of kernel page tables. We have to
721 * accomodoate prealloction of the vm_page_array, dump bitmap,
722 * MSGBUF_SIZE, and other stuff. Be generous.
724 * Maxmem is in pages.
726 * ndmpdp is the number of 1GB pages we wish to map.
728 ndmpdp = (ptoa(Maxmem) + NBPDP - 1) >> PDPSHIFT;
729 if (ndmpdp < 4) /* Minimum 4GB of dirmap */
730 ndmpdp = 4;
731 KKASSERT(ndmpdp <= NKPDPE * NPDEPG);
734 * Starting at the beginning of kvm (not KERNBASE).
736 nkpt_phys = (Maxmem * sizeof(struct vm_page) + NBPDR - 1) / NBPDR;
737 nkpt_phys += (Maxmem * sizeof(struct pv_entry) + NBPDR - 1) / NBPDR;
738 nkpt_phys += ((nkpt + nkpt + 1 + NKPML4E + NKPDPE + NDMPML4E +
739 ndmpdp) + 511) / 512;
740 nkpt_phys += 128;
743 * Starting at KERNBASE - map 2G worth of page table pages.
744 * KERNBASE is offset -2G from the end of kvm.
746 nkpt_base = (NPDPEPG - KPDPI) * NPTEPG; /* typically 2 x 512 */
749 * Allocate pages
751 KPTbase = allocpages(firstaddr, nkpt_base);
752 KPTphys = allocpages(firstaddr, nkpt_phys);
753 KPML4phys = allocpages(firstaddr, 1);
754 KPDPphys = allocpages(firstaddr, NKPML4E);
755 KPDphys = allocpages(firstaddr, NKPDPE);
758 * Calculate the page directory base for KERNBASE,
759 * that is where we start populating the page table pages.
760 * Basically this is the end - 2.
762 KPDbase = KPDphys + ((NKPDPE - (NPDPEPG - KPDPI)) << PAGE_SHIFT);
764 DMPDPphys = allocpages(firstaddr, NDMPML4E);
765 if ((amd_feature & AMDID_PAGE1GB) == 0)
766 DMPDphys = allocpages(firstaddr, ndmpdp);
767 dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
770 * Fill in the underlying page table pages for the area around
771 * KERNBASE. This remaps low physical memory to KERNBASE.
773 * Read-only from zero to physfree
774 * XXX not fully used, underneath 2M pages
776 for (i = 0; (i << PAGE_SHIFT) < *firstaddr; i++) {
777 ((pt_entry_t *)KPTbase)[i] = i << PAGE_SHIFT;
778 ((pt_entry_t *)KPTbase)[i] |=
779 pmap_bits_default[PG_RW_IDX] |
780 pmap_bits_default[PG_V_IDX] |
781 pmap_bits_default[PG_G_IDX];
785 * Now map the initial kernel page tables. One block of page
786 * tables is placed at the beginning of kernel virtual memory,
787 * and another block is placed at KERNBASE to map the kernel binary,
788 * data, bss, and initial pre-allocations.
790 for (i = 0; i < nkpt_base; i++) {
791 ((pd_entry_t *)KPDbase)[i] = KPTbase + (i << PAGE_SHIFT);
792 ((pd_entry_t *)KPDbase)[i] |=
793 pmap_bits_default[PG_RW_IDX] |
794 pmap_bits_default[PG_V_IDX];
796 for (i = 0; i < nkpt_phys; i++) {
797 ((pd_entry_t *)KPDphys)[i] = KPTphys + (i << PAGE_SHIFT);
798 ((pd_entry_t *)KPDphys)[i] |=
799 pmap_bits_default[PG_RW_IDX] |
800 pmap_bits_default[PG_V_IDX];
804 * Map from zero to end of allocations using 2M pages as an
805 * optimization. This will bypass some of the KPTBase pages
806 * above in the KERNBASE area.
808 for (i = 0; (i << PDRSHIFT) < *firstaddr; i++) {
809 ((pd_entry_t *)KPDbase)[i] = i << PDRSHIFT;
810 ((pd_entry_t *)KPDbase)[i] |=
811 pmap_bits_default[PG_RW_IDX] |
812 pmap_bits_default[PG_V_IDX] |
813 pmap_bits_default[PG_PS_IDX] |
814 pmap_bits_default[PG_G_IDX];
818 * And connect up the PD to the PDP. The kernel pmap is expected
819 * to pre-populate all of its PDs. See NKPDPE in vmparam.h.
821 for (i = 0; i < NKPDPE; i++) {
822 ((pdp_entry_t *)KPDPphys)[NPDPEPG - NKPDPE + i] =
823 KPDphys + (i << PAGE_SHIFT);
824 ((pdp_entry_t *)KPDPphys)[NPDPEPG - NKPDPE + i] |=
825 pmap_bits_default[PG_RW_IDX] |
826 pmap_bits_default[PG_V_IDX] |
827 pmap_bits_default[PG_U_IDX];
831 * Now set up the direct map space using either 2MB or 1GB pages
832 * Preset PG_M and PG_A because demotion expects it.
834 * When filling in entries in the PD pages make sure any excess
835 * entries are set to zero as we allocated enough PD pages
837 if ((amd_feature & AMDID_PAGE1GB) == 0) {
838 for (i = 0; i < NPDEPG * ndmpdp; i++) {
839 ((pd_entry_t *)DMPDphys)[i] = i << PDRSHIFT;
840 ((pd_entry_t *)DMPDphys)[i] |=
841 pmap_bits_default[PG_RW_IDX] |
842 pmap_bits_default[PG_V_IDX] |
843 pmap_bits_default[PG_PS_IDX] |
844 pmap_bits_default[PG_G_IDX] |
845 pmap_bits_default[PG_M_IDX] |
846 pmap_bits_default[PG_A_IDX];
850 * And the direct map space's PDP
852 for (i = 0; i < ndmpdp; i++) {
853 ((pdp_entry_t *)DMPDPphys)[i] = DMPDphys +
854 (i << PAGE_SHIFT);
855 ((pdp_entry_t *)DMPDPphys)[i] |=
856 pmap_bits_default[PG_RW_IDX] |
857 pmap_bits_default[PG_V_IDX] |
858 pmap_bits_default[PG_U_IDX];
860 } else {
861 for (i = 0; i < ndmpdp; i++) {
862 ((pdp_entry_t *)DMPDPphys)[i] =
863 (vm_paddr_t)i << PDPSHIFT;
864 ((pdp_entry_t *)DMPDPphys)[i] |=
865 pmap_bits_default[PG_RW_IDX] |
866 pmap_bits_default[PG_V_IDX] |
867 pmap_bits_default[PG_PS_IDX] |
868 pmap_bits_default[PG_G_IDX] |
869 pmap_bits_default[PG_M_IDX] |
870 pmap_bits_default[PG_A_IDX];
874 /* And recursively map PML4 to itself in order to get PTmap */
875 ((pdp_entry_t *)KPML4phys)[PML4PML4I] = KPML4phys;
876 ((pdp_entry_t *)KPML4phys)[PML4PML4I] |=
877 pmap_bits_default[PG_RW_IDX] |
878 pmap_bits_default[PG_V_IDX] |
879 pmap_bits_default[PG_U_IDX];
882 * Connect the Direct Map slots up to the PML4
884 for (j = 0; j < NDMPML4E; ++j) {
885 ((pdp_entry_t *)KPML4phys)[DMPML4I + j] =
886 (DMPDPphys + ((vm_paddr_t)j << PML4SHIFT)) |
887 pmap_bits_default[PG_RW_IDX] |
888 pmap_bits_default[PG_V_IDX] |
889 pmap_bits_default[PG_U_IDX];
893 * Connect the KVA slot up to the PML4
895 ((pdp_entry_t *)KPML4phys)[KPML4I] = KPDPphys;
896 ((pdp_entry_t *)KPML4phys)[KPML4I] |=
897 pmap_bits_default[PG_RW_IDX] |
898 pmap_bits_default[PG_V_IDX] |
899 pmap_bits_default[PG_U_IDX];
903 * Bootstrap the system enough to run with virtual memory.
905 * On the i386 this is called after mapping has already been enabled
906 * and just syncs the pmap module with what has already been done.
907 * [We can't call it easily with mapping off since the kernel is not
908 * mapped with PA == VA, hence we would have to relocate every address
909 * from the linked base (virtual) address "KERNBASE" to the actual
910 * (physical) address starting relative to 0]
912 void
913 pmap_bootstrap(vm_paddr_t *firstaddr)
915 vm_offset_t va;
916 pt_entry_t *pte;
917 int i;
919 KvaStart = VM_MIN_KERNEL_ADDRESS;
920 KvaEnd = VM_MAX_KERNEL_ADDRESS;
921 KvaSize = KvaEnd - KvaStart;
923 avail_start = *firstaddr;
926 * Create an initial set of page tables to run the kernel in.
928 create_pagetables(firstaddr);
930 virtual2_start = KvaStart;
931 virtual2_end = PTOV_OFFSET;
933 virtual_start = (vm_offset_t) PTOV_OFFSET + *firstaddr;
934 virtual_start = pmap_kmem_choose(virtual_start);
936 virtual_end = VM_MAX_KERNEL_ADDRESS;
938 /* XXX do %cr0 as well */
939 load_cr4(rcr4() | CR4_PGE | CR4_PSE);
940 load_cr3(KPML4phys);
943 * Initialize protection array.
945 i386_protection_init();
948 * The kernel's pmap is statically allocated so we don't have to use
949 * pmap_create, which is unlikely to work correctly at this part of
950 * the boot sequence (XXX and which no longer exists).
952 kernel_pmap.pm_pml4 = (pdp_entry_t *) (PTOV_OFFSET + KPML4phys);
953 kernel_pmap.pm_count = 1;
954 CPUMASK_ASSALLONES(kernel_pmap.pm_active);
955 RB_INIT(&kernel_pmap.pm_pvroot);
956 spin_init(&kernel_pmap.pm_spin, "pmapbootstrap");
957 for (i = 0; i < PM_PLACEMARKS; ++i)
958 kernel_pmap.pm_placemarks[i] = PM_NOPLACEMARK;
961 * Reserve some special page table entries/VA space for temporary
962 * mapping of pages.
964 #define SYSMAP(c, p, v, n) \
965 v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
967 va = virtual_start;
968 pte = vtopte(va);
971 * CMAP1/CMAP2 are used for zeroing and copying pages.
973 SYSMAP(caddr_t, CMAP1, CADDR1, 1)
976 * Crashdump maps.
978 SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
981 * ptvmmap is used for reading arbitrary physical pages via
982 * /dev/mem.
984 SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
987 * msgbufp is used to map the system message buffer.
988 * XXX msgbufmap is not used.
990 SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
991 atop(round_page(MSGBUF_SIZE)))
993 virtual_start = va;
994 virtual_start = pmap_kmem_choose(virtual_start);
996 *CMAP1 = 0;
999 * PG_G is terribly broken on SMP because we IPI invltlb's in some
1000 * cases rather then invl1pg. Actually, I don't even know why it
1001 * works under UP because self-referential page table mappings
1003 // pgeflag = 0;
1006 * Initialize the 4MB page size flag
1008 // pseflag = 0;
1010 * The 4MB page version of the initial
1011 * kernel page mapping.
1013 pdir4mb = 0;
1015 #if !defined(DISABLE_PSE)
1016 if (cpu_feature & CPUID_PSE) {
1017 pt_entry_t ptditmp;
1019 * Note that we have enabled PSE mode
1021 // pseflag = kernel_pmap.pmap_bits[PG_PS_IDX];
1022 ptditmp = *(PTmap + x86_64_btop(KERNBASE));
1023 ptditmp &= ~(NBPDR - 1);
1024 ptditmp |= pmap_bits_default[PG_V_IDX] |
1025 pmap_bits_default[PG_RW_IDX] |
1026 pmap_bits_default[PG_PS_IDX] |
1027 pmap_bits_default[PG_U_IDX];
1028 // pgeflag;
1029 pdir4mb = ptditmp;
1031 #endif
1032 cpu_invltlb();
1034 /* Initialize the PAT MSR */
1035 pmap_init_pat();
1036 pmap_pinit_defaults(&kernel_pmap);
1038 TUNABLE_INT_FETCH("machdep.pmap_fast_kernel_cpusync",
1039 &pmap_fast_kernel_cpusync);
1044 * Setup the PAT MSR.
1046 void
1047 pmap_init_pat(void)
1049 uint64_t pat_msr;
1050 u_long cr0, cr4;
1053 * Default values mapping PATi,PCD,PWT bits at system reset.
1054 * The default values effectively ignore the PATi bit by
1055 * repeating the encodings for 0-3 in 4-7, and map the PCD
1056 * and PWT bit combinations to the expected PAT types.
1058 pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) | /* 000 */
1059 PAT_VALUE(1, PAT_WRITE_THROUGH) | /* 001 */
1060 PAT_VALUE(2, PAT_UNCACHED) | /* 010 */
1061 PAT_VALUE(3, PAT_UNCACHEABLE) | /* 011 */
1062 PAT_VALUE(4, PAT_WRITE_BACK) | /* 100 */
1063 PAT_VALUE(5, PAT_WRITE_THROUGH) | /* 101 */
1064 PAT_VALUE(6, PAT_UNCACHED) | /* 110 */
1065 PAT_VALUE(7, PAT_UNCACHEABLE); /* 111 */
1066 pat_pte_index[PAT_WRITE_BACK] = 0;
1067 pat_pte_index[PAT_WRITE_THROUGH]= 0 | X86_PG_NC_PWT;
1068 pat_pte_index[PAT_UNCACHED] = X86_PG_NC_PCD;
1069 pat_pte_index[PAT_UNCACHEABLE] = X86_PG_NC_PCD | X86_PG_NC_PWT;
1070 pat_pte_index[PAT_WRITE_PROTECTED] = pat_pte_index[PAT_UNCACHEABLE];
1071 pat_pte_index[PAT_WRITE_COMBINING] = pat_pte_index[PAT_UNCACHEABLE];
1073 if (cpu_feature & CPUID_PAT) {
1075 * If we support the PAT then set-up entries for
1076 * WRITE_PROTECTED and WRITE_COMBINING using bit patterns
1077 * 4 and 5.
1079 pat_msr = (pat_msr & ~PAT_MASK(4)) |
1080 PAT_VALUE(4, PAT_WRITE_PROTECTED);
1081 pat_msr = (pat_msr & ~PAT_MASK(5)) |
1082 PAT_VALUE(5, PAT_WRITE_COMBINING);
1083 pat_pte_index[PAT_WRITE_PROTECTED] = X86_PG_PTE_PAT | 0;
1084 pat_pte_index[PAT_WRITE_COMBINING] = X86_PG_PTE_PAT | X86_PG_NC_PWT;
1087 * Then enable the PAT
1090 /* Disable PGE. */
1091 cr4 = rcr4();
1092 load_cr4(cr4 & ~CR4_PGE);
1094 /* Disable caches (CD = 1, NW = 0). */
1095 cr0 = rcr0();
1096 load_cr0((cr0 & ~CR0_NW) | CR0_CD);
1098 /* Flushes caches and TLBs. */
1099 wbinvd();
1100 cpu_invltlb();
1102 /* Update PAT and index table. */
1103 wrmsr(MSR_PAT, pat_msr);
1105 /* Flush caches and TLBs again. */
1106 wbinvd();
1107 cpu_invltlb();
1109 /* Restore caches and PGE. */
1110 load_cr0(cr0);
1111 load_cr4(cr4);
1112 PatMsr = pat_msr;
1117 * Set 4mb pdir for mp startup
1119 void
1120 pmap_set_opt(void)
1122 if (cpu_feature & CPUID_PSE) {
1123 load_cr4(rcr4() | CR4_PSE);
1124 if (pdir4mb && mycpu->gd_cpuid == 0) { /* only on BSP */
1125 cpu_invltlb();
1131 * Initialize the pmap module.
1132 * Called by vm_init, to initialize any structures that the pmap
1133 * system needs to map virtual memory.
1134 * pmap_init has been enhanced to support in a fairly consistant
1135 * way, discontiguous physical memory.
1137 void
1138 pmap_init(void)
1140 int i;
1141 int initial_pvs;
1144 * Allocate memory for random pmap data structures. Includes the
1145 * pv_head_table.
1148 for (i = 0; i < vm_page_array_size; i++) {
1149 vm_page_t m;
1151 m = &vm_page_array[i];
1152 TAILQ_INIT(&m->md.pv_list);
1156 * init the pv free list
1158 initial_pvs = vm_page_array_size;
1159 if (initial_pvs < MINPV)
1160 initial_pvs = MINPV;
1161 pvzone = &pvzone_store;
1162 pvinit = (void *)kmem_alloc(&kernel_map,
1163 initial_pvs * sizeof (struct pv_entry),
1164 VM_SUBSYS_PVENTRY);
1165 zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry),
1166 pvinit, initial_pvs);
1169 * Now it is safe to enable pv_table recording.
1171 pmap_initialized = TRUE;
1175 * Initialize the address space (zone) for the pv_entries. Set a
1176 * high water mark so that the system can recover from excessive
1177 * numbers of pv entries.
1179 void
1180 pmap_init2(void)
1182 int shpgperproc = PMAP_SHPGPERPROC;
1183 int entry_max;
1185 TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1186 pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
1187 TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1188 pv_entry_high_water = 9 * (pv_entry_max / 10);
1191 * Subtract out pages already installed in the zone (hack)
1193 entry_max = pv_entry_max - vm_page_array_size;
1194 if (entry_max <= 0)
1195 entry_max = 1;
1197 zinitna(pvzone, &pvzone_obj, NULL, 0, entry_max, ZONE_INTERRUPT);
1200 * Enable dynamic deletion of empty higher-level page table pages
1201 * by default only if system memory is < 8GB (use 7GB for slop).
1202 * This can save a little memory, but imposes significant
1203 * performance overhead for things like bulk builds, and for programs
1204 * which do a lot of memory mapping and memory unmapping.
1206 if (pmap_dynamic_delete < 0) {
1207 if (vmstats.v_page_count < 7LL * 1024 * 1024 * 1024 / PAGE_SIZE)
1208 pmap_dynamic_delete = 1;
1209 else
1210 pmap_dynamic_delete = 0;
1215 * Typically used to initialize a fictitious page by vm/device_pager.c
1217 void
1218 pmap_page_init(struct vm_page *m)
1220 vm_page_init(m);
1221 TAILQ_INIT(&m->md.pv_list);
1224 /***************************************************
1225 * Low level helper routines.....
1226 ***************************************************/
1229 * this routine defines the region(s) of memory that should
1230 * not be tested for the modified bit.
1232 static __inline
1234 pmap_track_modified(vm_pindex_t pindex)
1236 vm_offset_t va = (vm_offset_t)pindex << PAGE_SHIFT;
1237 if ((va < clean_sva) || (va >= clean_eva))
1238 return 1;
1239 else
1240 return 0;
1244 * Extract the physical page address associated with the map/VA pair.
1245 * The page must be wired for this to work reliably.
1247 vm_paddr_t
1248 pmap_extract(pmap_t pmap, vm_offset_t va, void **handlep)
1250 vm_paddr_t rtval;
1251 pv_entry_t pt_pv;
1252 pt_entry_t *ptep;
1254 rtval = 0;
1255 if (va >= VM_MAX_USER_ADDRESS) {
1257 * Kernel page directories might be direct-mapped and
1258 * there is typically no PV tracking of pte's
1260 pd_entry_t *pt;
1262 pt = pmap_pt(pmap, va);
1263 if (pt && (*pt & pmap->pmap_bits[PG_V_IDX])) {
1264 if (*pt & pmap->pmap_bits[PG_PS_IDX]) {
1265 rtval = *pt & PG_PS_FRAME;
1266 rtval |= va & PDRMASK;
1267 } else {
1268 ptep = pmap_pt_to_pte(*pt, va);
1269 if (*pt & pmap->pmap_bits[PG_V_IDX]) {
1270 rtval = *ptep & PG_FRAME;
1271 rtval |= va & PAGE_MASK;
1275 if (handlep)
1276 *handlep = NULL;
1277 } else {
1279 * User pages currently do not direct-map the page directory
1280 * and some pages might not used managed PVs. But all PT's
1281 * will have a PV.
1283 pt_pv = pv_get(pmap, pmap_pt_pindex(va), NULL);
1284 if (pt_pv) {
1285 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
1286 if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
1287 rtval = *ptep & PG_FRAME;
1288 rtval |= va & PAGE_MASK;
1290 if (handlep)
1291 *handlep = pt_pv; /* locked until done */
1292 else
1293 pv_put (pt_pv);
1294 } else if (handlep) {
1295 *handlep = NULL;
1298 return rtval;
1301 void
1302 pmap_extract_done(void *handle)
1304 if (handle)
1305 pv_put((pv_entry_t)handle);
1309 * Similar to extract but checks protections, SMP-friendly short-cut for
1310 * vm_fault_page[_quick](). Can return NULL to cause the caller to
1311 * fall-through to the real fault code. Does not work with HVM page
1312 * tables.
1314 * The returned page, if not NULL, is held (and not busied).
1316 * WARNING! THE RETURNED PAGE IS ONLY HELD AND NOT SUITABLE FOR READING
1317 * OR WRITING AS-IS.
1319 vm_page_t
1320 pmap_fault_page_quick(pmap_t pmap, vm_offset_t va, vm_prot_t prot, int *busyp)
1322 if (pmap &&
1323 va < VM_MAX_USER_ADDRESS &&
1324 (pmap->pm_flags & PMAP_HVM) == 0) {
1325 pv_entry_t pt_pv;
1326 pv_entry_t pte_pv;
1327 pt_entry_t *ptep;
1328 pt_entry_t req;
1329 vm_page_t m;
1330 int error;
1332 req = pmap->pmap_bits[PG_V_IDX] |
1333 pmap->pmap_bits[PG_U_IDX];
1334 if (prot & VM_PROT_WRITE)
1335 req |= pmap->pmap_bits[PG_RW_IDX];
1337 pt_pv = pv_get(pmap, pmap_pt_pindex(va), NULL);
1338 if (pt_pv == NULL)
1339 return (NULL);
1340 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
1341 if ((*ptep & req) != req) {
1342 pv_put(pt_pv);
1343 return (NULL);
1345 pte_pv = pv_get_try(pmap, pmap_pte_pindex(va), NULL, &error);
1346 if (pte_pv && error == 0) {
1347 m = pte_pv->pv_m;
1348 if (prot & VM_PROT_WRITE) {
1349 /* interlocked by presence of pv_entry */
1350 vm_page_dirty(m);
1352 if (busyp) {
1353 if (prot & VM_PROT_WRITE) {
1354 if (vm_page_busy_try(m, TRUE))
1355 m = NULL;
1356 *busyp = 1;
1357 } else {
1358 vm_page_hold(m);
1359 *busyp = 0;
1361 } else {
1362 vm_page_hold(m);
1364 pv_put(pte_pv);
1365 } else if (pte_pv) {
1366 pv_drop(pte_pv);
1367 m = NULL;
1368 } else {
1369 /* error, since we didn't request a placemarker */
1370 m = NULL;
1372 pv_put(pt_pv);
1373 return(m);
1374 } else {
1375 return(NULL);
1380 * Extract the physical page address associated kernel virtual address.
1382 vm_paddr_t
1383 pmap_kextract(vm_offset_t va)
1385 pd_entry_t pt; /* pt entry in pd */
1386 vm_paddr_t pa;
1388 if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
1389 pa = DMAP_TO_PHYS(va);
1390 } else {
1391 pt = *vtopt(va);
1392 if (pt & kernel_pmap.pmap_bits[PG_PS_IDX]) {
1393 pa = (pt & PG_PS_FRAME) | (va & PDRMASK);
1394 } else {
1396 * Beware of a concurrent promotion that changes the
1397 * PDE at this point! For example, vtopte() must not
1398 * be used to access the PTE because it would use the
1399 * new PDE. It is, however, safe to use the old PDE
1400 * because the page table page is preserved by the
1401 * promotion.
1403 pa = *pmap_pt_to_pte(pt, va);
1404 pa = (pa & PG_FRAME) | (va & PAGE_MASK);
1407 return pa;
1410 /***************************************************
1411 * Low level mapping routines.....
1412 ***************************************************/
1415 * Routine: pmap_kenter
1416 * Function:
1417 * Add a wired page to the KVA
1418 * NOTE! note that in order for the mapping to take effect -- you
1419 * should do an invltlb after doing the pmap_kenter().
1421 void
1422 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1424 pt_entry_t *ptep;
1425 pt_entry_t npte;
1427 npte = pa |
1428 kernel_pmap.pmap_bits[PG_RW_IDX] |
1429 kernel_pmap.pmap_bits[PG_V_IDX];
1430 // pgeflag;
1431 ptep = vtopte(va);
1432 #if 1
1433 pmap_inval_smp(&kernel_pmap, va, 1, ptep, npte);
1434 #else
1435 /* FUTURE */
1436 if (*ptep)
1437 pmap_inval_smp(&kernel_pmap, va, ptep, npte);
1438 else
1439 *ptep = npte;
1440 #endif
1444 * Similar to pmap_kenter(), except we only invalidate the mapping on the
1445 * current CPU. Returns 0 if the previous pte was 0, 1 if it wasn't
1446 * (caller can conditionalize calling smp_invltlb()).
1449 pmap_kenter_quick(vm_offset_t va, vm_paddr_t pa)
1451 pt_entry_t *ptep;
1452 pt_entry_t npte;
1453 int res;
1455 npte = pa | kernel_pmap.pmap_bits[PG_RW_IDX] |
1456 kernel_pmap.pmap_bits[PG_V_IDX];
1457 // npte |= pgeflag;
1458 ptep = vtopte(va);
1459 #if 1
1460 res = 1;
1461 #else
1462 /* FUTURE */
1463 res = (*ptep != 0);
1464 #endif
1465 atomic_swap_long(ptep, npte);
1466 cpu_invlpg((void *)va);
1468 return res;
1472 * Enter addresses into the kernel pmap but don't bother
1473 * doing any tlb invalidations. Caller will do a rollup
1474 * invalidation via pmap_rollup_inval().
1477 pmap_kenter_noinval(vm_offset_t va, vm_paddr_t pa)
1479 pt_entry_t *ptep;
1480 pt_entry_t npte;
1481 int res;
1483 npte = pa |
1484 kernel_pmap.pmap_bits[PG_RW_IDX] |
1485 kernel_pmap.pmap_bits[PG_V_IDX];
1486 // pgeflag;
1487 ptep = vtopte(va);
1488 #if 1
1489 res = 1;
1490 #else
1491 /* FUTURE */
1492 res = (*ptep != 0);
1493 #endif
1494 atomic_swap_long(ptep, npte);
1495 cpu_invlpg((void *)va);
1497 return res;
1501 * remove a page from the kernel pagetables
1503 void
1504 pmap_kremove(vm_offset_t va)
1506 pt_entry_t *ptep;
1508 ptep = vtopte(va);
1509 pmap_inval_smp(&kernel_pmap, va, 1, ptep, 0);
1512 void
1513 pmap_kremove_quick(vm_offset_t va)
1515 pt_entry_t *ptep;
1517 ptep = vtopte(va);
1518 (void)pte_load_clear(ptep);
1519 cpu_invlpg((void *)va);
1523 * Remove addresses from the kernel pmap but don't bother
1524 * doing any tlb invalidations. Caller will do a rollup
1525 * invalidation via pmap_rollup_inval().
1527 void
1528 pmap_kremove_noinval(vm_offset_t va)
1530 pt_entry_t *ptep;
1532 ptep = vtopte(va);
1533 (void)pte_load_clear(ptep);
1537 * XXX these need to be recoded. They are not used in any critical path.
1539 void
1540 pmap_kmodify_rw(vm_offset_t va)
1542 atomic_set_long(vtopte(va), kernel_pmap.pmap_bits[PG_RW_IDX]);
1543 cpu_invlpg((void *)va);
1546 /* NOT USED
1547 void
1548 pmap_kmodify_nc(vm_offset_t va)
1550 atomic_set_long(vtopte(va), PG_N);
1551 cpu_invlpg((void *)va);
1556 * Used to map a range of physical addresses into kernel virtual
1557 * address space during the low level boot, typically to map the
1558 * dump bitmap, message buffer, and vm_page_array.
1560 * These mappings are typically made at some pointer after the end of the
1561 * kernel text+data.
1563 * We could return PHYS_TO_DMAP(start) here and not allocate any
1564 * via (*virtp), but then kmem from userland and kernel dumps won't
1565 * have access to the related pointers.
1567 vm_offset_t
1568 pmap_map(vm_offset_t *virtp, vm_paddr_t start, vm_paddr_t end, int prot)
1570 vm_offset_t va;
1571 vm_offset_t va_start;
1573 /*return PHYS_TO_DMAP(start);*/
1575 va_start = *virtp;
1576 va = va_start;
1578 while (start < end) {
1579 pmap_kenter_quick(va, start);
1580 va += PAGE_SIZE;
1581 start += PAGE_SIZE;
1583 *virtp = va;
1584 return va_start;
1587 #define PMAP_CLFLUSH_THRESHOLD (2 * 1024 * 1024)
1590 * Remove the specified set of pages from the data and instruction caches.
1592 * In contrast to pmap_invalidate_cache_range(), this function does not
1593 * rely on the CPU's self-snoop feature, because it is intended for use
1594 * when moving pages into a different cache domain.
1596 void
1597 pmap_invalidate_cache_pages(vm_page_t *pages, int count)
1599 vm_offset_t daddr, eva;
1600 int i;
1602 if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
1603 (cpu_feature & CPUID_CLFSH) == 0)
1604 wbinvd();
1605 else {
1606 cpu_mfence();
1607 for (i = 0; i < count; i++) {
1608 daddr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pages[i]));
1609 eva = daddr + PAGE_SIZE;
1610 for (; daddr < eva; daddr += cpu_clflush_line_size)
1611 clflush(daddr);
1613 cpu_mfence();
1617 void
1618 pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
1620 KASSERT((sva & PAGE_MASK) == 0,
1621 ("pmap_invalidate_cache_range: sva not page-aligned"));
1622 KASSERT((eva & PAGE_MASK) == 0,
1623 ("pmap_invalidate_cache_range: eva not page-aligned"));
1625 if (cpu_feature & CPUID_SS) {
1626 ; /* If "Self Snoop" is supported, do nothing. */
1627 } else {
1628 /* Globally invalidate caches */
1629 cpu_wbinvd_on_all_cpus();
1634 * Invalidate the specified range of virtual memory on all cpus associated
1635 * with the pmap.
1637 void
1638 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1640 pmap_inval_smp(pmap, sva, (eva - sva) >> PAGE_SHIFT, NULL, 0);
1644 * Add a list of wired pages to the kva. This routine is used for temporary
1645 * kernel mappings such as those found in buffer cache buffer. Page
1646 * modifications and accesses are not tracked or recorded.
1648 * NOTE! Old mappings are simply overwritten, and we cannot assume relaxed
1649 * semantics as previous mappings may have been zerod without any
1650 * invalidation.
1652 * The page *must* be wired.
1654 void
1655 pmap_qenter(vm_offset_t beg_va, vm_page_t *m, int count)
1657 vm_offset_t end_va;
1658 vm_offset_t va;
1660 end_va = beg_va + count * PAGE_SIZE;
1662 for (va = beg_va; va < end_va; va += PAGE_SIZE) {
1663 pt_entry_t pte;
1664 pt_entry_t *ptep;
1666 ptep = vtopte(va);
1667 pte = VM_PAGE_TO_PHYS(*m) |
1668 kernel_pmap.pmap_bits[PG_RW_IDX] |
1669 kernel_pmap.pmap_bits[PG_V_IDX] |
1670 kernel_pmap.pmap_cache_bits[(*m)->pat_mode];
1671 // pgeflag;
1672 atomic_swap_long(ptep, pte);
1673 m++;
1675 pmap_invalidate_range(&kernel_pmap, beg_va, end_va);
1679 * This routine jerks page mappings from the kernel -- it is meant only
1680 * for temporary mappings such as those found in buffer cache buffers.
1681 * No recording modified or access status occurs.
1683 * MPSAFE, INTERRUPT SAFE (cluster callback)
1685 void
1686 pmap_qremove(vm_offset_t beg_va, int count)
1688 vm_offset_t end_va;
1689 vm_offset_t va;
1691 end_va = beg_va + count * PAGE_SIZE;
1693 for (va = beg_va; va < end_va; va += PAGE_SIZE) {
1694 pt_entry_t *pte;
1696 pte = vtopte(va);
1697 (void)pte_load_clear(pte);
1698 cpu_invlpg((void *)va);
1700 pmap_invalidate_range(&kernel_pmap, beg_va, end_va);
1704 * This routine removes temporary kernel mappings, only invalidating them
1705 * on the current cpu. It should only be used under carefully controlled
1706 * conditions.
1708 void
1709 pmap_qremove_quick(vm_offset_t beg_va, int count)
1711 vm_offset_t end_va;
1712 vm_offset_t va;
1714 end_va = beg_va + count * PAGE_SIZE;
1716 for (va = beg_va; va < end_va; va += PAGE_SIZE) {
1717 pt_entry_t *pte;
1719 pte = vtopte(va);
1720 (void)pte_load_clear(pte);
1721 cpu_invlpg((void *)va);
1726 * This routine removes temporary kernel mappings *without* invalidating
1727 * the TLB. It can only be used on permanent kva reservations such as those
1728 * found in buffer cache buffers, under carefully controlled circumstances.
1730 * NOTE: Repopulating these KVAs requires unconditional invalidation.
1731 * (pmap_qenter() does unconditional invalidation).
1733 void
1734 pmap_qremove_noinval(vm_offset_t beg_va, int count)
1736 vm_offset_t end_va;
1737 vm_offset_t va;
1739 end_va = beg_va + count * PAGE_SIZE;
1741 for (va = beg_va; va < end_va; va += PAGE_SIZE) {
1742 pt_entry_t *pte;
1744 pte = vtopte(va);
1745 (void)pte_load_clear(pte);
1750 * Create a new thread and optionally associate it with a (new) process.
1751 * NOTE! the new thread's cpu may not equal the current cpu.
1753 void
1754 pmap_init_thread(thread_t td)
1756 /* enforce pcb placement & alignment */
1757 td->td_pcb = (struct pcb *)(td->td_kstack + td->td_kstack_size) - 1;
1758 td->td_pcb = (struct pcb *)((intptr_t)td->td_pcb & ~(intptr_t)0xF);
1759 td->td_savefpu = &td->td_pcb->pcb_save;
1760 td->td_sp = (char *)td->td_pcb; /* no -16 */
1764 * This routine directly affects the fork perf for a process.
1766 void
1767 pmap_init_proc(struct proc *p)
1771 static void
1772 pmap_pinit_defaults(struct pmap *pmap)
1774 bcopy(pmap_bits_default, pmap->pmap_bits,
1775 sizeof(pmap_bits_default));
1776 bcopy(protection_codes, pmap->protection_codes,
1777 sizeof(protection_codes));
1778 bcopy(pat_pte_index, pmap->pmap_cache_bits,
1779 sizeof(pat_pte_index));
1780 pmap->pmap_cache_mask = X86_PG_NC_PWT | X86_PG_NC_PCD | X86_PG_PTE_PAT;
1781 pmap->copyinstr = std_copyinstr;
1782 pmap->copyin = std_copyin;
1783 pmap->copyout = std_copyout;
1784 pmap->fubyte = std_fubyte;
1785 pmap->subyte = std_subyte;
1786 pmap->fuword32 = std_fuword32;
1787 pmap->fuword64 = std_fuword64;
1788 pmap->suword32 = std_suword32;
1789 pmap->suword64 = std_suword64;
1790 pmap->swapu32 = std_swapu32;
1791 pmap->swapu64 = std_swapu64;
1794 * Initialize pmap0/vmspace0.
1796 * On architectures where the kernel pmap is not integrated into the user
1797 * process pmap, this pmap represents the process pmap, not the kernel pmap.
1798 * kernel_pmap should be used to directly access the kernel_pmap.
1800 void
1801 pmap_pinit0(struct pmap *pmap)
1803 int i;
1805 pmap->pm_pml4 = (pml4_entry_t *)(PTOV_OFFSET + KPML4phys);
1806 pmap->pm_count = 1;
1807 CPUMASK_ASSZERO(pmap->pm_active);
1808 pmap->pm_pvhint = NULL;
1809 RB_INIT(&pmap->pm_pvroot);
1810 spin_init(&pmap->pm_spin, "pmapinit0");
1811 for (i = 0; i < PM_PLACEMARKS; ++i)
1812 pmap->pm_placemarks[i] = PM_NOPLACEMARK;
1813 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1814 pmap_pinit_defaults(pmap);
1818 * Initialize a preallocated and zeroed pmap structure,
1819 * such as one in a vmspace structure.
1821 static void
1822 pmap_pinit_simple(struct pmap *pmap)
1824 int i;
1827 * Misc initialization
1829 pmap->pm_count = 1;
1830 CPUMASK_ASSZERO(pmap->pm_active);
1831 pmap->pm_pvhint = NULL;
1832 pmap->pm_flags = PMAP_FLAG_SIMPLE;
1834 pmap_pinit_defaults(pmap);
1837 * Don't blow up locks/tokens on re-use (XXX fix/use drop code
1838 * for this).
1840 if (pmap->pm_pmlpv == NULL) {
1841 RB_INIT(&pmap->pm_pvroot);
1842 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1843 spin_init(&pmap->pm_spin, "pmapinitsimple");
1844 for (i = 0; i < PM_PLACEMARKS; ++i)
1845 pmap->pm_placemarks[i] = PM_NOPLACEMARK;
1849 void
1850 pmap_pinit(struct pmap *pmap)
1852 pv_entry_t pv;
1853 int j;
1855 if (pmap->pm_pmlpv) {
1856 if (pmap->pmap_bits[TYPE_IDX] != REGULAR_PMAP) {
1857 pmap_puninit(pmap);
1861 pmap_pinit_simple(pmap);
1862 pmap->pm_flags &= ~PMAP_FLAG_SIMPLE;
1865 * No need to allocate page table space yet but we do need a valid
1866 * page directory table.
1868 if (pmap->pm_pml4 == NULL) {
1869 pmap->pm_pml4 =
1870 (pml4_entry_t *)kmem_alloc_pageable(&kernel_map,
1871 PAGE_SIZE,
1872 VM_SUBSYS_PML4);
1876 * Allocate the page directory page, which wires it even though
1877 * it isn't being entered into some higher level page table (it
1878 * being the highest level). If one is already cached we don't
1879 * have to do anything.
1881 if ((pv = pmap->pm_pmlpv) == NULL) {
1882 pv = pmap_allocpte(pmap, pmap_pml4_pindex(), NULL);
1883 pmap->pm_pmlpv = pv;
1884 pmap_kenter((vm_offset_t)pmap->pm_pml4,
1885 VM_PAGE_TO_PHYS(pv->pv_m));
1886 pv_put(pv);
1889 * Install DMAP and KMAP.
1891 for (j = 0; j < NDMPML4E; ++j) {
1892 pmap->pm_pml4[DMPML4I + j] =
1893 (DMPDPphys + ((vm_paddr_t)j << PML4SHIFT)) |
1894 pmap->pmap_bits[PG_RW_IDX] |
1895 pmap->pmap_bits[PG_V_IDX] |
1896 pmap->pmap_bits[PG_U_IDX];
1898 pmap->pm_pml4[KPML4I] = KPDPphys |
1899 pmap->pmap_bits[PG_RW_IDX] |
1900 pmap->pmap_bits[PG_V_IDX] |
1901 pmap->pmap_bits[PG_U_IDX];
1904 * install self-referential address mapping entry
1906 pmap->pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pv->pv_m) |
1907 pmap->pmap_bits[PG_V_IDX] |
1908 pmap->pmap_bits[PG_RW_IDX] |
1909 pmap->pmap_bits[PG_A_IDX] |
1910 pmap->pmap_bits[PG_M_IDX];
1911 } else {
1912 KKASSERT(pv->pv_m->flags & PG_MAPPED);
1913 KKASSERT(pv->pv_m->flags & PG_WRITEABLE);
1915 KKASSERT(pmap->pm_pml4[255] == 0);
1916 KKASSERT(RB_ROOT(&pmap->pm_pvroot) == pv);
1917 KKASSERT(pv->pv_entry.rbe_left == NULL);
1918 KKASSERT(pv->pv_entry.rbe_right == NULL);
1922 * Clean up a pmap structure so it can be physically freed. This routine
1923 * is called by the vmspace dtor function. A great deal of pmap data is
1924 * left passively mapped to improve vmspace management so we have a bit
1925 * of cleanup work to do here.
1927 void
1928 pmap_puninit(pmap_t pmap)
1930 pv_entry_t pv;
1931 vm_page_t p;
1933 KKASSERT(CPUMASK_TESTZERO(pmap->pm_active));
1934 if ((pv = pmap->pm_pmlpv) != NULL) {
1935 if (pv_hold_try(pv) == 0)
1936 pv_lock(pv);
1937 KKASSERT(pv == pmap->pm_pmlpv);
1938 p = pmap_remove_pv_page(pv);
1939 pv_free(pv, NULL);
1940 pv = NULL; /* safety */
1941 pmap_kremove((vm_offset_t)pmap->pm_pml4);
1942 vm_page_busy_wait(p, FALSE, "pgpun");
1943 KKASSERT(p->flags & (PG_FICTITIOUS|PG_UNMANAGED));
1944 vm_page_unwire(p, 0);
1945 vm_page_flag_clear(p, PG_MAPPED | PG_WRITEABLE);
1948 * XXX eventually clean out PML4 static entries and
1949 * use vm_page_free_zero()
1951 vm_page_free(p);
1952 pmap->pm_pmlpv = NULL;
1954 if (pmap->pm_pml4) {
1955 KKASSERT(pmap->pm_pml4 != (void *)(PTOV_OFFSET + KPML4phys));
1956 kmem_free(&kernel_map, (vm_offset_t)pmap->pm_pml4, PAGE_SIZE);
1957 pmap->pm_pml4 = NULL;
1959 KKASSERT(pmap->pm_stats.resident_count == 0);
1960 KKASSERT(pmap->pm_stats.wired_count == 0);
1964 * This function is now unused (used to add the pmap to the pmap_list)
1966 void
1967 pmap_pinit2(struct pmap *pmap)
1972 * This routine is called when various levels in the page table need to
1973 * be populated. This routine cannot fail.
1975 * This function returns two locked pv_entry's, one representing the
1976 * requested pv and one representing the requested pv's parent pv. If
1977 * an intermediate page table does not exist it will be created, mapped,
1978 * wired, and the parent page table will be given an additional hold
1979 * count representing the presence of the child pv_entry.
1981 static
1982 pv_entry_t
1983 pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, pv_entry_t *pvpp)
1985 pt_entry_t *ptep;
1986 pv_entry_t pv;
1987 pv_entry_t pvp;
1988 pt_entry_t v;
1989 vm_pindex_t pt_pindex;
1990 vm_page_t m;
1991 int isnew;
1992 int ispt;
1995 * If the pv already exists and we aren't being asked for the
1996 * parent page table page we can just return it. A locked+held pv
1997 * is returned. The pv will also have a second hold related to the
1998 * pmap association that we don't have to worry about.
2000 ispt = 0;
2001 pv = pv_alloc(pmap, ptepindex, &isnew);
2002 if (isnew == 0 && pvpp == NULL)
2003 return(pv);
2006 * Special case terminal PVs. These are not page table pages so
2007 * no vm_page is allocated (the caller supplied the vm_page). If
2008 * pvpp is non-NULL we are being asked to also removed the pt_pv
2009 * for this pv.
2011 * Note that pt_pv's are only returned for user VAs. We assert that
2012 * a pt_pv is not being requested for kernel VAs. The kernel
2013 * pre-wires all higher-level page tables so don't overload managed
2014 * higher-level page tables on top of it!
2016 if (ptepindex < pmap_pt_pindex(0)) {
2017 if (ptepindex >= NUPTE_USER) {
2018 /* kernel manages this manually for KVM */
2019 KKASSERT(pvpp == NULL);
2020 } else {
2021 KKASSERT(pvpp != NULL);
2022 pt_pindex = NUPTE_TOTAL + (ptepindex >> NPTEPGSHIFT);
2023 pvp = pmap_allocpte(pmap, pt_pindex, NULL);
2024 if (isnew)
2025 vm_page_wire_quick(pvp->pv_m);
2026 *pvpp = pvp;
2028 return(pv);
2032 * The kernel never uses managed PT/PD/PDP pages.
2034 KKASSERT(pmap != &kernel_pmap);
2037 * Non-terminal PVs allocate a VM page to represent the page table,
2038 * so we have to resolve pvp and calculate ptepindex for the pvp
2039 * and then for the page table entry index in the pvp for
2040 * fall-through.
2042 if (ptepindex < pmap_pd_pindex(0)) {
2044 * pv is PT, pvp is PD
2046 ptepindex = (ptepindex - pmap_pt_pindex(0)) >> NPDEPGSHIFT;
2047 ptepindex += NUPTE_TOTAL + NUPT_TOTAL;
2048 pvp = pmap_allocpte(pmap, ptepindex, NULL);
2051 * PT index in PD
2053 ptepindex = pv->pv_pindex - pmap_pt_pindex(0);
2054 ptepindex &= ((1ul << NPDEPGSHIFT) - 1);
2055 ispt = 1;
2056 } else if (ptepindex < pmap_pdp_pindex(0)) {
2058 * pv is PD, pvp is PDP
2060 * SIMPLE PMAP NOTE: Simple pmaps do not allocate above
2061 * the PD.
2063 ptepindex = (ptepindex - pmap_pd_pindex(0)) >> NPDPEPGSHIFT;
2064 ptepindex += NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL;
2066 if (pmap->pm_flags & PMAP_FLAG_SIMPLE) {
2067 KKASSERT(pvpp == NULL);
2068 pvp = NULL;
2069 } else {
2070 pvp = pmap_allocpte(pmap, ptepindex, NULL);
2074 * PD index in PDP
2076 ptepindex = pv->pv_pindex - pmap_pd_pindex(0);
2077 ptepindex &= ((1ul << NPDPEPGSHIFT) - 1);
2078 } else if (ptepindex < pmap_pml4_pindex()) {
2080 * pv is PDP, pvp is the root pml4 table
2082 pvp = pmap_allocpte(pmap, pmap_pml4_pindex(), NULL);
2085 * PDP index in PML4
2087 ptepindex = pv->pv_pindex - pmap_pdp_pindex(0);
2088 ptepindex &= ((1ul << NPML4EPGSHIFT) - 1);
2089 } else {
2091 * pv represents the top-level PML4, there is no parent.
2093 pvp = NULL;
2096 if (isnew == 0)
2097 goto notnew;
2100 * (isnew) is TRUE, pv is not terminal.
2102 * (1) Add a wire count to the parent page table (pvp).
2103 * (2) Allocate a VM page for the page table.
2104 * (3) Enter the VM page into the parent page table.
2106 * page table pages are marked PG_WRITEABLE and PG_MAPPED.
2108 if (pvp)
2109 vm_page_wire_quick(pvp->pv_m);
2111 for (;;) {
2112 m = vm_page_alloc(NULL, pv->pv_pindex,
2113 VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM |
2114 VM_ALLOC_INTERRUPT);
2115 if (m)
2116 break;
2117 vm_wait(0);
2119 vm_page_wire(m); /* wire for mapping in parent */
2120 vm_page_unmanage(m); /* m must be spinunlocked */
2121 pmap_zero_page(VM_PAGE_TO_PHYS(m));
2122 m->valid = VM_PAGE_BITS_ALL;
2124 vm_page_spin_lock(m);
2125 pmap_page_stats_adding(m);
2126 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2127 pv->pv_m = m;
2128 vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
2129 vm_page_spin_unlock(m);
2132 * (isnew) is TRUE, pv is not terminal.
2134 * Wire the page into pvp. Bump the resident_count for the pmap.
2135 * There is no pvp for the top level, address the pm_pml4[] array
2136 * directly.
2138 * If the caller wants the parent we return it, otherwise
2139 * we just put it away.
2141 * No interlock is needed for pte 0 -> non-zero.
2143 * In the situation where *ptep is valid we might have an unmanaged
2144 * page table page shared from another page table which we need to
2145 * unshare before installing our private page table page.
2147 if (pvp) {
2148 v = VM_PAGE_TO_PHYS(m) |
2149 (pmap->pmap_bits[PG_U_IDX] |
2150 pmap->pmap_bits[PG_RW_IDX] |
2151 pmap->pmap_bits[PG_V_IDX] |
2152 pmap->pmap_bits[PG_A_IDX] |
2153 pmap->pmap_bits[PG_M_IDX]);
2154 ptep = pv_pte_lookup(pvp, ptepindex);
2155 if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
2156 pt_entry_t pte;
2158 if (ispt == 0) {
2159 panic("pmap_allocpte: unexpected pte %p/%d",
2160 pvp, (int)ptepindex);
2162 pte = pmap_inval_smp(pmap, (vm_offset_t)-1, 1, ptep, v);
2163 if (vm_page_unwire_quick(
2164 PHYS_TO_VM_PAGE(pte & PG_FRAME))) {
2165 panic("pmap_allocpte: shared pgtable "
2166 "pg bad wirecount");
2168 } else {
2169 pt_entry_t pte;
2171 pte = atomic_swap_long(ptep, v);
2172 if (pte != 0) {
2173 kprintf("install pgtbl mixup 0x%016jx "
2174 "old/new 0x%016jx/0x%016jx\n",
2175 (intmax_t)ptepindex, pte, v);
2179 vm_page_wakeup(m);
2182 * (isnew) may be TRUE or FALSE, pv may or may not be terminal.
2184 notnew:
2185 if (pvp) {
2186 KKASSERT(pvp->pv_m != NULL);
2187 ptep = pv_pte_lookup(pvp, ptepindex);
2188 v = VM_PAGE_TO_PHYS(pv->pv_m) |
2189 (pmap->pmap_bits[PG_U_IDX] |
2190 pmap->pmap_bits[PG_RW_IDX] |
2191 pmap->pmap_bits[PG_V_IDX] |
2192 pmap->pmap_bits[PG_A_IDX] |
2193 pmap->pmap_bits[PG_M_IDX]);
2194 if (*ptep != v) {
2195 kprintf("mismatched upper level pt %016jx/%016jx\n",
2196 *ptep, v);
2199 if (pvpp)
2200 *pvpp = pvp;
2201 else if (pvp)
2202 pv_put(pvp);
2203 return (pv);
2207 * This version of pmap_allocpte() checks for possible segment optimizations
2208 * that would allow page-table sharing. It can be called for terminal
2209 * page or page table page ptepindex's.
2211 * The function is called with page table page ptepindex's for fictitious
2212 * and unmanaged terminal pages. That is, we don't want to allocate a
2213 * terminal pv, we just want the pt_pv. pvpp is usually passed as NULL
2214 * for this case.
2216 * This function can return a pv and *pvpp associated with the passed in pmap
2217 * OR a pv and *pvpp associated with the shared pmap. In the latter case
2218 * an unmanaged page table page will be entered into the pass in pmap.
2220 static
2221 pv_entry_t
2222 pmap_allocpte_seg(pmap_t pmap, vm_pindex_t ptepindex, pv_entry_t *pvpp,
2223 vm_map_entry_t entry, vm_offset_t va)
2225 vm_object_t object;
2226 pmap_t obpmap;
2227 pmap_t *obpmapp;
2228 vm_offset_t b;
2229 pv_entry_t pte_pv; /* in original or shared pmap */
2230 pv_entry_t pt_pv; /* in original or shared pmap */
2231 pv_entry_t proc_pd_pv; /* in original pmap */
2232 pv_entry_t proc_pt_pv; /* in original pmap */
2233 pv_entry_t xpv; /* PT in shared pmap */
2234 pd_entry_t *pt; /* PT entry in PD of original pmap */
2235 pd_entry_t opte; /* contents of *pt */
2236 pd_entry_t npte; /* contents of *pt */
2237 vm_page_t m;
2239 retry:
2241 * Basic tests, require a non-NULL vm_map_entry, require proper
2242 * alignment and type for the vm_map_entry, require that the
2243 * underlying object already be allocated.
2245 * We allow almost any type of object to use this optimization.
2246 * The object itself does NOT have to be sized to a multiple of the
2247 * segment size, but the memory mapping does.
2249 * XXX don't handle devices currently, because VM_PAGE_TO_PHYS()
2250 * won't work as expected.
2252 if (entry == NULL ||
2253 pmap_mmu_optimize == 0 || /* not enabled */
2254 (pmap->pm_flags & PMAP_HVM) || /* special pmap */
2255 ptepindex >= pmap_pd_pindex(0) || /* not terminal or pt */
2256 entry->inheritance != VM_INHERIT_SHARE || /* not shared */
2257 entry->maptype != VM_MAPTYPE_NORMAL || /* weird map type */
2258 entry->object.vm_object == NULL || /* needs VM object */
2259 entry->object.vm_object->type == OBJT_DEVICE || /* ick */
2260 entry->object.vm_object->type == OBJT_MGTDEVICE || /* ick */
2261 (entry->offset & SEG_MASK) || /* must be aligned */
2262 (entry->start & SEG_MASK)) {
2263 return(pmap_allocpte(pmap, ptepindex, pvpp));
2267 * Make sure the full segment can be represented.
2269 b = va & ~(vm_offset_t)SEG_MASK;
2270 if (b < entry->start || b + SEG_SIZE > entry->end)
2271 return(pmap_allocpte(pmap, ptepindex, pvpp));
2274 * If the full segment can be represented dive the VM object's
2275 * shared pmap, allocating as required.
2277 object = entry->object.vm_object;
2279 if (entry->protection & VM_PROT_WRITE)
2280 obpmapp = &object->md.pmap_rw;
2281 else
2282 obpmapp = &object->md.pmap_ro;
2284 #ifdef PMAP_DEBUG2
2285 if (pmap_enter_debug > 0) {
2286 --pmap_enter_debug;
2287 kprintf("pmap_allocpte_seg: va=%jx prot %08x o=%p "
2288 "obpmapp %p %p\n",
2289 va, entry->protection, object,
2290 obpmapp, *obpmapp);
2291 kprintf("pmap_allocpte_seg: entry %p %jx-%jx\n",
2292 entry, entry->start, entry->end);
2294 #endif
2297 * We allocate what appears to be a normal pmap but because portions
2298 * of this pmap are shared with other unrelated pmaps we have to
2299 * set pm_active to point to all cpus.
2301 * XXX Currently using pmap_spin to interlock the update, can't use
2302 * vm_object_hold/drop because the token might already be held
2303 * shared OR exclusive and we don't know.
2305 while ((obpmap = *obpmapp) == NULL) {
2306 obpmap = kmalloc(sizeof(*obpmap), M_OBJPMAP, M_WAITOK|M_ZERO);
2307 pmap_pinit_simple(obpmap);
2308 pmap_pinit2(obpmap);
2309 spin_lock(&pmap_spin);
2310 if (*obpmapp != NULL) {
2312 * Handle race
2314 spin_unlock(&pmap_spin);
2315 pmap_release(obpmap);
2316 pmap_puninit(obpmap);
2317 kfree(obpmap, M_OBJPMAP);
2318 obpmap = *obpmapp; /* safety */
2319 } else {
2320 obpmap->pm_active = smp_active_mask;
2321 obpmap->pm_flags |= PMAP_SEGSHARED;
2322 *obpmapp = obpmap;
2323 spin_unlock(&pmap_spin);
2328 * Layering is: PTE, PT, PD, PDP, PML4. We have to return the
2329 * pte/pt using the shared pmap from the object but also adjust
2330 * the process pmap's page table page as a side effect.
2334 * Resolve the terminal PTE and PT in the shared pmap. This is what
2335 * we will return. This is true if ptepindex represents a terminal
2336 * page, otherwise pte_pv is actually the PT and pt_pv is actually
2337 * the PD.
2339 pt_pv = NULL;
2340 pte_pv = pmap_allocpte(obpmap, ptepindex, &pt_pv);
2341 if (ptepindex >= pmap_pt_pindex(0))
2342 xpv = pte_pv;
2343 else
2344 xpv = pt_pv;
2347 * Resolve the PD in the process pmap so we can properly share the
2348 * page table page. Lock order is bottom-up (leaf first)!
2350 * NOTE: proc_pt_pv can be NULL.
2352 proc_pt_pv = pv_get(pmap, pmap_pt_pindex(b), NULL);
2353 proc_pd_pv = pmap_allocpte(pmap, pmap_pd_pindex(b), NULL);
2354 #ifdef PMAP_DEBUG2
2355 if (pmap_enter_debug > 0) {
2356 --pmap_enter_debug;
2357 kprintf("proc_pt_pv %p (wc %d) pd_pv %p va=%jx\n",
2358 proc_pt_pv,
2359 (proc_pt_pv ? proc_pt_pv->pv_m->wire_count : -1),
2360 proc_pd_pv,
2361 va);
2363 #endif
2366 * xpv is the page table page pv from the shared object
2367 * (for convenience), from above.
2369 * Calculate the pte value for the PT to load into the process PD.
2370 * If we have to change it we must properly dispose of the previous
2371 * entry.
2373 pt = pv_pte_lookup(proc_pd_pv, pmap_pt_index(b));
2374 npte = VM_PAGE_TO_PHYS(xpv->pv_m) |
2375 (pmap->pmap_bits[PG_U_IDX] |
2376 pmap->pmap_bits[PG_RW_IDX] |
2377 pmap->pmap_bits[PG_V_IDX] |
2378 pmap->pmap_bits[PG_A_IDX] |
2379 pmap->pmap_bits[PG_M_IDX]);
2382 * Dispose of previous page table page if it was local to the
2383 * process pmap. If the old pt is not empty we cannot dispose of it
2384 * until we clean it out. This case should not arise very often so
2385 * it is not optimized.
2387 if (proc_pt_pv) {
2388 pmap_inval_bulk_t bulk;
2390 if (proc_pt_pv->pv_m->wire_count != 1) {
2391 pv_put(proc_pd_pv);
2392 pv_put(proc_pt_pv);
2393 pv_put(pt_pv);
2394 pv_put(pte_pv);
2395 pmap_remove(pmap,
2396 va & ~(vm_offset_t)SEG_MASK,
2397 (va + SEG_SIZE) & ~(vm_offset_t)SEG_MASK);
2398 goto retry;
2402 * The release call will indirectly clean out *pt
2404 pmap_inval_bulk_init(&bulk, proc_pt_pv->pv_pmap);
2405 pmap_release_pv(proc_pt_pv, proc_pd_pv, &bulk);
2406 pmap_inval_bulk_flush(&bulk);
2407 proc_pt_pv = NULL;
2408 /* relookup */
2409 pt = pv_pte_lookup(proc_pd_pv, pmap_pt_index(b));
2413 * Handle remaining cases.
2415 if (*pt == 0) {
2416 atomic_swap_long(pt, npte);
2417 vm_page_wire_quick(xpv->pv_m); /* shared pt -> proc */
2418 vm_page_wire_quick(proc_pd_pv->pv_m); /* proc pd for sh pt */
2419 atomic_add_long(&pmap->pm_stats.resident_count, 1);
2420 } else if (*pt != npte) {
2421 opte = pmap_inval_smp(pmap, (vm_offset_t)-1, 1, pt, npte);
2423 #if 0
2424 opte = pte_load_clear(pt);
2425 KKASSERT(opte && opte != npte);
2427 *pt = npte;
2428 #endif
2429 vm_page_wire_quick(xpv->pv_m); /* shared pt -> proc */
2432 * Clean up opte, bump the wire_count for the process
2433 * PD page representing the new entry if it was
2434 * previously empty.
2436 * If the entry was not previously empty and we have
2437 * a PT in the proc pmap then opte must match that
2438 * pt. The proc pt must be retired (this is done
2439 * later on in this procedure).
2441 * NOTE: replacing valid pte, wire_count on proc_pd_pv
2442 * stays the same.
2444 KKASSERT(opte & pmap->pmap_bits[PG_V_IDX]);
2445 m = PHYS_TO_VM_PAGE(opte & PG_FRAME);
2446 if (vm_page_unwire_quick(m)) {
2447 panic("pmap_allocpte_seg: "
2448 "bad wire count %p",
2454 * The existing process page table was replaced and must be destroyed
2455 * here.
2457 if (proc_pd_pv)
2458 pv_put(proc_pd_pv);
2459 if (pvpp)
2460 *pvpp = pt_pv;
2461 else
2462 pv_put(pt_pv);
2464 return (pte_pv);
2468 * Release any resources held by the given physical map.
2470 * Called when a pmap initialized by pmap_pinit is being released. Should
2471 * only be called if the map contains no valid mappings.
2473 struct pmap_release_info {
2474 pmap_t pmap;
2475 int retry;
2476 pv_entry_t pvp;
2479 static int pmap_release_callback(pv_entry_t pv, void *data);
2481 void
2482 pmap_release(struct pmap *pmap)
2484 struct pmap_release_info info;
2486 KASSERT(CPUMASK_TESTZERO(pmap->pm_active),
2487 ("pmap still active! %016jx",
2488 (uintmax_t)CPUMASK_LOWMASK(pmap->pm_active)));
2491 * There is no longer a pmap_list, if there were we would remove the
2492 * pmap from it here.
2496 * Pull pv's off the RB tree in order from low to high and release
2497 * each page.
2499 info.pmap = pmap;
2500 do {
2501 info.retry = 0;
2502 info.pvp = NULL;
2504 spin_lock(&pmap->pm_spin);
2505 RB_SCAN(pv_entry_rb_tree, &pmap->pm_pvroot, NULL,
2506 pmap_release_callback, &info);
2507 spin_unlock(&pmap->pm_spin);
2509 if (info.pvp)
2510 pv_put(info.pvp);
2511 } while (info.retry);
2515 * One resident page (the pml4 page) should remain.
2516 * No wired pages should remain.
2518 #if 1
2519 if (pmap->pm_stats.resident_count !=
2520 ((pmap->pm_flags & PMAP_FLAG_SIMPLE) ? 0 : 1) ||
2521 pmap->pm_stats.wired_count != 0) {
2522 kprintf("fatal pmap problem - pmap %p flags %08x "
2523 "rescnt=%jd wirecnt=%jd\n",
2524 pmap,
2525 pmap->pm_flags,
2526 pmap->pm_stats.resident_count,
2527 pmap->pm_stats.wired_count);
2528 tsleep(pmap, 0, "DEAD", 0);
2530 #else
2531 KKASSERT(pmap->pm_stats.resident_count ==
2532 ((pmap->pm_flags & PMAP_FLAG_SIMPLE) ? 0 : 1));
2533 KKASSERT(pmap->pm_stats.wired_count == 0);
2534 #endif
2538 * Called from low to high. We must cache the proper parent pv so we
2539 * can adjust its wired count.
2541 static int
2542 pmap_release_callback(pv_entry_t pv, void *data)
2544 struct pmap_release_info *info = data;
2545 pmap_t pmap = info->pmap;
2546 vm_pindex_t pindex;
2547 int r;
2550 * Acquire a held and locked pv, check for release race
2552 pindex = pv->pv_pindex;
2553 if (info->pvp == pv) {
2554 spin_unlock(&pmap->pm_spin);
2555 info->pvp = NULL;
2556 } else if (pv_hold_try(pv)) {
2557 spin_unlock(&pmap->pm_spin);
2558 } else {
2559 spin_unlock(&pmap->pm_spin);
2560 pv_lock(pv);
2561 pv_unlock(pv);
2562 pv_drop(pv);
2563 info->retry = 1;
2564 return -1;
2566 KKASSERT(pv->pv_pmap == pmap && pindex == pv->pv_pindex);
2568 if (pv->pv_pindex < pmap_pt_pindex(0)) {
2570 * I am PTE, parent is PT
2572 pindex = pv->pv_pindex >> NPTEPGSHIFT;
2573 pindex += NUPTE_TOTAL;
2574 } else if (pv->pv_pindex < pmap_pd_pindex(0)) {
2576 * I am PT, parent is PD
2578 pindex = (pv->pv_pindex - NUPTE_TOTAL) >> NPDEPGSHIFT;
2579 pindex += NUPTE_TOTAL + NUPT_TOTAL;
2580 } else if (pv->pv_pindex < pmap_pdp_pindex(0)) {
2582 * I am PD, parent is PDP
2584 pindex = (pv->pv_pindex - NUPTE_TOTAL - NUPT_TOTAL) >>
2585 NPDPEPGSHIFT;
2586 pindex += NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL;
2587 } else if (pv->pv_pindex < pmap_pml4_pindex()) {
2589 * I am PDP, parent is PML4 (there's only one)
2591 #if 0
2592 pindex = (pv->pv_pindex - NUPTE_TOTAL - NUPT_TOTAL -
2593 NUPD_TOTAL) >> NPML4EPGSHIFT;
2594 pindex += NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL;
2595 #endif
2596 pindex = pmap_pml4_pindex();
2597 } else {
2599 * parent is NULL
2601 if (info->pvp) {
2602 pv_put(info->pvp);
2603 info->pvp = NULL;
2605 pindex = 0;
2607 if (pindex) {
2608 if (info->pvp && info->pvp->pv_pindex != pindex) {
2609 pv_put(info->pvp);
2610 info->pvp = NULL;
2612 if (info->pvp == NULL)
2613 info->pvp = pv_get(pmap, pindex, NULL);
2614 } else {
2615 if (info->pvp) {
2616 pv_put(info->pvp);
2617 info->pvp = NULL;
2620 r = pmap_release_pv(pv, info->pvp, NULL);
2621 spin_lock(&pmap->pm_spin);
2623 return(r);
2627 * Called with held (i.e. also locked) pv. This function will dispose of
2628 * the lock along with the pv.
2630 * If the caller already holds the locked parent page table for pv it
2631 * must pass it as pvp, allowing us to avoid a deadlock, else it can
2632 * pass NULL for pvp.
2634 static int
2635 pmap_release_pv(pv_entry_t pv, pv_entry_t pvp, pmap_inval_bulk_t *bulk)
2637 vm_page_t p;
2640 * The pmap is currently not spinlocked, pv is held+locked.
2641 * Remove the pv's page from its parent's page table. The
2642 * parent's page table page's wire_count will be decremented.
2644 * This will clean out the pte at any level of the page table.
2645 * If smp != 0 all cpus are affected.
2647 * Do not tear-down recursively, its faster to just let the
2648 * release run its course.
2650 pmap_remove_pv_pte(pv, pvp, bulk, 0);
2653 * Terminal pvs are unhooked from their vm_pages. Because
2654 * terminal pages aren't page table pages they aren't wired
2655 * by us, so we have to be sure not to unwire them either.
2657 if (pv->pv_pindex < pmap_pt_pindex(0)) {
2658 pmap_remove_pv_page(pv);
2659 goto skip;
2663 * We leave the top-level page table page cached, wired, and
2664 * mapped in the pmap until the dtor function (pmap_puninit())
2665 * gets called.
2667 * Since we are leaving the top-level pv intact we need
2668 * to break out of what would otherwise be an infinite loop.
2670 if (pv->pv_pindex == pmap_pml4_pindex()) {
2671 pv_put(pv);
2672 return(-1);
2676 * For page table pages (other than the top-level page),
2677 * remove and free the vm_page. The representitive mapping
2678 * removed above by pmap_remove_pv_pte() did not undo the
2679 * last wire_count so we have to do that as well.
2681 p = pmap_remove_pv_page(pv);
2682 vm_page_busy_wait(p, FALSE, "pmaprl");
2683 if (p->wire_count != 1) {
2684 kprintf("p->wire_count was %016lx %d\n",
2685 pv->pv_pindex, p->wire_count);
2687 KKASSERT(p->wire_count == 1);
2688 KKASSERT(p->flags & PG_UNMANAGED);
2690 vm_page_unwire(p, 0);
2691 KKASSERT(p->wire_count == 0);
2693 vm_page_free(p);
2694 skip:
2695 pv_free(pv, pvp);
2697 return 0;
2701 * This function will remove the pte associated with a pv from its parent.
2702 * Terminal pv's are supported. All cpus specified by (bulk) are properly
2703 * invalidated.
2705 * The wire count will be dropped on the parent page table. The wire
2706 * count on the page being removed (pv->pv_m) from the parent page table
2707 * is NOT touched. Note that terminal pages will not have any additional
2708 * wire counts while page table pages will have at least one representing
2709 * the mapping, plus others representing sub-mappings.
2711 * NOTE: Cannot be called on kernel page table pages, only KVM terminal
2712 * pages and user page table and terminal pages.
2714 * NOTE: The pte being removed might be unmanaged, and the pv supplied might
2715 * be freshly allocated and not imply that the pte is managed. In this
2716 * case pv->pv_m should be NULL.
2718 * The pv must be locked. The pvp, if supplied, must be locked. All
2719 * supplied pv's will remain locked on return.
2721 * XXX must lock parent pv's if they exist to remove pte XXX
2723 static
2724 void
2725 pmap_remove_pv_pte(pv_entry_t pv, pv_entry_t pvp, pmap_inval_bulk_t *bulk,
2726 int destroy)
2728 vm_pindex_t ptepindex = pv->pv_pindex;
2729 pmap_t pmap = pv->pv_pmap;
2730 vm_page_t p;
2731 int gotpvp = 0;
2733 KKASSERT(pmap);
2735 if (ptepindex == pmap_pml4_pindex()) {
2737 * We are the top level PML4E table, there is no parent.
2739 p = pmap->pm_pmlpv->pv_m;
2740 KKASSERT(pv->pv_m == p); /* debugging */
2741 } else if (ptepindex >= pmap_pdp_pindex(0)) {
2743 * Remove a PDP page from the PML4E. This can only occur
2744 * with user page tables. We do not have to lock the
2745 * pml4 PV so just ignore pvp.
2747 vm_pindex_t pml4_pindex;
2748 vm_pindex_t pdp_index;
2749 pml4_entry_t *pdp;
2751 pdp_index = ptepindex - pmap_pdp_pindex(0);
2752 if (pvp == NULL) {
2753 pml4_pindex = pmap_pml4_pindex();
2754 pvp = pv_get(pv->pv_pmap, pml4_pindex, NULL);
2755 KKASSERT(pvp);
2756 gotpvp = 1;
2759 pdp = &pmap->pm_pml4[pdp_index & ((1ul << NPML4EPGSHIFT) - 1)];
2760 KKASSERT((*pdp & pmap->pmap_bits[PG_V_IDX]) != 0);
2761 p = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
2762 pmap_inval_bulk(bulk, (vm_offset_t)-1, pdp, 0);
2763 KKASSERT(pv->pv_m == p); /* debugging */
2764 } else if (ptepindex >= pmap_pd_pindex(0)) {
2766 * Remove a PD page from the PDP
2768 * SIMPLE PMAP NOTE: Non-existant pvp's are ok in the case
2769 * of a simple pmap because it stops at
2770 * the PD page.
2772 vm_pindex_t pdp_pindex;
2773 vm_pindex_t pd_index;
2774 pdp_entry_t *pd;
2776 pd_index = ptepindex - pmap_pd_pindex(0);
2778 if (pvp == NULL) {
2779 pdp_pindex = NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL +
2780 (pd_index >> NPML4EPGSHIFT);
2781 pvp = pv_get(pv->pv_pmap, pdp_pindex, NULL);
2782 gotpvp = 1;
2785 if (pvp) {
2786 pd = pv_pte_lookup(pvp, pd_index &
2787 ((1ul << NPDPEPGSHIFT) - 1));
2788 KKASSERT((*pd & pmap->pmap_bits[PG_V_IDX]) != 0);
2789 p = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
2790 pmap_inval_bulk(bulk, (vm_offset_t)-1, pd, 0);
2791 } else {
2792 KKASSERT(pmap->pm_flags & PMAP_FLAG_SIMPLE);
2793 p = pv->pv_m; /* degenerate test later */
2795 KKASSERT(pv->pv_m == p); /* debugging */
2796 } else if (ptepindex >= pmap_pt_pindex(0)) {
2798 * Remove a PT page from the PD
2800 vm_pindex_t pd_pindex;
2801 vm_pindex_t pt_index;
2802 pd_entry_t *pt;
2804 pt_index = ptepindex - pmap_pt_pindex(0);
2806 if (pvp == NULL) {
2807 pd_pindex = NUPTE_TOTAL + NUPT_TOTAL +
2808 (pt_index >> NPDPEPGSHIFT);
2809 pvp = pv_get(pv->pv_pmap, pd_pindex, NULL);
2810 KKASSERT(pvp);
2811 gotpvp = 1;
2814 pt = pv_pte_lookup(pvp, pt_index & ((1ul << NPDPEPGSHIFT) - 1));
2815 #if 0
2816 KASSERT((*pt & pmap->pmap_bits[PG_V_IDX]) != 0,
2817 ("*pt unexpectedly invalid %016jx "
2818 "gotpvp=%d ptepindex=%ld ptindex=%ld pv=%p pvp=%p",
2819 *pt, gotpvp, ptepindex, pt_index, pv, pvp));
2820 p = PHYS_TO_VM_PAGE(*pt & PG_FRAME);
2821 #else
2822 if ((*pt & pmap->pmap_bits[PG_V_IDX]) == 0) {
2823 kprintf("*pt unexpectedly invalid %016jx "
2824 "gotpvp=%d ptepindex=%ld ptindex=%ld "
2825 "pv=%p pvp=%p\n",
2826 *pt, gotpvp, ptepindex, pt_index, pv, pvp);
2827 tsleep(pt, 0, "DEAD", 0);
2828 p = pv->pv_m;
2829 } else {
2830 p = PHYS_TO_VM_PAGE(*pt & PG_FRAME);
2832 #endif
2833 pmap_inval_bulk(bulk, (vm_offset_t)-1, pt, 0);
2834 KKASSERT(pv->pv_m == p); /* debugging */
2835 } else {
2837 * Remove a PTE from the PT page. The PV might exist even if
2838 * the PTE is not managed, in whichcase pv->pv_m should be
2839 * NULL.
2841 * NOTE: Userland pmaps manage the parent PT/PD/PDP page
2842 * table pages but the kernel_pmap does not.
2844 * NOTE: pv's must be locked bottom-up to avoid deadlocking.
2845 * pv is a pte_pv so we can safely lock pt_pv.
2847 * NOTE: FICTITIOUS pages may have multiple physical mappings
2848 * so PHYS_TO_VM_PAGE() will not necessarily work for
2849 * terminal ptes.
2851 vm_pindex_t pt_pindex;
2852 pt_entry_t *ptep;
2853 pt_entry_t pte;
2854 vm_offset_t va;
2856 pt_pindex = ptepindex >> NPTEPGSHIFT;
2857 va = (vm_offset_t)ptepindex << PAGE_SHIFT;
2859 if (ptepindex >= NUPTE_USER) {
2860 ptep = vtopte(ptepindex << PAGE_SHIFT);
2861 KKASSERT(pvp == NULL);
2862 /* pvp remains NULL */
2863 } else {
2864 if (pvp == NULL) {
2865 pt_pindex = NUPTE_TOTAL +
2866 (ptepindex >> NPDPEPGSHIFT);
2867 pvp = pv_get(pv->pv_pmap, pt_pindex, NULL);
2868 KKASSERT(pvp);
2869 gotpvp = 1;
2871 ptep = pv_pte_lookup(pvp, ptepindex &
2872 ((1ul << NPDPEPGSHIFT) - 1));
2874 pte = pmap_inval_bulk(bulk, va, ptep, 0);
2875 if (bulk == NULL) /* XXX */
2876 cpu_invlpg((void *)va); /* XXX */
2879 * Now update the vm_page_t
2881 if ((pte & pmap->pmap_bits[PG_MANAGED_IDX]) &&
2882 (pte & pmap->pmap_bits[PG_V_IDX])) {
2884 * Valid managed page, adjust (p).
2886 if (pte & pmap->pmap_bits[PG_DEVICE_IDX]) {
2887 p = pv->pv_m;
2888 } else {
2889 p = PHYS_TO_VM_PAGE(pte & PG_FRAME);
2890 KKASSERT(pv->pv_m == p);
2892 if (pte & pmap->pmap_bits[PG_M_IDX]) {
2893 if (pmap_track_modified(ptepindex))
2894 vm_page_dirty(p);
2896 if (pte & pmap->pmap_bits[PG_A_IDX]) {
2897 vm_page_flag_set(p, PG_REFERENCED);
2899 } else {
2901 * Unmanaged page, do not try to adjust the vm_page_t.
2902 * pv could be freshly allocated for a pmap_enter(),
2903 * replacing an unmanaged page with a managed one.
2905 * pv->pv_m might reflect the new page and not the
2906 * existing page.
2908 * We could extract p from the physical address and
2909 * adjust it but we explicitly do not for unmanaged
2910 * pages.
2912 p = NULL;
2914 if (pte & pmap->pmap_bits[PG_W_IDX])
2915 atomic_add_long(&pmap->pm_stats.wired_count, -1);
2916 if (pte & pmap->pmap_bits[PG_G_IDX])
2917 cpu_invlpg((void *)va);
2921 * If requested, scrap the underlying pv->pv_m and the underlying
2922 * pv. If this is a page-table-page we must also free the page.
2924 * pvp must be returned locked.
2926 if (destroy == 1) {
2928 * page table page (PT, PD, PDP, PML4), caller was responsible
2929 * for testing wired_count.
2931 KKASSERT(pv->pv_m->wire_count == 1);
2932 p = pmap_remove_pv_page(pv);
2933 pv_free(pv, pvp);
2934 pv = NULL;
2936 vm_page_busy_wait(p, FALSE, "pgpun");
2937 vm_page_unwire(p, 0);
2938 vm_page_flag_clear(p, PG_MAPPED | PG_WRITEABLE);
2939 vm_page_free(p);
2940 } else if (destroy == 2) {
2942 * Normal page, remove from pmap and leave the underlying
2943 * page untouched.
2945 pmap_remove_pv_page(pv);
2946 pv_free(pv, pvp);
2947 pv = NULL; /* safety */
2951 * If we acquired pvp ourselves then we are responsible for
2952 * recursively deleting it.
2954 if (pvp && gotpvp) {
2956 * Recursively destroy higher-level page tables.
2958 * This is optional. If we do not, they will still
2959 * be destroyed when the process exits.
2961 * NOTE: Do not destroy pv_entry's with extra hold refs,
2962 * a caller may have unlocked it and intends to
2963 * continue to use it.
2965 if (pmap_dynamic_delete &&
2966 pvp->pv_m &&
2967 pvp->pv_m->wire_count == 1 &&
2968 (pvp->pv_hold & PV_HOLD_MASK) == 2 &&
2969 pvp->pv_pindex != pmap_pml4_pindex()) {
2970 if (pmap_dynamic_delete == 2)
2971 kprintf("A %jd %08x\n", pvp->pv_pindex, pvp->pv_hold);
2972 if (pmap != &kernel_pmap) {
2973 pmap_remove_pv_pte(pvp, NULL, bulk, 1);
2974 pvp = NULL; /* safety */
2975 } else {
2976 kprintf("Attempt to remove kernel_pmap pindex "
2977 "%jd\n", pvp->pv_pindex);
2978 pv_put(pvp);
2980 } else {
2981 pv_put(pvp);
2987 * Remove the vm_page association to a pv. The pv must be locked.
2989 static
2990 vm_page_t
2991 pmap_remove_pv_page(pv_entry_t pv)
2993 vm_page_t m;
2995 m = pv->pv_m;
2996 vm_page_spin_lock(m);
2997 KKASSERT(m && m == pv->pv_m);
2998 pv->pv_m = NULL;
2999 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3000 pmap_page_stats_deleting(m);
3001 if (TAILQ_EMPTY(&m->md.pv_list))
3002 vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
3003 vm_page_spin_unlock(m);
3005 return(m);
3009 * Grow the number of kernel page table entries, if needed.
3011 * This routine is always called to validate any address space
3012 * beyond KERNBASE (for kldloads). kernel_vm_end only governs the address
3013 * space below KERNBASE.
3015 * kernel_map must be locked exclusively by the caller.
3017 void
3018 pmap_growkernel(vm_offset_t kstart, vm_offset_t kend)
3020 vm_paddr_t paddr;
3021 vm_offset_t ptppaddr;
3022 vm_page_t nkpg;
3023 pd_entry_t *pt, newpt;
3024 pdp_entry_t newpd;
3025 int update_kernel_vm_end;
3028 * bootstrap kernel_vm_end on first real VM use
3030 if (kernel_vm_end == 0) {
3031 kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
3032 nkpt = 0;
3033 while ((*pmap_pt(&kernel_pmap, kernel_vm_end) & kernel_pmap.pmap_bits[PG_V_IDX]) != 0) {
3034 kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
3035 ~(PAGE_SIZE * NPTEPG - 1);
3036 nkpt++;
3037 if (kernel_vm_end - 1 >= kernel_map.max_offset) {
3038 kernel_vm_end = kernel_map.max_offset;
3039 break;
3045 * Fill in the gaps. kernel_vm_end is only adjusted for ranges
3046 * below KERNBASE. Ranges above KERNBASE are kldloaded and we
3047 * do not want to force-fill 128G worth of page tables.
3049 if (kstart < KERNBASE) {
3050 if (kstart > kernel_vm_end)
3051 kstart = kernel_vm_end;
3052 KKASSERT(kend <= KERNBASE);
3053 update_kernel_vm_end = 1;
3054 } else {
3055 update_kernel_vm_end = 0;
3058 kstart = rounddown2(kstart, PAGE_SIZE * NPTEPG);
3059 kend = roundup2(kend, PAGE_SIZE * NPTEPG);
3061 if (kend - 1 >= kernel_map.max_offset)
3062 kend = kernel_map.max_offset;
3064 while (kstart < kend) {
3065 pt = pmap_pt(&kernel_pmap, kstart);
3066 if (pt == NULL) {
3067 /* We need a new PD entry */
3068 nkpg = vm_page_alloc(NULL, mycpu->gd_rand_incr++,
3069 VM_ALLOC_NORMAL |
3070 VM_ALLOC_SYSTEM |
3071 VM_ALLOC_INTERRUPT);
3072 if (nkpg == NULL) {
3073 panic("pmap_growkernel: no memory to grow "
3074 "kernel");
3076 paddr = VM_PAGE_TO_PHYS(nkpg);
3077 pmap_zero_page(paddr);
3078 newpd = (pdp_entry_t)
3079 (paddr |
3080 kernel_pmap.pmap_bits[PG_V_IDX] |
3081 kernel_pmap.pmap_bits[PG_RW_IDX] |
3082 kernel_pmap.pmap_bits[PG_A_IDX] |
3083 kernel_pmap.pmap_bits[PG_M_IDX]);
3084 *pmap_pd(&kernel_pmap, kstart) = newpd;
3085 continue; /* try again */
3087 if ((*pt & kernel_pmap.pmap_bits[PG_V_IDX]) != 0) {
3088 kstart = (kstart + PAGE_SIZE * NPTEPG) &
3089 ~(PAGE_SIZE * NPTEPG - 1);
3090 if (kstart - 1 >= kernel_map.max_offset) {
3091 kstart = kernel_map.max_offset;
3092 break;
3094 continue;
3098 * We need a new PT
3100 * This index is bogus, but out of the way
3102 nkpg = vm_page_alloc(NULL, mycpu->gd_rand_incr++,
3103 VM_ALLOC_NORMAL |
3104 VM_ALLOC_SYSTEM |
3105 VM_ALLOC_INTERRUPT);
3106 if (nkpg == NULL)
3107 panic("pmap_growkernel: no memory to grow kernel");
3109 vm_page_wire(nkpg);
3110 ptppaddr = VM_PAGE_TO_PHYS(nkpg);
3111 pmap_zero_page(ptppaddr);
3112 newpt = (pd_entry_t)(ptppaddr |
3113 kernel_pmap.pmap_bits[PG_V_IDX] |
3114 kernel_pmap.pmap_bits[PG_RW_IDX] |
3115 kernel_pmap.pmap_bits[PG_A_IDX] |
3116 kernel_pmap.pmap_bits[PG_M_IDX]);
3117 atomic_swap_long(pmap_pt(&kernel_pmap, kstart), newpt);
3119 kstart = (kstart + PAGE_SIZE * NPTEPG) &
3120 ~(PAGE_SIZE * NPTEPG - 1);
3122 if (kstart - 1 >= kernel_map.max_offset) {
3123 kstart = kernel_map.max_offset;
3124 break;
3129 * Only update kernel_vm_end for areas below KERNBASE.
3131 if (update_kernel_vm_end && kernel_vm_end < kstart)
3132 kernel_vm_end = kstart;
3136 * Add a reference to the specified pmap.
3138 void
3139 pmap_reference(pmap_t pmap)
3141 if (pmap != NULL)
3142 atomic_add_int(&pmap->pm_count, 1);
3145 /***************************************************
3146 * page management routines.
3147 ***************************************************/
3150 * Hold a pv without locking it
3152 static void
3153 pv_hold(pv_entry_t pv)
3155 atomic_add_int(&pv->pv_hold, 1);
3159 * Hold a pv_entry, preventing its destruction. TRUE is returned if the pv
3160 * was successfully locked, FALSE if it wasn't. The caller must dispose of
3161 * the pv properly.
3163 * Either the pmap->pm_spin or the related vm_page_spin (if traversing a
3164 * pv list via its page) must be held by the caller in order to stabilize
3165 * the pv.
3167 static int
3168 _pv_hold_try(pv_entry_t pv PMAP_DEBUG_DECL)
3170 u_int count;
3173 * Critical path shortcut expects pv to already have one ref
3174 * (for the pv->pv_pmap).
3176 if (atomic_cmpset_int(&pv->pv_hold, 1, PV_HOLD_LOCKED | 2)) {
3177 #ifdef PMAP_DEBUG
3178 pv->pv_func = func;
3179 pv->pv_line = lineno;
3180 #endif
3181 return TRUE;
3184 for (;;) {
3185 count = pv->pv_hold;
3186 cpu_ccfence();
3187 if ((count & PV_HOLD_LOCKED) == 0) {
3188 if (atomic_cmpset_int(&pv->pv_hold, count,
3189 (count + 1) | PV_HOLD_LOCKED)) {
3190 #ifdef PMAP_DEBUG
3191 pv->pv_func = func;
3192 pv->pv_line = lineno;
3193 #endif
3194 return TRUE;
3196 } else {
3197 if (atomic_cmpset_int(&pv->pv_hold, count, count + 1))
3198 return FALSE;
3200 /* retry */
3205 * Drop a previously held pv_entry which could not be locked, allowing its
3206 * destruction.
3208 * Must not be called with a spinlock held as we might zfree() the pv if it
3209 * is no longer associated with a pmap and this was the last hold count.
3211 static void
3212 pv_drop(pv_entry_t pv)
3214 u_int count;
3216 for (;;) {
3217 count = pv->pv_hold;
3218 cpu_ccfence();
3219 KKASSERT((count & PV_HOLD_MASK) > 0);
3220 KKASSERT((count & (PV_HOLD_LOCKED | PV_HOLD_MASK)) !=
3221 (PV_HOLD_LOCKED | 1));
3222 if (atomic_cmpset_int(&pv->pv_hold, count, count - 1)) {
3223 if ((count & PV_HOLD_MASK) == 1) {
3224 #ifdef PMAP_DEBUG2
3225 if (pmap_enter_debug > 0) {
3226 --pmap_enter_debug;
3227 kprintf("pv_drop: free pv %p\n", pv);
3229 #endif
3230 KKASSERT(count == 1);
3231 KKASSERT(pv->pv_pmap == NULL);
3232 zfree(pvzone, pv);
3234 return;
3236 /* retry */
3241 * Find or allocate the requested PV entry, returning a locked, held pv.
3243 * If (*isnew) is non-zero, the returned pv will have two hold counts, one
3244 * for the caller and one representing the pmap and vm_page association.
3246 * If (*isnew) is zero, the returned pv will have only one hold count.
3248 * Since both associations can only be adjusted while the pv is locked,
3249 * together they represent just one additional hold.
3251 static
3252 pv_entry_t
3253 _pv_alloc(pmap_t pmap, vm_pindex_t pindex, int *isnew PMAP_DEBUG_DECL)
3255 pv_entry_t pv;
3256 pv_entry_t pnew = NULL;
3258 spin_lock(&pmap->pm_spin);
3259 for (;;) {
3261 * Shortcut cache
3263 pv = pmap->pm_pvhint;
3264 cpu_ccfence();
3265 if (pv == NULL ||
3266 pv->pv_pmap != pmap ||
3267 pv->pv_pindex != pindex) {
3268 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot,
3269 pindex);
3271 if (pv == NULL) {
3272 vm_pindex_t *pmark;
3275 * We need to stage a new pv entry
3277 if (pnew == NULL) {
3278 spin_unlock(&pmap->pm_spin);
3279 pnew = zalloc(pvzone);
3280 spin_lock(&pmap->pm_spin);
3281 continue;
3285 * We need to block if someone is holding a
3286 * placemarker. The exclusive spinlock is a
3287 * sufficient interlock, as long as we determine
3288 * the placemarker has not been aquired we do not
3289 * need to get it.
3291 pmark = pmap_placemarker_hash(pmap, pindex);
3293 if (((*pmark ^ pindex) & ~PM_PLACEMARK_WAKEUP) == 0) {
3294 atomic_set_long(pmark, PM_PLACEMARK_WAKEUP);
3295 ssleep(pmark, &pmap->pm_spin, 0, "pvplc", 0);
3296 continue;
3300 * Setup the new entry
3302 pnew->pv_pmap = pmap;
3303 pnew->pv_pindex = pindex;
3304 pnew->pv_hold = PV_HOLD_LOCKED | 2;
3305 #ifdef PMAP_DEBUG
3306 pnew->pv_func = func;
3307 pnew->pv_line = lineno;
3308 if (pnew->pv_line_lastfree > 0) {
3309 pnew->pv_line_lastfree =
3310 -pnew->pv_line_lastfree;
3312 #endif
3313 pv = pv_entry_rb_tree_RB_INSERT(&pmap->pm_pvroot, pnew);
3314 atomic_add_long(&pmap->pm_stats.resident_count, 1);
3315 spin_unlock(&pmap->pm_spin);
3316 *isnew = 1;
3318 KKASSERT(pv == NULL);
3319 return(pnew);
3323 * We have an entry, clean up any staged pv we had allocated,
3324 * then block until we can lock the entry.
3326 if (pnew) {
3327 spin_unlock(&pmap->pm_spin);
3328 zfree(pvzone, pnew);
3329 pnew = NULL;
3330 spin_lock(&pmap->pm_spin);
3331 continue;
3333 if (_pv_hold_try(pv PMAP_DEBUG_COPY)) {
3334 spin_unlock(&pmap->pm_spin);
3335 KKASSERT(pv->pv_pmap == pmap &&
3336 pv->pv_pindex == pindex);
3337 *isnew = 0;
3338 return(pv);
3340 spin_unlock(&pmap->pm_spin);
3341 _pv_lock(pv PMAP_DEBUG_COPY);
3342 pv_unlock(pv);
3343 pv_drop(pv);
3344 spin_lock(&pmap->pm_spin);
3349 * Find the requested PV entry, returning a locked+held pv or NULL
3351 static
3352 pv_entry_t
3353 _pv_get(pmap_t pmap, vm_pindex_t pindex, vm_pindex_t **pmarkp PMAP_DEBUG_DECL)
3355 pv_entry_t pv;
3357 spin_lock(&pmap->pm_spin);
3358 for (;;) {
3360 * Shortcut cache
3362 pv = pmap->pm_pvhint;
3363 cpu_ccfence();
3364 if (pv == NULL ||
3365 pv->pv_pmap != pmap ||
3366 pv->pv_pindex != pindex) {
3367 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot,
3368 pindex);
3370 if (pv == NULL) {
3372 * Block if there is a placemarker. If we are to
3373 * return it, we must also aquire the spot.
3375 vm_pindex_t *pmark;
3377 pmark = pmap_placemarker_hash(pmap, pindex);
3379 if ((pmarkp && *pmark != PM_NOPLACEMARK) ||
3380 ((*pmark ^ pindex) & ~PM_PLACEMARK_WAKEUP) == 0) {
3381 atomic_set_long(pmark, PM_PLACEMARK_WAKEUP);
3382 ssleep(pmark, &pmap->pm_spin, 0, "pvpld", 0);
3383 continue;
3385 if (pmarkp) {
3386 if (atomic_swap_long(pmark, pindex) !=
3387 PM_NOPLACEMARK) {
3388 panic("_pv_get: pmark race");
3390 *pmarkp = pmark;
3392 spin_unlock(&pmap->pm_spin);
3393 return NULL;
3395 if (_pv_hold_try(pv PMAP_DEBUG_COPY)) {
3396 pv_cache(pv, pindex);
3397 spin_unlock(&pmap->pm_spin);
3398 KKASSERT(pv->pv_pmap == pmap &&
3399 pv->pv_pindex == pindex);
3400 return(pv);
3402 spin_unlock(&pmap->pm_spin);
3403 _pv_lock(pv PMAP_DEBUG_COPY);
3404 pv_unlock(pv);
3405 pv_drop(pv);
3406 spin_lock(&pmap->pm_spin);
3411 * Lookup, hold, and attempt to lock (pmap,pindex).
3413 * If the entry does not exist NULL is returned and *errorp is set to 0
3415 * If the entry exists and could be successfully locked it is returned and
3416 * errorp is set to 0.
3418 * If the entry exists but could NOT be successfully locked it is returned
3419 * held and *errorp is set to 1.
3421 * If the entry is placemarked by someone else NULL is returned and *errorp
3422 * is set to 1.
3424 static
3425 pv_entry_t
3426 pv_get_try(pmap_t pmap, vm_pindex_t pindex, vm_pindex_t **pmarkp, int *errorp)
3428 pv_entry_t pv;
3430 spin_lock_shared(&pmap->pm_spin);
3432 pv = pmap->pm_pvhint;
3433 cpu_ccfence();
3434 if (pv == NULL ||
3435 pv->pv_pmap != pmap ||
3436 pv->pv_pindex != pindex) {
3437 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pindex);
3440 if (pv == NULL) {
3441 vm_pindex_t *pmark;
3443 pmark = pmap_placemarker_hash(pmap, pindex);
3445 if (((*pmark ^ pindex) & ~PM_PLACEMARK_WAKEUP) == 0) {
3446 *errorp = 1;
3447 } else if (pmarkp &&
3448 atomic_cmpset_long(pmark, PM_NOPLACEMARK, pindex)) {
3449 *errorp = 0;
3450 } else {
3452 * Can't set a placemark with a NULL pmarkp, or if
3453 * pmarkp is non-NULL but we failed to set our
3454 * placemark.
3456 *errorp = 1;
3458 if (pmarkp)
3459 *pmarkp = pmark;
3460 spin_unlock_shared(&pmap->pm_spin);
3462 return NULL;
3466 * XXX This has problems if the lock is shared, why?
3468 if (pv_hold_try(pv)) {
3469 pv_cache(pv, pindex); /* overwrite ok (shared lock) */
3470 spin_unlock_shared(&pmap->pm_spin);
3471 *errorp = 0;
3472 KKASSERT(pv->pv_pmap == pmap && pv->pv_pindex == pindex);
3473 return(pv); /* lock succeeded */
3475 spin_unlock_shared(&pmap->pm_spin);
3476 *errorp = 1;
3478 return (pv); /* lock failed */
3482 * Lock a held pv, keeping the hold count
3484 static
3485 void
3486 _pv_lock(pv_entry_t pv PMAP_DEBUG_DECL)
3488 u_int count;
3490 for (;;) {
3491 count = pv->pv_hold;
3492 cpu_ccfence();
3493 if ((count & PV_HOLD_LOCKED) == 0) {
3494 if (atomic_cmpset_int(&pv->pv_hold, count,
3495 count | PV_HOLD_LOCKED)) {
3496 #ifdef PMAP_DEBUG
3497 pv->pv_func = func;
3498 pv->pv_line = lineno;
3499 #endif
3500 return;
3502 continue;
3504 tsleep_interlock(pv, 0);
3505 if (atomic_cmpset_int(&pv->pv_hold, count,
3506 count | PV_HOLD_WAITING)) {
3507 #ifdef PMAP_DEBUG2
3508 if (pmap_enter_debug > 0) {
3509 --pmap_enter_debug;
3510 kprintf("pv waiting on %s:%d\n",
3511 pv->pv_func, pv->pv_line);
3513 #endif
3514 tsleep(pv, PINTERLOCKED, "pvwait", hz);
3516 /* retry */
3521 * Unlock a held and locked pv, keeping the hold count.
3523 static
3524 void
3525 pv_unlock(pv_entry_t pv)
3527 u_int count;
3529 for (;;) {
3530 count = pv->pv_hold;
3531 cpu_ccfence();
3532 KKASSERT((count & (PV_HOLD_LOCKED | PV_HOLD_MASK)) >=
3533 (PV_HOLD_LOCKED | 1));
3534 if (atomic_cmpset_int(&pv->pv_hold, count,
3535 count &
3536 ~(PV_HOLD_LOCKED | PV_HOLD_WAITING))) {
3537 if (count & PV_HOLD_WAITING)
3538 wakeup(pv);
3539 break;
3545 * Unlock and drop a pv. If the pv is no longer associated with a pmap
3546 * and the hold count drops to zero we will free it.
3548 * Caller should not hold any spin locks. We are protected from hold races
3549 * by virtue of holds only occuring only with a pmap_spin or vm_page_spin
3550 * lock held. A pv cannot be located otherwise.
3552 static
3553 void
3554 pv_put(pv_entry_t pv)
3556 #ifdef PMAP_DEBUG2
3557 if (pmap_enter_debug > 0) {
3558 --pmap_enter_debug;
3559 kprintf("pv_put pv=%p hold=%08x\n", pv, pv->pv_hold);
3561 #endif
3564 * Normal put-aways must have a pv_m associated with the pv.
3566 KKASSERT(pv->pv_m != NULL);
3569 * Fast - shortcut most common condition
3571 if (atomic_cmpset_int(&pv->pv_hold, PV_HOLD_LOCKED | 2, 1))
3572 return;
3575 * Slow
3577 pv_unlock(pv);
3578 pv_drop(pv);
3582 * Remove the pmap association from a pv, require that pv_m already be removed,
3583 * then unlock and drop the pv. Any pte operations must have already been
3584 * completed. This call may result in a last-drop which will physically free
3585 * the pv.
3587 * Removing the pmap association entails an additional drop.
3589 * pv must be exclusively locked on call and will be disposed of on return.
3591 static
3592 void
3593 _pv_free(pv_entry_t pv, pv_entry_t pvp PMAP_DEBUG_DECL)
3595 pmap_t pmap;
3597 #ifdef PMAP_DEBUG
3598 pv->pv_func_lastfree = func;
3599 pv->pv_line_lastfree = lineno;
3600 #endif
3601 KKASSERT(pv->pv_m == NULL);
3602 KKASSERT((pv->pv_hold & (PV_HOLD_LOCKED|PV_HOLD_MASK)) >=
3603 (PV_HOLD_LOCKED|1));
3604 if ((pmap = pv->pv_pmap) != NULL) {
3605 spin_lock(&pmap->pm_spin);
3606 KKASSERT(pv->pv_pmap == pmap);
3607 if (pmap->pm_pvhint == pv)
3608 pmap->pm_pvhint = NULL;
3609 pv_entry_rb_tree_RB_REMOVE(&pmap->pm_pvroot, pv);
3610 atomic_add_long(&pmap->pm_stats.resident_count, -1);
3611 pv->pv_pmap = NULL;
3612 pv->pv_pindex = 0;
3613 spin_unlock(&pmap->pm_spin);
3616 * Try to shortcut three atomic ops, otherwise fall through
3617 * and do it normally. Drop two refs and the lock all in
3618 * one go.
3620 if (pvp)
3621 vm_page_unwire_quick(pvp->pv_m);
3622 if (atomic_cmpset_int(&pv->pv_hold, PV_HOLD_LOCKED | 2, 0)) {
3623 #ifdef PMAP_DEBUG2
3624 if (pmap_enter_debug > 0) {
3625 --pmap_enter_debug;
3626 kprintf("pv_free: free pv %p\n", pv);
3628 #endif
3629 zfree(pvzone, pv);
3630 return;
3632 pv_drop(pv); /* ref for pv_pmap */
3634 pv_unlock(pv);
3635 pv_drop(pv);
3639 * This routine is very drastic, but can save the system
3640 * in a pinch.
3642 void
3643 pmap_collect(void)
3645 int i;
3646 vm_page_t m;
3647 static int warningdone=0;
3649 if (pmap_pagedaemon_waken == 0)
3650 return;
3651 pmap_pagedaemon_waken = 0;
3652 if (warningdone < 5) {
3653 kprintf("pmap_collect: collecting pv entries -- "
3654 "suggest increasing PMAP_SHPGPERPROC\n");
3655 warningdone++;
3658 for (i = 0; i < vm_page_array_size; i++) {
3659 m = &vm_page_array[i];
3660 if (m->wire_count || m->hold_count)
3661 continue;
3662 if (vm_page_busy_try(m, TRUE) == 0) {
3663 if (m->wire_count == 0 && m->hold_count == 0) {
3664 pmap_remove_all(m);
3666 vm_page_wakeup(m);
3672 * Scan the pmap for active page table entries and issue a callback.
3673 * The callback must dispose of pte_pv, whos PTE entry is at *ptep in
3674 * its parent page table.
3676 * pte_pv will be NULL if the page or page table is unmanaged.
3677 * pt_pv will point to the page table page containing the pte for the page.
3679 * NOTE! If we come across an unmanaged page TABLE (verses an unmanaged page),
3680 * we pass a NULL pte_pv and we pass a pt_pv pointing to the passed
3681 * process pmap's PD and page to the callback function. This can be
3682 * confusing because the pt_pv is really a pd_pv, and the target page
3683 * table page is simply aliased by the pmap and not owned by it.
3685 * It is assumed that the start and end are properly rounded to the page size.
3687 * It is assumed that PD pages and above are managed and thus in the RB tree,
3688 * allowing us to use RB_SCAN from the PD pages down for ranged scans.
3690 struct pmap_scan_info {
3691 struct pmap *pmap;
3692 vm_offset_t sva;
3693 vm_offset_t eva;
3694 vm_pindex_t sva_pd_pindex;
3695 vm_pindex_t eva_pd_pindex;
3696 void (*func)(pmap_t, struct pmap_scan_info *,
3697 pv_entry_t, vm_pindex_t *, pv_entry_t,
3698 int, vm_offset_t,
3699 pt_entry_t *, void *);
3700 void *arg;
3701 pmap_inval_bulk_t bulk_core;
3702 pmap_inval_bulk_t *bulk;
3703 int count;
3704 int stop;
3707 static int pmap_scan_cmp(pv_entry_t pv, void *data);
3708 static int pmap_scan_callback(pv_entry_t pv, void *data);
3710 static void
3711 pmap_scan(struct pmap_scan_info *info, int smp_inval)
3713 struct pmap *pmap = info->pmap;
3714 pv_entry_t pd_pv; /* A page directory PV */
3715 pv_entry_t pt_pv; /* A page table PV */
3716 pv_entry_t pte_pv; /* A page table entry PV */
3717 vm_pindex_t *pte_placemark;
3718 vm_pindex_t *pt_placemark;
3719 pt_entry_t *ptep;
3720 pt_entry_t oldpte;
3721 struct pv_entry dummy_pv;
3723 info->stop = 0;
3724 if (pmap == NULL)
3725 return;
3726 if (smp_inval) {
3727 info->bulk = &info->bulk_core;
3728 pmap_inval_bulk_init(&info->bulk_core, pmap);
3729 } else {
3730 info->bulk = NULL;
3734 * Hold the token for stability; if the pmap is empty we have nothing
3735 * to do.
3737 #if 0
3738 if (pmap->pm_stats.resident_count == 0) {
3739 return;
3741 #endif
3743 info->count = 0;
3746 * Special handling for scanning one page, which is a very common
3747 * operation (it is?).
3749 * NOTE: Locks must be ordered bottom-up. pte,pt,pd,pdp,pml4
3751 if (info->sva + PAGE_SIZE == info->eva) {
3752 if (info->sva >= VM_MAX_USER_ADDRESS) {
3754 * Kernel mappings do not track wire counts on
3755 * page table pages and only maintain pd_pv and
3756 * pte_pv levels so pmap_scan() works.
3758 pt_pv = NULL;
3759 pte_pv = pv_get(pmap, pmap_pte_pindex(info->sva),
3760 &pte_placemark);
3761 ptep = vtopte(info->sva);
3762 } else {
3764 * User pages which are unmanaged will not have a
3765 * pte_pv. User page table pages which are unmanaged
3766 * (shared from elsewhere) will also not have a pt_pv.
3767 * The func() callback will pass both pte_pv and pt_pv
3768 * as NULL in that case.
3770 * We hold pte_placemark across the operation for
3771 * unmanaged pages.
3773 * WARNING! We must hold pt_placemark across the
3774 * *ptep test to prevent misintepreting
3775 * a non-zero *ptep as a shared page
3776 * table page. Hold it across the function
3777 * callback as well for SMP safety.
3779 pte_pv = pv_get(pmap, pmap_pte_pindex(info->sva),
3780 &pte_placemark);
3781 pt_pv = pv_get(pmap, pmap_pt_pindex(info->sva),
3782 &pt_placemark);
3783 if (pt_pv == NULL) {
3784 KKASSERT(pte_pv == NULL);
3785 pd_pv = pv_get(pmap,
3786 pmap_pd_pindex(info->sva),
3787 NULL);
3788 if (pd_pv) {
3789 ptep = pv_pte_lookup(pd_pv,
3790 pmap_pt_index(info->sva));
3791 if (*ptep) {
3792 info->func(pmap, info,
3793 NULL, pt_placemark,
3794 pd_pv, 1,
3795 info->sva, ptep,
3796 info->arg);
3797 } else {
3798 pv_placemarker_wakeup(pmap,
3799 pt_placemark);
3801 pv_put(pd_pv);
3802 } else {
3803 pv_placemarker_wakeup(pmap,
3804 pt_placemark);
3806 pv_placemarker_wakeup(pmap, pte_placemark);
3807 goto fast_skip;
3809 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(info->sva));
3813 * NOTE: *ptep can't be ripped out from under us if we hold
3814 * pte_pv (or pte_placemark) locked, but bits can
3815 * change.
3817 oldpte = *ptep;
3818 cpu_ccfence();
3819 if (oldpte == 0) {
3820 KKASSERT(pte_pv == NULL);
3821 pv_placemarker_wakeup(pmap, pte_placemark);
3822 } else if (pte_pv) {
3823 KASSERT((oldpte & (pmap->pmap_bits[PG_MANAGED_IDX] |
3824 pmap->pmap_bits[PG_V_IDX])) ==
3825 (pmap->pmap_bits[PG_MANAGED_IDX] |
3826 pmap->pmap_bits[PG_V_IDX]),
3827 ("badA *ptep %016lx/%016lx sva %016lx pte_pv %p",
3828 *ptep, oldpte, info->sva, pte_pv));
3829 info->func(pmap, info, pte_pv, NULL, pt_pv, 0,
3830 info->sva, ptep, info->arg);
3831 } else {
3832 KASSERT((oldpte & (pmap->pmap_bits[PG_MANAGED_IDX] |
3833 pmap->pmap_bits[PG_V_IDX])) ==
3834 pmap->pmap_bits[PG_V_IDX],
3835 ("badB *ptep %016lx/%016lx sva %016lx pte_pv NULL",
3836 *ptep, oldpte, info->sva));
3837 info->func(pmap, info, NULL, pte_placemark, pt_pv, 0,
3838 info->sva, ptep, info->arg);
3840 if (pt_pv)
3841 pv_put(pt_pv);
3842 fast_skip:
3843 pmap_inval_bulk_flush(info->bulk);
3844 return;
3848 * Nominal scan case, RB_SCAN() for PD pages and iterate from
3849 * there.
3851 info->sva_pd_pindex = pmap_pd_pindex(info->sva);
3852 info->eva_pd_pindex = pmap_pd_pindex(info->eva + NBPDP - 1);
3854 if (info->sva >= VM_MAX_USER_ADDRESS) {
3856 * The kernel does not currently maintain any pv_entry's for
3857 * higher-level page tables.
3859 bzero(&dummy_pv, sizeof(dummy_pv));
3860 dummy_pv.pv_pindex = info->sva_pd_pindex;
3861 spin_lock(&pmap->pm_spin);
3862 while (dummy_pv.pv_pindex < info->eva_pd_pindex) {
3863 pmap_scan_callback(&dummy_pv, info);
3864 ++dummy_pv.pv_pindex;
3866 spin_unlock(&pmap->pm_spin);
3867 } else {
3869 * User page tables maintain local PML4, PDP, and PD
3870 * pv_entry's at the very least. PT pv's might be
3871 * unmanaged and thus not exist. PTE pv's might be
3872 * unmanaged and thus not exist.
3874 spin_lock(&pmap->pm_spin);
3875 pv_entry_rb_tree_RB_SCAN(&pmap->pm_pvroot, pmap_scan_cmp,
3876 pmap_scan_callback, info);
3877 spin_unlock(&pmap->pm_spin);
3879 pmap_inval_bulk_flush(info->bulk);
3883 * WARNING! pmap->pm_spin held
3885 static int
3886 pmap_scan_cmp(pv_entry_t pv, void *data)
3888 struct pmap_scan_info *info = data;
3889 if (pv->pv_pindex < info->sva_pd_pindex)
3890 return(-1);
3891 if (pv->pv_pindex >= info->eva_pd_pindex)
3892 return(1);
3893 return(0);
3897 * pmap_scan() by PDs
3899 * WARNING! pmap->pm_spin held
3901 static int
3902 pmap_scan_callback(pv_entry_t pv, void *data)
3904 struct pmap_scan_info *info = data;
3905 struct pmap *pmap = info->pmap;
3906 pv_entry_t pd_pv; /* A page directory PV */
3907 pv_entry_t pt_pv; /* A page table PV */
3908 vm_pindex_t *pt_placemark;
3909 pt_entry_t *ptep;
3910 pt_entry_t oldpte;
3911 vm_offset_t sva;
3912 vm_offset_t eva;
3913 vm_offset_t va_next;
3914 vm_pindex_t pd_pindex;
3915 int error;
3918 * Stop if requested
3920 if (info->stop)
3921 return -1;
3924 * Pull the PD pindex from the pv before releasing the spinlock.
3926 * WARNING: pv is faked for kernel pmap scans.
3928 pd_pindex = pv->pv_pindex;
3929 spin_unlock(&pmap->pm_spin);
3930 pv = NULL; /* invalid after spinlock unlocked */
3933 * Calculate the page range within the PD. SIMPLE pmaps are
3934 * direct-mapped for the entire 2^64 address space. Normal pmaps
3935 * reflect the user and kernel address space which requires
3936 * cannonicalization w/regards to converting pd_pindex's back
3937 * into addresses.
3939 sva = (pd_pindex - pmap_pd_pindex(0)) << PDPSHIFT;
3940 if ((pmap->pm_flags & PMAP_FLAG_SIMPLE) == 0 &&
3941 (sva & PML4_SIGNMASK)) {
3942 sva |= PML4_SIGNMASK;
3944 eva = sva + NBPDP; /* can overflow */
3945 if (sva < info->sva)
3946 sva = info->sva;
3947 if (eva < info->sva || eva > info->eva)
3948 eva = info->eva;
3951 * NOTE: kernel mappings do not track page table pages, only
3952 * terminal pages.
3954 * NOTE: Locks must be ordered bottom-up. pte,pt,pd,pdp,pml4.
3955 * However, for the scan to be efficient we try to
3956 * cache items top-down.
3958 pd_pv = NULL;
3959 pt_pv = NULL;
3961 for (; sva < eva; sva = va_next) {
3962 if (info->stop)
3963 break;
3964 if (sva >= VM_MAX_USER_ADDRESS) {
3965 if (pt_pv) {
3966 pv_put(pt_pv);
3967 pt_pv = NULL;
3969 goto kernel_skip;
3973 * PD cache, scan shortcut if it doesn't exist.
3975 if (pd_pv == NULL) {
3976 pd_pv = pv_get(pmap, pmap_pd_pindex(sva), NULL);
3977 } else if (pd_pv->pv_pmap != pmap ||
3978 pd_pv->pv_pindex != pmap_pd_pindex(sva)) {
3979 pv_put(pd_pv);
3980 pd_pv = pv_get(pmap, pmap_pd_pindex(sva), NULL);
3982 if (pd_pv == NULL) {
3983 va_next = (sva + NBPDP) & ~PDPMASK;
3984 if (va_next < sva)
3985 va_next = eva;
3986 continue;
3990 * PT cache
3992 if (pt_pv && (pt_pv->pv_pmap != pmap ||
3993 pt_pv->pv_pindex != pmap_pt_pindex(sva))) {
3994 pv_put(pt_pv);
3995 pt_pv = NULL;
3997 if (pt_pv == NULL) {
3998 pt_pv = pv_get_try(pmap, pmap_pt_pindex(sva),
3999 &pt_placemark, &error);
4000 if (error) {
4001 pv_put(pd_pv); /* lock order */
4002 pd_pv = NULL;
4003 if (pt_pv) {
4004 pv_lock(pt_pv);
4005 pv_unlock(pt_pv);
4006 pv_drop(pt_pv);
4007 pt_pv = NULL;
4008 } else {
4009 pv_placemarker_wait(pmap, pt_placemark);
4011 va_next = sva;
4012 continue;
4014 /* may have to re-check later if pt_pv is NULL here */
4018 * If pt_pv is NULL we either have an shared page table
4019 * page and must issue a callback specific to that case,
4020 * or there is no page table page.
4022 * Either way we can skip the page table page.
4024 * WARNING! pt_pv can also be NULL due to a pv creation
4025 * race where we find it to be NULL and then
4026 * later see a pte_pv. But its possible the pt_pv
4027 * got created inbetween the two operations, so
4028 * we must check.
4030 if (pt_pv == NULL) {
4032 * Possible unmanaged (shared from another pmap)
4033 * page table page.
4035 * WARNING! We must hold pt_placemark across the
4036 * *ptep test to prevent misintepreting
4037 * a non-zero *ptep as a shared page
4038 * table page. Hold it across the function
4039 * callback as well for SMP safety.
4041 ptep = pv_pte_lookup(pd_pv, pmap_pt_index(sva));
4042 if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
4043 info->func(pmap, info, NULL, pt_placemark,
4044 pd_pv, 1,
4045 sva, ptep, info->arg);
4046 } else {
4047 pv_placemarker_wakeup(pmap, pt_placemark);
4051 * Done, move to next page table page.
4053 va_next = (sva + NBPDR) & ~PDRMASK;
4054 if (va_next < sva)
4055 va_next = eva;
4056 continue;
4060 * From this point in the loop testing pt_pv for non-NULL
4061 * means we are in UVM, else if it is NULL we are in KVM.
4063 * Limit our scan to either the end of the va represented
4064 * by the current page table page, or to the end of the
4065 * range being removed.
4067 kernel_skip:
4068 va_next = (sva + NBPDR) & ~PDRMASK;
4069 if (va_next < sva)
4070 va_next = eva;
4071 if (va_next > eva)
4072 va_next = eva;
4075 * Scan the page table for pages. Some pages may not be
4076 * managed (might not have a pv_entry).
4078 * There is no page table management for kernel pages so
4079 * pt_pv will be NULL in that case, but otherwise pt_pv
4080 * is non-NULL, locked, and referenced.
4084 * At this point a non-NULL pt_pv means a UVA, and a NULL
4085 * pt_pv means a KVA.
4087 if (pt_pv)
4088 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(sva));
4089 else
4090 ptep = vtopte(sva);
4092 while (sva < va_next) {
4093 pv_entry_t pte_pv;
4094 vm_pindex_t *pte_placemark;
4097 * Yield every 64 pages, stop if requested.
4099 if ((++info->count & 63) == 0)
4100 lwkt_user_yield();
4101 if (info->stop)
4102 break;
4105 * We can shortcut our scan if *ptep == 0. This is
4106 * an unlocked check.
4108 if (*ptep == 0) {
4109 sva += PAGE_SIZE;
4110 ++ptep;
4111 continue;
4113 cpu_ccfence();
4116 * Acquire the related pte_pv, if any. If *ptep == 0
4117 * the related pte_pv should not exist, but if *ptep
4118 * is not zero the pte_pv may or may not exist (e.g.
4119 * will not exist for an unmanaged page).
4121 * However a multitude of races are possible here
4122 * so if we cannot lock definite state we clean out
4123 * our cache and break the inner while() loop to
4124 * force a loop up to the top of the for().
4126 * XXX unlock/relock pd_pv, pt_pv, and re-test their
4127 * validity instead of looping up?
4129 pte_pv = pv_get_try(pmap, pmap_pte_pindex(sva),
4130 &pte_placemark, &error);
4131 if (error) {
4132 pv_put(pd_pv); /* lock order */
4133 pd_pv = NULL;
4134 if (pt_pv) {
4135 pv_put(pt_pv); /* lock order */
4136 pt_pv = NULL;
4138 if (pte_pv) { /* block */
4139 pv_lock(pte_pv);
4140 pv_unlock(pte_pv);
4141 pv_drop(pte_pv);
4142 pte_pv = NULL;
4143 } else {
4144 pv_placemarker_wait(pmap,
4145 pte_placemark);
4147 va_next = sva; /* retry */
4148 break;
4152 * Reload *ptep after successfully locking the
4153 * pindex. If *ptep == 0 we had better NOT have a
4154 * pte_pv.
4156 cpu_ccfence();
4157 oldpte = *ptep;
4158 if (oldpte == 0) {
4159 if (pte_pv) {
4160 kprintf("Unexpected non-NULL pte_pv "
4161 "%p pt_pv %p "
4162 "*ptep = %016lx/%016lx\n",
4163 pte_pv, pt_pv, *ptep, oldpte);
4164 panic("Unexpected non-NULL pte_pv");
4165 } else {
4166 pv_placemarker_wakeup(pmap, pte_placemark);
4168 sva += PAGE_SIZE;
4169 ++ptep;
4170 continue;
4174 * We can't hold pd_pv across the callback (because
4175 * we don't pass it to the callback and the callback
4176 * might deadlock)
4178 if (pd_pv) {
4179 vm_page_wire_quick(pd_pv->pv_m);
4180 pv_unlock(pd_pv);
4184 * Ready for the callback. The locked pte_pv (if any)
4185 * is consumed by the callback. pte_pv will exist if
4186 * the page is managed, and will not exist if it
4187 * isn't.
4189 if (oldpte & pmap->pmap_bits[PG_MANAGED_IDX]) {
4191 * Managed pte
4193 KASSERT(pte_pv &&
4194 (oldpte & pmap->pmap_bits[PG_V_IDX]),
4195 ("badC *ptep %016lx/%016lx sva %016lx "
4196 "pte_pv %p",
4197 *ptep, oldpte, sva, pte_pv));
4199 * We must unlock pd_pv across the callback
4200 * to avoid deadlocks on any recursive
4201 * disposal. Re-check that it still exists
4202 * after re-locking.
4204 * Call target disposes of pte_pv and may
4205 * destroy but will not dispose of pt_pv.
4207 info->func(pmap, info, pte_pv, NULL,
4208 pt_pv, 0,
4209 sva, ptep, info->arg);
4210 } else {
4212 * Unmanaged pte
4214 * We must unlock pd_pv across the callback
4215 * to avoid deadlocks on any recursive
4216 * disposal. Re-check that it still exists
4217 * after re-locking.
4219 * Call target disposes of pte_pv or
4220 * pte_placemark and may destroy but will
4221 * not dispose of pt_pv.
4223 KASSERT(pte_pv == NULL &&
4224 (oldpte & pmap->pmap_bits[PG_V_IDX]),
4225 ("badD *ptep %016lx/%016lx sva %016lx "
4226 "pte_pv %p pte_pv->pv_m %p ",
4227 *ptep, oldpte, sva,
4228 pte_pv, (pte_pv ? pte_pv->pv_m : NULL)));
4229 if (pte_pv)
4230 kprintf("RaceD\n");
4231 if (pte_pv) {
4232 info->func(pmap, info,
4233 pte_pv, NULL,
4234 pt_pv, 0,
4235 sva, ptep, info->arg);
4236 } else {
4237 info->func(pmap, info,
4238 NULL, pte_placemark,
4239 pt_pv, 0,
4240 sva, ptep, info->arg);
4243 if (pd_pv) {
4244 pv_lock(pd_pv);
4245 vm_page_unwire_quick(pd_pv->pv_m);
4246 if (pd_pv->pv_pmap == NULL) {
4247 va_next = sva; /* retry */
4248 break;
4251 pte_pv = NULL;
4252 sva += PAGE_SIZE;
4253 ++ptep;
4256 if (pd_pv) {
4257 pv_put(pd_pv);
4258 pd_pv = NULL;
4260 if (pt_pv) {
4261 pv_put(pt_pv);
4262 pt_pv = NULL;
4264 if ((++info->count & 7) == 0)
4265 lwkt_user_yield();
4268 * Relock before returning.
4270 spin_lock(&pmap->pm_spin);
4271 return (0);
4274 void
4275 pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
4277 struct pmap_scan_info info;
4279 info.pmap = pmap;
4280 info.sva = sva;
4281 info.eva = eva;
4282 info.func = pmap_remove_callback;
4283 info.arg = NULL;
4284 pmap_scan(&info, 1);
4287 static void
4288 pmap_remove_noinval(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
4290 struct pmap_scan_info info;
4292 info.pmap = pmap;
4293 info.sva = sva;
4294 info.eva = eva;
4295 info.func = pmap_remove_callback;
4296 info.arg = NULL;
4297 pmap_scan(&info, 0);
4300 static void
4301 pmap_remove_callback(pmap_t pmap, struct pmap_scan_info *info,
4302 pv_entry_t pte_pv, vm_pindex_t *pte_placemark,
4303 pv_entry_t pt_pv, int sharept,
4304 vm_offset_t va, pt_entry_t *ptep, void *arg __unused)
4306 pt_entry_t pte;
4308 if (pte_pv) {
4310 * Managed entry
4312 * This will also drop pt_pv's wire_count. Note that
4313 * terminal pages are not wired based on mmu presence.
4315 * NOTE: If this is the kernel_pmap, pt_pv can be NULL.
4317 KKASSERT(pte_pv->pv_m != NULL);
4318 pmap_remove_pv_pte(pte_pv, pt_pv, info->bulk, 2);
4319 pte_pv = NULL; /* safety */
4322 * Recursively destroy higher-level page tables.
4324 * This is optional. If we do not, they will still
4325 * be destroyed when the process exits.
4327 * NOTE: Do not destroy pv_entry's with extra hold refs,
4328 * a caller may have unlocked it and intends to
4329 * continue to use it.
4331 if (pmap_dynamic_delete &&
4332 pt_pv &&
4333 pt_pv->pv_m &&
4334 pt_pv->pv_m->wire_count == 1 &&
4335 (pt_pv->pv_hold & PV_HOLD_MASK) == 2 &&
4336 pt_pv->pv_pindex != pmap_pml4_pindex()) {
4337 if (pmap_dynamic_delete == 2)
4338 kprintf("B %jd %08x\n", pt_pv->pv_pindex, pt_pv->pv_hold);
4339 pv_hold(pt_pv); /* extra hold */
4340 pmap_remove_pv_pte(pt_pv, NULL, info->bulk, 1);
4341 pv_lock(pt_pv); /* prior extra hold + relock */
4343 } else if (sharept == 0) {
4345 * Unmanaged page table (pt, pd, or pdp. Not pte).
4347 * pt_pv's wire_count is still bumped by unmanaged pages
4348 * so we must decrement it manually.
4350 * We have to unwire the target page table page.
4352 * It is unclear how we can invalidate a segment so we
4353 * invalidate -1 which invlidates the tlb.
4355 pte = pmap_inval_bulk(info->bulk, (vm_offset_t)-1, ptep, 0);
4356 if (pte & pmap->pmap_bits[PG_W_IDX])
4357 atomic_add_long(&pmap->pm_stats.wired_count, -1);
4358 atomic_add_long(&pmap->pm_stats.resident_count, -1);
4359 if (vm_page_unwire_quick(pt_pv->pv_m))
4360 panic("pmap_remove: insufficient wirecount");
4361 pv_placemarker_wakeup(pmap, pte_placemark);
4362 } else {
4364 * Unmanaged page table (pt, pd, or pdp. Not pte) for
4365 * a shared page table.
4367 * pt_pv is actually the pd_pv for our pmap (not the shared
4368 * object pmap).
4370 * We have to unwire the target page table page and we
4371 * have to unwire our page directory page.
4373 * It is unclear how we can invalidate a segment so we
4374 * invalidate -1 which invlidates the tlb.
4376 pte = pmap_inval_bulk(info->bulk, (vm_offset_t)-1, ptep, 0);
4377 atomic_add_long(&pmap->pm_stats.resident_count, -1);
4378 KKASSERT((pte & pmap->pmap_bits[PG_DEVICE_IDX]) == 0);
4379 if (vm_page_unwire_quick(PHYS_TO_VM_PAGE(pte & PG_FRAME)))
4380 panic("pmap_remove: shared pgtable1 bad wirecount");
4381 if (vm_page_unwire_quick(pt_pv->pv_m))
4382 panic("pmap_remove: shared pgtable2 bad wirecount");
4383 pv_placemarker_wakeup(pmap, pte_placemark);
4388 * Removes this physical page from all physical maps in which it resides.
4389 * Reflects back modify bits to the pager.
4391 * This routine may not be called from an interrupt.
4393 static
4394 void
4395 pmap_remove_all(vm_page_t m)
4397 pv_entry_t pv;
4398 pmap_inval_bulk_t bulk;
4400 if (!pmap_initialized /* || (m->flags & PG_FICTITIOUS)*/)
4401 return;
4403 vm_page_spin_lock(m);
4404 while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
4405 KKASSERT(pv->pv_m == m);
4406 if (pv_hold_try(pv)) {
4407 vm_page_spin_unlock(m);
4408 } else {
4409 vm_page_spin_unlock(m);
4410 pv_lock(pv);
4411 pv_unlock(pv);
4412 pv_drop(pv);
4413 vm_page_spin_lock(m);
4414 continue;
4416 KKASSERT(pv->pv_pmap && pv->pv_m == m);
4419 * Holding no spinlocks, pv is locked. Once we scrap
4420 * pv we can no longer use it as a list iterator (but
4421 * we are doing a TAILQ_FIRST() so we are ok).
4423 pmap_inval_bulk_init(&bulk, pv->pv_pmap);
4424 pmap_remove_pv_pte(pv, NULL, &bulk, 2);
4425 pv = NULL; /* safety */
4426 pmap_inval_bulk_flush(&bulk);
4427 vm_page_spin_lock(m);
4429 KKASSERT((m->flags & (PG_MAPPED|PG_WRITEABLE)) == 0);
4430 vm_page_spin_unlock(m);
4434 * Removes the page from a particular pmap
4436 void
4437 pmap_remove_specific(pmap_t pmap, vm_page_t m)
4439 pv_entry_t pv;
4440 pmap_inval_bulk_t bulk;
4442 if (!pmap_initialized)
4443 return;
4445 again:
4446 vm_page_spin_lock(m);
4447 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4448 if (pv->pv_pmap != pmap)
4449 continue;
4450 KKASSERT(pv->pv_m == m);
4451 if (pv_hold_try(pv)) {
4452 vm_page_spin_unlock(m);
4453 } else {
4454 vm_page_spin_unlock(m);
4455 pv_lock(pv);
4456 pv_unlock(pv);
4457 pv_drop(pv);
4458 goto again;
4460 KKASSERT(pv->pv_pmap == pmap && pv->pv_m == m);
4463 * Holding no spinlocks, pv is locked. Once gone it can't
4464 * be used as an iterator. In fact, because we couldn't
4465 * necessarily lock it atomically it may have moved within
4466 * the list and ALSO cannot be used as an iterator.
4468 pmap_inval_bulk_init(&bulk, pv->pv_pmap);
4469 pmap_remove_pv_pte(pv, NULL, &bulk, 2);
4470 pv = NULL; /* safety */
4471 pmap_inval_bulk_flush(&bulk);
4472 goto again;
4474 vm_page_spin_unlock(m);
4478 * Set the physical protection on the specified range of this map
4479 * as requested. This function is typically only used for debug watchpoints
4480 * and COW pages.
4482 * This function may not be called from an interrupt if the map is
4483 * not the kernel_pmap.
4485 * NOTE! For shared page table pages we just unmap the page.
4487 void
4488 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
4490 struct pmap_scan_info info;
4491 /* JG review for NX */
4493 if (pmap == NULL)
4494 return;
4495 if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
4496 pmap_remove(pmap, sva, eva);
4497 return;
4499 if (prot & VM_PROT_WRITE)
4500 return;
4501 info.pmap = pmap;
4502 info.sva = sva;
4503 info.eva = eva;
4504 info.func = pmap_protect_callback;
4505 info.arg = &prot;
4506 pmap_scan(&info, 1);
4509 static
4510 void
4511 pmap_protect_callback(pmap_t pmap, struct pmap_scan_info *info,
4512 pv_entry_t pte_pv, vm_pindex_t *pte_placemark,
4513 pv_entry_t pt_pv, int sharept,
4514 vm_offset_t va, pt_entry_t *ptep, void *arg __unused)
4516 pt_entry_t pbits;
4517 pt_entry_t cbits;
4518 pt_entry_t pte;
4519 vm_page_t m;
4521 again:
4522 pbits = *ptep;
4523 cbits = pbits;
4524 if (pte_pv) {
4525 KKASSERT(pte_pv->pv_m != NULL);
4526 m = NULL;
4527 if (pbits & pmap->pmap_bits[PG_A_IDX]) {
4528 if ((pbits & pmap->pmap_bits[PG_DEVICE_IDX]) == 0) {
4529 m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
4530 KKASSERT(m == pte_pv->pv_m);
4531 vm_page_flag_set(m, PG_REFERENCED);
4533 cbits &= ~pmap->pmap_bits[PG_A_IDX];
4535 if (pbits & pmap->pmap_bits[PG_M_IDX]) {
4536 if (pmap_track_modified(pte_pv->pv_pindex)) {
4537 if ((pbits & pmap->pmap_bits[PG_DEVICE_IDX]) == 0) {
4538 if (m == NULL) {
4539 m = PHYS_TO_VM_PAGE(pbits &
4540 PG_FRAME);
4542 vm_page_dirty(m);
4544 cbits &= ~pmap->pmap_bits[PG_M_IDX];
4547 } else if (sharept) {
4549 * Unmanaged page table, pt_pv is actually the pd_pv
4550 * for our pmap (not the object's shared pmap).
4552 * When asked to protect something in a shared page table
4553 * page we just unmap the page table page. We have to
4554 * invalidate the tlb in this situation.
4556 * XXX Warning, shared page tables will not be used for
4557 * OBJT_DEVICE or OBJT_MGTDEVICE (PG_FICTITIOUS) mappings
4558 * so PHYS_TO_VM_PAGE() should be safe here.
4560 pte = pmap_inval_smp(pmap, (vm_offset_t)-1, 1, ptep, 0);
4561 if (vm_page_unwire_quick(PHYS_TO_VM_PAGE(pte & PG_FRAME)))
4562 panic("pmap_protect: pgtable1 pg bad wirecount");
4563 if (vm_page_unwire_quick(pt_pv->pv_m))
4564 panic("pmap_protect: pgtable2 pg bad wirecount");
4565 ptep = NULL;
4567 /* else unmanaged page, adjust bits, no wire changes */
4569 if (ptep) {
4570 cbits &= ~pmap->pmap_bits[PG_RW_IDX];
4571 #ifdef PMAP_DEBUG2
4572 if (pmap_enter_debug > 0) {
4573 --pmap_enter_debug;
4574 kprintf("pmap_protect va=%lx ptep=%p pte_pv=%p "
4575 "pt_pv=%p cbits=%08lx\n",
4576 va, ptep, pte_pv,
4577 pt_pv, cbits
4580 #endif
4581 if (pbits != cbits) {
4582 if (!pmap_inval_smp_cmpset(pmap, (vm_offset_t)-1,
4583 ptep, pbits, cbits)) {
4584 goto again;
4588 if (pte_pv)
4589 pv_put(pte_pv);
4590 else
4591 pv_placemarker_wakeup(pmap, pte_placemark);
4595 * Insert the vm_page (m) at the virtual address (va), replacing any prior
4596 * mapping at that address. Set protection and wiring as requested.
4598 * If entry is non-NULL we check to see if the SEG_SIZE optimization is
4599 * possible. If it is we enter the page into the appropriate shared pmap
4600 * hanging off the related VM object instead of the passed pmap, then we
4601 * share the page table page from the VM object's pmap into the current pmap.
4603 * NOTE: This routine MUST insert the page into the pmap now, it cannot
4604 * lazy-evaluate.
4606 * NOTE: If (m) is PG_UNMANAGED it may also be a temporary fake vm_page_t.
4607 * never record it.
4609 void
4610 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
4611 boolean_t wired, vm_map_entry_t entry)
4613 pv_entry_t pt_pv; /* page table */
4614 pv_entry_t pte_pv; /* page table entry */
4615 vm_pindex_t *pte_placemark;
4616 pt_entry_t *ptep;
4617 vm_paddr_t opa;
4618 pt_entry_t origpte, newpte;
4619 vm_paddr_t pa;
4621 if (pmap == NULL)
4622 return;
4623 va = trunc_page(va);
4624 #ifdef PMAP_DIAGNOSTIC
4625 if (va >= KvaEnd)
4626 panic("pmap_enter: toobig");
4627 if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
4628 panic("pmap_enter: invalid to pmap_enter page table "
4629 "pages (va: 0x%lx)", va);
4630 #endif
4631 if (va < UPT_MAX_ADDRESS && pmap == &kernel_pmap) {
4632 kprintf("Warning: pmap_enter called on UVA with "
4633 "kernel_pmap\n");
4634 #ifdef DDB
4635 db_print_backtrace();
4636 #endif
4638 if (va >= UPT_MAX_ADDRESS && pmap != &kernel_pmap) {
4639 kprintf("Warning: pmap_enter called on KVA without"
4640 "kernel_pmap\n");
4641 #ifdef DDB
4642 db_print_backtrace();
4643 #endif
4647 * Get locked PV entries for our new page table entry (pte_pv or
4648 * pte_placemark) and for its parent page table (pt_pv). We need
4649 * the parent so we can resolve the location of the ptep.
4651 * Only hardware MMU actions can modify the ptep out from
4652 * under us.
4654 * if (m) is fictitious or unmanaged we do not create a managing
4655 * pte_pv for it. Any pre-existing page's management state must
4656 * match (avoiding code complexity).
4658 * If the pmap is still being initialized we assume existing
4659 * page tables.
4661 * Kernel mapppings do not track page table pages (i.e. pt_pv).
4663 * WARNING! If replacing a managed mapping with an unmanaged mapping
4664 * pte_pv will wind up being non-NULL and must be handled
4665 * below.
4667 if (pmap_initialized == FALSE) {
4668 pte_pv = NULL;
4669 pt_pv = NULL;
4670 pte_placemark = NULL;
4671 ptep = vtopte(va);
4672 origpte = *ptep;
4673 } else if (m->flags & (/*PG_FICTITIOUS |*/ PG_UNMANAGED)) { /* XXX */
4674 pte_pv = pv_get(pmap, pmap_pte_pindex(va), &pte_placemark);
4675 KKASSERT(pte_pv == NULL);
4676 if (va >= VM_MAX_USER_ADDRESS) {
4677 pt_pv = NULL;
4678 ptep = vtopte(va);
4679 } else {
4680 pt_pv = pmap_allocpte_seg(pmap, pmap_pt_pindex(va),
4681 NULL, entry, va);
4682 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
4684 origpte = *ptep;
4685 cpu_ccfence();
4686 KASSERT(origpte == 0 ||
4687 (origpte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0,
4688 ("Invalid PTE 0x%016jx @ 0x%016jx\n", origpte, va));
4689 } else {
4690 if (va >= VM_MAX_USER_ADDRESS) {
4692 * Kernel map, pv_entry-tracked.
4694 pt_pv = NULL;
4695 pte_pv = pmap_allocpte(pmap, pmap_pte_pindex(va), NULL);
4696 ptep = vtopte(va);
4697 } else {
4699 * User map
4701 pte_pv = pmap_allocpte_seg(pmap, pmap_pte_pindex(va),
4702 &pt_pv, entry, va);
4703 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
4705 pte_placemark = NULL; /* safety */
4706 origpte = *ptep;
4707 cpu_ccfence();
4708 KASSERT(origpte == 0 ||
4709 (origpte & pmap->pmap_bits[PG_MANAGED_IDX]),
4710 ("Invalid PTE 0x%016jx @ 0x%016jx\n", origpte, va));
4713 pa = VM_PAGE_TO_PHYS(m);
4714 opa = origpte & PG_FRAME;
4717 * Calculate the new PTE. Note that pte_pv alone does not mean
4718 * the new pte_pv is managed, it could exist because the old pte
4719 * was managed even if the new one is not.
4721 newpte = (pt_entry_t)(pa | pte_prot(pmap, prot) |
4722 pmap->pmap_bits[PG_V_IDX] | pmap->pmap_bits[PG_A_IDX]);
4723 if (wired)
4724 newpte |= pmap->pmap_bits[PG_W_IDX];
4725 if (va < VM_MAX_USER_ADDRESS)
4726 newpte |= pmap->pmap_bits[PG_U_IDX];
4727 if (pte_pv && (m->flags & (/*PG_FICTITIOUS |*/ PG_UNMANAGED)) == 0)
4728 newpte |= pmap->pmap_bits[PG_MANAGED_IDX];
4729 // if (pmap == &kernel_pmap)
4730 // newpte |= pgeflag;
4731 newpte |= pmap->pmap_cache_bits[m->pat_mode];
4732 if (m->flags & PG_FICTITIOUS)
4733 newpte |= pmap->pmap_bits[PG_DEVICE_IDX];
4736 * It is possible for multiple faults to occur in threaded
4737 * environments, the existing pte might be correct.
4739 if (((origpte ^ newpte) &
4740 ~(pt_entry_t)(pmap->pmap_bits[PG_M_IDX] |
4741 pmap->pmap_bits[PG_A_IDX])) == 0) {
4742 goto done;
4746 * Ok, either the address changed or the protection or wiring
4747 * changed.
4749 * Clear the current entry, interlocking the removal. For managed
4750 * pte's this will also flush the modified state to the vm_page.
4751 * Atomic ops are mandatory in order to ensure that PG_M events are
4752 * not lost during any transition.
4754 * WARNING: The caller has busied the new page but not the original
4755 * vm_page which we are trying to replace. Because we hold
4756 * the pte_pv lock, but have not busied the page, PG bits
4757 * can be cleared out from under us.
4759 if (opa) {
4760 if (origpte & pmap->pmap_bits[PG_MANAGED_IDX]) {
4762 * Old page was managed. Expect pte_pv to exist.
4763 * (it might also exist if the old page was unmanaged).
4765 * NOTE: pt_pv won't exist for a kernel page
4766 * (managed or otherwise).
4768 * NOTE: We may be reusing the pte_pv so we do not
4769 * destroy it in pmap_remove_pv_pte().
4771 KKASSERT(pte_pv && pte_pv->pv_m);
4772 if (prot & VM_PROT_NOSYNC) {
4773 pmap_remove_pv_pte(pte_pv, pt_pv, NULL, 0);
4774 } else {
4775 pmap_inval_bulk_t bulk;
4777 pmap_inval_bulk_init(&bulk, pmap);
4778 pmap_remove_pv_pte(pte_pv, pt_pv, &bulk, 0);
4779 pmap_inval_bulk_flush(&bulk);
4781 pmap_remove_pv_page(pte_pv);
4782 /* will either set pte_pv->pv_m or pv_free() later */
4783 } else {
4785 * Old page was not managed. If we have a pte_pv
4786 * it better not have a pv_m assigned to it. If the
4787 * new page is managed the pte_pv will be destroyed
4788 * near the end (we need its interlock).
4790 * NOTE: We leave the wire count on the PT page
4791 * intact for the followup enter, but adjust
4792 * the wired-pages count on the pmap.
4794 KKASSERT(pte_pv == NULL);
4795 if (prot & VM_PROT_NOSYNC) {
4797 * NOSYNC (no mmu sync) requested.
4799 (void)pte_load_clear(ptep);
4800 cpu_invlpg((void *)va);
4801 } else {
4803 * Nominal SYNC
4805 pmap_inval_smp(pmap, va, 1, ptep, 0);
4809 * We must adjust pm_stats manually for unmanaged
4810 * pages.
4812 if (pt_pv) {
4813 atomic_add_long(&pmap->pm_stats.
4814 resident_count, -1);
4816 if (origpte & pmap->pmap_bits[PG_W_IDX]) {
4817 atomic_add_long(&pmap->pm_stats.
4818 wired_count, -1);
4821 KKASSERT(*ptep == 0);
4824 #ifdef PMAP_DEBUG2
4825 if (pmap_enter_debug > 0) {
4826 --pmap_enter_debug;
4827 kprintf("pmap_enter: va=%lx m=%p origpte=%lx newpte=%lx ptep=%p"
4828 " pte_pv=%p pt_pv=%p opa=%lx prot=%02x\n",
4829 va, m,
4830 origpte, newpte, ptep,
4831 pte_pv, pt_pv, opa, prot);
4833 #endif
4835 if ((newpte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0) {
4837 * Entering an unmanaged page. We must wire the pt_pv unless
4838 * we retained the wiring from an unmanaged page we had
4839 * removed (if we retained it via pte_pv that will go away
4840 * soon).
4842 if (pt_pv && (opa == 0 ||
4843 (origpte & pmap->pmap_bits[PG_MANAGED_IDX]))) {
4844 vm_page_wire_quick(pt_pv->pv_m);
4846 if (wired)
4847 atomic_add_long(&pmap->pm_stats.wired_count, 1);
4850 * Unmanaged pages need manual resident_count tracking.
4852 if (pt_pv) {
4853 atomic_add_long(&pt_pv->pv_pmap->pm_stats.
4854 resident_count, 1);
4856 } else {
4858 * Entering a managed page. Our pte_pv takes care of the
4859 * PT wiring, so if we had removed an unmanaged page before
4860 * we must adjust.
4862 * We have to take care of the pmap wired count ourselves.
4864 * Enter on the PV list if part of our managed memory.
4866 KKASSERT(pte_pv && (pte_pv->pv_m == NULL || pte_pv->pv_m == m));
4867 vm_page_spin_lock(m);
4868 pte_pv->pv_m = m;
4869 pmap_page_stats_adding(m);
4870 TAILQ_INSERT_TAIL(&m->md.pv_list, pte_pv, pv_list);
4871 vm_page_flag_set(m, PG_MAPPED);
4872 vm_page_spin_unlock(m);
4874 if (pt_pv && opa &&
4875 (origpte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0) {
4876 vm_page_unwire_quick(pt_pv->pv_m);
4880 * Adjust pmap wired pages count for new entry.
4882 if (wired) {
4883 atomic_add_long(&pte_pv->pv_pmap->pm_stats.
4884 wired_count, 1);
4889 * Kernel VMAs (pt_pv == NULL) require pmap invalidation interlocks.
4891 * User VMAs do not because those will be zero->non-zero, so no
4892 * stale entries to worry about at this point.
4894 * For KVM there appear to still be issues. Theoretically we
4895 * should be able to scrap the interlocks entirely but we
4896 * get crashes.
4898 if ((prot & VM_PROT_NOSYNC) == 0 && pt_pv == NULL) {
4899 pmap_inval_smp(pmap, va, 1, ptep, newpte);
4900 } else {
4901 atomic_swap_long(ptep, newpte);
4902 if (pt_pv == NULL)
4903 cpu_invlpg((void *)va);
4906 if (newpte & pmap->pmap_bits[PG_RW_IDX])
4907 vm_page_flag_set(m, PG_WRITEABLE);
4910 * Cleanup
4912 done:
4913 KKASSERT((newpte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0 ||
4914 (m->flags & PG_MAPPED));
4917 * Cleanup the pv entry, allowing other accessors. If the new page
4918 * is not managed but we have a pte_pv (which was locking our
4919 * operation), we can free it now. pte_pv->pv_m should be NULL.
4921 if (pte_pv && (newpte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0) {
4922 pv_free(pte_pv, pt_pv);
4923 } else if (pte_pv) {
4924 pv_put(pte_pv);
4925 } else if (pte_placemark) {
4926 pv_placemarker_wakeup(pmap, pte_placemark);
4928 if (pt_pv)
4929 pv_put(pt_pv);
4933 * This code works like pmap_enter() but assumes VM_PROT_READ and not-wired.
4934 * This code also assumes that the pmap has no pre-existing entry for this
4935 * VA.
4937 * This code currently may only be used on user pmaps, not kernel_pmap.
4939 void
4940 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m)
4942 pmap_enter(pmap, va, m, VM_PROT_READ, FALSE, NULL);
4946 * Make a temporary mapping for a physical address. This is only intended
4947 * to be used for panic dumps.
4949 * The caller is responsible for calling smp_invltlb().
4951 void *
4952 pmap_kenter_temporary(vm_paddr_t pa, long i)
4954 pmap_kenter_quick((vm_offset_t)crashdumpmap + (i * PAGE_SIZE), pa);
4955 return ((void *)crashdumpmap);
4958 #define MAX_INIT_PT (96)
4961 * This routine preloads the ptes for a given object into the specified pmap.
4962 * This eliminates the blast of soft faults on process startup and
4963 * immediately after an mmap.
4965 static int pmap_object_init_pt_callback(vm_page_t p, void *data);
4967 void
4968 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_prot_t prot,
4969 vm_object_t object, vm_pindex_t pindex,
4970 vm_size_t size, int limit)
4972 struct rb_vm_page_scan_info info;
4973 struct lwp *lp;
4974 vm_size_t psize;
4977 * We can't preinit if read access isn't set or there is no pmap
4978 * or object.
4980 if ((prot & VM_PROT_READ) == 0 || pmap == NULL || object == NULL)
4981 return;
4984 * We can't preinit if the pmap is not the current pmap
4986 lp = curthread->td_lwp;
4987 if (lp == NULL || pmap != vmspace_pmap(lp->lwp_vmspace))
4988 return;
4991 * Misc additional checks
4993 psize = x86_64_btop(size);
4995 if ((object->type != OBJT_VNODE) ||
4996 ((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
4997 (object->resident_page_count > MAX_INIT_PT))) {
4998 return;
5001 if (pindex + psize > object->size) {
5002 if (object->size < pindex)
5003 return;
5004 psize = object->size - pindex;
5007 if (psize == 0)
5008 return;
5011 * If everything is segment-aligned do not pre-init here. Instead
5012 * allow the normal vm_fault path to pass a segment hint to
5013 * pmap_enter() which will then use an object-referenced shared
5014 * page table page.
5016 if ((addr & SEG_MASK) == 0 &&
5017 (ctob(psize) & SEG_MASK) == 0 &&
5018 (ctob(pindex) & SEG_MASK) == 0) {
5019 return;
5023 * Use a red-black scan to traverse the requested range and load
5024 * any valid pages found into the pmap.
5026 * We cannot safely scan the object's memq without holding the
5027 * object token.
5029 info.start_pindex = pindex;
5030 info.end_pindex = pindex + psize - 1;
5031 info.limit = limit;
5032 info.mpte = NULL;
5033 info.addr = addr;
5034 info.pmap = pmap;
5036 vm_object_hold_shared(object);
5037 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
5038 pmap_object_init_pt_callback, &info);
5039 vm_object_drop(object);
5042 static
5044 pmap_object_init_pt_callback(vm_page_t p, void *data)
5046 struct rb_vm_page_scan_info *info = data;
5047 vm_pindex_t rel_index;
5050 * don't allow an madvise to blow away our really
5051 * free pages allocating pv entries.
5053 if ((info->limit & MAP_PREFAULT_MADVISE) &&
5054 vmstats.v_free_count < vmstats.v_free_reserved) {
5055 return(-1);
5059 * Ignore list markers and ignore pages we cannot instantly
5060 * busy (while holding the object token).
5062 if (p->flags & PG_MARKER)
5063 return 0;
5064 if (vm_page_busy_try(p, TRUE))
5065 return 0;
5066 if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
5067 (p->flags & PG_FICTITIOUS) == 0) {
5068 if ((p->queue - p->pc) == PQ_CACHE)
5069 vm_page_deactivate(p);
5070 rel_index = p->pindex - info->start_pindex;
5071 pmap_enter_quick(info->pmap,
5072 info->addr + x86_64_ptob(rel_index), p);
5074 vm_page_wakeup(p);
5075 lwkt_yield();
5076 return(0);
5080 * Return TRUE if the pmap is in shape to trivially pre-fault the specified
5081 * address.
5083 * Returns FALSE if it would be non-trivial or if a pte is already loaded
5084 * into the slot.
5086 * XXX This is safe only because page table pages are not freed.
5089 pmap_prefault_ok(pmap_t pmap, vm_offset_t addr)
5091 pt_entry_t *pte;
5093 /*spin_lock(&pmap->pm_spin);*/
5094 if ((pte = pmap_pte(pmap, addr)) != NULL) {
5095 if (*pte & pmap->pmap_bits[PG_V_IDX]) {
5096 /*spin_unlock(&pmap->pm_spin);*/
5097 return FALSE;
5100 /*spin_unlock(&pmap->pm_spin);*/
5101 return TRUE;
5105 * Change the wiring attribute for a pmap/va pair. The mapping must already
5106 * exist in the pmap. The mapping may or may not be managed. The wiring in
5107 * the page is not changed, the page is returned so the caller can adjust
5108 * its wiring (the page is not locked in any way).
5110 * Wiring is not a hardware characteristic so there is no need to invalidate
5111 * TLB. However, in an SMP environment we must use a locked bus cycle to
5112 * update the pte (if we are not using the pmap_inval_*() API that is)...
5113 * it's ok to do this for simple wiring changes.
5115 vm_page_t
5116 pmap_unwire(pmap_t pmap, vm_offset_t va)
5118 pt_entry_t *ptep;
5119 pv_entry_t pt_pv;
5120 vm_paddr_t pa;
5121 vm_page_t m;
5123 if (pmap == NULL)
5124 return NULL;
5127 * Assume elements in the kernel pmap are stable
5129 if (pmap == &kernel_pmap) {
5130 if (pmap_pt(pmap, va) == 0)
5131 return NULL;
5132 ptep = pmap_pte_quick(pmap, va);
5134 if (pmap_pte_w(pmap, ptep))
5135 atomic_add_long(&pmap->pm_stats.wired_count,-1);
5136 atomic_clear_long(ptep, pmap->pmap_bits[PG_W_IDX]);
5137 pa = *ptep & PG_FRAME;
5138 m = PHYS_TO_VM_PAGE(pa);
5139 } else {
5141 * We can only [un]wire pmap-local pages (we cannot wire
5142 * shared pages)
5144 pt_pv = pv_get(pmap, pmap_pt_pindex(va), NULL);
5145 if (pt_pv == NULL)
5146 return NULL;
5148 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
5149 if ((*ptep & pmap->pmap_bits[PG_V_IDX]) == 0) {
5150 pv_put(pt_pv);
5151 return NULL;
5154 if (pmap_pte_w(pmap, ptep)) {
5155 atomic_add_long(&pt_pv->pv_pmap->pm_stats.wired_count,
5156 -1);
5158 /* XXX else return NULL so caller doesn't unwire m ? */
5160 atomic_clear_long(ptep, pmap->pmap_bits[PG_W_IDX]);
5162 pa = *ptep & PG_FRAME;
5163 m = PHYS_TO_VM_PAGE(pa); /* held by wired count */
5164 pv_put(pt_pv);
5166 return m;
5170 * Copy the range specified by src_addr/len from the source map to
5171 * the range dst_addr/len in the destination map.
5173 * This routine is only advisory and need not do anything.
5175 void
5176 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
5177 vm_size_t len, vm_offset_t src_addr)
5182 * pmap_zero_page:
5184 * Zero the specified physical page.
5186 * This function may be called from an interrupt and no locking is
5187 * required.
5189 void
5190 pmap_zero_page(vm_paddr_t phys)
5192 vm_offset_t va = PHYS_TO_DMAP(phys);
5194 pagezero((void *)va);
5198 * pmap_zero_page:
5200 * Zero part of a physical page by mapping it into memory and clearing
5201 * its contents with bzero.
5203 * off and size may not cover an area beyond a single hardware page.
5205 void
5206 pmap_zero_page_area(vm_paddr_t phys, int off, int size)
5208 vm_offset_t virt = PHYS_TO_DMAP(phys);
5210 bzero((char *)virt + off, size);
5214 * pmap_copy_page:
5216 * Copy the physical page from the source PA to the target PA.
5217 * This function may be called from an interrupt. No locking
5218 * is required.
5220 void
5221 pmap_copy_page(vm_paddr_t src, vm_paddr_t dst)
5223 vm_offset_t src_virt, dst_virt;
5225 src_virt = PHYS_TO_DMAP(src);
5226 dst_virt = PHYS_TO_DMAP(dst);
5227 bcopy((void *)src_virt, (void *)dst_virt, PAGE_SIZE);
5231 * pmap_copy_page_frag:
5233 * Copy the physical page from the source PA to the target PA.
5234 * This function may be called from an interrupt. No locking
5235 * is required.
5237 void
5238 pmap_copy_page_frag(vm_paddr_t src, vm_paddr_t dst, size_t bytes)
5240 vm_offset_t src_virt, dst_virt;
5242 src_virt = PHYS_TO_DMAP(src);
5243 dst_virt = PHYS_TO_DMAP(dst);
5245 bcopy((char *)src_virt + (src & PAGE_MASK),
5246 (char *)dst_virt + (dst & PAGE_MASK),
5247 bytes);
5251 * Returns true if the pmap's pv is one of the first 16 pvs linked to from
5252 * this page. This count may be changed upwards or downwards in the future;
5253 * it is only necessary that true be returned for a small subset of pmaps
5254 * for proper page aging.
5256 boolean_t
5257 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
5259 pv_entry_t pv;
5260 int loops = 0;
5262 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
5263 return FALSE;
5265 vm_page_spin_lock(m);
5266 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5267 if (pv->pv_pmap == pmap) {
5268 vm_page_spin_unlock(m);
5269 return TRUE;
5271 loops++;
5272 if (loops >= 16)
5273 break;
5275 vm_page_spin_unlock(m);
5276 return (FALSE);
5280 * Remove all pages from specified address space this aids process exit
5281 * speeds. Also, this code may be special cased for the current process
5282 * only.
5284 void
5285 pmap_remove_pages(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
5287 pmap_remove_noinval(pmap, sva, eva);
5288 cpu_invltlb();
5292 * pmap_testbit tests bits in pte's note that the testbit/clearbit
5293 * routines are inline, and a lot of things compile-time evaluate.
5295 static
5296 boolean_t
5297 pmap_testbit(vm_page_t m, int bit)
5299 pv_entry_t pv;
5300 pt_entry_t *pte;
5301 pmap_t pmap;
5303 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
5304 return FALSE;
5306 if (TAILQ_FIRST(&m->md.pv_list) == NULL)
5307 return FALSE;
5308 vm_page_spin_lock(m);
5309 if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
5310 vm_page_spin_unlock(m);
5311 return FALSE;
5314 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5316 #if defined(PMAP_DIAGNOSTIC)
5317 if (pv->pv_pmap == NULL) {
5318 kprintf("Null pmap (tb) at pindex: %"PRIu64"\n",
5319 pv->pv_pindex);
5320 continue;
5322 #endif
5323 pmap = pv->pv_pmap;
5326 * If the bit being tested is the modified bit, then
5327 * mark clean_map and ptes as never
5328 * modified.
5330 * WARNING! Because we do not lock the pv, *pte can be in a
5331 * state of flux. Despite this the value of *pte
5332 * will still be related to the vm_page in some way
5333 * because the pv cannot be destroyed as long as we
5334 * hold the vm_page spin lock.
5336 if (bit == PG_A_IDX || bit == PG_M_IDX) {
5337 //& (pmap->pmap_bits[PG_A_IDX] | pmap->pmap_bits[PG_M_IDX])) {
5338 if (!pmap_track_modified(pv->pv_pindex))
5339 continue;
5342 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
5343 if (*pte & pmap->pmap_bits[bit]) {
5344 vm_page_spin_unlock(m);
5345 return TRUE;
5348 vm_page_spin_unlock(m);
5349 return (FALSE);
5353 * This routine is used to modify bits in ptes. Only one bit should be
5354 * specified. PG_RW requires special handling.
5356 * Caller must NOT hold any spin locks
5358 static __inline
5359 void
5360 pmap_clearbit(vm_page_t m, int bit_index)
5362 pv_entry_t pv;
5363 pt_entry_t *pte;
5364 pt_entry_t pbits;
5365 pmap_t pmap;
5367 if (bit_index == PG_RW_IDX)
5368 vm_page_flag_clear(m, PG_WRITEABLE);
5369 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
5370 return;
5373 * PG_M or PG_A case
5375 * Loop over all current mappings setting/clearing as appropos If
5376 * setting RO do we need to clear the VAC?
5378 * NOTE: When clearing PG_M we could also (not implemented) drop
5379 * through to the PG_RW code and clear PG_RW too, forcing
5380 * a fault on write to redetect PG_M for virtual kernels, but
5381 * it isn't necessary since virtual kernels invalidate the
5382 * pte when they clear the VPTE_M bit in their virtual page
5383 * tables.
5385 * NOTE: Does not re-dirty the page when clearing only PG_M.
5387 * NOTE: Because we do not lock the pv, *pte can be in a state of
5388 * flux. Despite this the value of *pte is still somewhat
5389 * related while we hold the vm_page spin lock.
5391 * *pte can be zero due to this race. Since we are clearing
5392 * bits we basically do no harm when this race ccurs.
5394 if (bit_index != PG_RW_IDX) {
5395 vm_page_spin_lock(m);
5396 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5397 #if defined(PMAP_DIAGNOSTIC)
5398 if (pv->pv_pmap == NULL) {
5399 kprintf("Null pmap (cb) at pindex: %"PRIu64"\n",
5400 pv->pv_pindex);
5401 continue;
5403 #endif
5404 pmap = pv->pv_pmap;
5405 pte = pmap_pte_quick(pv->pv_pmap,
5406 pv->pv_pindex << PAGE_SHIFT);
5407 pbits = *pte;
5408 if (pbits & pmap->pmap_bits[bit_index])
5409 atomic_clear_long(pte, pmap->pmap_bits[bit_index]);
5411 vm_page_spin_unlock(m);
5412 return;
5416 * Clear PG_RW. Also clears PG_M and marks the page dirty if PG_M
5417 * was set.
5419 restart:
5420 vm_page_spin_lock(m);
5421 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5423 * don't write protect pager mappings
5425 if (!pmap_track_modified(pv->pv_pindex))
5426 continue;
5428 #if defined(PMAP_DIAGNOSTIC)
5429 if (pv->pv_pmap == NULL) {
5430 kprintf("Null pmap (cb) at pindex: %"PRIu64"\n",
5431 pv->pv_pindex);
5432 continue;
5434 #endif
5435 pmap = pv->pv_pmap;
5438 * Skip pages which do not have PG_RW set.
5440 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
5441 if ((*pte & pmap->pmap_bits[PG_RW_IDX]) == 0)
5442 continue;
5445 * Lock the PV
5447 if (pv_hold_try(pv)) {
5448 vm_page_spin_unlock(m);
5449 } else {
5450 vm_page_spin_unlock(m);
5451 pv_lock(pv); /* held, now do a blocking lock */
5452 pv_unlock(pv);
5453 pv_drop(pv);
5454 goto restart;
5456 KKASSERT(pv->pv_pmap == pmap && pv->pv_m == m);
5457 for (;;) {
5458 pt_entry_t nbits;
5460 pbits = *pte;
5461 cpu_ccfence();
5462 nbits = pbits & ~(pmap->pmap_bits[PG_RW_IDX] |
5463 pmap->pmap_bits[PG_M_IDX]);
5464 if (pmap_inval_smp_cmpset(pmap,
5465 ((vm_offset_t)pv->pv_pindex << PAGE_SHIFT),
5466 pte, pbits, nbits)) {
5467 break;
5469 cpu_pause();
5473 * If PG_M was found to be set while we were clearing PG_RW
5474 * we also clear PG_M (done above) and mark the page dirty.
5475 * Callers expect this behavior.
5477 * we lost pv so it cannot be used as an iterator. In fact,
5478 * because we couldn't necessarily lock it atomically it may
5479 * have moved within the list and ALSO cannot be used as an
5480 * iterator.
5482 vm_page_spin_lock(m);
5483 if (pbits & pmap->pmap_bits[PG_M_IDX])
5484 vm_page_dirty(m);
5485 vm_page_spin_unlock(m);
5486 pv_put(pv);
5487 goto restart;
5489 vm_page_spin_unlock(m);
5493 * Lower the permission for all mappings to a given page.
5495 * Page must be busied by caller. Because page is busied by caller this
5496 * should not be able to race a pmap_enter().
5498 void
5499 pmap_page_protect(vm_page_t m, vm_prot_t prot)
5501 /* JG NX support? */
5502 if ((prot & VM_PROT_WRITE) == 0) {
5503 if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
5505 * NOTE: pmap_clearbit(.. PG_RW) also clears
5506 * the PG_WRITEABLE flag in (m).
5508 pmap_clearbit(m, PG_RW_IDX);
5509 } else {
5510 pmap_remove_all(m);
5515 vm_paddr_t
5516 pmap_phys_address(vm_pindex_t ppn)
5518 return (x86_64_ptob(ppn));
5522 * Return a count of reference bits for a page, clearing those bits.
5523 * It is not necessary for every reference bit to be cleared, but it
5524 * is necessary that 0 only be returned when there are truly no
5525 * reference bits set.
5527 * XXX: The exact number of bits to check and clear is a matter that
5528 * should be tested and standardized at some point in the future for
5529 * optimal aging of shared pages.
5531 * This routine may not block.
5534 pmap_ts_referenced(vm_page_t m)
5536 pv_entry_t pv;
5537 pt_entry_t *pte;
5538 pmap_t pmap;
5539 int rtval = 0;
5541 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
5542 return (rtval);
5544 vm_page_spin_lock(m);
5545 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5546 if (!pmap_track_modified(pv->pv_pindex))
5547 continue;
5548 pmap = pv->pv_pmap;
5549 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
5550 if (pte && (*pte & pmap->pmap_bits[PG_A_IDX])) {
5551 atomic_clear_long(pte, pmap->pmap_bits[PG_A_IDX]);
5552 rtval++;
5553 if (rtval > 4)
5554 break;
5557 vm_page_spin_unlock(m);
5558 return (rtval);
5562 * pmap_is_modified:
5564 * Return whether or not the specified physical page was modified
5565 * in any physical maps.
5567 boolean_t
5568 pmap_is_modified(vm_page_t m)
5570 boolean_t res;
5572 res = pmap_testbit(m, PG_M_IDX);
5573 return (res);
5577 * Clear the modify bits on the specified physical page.
5579 void
5580 pmap_clear_modify(vm_page_t m)
5582 pmap_clearbit(m, PG_M_IDX);
5586 * pmap_clear_reference:
5588 * Clear the reference bit on the specified physical page.
5590 void
5591 pmap_clear_reference(vm_page_t m)
5593 pmap_clearbit(m, PG_A_IDX);
5597 * Miscellaneous support routines follow
5600 static
5601 void
5602 i386_protection_init(void)
5604 int *kp, prot;
5606 /* JG NX support may go here; No VM_PROT_EXECUTE ==> set NX bit */
5607 kp = protection_codes;
5608 for (prot = 0; prot < PROTECTION_CODES_SIZE; prot++) {
5609 switch (prot) {
5610 case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
5612 * Read access is also 0. There isn't any execute bit,
5613 * so just make it readable.
5615 case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
5616 case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
5617 case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
5618 *kp++ = 0;
5619 break;
5620 case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
5621 case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
5622 case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
5623 case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
5624 *kp++ = pmap_bits_default[PG_RW_IDX];
5625 break;
5631 * Map a set of physical memory pages into the kernel virtual
5632 * address space. Return a pointer to where it is mapped. This
5633 * routine is intended to be used for mapping device memory,
5634 * NOT real memory.
5636 * NOTE: We can't use pgeflag unless we invalidate the pages one at
5637 * a time.
5639 * NOTE: The PAT attributes {WRITE_BACK, WRITE_THROUGH, UNCACHED, UNCACHEABLE}
5640 * work whether the cpu supports PAT or not. The remaining PAT
5641 * attributes {WRITE_PROTECTED, WRITE_COMBINING} only work if the cpu
5642 * supports PAT.
5644 void *
5645 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
5647 return(pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
5650 void *
5651 pmap_mapdev_uncacheable(vm_paddr_t pa, vm_size_t size)
5653 return(pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
5656 void *
5657 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
5659 return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
5663 * Map a set of physical memory pages into the kernel virtual
5664 * address space. Return a pointer to where it is mapped. This
5665 * routine is intended to be used for mapping device memory,
5666 * NOT real memory.
5668 void *
5669 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
5671 vm_offset_t va, tmpva, offset;
5672 pt_entry_t *pte;
5673 vm_size_t tmpsize;
5675 offset = pa & PAGE_MASK;
5676 size = roundup(offset + size, PAGE_SIZE);
5678 va = kmem_alloc_nofault(&kernel_map, size, VM_SUBSYS_MAPDEV, PAGE_SIZE);
5679 if (va == 0)
5680 panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
5682 pa = pa & ~PAGE_MASK;
5683 for (tmpva = va, tmpsize = size; tmpsize > 0;) {
5684 pte = vtopte(tmpva);
5685 *pte = pa |
5686 kernel_pmap.pmap_bits[PG_RW_IDX] |
5687 kernel_pmap.pmap_bits[PG_V_IDX] | /* pgeflag | */
5688 kernel_pmap.pmap_cache_bits[mode];
5689 tmpsize -= PAGE_SIZE;
5690 tmpva += PAGE_SIZE;
5691 pa += PAGE_SIZE;
5693 pmap_invalidate_range(&kernel_pmap, va, va + size);
5694 pmap_invalidate_cache_range(va, va + size);
5696 return ((void *)(va + offset));
5699 void
5700 pmap_unmapdev(vm_offset_t va, vm_size_t size)
5702 vm_offset_t base, offset;
5704 base = va & ~PAGE_MASK;
5705 offset = va & PAGE_MASK;
5706 size = roundup(offset + size, PAGE_SIZE);
5707 pmap_qremove(va, size >> PAGE_SHIFT);
5708 kmem_free(&kernel_map, base, size);
5712 * Sets the memory attribute for the specified page.
5714 void
5715 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
5718 m->pat_mode = ma;
5721 * If "m" is a normal page, update its direct mapping. This update
5722 * can be relied upon to perform any cache operations that are
5723 * required for data coherence.
5725 if ((m->flags & PG_FICTITIOUS) == 0)
5726 pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), 1, m->pat_mode);
5730 * Change the PAT attribute on an existing kernel memory map. Caller
5731 * must ensure that the virtual memory in question is not accessed
5732 * during the adjustment.
5734 void
5735 pmap_change_attr(vm_offset_t va, vm_size_t count, int mode)
5737 pt_entry_t *pte;
5738 vm_offset_t base;
5739 int changed = 0;
5741 if (va == 0)
5742 panic("pmap_change_attr: va is NULL");
5743 base = trunc_page(va);
5745 while (count) {
5746 pte = vtopte(va);
5747 *pte = (*pte & ~(pt_entry_t)(kernel_pmap.pmap_cache_mask)) |
5748 kernel_pmap.pmap_cache_bits[mode];
5749 --count;
5750 va += PAGE_SIZE;
5753 changed = 1; /* XXX: not optimal */
5756 * Flush CPU caches if required to make sure any data isn't cached that
5757 * shouldn't be, etc.
5759 if (changed) {
5760 pmap_invalidate_range(&kernel_pmap, base, va);
5761 pmap_invalidate_cache_range(base, va);
5766 * perform the pmap work for mincore
5769 pmap_mincore(pmap_t pmap, vm_offset_t addr)
5771 pt_entry_t *ptep, pte;
5772 vm_page_t m;
5773 int val = 0;
5775 ptep = pmap_pte(pmap, addr);
5777 if (ptep && (pte = *ptep) != 0) {
5778 vm_offset_t pa;
5780 val = MINCORE_INCORE;
5781 if ((pte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0)
5782 goto done;
5784 pa = pte & PG_FRAME;
5786 if (pte & pmap->pmap_bits[PG_DEVICE_IDX])
5787 m = NULL;
5788 else
5789 m = PHYS_TO_VM_PAGE(pa);
5792 * Modified by us
5794 if (pte & pmap->pmap_bits[PG_M_IDX])
5795 val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
5797 * Modified by someone
5799 else if (m && (m->dirty || pmap_is_modified(m)))
5800 val |= MINCORE_MODIFIED_OTHER;
5802 * Referenced by us
5804 if (pte & pmap->pmap_bits[PG_A_IDX])
5805 val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
5808 * Referenced by someone
5810 else if (m && ((m->flags & PG_REFERENCED) ||
5811 pmap_ts_referenced(m))) {
5812 val |= MINCORE_REFERENCED_OTHER;
5813 vm_page_flag_set(m, PG_REFERENCED);
5816 done:
5818 return val;
5822 * Replace p->p_vmspace with a new one. If adjrefs is non-zero the new
5823 * vmspace will be ref'd and the old one will be deref'd.
5825 * The vmspace for all lwps associated with the process will be adjusted
5826 * and cr3 will be reloaded if any lwp is the current lwp.
5828 * The process must hold the vmspace->vm_map.token for oldvm and newvm
5830 void
5831 pmap_replacevm(struct proc *p, struct vmspace *newvm, int adjrefs)
5833 struct vmspace *oldvm;
5834 struct lwp *lp;
5836 oldvm = p->p_vmspace;
5837 if (oldvm != newvm) {
5838 if (adjrefs)
5839 vmspace_ref(newvm);
5840 p->p_vmspace = newvm;
5841 KKASSERT(p->p_nthreads == 1);
5842 lp = RB_ROOT(&p->p_lwp_tree);
5843 pmap_setlwpvm(lp, newvm);
5844 if (adjrefs)
5845 vmspace_rel(oldvm);
5850 * Set the vmspace for a LWP. The vmspace is almost universally set the
5851 * same as the process vmspace, but virtual kernels need to swap out contexts
5852 * on a per-lwp basis.
5854 * Caller does not necessarily hold any vmspace tokens. Caller must control
5855 * the lwp (typically be in the context of the lwp). We use a critical
5856 * section to protect against statclock and hardclock (statistics collection).
5858 void
5859 pmap_setlwpvm(struct lwp *lp, struct vmspace *newvm)
5861 struct vmspace *oldvm;
5862 struct pmap *pmap;
5864 oldvm = lp->lwp_vmspace;
5866 if (oldvm != newvm) {
5867 crit_enter();
5868 lp->lwp_vmspace = newvm;
5869 if (curthread->td_lwp == lp) {
5870 pmap = vmspace_pmap(newvm);
5871 ATOMIC_CPUMASK_ORBIT(pmap->pm_active, mycpu->gd_cpuid);
5872 if (pmap->pm_active_lock & CPULOCK_EXCL)
5873 pmap_interlock_wait(newvm);
5874 #if defined(SWTCH_OPTIM_STATS)
5875 tlb_flush_count++;
5876 #endif
5877 if (pmap->pmap_bits[TYPE_IDX] == REGULAR_PMAP) {
5878 curthread->td_pcb->pcb_cr3 = vtophys(pmap->pm_pml4);
5879 } else if (pmap->pmap_bits[TYPE_IDX] == EPT_PMAP) {
5880 curthread->td_pcb->pcb_cr3 = KPML4phys;
5881 } else {
5882 panic("pmap_setlwpvm: unknown pmap type\n");
5884 load_cr3(curthread->td_pcb->pcb_cr3);
5885 pmap = vmspace_pmap(oldvm);
5886 ATOMIC_CPUMASK_NANDBIT(pmap->pm_active,
5887 mycpu->gd_cpuid);
5889 crit_exit();
5894 * Called when switching to a locked pmap, used to interlock against pmaps
5895 * undergoing modifications to prevent us from activating the MMU for the
5896 * target pmap until all such modifications have completed. We have to do
5897 * this because the thread making the modifications has already set up its
5898 * SMP synchronization mask.
5900 * This function cannot sleep!
5902 * No requirements.
5904 void
5905 pmap_interlock_wait(struct vmspace *vm)
5907 struct pmap *pmap = &vm->vm_pmap;
5909 if (pmap->pm_active_lock & CPULOCK_EXCL) {
5910 crit_enter();
5911 KKASSERT(curthread->td_critcount >= 2);
5912 DEBUG_PUSH_INFO("pmap_interlock_wait");
5913 while (pmap->pm_active_lock & CPULOCK_EXCL) {
5914 cpu_ccfence();
5915 lwkt_process_ipiq();
5917 DEBUG_POP_INFO();
5918 crit_exit();
5922 vm_offset_t
5923 pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
5926 if ((obj == NULL) || (size < NBPDR) ||
5927 ((obj->type != OBJT_DEVICE) && (obj->type != OBJT_MGTDEVICE))) {
5928 return addr;
5931 addr = roundup2(addr, NBPDR);
5932 return addr;
5936 * Used by kmalloc/kfree, page already exists at va
5938 vm_page_t
5939 pmap_kvtom(vm_offset_t va)
5941 pt_entry_t *ptep = vtopte(va);
5943 KKASSERT((*ptep & kernel_pmap.pmap_bits[PG_DEVICE_IDX]) == 0);
5944 return(PHYS_TO_VM_PAGE(*ptep & PG_FRAME));
5948 * Initialize machine-specific shared page directory support. This
5949 * is executed when a VM object is created.
5951 void
5952 pmap_object_init(vm_object_t object)
5954 object->md.pmap_rw = NULL;
5955 object->md.pmap_ro = NULL;
5959 * Clean up machine-specific shared page directory support. This
5960 * is executed when a VM object is destroyed.
5962 void
5963 pmap_object_free(vm_object_t object)
5965 pmap_t pmap;
5967 if ((pmap = object->md.pmap_rw) != NULL) {
5968 object->md.pmap_rw = NULL;
5969 pmap_remove_noinval(pmap,
5970 VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
5971 CPUMASK_ASSZERO(pmap->pm_active);
5972 pmap_release(pmap);
5973 pmap_puninit(pmap);
5974 kfree(pmap, M_OBJPMAP);
5976 if ((pmap = object->md.pmap_ro) != NULL) {
5977 object->md.pmap_ro = NULL;
5978 pmap_remove_noinval(pmap,
5979 VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
5980 CPUMASK_ASSZERO(pmap->pm_active);
5981 pmap_release(pmap);
5982 pmap_puninit(pmap);
5983 kfree(pmap, M_OBJPMAP);
5988 * pmap_pgscan_callback - Used by pmap_pgscan to acquire the related
5989 * VM page and issue a pginfo->callback.
5991 * We are expected to dispose of any non-NULL pte_pv.
5993 static
5994 void
5995 pmap_pgscan_callback(pmap_t pmap, struct pmap_scan_info *info,
5996 pv_entry_t pte_pv, vm_pindex_t *pte_placemark,
5997 pv_entry_t pt_pv, int sharept,
5998 vm_offset_t va, pt_entry_t *ptep, void *arg)
6000 struct pmap_pgscan_info *pginfo = arg;
6001 vm_page_t m;
6003 if (pte_pv) {
6005 * Try to busy the page while we hold the pte_pv locked.
6007 KKASSERT(pte_pv->pv_m);
6008 m = PHYS_TO_VM_PAGE(*ptep & PG_FRAME);
6009 if (vm_page_busy_try(m, TRUE) == 0) {
6010 if (m == PHYS_TO_VM_PAGE(*ptep & PG_FRAME)) {
6012 * The callback is issued with the pte_pv
6013 * unlocked and put away, and the pt_pv
6014 * unlocked.
6016 pv_put(pte_pv);
6017 if (pt_pv) {
6018 vm_page_wire_quick(pt_pv->pv_m);
6019 pv_unlock(pt_pv);
6021 if (pginfo->callback(pginfo, va, m) < 0)
6022 info->stop = 1;
6023 if (pt_pv) {
6024 pv_lock(pt_pv);
6025 vm_page_unwire_quick(pt_pv->pv_m);
6027 } else {
6028 vm_page_wakeup(m);
6029 pv_put(pte_pv);
6031 } else {
6032 ++pginfo->busycount;
6033 pv_put(pte_pv);
6035 } else {
6037 * Shared page table or unmanaged page (sharept or !sharept)
6039 pv_placemarker_wakeup(pmap, pte_placemark);
6043 void
6044 pmap_pgscan(struct pmap_pgscan_info *pginfo)
6046 struct pmap_scan_info info;
6048 pginfo->offset = pginfo->beg_addr;
6049 info.pmap = pginfo->pmap;
6050 info.sva = pginfo->beg_addr;
6051 info.eva = pginfo->end_addr;
6052 info.func = pmap_pgscan_callback;
6053 info.arg = pginfo;
6054 pmap_scan(&info, 0);
6055 if (info.stop == 0)
6056 pginfo->offset = pginfo->end_addr;
6060 * Wait for a placemarker that we do not own to clear. The placemarker
6061 * in question is not necessary set to the pindex we want, we may have
6062 * to wait on the element because we want to reserve it ourselves.
6064 static
6065 void
6066 pv_placemarker_wait(pmap_t pmap, vm_pindex_t *pmark)
6068 spin_lock(&pmap->pm_spin);
6069 if (*pmark != PM_NOPLACEMARK) {
6070 atomic_set_long(pmark, PM_PLACEMARK_WAKEUP);
6071 ssleep(pmark, &pmap->pm_spin, 0, "pvplw", 0);
6073 spin_unlock(&pmap->pm_spin);
6077 * Wakeup a placemarker that we own. Replace the entry with
6078 * PM_NOPLACEMARK and issue a wakeup() if necessary.
6080 static
6081 void
6082 pv_placemarker_wakeup(pmap_t pmap, vm_pindex_t *pmark)
6084 vm_pindex_t pindex;
6086 spin_lock(&pmap->pm_spin);
6087 pindex = atomic_swap_long(pmark, PM_NOPLACEMARK);
6088 spin_unlock(&pmap->pm_spin);
6089 KKASSERT(pindex != PM_NOPLACEMARK);
6090 if (pindex & PM_PLACEMARK_WAKEUP)
6091 wakeup(pmark);